LECTURE 14: GEOMETRY OF NUMBERS

[NON-EXAMINABLE]

1. Minkowski Convex Body Theorem

Let us consider a (bounded) region D in the n-dimensional space $\mathbb{R}^{n}=$ $\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in \mathbb{R}\right\}$. We would like to investigate whether this region contains any points with integral coordinates. This basic geometric problem has numerous applications in Number Theory. Normally, we assume that the domain D is sufficiently nice, so that we can compute its volume $v(D)$.

Our starting point is the following continuous version of the Pigeon-Hole Principle.

Theorem 1.1 (Blichfeldt Principle). If D is a (bounded) region in \mathbb{R}^{n} with $v(D)>1$. then there exist two vectors $v_{1} \neq v_{2} \in D$ such that $v_{1}-v_{2} \in \mathbb{Z}^{n}$.

For simplicity, we assume that $n=2$. Essentially the same proof works in any dimension.

Proof. We consider the partition of the plane \mathbb{R}^{2} into squares:
$\mathbb{R}^{2}=\bigsqcup_{z \in \mathbb{Z}^{2}} B_{z} \quad$ where $\quad B_{z}=\left\{\left(x_{1}, x_{2}\right): z_{1} \leqslant x_{1}<z_{1}+1, z_{2} \leqslant x_{2}<z_{2}+1\right\}$.
Then

$$
D=\bigsqcup_{z \in \mathbb{Z}^{2}} D_{z} \quad \text { where } \quad D_{z}=B_{z} \cap D
$$

We observe

$$
\sum_{z \in \mathbb{Z}^{2}} v\left(D_{z}\right)=v(D)>1
$$

Suppose that the sets $D_{z}-z, z \in \mathbb{Z}^{2}$, are all disjoint. Then since all these sets are contained in B_{0}, it would follow that

$$
\sum_{z \in \mathbb{Z}^{2}} v\left(D_{z}-z\right) \leqslant v\left(B_{0}\right)=1
$$

However, $v\left(D_{z}-z\right)=v\left(D_{z}\right)$ and this contradicts the previous estimate. Hence, we conclude that there exists $z_{1} \neq z_{2} \in \mathbb{Z}^{2}$ such that

$$
\left(D_{z_{1}}-z_{1}\right) \cap\left(D_{z_{2}}-z_{2}\right) \neq \emptyset
$$

namely, for some $v_{1} \in D_{z_{1}}$ and $v_{2} \in D_{z_{2}}$, we have $v_{1}-z_{1}=v_{2}-z_{2}$. This implies the theorem.

We say that the domain D is convex if

$$
x_{1}, x_{2} \in D \Rightarrow t x_{1}+(1-t) x_{2} \in D \text { for all } t \in[0,1] .
$$

The domain D is centrally symmetric if

$$
x \in D \Rightarrow-x \in D
$$

Theorem 1.2 (Minkowski Convex Body Theorem). Let C be a (bounded) convex centrally symmetric region in \mathbb{R}^{n} with $v(C)>2^{n}$. Then C contains a non-zero integral vector.

Proof. Let $D=\frac{1}{2} C$. Then $v(D)=\left(\frac{1}{2}\right)^{n} v(C)>1$, and we may apply the Blichfeldt Principle. Hence, there exist $v_{1} \neq v_{2} \in D$ such that $v_{1}-v_{2} \in \mathbb{Z}^{n}$. Since

$$
v_{1}-v_{2}=\frac{1}{2}\left(2 v_{1}\right)+\frac{1}{2}\left(-2 v_{1}\right) \in C
$$

this implies the theorem.

2. Applications

We prove a version of the Dirichlet Theorem for simultaneous approximation.
Theorem 2.1 (Dirichlet). Let $\theta_{1}, \ldots \theta_{n}$ be real numbers. For any integer $Q \geqslant$ 1 , there exist $p_{1}, \ldots, p_{n} \in \mathbb{Z}$ and $q=1, \ldots, Q$ such that

$$
\left|\theta_{i}-\frac{p_{i}}{q}\right|<\frac{1}{q Q^{1 / n}} \quad \text { for all } i
$$

Proof. We consider the region C in \mathbb{R}^{n+1} defined by

$$
-(Q+1)<x_{0}<(Q+1), \quad \theta_{i} x_{0}-Q^{-1 / n}<x_{i}<\theta_{i} x_{0}+Q^{-1 / n}, \quad 1 \leqslant i \leqslant n
$$

Since

$$
v(C)=2(Q+1)\left(2 Q^{-1 / n}\right)^{n}>2^{n+1}
$$

it follows from Minkowski's Theorem, there exists nonzero integral vector $z=$ $\left(q, p_{1}, \ldots, p_{n}\right) \in C$. If $q=0$, then $\left|p_{i}\right|<1$ and $p_{i}=0$ for all i, which is not possible. Hence, $q \neq 0$. Changing z to $-z$ if it is necessary, we can arrange that $q>0$. This gives the required result.

Theorem 2.2. A positive integer is a sum of two squares if and only if it is of the form $p_{1}^{r_{1}} \cdots p_{s}^{r_{s}}$ where p_{i} 's are primes, and r_{i} 's are even when $p_{i} \equiv$ $3(\bmod 4)$.

Proof. Suppose that $x_{1}^{2}+x_{2}^{2}=n$ and a prime $p \equiv 3(\bmod 4)$ divides n. If p also divides x_{1} and x_{2}, then also $p^{2} \mid n$. Hence, we obtain $\left(x_{1} / p\right)^{2}+\left(x_{2} / p\right)^{2}=n / p^{2}$. On the other hand, x_{1} or x_{2} is coprime to p, then it follows that the congruence $x^{2} \equiv-1(\bmod p)$ has solution, but this impossible since $p \equiv 3(\bmod 4)$. By induction on n, we deduce that n is of the form $p_{1}^{r_{1}} \cdots p_{s}^{r_{s}}$ where r_{i} 's are even when $p_{i} \equiv 3(\bmod 4)$.

Let p be a prime such that $p \equiv 1(\bmod 4)$. We show that p can be as a sum of two squares. Our assumption on p implies that there exists an integer r such that $r^{2} \equiv-1(\bmod p)$. We look for solutions of the form

$$
p=\left(p z_{1}+r z_{2}\right)^{2}+z_{2}^{2}
$$

We observe that

$$
\begin{equation*}
\left(p z_{1}+r z_{2}\right)^{2}+z_{2}^{2} \equiv\left(r^{2}+1\right) z_{2}^{2} \equiv 0(\bmod p) \tag{2.1}
\end{equation*}
$$

We apply the Minkowski Theorem to the ellipsoid

$$
C_{R}=\left\{\left(x_{1}, x_{2}\right):\left(p x_{1}+r x_{2}\right)^{2}+x_{2}^{2}<R^{2}\right\} .
$$

Since $v\left(C_{\sqrt{2 p}}\right)=\pi(\sqrt{2 p})^{2} / p>2^{2}$, there exists nonzero $\left(z_{1}, z_{2}\right) \in \mathbb{Z}^{2}$ such that

$$
0<\left(p z_{1}+r z_{2}\right)^{2}+z_{2}^{2}<2 p
$$

Because of (2.1), it follows that $\left(p z_{1}+r z_{2}\right)^{2}+z_{2}^{2}=p$.
The proof of general n follows from the formula

$$
\left(x_{1}^{2}+x_{2}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}\right)=\left(x_{1} y_{1}-x_{2} y_{2}\right)^{2}+\left(x_{1} y_{2}+x_{2} y_{1}\right)^{2} .
$$

Theorem 2.3 (Lagrange). Every positive integer can be written as a sum of four squares.
Remark 2.4. The congruence $x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \equiv 7(\bmod 8)$ has no solutions, so that this theorem is not true for sums of three squares.

Proof. First, we show that every prime p can be written as

$$
p=n_{1}^{2}+n_{2}^{2}+n_{3}^{2}+n_{4}^{2} .
$$

It follows from the Chevalley Theorem that the congruence $u^{2}+v^{2}+w^{2} \equiv$ $0(\bmod p)$ has a non-zero solutions. This implies that there exist $r, s \in \mathbb{Z}$ such that $r^{2}+s^{2}+1 \equiv 0(\bmod p)$. We shall look for solutions of the form

$$
n_{1}=p z_{1}+r z_{3}+s z_{4}, \quad n_{2}=p z_{2}+s z_{3}-r z_{4}, \quad n_{3}=z_{3}, \quad n_{4}=z_{4}
$$

with $z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{Z}$. We have

$$
\begin{align*}
n_{1}^{2}+n_{2}^{2}+n_{3}^{2}+n_{4}^{2} & \equiv\left(r z_{3}+s z_{4}\right)^{2}+\left(s z_{3}-r z_{4}\right)^{2}+z_{3}^{2}+z_{4}^{2} \tag{2.2}\\
& \equiv\left(r^{2}+s^{2}+1\right)\left(z_{3}^{2}+z_{4}^{2}\right) \equiv 0(\bmod p)
\end{align*}
$$

We apply the Minkowski Theorem to the ellipsoid
$C_{R}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right):\left(p x_{1}+r x_{3}+s x_{4}\right)^{2}+\left(p x_{2}+s x_{3}-r x_{4}\right)^{2}+x_{3}^{2}+x_{4}^{2}<R^{2}\right\}$. A volume computation shows that $v\left(C_{R}\right)=\frac{1}{2} \pi R^{4} p^{-2}$. Then

$$
v\left(C_{\sqrt{2 p}}\right)=2 \pi^{2}>2^{4}
$$

and by the Minkowski Theorem, there exists non-zero $\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \in \mathbb{Z}^{4}$ such that

$$
0<\left(p z_{1}+r z_{3}+s z_{4}\right)^{2}+\left(p z_{2}+s z_{3}-r z_{4}\right)^{2}+z_{3}^{2}+z_{4}^{2}<2 p
$$

In view of (2.2), we conclude that

$$
\left(p z_{1}+r z_{3}+s z_{4}\right)^{2}+\left(p z_{2}+s z_{3}-r z_{4}\right)^{2}+z_{3}^{2}+z_{4}^{2}=p
$$

To give proof for general integers, we use the identity

$$
\begin{aligned}
\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}\right)= & \left(x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4}\right)^{2} \\
& +\left(x_{1} y_{2}-x_{2} y_{1}+x_{3} y_{4}-x_{4} y_{3}\right)^{2} \\
& +\left(x_{1} y_{3}-x_{2} y_{4}-x_{3} y_{1}+x_{4} y_{2}\right)^{2} \\
& +\left(x_{1} y_{4}+x_{2} y_{3}-x_{3} y_{2}-x_{4} y_{1}\right)^{2} .
\end{aligned}
$$

