
8 Baire Category Theorem and Uniform Bound-
edness Principle

8.1 Baire’s Category Theorem

Validity of many results in analysis depends on the completeness property.
This property addresses the inadequacy of the system of rational numbers.
The manner in which completeness of a metric space X is typically exploited
is that the intersection of nested closed balls

B̄(x1, r1) ⊃ B̄(x2, r2) ⊃ · · · ⊃ B̄(xn, rn) ⊃ · · ·

with rn → 0 is non-trivial. To see that this is the case, we observe that the
sequence xn satisfies for m ≥ n,

d(xn, xm) ≤ rn. (1)

This implies that this sequence is Cauchy, and xn → x for some x ∈ X. It
follows from (1) that d(xn, x) ≤ rn, so that the limit x gives a point in the
intersection ∩n≥1B̄(xn, rn).

A variation of this argument also gives:

Theorem 8.1 (Baire’s Category Theorem). Let X be a complete metric
space and Un, n ≥ 1, a collection of open dense subsets of X. Then the
intersection ∩n≥1Un is dense in X.

Proof. It is sufficient to show that ∩n≥1Un intersects non-trivially any ball
B(x0, r0) with radius r0 ∈ (0, 1). We construct a sequence of nested open
balls B(xn, rn) inductively. Given a ball B(xn−1, rn−1), we observe that Un∩
B(xn−1, rn−1) is non-empty and open. So that we can choose xn, rn so that
B̄(xn, rn) ⊂ Un ∩ B(xn−1, rn−1). We may also choose rn’s so that rn → 0.
Then by our previous discussion, there exists x ∈ ∩n≥1B̄(xn, rn). We obtain
that for every n,

x ∈ B̄(xn, rn) ⊂ Un ∩B(x0, r0),

which completes the proof.

It is natural to think about open dense sets (and their countable inter-
sections) as “large” subsets of X, and their complements as “small” subsets
of X. This motivates the following definition.

Definition 8.2. Let X be a metric space and M a subset of X.

• M is called rare (or nowhere dense) if its closure M has no interior
points.

• M is called meager (or of first category) in X if it is a countable union
of rare sets. Otherwise M is called nonmeager (or of second category).
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Example. Q is not rare in R because its closure is all of R. But Q × {0}
is rare in R2, its closure being R × {0}, which has no interior points as a
subset of R2. Qn is meager in Rn, being a countable union of points.

The Baire Category Theorem can be also restated as follows:

Theorem 8.3 (Baire’s Category Theorem). A nonempty complete metric
space X is nonmeager.

Proof. Suppose that in contrary

X =
⋃
n≥1

Mn (2)

where Mk’s are closed sets with empty interior. Then the sets X\Mn are
open and dense. Hence, by Theorem 8.1,⋂

n≥1
Un 6= ∅.

This implies that the complement

X\

⋂
n≥1

Un

 =
⋃
n≥1

Mn 6= X,

which gives a contradiction. Hence, X cannot be meager.

8.2 Application: nowhere differentiable functions

The Baire Category Theorem is a very useful tool for showing existence of
objects with peculiar properties. We demonstrate how this works by showing
that there is continuous function which is not differentiable at even a single
point.

Theorem 8.4. The subset

D = {f ∈ C[a, b] : f is differentiable at some x ∈ [a, b]}

is a meager subset of C[a, b].

Since the space C[a, b] is complete, it follows that D ( C[a, b], and there
exist functions which are nowhere differentiable. In some sense, Theorem 8.4
tells us that “most” continuous functions are nowhere differentiable.

Proof. For n,m ≥ 1, consider the sets

An,m =

{
f ∈ C[a, b] : ∃x :

∣∣∣∣f(t)− f(x)

t− x

∣∣∣∣ ≤ n for all 0 < |x− t| < 1
m

}
.
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Recall that f is differentiable at x if the limit

f ′(x) = lim
t→x

f(t)− f(x)

t− x
exists. So that it is clear that

D ⊂
⋃

n,m≥1
An,m.

