EXAMINATION SOLUTIONS
 UNIVERSITY OF BRISTOL

Examination for the Degree of B.Sc. and M.Sci. (Level III)

NUMBER THEORY

MATH 30200
(Paper Code MATH-30200)

May-June 2015
$[B]=$ bookwork, $[H]=$ variant of homework problem, $[\mathrm{U}]=$ unseen

1. (25 marks total)
(a) (2+4 marks; $[\mathrm{B}+\mathrm{H}])$ (i) Quadratic Reciprocity: Let p and q be distinct odd prime numbers. Then

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{1}{4}(p-1)(q-1)} .
$$

(ii) First note that 5 is a quadratic residue modul0 2 , since $5 \equiv 1^{2}(\bmod 2)$. If 5 is to be a quadratic residue modulo an odd prime $p \neq 5$, then by quadratic reciprocity,

$$
1=\left(\frac{5}{p}\right)=(-1)^{\frac{1}{4}(5-1)(p-1)}\left(\frac{p}{5}\right)=\left(\frac{p}{5}\right)
$$

But the quadratic residues modulo 5 are $1^{2} \equiv 4^{2} \equiv 1(\bmod 5)$ and $2^{2} \equiv 3^{2} \equiv$ $-1(\bmod 5)$, and so $\left(\frac{5}{p}\right)=1$ if and only if $p \equiv \pm 1(\bmod 5)$.
(b) $(3+2+3$ marks; [U resembles $\mathrm{H}+\mathrm{U}+\mathrm{U}])$ (i) The congruence in question is soluble if and only if the congruence $4\left(x^{2}-x-1\right)=(2 x-1)^{2}-5 \equiv 0(\bmod p)$ is soluble. This in turn is soluble if and only if 5 is a quadratic residue modulo p. Hence, by hypothesis, the congruence $x^{2}-x-1 \equiv 0(\bmod p)$ does indeed have a solution $\lambda(\bmod p)$.
(ii) With $\mu=1-\lambda$, one has

$$
\mu^{2}-\mu-1=\left(1-2 \lambda+\lambda^{2}\right)-(1-\lambda)-1=\lambda^{2}-\lambda-1 \equiv 0(\bmod p)
$$

So μ is indeed a solution of $x^{2}-x-1 \equiv 0(\bmod p)$. Moreover, if one were to have $\lambda \equiv \mu=1-\lambda(\bmod p)$, then $2 \lambda \equiv 1(\bmod p)$, and hence $4\left(\lambda^{2}-\lambda-1\right)=(2 \lambda-1)^{2}-5 \equiv$ $-5 \not \equiv 0(\bmod p)$, yielding a contradiction. So $\lambda \not \equiv \mu(\bmod p)$, as desired.
(iii) Since $(\lambda-\mu) \mid\left(\lambda^{n}-\mu^{n}\right)$, of course, one sees that u_{n} is an integer. Also, plainly, neither λ nor μ is equal to 0 . Thus

$$
u_{0}=\frac{\lambda^{0}-\mu^{0}}{\lambda-\mu}=0 \quad \text { and } \quad u_{1}=\frac{\lambda-\mu}{\lambda-\mu}=1 .
$$

Moreover, using the fact that λ and μ both satisfy $x^{2}-x-1 \equiv 0(\bmod p)$, we obtain

$$
\lambda^{n+2}-\mu^{n+2} \equiv(\lambda+1) \lambda^{n}-(\mu+1) \mu^{n}(\bmod p)
$$

Since $p \nmid(\lambda-\mu)$, moreover, we see that

$$
u_{n+2} \equiv(\lambda-\mu)^{-1}\left(\left(\lambda^{n+1}-\mu^{n+1}\right)+\left(\lambda^{n}-\mu^{n}\right)\right) \equiv u_{n+1}+u_{n}(\bmod p)
$$

