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(Paper Code MATH-30200)

May-June 2015
[B]=bookwork, [H|=variant of homework problem, [U]=unseen

1. (25 marks total)

(a) (2+4 marks; [B+H]) (i) Quadratic Reciprocity: Let p and ¢ be distinct odd prime

numbers. Then
(YZ) (2) = (—1)i-DaD),
q p

(ii) First note that 5 is a quadratic residue modul0 2, since 5 = 1? (mod 2). If 5 is to
be a quadratic residue modulo an odd prime p # 5, then by quadratic reciprocity,

= (2) ot (2)- 2)

But the quadratic residues modulo 5 are 12 = 4 = 1 (mod 5) and 22 = 3? =
)

—1 (mod 5), and so (—) =1 if and only if p = £1 (mod 5).
p

(b) (34+2+3 marks; [U resembles H+U+U]) (i) The congruence in question is soluble if
and only if the congruence 4(z? —z—1) = (2z—1)?—5 = 0 (mod p) is soluble. This in
turn is soluble if and only if 5 is a quadratic residue modulo p. Hence, by hypothesis,
the congruence z? —x — 1 =0 (mod p) does indeed have a solution A (mod p).

(ii) With 4 =1 — A, one has

= —1=01=22+2) - (1-A)-1=X-X—-1=0 (mod p).
So p is indeed a solution of 2> — 2 — 1 = 0 (mod p). Moreover, if one were to have
A= p=1-X\ (mod p), then 2A = 1 (mod p), and hence 4(A\*—A—1) = (2A—1)*—5 =
—5# 0 (mod p), yielding a contradiction. So A Z p (mod p), as desired.

(iii) Since (A — p) | (A™ — p™), of course, one sees that u, is an integer. Also, plainly,
neither A nor p is equal to 0. Thus

)\0_ 0
Ug = a

A\ —
A—ILL =0 and Ul—ﬁ—l

Moreover, using the fact that A and u both satisfy 22 — 2 —1 = 0 (mod p), we obtain
N2 2 = (A DN — (4 1)p™ (mod p).
Since p t (A — u), moreover, we see that

sz = (A= 1) (" = @) 4 (X = 1)) = e + 1y (mod p).
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(¢) (243 marks; [B]) Fermat’s Little Theorem: Let p be a prime number, and suppose
that (a,p) = 1. Then one has a?~! =1 (mod p).

Proof: When (a,p) = 1, the map a — ax (mod p) permutes the residues {1,...,p—1}.

Thus
p—1

aP~! Hz = H(ai) = Hi (mod p).

i=1
Since H’l’_li is coprime to p, it follows that ¢?~!' =1 (mod p), completing the proof.
(d) (6 marks; [U]) From (b)(iii), we have F} = 1 = u; (mod p) and

Fo=1=14+0=wu + uy = uy (mod p).
Suppose that F,, = u, (mod p) for 2 < n < N. Then
Fy=Fn_1+ Fn_2 =uy_1 +un_2 = uy (mod p).

Then it follows by induction that F,, = u,, (mod p) for n > 1. But by Fermat’s Little
Theorem, whenever (p — 1) | n, say n = m(p — 1), one has

= (A=) (P = () = (A= ) (1= 1) = 0 (mod p).

Thus F,, = u, = 0 (mod p) whenever (p — 1) | n.

2. (25 marks total)

(a) (242 marks; [B+H]) (i) Lagrange’s Theorem: Let f(x) € Z[z] have degree n (modulo
p), with n > 1. Then the congruence f(z) =0 (mod p) has at most n solutions.

(i) We have f(z) = (z —1)2+ 7, and so f(z) =0 (mod 11) if and only if (z — 1)? =
—7 =4 (mod 11), whence x = 3 or —1 modulo 11.

