
LECTURE 12: DIOPHANTINE APPROXIMATION

1. Dirichlet Theorem

Many important ideas in Number Theory stem from notions of Diophantine
approximation, which is to say rational approximations to real numbers with
prescribed properties.

Theorem 1.1 (Dirichlet). Let θ ∈ R and let Q be a real number exceeding 1.
Then there exist integers p and q with 1 6 q < Q and (p, q) = 1 such that
|qθ − p| 6 1/Q.

Proof. We apply the Box Principle. Write N = dQe, and consider the N + 1
real numbers

0, 1, {θ}, {2θ}, . . . , {(N − 1)θ},
where here, and throughout, we write {x} for x − bxc. These N + 1 real
numbers all lie in the interval [0, 1]. But if we divide this unit interval into
N disjoint intervals of length 1/N , it follows that there must be two numbers
from the above set which necessarily lie in the same interval. The difference
between these two numbers has the shape qθ − p, where p and q are integers
with 0 < q < N . Thus we deduce that there exist integers p and q with
1 6 q < Q and |qθ − p| 6 1/Q. The coprimality condition is obtained easily
by dividing through by (p, q). �

Corollary 1.2. Whenever θ is irrational, there exist infinitely many distinct
pairs p ∈ Z and q ∈ N with (p, q) = 1 and |θ − p/q| < 1/q2.

Proof. Let Q > 1. Then by Dirichlet’s theorem on Diophantine approximation,
there exist p ∈ Z and q ∈ N with (p, q) = 1, q < Q and 0 < |θ − p/q| 6
1/(qQ) < 1/q2. Let Q′ be any real number exceeding |θ − p/q|−1. A second
application of Dirichlet’s theorem shows that there exist p′ ∈ Z and q′ ∈ N
with (p′, q′) = 1, 1 6 q′ < Q′ and∣∣∣∣θ − p′

q′

∣∣∣∣ 6 1

q′Q′
<
|θ − p/q|

q′
6

∣∣∣∣θ − p

q

∣∣∣∣ .
Thus, necessarily, one has p′/q′ 6= p/q. Furthermore, |θ − p′/q′| < 1/(q′)2.
By iterating this process, we obtain a sequence (pn/qn)∞n=1 of distinct rational
numbers with

0 <

∣∣∣∣θ − pn
qn

∣∣∣∣ < ∣∣∣∣θ − pn−1
qn−1

∣∣∣∣ < · · · < ∣∣∣∣θ − p1
q1

∣∣∣∣ ,
and |θ − pi/qi| < 1/q2i , and hence infinitely many approximations p/q with
(p, q) = 1 and |θ − p/q| < 1/q2. �
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2. Continued fractions

Given a rational fraction u0

u1
with u0 ∈ Z and u1 ∈ N, we apply the Euclid

algorithm to obtain

u0 = a0u1 + u2, 0 < u2 < u1,

u1 = a1u2 + u3, 0 < u3 < u2,

...

un−1 = an−1un + un+1, 0 < un+1 < un,

un = anun+1

If we set θi = ui

ui+1
, then we obtain the relation

θi = ai +
1

θi+1

, i = 0 . . . , n− 1, θn = an.

This gives the expansion

u0
u1

= θ0 = a0 +
1

a1 +
1

a2 +
1

. . .+
1

an

.

For the above expansion, it is usually more convenient to write

[a0; a1, . . . , an].

Example 2.1. Write 57/32 as a continued fraction.

Put θ = 57/32. Then a0 = bθc = 1, and

θ1 =
1

57
32
− 1

=
32

25
.

Then a1 = bθ1c = 1, and

θ2 =
1

32
25
− 1

=
25

7
.

Then a2 = bθ2c = 3, and

θ3 =
1

25
7
− 3

=
7

4
.

Then a3 = bθ3c = 1, and

θ4 =
1

7
4
− 1

=
4

3
.

Then a4 = bθ4c = 1, and

θ5 =
1

4
3
− 1

= 3.