(c) (2+3 marks; [B]) Fermat's Little Theorem: Let p be a prime number, and suppose that $(a, p)=1$. Then one has $a^{p-1} \equiv 1(\bmod p)$.
Proof: When $(a, p)=1$, the map $a \mapsto a x(\bmod p)$ permutes the residues $\{1, \ldots, p-1\}$. Thus

$$
a^{p-1} \prod_{i=1}^{p-1} i=\prod_{i=1}^{p-1}(a i) \equiv \prod_{i=1}^{p-1} i \quad(\bmod p)
$$

Since $\prod_{1}^{p-1} i$ is coprime to p, it follows that $a^{p-1} \equiv 1(\bmod p)$, completing the proof.
(d) $(6$ marks; $[\mathrm{U}])$ From (b)(iii), we have $F_{1} \equiv 1 \equiv u_{1}(\bmod p)$ and

$$
F_{2}=1=1+0 \equiv u_{1}+u_{0} \equiv u_{2}(\bmod p) .
$$

Suppose that $F_{n} \equiv u_{n}(\bmod p)$ for $2 \leq n<N$. Then

$$
F_{N} \equiv F_{N-1}+F_{N-2} \equiv u_{N-1}+u_{N-2} \equiv u_{N}(\bmod p) .
$$

Then it follows by induction that $F_{n} \equiv u_{n}(\bmod p)$ for $n \geq 1$. But by Fermat's Little Theorem, whenever $(p-1) \mid n$, say $n=m(p-1)$, one has

$$
u_{n} \equiv(\lambda-\mu)^{-1}\left(\left(\lambda^{m}\right)^{p-1}-\left(\mu^{m}\right)^{p-1}\right) \equiv(\lambda-\mu)^{-1}(1-1) \equiv 0(\bmod p) .
$$

Thus $F_{n} \equiv u_{n} \equiv 0(\bmod p)$ whenever $(p-1) \mid n$.
2. (25 marks total)
(a) (2+2 marks; $[\mathrm{B}+\mathrm{H}]$) (i) Lagrange's Theorem: Let $f(x) \in \mathbb{Z}[x]$ have degree n (modulo $p)$, with $n \geq 1$. Then the congruence $f(x) \equiv 0(\bmod p)$ has at most n solutions.
(ii) We have $f(x)=(x-1)^{2}+7$, and so $f(x) \equiv 0(\bmod 11)$ if and only if $(x-1)^{2} \equiv$ $-7 \equiv 4(\bmod 11)$, whence $x \equiv 3$ or -1 modulo 11 .
(b) $(2+3+3$ marks; $[\mathrm{B}+\mathrm{H}+\mathrm{U} \sim \mathrm{H}])$ (i) Hensel's Lemma: Let $f(x) \in \mathbb{Z}[x]$. Suppose that $f(a) \equiv 0\left(\bmod p^{j}\right)$, and that $p^{\tau} \| f^{\prime}(a)$. Then if $j \geq 2 \tau+1$, it follows that (1) whenever $b \equiv a\left(\bmod p^{j-\tau}\right)$, one has $f(b) \equiv f(a)\left(\bmod p^{j}\right)$ and $p^{\tau} \| f^{\prime}(b) ;(2)$ there exists a unique residue $t(\bmod p)$ with the property that $f\left(a+t p^{j-\tau}\right) \equiv 0\left(\bmod p^{j+1}\right)$. [acceptable to quote this with $\tau=0$]
(ii) Consider first the solution $x_{0}=3$ of $f\left(x_{0}\right) \equiv 0(\bmod 11)$. We have $f^{\prime}(x)=2 x-2$, so that $f^{\prime}(3) \equiv 4(\bmod 11)$. Thus $11^{0} \| f^{\prime}(3)$. Note that $3 \cdot 4 \equiv 1(\bmod 11)$, so that $4^{-1} \equiv 3(\bmod 11)$. Then Hensel's lemma shows that there is the unique solution

$$
x_{1} \equiv 3-f(3)\left(f^{\prime}(3)\right)^{-1} \equiv 3-11 \cdot 3 \equiv-30 \equiv 91(\bmod 121)
$$

to the congruence $f(x) \equiv 0(\bmod 121)$ corresponding to x_{0}. Similarly, when $x_{0}=-1$, we obtain the unique solution

$$
x_{1} \equiv-1-f(-1)\left(f^{\prime}(-1)\right)^{-1} \equiv-1-11 \cdot(-3) \equiv 32(\bmod 121) .
$$

