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1. (25 marks total)

(a) (2+4 marks; [B+H]) (i) Quadratic Reciprocity: Let p and q be distinct odd prime
numbers. Then (

p

q

)(
q

p

)
= (−1)

1
4
(p−1)(q−1).

(ii) First note that 5 is a quadratic residue modul0 2, since 5 ≡ 12 (mod 2). If 5 is to
be a quadratic residue modulo an odd prime p 6= 5, then by quadratic reciprocity,

1 =

(
5

p

)
= (−1)

1
4
(5−1)(p−1)

(p
5

)
=
(p

5

)
.

But the quadratic residues modulo 5 are 12 ≡ 42 ≡ 1 (mod 5) and 22 ≡ 32 ≡

−1 (mod 5), and so

(
5

p

)
= 1 if and only if p ≡ ±1 (mod 5).

(b) (3+2+3 marks; [U resembles H+U+U]) (i) The congruence in question is soluble if
and only if the congruence 4(x2−x−1) = (2x−1)2−5 ≡ 0 (mod p) is soluble. This in
turn is soluble if and only if 5 is a quadratic residue modulo p. Hence, by hypothesis,
the congruence x2 − x− 1 ≡ 0 (mod p) does indeed have a solution λ (mod p).

(ii) With µ = 1− λ, one has

µ2 − µ− 1 = (1− 2λ+ λ2)− (1− λ)− 1 = λ2 − λ− 1 ≡ 0 (mod p).

So µ is indeed a solution of x2 − x − 1 ≡ 0 (mod p). Moreover, if one were to have
λ ≡ µ = 1−λ (mod p), then 2λ ≡ 1 (mod p), and hence 4(λ2−λ−1) = (2λ−1)2−5 ≡
−5 6≡ 0 (mod p), yielding a contradiction. So λ 6≡ µ (mod p), as desired.

(iii) Since (λ− µ) | (λn − µn), of course, one sees that un is an integer. Also, plainly,
neither λ nor µ is equal to 0. Thus

u0 =
λ0 − µ0

λ− µ
= 0 and u1 =

λ− µ
λ− µ

= 1.

Moreover, using the fact that λ and µ both satisfy x2− x− 1 ≡ 0 (mod p), we obtain

λn+2 − µn+2 ≡ (λ+ 1)λn − (µ+ 1)µn (mod p).

Since p - (λ− µ), moreover, we see that

un+2 ≡ (λ− µ)−1((λn+1 − µn+1) + (λn − µn)) ≡ un+1 + un (mod p).
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(c) (2+3 marks; [B]) Fermat’s Little Theorem: Let p be a prime number, and suppose
that (a, p) = 1. Then one has ap−1 ≡ 1 (mod p).

Proof: When (a, p) = 1, the map a 7→ ax (mod p) permutes the residues {1, . . . , p−1}.
Thus

ap−1

p−1∏
i=1

i =

p−1∏
i=1

(ai) ≡
p−1∏
i=1

i (mod p).

Since
∏p−1

1 i is coprime to p, it follows that ap−1 ≡ 1 (mod p), completing the proof.

(d) (6 marks; [U]) From (b)(iii), we have F1 ≡ 1 ≡ u1 (mod p) and

F2 = 1 = 1 + 0 ≡ u1 + u0 ≡ u2 (mod p).

Suppose that Fn ≡ un (mod p) for 2 ≤ n < N . Then

FN ≡ FN−1 + FN−2 ≡ uN−1 + uN−2 ≡ uN (mod p).

Then it follows by induction that Fn ≡ un (mod p) for n ≥ 1. But by Fermat’s Little
Theorem, whenever (p− 1) | n, say n = m(p− 1), one has

un ≡ (λ− µ)−1((λm)p−1 − (µm)p−1) ≡ (λ− µ)−1(1− 1) ≡ 0 (mod p).

Thus Fn ≡ un ≡ 0 (mod p) whenever (p− 1) | n.

2. (25 marks total)

(a) (2+2 marks; [B+H]) (i) Lagrange’s Theorem: Let f(x) ∈ Z[x] have degree n (modulo
p), with n ≥ 1. Then the congruence f(x) ≡ 0 (mod p) has at most n solutions.

(ii) We have f(x) = (x− 1)2 + 7, and so f(x) ≡ 0 (mod 11) if and only if (x− 1)2 ≡
−7 ≡ 4 (mod 11), whence x ≡ 3 or −1 modulo 11.