It remains to show that the sets Am,n are rare.
First we show that An,m is closed. Suppose that fi → f in C[a, b] and

all fi ∈ D. Then there exists xi ∈ [a, b] such that∣∣∣∣fi(t)− fi(xi)t− xi

∣∣∣∣ ≤ n for all 0 < |xi − t| < 1
m .

Passing to a subsequence, we may assume that xi → x for some x ∈ [a, b].
Then if 0 < |x − t| < 1

m , then for sufficiently large n, we also have 0 <
|xi − t| < 1

m , and∣∣∣∣f(t)− f(x)

t− x

∣∣∣∣ = lim
i→∞

∣∣∣∣fi(t)− fi(xi)t− xi

∣∣∣∣ ≤ n.
This proves that the sets An,m are closed.

Now we show that the sets An,m have empty interiors. Suppose that
Am,n contains an open ball B(f, ε) for some f ∈ C[a, b]. Using uniform con-
tinuity, one shows that the subspace of piecewise linear continuous functions
is dense in C[a, b]. Hence, without loss of generality we may assume that f
is piecewise linear. For piecewise linear continuous functions, the one-sided
derivatives f ′+(x) and f ′−(x) always exist, and they are uniformly bounded:
for some M > 0,

|f ′±(x)| ≤M for all x ∈ [a, b].

We observe that every function

g = f +
ε

2
φ with φ ∈ C[a, b] such that ‖φ‖∞ ≤ 1

belongs to B(f, ε) ⊂ An,m. In particular, it follows that there exists x0 ∈
[a, b] such that

|g′±(x0)| ≤ n. (3)

For every K > 0, one can construct (exercise) a piecewise linear function φ
such that ‖φ‖∞ ≤ 1 and |φ′±(x)| > K. Then for all x ∈ [a, b],

|g′±(x)| ≥ ε

2
|φ′±(x)| − |f ′±(x)| ≥ ε

2
K −M.

Taking K = K(ε,M) sufficiently large, we obtain |g′±(x)| > n for all x, but
this contradicts (3). Hence, the sets An,m have empty interiors.

3



8.3 Uniform boundedness principle

The uniform boundedness principle answers the question of whether a “point-
wise bounded” sequence of bounded linear operators must also be “uniformly
bounded.”

Theorem 8.5 (Uniform Boundedness Principle; Banach–Steinhaus). Let
X be a Banach space and Y be a normed space. Suppose that the sequence
Tn ∈ B(X,Y ) of bounded linear operators has the property that for every
x ∈ X, the sequence Tn(x) ∈ Y is bounded. Then the sequence of norms
‖Tn‖ is bounded.

Let us illustrate the Uniform Boundedness Principle by an example.

Example 8.6. Let

X =
{
p(x) = α0 + α1 x+ α2 x

2 + · · ·+ αd x
d | αi ∈ F, d ∈ N ∪ {0}

}
,

be the space of polynomials equipped with the norm ‖p‖ = maxi|αi|. We
readily see that this turns X into a normed space. We give an example of a
sequence of linear maps Tn : X → F which are pointwise bounded but not
uniformly bounded. Let

Tn(p) = α0 + · · ·+ αn−1.

We observe that

|Tn(p)| = |α0 + α1 + · · ·+ αn−1| ≤ |α0|+ · · ·+ |αn−1| ≤ n‖p‖,

so that ‖Tn‖ ≤ n. In fact, this estimate can be improved for polynomials p
of degree d as follows:

|Tn(p)| = |α0 + α1 + · · ·+ αn−1| ≤ |α0 + α1 + · · ·+ αd|
≤ |α0|+ |α1|+ · · ·+ |αd| ≤ d ‖p‖,

This shows that the sequence (Tn(p))n≥1 is bounded for every p.
However, we claim that ‖Tn‖ = n→∞. Indeed, for

pn(x) = 1 + x+ x2 + · · ·+ xn−1,

we have ‖pn‖ = 1, and ‖Tn(pn)‖ = n, which implies the claim.
In this example, the sequence (Tn(p))n≥1 is pointwise bounded, but not

uniformly bounded, contrary to the conclusion of the Uniform Boundedness
Principle. The Uniform Boundedness Principle fails here because the space
X is not complete.