(iii) Since $f(x)=(x-1)^{2}+7$, the congruence $f(x) \equiv 0(\bmod 49)$ implies first that $7 \mid(x-1)$, and hence that $7 \equiv 0(\bmod 49)$. Thus we derive a contradiction, showing that there are no solutions of this congruence.
(c) (6 marks; $[\mathrm{U}])$ The only solution of $f(x) \equiv f^{\prime}(x) \equiv 0(\bmod p)$ is $x \equiv 1(\bmod p)$, since $f^{\prime}(x)=2 x-2$ and $(p, 2)=1$. But $f(1)=1-2+8=7$, so that for such values of x one has $f(x) \equiv 0(\bmod p)$ if and only if $7 \mid p$. But $p>7$, and hence any solution $x(\bmod p)$ of $f(x) \equiv 0(\bmod p)$ satisfies $f^{\prime}(x) \not \equiv 0(\bmod p)$. But then Hensel's lemma shows that every solution of the congruence $f(x) \equiv 0(\bmod p)$ lifts uniquely to a corresponding solution modulo p^{n}. By Lagrange's theorem, there are $z \leq 2$ solutions of the congruence $f(x) \equiv 0(\bmod p)$, and these lift uniquely to z solutions modulo p^{n}. Thus there are at most 2 solutions modulo p^{n}.
(d) $(2+5$ marks; $[\mathrm{H}]+[\mathrm{U} \sim \mathrm{H}])$ (i) Plainly, one has $x \equiv 0(\bmod 2)$, say $x=2 y$. On substituting, we find that $4 y^{2}-4 y+8 \equiv 0(\bmod 8)$, whence $y^{2}-y+2 \equiv 0(\bmod 2)$. But this congruence is satisfied for every integer y as a simple application of Fermat's Little Theorem, for example. Then $f(x) \equiv 0(\bmod 8)$ has solutions $x \equiv 0,2,4,6(\bmod 8)$.
(ii) Let p be either 70001 or 70003 . Then if $f(x) \equiv 0(\bmod p)$, one has $(x-1)^{2} \equiv$ $-7(\bmod p)$, whence $\left(\frac{-7}{p}\right)=1$. But by invoking quadratic reciprocity, one finds that

$$
\left(\frac{-7}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{7}{p}\right)=(-1)^{(p-1) / 2} \cdot(-1)^{(p-1)(7-1) / 4}\left(\frac{p}{7}\right)=\left(\frac{p}{7}\right) .
$$

The quadratic residues modulo 7 are $1^{2} \equiv 6^{2} \equiv 1,2^{2} \equiv 5^{2} \equiv 4$ and $3^{2} \equiv 4^{2} \equiv$ $2(\bmod 7)$, and thus

$$
\left(\frac{-7}{70001}\right)=\left(\frac{70001}{7}\right)=\left(\frac{1}{7}\right)=1
$$

and

$$
\left(\frac{-7}{70003}\right)=\left(\frac{70003}{7}\right)=\left(\frac{3}{7}\right)=-1 .
$$

Then there are no solutions of $f(x) \equiv 0(\bmod 560024)$, since 70003 divides the modulus, and there are no solutions modulo 70003. When $p=70001$, meanwhile, there are precisely two solutions, say a and b, of the congruence $f(x) \equiv 0(\bmod p)$. But for each $c \in\{a, b\}$, and $d \in\{0,2,4,6\}$, it follows from the Chinese Remainder Theorem that there exists an integer y with $y \equiv c(\bmod p)$ and $y \equiv d(\bmod 8)$. But $f(y) \equiv f(c) \equiv$ $0(\bmod p)$ and $f(y) \equiv f(d) \equiv 0(\bmod 8)$, so that $f(y) \equiv 0\left(\bmod 2^{3} \cdot p\right)$. Moreover, by examining these solutions modulo 8 and modulo p, one sees that each such y is distinct modulo $8 p$. Thus there are $2 \times 4=8$ solutions of $f(x) \equiv 0(\bmod 560024)$ distinct modulo 560024 .
3. (25 marks total)
(a) $(2+2$ marks; $[\mathrm{B}+\mathrm{B}])$ (i) The Euler totient $\phi(n)$ is given by