(b) (2+3+3 marks; [B+H+U∼H]) (i) Hensel’s Lemma: Let f(x) ∈ Z[x]. Suppose that
f(a) ≡ 0 (mod pj), and that pτ ‖ f ′(a). Then if j ≥ 2τ + 1, it follows that (1)
whenever b ≡ a (mod pj−τ ), one has f(b) ≡ f(a) (mod pj) and pτ ‖ f ′(b); (2) there
exists a unique residue t (mod p) with the property that f(a+tpj−τ ) ≡ 0 (mod pj+1).
[acceptable to quote this with τ = 0]

(ii) Consider first the solution x0 = 3 of f(x0) ≡ 0 (mod 11). We have f ′(x) = 2x−2,
so that f ′(3) ≡ 4 (mod 11). Thus 110 ‖ f ′(3). Note that 3 · 4 ≡ 1 (mod 11), so that
4−1 ≡ 3 (mod 11). Then Hensel’s lemma shows that there is the unique solution

x1 ≡ 3− f(3)(f ′(3))−1 ≡ 3− 11 · 3 ≡ −30 ≡ 91 (mod 121)

to the congruence f(x) ≡ 0 (mod 121) corresponding to x0. Similarly, when x0 = −1,
we obtain the unique solution

x1 ≡ −1− f(−1)(f ′(−1))−1 ≡ −1− 11 · (−3) ≡ 32 (mod 121).

(iii) Since f(x) = (x − 1)2 + 7, the congruence f(x) ≡ 0 (mod 49) implies first that
7 | (x− 1), and hence that 7 ≡ 0 (mod 49). Thus we derive a contradiction, showing
that there are no solutions of this congruence.
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(c) (6 marks; [U]) The only solution of f(x) ≡ f ′(x) ≡ 0 (mod p) is x ≡ 1 (mod p), since
f ′(x) = 2x − 2 and (p, 2) = 1. But f(1) = 1 − 2 + 8 = 7, so that for such values of
x one has f(x) ≡ 0 (mod p) if and only if 7 | p. But p > 7, and hence any solution
x (mod p) of f(x) ≡ 0 (mod p) satisfies f ′(x) 6≡ 0 (mod p). But then Hensel’s lemma
shows that every solution of the congruence f(x) ≡ 0 (mod p) lifts uniquely to a
corresponding solution modulo pn. By Lagrange’s theorem, there are z ≤ 2 solutions
of the congruence f(x) ≡ 0 (mod p), and these lift uniquely to z solutions modulo pn.
Thus there are at most 2 solutions modulo pn.

(d) (2+5 marks; [H]+[U∼H]) (i) Plainly, one has x ≡ 0 (mod 2), say x = 2y. On substi-
tuting, we find that 4y2−4y+8 ≡ 0 (mod 8), whence y2−y+2 ≡ 0 (mod 2). But this
congruence is satisfied for every integer y as a simple application of Fermat’s Little
Theorem, for example. Then f(x) ≡ 0 (mod 8) has solutions x ≡ 0, 2, 4, 6 (mod 8).

(ii) Let p be either 70001 or 70003. Then if f(x) ≡ 0 (mod p), one has (x − 1)2 ≡

−7 (mod p), whence

(
−7

p

)
= 1. But by invoking quadratic reciprocity, one finds

that (
−7

p

)
=

(
−1

p

)(
7

p

)
= (−1)(p−1)/2 · (−1)(p−1)(7−1)/4

(p
7

)
=
(p

7

)
.

The quadratic residues modulo 7 are 12 ≡ 62 ≡ 1, 22 ≡ 52 ≡ 4 and 32 ≡ 42 ≡
2 (mod 7), and thus (

−7

70001

)
=

(
70001

7

)
=

(
1

7

)
= 1

and (
−7

70003

)
=

(
70003

7

)
=

(
3

7

)
= −1.

Then there are no solutions of f(x) ≡ 0 (mod 560024), since 70003 divides the modu-
lus, and there are no solutions modulo 70003. When p = 70001, meanwhile, there are
precisely two solutions, say a and b, of the congruence f(x) ≡ 0 (mod p). But for each
c ∈ {a, b}, and d ∈ {0, 2, 4, 6}, it follows from the Chinese Remainder Theorem that
there exists an integer y with y ≡ c (mod p) and y ≡ d (mod 8). But f(y) ≡ f(c) ≡
0 (mod p) and f(y) ≡ f(d) ≡ 0 (mod 8), so that f(y) ≡ 0 (mod 23 · p). Moreover,
by examining these solutions modulo 8 and modulo p, one sees that each such y is
distinct modulo 8p. Thus there are 2 × 4 = 8 solutions of f(x) ≡ 0 (mod 560024)
distinct modulo 560024.