We give a concrete application of the Uniform Boundedness Principle.
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Example 8.7. Suppose we have a sequence of complex numbers x = (xn)n≥1
with the property that whenever y = (yn)n≥1 is a sequence satisfing yn → 0,
we have that the sum

∑∞
n=1 xnyn converges. Show that

∑∞
n=1|xn| converges.

The first step is of course to translate this problem into a more convenient
functional analytic setting. The condition that the sequence y converges to
0 is simply the statement that y is a member of the space

c0 = {y ∈ `∞ : yn → 0 as n→∞}.

One can show that c0 is a Banach space when equipped with the norm ‖·‖∞.
We leave this as an exercise. We are required to show that x ∈ `1.

Since we would like to use the Uniform Boundedness Principle in some
way, let us start by finding a sequence Tn ∈ B(c0, Y ) where Y is some
normed space. One natural choice is to let

Tn(y) =
n∑

i=1

xi yi where y = (y1, y2, . . . ) ∈ c0

be the truncated sum which we have assumed converges. It is clear that
Tn ∈ B(c0,C) = (c0)

∗. Indeed, the calculation

|Tn(y)| =

∣∣∣∣∣
n∑

i=1

xi yi

∣∣∣∣∣ ≤
n∑

i=1

|xi yi| ≤

(
n∑

i=1

|xi|

)
‖y‖∞

shows that Tn’s are bounded operators with ‖Tn‖ ≤
∑n

i=1 |xi|. In fact, we
can do better: the assumption that

∑
i xi yi converges for any y ∈ c0 implies

that for any y ∈ c0, the sequence (Tn(y))n≥1 is convergent, hence bounded.
So (Tn)n≥1 is a pointwise bounded sequence of operators. Therefore, by the
Uniform Boundedness Principle, it is uniformly bounded, meaning that there
is some M > 0 such that ‖Tn‖ ≤M for all n ∈ N.

We claim that ‖Tn‖ =
∑n

i=1|xi|. Without loss of generality, we may

assume that x 6= 0. We consider y(n) = (y
(n)
i )i≥1 ∈ c0 defined by

y
(n)
i =

{
x̄
(n)
i /|x(n)i | if i ≤ n and xi 6= 0,

0 otherwise.

Then

Tn(y(n)) =

n∑
i=1

|xi|,

and ‖y(n)‖∞ = 1 unless y(n) = 0. This implies that ‖Tn‖ ≥
∑n

i=1|xi|.
The opposite inequality has already been proven above. We conclude that∑n

i=1|xi| ≤M for all n, and
∑∞

i=1|xi| converges.
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8.4 Proof of the Uniform Boundedness Principle

The proof of the Uniform Boundedness Principle is an application of Baire’s
Category Theorem. Let us define the sets

Mk = {x ∈ X : ‖Tn(x)‖ ≤ k for all n} , k ≥ 1.

Since Tn’s are continuous, these sets are closed. Since for every x ∈ X,
the sequence Tn(x) is bounded, we have x ∈ Mk for sufficiently large k.
Therefore,

X =
⋃
k≥1

Mk.

Baire’s category theorem now guarantees that one of these closed sets con-
tains an open ball, say B(x0, r) ⊂Mk0 . We therefore have that

‖Tn(x)‖ ≤ k0 for any x ∈ B(x0, r) and n ≥ 1.

Now let x ∈ X, x 6= 0. Then the vector z = x0+ r
2‖x‖x belongs to B(x0, r)

and x = 2 ‖x‖
r (z − x0). Using this, we calculate

‖Tn(x)‖ =
2 ‖x‖
r
‖Tn(z)− Tn(x0)‖ ≤

2 ‖x‖
r

(‖Tn(z)‖+ ‖Tn(x0)‖)

≤ 4k0 ‖x‖
r

.

Hence, ‖Tn‖ ≤ 4k0
r for all n ∈ N, proving that the sequence is uniformly

bounded.
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