Homework 1

- (1) Check that the hyperbolic area $\frac{dxdy}{y^2}$ is invariant under the action of $SL_2(\mathbb{R})$.
- (2) Let Γ be a discrete subgroup of $\mathrm{SL}_2(\mathbb{R})$. Show that if $F_1, F_2 \subset \mathbb{H}$ are fundamental domains for Γ , then $|F_1| = |F_2|$.
- (3) Construct a fundamental domain for the group

$$\{\gamma \in \mathrm{SL}_2(\mathbb{Z}) : \gamma = I \mod 2\},\$$

and show that $\operatorname{SL}_2(\mathbb{Z})/\langle \pm I \rangle$ is generated by the matrices

$$\left(\begin{array}{cc}1&2\\0&1\end{array}\right)\quad\text{and}\quad \left(\begin{array}{cc}1&0\\2&1\end{array}\right).$$

(4) Show that the subgroup generated by

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & 2\cos(\pi/n) \\ 0 & 1 \end{pmatrix}$

with $n \geq 3$ is a lattice in $SL_2(\mathbb{R})$.

- (5) Show that every lattice subgroup is finitely generated. (Hint: Use the Siegel theorem.)
- (6) Let $g_t : X \to X$ be a continuous flow on a topological space X. Assume that X has a countable basis for open sets, and X is equipped with a probability measure μ of full support (this means that $\mu(U) > 0$ for every open set $U \subset X$). Show that if g_t is mixing, then for a set of full measure in X, the orbit $\{g_t(x)\}_{t>0}$ is dense.
- (7) Finish the proof of the corollary from the lecture that the periodic orbits are dense.
- (8) Let $d \in \mathbb{N}$ and $(x, y) \in \mathbb{Z}^2$ be a solution of the Pell equation $x^2 dy^2 = 1$. Show that every such solution gives rise to a periodic orbit of the flow $a_t = \begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix}$ on $\mathrm{SL}_2(\mathbb{Z}) \setminus \mathrm{SL}_2(\mathbb{R})$ with period $2 \cosh^{-1}(x)$. Namely, construct $z \in \mathrm{SL}_2(\mathbb{Z}) \setminus \mathrm{SL}_2(\mathbb{R})$ such that $za_{t_0} = z$ for $t_0 = \cosh^{-1}(x)$.
- (9) (a) Show that for every $g \in \mathrm{SL}_2(\mathbb{Z})$ and $h \in \mathrm{SL}_2(\mathbb{Q})$, there exists $n \in \mathbb{N}$ such that $h^{-1}g^nh \in \mathrm{SL}_2(\mathbb{Z})$.
 - (b) Show that if the orbit of $a_t = \begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix}$ for the point $z_0 = \operatorname{SL}_2(\mathbb{Z})g_0 \in \operatorname{SL}_2(\mathbb{Z}) \setminus \operatorname{SL}_2(\mathbb{R})$ is periodic, then so is the orbit for $z = \operatorname{SL}_2(\mathbb{Z})hg_0$ for every $h \in \operatorname{SL}_2(\mathbb{Q})$.
 - (c) Deduce that the periodic orbits of the flow a_t in the space $SL_2(\mathbb{Z}) \setminus SL_2(\mathbb{R})$ are dense.

(10) Let M be a hyperbolic surface. Show that if $x \in T^1(M)$ is periodic under the horocycle flow h_s , then the orbit $g_t(x)$ under the geodesic flow escapes every compact set as $t \to \infty$.