(b) (24+3+3 marks; [B+H+U~H]) (i) Hensel’s Lemma: Let f(z) € Z[z]. Suppose that
f(a) = 0 (mod p’), and that p™ || f’(a). Then if j > 27 + 1, it follows that (1)
whenever b = a (mod p’~7), one has f(b) = f(a) (mod p’/) and p” || f/(b); (2) there
exists a unique residue ¢ (mod p) with the property that f(a+tp’~7) =0 (mod p’*!).
[acceptable to quote this with 7 = 0]

(i) Consider first the solution zg = 3 of f(z¢) =0 (mod 11). We have f'(z) = 2z — 2,
so that f/(3) = 4 (mod 11). Thus 11° || f/(3). Note that 3-4 =1 (mod 11), so that
471 =3 (mod 11). Then Hensel’s lemma shows that there is the unique solution

r1=3—f3)(f(3) '=3-11-3=-30=91 (mod 121)

to the congruence f(z) =0 (mod 121) corresponding to xy. Similarly, when zq = —1,
we obtain the unique solution

r1=—1—f(=1)(f(~1))'=—1—-11-(=3) =32 (mod 121).
(iii) Since f(x) = (x — 1)? + 7, the congruence f(z) = 0 (mod 49) implies first that

7| (z — 1), and hence that 7= 0 (mod 49). Thus we derive a contradiction, showing
that there are no solutions of this congruence.
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(¢) (6 marks; [U]) The only solution of f(z) = f'(z) =0 (mod p) is =1 (mod p), since
f'(z) =2z —2and (p,2) = 1. But f(1) =1—2+8 =7, so that for such values of
x one has f(z) = 0 (mod p) if and only if 7 | p. But p > 7, and hence any solution
x (mod p) of f(z) =0 (mod p) satisfies f'(z) # 0 (mod p). But then Hensel’s lemma
shows that every solution of the congruence f(z) = 0 (mod p) lifts uniquely to a
corresponding solution modulo p"”. By Lagrange’s theorem, there are z < 2 solutions
of the congruence f(z) =0 (mod p), and these lift uniquely to z solutions modulo p™.
Thus there are at most 2 solutions modulo p”.

(d) (245 marks; [H]+[U~H]) (i) Plainly, one has z = 0 (mod 2), say = 2y. On substi-
tuting, we find that 4y*> —4y+8 = 0 (mod 8), whence y?—y+2 = 0 (mod 2). But this

congruence is satisfied for every integer y as a simple application of Fermat’s Little
Theorem, for example. Then f(x) =0 (mod 8) has solutions z = 0,2,4,6 (mod 8).

(ii) Let p be either 70001 or 70003. Then if f(z) = 0 (mod p), one has (z — 1)* =
—7

—7 (mod p), whence (—) = 1. But by invoking quadratic reciprocity, one finds
p

(%) _ (%) (g) — (—1)#D/2. (L)1 (1_7’> _ (1;)

The quadratic residues modulo 7 are 12 = 62 = 1, 22 = 52 = 4 and 3% = 4 =

2 (mod 7), and thus
=7\ _ [/70001\ /1) .
70001 ) 7 S \7/)

( -7 ) B (70003) B (3) _

70003) \ 7 ) \7)

Then there are no solutions of f(z) =0 (mod 560024), since 70003 divides the modu-
lus, and there are no solutions modulo 70003. When p = 70001, meanwhile, there are
precisely two solutions, say a and b, of the congruence f(z) =0 (mod p). But for each
c € {a,b}, and d € {0,2,4,6}, it follows from the Chinese Remainder Theorem that
there exists an integer y with y = ¢ (mod p) and y = d (mod 8). But f(y) = f(c) =
0 (mod p) and f(y) = f(d) = 0 (mod 8), so that f(y) = 0 (mod 2% - p). Moreover,
by examining these solutions modulo 8 and modulo p, one sees that each such y is
distinct modulo 8p. Thus there are 2 x 4 = 8 solutions of f(x) = 0 (mod 560024 )
distinct modulo 560024.

and

3. (25 marks total)

(a) (242 marks; [B+B]) (i) The Euler totient ¢(n) is given by

o(n) =n [ (1~ 1/p).

pln

where the product is taken over the distinct prime divisors of n.
Euler’s Theorem: If (a,n) = 1, then a®™ =1 (mod n).

(b) (242 marks; [B]) (i) A residue g modulo n is a primitive root when the order of ¢
modulo 7 is ¢(n).

(ii) Primitive roots modulo n exist if and only if n = 1, 2, 4, p® or 2p®, wherein p
denotes an odd prime number. [No loss of credit if 1 is missed]
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(¢) (444 marks; [U~H+U]) (i) If 2" = 1 (mod pq), then ¢ = 1 (mod p). Write n =

h(p —1) +r with 0 < r < p— 1. Then it follows from Fermat’s Little Theorem (a
special case of Euler’s theorem) that g7 = (¢*')"g7 = ¢7 (mod p). But g, is primitive,
and 0 <7 <p—1, and thus r = 0 and (p — 1) | n. The relation (¢ — 1) | n follows
symmetrically.

(ii) By the Chinese Remainder Theorem, there exists an integer w with w = ¢; (mod p)
and w = ¢ (mod ¢). But then whenever w™ = 1 (mod pq), one has (p — 1) | n and
(g —1) | n, so that [p — 1,¢ — 1] | n. Hence, the order of w is divisible by the
least common multiple of p — 1 and ¢ — 1, and cannot be any smaller. But writing
p—1,g—1]=m(p—1) =1(qg — 1), one sees that

w1 = (wpfl)m =1 (mod p)
and
W'D = (W =1 (mod q),

by Fermat’s Little Theorem, and hence w1971 = 1 (mod pq), by the Chinese Re-
mainder Theorem. So the order of w (mod pq) is precisely [p — 1,q — 1].

(d) (5+4 marks; [U]) (i) If a?** = 1 (mod pq) for all integers a with (a,pq) = 1, then

by (c)(i) one has (p — 1) | (pg + 1), whence (p — 1) | (¢ + 1). By symmetry, also
(=1 [{+1)

(ii)) Thus p—1<g+land g—1<p+1,sothat p—2<qg<p+2. Butpandq are
distinct and odd, so that p —2 = g or ¢ = p+ 2. Thus |p — ¢q| = 2. Since p < ¢ and

(¢g—1) | (p+1), it follows that ¢ = p+ 2. The relation (p — 1) | (¢ + 1) then gives
1 3 4
& — Zi — 1+ - € Z7
p—1 p—1 p—1
whence p — 1 € {1,2,4}. But pis odd, so p =3 or 5.

4. (25 marks total)

(a)

(243 marks; [B]) The rational number
P
an

where p,, and g, are relatively prime integers with ¢, > 1, is the n'" convergent to 6.
Thus

= [aO;ala s 7an]7

Po/qo = [ao] = ap/1, sothat py=ay and ¢y =1,

and
/@ = lao;a1] = ap + 1/ay = (apa; +1)/ay  so that p; =apa; +1 and ¢ = a.

(245 marks; [B+B]) Dirichlet’s Theorem: Let 6 be a real number. Then whenever
@ is a real number exceeding 1, there exist integers p and ¢ with 1 < ¢ < @ and
(p,q) = 1 such that |¢0 — p| < 1/Q.

Proof: Write N = [Q], and consider the N + 1 real numbers 0, 1, {0}, {26}, ...,
{(N —1)8}. These N + 1 numbers all lie in the unit interval [0, 1], so by the Box
Principle, at least two must lie in one of the N intervals of the shape [h/N, (h+1)/N]
forh=0,1,..., N—1. The difference between these two numbers has the shape ¢ —p
with p and ¢ integers satisfying 0 < |¢| < N — 1. It follows that integers p and ¢ may
be chosen with 1 < ¢ < @ and |¢gf — p| < 1/N < 1/Q. The coprimality condition on
p and ¢ follows by dividing through by (p, q).
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(¢) (244 marks; [B4+B]) (i) (a) A number 6 is algebraic if there is a polynomial f € Z[¢]
of positive degree having the property that f(6) = 0. (b) A complex number 6 is
transcendental if it is not algebraic of any degree.