$$
\phi(n)=n \prod_{p \mid n}(1-1 / p)
$$

where the product is taken over the distinct prime divisors of n.
Euler's Theorem: If $(a, n)=1$, then $a^{\phi(n)} \equiv 1(\bmod n)$.
(b) $(2+2$ marks; $[\mathrm{B}])$ (i) A residue g modulo n is a primitive root when the order of g modulo n is $\phi(n)$.
(ii) Primitive roots modulo n exist if and only if $n=1,2,4, p^{\alpha}$ or $2 p^{\alpha}$, wherein p denotes an odd prime number. [No loss of credit if 1 is missed]
(c) $(4+4$ marks; $[\mathrm{U} \sim \mathrm{H}+\mathrm{U}])$ (i) If $x^{n} \equiv 1(\bmod p q)$, then $g_{1}^{n} \equiv 1(\bmod p)$. Write $n=$ $h(p-1)+r$ with $0 \leq r<p-1$. Then it follows from Fermat's Little Theorem (a special case of Euler's theorem) that $g_{1}^{n}=\left(g_{1}^{p-1}\right)^{h} g_{1}^{r} \equiv g_{1}^{r}(\bmod p)$. But g_{1} is primitive, and $0 \leq r<p-1$, and thus $r=0$ and $(p-1) \mid n$. The relation $(q-1) \mid n$ follows symmetrically.
(ii) By the Chinese Remainder Theorem, there exists an integer w with $w \equiv g_{1}(\bmod p)$ and $w \equiv g_{2}(\bmod q)$. But then whenever $w^{n} \equiv 1(\bmod p q)$, one has $(p-1) \mid n$ and $(q-1) \mid n$, so that $[p-1, q-1] \mid n$. Hence, the order of w is divisible by the least common multiple of $p-1$ and $q-1$, and cannot be any smaller. But writing $[p-1, q-1]=m(p-1)=l(q-1)$, one sees that

$$
w^{m(p-1)} \equiv\left(w^{p-1}\right)^{m} \equiv 1(\bmod p)
$$

and

$$
w^{l(q-1)} \equiv\left(w^{q-1}\right)^{l} \equiv 1(\bmod q)
$$

by Fermat's Little Theorem, and hence $w^{[p-1, q-1]} \equiv 1(\bmod p q)$, by the Chinese Remainder Theorem. So the order of $w(\bmod p q)$ is precisely $[p-1, q-1]$.
(d) $(5+4$ marks; $[\mathrm{U}])\left(\right.$ i) If $a^{p q+1} \equiv 1(\bmod p q)$ for all integers a with $(a, p q)=1$, then by (c)(i) one has $(p-1) \mid(p q+1)$, whence $(p-1) \mid(q+1)$. By symmetry, also $(q-1) \mid(p+1)$.
(ii) Thus $p-1 \leq q+1$ and $q-1 \leq p+1$, so that $p-2 \leq q \leq p+2$. But p and q are distinct and odd, so that $p-2=q$ or $q=p+2$. Thus $|p-q|=2$. Since $p<q$ and $(q-1) \mid(p+1)$, it follows that $q=p+2$. The relation $(p-1) \mid(q+1)$ then gives

$$
\frac{q+1}{p-1}=\frac{p+3}{p-1}=1+\frac{4}{p-1} \in \mathbb{Z}
$$

whence $p-1 \in\{1,2,4\}$. But p is odd, so $p=3$ or 5 .
4. (25 marks total)
(a) $(2+3$ marks; $[B])$ The rational number

$$
\frac{p_{n}}{q_{n}}=\left[a_{0} ; a_{1}, \ldots, a_{n}\right]
$$

where p_{n} and q_{n} are relatively prime integers with $q_{n} \geq 1$, is the $n^{\text {th }}$ convergent to θ. Thus

$$
p_{0} / q_{0}=\left[a_{0}\right]=a_{0} / 1, \quad \text { so that } \quad p_{0}=a_{0} \quad \text { and } \quad q_{0}=1,
$$

and
$p_{1} / q_{1}=\left[a_{0} ; a_{1}\right]=a_{0}+1 / a_{1}=\left(a_{0} a_{1}+1\right) / a_{1} \quad$ so that $\quad p_{1}=a_{0} a_{1}+1 \quad$ and $\quad q_{1}=a_{1}$.
(b) ($2+5$ marks; $[\mathrm{B}+\mathrm{B}]$) Dirichlet's Theorem: Let θ be a real number. Then whenever Q is a real number exceeding 1 , there exist integers p and q with $1 \leq q<Q$ and $(p, q)=1$ such that $|q \theta-p| \leq 1 / Q$.
Proof: Write $N=\lceil Q\rceil$, and consider the $N+1$ real numbers $0,1,\{\theta\},\{2 \theta\}, \ldots$, $\{(N-1) \theta\}$. These $N+1$ numbers all lie in the unit interval $[0,1]$, so by the Box Principle, at least two must lie in one of the N intervals of the shape $[h / N,(h+1) / N]$ for $h=0,1, \ldots, N-1$. The difference between these two numbers has the shape $q \theta-p$ with p and q integers satisfying $0<|q| \leq N-1$. It follows that integers p and q may be chosen with $1 \leq q<Q$ and $|q \theta-p| \leq 1 / N \leq 1 / Q$. The coprimality condition on p and q follows by dividing through by (p, q).
(c) $(2+4$ marks; $[\mathrm{B}+\mathrm{B}])$ (i) (a) A number θ is algebraic if there is a polynomial $f \in \mathbb{Z}[t]$ of positive degree having the property that $f(\theta)=0$. (b) A complex number θ is transcendental if it is not algebraic of any degree.
(b) Liouville's Theorem: Suppose that θ is an algebraic number of degree $d>1$. Then there exists a positive number $c=c(\theta)$ such that whenever q is a natural number, and p is an integer, one has $|\theta-p / q| \geq c / q^{d}$.
(d) (7 marks; $[\mathrm{U}$, somewhat $\sim \mathrm{H}]$) Write $\theta=\sum_{1}^{\infty} 2015^{-\left(b_{n}+1\right) n!}$. For each natural number j, write $q_{j}=2015^{\left(b_{j}+1\right) j!}$ and

$$
p_{j}=2015^{\left(b_{j}+1\right) j!} \sum_{n=1}^{j} 2015^{-\left(b_{n}+1\right) n!} .
$$

Then when j is large, p_{j} and q_{j} are natural numbers satisfying $\left(p_{j}, q_{j}\right)=1$, since all prime divisors of q_{j} divide 2015, and $p_{j} \equiv 1(\bmod 2015)$. Further, one has

$$
\left|\theta-p_{j} / q_{j}\right|=\sum_{n=j+1}^{\infty} 2015^{-\left(b_{n}+1\right) n!}<2015^{1-(j+1)!}<q_{j}^{-j / 10}
$$

