
LECTURE 2: PRIMES AND THE FUNDAMENTAL
THEOREM OF ARITHMETIC

Definition 0.1. A natural number p > satisfying the condition

whenever d | p with d > 0, one has either d = 1 or p,

is called a prime number. Any integer exceeding 1 which is not a prime
number is called a composite number.

Theorem 0.2 (Factorisation into primes). Every integer n exceeding 1 may
be written as a product of prime numbers.

Proof. Suppose that the theorem holds for 1 < n < N ; note that this is
vacuously true for N = 2. Let p be the least divisor of N greater than 1. Then
p must be prime (why?). Now, if n = N/p then n < N , so either n = 1 or else
by hypothesis it is a product of prime numbers. In either case, it follows that
N = pn is a product of prime numbers. Therefore, by induction, every integer
exceeding 1 is a product of prime numbers. �

Given a factorisation of an integer n into prime numbers, one may collect
together like primes and order the primes by size so as to give a factorisation

n = ±
s∏

i=1

prii ,

where p1 < p2 < · · · < ps are prime numbers, and ri ∈ N (1 6 i 6 s).
We will call this the canonical prime factorisation of n. Note that the empty
product of (no) primes is equal to 1. If the choice of sign, the primes pi,
and the exponents ri, are uniquely determined, we say that n has a unique
factorisation into primes.

Lemma 0.3. Suppose that p is a prime number, and p | a1 . . . at. Then p | ai
for some i with 1 6 i 6 t.

Proof. We prove first that if m and n are natural numbers and p | mn, then
p | m or p | n. For if p - m, then (p,m) = 1, and then it follows that p | n
(see Lecture 1). Moving now to the general case, the latter argument shows
that when p | a1 . . . at, then either p | a1 or p | a2 . . . at. The conclusion of the
lemma therefore follows by induction on t. �

Theorem 0.4 (The Fundamental Theorem of Arithmetic). Integers n > 1
have unique factorisations into primes.

Proof. Suppose that the theorem holds for 1 < n < N . Let p be the smallest
divisor of N greater than 1. Then p is a prime divisor of N . By Theorem 0.2,
N has some factorisation into primes, and it follows from Lemma 0.3 that any
such factorisation must contain p as one of the prime factors. If p = N then
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N is prime, and consequently it has unique factorisation into primes (why?).
Otherwise, the integer n = N/p satisfies 1 < n < N , and hence possesses
a unique factorisation into primes. But then N = pn likewise has a unique
factorisation into primes. Therefore, by induction, all integers n > 1 have a
unique factorisation into primes. �

Aside: This method of proof, including Lemma 0.3, goes back to Euclid’s Ele-

ments, c. 300BC. However, the Fundamental Theorem of Arithmetic itself is not

stated in the Elements. Euclid and his contemporaries were no doubt aware of the

uniqueness of prime factorisation, but it was taken for granted for many centuries.

The lofty name and the emphasis of the FTA as an important fact are both due

to Gauss in the early 19th century. In retrospect we can see that Gauss was antic-

ipating the development of algebraic number theory, which considers more general

number rings, including ones in which unique factorisation fails.

The unique factorisation theorem enables one to determine greatest common
divisors and least common multiples simply. At least, that is the case when
prime factorisations are available, which is computationally expensive data to
assemble (the Euclidean Algorithm, on the other hand, is computationally very
cheap). Suppose that

a =
s∏

i=1

prii and b =
s∏

i=1

ptii ,

with the pi distinct prime numbers and the exponents ri and ti non-negative
integers. Then one has

(a, b) =
s∏

i=1

p
min{ri,ti}
i and [a, b] =

s∏
i=1

p
max{ri,ti}
i .

Moreover, since min{ri, ti} + max{ri, ti} = ri + ti, it follows from the latter
formulae that (a, b)[a, b] = |ab|, as we saw in Lecture 1.

Theorem 0.5 (Euclid). There are infinitely many prime numbers, and hence
also arbitrarily large prime numbers.

Proof. Suppose that p1, . . . , pn are prime numbers, and put N = p1 · · · pn + 1.
Since N > 1, it has a prime divisor, say p, by Theorem 0.2. However, none of
the pi divide N , so p is a prime different from p1, . . . , pn. Hence, no finite list
of primes is complete, i.e. there are infinitely many of them. �

Note that, writing pn for the nth prime number, the expression p1p2 · · · pn+1
is not always prime. Thus, for example, we have 2 · 3 · · · 13 + 1 = 30031 =
59 · 509.

Aside (the largest prime number): At the time of writing, the largest known
prime is 274207281 − 1, a number with 22, 338, 618 decimal digits. The primality
of this number was established through the efforts of GIMPS (see Great Internet
Mersenne Prime Search, at http://www.mersenne.org/). One can check that the
integer 2n − 1 can be prime only when n is prime (why?). The integers 2p − 1 with
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p a prime number are known as Mersenne numbers, and an industry of efficient
primality tests for these special numbers is reflected in the GIMPS effort. On the
other hand, it is conjectured that there are only finitely many Fermat primes, that
is to say, integers of the shape 22

n
+ 1 which are prime numbers. These integers are

known to be prime for n = 0, 1, 2, 3, 4, and known to be composite for 5 6 n 6 32.

The method of the proof of Theorem 0.5 can be also use to give a quantitative
estimate on the sequence of prime numbers pn.

Theorem 0.6. The nth largest prime number pn satisfies pn 6 22n−1
.

Proof. Suppose that N is a natural number and that the conclusion holds for
1 6 n < N ; note that this is vacuously true for N = 1. Then by the argument
of the proof of Theorem 0.5, one finds that

pN 6 p1p2 · · · pN−1 + 1 6 220221 · · · 22N−2

+ 1 = 22N−1−1 + 1 6 22N−1

.

Then the inequality holds also for N , and so the desired conclusion follows by
induction. �

Now define the function π(x) for positive numbers x by putting

π(x) =
∑
p6x

p prime

1.

Thus one has π(2) = 1, π(3) = 2, π(
√

10) = 2, and so on.

Corollary 0.7. One has π(x) > log2 log2 x for x > 1.

Proof. Let x > 1 and put n = π(x) + 1. Then x < pn 6 22n−1
= 22π(x) , by

Theorem 0.6. Taking logarithms establishes the corollary. �

Exercise 6∗ of Problem Sheet 2 shows that there are positive constants c1
and c2 with c1 < c2 such that for each number x with x > 2, one has

c1
x

log x
6 π(x) 6 c2

x

log x
.

Given an interesting sequence such as the prime numbers, number theo-
rists are interested in analysing features of their distribution. We begin with
arithmetic progressions, about which we will say more as the course progresses.

Theorem 0.8. There are infinitely many prime numbers of the shape 4k + 3
(k ∈ N).

Proof. Suppose that p1, . . . , pn are primes of the form 4k + 3. Consider the
number N = 4p1 · · · pn − 1. The integer N is odd, and of the shape 4k + 3,
so cannot be divisible exclusively by primes of the shape 4k + 1. Moreover,
none of the primes p1, . . . , pn divide N . Thus N is divisible by a new prime of
the shape 4k+ 3 not amongst p1, . . . , pn. Hence there are infinitely many such
primes. �
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See Question 4 on the second problem sheet for a proof that there are in-
finitely many prime numbers of the shape 4k + 1 (k ∈ N). More generally,
when a and b are natural numbers with (a, b) = 1, Dirichlet proved in 1837
that an+ b is prime for infinitely many integers n.

Now we consider gaps between consecutive prime numbers.

Theorem 0.9. There are arbitrarily large gaps between consecutive prime
numbers.

Proof. Consider the sequence n! + 2, n! + 3, . . . , n! + n of n − 1 consecutive
integers. The first of these integers is divisible by 2, the second by 3, and so
on, with the last divisible by n. None of these integers can be prime, therefore,
and so there are gaps of length at least n, for any natural number n, between
consecutive prime numbers. �

Aside (gaps between primes): This theorem shows that one can find gaps between
consective primes pn and pn+1 at least as large as C log pn/ log log pn, for a suitable
positive constant C, infinitely often. It was shown in 2014 by Ford, Green, Konyagin,
Maynard and Tao that there is a positive number C with the property that the gaps
can be as large as

C
(log pn)(log log pn)(log log log log pn)

log log log pn
infinitely often. On the other hand, as highlighted in the first lecture, stunning
recent progress has established that pn+1 − pn 6 246 infinitely often.

A natural question is whether there are simple ways to produce prime num-
bers. The next theorem shows that polynomials, at least, cannot take prime
values all the time.

Theorem 0.10. There is no non-constant polynomial which takes only prime
values.

Proof. Suppose that

f(x) =
d∑

k=0

ckx
k

is a polynomial with integer coefficients ck and degree d > 1. If f(0) = c0 is
not prime then there is nothing to prove, so assume that c0 is prime. Then,
for any n ∈ N, we have

f(c0n) = c0 +
d∑

k=1

ck(c0n)k.

Hence c0 | f(c0n), and since d > 1, f(c0n) 6= c0 for sufficiently large n.
Therefore, c0 > 1 is a proper divisor of f(c0n), so f(c0n) is not prime. �

Aside: Matiyasevich showed in 1970 that there exist polynomials f(n1, . . . , nk)

such that the set of positive values assumed by f , as n1, . . . , nk vary through all

natural numbers, is exactly the set of prime numbers.


