UNIVERSITY OF BRISTOL

Examination for the Degree of B.Sc. and M.Sci. (Level 3)

NUMBER THEORY

MATH 30200
(Paper Code MATH-30200)

May-June 2015, 2 hours 30 minutes

This paper contains five questions.
A candidate's FOUR best answers will be used for assessment.
On this examination, the marking scheme is indicative and is intended only as a guide to the relative weighting of the questions.

Calculators are not permitted in this examination.

1. (a) $(2+4$ marks) (i) State, without proof, the Law of Quadratic Reciprocity for Legendre symbols.
(ii) Determine the primes p for which 5 is a quadratic residue modulo p.
(b) (3+2+3 marks) (i) Suppose that $p>5$ is a prime number for which 5 is a quadratic residue modulo p. Show that the congruence $x^{2}-x-1 \equiv 0(\bmod p)$ has a solution λ.
(ii) Put $\mu=1-\lambda$. Show that μ is also a solution of $x^{2}-x-1 \equiv 0(\bmod p)$, and prove that $\lambda \not \equiv \mu(\bmod p)$.
(iii) When n is a non-negative integer, put

$$
u_{n}=\frac{\lambda^{n}-\mu^{n}}{\lambda-\mu} .
$$

Prove that u_{n} satisfies $u_{0} \equiv 0(\bmod p), u_{1} \equiv 1(\bmod p)$ and

$$
u_{n+2} \equiv u_{n+1}+u_{n}(\bmod p) \quad(n \geq 0)
$$

(c) $(2+3$ marks) State and prove Fermat's Little Theorem.
(d) (6 marks) Let $\left(F_{n}\right)$ denote the sequence of Fibonacci numbers, defined by taking

$$
F_{1}=1, \quad F_{2}=1, \quad \text { and } \quad F_{n+2}=F_{n+1}+F_{n}(n \geq 1) .
$$

Suppose that $p>5$ is a prime number for which 5 is a quadratic residue modulo p. Using the conclusion of $(\mathrm{b})(\mathrm{iii})$, prove that $F_{n} \equiv 0(\bmod p)$ whenever $(p-1) \mid n$.
2. This question is concerned with the polynomial $f(x)=x^{2}-2 x+8$.
(a) (2+2 marks) (i) State Lagrange's theorem concerning the number of solutions of a polynomial congruence.
(ii) Find all of the solutions of the polynomial congruence $f(x) \equiv 0(\bmod 11)$.
(b) $(2+3+3$ marks) (i) State a version of Hensel's Lemma.
(ii) Find all of the solutions of the polynomial congruence $f(x) \equiv 0(\bmod 121)$, justifying your answer.
(iii) Find all of the solutions of the polynomial congruence $f(x) \equiv 0(\bmod 49)$, justifying your answer.
(c) (6 marks) Let $p>7$ be a prime number. By examining the values of x for which $f(x) \equiv f^{\prime}(x) \equiv 0(\bmod p)$, show that for every natural number n, the number of solutions of the polynomial congruence $f(x) \equiv 0\left(\bmod p^{n}\right)$ is at most 2 .
(d) ($2+5$ marks) (i) Determine the number of solutions of the polynomial congruence $f(x) \equiv 0(\bmod 8)$.
(ii) Determine the number of solutions of the respective polynomial congruences

$$
f(x) \equiv 0(\bmod 560008) \quad \text { and } \quad f(x) \equiv 0(\bmod 560024)
$$

explaining your answer. [You may assume in this question that the integers 70001 and 70003 are both prime numbers].

Cont...
3. (a) $(2+2$ marks) Give a formula for Euler's function $\phi(n)$, and state Euler's theorem.
(b) ($2+2$ marks) (i) Define what it means for a residue modulo n to be a primitive root.
(ii) For what values of n do primitive roots modulo n exist? (Provide as complete a list as you are able, without justifying your answer).
(c) (4+4 marks) Let p and q be distinct odd prime numbers. Also, let g_{1} be a primitive root modulo p, and g_{2} a primitive root modulo q.
(i) Suppose that $x \equiv g_{1}(\bmod p)$ and $x \equiv g_{2}(\bmod q)$. Show that whenever one has $x^{n} \equiv 1(\bmod p q)$, then $(p-1) \mid n$ and $(q-1) \mid n$.
(ii) Prove that there exists a residue $w(\bmod p q)$ having order equal to the least common multiple of $p-1$ and $q-1$.
(d) (5+4 marks) Let p and q be distinct odd primes with $p<q$, and suppose that $a^{p q} \equiv a^{-1}(\bmod p q)$ for all integers a with $(a, p q)=1$.
(i) Prove that $(p-1) \mid(q+1)$ and $(q-1) \mid(p+1)$.
(ii) Deduce that $|p-q|=2$, and hence show that $p=3$ or $p=5$.
4. (a) $(2+3$ points) Let θ be an irrational number possessing continued fraction expansion $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$. Define what is meant by the $n^{\text {th }}$ convergent p_{n} / q_{n} to θ, and show that

$$
p_{0}=a_{0}, \quad q_{0}=1, \quad p_{1}=a_{0} a_{1}+1, \quad q_{1}=a_{1} .
$$

(b) ($2+5$ marks) State and prove Dirichlet's Theorem on Diophantine approximation.
(c) (2+4 marks) (i) Explain what is meant by (a) an algebraic number, and (b) a transcendental number.
(ii) Let θ be a real algebraic number of degree n. State Liouville's Theorem concerning Diophantine approximations to θ.
(d) (7 marks) Let $3 \cdot b_{1} b_{2} \ldots$ be the decimal expansion of π, so that $b_{1}=1, b_{2}=4$, and b_{n} is the $n^{\text {th }}$ decimal digit of π. Use Liouville's Theorem to prove the transcendence of

$$
\sum_{n=1}^{\infty} 2015^{-\left(b_{n}+1\right) n!} .
$$

5. (a) ($2+2$ marks) Define what is meant by a multiplicative function. Prove that when $f(n)$ is multiplicative, then so too is $g(n)=f\left(n^{3}\right)$.
(b) (3+3 marks) Let $\tau(n)$ denote the number of positive divisors of n.
(i) Show that for every prime p and every natural number h, one has $\tau\left(p^{3 h}\right) \leq \tau\left(p^{h}\right)^{2}$.
(ii) Apply multiplicativity to show that for each $n \in \mathbb{N}$, one has $\tau\left(n^{3}\right) \leq \tau(n)^{2}$.
(c) (6 marks) Using your answer to (b)(ii), prove that for $x \geq 2$, one has

$$
\sum_{1 \leq n \leq x} \sqrt{\tau\left(n^{3}\right)} \leq x \log x+O(x) .
$$

(d) (5+4 marks) (i) State and prove the Möbius inversion formula.
(ii) Let $\omega(n)$ denote the number of distinct prime divisors of the integer n. Prove that

$$
\sum_{d \mid n} \mu(n / d) \tau\left(d^{3}\right)=3^{\omega(n)} \quad \text { and } \quad \tau\left(n^{3}\right)=\sum_{d \mid n} 3^{\omega(d)}
$$

End of examination.

