
LECTURE 14: GEOMETRY OF NUMBERS

[non-examinable]

1. Minkowski Convex Body Theorem

Let us consider a (bounded) region D in the n-dimensional space Rn =
{(x1, . . . , xn) : xi ∈ R}. We would like to investigate whether this region
contains any points with integral coordinates. This basic geometric problem
has numerous applications in Number Theory. Normally, we assume that the
domain D is sufficiently nice, so that we can compute its volume v(D).

Our starting point is the following continuous version of the Pigeon-Hole
Principle.

Theorem 1.1 (Blichfeldt Principle). If D is a (bounded) region in Rn with
v(D) > 1. then there exist two vectors v1 6= v2 ∈ D such that v1 − v2 ∈ Zn.

For simplicity, we assume that n = 2. Essentially the same proof works in
any dimension.

Proof. We consider the partition of the plane R2 into squares:

R2 =
⊔
z∈Z2

Bz where Bz = {(x1, x2) : z1 6 x1 < z1 + 1, z2 6 x2 < z2 + 1}.

Then

D =
⊔
z∈Z2

Dz where Dz = Bz ∩D.

We observe ∑
z∈Z2

v(Dz) = v(D) > 1.

Suppose that the sets Dz− z, z ∈ Z2, are all disjoint. Then since all these sets
are contained in B0, it would follow that∑

z∈Z2

v(Dz − z) 6 v(B0) = 1.

However, v(Dz−z) = v(Dz) and this contradicts the previous estimate. Hence,
we conclude that there exists z1 6= z2 ∈ Z2 such that

(Dz1 − z1) ∩ (Dz2 − z2) 6= ∅,

namely, for some v1 ∈ Dz1 and v2 ∈ Dz2 , we have v1 − z1 = v2 − z2. This
implies the theorem. �
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We say that the domain D is convex if

x1, x2 ∈ D ⇒ tx1 + (1− t)x2 ∈ D for all t ∈ [0, 1].

The domain D is centrally symmetric if

x ∈ D ⇒ −x ∈ D.

Theorem 1.2 (Minkowski Convex Body Theorem). Let C be a (bounded)
convex centrally symmetric region in Rn with v(C) > 2n. Then C contains a
non-zero integral vector.

Proof. Let D = 1
2
C. Then v(D) =

(
1
2

)n
v(C) > 1, and we may apply the

Blichfeldt Principle. Hence, there exist v1 6= v2 ∈ D such that v1 − v2 ∈ Zn.
Since

v1 − v2 =
1

2
(2v1) +

1

2
(−2v1) ∈ C,

this implies the theorem. �

2. Applications

We prove a version of the Dirichlet Theorem for simultaneous approximation.

Theorem 2.1 (Dirichlet). Let θ1, . . . θn be real numbers. For any integer Q >
1, there exist p1, . . . , pn ∈ Z and q = 1, . . . , Q such that∣∣∣∣θi − pi

q

∣∣∣∣ < 1

qQ1/n
for all i.

Proof. We consider the region C in Rn+1 defined by

−(Q+ 1) < x0 < (Q+ 1), θix0 −Q−1/n < xi < θix0 +Q−1/n, 1 6 i 6 n.

Since

v(C) = 2(Q+ 1)(2Q−1/n)n > 2n+1,

it follows from Minkowski’s Theorem, there exists nonzero integral vector z =
(q, p1, . . . , pn) ∈ C. If q = 0, then |pi| < 1 and pi = 0 for all i, which is not
possible. Hence, q 6= 0. Changing z to −z if it is necessary, we can arrange
that q > 0. This gives the required result. �

Theorem 2.2. A positive integer is a sum of two squares if and only if it
is of the form pr11 · · · prss where pi’s are primes, and ri’s are even when pi ≡
3 (mod 4).

Proof. Suppose that x21+x22 = n and a prime p ≡ 3 (mod 4) divides n. If p also
divides x1 and x2, then also p2|n. Hence, we obtain (x1/p)

2 + (x2/p)
2 = n/p2.

On the other hand, x1 or x2 is coprime to p, then it follows that the congruence
x2 ≡ −1 (mod p) has solution, but this impossible since p ≡ 3 (mod 4). By
induction on n, we deduce that n is of the form pr11 · · · prss where ri’s are even
when pi ≡ 3 (mod 4).
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Let p be a prime such that p ≡ 1 (mod 4). We show that p can be as a
sum of two squares. Our assumption on p implies that there exists an integer
r such that r2 ≡ −1 (mod p). We look for solutions of the form

p = (pz1 + rz2)
2 + z22 .

We observe that

(pz1 + rz2)
2 + z22 ≡ (r2 + 1)z22 ≡ 0 (mod p). (2.1)

We apply the Minkowski Theorem to the ellipsoid

CR = {(x1, x2) : (px1 + rx2)
2 + x22 < R2}.

Since v(C√2p) = π(
√

2p)2/p > 22, there exists nonzero (z1, z2) ∈ Z2 such that

0 < (pz1 + rz2)
2 + z22 < 2p.

Because of (2.1), it follows that (pz1 + rz2)
2 + z22 = p.

The proof of general n follows from the formula

(x21 + x22)(y
2
1 + y22) = (x1y1 − x2y2)2 + (x1y2 + x2y1)

2.

�

Theorem 2.3 (Lagrange). Every positive integer can be written as a sum of
four squares.

Remark 2.4. The congruence x21 + x22 + x23 ≡ 7 (mod 8) has no solutions, so
that this theorem is not true for sums of three squares.

Proof. First, we show that every prime p can be written as

p = n2
1 + n2

2 + n2
3 + n2

4.

It follows from the Chevalley Theorem that the congruence u2 + v2 + w2 ≡
0 (mod p) has a non-zero solutions. This implies that there exist r, s ∈ Z such
that r2 + s2 + 1 ≡ 0 (mod p). We shall look for solutions of the form

n1 = pz1 + rz3 + sz4, n2 = pz2 + sz3 − rz4, n3 = z3, n4 = z4

with z1, z2, z3, z4 ∈ Z. We have

n2
1 + n2

2 + n2
3 + n2

4 ≡ (rz3 + sz4)
2 + (sz3 − rz4)2 + z23 + z24 (2.2)

≡ (r2 + s2 + 1)(z23 + z24) ≡ 0 (mod p).

We apply the Minkowski Theorem to the ellipsoid

CR = {(x1, x2, x3, x4) : (px1 + rx3 +sx4)
2 +(px2 +sx3− rx4)2 +x23 +x24 < R2}.

A volume computation shows that v(CR) = 1
2
πR4p−2. Then

v(C√2p) = 2π2 > 24,

and by the Minkowski Theorem, there exists non-zero (z1, z2, z3, z4) ∈ Z4 such
that

0 < (pz1 + rz3 + sz4)
2 + (pz2 + sz3 − rz4)2 + z23 + z24 < 2p.

In view of (2.2), we conclude that

(pz1 + rz3 + sz4)
2 + (pz2 + sz3 − rz4)2 + z23 + z24 = p.
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To give proof for general integers, we use the identity

(x21 + x22 + x23 + x24)(y
2
1 + y22 + y23 + y24) =(x1y1 + x2y2 + x3y3 + x4y4)

2

+ (x1y2 − x2y1 + x3y4 − x4y3)2

+ (x1y3 − x2y4 − x3y1 + x4y2)
2

+ (x1y4 + x2y3 − x3y2 − x4y1)2.
�


