
LECTURE 4: CHINESE REMAINDER THEOREM AND
MULTIPLICATIVE FUNCTIONS

1. The Chinese Remainder Theorem

We now seek to analyse the solubility of congruences by reinterpreting their
solutions modulo a composite integerm in terms of related congruences modulo
prime powers.

Theorem 1.1 (Chinese Remainder Theorem). Let m1, . . . ,mr denote positive
integers with (mi,mj) = 1 for i 6= j, and let a1, . . . , ar ∈ Z. Then the system
of congruences

x ≡ ai (mod mi) (1 6 i 6 r) (1.1)

is soluble simultaneously for some integer x. If x0 is any one such solution,
then x is a solution of (1.1) if and only if x ≡ x0 (mod m1m2 . . .mr).

Proof. Let m = m1m2 . . .mr, and nj = m/mj (1 6 j 6 r). Then for each
j = 1, . . . , r one has (mj, nj) = 1, whence there exists an integer bj with

njbj ≡ 1 (mod mj).

Moreover,

njbj =

(
m1 · · ·mr

mjmi

bj

)
mi ≡ 0 (mod mi)

whenever i 6= j. Then if we put

x0 = n1b1a1 + · · ·+ nrbrar,

we find that
x0 ≡ nibiai ≡ ai (mod mi)

for 1 6 i 6 r. Thus we may conclude that x0 is a solution of (1.1).

In order to establish uniqueness, suppose that x and y are any two solutions
of (1.1). Then one has

x ≡ y (mod mi), 1 6 i 6 r, and (mi,mj) = 1, i 6= j.

Then it follows that x ≡ y (mod [m1, . . . ,mr]). Since mi’s are coprime,
[m1, . . . ,mr] = m1 . . .mr. �

Example 1.2. Find the set of solutions to the system of congruences

4x ≡ 1 (mod 3), x ≡ 2 (mod 5), 2x ≡ 5 (mod 7).

We first convert this into a form where the leading coefficients are all 1. Thus,
multiplying the final congruence through by 4 (the multiplicative inverse of 2
modulo 7), we obtain the equivalent system

x ≡ 1 (mod 3), x ≡ 2 (mod 5), x ≡ 6 (mod 7).
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We next put m1 = 3, m2 = 5, m3 = 7, so that (mi,mj) = 1 for i 6= j. Define
m = 3 · 5 · 7 = 105, and n1 = 105/3 = 35, n2 = 105/5 = 21, n3 = 105/7 = 15.
We compute integers bj with njbj ≡ 1 (mod mj) (j = 1, 2, 3) by means of the
Euclidean Algorithm (or directly, if the numbers are small enough). Thus we
find that

35b1 ≡ 1 (mod 3)⇒ 2b1 ≡ 1 (mod 3)⇒ b1 ≡ 2 (mod 3),

21b2 ≡ 1 (mod 5)⇒ b2 ≡ 1 (mod 5),

15b3 ≡ 1 (mod 7)⇒ b3 ≡ 1 (mod 7).

So take

x0 = 35 · 2 · 1 + 21 · 1 · 2 + 15 · 1 · 6
= 70 + 42 + 90 = 202 ≡ 97 (mod 105).

Then we find that x0 = 97 satisfies the given congruences, and the complete
set of solutions is given by x = 97 + 105k (k ∈ Z).

Example 1.3. Find the set of solutions, if any, to the system of congruences

x ≡ 1 (mod 15), x ≡ 2 (mod 35).

In this example, the moduli of the two congruences are not coprime, since
(35, 15) = 5. In order to determine whether or not the system is soluble, we
therefore need to examine the underlying congruences, extracting as a modulus
this greatest common divisor. Thus we find that any potential solution x of
the system must satisfy

x ≡ 1 (mod 15) ⇒ x ≡ 1 (mod 3) and x ≡ 1 (mod 5),

and at the same time

x ≡ 2 (mod 35) ⇒ x ≡ 2 (mod 5) and x ≡ 2 (mod 7).

But then one has x ≡ 1 (mod 5) and x ≡ 2 (mod 5), two congruence condi-
tions that are plainly incompatible. We may conclude then that there are no so-
lutions of the simultaneous congruences x ≡ 1 (mod 15) and x ≡ 2 (mod 35).

2. Multiplicative functions

We wish to investigate further the properties of the Euler totient function,
and so pause to introduce the concept of a multiplicative function.

Definition 2.1. (i) We say that a function f : N → C is an arithmetical
function;

(ii) An arithmetical function f is said to be multiplicative if (a) f is not
identically zero, and (b) whenever (m,n) = 1, one has f(mn) = f(m)f(n);

(iii) An arithmetical function g is said to be totally multiplicative if for all
natural numbers m and n, one has g(mn) = g(m)g(n).

Note that if f(n) is multiplicative, then necessarily one has f(1) = 1.
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Theorem 2.2. The function φ(n) is multiplicative. Thus, whenever (m,n) =
1, one has φ(mn) = φ(m)φ(n). Moreover, if n has canonical prime factorisa-
tion n =

∏t
i=1 p

ri
i , then

φ(n) =
t∏

i=1

pri−1i (pi − 1) = n
∏
p|n

(1− 1/p).

Proof. Let m and n be natural numbers with (m,n) = 1. Let Rm and Rn be
reduced residue systems modulo m and n respectively. Let us consider the set

R = {an+ bm : a ∈ Rm, b ∈ Rn}.
We observe that if

an+ bm ≡ a′n+ b′m (mod mn)

for some a, a′ ∈ Rm and b, b′ ∈ Rn, then an ≡ a′n (mod m), and since (n,m) =
1, a ≡ a′ (mod m), so that a = a′. Similarly, we also deduce that b = b′.
Hence, all the numbers an + bm with a ∈ Rm and b ∈ Rn are district, and
|R| = |Rm||Rn|.

We claim that R is a reduced residue system modulo mn. This will im-
mediately imply that φ(mn) = φ(m)φ(n). We note that the above argument
already shows that

an+ bm 6≡ a′n+ b′m (mod mn)

for (a, b) 6= (a′, b′) ∈ Rm × Rn. Moreover, whenever (a,m) = (b, n) = 1, one
has

(an+ bm, n) = (bm, n) = 1 and (an+ bm,m) = (an,m) = 1,

whence (an+ bm,mn) = 1. Therefore, all r ∈ R satisfy (r,mn) = 1.

We next seek to establish that whenever (c,mn) = 1, then there exist a ∈ Rm

and b ∈ Rn with c ≡ an+ bm (mod mn). But (m,n) = 1, so by the Euclidean
Algorithm, there exist integers x and y with xm + yn = 1. It is clear from
this equation that (x, n) = 1, so that (cx, n) = 1. Hence there exists a ∈ Rn

satisfying a ≡ cx (mod n). Similarly, (y,m) = 1, (cy,m) = 1, and there exists
b ∈ Rm satisfying b ≡ cy (mod m). Then

an+ bm ≡ (cx)n+ (cy)m ≡ c (mod mn).

This completes the proof that R is a reduced residue system modulo mn and
establishes that the Euler φ-function is multiplicative.

In order to complete the proof of the theorem, we observe next that when
p is a prime number, one has φ(pr) = pr − pr−1, since the total number of
residues modulo pr is pr, of which precisely the pr−1 divisible by p are not
reduced. In this way, the final assertions of the theorem follow by making use
of the multiplicative property of φ. �

Useful properties of φ(n) that will be employed later stem easily from its
multiplicative property. Before establishing one such property, we establish a
general result for multiplicative functions.
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Lemma 2.3. Suppose that f is multiplicative, and define g(n) =
∑

d|n f(d).
Then g is a multiplicative function.

Proof. Suppose that m and n are natural numbers with (m,n) = 1, and sup-
pose that d | mn. Write d1 = (d,m) and d2 = (d, n). Then d = d1d2 and
(d1, d2) = 1. Thus we obtain

g(mn) =
∑
d|mn

f(d) =
∑
d1|m

∑
d2|n

f(d1d2) =

∑
d1|m

f(d1)

∑
d2|n

f(d2)

 ,

whence g(mn) = g(m)g(n). This completes the proof that g is multiplicative.
�

Corollary 2.4. One has
∑

d|n φ(d) = n.

Proof. Observe that for each prime number p, and every natural number r,
one has ∑

d|pr
φ(d) =

r∑
h=0

φ(ph) = 1 +
r∑

h=1

(ph − ph−1) = pr.

Thus, owing to the multiplicative property of φ established in Theorem 2.2, it
follows from Lemma 2.3 that

∑
d|n φ(d) is a multiplicative function, and when

n =
∏t

t=1 p
ri
i ∑

d|n

φ(d) =
t∏

i=1

∑
d|pri

φ(d)

 =
t∏

i=1

pri = n.

�

To conclude this section, we examine the set of solutions of a polynomial
congruence.

Definition 2.5. Let f ∈ Z[x], and suppose that r1, . . . , rm is a complete
residue system modulo m. Then we say that the number of solutions of
the congruence f(x) ≡ 0 (mod m) is the number of residues ri with f(ri) ≡
0 (mod m).

Theorem 2.6. Suppose that f ∈ Z[x], and denote by Nf (m) the number of
solutions of the congruence f(x) ≡ 0 (mod m). Then Nf (m) is a multiplicative

function of m, so that when m =
∏t

t=1 p
ri
i ,

Nf (m) =
t∏

i=1

Nf (pri).

Proof. Suppose that m1 and m2 are natural numbers with m = m1m2 and
(m1,m2) = 1. Let {r1, . . . , rm1}, {s1, . . . , sm2} and {t1, . . . , tm} be complete
residue systems modulo m1, m2 and m, respectively. Suppose that some tk
satisfies f(tk) ≡ 0 (mod m). Then there exist unique ri and sj with

tk ≡ ri (mod m1) and tk ≡ sj (mod m2),
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and they satisfy

f(ri) ≡ 0 (mod m1) and f(sj) ≡ 0 (mod m2).

Further, if tk and t` satisfy

tk ≡ t` ≡ ri (mod m1) and tk ≡ t` ≡ sj (mod m2),

then, by the Chinese Remainder Theorem tk ≡ t` (mod m), so that tk = t`.
Thus we have defined an injective map from the set of solutions modulo m to
the set of pairs of solutions modulo m1 and m2.

In the other direction, whenever there exist residues ri and sj with

f(ri) ≡ 0 (mod m1) and f(sj) ≡ 0 (mod m2),

then by the Chinese Remainder Theorem there exists unique tk with

tk ≡ ri (mod m1) and tk ≡ sj (mod m2),

so that
f(tk) ≡ 0 (mod mi), i = 1, 2.

But since (m1,m2) = 1, it follows that

f(tk) ≡ 0 (mod m).

There is therefore an injective map from pairs of solutions (ri, sj) modulo m1

and m2 respectively, to solutions modulo m.

Collecting together the above conclusions, we find that the solutions modulo
m, and pairs of solutions modulo m1 and m2, are in bijective correspondence,
whence Nf (m) = Nf (m1)Nf (m2) whenever (m1,m2) = 1. The desired conclu-
sion now follows on considering the prime factorisation of m. �


