LECTURE 4: CHINESE REMAINDER THEOREM AND MULTIPLICATIVE FUNCTIONS

1. The Chinese Remainder Theorem

We now seek to analyse the solubility of congruences by reinterpreting their solutions modulo a composite integer m in terms of related congruences modulo prime powers.

Theorem 1.1 (Chinese Remainder Theorem). Let m_{1}, \ldots, m_{r} denote positive integers with $\left(m_{i}, m_{j}\right)=1$ for $i \neq j$, and let $a_{1}, \ldots, a_{r} \in \mathbb{Z}$. Then the system of congruences

$$
\begin{equation*}
x \equiv a_{i}\left(\bmod m_{i}\right) \quad(1 \leqslant i \leqslant r) \tag{1.1}
\end{equation*}
$$

is soluble simultaneously for some integer x. If x_{0} is any one such solution, then x is a solution of (1.1) if and only if $x \equiv x_{0}\left(\bmod m_{1} m_{2} \ldots m_{r}\right)$.

Proof. Let $m=m_{1} m_{2} \ldots m_{r}$, and $n_{j}=m / m_{j}(1 \leqslant j \leqslant r)$. Then for each $j=1, \ldots, r$ one has $\left(m_{j}, n_{j}\right)=1$, whence there exists an integer b_{j} with

$$
n_{j} b_{j} \equiv 1\left(\bmod m_{j}\right) .
$$

Moreover,

$$
n_{j} b_{j}=\left(\frac{m_{1} \cdots m_{r}}{m_{j} m_{i}} b_{j}\right) m_{i} \equiv 0\left(\bmod m_{i}\right)
$$

whenever $i \neq j$. Then if we put

$$
x_{0}=n_{1} b_{1} a_{1}+\cdots+n_{r} b_{r} a_{r},
$$

we find that

$$
x_{0} \equiv n_{i} b_{i} a_{i} \equiv a_{i}\left(\bmod m_{i}\right)
$$

for $1 \leqslant i \leqslant r$. Thus we may conclude that x_{0} is a solution of (1.1).
In order to establish uniqueness, suppose that x and y are any two solutions of (1.1). Then one has

$$
x \equiv y\left(\bmod m_{i}\right), \quad 1 \leqslant i \leqslant r, \quad \text { and } \quad\left(m_{i}, m_{j}\right)=1, \quad i \neq j .
$$

Then it follows that $x \equiv y\left(\bmod \left[m_{1}, \ldots, m_{r}\right]\right)$. Since m_{i} 's are coprime, $\left[m_{1}, \ldots, m_{r}\right]=m_{1} \ldots m_{r}$.

Example 1.2. Find the set of solutions to the system of congruences

$$
4 x \equiv 1(\bmod 3), \quad x \equiv 2(\bmod 5), \quad 2 x \equiv 5(\bmod 7)
$$

We first convert this into a form where the leading coefficients are all 1. Thus, multiplying the final congruence through by 4 (the multiplicative inverse of 2 modulo 7), we obtain the equivalent system

$$
x \equiv 1(\bmod 3), \quad x \equiv 2(\underset{1}{\bmod 5)}, \quad x \equiv 6(\bmod 7)
$$

We next put $m_{1}=3, m_{2}=5, m_{3}=7$, so that $\left(m_{i}, m_{j}\right)=1$ for $i \neq j$. Define $m=3 \cdot 5 \cdot 7=105$, and $n_{1}=105 / 3=35, n_{2}=105 / 5=21, n_{3}=105 / 7=15$. We compute integers b_{j} with $n_{j} b_{j} \equiv 1\left(\bmod m_{j}\right)(j=1,2,3)$ by means of the Euclidean Algorithm (or directly, if the numbers are small enough). Thus we find that

$$
\begin{aligned}
& 35 b_{1} \equiv 1(\bmod 3) \Rightarrow 2 b_{1} \equiv 1(\bmod 3) \Rightarrow b_{1} \equiv 2(\bmod 3) \\
& 21 b_{2} \equiv 1(\bmod 5) \Rightarrow b_{2} \equiv 1(\bmod 5) \\
& 15 b_{3} \equiv 1(\bmod 7) \Rightarrow b_{3} \equiv 1(\bmod 7)
\end{aligned}
$$

So take

$$
\begin{aligned}
x_{0} & =35 \cdot 2 \cdot 1+21 \cdot 1 \cdot 2+15 \cdot 1 \cdot 6 \\
& =70+42+90=202 \equiv 97(\bmod 105) .
\end{aligned}
$$

Then we find that $x_{0}=97$ satisfies the given congruences, and the complete set of solutions is given by $x=97+105 k(k \in \mathbb{Z})$.

Example 1.3. Find the set of solutions, if any, to the system of congruences

$$
x \equiv 1(\bmod 15), \quad x \equiv 2(\bmod 35) .
$$

In this example, the moduli of the two congruences are not coprime, since $(35,15)=5$. In order to determine whether or not the system is soluble, we therefore need to examine the underlying congruences, extracting as a modulus this greatest common divisor. Thus we find that any potential solution x of the system must satisfy

$$
x \equiv 1(\bmod 15) \quad \Rightarrow \quad x \equiv 1(\bmod 3) \quad \text { and } \quad x \equiv 1(\bmod 5),
$$

and at the same time

$$
x \equiv 2(\bmod 35) \quad \Rightarrow \quad x \equiv 2(\bmod 5) \quad \text { and } \quad x \equiv 2(\bmod 7)
$$

But then one has $x \equiv 1(\bmod 5)$ and $x \equiv 2(\bmod 5)$, two congruence conditions that are plainly incompatible. We may conclude then that there are no solutions of the simultaneous congruences $x \equiv 1(\bmod 15)$ and $x \equiv 2(\bmod 35)$.

2. Multiplicative functions

We wish to investigate further the properties of the Euler totient function, and so pause to introduce the concept of a multiplicative function.

Definition 2.1. (i) We say that a function $f: \mathbb{N} \rightarrow \mathbb{C}$ is an arithmetical function;
(ii) An arithmetical function f is said to be multiplicative if (a) f is not identically zero, and (b) whenever $(m, n)=1$, one has $f(m n)=f(m) f(n)$;
(iii) An arithmetical function g is said to be totally multiplicative if for all natural numbers m and n, one has $g(m n)=g(m) g(n)$.

Note that if $f(n)$ is multiplicative, then necessarily one has $f(1)=1$.

Theorem 2.2. The function $\phi(n)$ is multiplicative. Thus, whenever $(m, n)=$ 1 , one has $\phi(m n)=\phi(m) \phi(n)$. Moreover, if n has canonical prime factorisation $n=\prod_{i=1}^{t} p_{i}^{r_{i}}$, then

$$
\phi(n)=\prod_{i=1}^{t} p_{i}^{r_{i}-1}\left(p_{i}-1\right)=n \prod_{p \mid n}(1-1 / p)
$$

Proof. Let m and n be natural numbers with $(m, n)=1$. Let R_{m} and R_{n} be reduced residue systems modulo m and n respectively. Let us consider the set

$$
R=\left\{a n+b m: a \in R_{m}, b \in R_{n}\right\} .
$$

We observe that if

$$
a n+b m \equiv a^{\prime} n+b^{\prime} m(\bmod m n)
$$

for some $a, a^{\prime} \in R_{m}$ and $b, b^{\prime} \in R_{n}$, then $a n \equiv a^{\prime} n(\bmod m)$, and since $(n, m)=$ $1, a \equiv a^{\prime}(\bmod m)$, so that $a=a^{\prime}$. Similarly, we also deduce that $b=b^{\prime}$. Hence, all the numbers $a n+b m$ with $a \in R_{m}$ and $b \in R_{n}$ are district, and $|R|=\left|R_{m}\right|\left|R_{n}\right|$.

We claim that R is a reduced residue system modulo $m n$. This will immediately imply that $\phi(m n)=\phi(m) \phi(n)$. We note that the above argument already shows that

$$
a n+b m \not \equiv a^{\prime} n+b^{\prime} m(\bmod m n)
$$

for $(a, b) \neq\left(a^{\prime}, b^{\prime}\right) \in R_{m} \times R_{n}$. Moreover, whenever $(a, m)=(b, n)=1$, one has

$$
(a n+b m, n)=(b m, n)=1 \quad \text { and } \quad(a n+b m, m)=(a n, m)=1
$$

whence $(a n+b m, m n)=1$. Therefore, all $r \in R$ satisfy $(r, m n)=1$.
We next seek to establish that whenever $(c, m n)=1$, then there exist $a \in R_{m}$ and $b \in R_{n}$ with $c \equiv a n+b m(\bmod m n)$. But $(m, n)=1$, so by the Euclidean Algorithm, there exist integers x and y with $x m+y n=1$. It is clear from this equation that $(x, n)=1$, so that $(c x, n)=1$. Hence there exists $a \in R_{n}$ satisfying $a \equiv c x(\bmod n)$. Similarly, $(y, m)=1,(c y, m)=1$, and there exists $b \in R_{m}$ satisfying $b \equiv c y(\bmod m)$. Then

$$
a n+b m \equiv(c x) n+(c y) m \equiv c(\bmod m n) .
$$

This completes the proof that R is a reduced residue system modulo $m n$ and establishes that the Euler ϕ-function is multiplicative.

In order to complete the proof of the theorem, we observe next that when p is a prime number, one has $\phi\left(p^{r}\right)=p^{r}-p^{r-1}$, since the total number of residues modulo p^{r} is p^{r}, of which precisely the p^{r-1} divisible by p are not reduced. In this way, the final assertions of the theorem follow by making use of the multiplicative property of ϕ.

Useful properties of $\phi(n)$ that will be employed later stem easily from its multiplicative property. Before establishing one such property, we establish a general result for multiplicative functions.

Lemma 2.3. Suppose that f is multiplicative, and define $g(n)=\sum_{d \mid n} f(d)$. Then g is a multiplicative function.

Proof. Suppose that m and n are natural numbers with $(m, n)=1$, and suppose that $d \mid m n$. Write $d_{1}=(d, m)$ and $d_{2}=(d, n)$. Then $d=d_{1} d_{2}$ and $\left(d_{1}, d_{2}\right)=1$. Thus we obtain

$$
g(m n)=\sum_{d \mid m n} f(d)=\sum_{d_{1} \mid m} \sum_{d_{2} \mid n} f\left(d_{1} d_{2}\right)=\left(\sum_{d_{1} \mid m} f\left(d_{1}\right)\right)\left(\sum_{d_{2} \mid n} f\left(d_{2}\right)\right)
$$

whence $g(m n)=g(m) g(n)$. This completes the proof that g is multiplicative.

Corollary 2.4. One has $\sum_{d \mid n} \phi(d)=n$.
Proof. Observe that for each prime number p, and every natural number r, one has

$$
\sum_{d \mid p^{r}} \phi(d)=\sum_{h=0}^{r} \phi\left(p^{h}\right)=1+\sum_{h=1}^{r}\left(p^{h}-p^{h-1}\right)=p^{r}
$$

Thus, owing to the multiplicative property of ϕ established in Theorem 2.2, it follows from Lemma 2.3 that $\sum_{d \mid n} \phi(d)$ is a multiplicative function, and when $n=\prod_{t=1}^{t} p_{i}^{r_{i}}$

$$
\sum_{d \mid n} \phi(d)=\prod_{i=1}^{t}\left(\sum_{d \mid p^{r_{i}}} \phi(d)\right)=\prod_{i=1}^{t} p^{r_{i}}=n .
$$

To conclude this section, we examine the set of solutions of a polynomial congruence.

Definition 2.5. Let $f \in \mathbb{Z}[x]$, and suppose that r_{1}, \ldots, r_{m} is a complete residue system modulo m. Then we say that the number of solutions of the congruence $f(x) \equiv 0(\bmod m)$ is the number of residues r_{i} with $f\left(r_{i}\right) \equiv$ $0(\bmod m)$.

Theorem 2.6. Suppose that $f \in \mathbb{Z}[x]$, and denote by $N_{f}(m)$ the number of solutions of the congruence $f(x) \equiv 0(\bmod m)$. Then $N_{f}(m)$ is a multiplicative function of m, so that when $m=\prod_{t=1}^{t} p_{i}^{r_{i}}$,

$$
N_{f}(m)=\prod_{i=1}^{t} N_{f}\left(p^{r_{i}}\right)
$$

Proof. Suppose that m_{1} and m_{2} are natural numbers with $m=m_{1} m_{2}$ and $\left(m_{1}, m_{2}\right)=1$. Let $\left\{r_{1}, \ldots, r_{m_{1}}\right\},\left\{s_{1}, \ldots, s_{m_{2}}\right\}$ and $\left\{t_{1}, \ldots, t_{m}\right\}$ be complete residue systems modulo m_{1}, m_{2} and m, respectively. Suppose that some t_{k} satisfies $f\left(t_{k}\right) \equiv 0(\bmod m)$. Then there exist unique r_{i} and s_{j} with

$$
t_{k} \equiv r_{i}\left(\bmod m_{1}\right) \text { and } t_{k} \equiv s_{j}\left(\bmod m_{2}\right)
$$

and they satisfy

$$
f\left(r_{i}\right) \equiv 0\left(\bmod m_{1}\right) \text { and } f\left(s_{j}\right) \equiv 0\left(\bmod m_{2}\right)
$$

Further, if t_{k} and t_{ℓ} satisfy

$$
t_{k} \equiv t_{\ell} \equiv r_{i}\left(\bmod m_{1}\right) \text { and } t_{k} \equiv t_{\ell} \equiv s_{j}\left(\bmod m_{2}\right)
$$

then, by the Chinese Remainder Theorem $t_{k} \equiv t_{\ell}(\bmod m)$, so that $t_{k}=t_{\ell}$. Thus we have defined an injective map from the set of solutions modulo m to the set of pairs of solutions modulo m_{1} and m_{2}.

In the other direction, whenever there exist residues r_{i} and s_{j} with

$$
f\left(r_{i}\right) \equiv 0\left(\bmod m_{1}\right) \text { and } f\left(s_{j}\right) \equiv 0\left(\bmod m_{2}\right)
$$

then by the Chinese Remainder Theorem there exists unique t_{k} with

$$
t_{k} \equiv r_{i}\left(\bmod m_{1}\right) \text { and } t_{k} \equiv s_{j}\left(\bmod m_{2}\right)
$$

so that

$$
f\left(t_{k}\right) \equiv 0\left(\bmod m_{i}\right), i=1,2 .
$$

But since $\left(m_{1}, m_{2}\right)=1$, it follows that

$$
f\left(t_{k}\right) \equiv 0(\bmod m)
$$

There is therefore an injective map from pairs of solutions $\left(r_{i}, s_{j}\right)$ modulo m_{1} and m_{2} respectively, to solutions modulo m.

Collecting together the above conclusions, we find that the solutions modulo m, and pairs of solutions modulo m_{1} and m_{2}, are in bijective correspondence, whence $N_{f}(m)=N_{f}\left(m_{1}\right) N_{f}\left(m_{2}\right)$ whenever $\left(m_{1}, m_{2}\right)=1$. The desired conclusion now follows on considering the prime factorisation of m.