(b) Liouville’s Theorem: Suppose that # is an algebraic number of degree d > 1. Then
there exists a positive number ¢ = ¢(f) such that whenever ¢ is a natural number, and
p is an integer, one has |0 — p/q| > ¢/q°.

(d) (7 marks; [U, somewhat ~H]) Write 6 = 377° 2015~ 1", For each natural number
4, write ¢; = 201517 and

J
p; = 201507y " 9015t !,

n=1

Then when j is large, p; and ¢; are natural numbers satisfying (p;, ¢;) = 1, since all
prime divisors of ¢; divide 2015, and p; = 1 (mod 2015). Further, one has

- nl —(+1)! _ —i/10
0 —pj/a;l = Z 2015~ n Mt < 20150 < ¢ 3/10.
n=j+1

If 6 were algebraic, then it would be algebraic of some degree d > 1. By Liouville’s
theorem, for some positive number ¢, one would have |6 — p/q| > ¢/q? for every pair
of natural numbers p and ¢ with (p,q) = 1 and ¢ sufficiently large. But the above
upper bound contradicts this lower bound as soon as j > 10d and j is large enough
in terms of c. Hence 6 is transcendental.
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5. (25 marks total)

(a) (242 marks; [B+U~H]) An arithmetical function f is said to be multiplicative if (a)
f is not identically zero, and (b) whenever (m,n) = 1, one has f(mn) = f(m)f(n).
Suppose that f(n) is multiplicative, and write g(n) = f(n3) . Then whenever m,n € N
satisfy (m,n) = 1, we have g(mn) = f(m?®n3) with (m3,n3) = (m,n)® = 1, so that
g(mn) = f(m?) f(n’) = g(m)g(n). Then g(mn) = g(m)g(n), and since g(1) = f(1) #
0, the multiplicativity of g follows.

(b) (343 marks; [U~H]) (i) One has 7(p") = h + 1 (since 1,p,p?,...,p" are the positive
divisors of p"), and hence 7(p*") = 3h + 1. But for every non-negative integer h, one
has 3h + 1 < (h + 1), and hence 7(p3") < 7(p")2.

(ii) Since 7(n) is multiplicative, it follows that 7(n®) is multiplicative. Thus, by

multiplicativity, one has
= [T ") < I] 7" = r(n)®

phn ptn
Thus 7(n?) < 7(n)?, as required.
(¢) (6 marks; [B~H]) One has

2 V)< 3 rm= 3 > 1= )

1<n<z 1<n<z 1<n<z d|n 1<d<z 1<m<z/d
=Y |z/fd)=x Y 1/d+O(x) ==zlogz + O(x).
1<d<z 1<d<z

(d) (544 marks; [B+U]) (i) Mobius inversion formula: Let f be any arithmetical function,
and define g(n) = >, f(d). Then one has f(n) = >, nu(d)g(n/d).

Proof: Define the arithmetic function v(n) to be 1 when n = 1, and otherwise to be
0. Given that g(n) = >, f(d), one obtains

> _uld)g(nfd) = > p(d)f(e) =D fle) Y pld)
dln dln e|(n/d) eln d|(n/e)

=Y fe(nfe) = f(n).

eln

(ii) When n is the prime power p" with h > 1, one has

h h
Z3w(d) :Zgw(pl) — 1+Z3:3h+1 ZT(Pgh)-

dn 1=0 =1
Thus, by multiplicativity, one has
>3 = [ r™) = 7(0%).
dln pn
Thus, applying the Mobius inversion formula, one obtains
Z w(d)r((n/d)?) = 32,
din
so that the duality d < n/d of divisors yields
Z,U,(n/d)T(dS) = 3,
d|n

End of solutions.
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