
9 Modes of convergence

9.1 Weak convergence in normed spaces

We recall that the notion of convergence on a normed space X, which we
used so far, is the convergence with respect to the norm on X: namely, for a
sequence (xn)n≥1, we say that xn → x if

‖xn − x‖ → 0 as n→∞. (1)

However, in many cases, this notion does not capture the full information
about behaviour of sequences. Moreover, we recall that according to the
Bolzano–Weierstrass Theorem, a bounded sequence in R has a convergent
subsequence. An analogue of this result fails for in infinite dimensional normed
spaces if we only deal with convergence with respect to norm.

Example 9.1. Consider the sequence en = (0, . . . , 0, 1, 0, . . .) in the space
`2. Then for n 6= m, ‖en−em‖2 =

√
2. So that we conclude that the sequence

(en)n≥1 is not Cauchy, so it cannot converge, and it even does not contain
any convergent subsequence. Nonetheless, in some “weak” sense, we may
say that this sequence “converges” to (0, . . . , 0, . . .). For instance, for every
x = (xn)n≥1 ∈ `2,

〈x, en〉 = xn → 0.

This example motivates the notion of weak convergence which we now
introduce.

Definition 9.2. A sequence (xn)n≥1 in a normed space X converges weakly
to x ∈ X if for every f ∈ X∗, we have that f(xn)→ f(x). We write

xn
w−→ x.

To emphasise the difference with the usual notion of convergence, if (1)
hold, we say (xn)n≥1 converges in norm or converges strongly.

Returning to Example 9.1, we see that the sequence (en)n≥1 converges
weakly, but has no subsequences that converge strongly. Indeed, any f ∈ (`2)∗

is of the form f(y) = 〈y, x〉 for some x ∈ `2, and 〈en, x〉 = x̄n → 0.
Here is another example of a sequence which converges weakly, but not

strongly.

Example 9.3. Let X be the space of real-valued continuous functions with
the max-norm, and

φn(t) =


nt when 0 ≤ t ≤ 1/n,
2− nt when 1/n ≤ t ≤ 2/n,
0 when 2/n ≤ t ≤ 1.
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We claim that φn
w−→ 0. Suppose that this is not the case. Then there exists

f ∈ X∗ such that f(φn) 6→ 0. Passing to a subsequence we may assume that
|f(φni

)| ≥ δ for some fixed δ > 0, and without loss of generality

f(φni
) ≥ δ.

Moreover, we may assume that the subsequence satisfies ni+1 ≥ 2ni. Let

ψN =
N∑
i=1

φni

We have
ψN(t) ≤

∑
i:ni≤1/t

nit+
∑

i: 1/t<ni≤2/t

(2− nit).

Let k = max{i : ni ≤ 1/t}. Then for all i ≤ k,

ni ≤ nk/2
k−i ≤ 1/t · 1/2k−i,

and the first sum satisfies

≤
∑
i≤k

1/2k−i ≤ 2.

To estimate the second sum we observe that because ni+1 ≥ 2ni, the inequal-
ity 1/t < ni ≤ 2/t may holds for at most one index i. Hence, the second sum
is also bounded by 2. Hence,

‖ψN‖∞ ≤ 4 and |f(ψN)| ≤ 4‖f‖.

On the other hand,

f(ψN) =
N∑
i=1

f(φni
) ≥ Nδ →∞ as N →∞.

This gives a contradiction.
Since ‖φn‖∞ = 1, φn 6→ 0 strongly.

We derive some basic properties of weak convergence.

Theorem 9.4. 1. If xn → x, then xn
w−→ x.

2. Weak limits are unique.

3. If (xn)n≥1 is a weakly convergent sequence, then the sequence of norms
‖xn‖ is bounded.
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Proof. 1. This follows from the estimate |f(xn)−f(x)| ≤ ‖f‖‖xn−x‖ for
every f ∈ X∗.

2. Suppose xn
w−→ x and xn

w−→ y. Then for every f ∈ X∗, we have
f(xn) → f(x) and f(xn) → f(y). Hence, it follows that f(x) = f(y)
for all f ∈ X∗. So that by a corollary of the Hahn–Banach Theorem,
x = y.

3. We would like to apply the Uniform Boundedness Principle. For this
we have to interpret xn’s as maps on a suitable space. We consider the
mapping X → (X∗)∗ defined by x 7→ gx, where gx(f) = f(x) for any
f ∈ X∗. Since

|gx(f)| = |f(x)| ≤ ‖x‖‖f‖,

this indeed defines a bounded linear functional on X∗ with ‖gx‖ ≤ ‖x‖.
Moreover, by a corollary of Hahn–Banach Theorem, there exists f ∈ X∗
such that f(x) = ‖x‖ and ‖f‖ = 1. This implies that

‖gx‖ = sup{|f(x)| : f ∈ X∗, ‖f‖ ≤ 1} ≤ ‖x‖.

