EXAMINATION SOLUTIONS UNIVERSITY OF BRISTOL

Examination for the Degree of B.Sc. and M.Sci. (Level III)

NUMBER THEORY

MATH 30200 (Paper Code MATH-30200)

May-June 2015 [B]=bookwork, [H]=variant of homework problem, [U]=unseen

- 1. (25 marks total)
 - (a) (2+4 marks; [B+H]) (i) Quadratic Reciprocity: Let p and q be distinct odd prime numbers. Then

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{1}{4}(p-1)(q-1)}.$$

(ii) First note that 5 is a quadratic residue modulo 2, since $5 \equiv 1^2 \pmod{2}$. If 5 is to be a quadratic residue modulo an odd prime $p \neq 5$, then by quadratic reciprocity,

$$1 = \left(\frac{5}{p}\right) = (-1)^{\frac{1}{4}(5-1)(p-1)} \left(\frac{p}{5}\right) = \left(\frac{p}{5}\right).$$

But the quadratic residues modulo 5 are $1^2 \equiv 4^2 \equiv 1 \pmod{5}$ and $2^2 \equiv 3^2 \equiv -1 \pmod{5}$, and so $\left(\frac{5}{p}\right) = 1$ if and only if $p \equiv \pm 1 \pmod{5}$.

(b) (3+2+3 marks; [U resembles H+U+U]) (i) The congruence in question is soluble if and only if the congruence 4(x²-x-1) = (2x-1)²-5 ≡ 0 (mod p) is soluble. This in turn is soluble if and only if 5 is a quadratic residue modulo p. Hence, by hypothesis, the congruence x² - x - 1 ≡ 0 (mod p) does indeed have a solution λ (mod p).
(ii) With μ = 1 - λ, one has

$$\mu^{2} - \mu - 1 = (1 - 2\lambda + \lambda^{2}) - (1 - \lambda) - 1 = \lambda^{2} - \lambda - 1 \equiv 0 \pmod{p}.$$

So μ is indeed a solution of $x^2 - x - 1 \equiv 0 \pmod{p}$. Moreover, if one were to have $\lambda \equiv \mu = 1 - \lambda \pmod{p}$, then $2\lambda \equiv 1 \pmod{p}$, and hence $4(\lambda^2 - \lambda - 1) = (2\lambda - 1)^2 - 5 \equiv -5 \not\equiv 0 \pmod{p}$, yielding a contradiction. So $\lambda \not\equiv \mu \pmod{p}$, as desired.

(iii) Since $(\lambda - \mu) | (\lambda^n - \mu^n)$, of course, one sees that u_n is an integer. Also, plainly, neither λ nor μ is equal to 0. Thus

$$u_0 = \frac{\lambda^0 - \mu^0}{\lambda - \mu} = 0$$
 and $u_1 = \frac{\lambda - \mu}{\lambda - \mu} = 1$

Moreover, using the fact that λ and μ both satisfy $x^2 - x - 1 \equiv 0 \pmod{p}$, we obtain

$$\lambda^{n+2} - \mu^{n+2} \equiv (\lambda+1)\lambda^n - (\mu+1)\mu^n \pmod{p}.$$

Since $p \nmid (\lambda - \mu)$, moreover, we see that

$$u_{n+2} \equiv (\lambda - \mu)^{-1} ((\lambda^{n+1} - \mu^{n+1}) + (\lambda^n - \mu^n)) \equiv u_{n+1} + u_n \pmod{p}$$

(c) (2+3 marks; [B]) Fermat's Little Theorem: Let p be a prime number, and suppose that (a, p) = 1. Then one has $a^{p-1} \equiv 1 \pmod{p}$. Proof: When (a, p) = 1, the map $a \mapsto ax \pmod{p}$ permutes the residues $\{1, \ldots, p-1\}$. Thus

$$a^{p-1}\prod_{i=1}^{p-1}i = \prod_{i=1}^{p-1}(ai) \equiv \prod_{i=1}^{p-1}i \pmod{p}.$$

Since $\prod_{1}^{p-1} i$ is coprime to p, it follows that $a^{p-1} \equiv 1 \pmod{p}$, completing the proof. (d) (6 marks; [U]) From (b)(iii), we have $F_1 \equiv 1 \equiv u_1 \pmod{p}$ and

$$F_2 = 1 = 1 + 0 \equiv u_1 + u_0 \equiv u_2 \pmod{p}.$$

Suppose that $F_n \equiv u_n \pmod{p}$ for $2 \le n < N$. Then

$$F_N \equiv F_{N-1} + F_{N-2} \equiv u_{N-1} + u_{N-2} \equiv u_N \pmod{p}.$$

Then it follows by induction that $F_n \equiv u_n \pmod{p}$ for $n \geq 1$. But by Fermat's Little Theorem, whenever $(p-1) \mid n$, say n = m(p-1), one has

$$u_n \equiv (\lambda - \mu)^{-1} ((\lambda^m)^{p-1} - (\mu^m)^{p-1}) \equiv (\lambda - \mu)^{-1} (1 - 1) \equiv 0 \pmod{p}.$$

Thus $F_n \equiv u_n \equiv 0 \pmod{p}$ whenever $(p-1) \mid n$.

- 2. (25 marks total)
 - (a) (2+2 marks; [B+H]) (i) Lagrange's Theorem: Let f(x) ∈ Z[x] have degree n (modulo p), with n ≥ 1. Then the congruence f(x) ≡ 0 (mod p) has at most n solutions.
 (ii) We have f(x) = (x 1)² + 7, and so f(x) ≡ 0 (mod 11) if and only if (x 1)² ≡ -7 ≡ 4 (mod 11), whence x ≡ 3 or -1 modulo 11.
 - (b) $(2+3+3 \text{ marks}; [B+H+U\sim H])$ (i) Hensel's Lemma: Let $f(x) \in \mathbb{Z}[x]$. Suppose that $f(a) \equiv 0 \pmod{p^j}$, and that $p^{\tau} \parallel f'(a)$. Then if $j \geq 2\tau + 1$, it follows that (1) whenever $b \equiv a \pmod{p^{j-\tau}}$, one has $f(b) \equiv f(a) \pmod{p^j}$ and $p^{\tau} \parallel f'(b)$; (2) there exists a unique residue $t \pmod{p}$ with the property that $f(a+tp^{j-\tau}) \equiv 0 \pmod{p^{j+1}}$. [acceptable to quote this with $\tau = 0$]

(ii) Consider first the solution $x_0 = 3$ of $f(x_0) \equiv 0 \pmod{11}$. We have f'(x) = 2x - 2, so that $f'(3) \equiv 4 \pmod{11}$. Thus $11^0 \parallel f'(3)$. Note that $3 \cdot 4 \equiv 1 \pmod{11}$, so that $4^{-1} \equiv 3 \pmod{11}$. Then Hensel's lemma shows that there is the unique solution

$$x_1 \equiv 3 - f(3)(f'(3))^{-1} \equiv 3 - 11 \cdot 3 \equiv -30 \equiv 91 \pmod{121}$$

to the congruence $f(x) \equiv 0 \pmod{121}$ corresponding to x_0 . Similarly, when $x_0 = -1$, we obtain the unique solution

$$x_1 \equiv -1 - f(-1)(f'(-1))^{-1} \equiv -1 - 11 \cdot (-3) \equiv 32 \pmod{121}.$$

(iii) Since $f(x) = (x-1)^2 + 7$, the congruence $f(x) \equiv 0 \pmod{49}$ implies first that $7 \mid (x-1)$, and hence that $7 \equiv 0 \pmod{49}$. Thus we derive a contradiction, showing that there are no solutions of this congruence.

- (c) (6 marks; [U]) The only solution of $f(x) \equiv f'(x) \equiv 0 \pmod{p}$ is $x \equiv 1 \pmod{p}$, since f'(x) = 2x 2 and (p, 2) = 1. But f(1) = 1 2 + 8 = 7, so that for such values of x one has $f(x) \equiv 0 \pmod{p}$ if and only if $7 \mid p$. But p > 7, and hence any solution $x \pmod{p}$ of $f(x) \equiv 0 \pmod{p}$ satisfies $f'(x) \not\equiv 0 \pmod{p}$. But then Hensel's lemma shows that every solution of the congruence $f(x) \equiv 0 \pmod{p}$ lifts uniquely to a corresponding solution modulo p^n . By Lagrange's theorem, there are $z \leq 2$ solutions of the congruence $f(x) \equiv 0 \pmod{p}$. Thus there are at most 2 solutions modulo p^n .
- (d) (2+5 marks; [H]+[U~H]) (i) Plainly, one has x ≡ 0 (mod 2), say x = 2y. On substituting, we find that 4y²-4y+8 ≡ 0 (mod 8), whence y²-y+2 ≡ 0 (mod 2). But this congruence is satisfied for every integer y as a simple application of Fermat's Little Theorem, for example. Then f(x) ≡ 0 (mod 8) has solutions x ≡ 0, 2, 4, 6 (mod 8).
 (ii) Let p be either 70001 or 70003. Then if f(x) ≡ 0 (mod p), one has (x 1)² ≡ -7 (mod p) whence (⁻⁷/₋) = 1. But by invoking quadratic reciprocity one finds

 $-7 \pmod{p}$, whence $\left(\frac{-7}{p}\right) = 1$. But by invoking quadratic reciprocity, one finds that

$$\left(\frac{-7}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{7}{p}\right) = (-1)^{(p-1)/2} \cdot (-1)^{(p-1)(7-1)/4} \left(\frac{p}{7}\right) = \left(\frac{p}{7}\right).$$

The quadratic residues modulo 7 are $1^2 \equiv 6^2 \equiv 1$, $2^2 \equiv 5^2 \equiv 4$ and $3^2 \equiv 4^2 \equiv 2 \pmod{7}$, and thus

$$\left(\frac{-7}{70001}\right) = \left(\frac{70001}{7}\right) = \left(\frac{1}{7}\right) = 1$$

and

$$\left(\frac{-7}{70003}\right) = \left(\frac{70003}{7}\right) = \left(\frac{3}{7}\right) = -1.$$

Then there are no solutions of $f(x) \equiv 0 \pmod{560024}$, since 70003 divides the modulus, and there are no solutions modulo 70003. When p = 70001, meanwhile, there are precisely two solutions, say a and b, of the congruence $f(x) \equiv 0 \pmod{p}$. But for each $c \in \{a, b\}$, and $d \in \{0, 2, 4, 6\}$, it follows from the Chinese Remainder Theorem that there exists an integer y with $y \equiv c \pmod{p}$ and $y \equiv d \pmod{8}$. But $f(y) \equiv f(c) \equiv$ $0 \pmod{p}$ and $f(y) \equiv f(d) \equiv 0 \pmod{8}$, so that $f(y) \equiv 0 \pmod{2^3 \cdot p}$. Moreover, by examining these solutions modulo 8 and modulo p, one sees that each such y is distinct modulo 8p. Thus there are $2 \times 4 = 8$ solutions of $f(x) \equiv 0 \pmod{560024}$.

- 3. (25 marks total)
 - (a) (2+2 marks; [B+B]) (i) The Euler totient $\phi(n)$ is given by

$$\phi(n) = n \prod_{p|n} (1 - 1/p),$$

where the product is taken over the distinct prime divisors of n. Euler's Theorem: If (a, n) = 1, then $a^{\phi(n)} \equiv 1 \pmod{n}$.

(b) (2+2 marks; [B]) (i) A residue g modulo n is a primitive root when the order of g modulo n is $\phi(n)$.

(ii) Primitive roots modulo n exist if and only if $n = 1, 2, 4, p^{\alpha}$ or $2p^{\alpha}$, wherein p denotes an odd prime number. [No loss of credit if 1 is missed]

(c) $(4+4 \text{ marks}; [U\sim H+U])$ (i) If $x^n \equiv 1 \pmod{pq}$, then $g_1^n \equiv 1 \pmod{p}$. Write n = h(p-1) + r with $0 \leq r < p-1$. Then it follows from Fermat's Little Theorem (a special case of Euler's theorem) that $g_1^n = (g_1^{p-1})^h g_1^r \equiv g_1^r \pmod{p}$. But g_1 is primitive, and $0 \leq r < p-1$, and thus r = 0 and $(p-1) \mid n$. The relation $(q-1) \mid n$ follows symmetrically.

(ii) By the Chinese Remainder Theorem, there exists an integer w with $w \equiv g_1 \pmod{p}$ and $w \equiv g_2 \pmod{q}$. But then whenever $w^n \equiv 1 \pmod{pq}$, one has $(p-1) \mid n$ and $(q-1) \mid n$, so that $[p-1, q-1] \mid n$. Hence, the order of w is divisible by the least common multiple of p-1 and q-1, and cannot be any smaller. But writing [p-1, q-1] = m(p-1) = l(q-1), one sees that

$$w^{m(p-1)} \equiv (w^{p-1})^m \equiv 1 \pmod{p}$$

and

$$w^{l(q-1)} \equiv (w^{q-1})^l \equiv 1 \pmod{q},$$

by Fermat's Little Theorem, and hence $w^{[p-1,q-1]} \equiv 1 \pmod{pq}$, by the Chinese Remainder Theorem. So the order of $w \pmod{pq}$ is precisely [p-1, q-1].

(d) (5+4 marks; [U]) (i) If $a^{pq+1} \equiv 1 \pmod{pq}$ for all integers a with (a, pq) = 1, then by (c)(i) one has $(p-1) \mid (pq+1)$, whence $(p-1) \mid (q+1)$. By symmetry, also $(q-1) \mid (p+1)$.

(ii) Thus $p-1 \le q+1$ and $q-1 \le p+1$, so that $p-2 \le q \le p+2$. But p and q are distinct and odd, so that p-2 = q or q = p+2. Thus |p-q| = 2. Since p < q and $(q-1) \mid (p+1)$, it follows that q = p+2. The relation $(p-1) \mid (q+1)$ then gives

$$\frac{q+1}{p-1} = \frac{p+3}{p-1} = 1 + \frac{4}{p-1} \in \mathbb{Z},$$

whence $p - 1 \in \{1, 2, 4\}$. But *p* is odd, so p = 3 or 5.

- 4. (25 marks total)
 - (a) (2+3 marks; [B]) The rational number

$$\frac{p_n}{q_n} = [a_0; a_1, \dots, a_n],$$

where p_n and q_n are relatively prime integers with $q_n \ge 1$, is the n^{th} convergent to θ . Thus

 $p_0/q_0 = [a_0] = a_0/1$, so that $p_0 = a_0$ and $q_0 = 1$,

and

$$p_1/q_1 = [a_0; a_1] = a_0 + 1/a_1 = (a_0a_1 + 1)/a_1$$
 so that $p_1 = a_0a_1 + 1$ and $q_1 = a_1$.

(b) (2+5 marks; [B+B]) Dirichlet's Theorem: Let θ be a real number. Then whenever Q is a real number exceeding 1, there exist integers p and q with $1 \le q < Q$ and (p,q) = 1 such that $|q\theta - p| \le 1/Q$.

Proof: Write $N = \lceil Q \rceil$, and consider the N + 1 real numbers 0, 1, $\{\theta\}$, $\{2\theta\}$, ..., $\{(N-1)\theta\}$. These N + 1 numbers all lie in the unit interval [0, 1], so by the Box Principle, at least two must lie in one of the N intervals of the shape [h/N, (h+1)/N] for $h = 0, 1, \ldots, N-1$. The difference between these two numbers has the shape $q\theta - p$ with p and q integers satisfying $0 < |q| \le N - 1$. It follows that integers p and q may be chosen with $1 \le q < Q$ and $|q\theta - p| \le 1/N \le 1/Q$. The coprimality condition on p and q follows by dividing through by (p, q).

(c) (2+4 marks; [B+B]) (i) (a) A number θ is algebraic if there is a polynomial f ∈ Z[t] of positive degree having the property that f(θ) = 0. (b) A complex number θ is transcendental if it is not algebraic of any degree.
(b) Liouville's Theorem: Suppose that θ is an algebraic number of degree d > 1. Then there exists a positive number c = c(θ) such that whenever q is a natural number, and

p is an integer, one has $|\theta - p/q| \ge c/q^d$.

