LECTURE 4: CHINESE REMAINDER THEOREM AND MULTIPLICATIVE FUNCTIONS

1. The Chinese Remainder Theorem

We now seek to analyse the solubility of congruences by reinterpreting their solutions modulo a composite integer m in terms of related congruences modulo prime powers.

Theorem 1.1 (Chinese Remainder Theorem). Let m_1, \ldots, m_r denote positive integers with $(m_i, m_j) = 1$ for $i \neq j$, and let $a_1, \ldots, a_r \in \mathbb{Z}$. Then the system of congruences

$$x \equiv a_i \pmod{m_i} \quad (1 \leqslant i \leqslant r) \tag{1.1}$$

is soluble simultaneously for some integer x. If x_0 is any one such solution, then x is a solution of (1.1) if and only if $x \equiv x_0 \pmod{m_1 m_2 \dots m_r}$.

Proof. Let $m = m_1 m_2 \dots m_r$, and $n_j = m/m_j$ $(1 \le j \le r)$. Then for each $j = 1, \dots, r$ one has $(m_j, n_j) = 1$, whence there exists an integer b_j with

$$n_j b_j \equiv 1 \pmod{m_j}$$

Moreover,

$$n_j b_j = \left(\frac{m_1 \cdots m_r}{m_j m_i} b_j\right) m_i \equiv 0 \pmod{m_i}$$

whenever $i \neq j$. Then if we put

$$x_0 = n_1 b_1 a_1 + \dots + n_r b_r a_r,$$

we find that

$$x_0 \equiv n_i b_i a_i \equiv a_i \pmod{m_i}$$

for $1 \leq i \leq r$. Thus we may conclude that x_0 is a solution of (1.1).

In order to establish uniqueness, suppose that x and y are any two solutions of (1.1). Then one has

$$x \equiv y \pmod{m_i}, \ 1 \leq i \leq r, \text{ and } (m_i, m_j) = 1, \ i \neq j.$$

Then it follows that $x \equiv y \pmod{[m_1, \ldots, m_r]}$. Since m_i 's are coprime, $[m_1, \ldots, m_r] = m_1 \ldots m_r$.

Example 1.2. Find the set of solutions to the system of congruences

$$4x \equiv 1 \pmod{3}, \quad x \equiv 2 \pmod{5}, \quad 2x \equiv 5 \pmod{7}$$

We first convert this into a form where the leading coefficients are all 1. Thus, multiplying the final congruence through by 4 (the multiplicative inverse of 2 modulo 7), we obtain the equivalent system

$$x \equiv 1 \pmod{3}, \quad x \equiv 2 \pmod{5}, \quad x \equiv 6 \pmod{7}.$$

LECTURE 4

We next put $m_1 = 3$, $m_2 = 5$, $m_3 = 7$, so that $(m_i, m_j) = 1$ for $i \neq j$. Define $m = 3 \cdot 5 \cdot 7 = 105$, and $n_1 = 105/3 = 35$, $n_2 = 105/5 = 21$, $n_3 = 105/7 = 15$. We compute integers b_j with $n_j b_j \equiv 1 \pmod{m_j}$ (j = 1, 2, 3) by means of the Euclidean Algorithm (or directly, if the numbers are small enough). Thus we find that

$$35b_1 \equiv 1 \pmod{3} \Rightarrow 2b_1 \equiv 1 \pmod{3} \Rightarrow b_1 \equiv 2 \pmod{3},$$

$$21b_2 \equiv 1 \pmod{5} \Rightarrow b_2 \equiv 1 \pmod{5},$$

$$15b_3 \equiv 1 \pmod{7} \Rightarrow b_3 \equiv 1 \pmod{7}.$$

So take

$$x_0 = 35 \cdot 2 \cdot 1 + 21 \cdot 1 \cdot 2 + 15 \cdot 1 \cdot 6$$

= 70 + 42 + 90 = 202 \equiv 97 (mod 105).

Then we find that $x_0 = 97$ satisfies the given congruences, and the complete set of solutions is given by x = 97 + 105k ($k \in \mathbb{Z}$).

Example 1.3. Find the set of solutions, if any, to the system of congruences

$$x \equiv 1 \pmod{15}, \quad x \equiv 2 \pmod{35}.$$

In this example, the moduli of the two congruences are not coprime, since (35, 15) = 5. In order to determine whether or not the system is soluble, we therefore need to examine the underlying congruences, extracting as a modulus this greatest common divisor. Thus we find that any potential solution x of the system must satisfy

$$x \equiv 1 \pmod{15} \Rightarrow x \equiv 1 \pmod{3} \text{ and } x \equiv 1 \pmod{5},$$

and at the same time

 $x \equiv 2 \pmod{35} \Rightarrow x \equiv 2 \pmod{5}$ and $x \equiv 2 \pmod{7}$.

But then one has $x \equiv 1 \pmod{5}$ and $x \equiv 2 \pmod{5}$, two congruence conditions that are plainly incompatible. We may conclude then that there are no solutions of the simultaneous congruences $x \equiv 1 \pmod{15}$ and $x \equiv 2 \pmod{35}$.

2. Multiplicative functions

We wish to investigate further the properties of the Euler totient function, and so pause to introduce the concept of a multiplicative function.

Definition 2.1. (i) We say that a function $f : \mathbb{N} \to \mathbb{C}$ is an **arithmetical** function;

(ii) An arithmetical function f is said to be **multiplicative** if (a) f is not identically zero, and (b) whenever (m, n) = 1, one has f(mn) = f(m)f(n); (iii) An arithmetical function g is said to be **totally multiplicative** if for all natural numbers m and n, one has g(mn) = g(m)g(n).

Note that if f(n) is multiplicative, then necessarily one has f(1) = 1.

LECTURE 4

Theorem 2.2. The function $\phi(n)$ is multiplicative. Thus, whenever (m, n) = 1, one has $\phi(mn) = \phi(m)\phi(n)$. Moreover, if n has canonical prime factorisation $n = \prod_{i=1}^{t} p_i^{r_i}$, then

$$\phi(n) = \prod_{i=1}^{t} p_i^{r_i - 1}(p_i - 1) = n \prod_{p|n} (1 - 1/p).$$

Proof. Let m and n be natural numbers with (m, n) = 1. Let R_m and R_n be reduced residue systems modulo m and n respectively. Let us consider the set

$$R = \{an + bm : a \in R_m, b \in R_n\}.$$

We observe that if

$$an + bm \equiv a'n + b'm \pmod{mn}$$

for some $a, a' \in R_m$ and $b, b' \in R_n$, then $an \equiv a'n \pmod{m}$, and since (n, m) = 1, $a \equiv a' \pmod{m}$, so that a = a'. Similarly, we also deduce that b = b'. Hence, all the numbers an + bm with $a \in R_m$ and $b \in R_n$ are district, and $|R| = |R_m||R_n|$.

We claim that R is a reduced residue system modulo mn. This will immediately imply that $\phi(mn) = \phi(m)\phi(n)$. We note that the above argument already shows that

$$an + bm \not\equiv a'n + b'm \pmod{mn}$$

for $(a,b) \neq (a',b') \in R_m \times R_n$. Moreover, whenever (a,m) = (b,n) = 1, one has

$$(an + bm, n) = (bm, n) = 1$$
 and $(an + bm, m) = (an, m) = 1$,

whence (an + bm, mn) = 1. Therefore, all $r \in R$ satisfy (r, mn) = 1.

We next seek to establish that whenever (c, mn) = 1, then there exist $a \in R_m$ and $b \in R_n$ with $c \equiv an + bm \pmod{mn}$. But (m, n) = 1, so by the Euclidean Algorithm, there exist integers x and y with xm + yn = 1. It is clear from this equation that (x, n) = 1, so that (cx, n) = 1. Hence there exists $a \in R_n$ satisfying $a \equiv cx \pmod{n}$. Similarly, (y, m) = 1, (cy, m) = 1, and there exists $b \in R_m$ satisfying $b \equiv cy \pmod{m}$. Then

$$an + bm \equiv (cx)n + (cy)m \equiv c \pmod{mn}.$$

This completes the proof that R is a reduced residue system modulo mn and establishes that the Euler ϕ -function is multiplicative.

In order to complete the proof of the theorem, we observe next that when p is a prime number, one has $\phi(p^r) = p^r - p^{r-1}$, since the total number of residues modulo p^r is p^r , of which precisely the p^{r-1} divisible by p are not reduced. In this way, the final assertions of the theorem follow by making use of the multiplicative property of ϕ .

Useful properties of $\phi(n)$ that will be employed later stem easily from its multiplicative property. Before establishing one such property, we establish a general result for multiplicative functions.

Lemma 2.3. Suppose that f is multiplicative, and define $g(n) = \sum_{d|n} f(d)$. Then g is a multiplicative function.

Proof. Suppose that m and n are natural numbers with (m, n) = 1, and suppose that $d \mid mn$. Write $d_1 = (d, m)$ and $d_2 = (d, n)$. Then $d = d_1d_2$ and $(d_1, d_2) = 1$. Thus we obtain

$$g(mn) = \sum_{d|mn} f(d) = \sum_{d_1|m} \sum_{d_2|n} f(d_1d_2) = \left(\sum_{d_1|m} f(d_1)\right) \left(\sum_{d_2|n} f(d_2)\right)$$

whence g(mn) = g(m)g(n). This completes the proof that g is multiplicative.

Corollary 2.4. One has $\sum_{d|n} \phi(d) = n$.

Proof. Observe that for each prime number p, and every natural number r, one has

$$\sum_{d|p^r} \phi(d) = \sum_{h=0}^r \phi(p^h) = 1 + \sum_{h=1}^r (p^h - p^{h-1}) = p^r.$$

Thus, owing to the multiplicative property of ϕ established in Theorem 2.2, it follows from Lemma 2.3 that $\sum_{d|n} \phi(d)$ is a multiplicative function, and when $n = \prod_{t=1}^{t} p_i^{r_i}$

$$\sum_{d|n} \phi(d) = \prod_{i=1}^t \left(\sum_{d|p^{r_i}} \phi(d) \right) = \prod_{i=1}^t p^{r_i} = n.$$

To conclude this section, we examine the set of solutions of a polynomial congruence.

Definition 2.5. Let $f \in \mathbb{Z}[x]$, and suppose that r_1, \ldots, r_m is a complete residue system modulo m. Then we say that the **number of solutions** of the congruence $f(x) \equiv 0 \pmod{m}$ is the number of residues r_i with $f(r_i) \equiv 0 \pmod{m}$.

Theorem 2.6. Suppose that $f \in \mathbb{Z}[x]$, and denote by $N_f(m)$ the number of solutions of the congruence $f(x) \equiv 0 \pmod{m}$. Then $N_f(m)$ is a multiplicative function of m, so that when $m = \prod_{t=1}^{t} p_i^{r_t}$,

$$N_f(m) = \prod_{i=1}^t N_f(p^{r_i}).$$

Proof. Suppose that m_1 and m_2 are natural numbers with $m = m_1m_2$ and $(m_1, m_2) = 1$. Let $\{r_1, \ldots, r_{m_1}\}$, $\{s_1, \ldots, s_{m_2}\}$ and $\{t_1, \ldots, t_m\}$ be complete residue systems modulo m_1 , m_2 and m, respectively. Suppose that some t_k satisfies $f(t_k) \equiv 0 \pmod{m}$. Then there exist unique r_i and s_j with

$$t_k \equiv r_i \pmod{m_1}$$
 and $t_k \equiv s_j \pmod{m_2}$,

and they satisfy

$$f(r_i) \equiv 0 \pmod{m_1}$$
 and $f(s_i) \equiv 0 \pmod{m_2}$.

Further, if t_k and t_ℓ satisfy

$$t_k \equiv t_\ell \equiv r_i \pmod{m_1}$$
 and $t_k \equiv t_\ell \equiv s_j \pmod{m_2}$,

then, by the Chinese Remainder Theorem $t_k \equiv t_{\ell} \pmod{m}$, so that $t_k = t_{\ell}$. Thus we have defined an injective map from the set of solutions modulo m to the set of pairs of solutions modulo m_1 and m_2 .

In the other direction, whenever there exist residues r_i and s_j with

 $f(r_i) \equiv 0 \pmod{m_1}$ and $f(s_j) \equiv 0 \pmod{m_2}$,

then by the Chinese Remainder Theorem there exists unique t_k with

$$t_k \equiv r_i \pmod{m_1}$$
 and $t_k \equiv s_j \pmod{m_2}$,

so that

$$f(t_k) \equiv 0 \pmod{m_i}, i = 1, 2$$

But since $(m_1, m_2) = 1$, it follows that

 $f(t_k) \equiv 0 \pmod{m}.$

There is therefore an injective map from pairs of solutions (r_i, s_j) modulo m_1 and m_2 respectively, to solutions modulo m.

Collecting together the above conclusions, we find that the solutions modulo m, and pairs of solutions modulo m_1 and m_2 , are in bijective correspondence, whence $N_f(m) = N_f(m_1)N_f(m_2)$ whenever $(m_1, m_2) = 1$. The desired conclusion now follows on considering the prime factorisation of m.