Homework 2

- (1) Show that if $M = \Gamma \setminus \mathbb{H}$ is a compact hyperbolic surface, then Γ contains no unipotent elements.
- (2) Deduce from mixing that the geodesic flow satisfies the mean ergodic theorem, namely, for every L^1 function,

$$\frac{1}{T} \int_0^T f(g_t(x)) \, dt \to \int_X f$$

in L^1 -norm as $T \to \infty$.

(3) Verify that the Laplace operator on \mathbb{H} is given by

$$\Delta = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$$

- (4) Determine all second order differential operators on \mathbb{H} which commute with the action of $SL_2(\mathbb{R})$.
- (5) Let $M = \Gamma \setminus \mathbb{H}$ be a compact hyperbolic surface. Each geodesic loop ρ on M define two periodic geodesics ρ^+ and ρ^- on T^1M with opposite direction. The loop ρ is called *reciprocal* if $\rho^+ = \rho^-$. Prove that if Γ has no elements of finite order, then there are no reciprocal geodesics.
- (6) Let u(t, z) be a solution of the heat equation on a compact hyperbolic surface. Compute the limit of u(t, z) as $t \to \infty$.
- (7) Prove that the heat kernel on \mathbb{H} that we constructed satisfies

$$\int_{\mathbb{H}} p_t(z, w) \, dm(w) = 1.$$

(Hint: to avoid lengthy computation, use the formula for the inverse Abel transform.)

- (8) Prove that if two hyperbolic surfaces M_1 and M_2 have the same length spectrum $\mathcal{G}(M_1) = \mathcal{G}(M_2)$. Then the spectrum of the Laplace operators on M_1 and M_2 is also the same.
- (9) Check that the Casimir operator Ω commutes with all other differential operators D_X and with all translation operators $\pi(g)$.
- (10) Check that the Casimir operator on SO(2)-invariant functions coincides with the Laplace operator.
- (11) Prove that a derivative of a K-finite function is K-finite.
- (12) Prove that the spaces \mathcal{A}_n defined in the construction of the microlocal lift are pairwise orthogonal.