
LECTURE 10: JACOBI SYMBOL

1. The Jacobi symbol

We wish to generalise the Legendre symbol

(
·
p

)
to accomodate composite

moduli.

Definition 1.1. Let Q be an odd positive integer, and suppose that Q =
p1 · · · ps, where the pi are prime numbers (not necessarily distinct). Then we

define the Jacobi symbol

(
a

Q

)
as follows:

(i)
(a

1

)
= 1;

(ii)

(
a

Q

)
= 0 whenever (a,Q) > 1;

(iii)

(
a

Q

)
=

(
a

p1

)(
a

p2

)
· · ·
(

a

ps

)
whenever (a,Q) = 1.

Just as in the discussion concerning the Legendre symbol, we begin with
some simple properties of the Jacobi symbol.

Theorem 1.2. Suppose that Q and Q′ are odd positive integers. Then:

(i)

(
P

Q

)(
P

Q′

)
=

(
P

QQ′

)
;

(ii)

(
P

Q

)(
P ′

Q

)
=

(
PP ′

Q

)
;

(iii) whenever (P,Q) = 1, one has

(
P

Q2

)
=

(
P 2

Q

)
= 1;

(iv) whenever (PP ′, QQ′) = 1, one has

(
P ′P 2

Q′Q2

)
=

(
P ′

Q′

)
;

(v) whenever P ≡ P ′ (mod Q), one has

(
P

Q

)
=

(
P ′

Q

)
.

Proof. Part (i) is immediate from the definition of the Jacobi symbol, and
part (ii) is immediate from the properties of the Legendre symbol. Parts (iii)
and (iv) follow directly from parts (i) and (ii), since the Jacobi symbol takes
values 0 or ±1. For part (v) of the theorem, observe that whenever P ≡ P ′

(mod Q), one has P ≡ P ′ (mod p) for each prime number p dividing Q, whence

also

(
P

p

)
=

(
P ′

p

)
for each prime p dividing Q. The desired conclusion is

therefore again immediate from the definition of the Jacobi symbol. �
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Note 1.3. If the Jacobi symbol

(
a

Q

)
= −1, then it follows that a is not

a quadratic residue modulo Q, since for some prime p with p | Q one must

have that the Legendre symbol

(
a

p

)
= −1. But if

(
a

Q

)
= 1, then it is not

necessarily the case that a is a quadratic residue modulo Q. For example, one
has (

2

15

)
= 1, but

(
2

3

)
= −1 and

(
2

5

)
= −1.

The Jacobi symbol remains useful for calculating Legendre symbols, because
it satisfies the same reciprocity and simplifying relations as the Legendre sym-
bol (as we now demonstrate), and at the same time, whenever the Legendre

symbol

(
a

Q

)
is defined (that is, provided that Q is an odd prime number),

then its value is the same as that of the corresponding Jacobi symbol.

Theorem 1.4. Suppose that Q is an odd positive integer. Then(
−1

Q

)
= (−1)(Q−1)/2 and

(
2

Q

)
= (−1)(Q2−1)/8.

Proof. Suppose that Q is odd, and that Q = p1 . . . ps with each pi a prime
number. Then (

−1

Q

)
=

s∏
i=1

(
−1

pi

)
=

s∏
i=1

(−1)(pi−1)/2.

But whenever n1 and n2 are both odd, one has 1
2
(n1−1)(n2−1) ≡ 0 (mod 2),

whence
1
2
(n1−1)+ 1

2
(n2−1) = 1

2
(n1n2−1)− 1

2
(n1−1)(n2−1) ≡ 1

2
(n1n2−1) (mod 2).

Iterating the latter relation, we deduce that

1
2
(Q− 1) ≡

s∑
i=1

1
2
(pi − 1) (mod 2),

whence

(
−1

Q

)
= (−1)(Q−1)/2.

Similarly, we have(
2

Q

)
=

s∏
i=1

(
2

pi

)
=

s∏
i=1

(−1)(p2i−1)/8.

But whenever n1 and n2 are both odd, it follows that
1
8
(n2

1 − 1)(n2
2 − 1) ≡ 0 (mod 2),

whence
1
8
(n2

1 − 1) + 1
8
(n2

2 − 1) = 1
8
(n2

1n
2
2 − 1)− 1

8
(n2

1 − 1)(n2
2 − 1)

≡ 1
8
(n2

1n
2
2 − 1) (mod 2).
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Thus, again iterating this relation, we find that

Q2 − 1

8
≡

s∑
i=1

p2
i − 1

8
(mod 2),

whence (
2

Q

)
= (−1)(Q2−1)/8.

�

Theorem 1.5 (Quadratic Reciprocity). Suppose that P and Q are odd positive
integers with (P,Q) = 1. Then(

P

Q

)(
Q

P

)
= (−1)(P−1)(Q−1)/4.

Proof. Suppose that Q = q1 · · · qs and P = p1 · · · pr are factorisations of P and
Q, respectively, into products of prime numbers. Then we have(

P

Q

)
=

s∏
j=1

(
P

qj

)
=

r∏
i=1

s∏
j=1

(
pi
qj

)
.

Then by quadratic reciprocity for the Legendre symbol, we obtain(
P

Q

)
=

r∏
i=1

s∏
j=1

(−1)(pi−1)(qj−1)/4

(
qj
pi

)
= (−1)ω

(
Q

P

)
,

where we write

ω =
r∑

i=1

s∑
j=1

(pi − 1)(qj − 1)

4
.