3. (25 marks total)

(a) (2+2 marks; [B+B]) (i) The Euler totient φ(n) is given by

φ(n) = n
∏
p|n

(1− 1/p),

where the product is taken over the distinct prime divisors of n.

Euler’s Theorem: If (a, n) = 1, then aφ(n) ≡ 1 (mod n).

(b) (2+2 marks; [B]) (i) A residue g modulo n is a primitive root when the order of g
modulo n is φ(n).

(ii) Primitive roots modulo n exist if and only if n = 1, 2, 4, pα or 2pα, wherein p
denotes an odd prime number. [No loss of credit if 1 is missed]
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(c) (4+4 marks; [U∼H+U]) (i) If xn ≡ 1 (mod pq), then gn1 ≡ 1 (mod p). Write n =
h(p − 1) + r with 0 ≤ r < p − 1. Then it follows from Fermat’s Little Theorem (a
special case of Euler’s theorem) that gn1 = (gp−1

1 )hgr1 ≡ gr1 (mod p). But g1 is primitive,
and 0 ≤ r < p − 1, and thus r = 0 and (p − 1) | n. The relation (q − 1) | n follows
symmetrically.

(ii) By the Chinese Remainder Theorem, there exists an integer w with w ≡ g1 (mod p)
and w ≡ g2 (mod q). But then whenever wn ≡ 1 (mod pq), one has (p − 1) | n and
(q − 1) | n, so that [p − 1, q − 1] | n. Hence, the order of w is divisible by the
least common multiple of p − 1 and q − 1, and cannot be any smaller. But writing
[p− 1, q − 1] = m(p− 1) = l(q − 1), one sees that

wm(p−1) ≡ (wp−1)m ≡ 1 (mod p)

and
wl(q−1) ≡ (wq−1)l ≡ 1 (mod q),

by Fermat’s Little Theorem, and hence w[p−1,q−1] ≡ 1 (mod pq), by the Chinese Re-
mainder Theorem. So the order of w (mod pq) is precisely [p− 1, q − 1].

(d) (5+4 marks; [U]) (i) If apq+1 ≡ 1 (mod pq) for all integers a with (a, pq) = 1, then
by (c)(i) one has (p − 1) | (pq + 1), whence (p − 1) | (q + 1). By symmetry, also
(q − 1) | (p+ 1).

(ii) Thus p− 1 ≤ q + 1 and q − 1 ≤ p+ 1, so that p− 2 ≤ q ≤ p+ 2. But p and q are
distinct and odd, so that p − 2 = q or q = p + 2. Thus |p − q| = 2. Since p < q and
(q − 1) | (p+ 1), it follows that q = p+ 2. The relation (p− 1) | (q + 1) then gives

q + 1

p− 1
=
p+ 3

p− 1
= 1 +

4

p− 1
∈ Z,

whence p− 1 ∈ {1, 2, 4}. But p is odd, so p = 3 or 5.

4. (25 marks total)

(a) (2+3 marks; [B]) The rational number

pn
qn

= [a0; a1, . . . , an],

where pn and qn are relatively prime integers with qn ≥ 1, is the nth convergent to θ.
Thus

p0/q0 = [a0] = a0/1, so that p0 = a0 and q0 = 1,

and

p1/q1 = [a0; a1] = a0 + 1/a1 = (a0a1 + 1)/a1 so that p1 = a0a1 + 1 and q1 = a1.

(b) (2+5 marks; [B+B]) Dirichlet’s Theorem: Let θ be a real number. Then whenever
Q is a real number exceeding 1, there exist integers p and q with 1 ≤ q < Q and
(p, q) = 1 such that |qθ − p| ≤ 1/Q.

Proof: Write N = dQe, and consider the N + 1 real numbers 0, 1, {θ}, {2θ}, . . . ,
{(N − 1)θ}. These N + 1 numbers all lie in the unit interval [0, 1], so by the Box
Principle, at least two must lie in one of the N intervals of the shape [h/N, (h+ 1)/N ]
for h = 0, 1, . . . , N−1. The difference between these two numbers has the shape qθ−p
with p and q integers satisfying 0 < |q| ≤ N − 1. It follows that integers p and q may
be chosen with 1 ≤ q < Q and |qθ − p| ≤ 1/N ≤ 1/Q. The coprimality condition on
p and q follows by dividing through by (p, q).
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(c) (2+4 marks; [B+B]) (i) (a) A number θ is algebraic if there is a polynomial f ∈ Z[t]
of positive degree having the property that f(θ) = 0. (b) A complex number θ is
transcendental if it is not algebraic of any degree.

(b) Liouville’s Theorem: Suppose that θ is an algebraic number of degree d > 1. Then
there exists a positive number c = c(θ) such that whenever q is a natural number, and
p is an integer, one has |θ − p/q| ≥ c/qd.

(d) (7 marks; [U, somewhat ∼H]) Write θ =
∑∞

1 2015−(bn+1)n!. For each natural number
j, write qj = 2015(bj+1)j! and

pj = 2015(bj+1)j!

j∑
n=1

2015−(bn+1)n!.

Then when j is large, pj and qj are natural numbers satisfying (pj, qj) = 1, since all
prime divisors of qj divide 2015, and pj ≡ 1 (mod 2015). Further, one has

|θ − pj/qj| =
∞∑

n=j+1

2015−(bn+1)n! < 20151−(j+1)! < q
−j/10
j .

If θ were algebraic, then it would be algebraic of some degree d ≥ 1. By Liouville’s
theorem, for some positive number c, one would have |θ − p/q| ≥ c/qd for every pair
of natural numbers p and q with (p, q) = 1 and q sufficiently large. But the above
upper bound contradicts this lower bound as soon as j > 10d and j is large enough
in terms of c. Hence θ is transcendental.
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5. (25 marks total)

(a) (2+2 marks; [B+U∼H]) An arithmetical function f is said to be multiplicative if (a)
f is not identically zero, and (b) whenever (m,n) = 1, one has f(mn) = f(m)f(n).

Suppose that f(n) is multiplicative, and write g(n) = f(n3) . Then whenever m,n ∈ N
satisfy (m,n) = 1, we have g(mn) = f(m3n3) with (m3, n3) = (m,n)3 = 1, so that
g(mn) = f(m3)f(n3) = g(m)g(n). Then g(mn) = g(m)g(n), and since g(1) = f(1) 6=
0, the multiplicativity of g follows.

(b) (3+3 marks; [U∼H]) (i) One has τ(ph) = h + 1 (since 1, p, p2, . . . , ph are the positive
divisors of ph), and hence τ(p3h) = 3h+ 1. But for every non-negative integer h, one
has 3h+ 1 ≤ (h+ 1)2, and hence τ(p3h) ≤ τ(ph)2.

(ii) Since τ(n) is multiplicative, it follows that τ(n3) is multiplicative. Thus, by
multiplicativity, one has

τ(n3) =
∏
ph‖n

τ(p3h) ≤
∏
ph‖n

τ(ph)2 = τ(n)2.

Thus τ(n3) ≤ τ(n)2, as required.

(c) (6 marks; [B∼H]) One has∑
1≤n≤x

√
τ(n3) ≤

∑
1≤n≤x

τ(n) =
∑

1≤n≤x

∑
d|n

1 =
∑

1≤d≤x

∑
1≤m≤x/d

1

=
∑

1≤d≤x

bx/dc = x
∑

1≤d≤x

1/d+O(x) = x log x+O(x).

(d) (5+4 marks; [B+U]) (i) Möbius inversion formula: Let f be any arithmetical function,
and define g(n) =

∑
d|n f(d). Then one has f(n) =

∑
d|n µ(d)g(n/d).

Proof: Define the arithmetic function ν(n) to be 1 when n = 1, and otherwise to be
0. Given that g(n) =

∑
d|n f(d), one obtains∑

d|n

µ(d)g(n/d) =
∑
d|n

∑
e|(n/d)

µ(d)f(e) =
∑
e|n

f(e)
∑
d|(n/e)

µ(d)

=
∑
e|n

f(e)ν(n/e) = f(n).

(ii) When n is the prime power ph with h ≥ 1, one has∑
d|n

3ω(d) =
h∑
l=0

3ω(pl) = 1 +
h∑
l=1

3 = 3h+ 1 = τ(p3h).

Thus, by multiplicativity, one has∑
d|n

3ω(d) =
∏
ph‖n

τ(p3h) = τ(n3).

Thus, applying the Möbius inversion formula, one obtains∑
d|n

µ(d)τ((n/d)3) = 3ω(n),

so that the duality d↔ n/d of divisors yields∑
d|n

µ(n/d)τ(d3) = 3ω(n).

End of solutions.
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