If θ were algebraic, then it would be algebraic of some degree $d \geq 1$. By Liouville's theorem, for some positive number c, one would have $|\theta-p / q| \geq c / q^{d}$ for every pair of natural numbers p and q with $(p, q)=1$ and q sufficiently large. But the above upper bound contradicts this lower bound as soon as $j>10 d$ and j is large enough in terms of c. Hence θ is transcendental.
5. (25 marks total)
(a) $(2+2$ marks; $[\mathrm{B}+\mathrm{U} \sim \mathrm{H}])$ An arithmetical function f is said to be multiplicative if (a) f is not identically zero, and (b) whenever $(m, n)=1$, one has $f(m n)=f(m) f(n)$.
Suppose that $f(n)$ is multiplicative, and write $g(n)=f\left(n^{3}\right)$. Then whenever $m, n \in \mathbb{N}$ satisfy $(m, n)=1$, we have $g(m n)=f\left(m^{3} n^{3}\right)$ with $\left(m^{3}, n^{3}\right)=(m, n)^{3}=1$, so that $g(m n)=f\left(m^{3}\right) f\left(n^{3}\right)=g(m) g(n)$. Then $g(m n)=g(m) g(n)$, and since $g(1)=f(1) \neq$ 0 , the multiplicativity of g follows.
(b) $(3+3$ marks; $[\mathrm{U} \sim \mathrm{H}])$ (i) One has $\tau\left(p^{h}\right)=h+1$ (since $1, p, p^{2}, \ldots, p^{h}$ are the positive divisors of p^{h}), and hence $\tau\left(p^{3 h}\right)=3 h+1$. But for every non-negative integer h, one has $3 h+1 \leq(h+1)^{2}$, and hence $\tau\left(p^{3 h}\right) \leq \tau\left(p^{h}\right)^{2}$.
(ii) Since $\tau(n)$ is multiplicative, it follows that $\tau\left(n^{3}\right)$ is multiplicative. Thus, by multiplicativity, one has

$$
\tau\left(n^{3}\right)=\prod_{p^{h} \| n} \tau\left(p^{3 h}\right) \leq \prod_{p^{h} \| n} \tau\left(p^{h}\right)^{2}=\tau(n)^{2}
$$

Thus $\tau\left(n^{3}\right) \leq \tau(n)^{2}$, as required.
(c) (6 marks; $[\mathrm{B} \sim \mathrm{H}]$) One has

$$
\begin{aligned}
\sum_{1 \leq n \leq x} \sqrt{\tau\left(n^{3}\right)} & \leq \sum_{1 \leq n \leq x} \tau(n)=\sum_{1 \leq n \leq x} \sum_{d \mid n} 1=\sum_{1 \leq d \leq x} \sum_{1 \leq m \leq x / d} 1 \\
& =\sum_{1 \leq d \leq x}\lfloor x / d\rfloor=x \sum_{1 \leq d \leq x} 1 / d+O(x)=x \log x+O(x)
\end{aligned}
$$

(d) $(5+4$ marks; $[\mathrm{B}+\mathrm{U}])$ (i) Möbius inversion formula: Let f be any arithmetical function, and define $g(n)=\sum_{d \mid n} f(d)$. Then one has $f(n)=\sum_{d \mid n} \mu(d) g(n / d)$.
Proof: Define the arithmetic function $\nu(n)$ to be 1 when $n=1$, and otherwise to be 0 . Given that $g(n)=\sum_{d \mid n} f(d)$, one obtains

$$
\begin{aligned}
\sum_{d \mid n} \mu(d) g(n / d) & =\sum_{d \mid n} \sum_{e \mid(n / d)} \mu(d) f(e)=\sum_{e \mid n} f(e) \sum_{d \mid(n / e)} \mu(d) \\
& =\sum_{e \mid n} f(e) \nu(n / e)=f(n)
\end{aligned}
$$

(ii) When n is the prime power p^{h} with $h \geq 1$, one has

$$
\sum_{d \mid n} 3^{\omega(d)}=\sum_{l=0}^{h} 3^{\omega\left(p^{l}\right)}=1+\sum_{l=1}^{h} 3=3 h+1=\tau\left(p^{3 h}\right)
$$

Thus, by multiplicativity, one has

$$
\sum_{d \mid n} 3^{\omega(d)}=\prod_{p^{h} \| n} \tau\left(p^{3 h}\right)=\tau\left(n^{3}\right) .
$$

Thus, applying the Möbius inversion formula, one obtains

$$
\sum_{d \mid n} \mu(d) \tau\left((n / d)^{3}\right)=3^{\omega(n)}
$$

so that the duality $d \leftrightarrow n / d$ of divisors yields

$$
\sum_{d \mid n} \mu(n / d) \tau\left(d^{3}\right)=3^{\omega(n)}
$$

End of solutions.