Then a5 = 3 and θ5 = a5, so stop.

In this way we find that 57/32 = [1; 1, 3, 1, 1, 3].
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Now we generalise this expansion to irrational numbers.

The continued fraction algorithm:
Given θ ∈ R\Q, we define the integers a0 ∈ Z, aj > 1, j > 1, as follows:

• Let a0 = bθc ∈ Z and define θ1 by θ = a0 + 1/θ1, so that θ1 > 1.
• a1 = bθ1c > 1 and define θ2 by θ1 = a1 + 1/θ2, so that θ2 > 1.

...

• Let an = bθnc > 1 and define θn+1 by

θn = an + 1/θn+1, (2.1)

so that θn+1 > 1.

...

We consider the sequence of fractions

Cn = a0 +
1

a1 +
1

a2 +
1

. . .+
1

an

= [a0; a1, . . . , an]. (2.2)

As we shall show below the sequence Cn always converges so that we also use
the notation

[a0; a1, a2, . . . ] = lim
n→∞

[a0; a1, . . . , an].

We shall justify existence of this limit below.

Example 2.2. Write
√

3 as a continued fraction.

Put θ =
√

3. Then a0 = b
√

3c = 1, and

θ1 =
1√

3− 1
= 1

2
(
√

3 + 1).

Then a1 = bθ1c = 1, and

θ2 =
1

1
2
(
√

3− 1)
=
√

3 + 1.

Then a2 = bθ2c = 2, and

θ3 =
1√

3− 1
= 1

2
(
√

3 + 1) = θ1,

and the sequence repeats.

In this way we find that
√

3 = [1; 1, 2, 1, 2, 1, 2, . . . ], a periodic continued
fraction that, by convention, we write as [1; 1, 2].
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Example 2.3. Find the continued fraction expansion of 1
2
(10−

√
7).

Put θ = 1
2
(10−

√
7). Then a0 =

[
1
2
(10−

√
7)
]

= 3, and

θ1 =
1

1
2
(10−

√
7)− 3

=
2(4 +

√
7)

16− 7
= 1

9
(8 + 2

√
7).

Then a1 = bθ1c = 1, and

θ2 =
1

1
9
(8 + 2

√
7)− 1

=
9(−1− 2

√
7)

1− 28
= 1

3
(1 + 2

√
7).

Then a2 = bθ2c = 2, and

θ3 =
1

1
3
(1 + 2

√
7)− 2

=
3(−5− 2

√
7)

25− 28
= 5 + 2

√
7.

Then a3 = bθ3c = 10, and

θ4 =
1

(5 + 2
√

7)− 10
=
−5− 2

√
7

25− 28
= 1

3
(5 + 2

√
7).

Then a4 = bθ4c = 3, and

θ5 =
1

1
3
(5 + 2

√
7)− 3

=
3(−4− 2

√
7)

16− 28
= 1

2
(2 +

√
7).

Then a5 = bθ5c = 2, and

θ6 =
1

1
2
(2 +

√
7)− 2

=
2(−2−

√
7)

4− 7
= 1

3
(4 + 2

√
7).

Then a6 = bθ6c = 3, and

θ7 =
1

1
3
(4 + 2

√
7)− 3

=
3(−5− 2

√
7)

25− 28
= 5 + 2

√
7 = θ3,

and the sequence repeats.

In this way we find that
1
2
(10−

√
7) = [3; 1, 2, 10, 3, 2, 3, 10, 3, 2, 3, . . . ] = [3; 1, 2, 10, 3, 2, 3].

Definition 2.4. In the above description of the continued fraction algorithm,
and the resulting continued fraction expansion of a real number θ,

• the integers ai are known as the partial quotients of θ,
• the real numbers θn are known as the complete quotients of θ,
• the rational numbers

Cn = [a0; a1, . . . , an],

are known as the convergents to θ.

Our next goal is to investigate the behaviour of the convergents Cn.

More generally, let us fix a0 ∈ Z and real numbers ai > 1, i > 1, and
consider the sequence Cn = [a0; a1, . . . , an].
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Lemma 2.5. Define the integers pn and qn by the recurrence relations

p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1,

and for n > 2,

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2. (2.3)

Then
Cn = [a0; a1, . . . , an] =

pn
qn
.

Remark 2.6. The recurrence relations can be also written in the matrix form:(
pn−1 qn−1
pn qn

)
=

(
0 1
1 an

)(
pn−2 qn−2
pn−1 qn−1

)
Proof. The proof simply goes by induction on n. The cases n = 0 and n = 1
are straightforward. Suppose that the lemma is true for n. Then

[a0; a1, . . . , an+1] = [a0; a1, . . . , an−1, an + 1/an+1]

=
(an + 1/an+1)pn−1 + pn−2
(an + 1/an+1)qn−1 + qn−2

=
(anpn−1 + pn−2) + pn−1/an+1

(anqn−1 + qn−2) + qn−1/an+1

=
pn + pn−1/an+1

qn + qn−1/an+1

=
an+1pn + pn−1
qnan+1 + qn−1

=
pn+1

qn+1

.

This proves the result. �

Lemma 2.7. With notation as in Lemma 2.5,

pnqn−1 − pn−1qn = (−1)n−1 and pnqn−2 − pn−2qn = (−1)n−2an,

so that

Cn − Cn−1 =
(−1)n−1

qn−1qn
and Cn − Cn−2 =

(−1)n−2an−2
qn−2qn

. (2.4)

Proof. Using the recursive formula (2.3), we obtain

pnqn−1 − pn−1qn = (anpn−1 + pn−2)qn−1 − pn−1(anqn−1 + qn−2)

= −(pn−1qn−2 − pn−2qn−2).
Hence, the proof of the first formula follows by induction.

The proof of the second formula is similar. �

Theorem 2.8. The sequence Cn = [a0; a1, . . . , an] converges, and it satisfies

C1 > C3 > · · · > C2i+1 > · · · > lim
n→∞

Cn > · · · > C2i > · · · > C4 > C2.

Proof. It follows from (2.4) that C2n+1 > C2n for all n, Cn−2 > Cn if n is odd,
and Cn > Cn−2 if n is even. This implies the inequalities

C1 > C3 > · · · > C2i+1 > · · · > C2i > · · · > C4 > C2.

The sequences C2i and C2i+1 are convergent as bounded monotone sequences.
It follows from the relation qn = anqn−1 + qn−2 that qn > qn−1 + qn−2 for n > 2,

whence qn → ∞ as n → ∞. Since Cn − Cn−1 = (−1)n−1

qn−1qn
→ 0, we deduce that

these sequences have the same limit. �
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Corollary 2.9. Let Cn = pn
qn

be the convergents for a real number θ. Then

|θ − Cn| 6
1

qnqn+1

,

In particular, if θ is irrational, then

θ = lim
n→∞

Cn.

Proof. It follows from (2.1) that

θ = [a0, θ1] = [a0, a1, θ2] = · · · = [a0, a1, . . . , an, θn+1].

So by Lemma 2.5,

θ =
pnθn+1 + pn−1
qnθn+1 + qn−1

,

and by Lemma 2.7,

|θ − Cn| = |[a0, a1, . . . , an, θn+1]− [a0, a1, . . . , an]|

=
1

qn(qnθn+1 + qn−1)
6

1

qn(qnan+1 + qn−1)
=

1

qnqn+1

.

When θ is irrational, an > 1 for all n, and qn = anqn−1 + qn−2 > qn−1 + qn−2
for n > 2, whence qn → ∞ as n → ∞. This implies the second part of the
corollary. �

Remark 2.10. If θ is irrational, we have an+1 = bθn+1c < θn+1, so that in the
above proof we obtain ∣∣∣∣θ − pn

qn

∣∣∣∣ < 1

qnqn+1

.

This provides a constructive way to generate the rational apporoximations
whose existence was shown in Corollary 1.2.