(d) (7 marks; [U, somewhat ~H]) Write $\theta = \sum_{1}^{\infty} 2015^{-(b_n+1)n!}$. For each natural number j, write $q_j = 2015^{(b_j+1)j!}$ and

$$p_j = 2015^{(b_j+1)j!} \sum_{n=1}^j 2015^{-(b_n+1)n!}$$

Then when j is large, p_j and q_j are natural numbers satisfying $(p_j, q_j) = 1$, since all prime divisors of q_j divide 2015, and $p_j \equiv 1 \pmod{2015}$. Further, one has

$$|\theta - p_j/q_j| = \sum_{n=j+1}^{\infty} 2015^{-(b_n+1)n!} < 2015^{1-(j+1)!} < q_j^{-j/10}.$$

If θ were algebraic, then it would be algebraic of some degree $d \ge 1$. By Liouville's theorem, for some positive number c, one would have $|\theta - p/q| \ge c/q^d$ for every pair of natural numbers p and q with (p,q) = 1 and q sufficiently large. But the above upper bound contradicts this lower bound as soon as j > 10d and j is large enough in terms of c. Hence θ is transcendental.

- 5. (25 marks total)
 - (a) $(2+2 \text{ marks}; [B+U\sim H])$ An arithmetical function f is said to be multiplicative if (a) f is not identically zero, and (b) whenever (m, n) = 1, one has f(mn) = f(m)f(n). Suppose that f(n) is multiplicative, and write $g(n) = f(n^3)$. Then whenever $m, n \in \mathbb{N}$ satisfy (m, n) = 1, we have $g(mn) = f(m^3n^3)$ with $(m^3, n^3) = (m, n)^3 = 1$, so that $g(mn) = f(m^3)f(n^3) = g(m)g(n)$. Then g(mn) = g(m)g(n), and since $g(1) = f(1) \neq 0$, the multiplicativity of g follows.
 - (b) (3+3 marks; [U~H]) (i) One has $\tau(p^h) = h + 1$ (since $1, p, p^2, \ldots, p^h$ are the positive divisors of p^h), and hence $\tau(p^{3h}) = 3h + 1$. But for every non-negative integer h, one has $3h + 1 \leq (h + 1)^2$, and hence $\tau(p^{3h}) \leq \tau(p^h)^2$.

(ii) Since $\tau(n)$ is multiplicative, it follows that $\tau(n^3)$ is multiplicative. Thus, by multiplicativity, one has

$$\tau(n^3) = \prod_{p^h \parallel n} \tau(p^{3h}) \le \prod_{p^h \parallel n} \tau(p^h)^2 = \tau(n)^2.$$

Thus $\tau(n^3) \leq \tau(n)^2$, as required.

(c) (6 marks; $[B \sim H]$) One has

$$\sum_{1 \le n \le x} \sqrt{\tau(n^3)} \le \sum_{1 \le n \le x} \tau(n) = \sum_{1 \le n \le x} \sum_{d|n} 1 = \sum_{1 \le d \le x} \sum_{1 \le m \le x/d} 1$$
$$= \sum_{1 \le d \le x} \lfloor x/d \rfloor = x \sum_{1 \le d \le x} 1/d + O(x) = x \log x + O(x).$$

(d) (5+4 marks; [B+U]) (i) Möbius inversion formula: Let f be any arithmetical function, and define $g(n) = \sum_{d|n} f(d)$. Then one has $f(n) = \sum_{d|n} \mu(d)g(n/d)$.

Proof: Define the arithmetic function $\nu(n)$ to be 1 when n = 1, and otherwise to be 0. Given that $g(n) = \sum_{d|n} f(d)$, one obtains

$$\sum_{d|n} \mu(d)g(n/d) = \sum_{d|n} \sum_{e|(n/d)} \mu(d)f(e) = \sum_{e|n} f(e) \sum_{d|(n/e)} \mu(d)$$
$$= \sum_{e|n} f(e)\nu(n/e) = f(n).$$

(ii) When n is the prime power p^h with $h \ge 1$, one has

$$\sum_{d|n} 3^{\omega(d)} = \sum_{l=0}^{h} 3^{\omega(p^l)} = 1 + \sum_{l=1}^{h} 3 = 3h + 1 = \tau(p^{3h}).$$

Thus, by multiplicativity, one has

$$\sum_{d|n} 3^{\omega(d)} = \prod_{p^h \parallel n} \tau(p^{3h}) = \tau(n^3).$$

Thus, applying the Möbius inversion formula, one obtains

$$\sum_{d|n} \mu(d) \tau((n/d)^3) = 3^{\omega(n)},$$

so that the duality $d \leftrightarrow n/d$ of divisors yields

$$\sum_{d|n} \mu(n/d)\tau(d^3) = 3^{\omega(n)}$$

End of solutions.