Hence, ‖gx‖ = ‖x‖.
For short, put gxn := gn. Since for every f ∈ X∗, the sequence f(xn)
converges, it is bounded, that is, |f(xn)| ≤ cf where cf is some positive
constant independent of n. Thus, |gn(f)| ≤ cf for all n ∈ N. We recall
that the dual space X∗ is always a Banach space. The Uniform Bound-
edness Principle tell us that the sequence gn is uniformly bounded,
meaning ‖gn‖ ≤ c, where c > 0 is independent of n. This implies the
claim.

The following theorem gives a convenient criterion for weak convergence.

Theorem 9.5. A sequence (xn)n≥1 in a normed space X converges weakly
to x provided that

(i) ‖xn‖ is uniformly bounded,

(ii) For every element f in a dense subsetM ⊂ X∗, we have f(xn)→ f(x).

Proof. According to (i), ‖xn‖ < c and ‖x‖ < c for some fixed c > 0.
We would like to show that for any f ∈ X∗, we have f(xn) → f(x). Let

ε > 0 and {fj} ⊂M ⊂ X∗ be a sequence with fj → f in X∗. We obtain

|f(xn)− f(x)| ≤ |f(xn)− fj(xn)|+ |fj(xn)− fj(x)|+ |fj(x)− f(x)|. (2)
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Since fj → f , we can choose j large enough that

‖fj − f‖ <
ε

3c
.

Also, since fj(xn)→ fj(x), there is a number N such that

|fj(xn)− fj(x)| < ε

3

whenever n > N . We can now bound (2)

|f(xn)− f(x)| ≤ |f(xn)− fj(xn)|+ |fj(xn)− fj(x)|+ |fj(x)− f(x)|
≤ ‖f − fj‖‖xn‖+ |fj(xn)− fj(x)|+ ‖fj − f‖‖x‖

≤ ε

3c
c+

ε

3
+

ε

3c
c < ε

whenever n > N . This proves that xn
w−→ x.

Remark 9.6 (weak convergence in Hilbert spaces). If X is a Hilbert space
then the Riesz–Frechét Theorem tells us that a sequence (xn)n≥1 ⊂ X is
weakly convergent to x ∈ X if and only if 〈xn, z〉 → 〈x, z〉 for all z ∈ X.
Theorem 9.5 then tell us that we only need to check that 〈xn, v〉 → 〈x, v〉 for
elements v of some basis of X.

9.2 Convergence of sequences of functionals

Now we consider convergence of a sequence of linear functional fn ∈ X∗.

Definition 9.7 (weak* convergence). We say that a sequence (fn)n≥1 weak
∗

converges to f ∈ X∗ if for every x ∈ X we have that fn(x) → f(x). This is

denoted by fn
w∗
−→ f .

We note that since the dual space X∗ is also a normed space, it also makes
sense to talk about strong and weak convergence in X∗. Namely:

• a sequence fn ∈ X∗ converges strongly to f if ‖fn − f‖ → 0.

• a sequence fn ∈ X∗ converges weakly to f if for every g ∈ (X∗)∗, we
have g(fn)→ g(f).

In general, we have:

strong convergence⇒ weak convergence⇒ weak∗ convergence
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To see that the second arrow is true, we note that every x ∈ X defines an
element gx ∈ (X∗)∗ such that

gx(f) = f(x). (3)

This defines a map X → (X∗)∗. We note that in general this map is not
surjective and weak∗ convergence does not imply weak convergence.

We illustrate the notion of weak∗ convergence by some examples.

Example 9.8. Let X = C[−1, 1] be the space of continuous functions, and

ρn(t) =

{
n− n2|t| when −1/n ≤ t ≤ 1/n,
0 otherwise.

We consider the sequence functionals fn : X → C defined by

fn(φ) =

∫ 1

−1
φ(t)ρn(t)dt, φ ∈ C[−1, 1].

We claim that fn weak∗ converges to f0 defined by f0(φ) = φ(0). Indeed,

using that
∫ 1

−1 ρn(t) dt = 1, we obtain

|fn(φ)− f0(φ)| =
∣∣∣∣∫ 1

−1
φ(t)ρn(t)dt−

∫ 1

−1
φ(0)ρn(t)dt

∣∣∣∣
≤
∫ 1

−1
|φ(t)− φ(0)|ρn(t) dt

=

∫ 1/n

−1/n
|φ(t)− φ(0)|ρn(t) dt

≤ max
−1/n≤t≤1/n

|φ(t)− φ(0)|.

Hence, it follows from continuity of φ that fn(φ) → f0(φ). This proves that

fn
w∗
−→ f0.
Although we will not prove it here, it is the case that fn 6

w−→ f0

Example 9.9. Let

X = c0 = {x = (xn)n≥1 ∈ `∞ : xn → 0}.

We have met this space in homeworks. We recall that c∗0 ' `1. More explicitly,
all elements of c∗0 are of the form

fy(x) =
∞∑
n=1

xnyn, x ∈ c0
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for some y ∈ `1. We consider the sequence of linear functionals fn = fen .
Then for every x ∈ c0,

fn(x) = xn → 0.

Hence, fn
w∗
−→ f .

We also recall that (`1)∗ ' `∞, and all elements of (`1)∗ are of the form

gz(y) =
∞∑
n=1

ynzn, y ∈ `1

for some z ∈ `∞. Since gz(en) = zn 6→ 0 in general. The sequence fn does not
converge weakly to 0.

Example 9.10. If H is a Hilbert space, the Riesz–Frechét Theorem tells us
that H∗ ' H, and the map H → (H∗)∗ defined in (3) is an isomorphism.
This implies that in Hilbert spaces weak and weak∗ convergences are the
same.

The following result is a direct corollary of the Uniform Boundedness
Principle.

Theorem 9.11. If the sequence (fn)n≥1 in X∗ is weak* convergent, then the
sequence ‖fn‖ is bounded.

The following theorem is analogous to Theorem 9.5. It tell us a way to
determine whether a given sequence in X∗ is weak* convergent, without
having to check the defining condition on all the elements of X. Its proof
also runs in parallel with the proof of Theorem 9.5.

Theorem 9.12. A sequence (fn)n≥1 in X
∗ is weak* convergent provided that

(i) The sequence ‖fn‖ is bounded.

(ii) The sequence fn(x) is Cauchy for every x in a dense subset M ⊂ X.

Proof. Fix c > 0 such that ‖fn‖ < c for all n. Now, let x ∈ X. We can find
a sequence xj in M such that xj → x. Let ε > 0. We will show that we can
make |fm(x)−fn(x)| < ε by taking large enough m,n. We carry out the first
bound:

|fm(x)− fn(x)| ≤ |fm(x)− fm(xj)|+ |fm(xj)− fn(xj)|+ |fn(xj)− fn(x)|
≤ ‖fm‖‖x− xj‖+ |fm(xj)− fn(xj)|+ ‖fn‖‖xj − x‖.
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Since xj → x, we can fix j large enough that ‖x−xj‖ < ε
3c

. Since the sequence
fn(xj) is Cauchy, there is a number N such that whenever m,n > N , we have
|fm(xj)− fn(xj)| < ε

3
. The above expression is now bounded by

<
ε

3c
c+

ε

3
+

ε

3c
c = ε,

which proves that the sequence fn(x) is indeed Cauchy, and so converges.
We define f(x) = limn→∞ fn(x) for all x ∈ X. Since fn’s are linear, it

follows that f is also linear. For every x ∈ X, |fn(x)| ≤ ‖fn‖‖x‖ ≤ c‖x‖.
Passing to the limit, we conclude that |f(x)| ≤ ‖fn‖‖x‖ ≤ c‖x‖, so that

‖f‖ ≤ c, and f ∈ X∗. We have fn
w∗
−→ f .

The following theorem is a generalisation of the Bolzano–Weierstrass the-
orem.

Theorem 9.13 (weak∗ compactness). Suppose that a normed space X con-
tains a countable dense subset. Then every bounded sequence fn ∈ X∗ con-
tains a weak∗ convergent subsequence.

Proof. Let M = {xi}i≥1 be a countable dense subset of X. Since (fn)n≥1 is a
bounded sequence, (fn(x))n≥1 is also bounded for every x ∈ X. In particular,
(fn(x1))n≥1 is bounded, and by the Bolzano–Weierstrass Theorem, there is
a subsequence n1(k) such that (fn(k)(x1))k≥1 converges. Next, the sequence
(fn1(k)(x2))k≥1 is bounded, and again by the Bolzano–Weierstrass Theorem,
there is a subsequence n2(k) of the sequence n1(k) such that (fn2(k)(x2))k≥1
converges. Continuing this process, we construct subsequences ni(k) such
that (fni(k)(xi))k≥1 converges for all i. Now consider the sequence nk = nk(k).
It is a subsequence of each of the sequences ni(k). In particular, it follows
that (fnk

(xi))k≥1 converges for all i. Now we can just apply Theorem 9.12 to
conclude that fnk

weak∗ converges.

We note that an analogue of Theorem 9.13 for weakly convergent se-
quences is false (cf. Example 9.8).

9.3 Convergence of sequences of operators

Now we discuss convergence of bounded sequences of linear operators. There
are three different types of convergence that arise naturally.

Definition 9.14. Let X and Y be normed spaces, and Tn : X → Y and
T : X → Y are bounded linear operators. We say that:
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• Tn converges uniformly to T (notation: Tn → T ) if

‖Tn − T‖ → 0.

• Tn converges strongly to T (notation: Tn
s−→ T ) if

Tnx→ Tx for all x ∈ X.

• Tn converges weakly to T (notation: Tn
w−→ T ) if

f(Tnx)→ f(Tx) for all x ∈ X and f ∈ Y ∗.

It is not hard to see that

uniform convergence⇒ strong convergence⇒ weak convergence

However, the converses are not true in general.
We illustrate the notions of convergence by several examples.

Example 9.15. Consider the sequence of operators Tn : `2 → `2 defined by

Tnx = (xn+1, xn+2, . . .), x = (xn)n≥1 ∈ `2.

Clearly, ‖Tnx‖ ≤ ‖x‖, for all x, and for k > n, ‖Tn(ek)‖ = ‖ek−n‖ = 1.
Hence, ‖Tn‖ = 1. In particular, it follows that Tn 6→ 0.

On the other hand, for every x ∈ `2,

‖Tnx‖ =

√√√√ ∞∑
k=n+1

|xk|2 → 0.

Hence, Tn
s−→ T .

Example 9.16. Consider the sequence of operators Tn : `2 → `2 defined by

Tnx = (0, . . . , 0, x1, x2, . . .), x = (xn)n≥1 ∈ `2.

Then ‖Tne1‖ = ‖e1‖ = 1. Hence, Tn 6
s−→ T .

On the other hand, we claim that Tn
w−→ T . We recall that (`2)∗ ' `2,

and every element in (`2)∗ is given by

x 7→ 〈x, y〉 =
∞∑
k=1

xkyk
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for some y = (yn)n≥1 ∈ `2. For every x, y ∈ `2,

| 〈Tnx, y〉 | =

∣∣∣∣∣
∞∑
k=1

xkyk+n

∣∣∣∣∣ ≤
√√√√ ∞∑

k=1

|xk|2

√√√√ ∞∑
k=n+1

|yk|2 → 0.

This proves that Tn
w−→ T .

Example 9.17. Let X = Cc(R) be the space of continuous fuctions with
compact support equipped with the max-norm. We consider the family of
operators Ta : X → X defined by

Ta(φ)(t) = φ(t+ a).

It is natural to expect that this family of operators depends continuously on
a. Indeed, it follows from uniform continuity that for every φ ∈ X,

‖Ta(φ)− φ‖∞ = max
t
|φ(t+ a)− φ(t)| → 0

as a → ∞. This shows that the map a → Ta is continuous at a = 0 with
respect to the strong convergence.

On the other hand, for every fixed a > 0, we may consider a function
φ ∈ Cc(R) such that {φ 6= 0} ⊂ [−a/3, a/3]. Then it is easy to check that

‖Ta(φ)− φ‖∞ = ‖φ‖∞.

So that ‖Ta − T0‖ = 1, the map a → Ta is not continuous at a = 0 with
respect to the uniform convergence.

We record some important properties of weak convergence.

Theorem 9.18. If Tn ∈ B(X, Y ) is a weakly convergent sequence and X is
a Banach space, then the sequence of norms ‖Tn‖ is bounded.

Proof. If Tn
w−→ T , then for every x ∈ X, Tnx

w−→ Tx. Then by Theorem
9.4(iii), the sequence (Tnx)n≥1 is bounded for every x ∈ X. Now the claim of
the theorem follows from the Uniform Boundedness Principle.

We also have an analogue of Theorem 9.5:

Theorem 9.19. Let Tn, T ∈ B(X, Y ) where X and Y are normed spaces.
The sequence (Tn)n≥1 converges strongly to T provided that

(i) ‖Tn‖ is uniformly bounded,

(ii) For every element x in a dense subset M ⊂ X, we have Txn → Tx.

This theorem is proved exactly as Theorem 9.5.
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