LECTURE 14: GEOMETRY OF NUMBERS

[NON-EXAMINABLE]

1. MINKOWSKI CONVEX BoODY THEOREM

Let us consider a (bounded) region D in the n-dimensional space R" =
{(x1,...,2,) : € R}. We would like to investigate whether this region
contains any points with integral coordinates. This basic geometric problem
has numerous applications in Number Theory. Normally, we assume that the
domain D is sufficiently nice, so that we can compute its volume v(D).

Our starting point is the following continuous version of the Pigeon-Hole
Principle.

Theorem 1.1 (Blichfeldt Principle). If D is a (bounded) region in R™ with
v(D) > 1. then there exist two vectors vy # vy € D such that vy — vy € Z™.

For simplicity, we assume that n = 2. Essentially the same proof works in
any dimension.

Proof. We consider the partition of the plane R? into squares:

R? = |_| B, where B, ={(r1,22): z1 <21 <21+ 1,20 <9 < 25+ 1}.
2€72
Then
D=|]|D. where D.=B.ND.
2€7Z2

We observe

> w(D.) =v(D) > 1.

2€7Z2

Suppose that the sets D, — z, z € Z?2, are all disjoint. Then since all these sets
are contained in By, it would follow that

> w(D. - 2) <v(By) = L.

However, v(D,—z) = v(D,) and this contradicts the previous estimate. Hence,
we conclude that there exists z; # 2z, € Z? such that

(Dzl - Zl) N (D22 - ZQ) 7£ Q)u

namely, for some v; € D,, and vo € D,,, we have v; — 23 = vy — 2. This

implies the theorem. O
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We say that the domain D is convez if
1,9 €D = tx;+ (1 —t)zy € D for all t € [0, 1].
The domain D is centrally symmetric if
reD = —xzebD.

Theorem 1.2 (Minkowski Convex Body Theorem). Let C' be a (bounded)
convex centrally symmetric region in R™ with v(C) > 2". Then C' contains a
non-zero integral vector.

Proof. Let D = 1C. Then v(D) = (3)"v(C) > 1, and we may apply the

Blichfeldt Principle. Hence, there exist vy # vy € D such that v; — vy € Z".
Since

1 1
V1 — Vg = 5(2’01) + 5(—21)1> € C,

this implies the theorem. O

2. APPLICATIONS
We prove a version of the Dirichlet Theorem for simultaneous approximation.

Theorem 2.1 (Dirichlet). Let 04, .. .0, be real numbers. For any integer ) >
1, there exist p1,...,pp € Z and g =1, ..., such that

Di

1
0, — —| < ——— foralli.
q

qu/n
Proof. We consider the region C in R™*! defined by
_(Q+ 1) < Ty < <Q+1), Qixo—Qfl/” <z < Qixo—l—Qfl/", 1<1<n.

Since
v(C) =2(Q+1)(2Q~ ") > 2",

it follows from Minkowski’s Theorem, there exists nonzero integral vector z =
(¢,p1,--.,pn) € C. If ¢ = 0, then [p;] < 1 and p; = 0 for all 7, which is not
possible. Hence, ¢ # 0. Changing z to —z if it is necessary, we can arrange
that ¢ > 0. This gives the required result. O]

Theorem 2.2. A positive integer is a sum of two squares if and only if it
is of the form pi'---pls where p;’s are primes, and r;’s are even when p; =
3 (mod 4).

Proof. Suppose that 22+x3 = n and a prime p = 3 (mod 4) divides n. If p also
divides x; and x5, then also p*|n. Hence, we obtain (x1/p)? + (z2/p)? = n/p*.
On the other hand, x; or x5 is coprime to p, then it follows that the congruence
2?2 = —1 (mod p) has solution, but this impossible since p = 3 (mod 4). By
induction on n, we deduce that n is of the form pi* - - - pls where r;’s are even
when p; =3 (mod 4).
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Let p be a prime such that p = 1 (mod 4). We show that p can be as a
sum of two squares. Our assumption on p implies that there exists an integer
r such that > = —1 (mod p). We look for solutions of the form

p=(pz +1r2)+7.
We observe that
(pz1 +129)° + 25 = (r* + 1)z5 = 0 (mod p). (2.1)
We apply the Minkowski Theorem to the ellipsoid
Cr = {(x1,22) = (pr1 +rag)® + 25 < R*},
Since v(C ;) = 7(v/2p)?/p > 2%, there exists nonzero (21, z2) € Z* such that
0 < (pz1 +720)* + 23 < 2p.

Because of (2.1), it follows that (pz; +rzs)? + 22 =p
The proof of general n follows from the formula

(23 + 23) (Y7 + v3) = (21y1 — 22y0)” + (T1y2 + T211) .
0

Theorem 2.3 (Lagrange). Fvery positive integer can be written as a sum of
four squares.

Remark 2.4. The congruence z3 + 23 + 23 = 7 (mod 8) has no solutions, so
that this theorem is not true for sums of three squares.

Proof. First, we show that every prime p can be written as
p:nf—i—ng—i—n%—l—ni.
It follows from the Chevalley Theorem that the congruence u? + v? + w? =

0 (mod p) has a non-zero solutions. This implies that there exist r, s € Z such
that 72 4+ s + 1 = 0 (mod p). We shall look for solutions of the form

Ny = pPz1 +1rz3 + S24, Mg = P2 + S23 —T24, N3 = 23, Ny = 24
with 21, 29, 23, 24 € Z. We have
n2+ni+n;+ng = (rzs+s524)° + (s23 —r24)° + 25 + 23 (2.2)

=(r*+ s>+ 1)(z5 + 27) =0 (mod p).

We apply the Minkowski Theorem to the ellipsoid

Cr = {(71, 12,73, 14) : (px1+7T3+524)% + (T2 + 573 —124)* + 25 + 75 < R*}.

A volume computation shows that v(Cg) = iwR*p~2. Then
v(C gp) = 27% > 24,

and by the Minkowski Theorem, there exists non-zero (21, 22, 23, 24) € Z* such
that

0 < (pz1 +rzg + 824)° + (pza + 523 — 124)° + 25 + 25 < 2p.
In view of (2.2), we conclude that

(pz1 + 123+ 524)* + (pzo + 823 — r24)? + z§ + 22 =p.
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To give proof for general integers, we use the identity
(2 + a3 + 25 + 23) (7 + v5 + 45 + i) =(z191 + 2oy + Tays + Taya)”
+ (w12 — Toy1 + T3ys — Tays)’

+ (T1Y3 — Toya — T3y + Taya)?
+ (2194 + ToYz — T3Y2 — TaY1)>