But as in the proof of Theorem 1.4, one has

r∑
i=1

s∑
j=1

(pi − 1)(qj − 1)

4
=

(
r∑

i=1

pi − 1

2

)(
s∑

j=1

qj − 1

2

)
≡ 1

2
(P − 1) · 1

2
(Q− 1) (mod 2).

We therefore deduce that(
P

Q

)
= (−1)(P−1)(Q−1)/4

(
Q

P

)
,

and the conclusion of the theorem now follows immediately. �

Jacobi symbols are useful for calculating Legendre symbols, since they take
the same values for prime moduli, and one can skip intermediate factorisations
before applying reciprocity.

Example 1.6. Calculate the Legendre symbol

(
1111

8093

)
.
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One has(
1111

8093

)
= (−1)(1110)(8092)/4

(
8093

1111

)
=

(
316

1111

)
=

(
2

1111

)2(
79

1111

)
= (−1)(78)(1110)/4

(
1111

79

)
= −

(
5

79

)
= −(−1)(4)(78)/4

(
79

5

)
= −

(
4

5

)
= −

(
2

5

)2

= −1.

So 1111 is not a quadratic residue modulo 8093.

Example 1.7. Determine whether or not the congruence x2 + 6x − 50 ≡
0 (mod 79) has a solution.

Observe that x2 +6x−50 = (x+3)2−59, and hence x2 +6x−50 ≡ 0 (mod 79)

has a solution if and only if

(
59

79

)
= 1. But(

59

79

)
=

(
−20

79

)
=

(
−1

79

)(
2

79

)2(
5

79

)
= (−1)(79−1)/2

(
5

79

)
= −(−1)(5−1)(79−1)/4

(
79

5

)
= −

(
4

5

)
= −1.

Hence the congruence x2 + 6x− 50 ≡ 0 (mod 79) has no solution.

Example 1.8. Let p be an odd prime. Compute
∑p

x=1

(
x
p

)
.

Let S =
∑p

x=1

(
x
p

)
. There exists a such that

(
a
p

)
= −1. For instance, this

is the case when a is a primitive root modulo p because of Euler’s criterion.
Since (a, p) = 1, the map x 7→ ax (mod p) defines a bijection on the set of
residues modulo p. So

S =

p∑
x=1

(
ax

p

)
=

p∑
x=1

(
a

p

)(
x

p

)
= −S.

Hence, S = 0.

2. Counting solutions of congruences

For an odd prime p and a, b, c ∈ Z with (a, p) = 1, we consider the congru-
ence

y2 ≡ ax2 + bx + c (mod p) (2.1)

Let D = b2 − 4ac be the discriminant.

Theorem 2.1. The number of solutions with 1 6 x, y 6 p of (2.1) is equal to:

• p−
(

a
p

)
if p - D,

• p + (p− 1)
(

a
p

)
if p | D.
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Proof. We observe that the number of solutions can be represented as the sum

p∑
x=1

(
1 +

(
ax2 + bx + c

p

))
= p +

p∑
x=1

(
ax2 + bx + c

p

)
.

We observe that

4a(ax2 + bx + c) = (2ax + b)2 −D,

Since the map x 7→ 2ax + b (mod p) defines a bijection on the set of residues
modulo p, we obtain

p∑
x=1

(
ax2 + bx + c

p

)
=

p∑
x=1

(
(4a)−1

p

)(
(2ax + b)2 −D

p

)

=

(
(4a)−1

p

) p∑
y=1

(
y2 −D

p

)
.

By the properties of Legendre symbol,(
(4a)−1

p

)
=

(
4a

p

)
=

(
a

p

)
.

We write

S(D) =

p∑
y=1

(
y2 −D

p

)
.

Then the number of solutions is p +
(

a
p

)
S(D).

When p|D,

S(D) =

p∑
y=1

(
y2

p

)
= p− 1.

This immediately implies the second part of the theorem.

Suppose then that p - D. We observe that

S(D) =

(
−D
p

)
+ 2

∑
16z6p

∗
(
z −D

p

)
,

where the sum is carried out over all non-zero quadratic residues z. We can
also rewrite this formula as

S(D) =

p∑
z=1

((
z

p

)
+ 1

)(
z −D

p

)
.
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Consider the map z 7→ z̄ such that p̄ = p and z̄ satisfies zz̄ ≡ 1 (mod p). Then(
z
p

)
=
(

z̄
p

)
, and

S(D) =

p∑
z=1

((
z̄

p

)
+ 1

)(
z −D

p

)
=

p∑
z=1

(
z̄z −Dz̄

p

)
+

p∑
z=1

(
z −D

p

)

=

p−1∑
z=1

(
1−Dz̄

p

)
+

p∑
z=1

(
z −D

p

)

= −1 +

p∑
z=1

(
1−Dz̄

p

)
+

p∑
z=1

(
z −D

p

)
Since the map z 7→ 1−Dz̄ (mod p) defines a bijection, we obtain

p∑
z=1

(
1−Dz̄

p

)
=

p∑
x=1

(
x

p

)
,

and similarly,
p∑

z=1

(
z −D

p

)
=

p∑
x=1

(
x

p

)
.

Hence, these sums are zero by Example 1.8. This implies that S(D) = −1,
which proves the theorem. �


