LECTURE 4: CHINESE REMAINDER THEOREM AND
MULTIPLICATIVE FUNCTIONS

1. THE CHINESE REMAINDER THEOREM

We now seek to analyse the solubility of congruences by reinterpreting their
solutions modulo a composite integer m in terms of related congruences modulo
prime powers.

Theorem 1.1 (Chinese Remainder Theorem). Let my, ..., m, denote positive
integers with (m;,m;) =1 fori # j, and let a1, ...,a, € Z. Then the system
of congruences

r=a; (modm;) (1<i<r) (1.1)
15 soluble simultaneously for some integer x. If xy is any one such solution,
then x is a solution of (1.1) if and only if x = x¢ (mod mymy ... m,).

Proof. Let m = mymgy...m,, and n; = m/m; (1 < j < r). Then for each
j=1,...,r one has (m;,n;) = 1, whence there exists an integer b; with

n;b; =1 (mod m;).
Moreover,

njb; = (Mbj) m; =0 (mod m;)
m;ms;
whenever 7 # j. Then if we put
o = mbia; +--- +n,bea,,
we find that
xo = nibja; = a; (mod my)
for 1 < i < r. Thus we may conclude that x, is a solution of (1.1).
In order to establish uniqueness, suppose that  and y are any two solutions
of (1.1). Then one has
r=y (modm;), 1<i<r, and (m;,m;) =1, i#j.

Then it follows that = y (mod [m4,...,m,]). Since m;’s are coprime,
[ma,...,m;| =mq...m,. O

Example 1.2. Find the set of solutions to the system of congruences
4r =1 (mod 3), =z =2 (mod5), 2z=5 (mod?7).
We first convert this into a form where the leading coefficients are all 1. Thus,

multiplying the final congruence through by 4 (the multiplicative inverse of 2
modulo 7), we obtain the equivalent system

r=1(mod 3), z=2(mod5), z=6 (mod7).
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We next put my = 3, mg =5, mg = 7, so that (m;, m;) =1 for i # j. Define
m=3-5-7=105, and n; = 105/3 = 35, ny = 105/5 = 21, n3g = 105/7 = 15.
We compute integers b; with n;b; = 1 (mod m;) (j = 1,2, 3) by means of the
Euclidean Algorithm (or directly, if the numbers are small enough). Thus we
find that

35b; =1 (mod 3) = 2b; =1 (mod 3) = by =2 (mod 3),
21by =1 (mod 5) = by =1 (mod 5),
15b3 =1 (mod 7) = b3 =1 (mod 7).
So take
x9=35-2-1+21-1-2+15-1-6
= 70 + 42 + 90 = 202 = 97 (mod 105).

Then we find that xq = 97 satisfies the given congruences, and the complete
set of solutions is given by = 97 + 105k (k € Z).

Example 1.3. Find the set of solutions, if any, to the system of congruences
z =1 (mod 15), z =2 (mod 35).

In this example, the moduli of the two congruences are not coprime, since
(35,15) = 5. In order to determine whether or not the system is soluble, we
therefore need to examine the underlying congruences, extracting as a modulus
this greatest common divisor. Thus we find that any potential solution = of
the system must satisfy

r=1(mod15) = x=1(mod3) and z =1 (mod5),
and at the same time
r=2(mod 35) = x=2(modb5) and 2z =2 (mod 7).

But then one has x = 1 (mod 5) and z = 2 (mod 5), two congruence condi-
tions that are plainly incompatible. We may conclude then that there are no so-
lutions of the simultaneous congruences x = 1 (mod 15) and x = 2 (mod 35).

2. MULTIPLICATIVE FUNCTIONS

We wish to investigate further the properties of the Euler totient function,
and so pause to introduce the concept of a multiplicative function.

Definition 2.1. (i) We say that a function f : N — C is an arithmetical
function;

(ii) An arithmetical function f is said to be multiplicative if (a) f is not
identically zero, and (b) whenever (m,n) = 1, one has f(mn) = f(m)f(n);
(iii) An arithmetical function g is said to be totally multiplicative if for all
natural numbers m and n, one has g(mn) = g(m)g(n).

Note that if f(n) is multiplicative, then necessarily one has f(1) = 1.
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Theorem 2.2. The function ¢(n) is multiplicative. Thus, whenever (m,n) =
1, one has ¢(mn) = ¢p(m)p(n). Moreover, if n has canonical prime factorisa-
tionn = [[._, p}", then

p(n) = Hp?_l(pi -1 =n]J00-1/p).

pln

Proof. Let m and n be natural numbers with (m,n) = 1. Let R,, and R,, be
reduced residue systems modulo m and n respectively. Let us consider the set

R={an+bm: a€c R,,be R,}.
We observe that if
an +bm = a'n + V'm (mod mn)

for some a,d’ € R,, and b,0’ € R,,, then an = a'n (mod m), and since (n,m) =
1, a = d’ (mod m), so that a = /. Similarly, we also deduce that b = V.
Hence, all the numbers an + bm with a € R,, and b € R,, are district, and
|R| = [R||Rn.

We claim that R is a reduced residue system modulo mn. This will im-
mediately imply that ¢(mn) = ¢(m)p(n). We note that the above argument
already shows that

an + bm # a'n + b'm (mod mn)

for (a,b) # (d',V') € R,, X R,,. Moreover, whenever (a,m) = (b,n) = 1, one
has

(an+bm,n) = (bm,n) =1 and (an+bm,m)= (an,m) =1,

whence (an + bm,mn) = 1. Therefore, all r € R satisty (r,mn) = 1.

We next seek to establish that whenever (¢, mn) = 1, then there exist a € R,,
and b € R,, with ¢ = an+bm (mod mn). But (m,n) = 1, so by the Euclidean
Algorithm, there exist integers = and y with xm + yn = 1. It is clear from
this equation that (z,n) = 1, so that (cz,n) = 1. Hence there exists a € R,
satisfying a = cx (mod n). Similarly, (y,m) = 1, (cy,m) = 1, and there exists
b € R, satisfying b = cy (mod m). Then

an 4+ bm = (cx)n + (cy)m = ¢ (mod mn).

This completes the proof that R is a reduced residue system modulo mn and
establishes that the Euler ¢-function is multiplicative.

In order to complete the proof of the theorem, we observe next that when
p is a prime number, one has ¢(p") = p" — p"~!, since the total number of
residues modulo p” is p”, of which precisely the p"~! divisible by p are not
reduced. In this way, the final assertions of the theorem follow by making use
of the multiplicative property of ¢. |

Useful properties of ¢(n) that will be employed later stem easily from its
multiplicative property. Before establishing one such property, we establish a
general result for multiplicative functions.
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Lemma 2.3. Suppose that f is multiplicative, and define g(n) = 3, f(d).
Then g is a multiplicative function.

Proof. Suppose that m and n are natural numbers with (m,n) = 1, and sup-
pose that d | mn. Write d; = (d,m) and dy = (d,n). Then d = d;d, and
(dy,dy) = 1. Thus we obtain

gmn) =" f(d) =33 fldide) = [ Y fldr) | [ D fld2) ]

dlmn di|m da|n dilm da|n

whence g(mn) = g(m)g(n). This completes the proof that ¢ is multiplicative.
0J

Corollary 2.4. One has 3_,, ¢(d) = n.

Proof. Observe that for each prime number p, and every natural number r,

one has
Do) =D (") =1+> " —p") ="
d|p” h=0 h=1
Thus, owing to the multiplicative property of ¢ established in Theorem 2.2 it
follows from Lemma 2.3 that },,, ¢(d) is a multiplicative function, and when
n= Hi:l p;’
t t
Yoo =111 0@ | =]]r=n
dn i=1 \d|p"i i=1

OJ

To conclude this section, we examine the set of solutions of a polynomial
congruence.

Definition 2.5. Let f € Z[z|, and suppose that ry,...,r, is a complete
residue system modulo m. Then we say that the number of solutions of
the congruence f(z) = 0 (mod m) is the number of residues r; with f(r;) =
0 (mod m).

Theorem 2.6. Suppose that f € Z[z], and denote by N¢(m) the number of
solutions of the congruence f(x) =0 (mod m). Then N¢(m) is a multiplicative
function of m, so that when m = Hi:l i,

Ny(m) = [V, 7).

Proof. Suppose that m; and msy are natural numbers with m = mymy and
(my,mq) = 1. Let {ry,....;rm }, {S1,--+,Smyt and {t1,...,t,,} be complete
residue systems modulo my, mo and m, respectively. Suppose that some %
satisfies f(tx) = 0 (mod m). Then there exist unique r; and s; with

ty =73 (mod my) and &, = s; (mod my),
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and they satisfy
f(r;) =0 (mod my) and f(s;) =0 (mod my).
Further, if ¢, and t, satisfy
ty =ty =1; (mod my) and ¢, =t, = s; (mod my),

then, by the Chinese Remainder Theorem t; = t, (mod m), so that t; = t,.
Thus we have defined an injective map from the set of solutions modulo m to
the set of pairs of solutions modulo m; and ms.

In the other direction, whenever there exist residues r; and s; with
f(r;) =0 (mod my) and f(s;) =0 (mod my),
then by the Chinese Remainder Theorem there exists unique ¢, with
ty = r; (mod my) and t; = s; (mod my),
so that
f(tx) =0 (mod m;), i = 1,2.
But since (my,ms) = 1, it follows that
f(tx) =0 (mod m).

There is therefore an injective map from pairs of solutions (r;, s;) modulo m4

and msy respectively, to solutions modulo m.

Collecting together the above conclusions, we find that the solutions modulo
m, and pairs of solutions modulo m; and ms, are in bijective correspondence,
whence Ny(m) = Ng(my)Ng(ms) whenever (my, mg) = 1. The desired conclu-
sion now follows on considering the prime factorisation of m. 0



