
LECTURE 5: APPLICATIONS TO CRYPTOGRAPHY AND
COMPUTATIONS

Modular arithmetics that we have discussed in the previous lectures is very
useful in Cryptography and Computer Science. Here we discuss several of
these applications.

1. Diffie–Hellman key exchange

Suppose two people, Alice and Bob, want to use an insecure communication
channel to agree on a secret “shared key” that they can use to do further
encryption for long messages. The Diffie–Hellman key exchange method, which
is used in many of the web browsers, provides a way. It proceeds as follows:

(1) Alice and Bob agree on a big prime number p and a non-zero residue
x modulo p. This is public information which is also available to an
adversary. A secret key will be among non-zero residues modulo p.

(2) Alice chooses a large secret integer a < p, Bob chooses a large secret
integer b < p. These are their “private keys”.

(3) Alice computes her “public key”

A ≡ xa (mod p)

and sends it to Bob using insecure communication. Likewise, Bob
computes his public key

B ≡ xb (mod p)

and sends it to Alice. An adversary could also get access to A and B.
(4) Finally, Alice computes Ba (mod p), and Bob computes Ab (mod p).

We observe that it follows from basic properties of modular arithmetic
that

Ba = (xb)a ≡ xab ≡ (xa)b ≡ Ab (mod p).

This residue is the secret key that Alice and Bob can use for further
communications.

This scheme is based on the assumption that given a residues x and y modulo
p, it is difficult to find an exponent a such that

xa ≡ y (mod p).

This is called the discrere logarithm problem. At present time, there is no
efficient (polynomial-time) algorithm for solving this problem, but there is an
efficient algorithm using quantum computers.
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2. Public-Key Cryptography: the RSA cryptosystem

Suppose that Alice wishes to securely send a message to Bob, avoiding Eve
malevolently deciphering this message. We suppose that a message constitutes
a number a in the range 1 6 a < N for some large N (longer messages could
be send in pieces). How do we achieve secure communication? We will provide
a sketch of the RSA cryptosystem, invented by Rivest, Shamir and Adleman.

(1) Bob picks two large primes p and q in an essentially random manner,
with p 6= q. He computes N = pq. Bob also chooses a natural number r
coprime to φ(N) that is not too small. Notice that since Bob knows the
prime factorisation of N , he is able to compute φ(N) = (p− 1)(q − 1)
quickly, and hence obtain a suitable integer r (for instance, by trial and
error) using the Euclidean Algorithm. Bob publishes integers N and
r, but keeps the primes p and q secret. We note that since Bob knows
φ(N) he can also find an integer s such that

sr ≡ 1 (mod φ(N)).

This integer can be found by solving the equation xr+yφ(N) = 1 with
a help of the Euclid algorithm.

(2) Now Alice would like to send to Bob a secret integer a with 1 6 a < N .
She computes

b ≡ ar (mod N),

and send b over an insecure channel.
(3) Finally, Bob computes

bs (mod N).

It follows from the theorem below that this is exactly the secret number
a.

Theorem 2.1. For all integers a, one has bs ≡ a (mod N).

Proof. We observe that since sr ≡ 1 (mod φ(N)),

sr = 1 + kφ(N)

for some k ∈ Z.

Suppose first that (a,N) = 1. Then it follows from Euler’s Theorem that

aφ(N) ≡ 1 (mod N).

Hence, since sr ≡ 1 (mod φ(N)), we obtain that

bs = asr = a(aφ(N))k ≡ a (mod N)

Since N = pq, it follows that when (a,N) 6= 1, then one has (a,N) = p, q or
pq. In the latter case, we have a = pq = N , and then the conclusion is trivial.
Suppose then that (a,N) = p, so that p | a and (a, q) = 1. In this situation
the former condition yields

bs ≡ asr ≡ 0 ≡ a (mod p),
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and in view of Fermat’s Little theorem (aq−1 ≡ 1 (mod q)), the latter yields

bs = asr = a(aq−1)k(p−1) ≡ a (mod q).

Thus bs ≡ a (mod p) and bs ≡ a (mod q), whence bs ≡ a (mod pq). The
situation in which (a,N) = q may be analysed in a similar manner, and so this
completes the proof. �

It remains to discuss the feasibility and security of this cryptosystem. The
first observation to make is that all of the operations required to make use of
the RSA cryptosystem are fast. The application of the Euclidean Algorithm,
and the operation of taking powers modulo N , have running time O(logN)
arithmetic operations. This is proportional to the number of digits in N .
Second, we need to have available plenty of large prime numbers (p and q)
in order to derive good public keys. Fortunately, there are relatively fast
primality tests available. The security of the RSA cryptosystem depends on
the difficulty of factoring large integers N and computing φ(N).

Aside: A probabilistic test is available with running time polynomial in log n
that can discern, provably, that a number n is composite. For the numbers that
survive this test, the Adleman-Pomerance-Rumely test can establish primality, or
compositeness, provably in deterministic time O((log n)c log log logn), which is close
to polynomial in log n. More recently, Agrawal, Kayal and Saxena have devised an
algorithm that has running time polynomial in logn.

The naive factorisation algorithm supplies a factorisation of a composite inte-

ger in running time O(
√
n) arithmetic operations. The fastest available factori-

sation algorithm for very large integers is the Number Field Sieve, with running

time exp(c(log n)1/3(log log n)2/3) arithmetic operations to factor a large integer n,

wherein c is a suitably large positive constant. This is much larger than polyno-

mial in log n. If a quantum computer can be built, then Shor’s Quantum Algorithm

would factor integers n in a time polynomial in log n, and would constitute a threat

to the RSA cryptosystem.

3. Searching for prime numbers

It crucial for many application to have an efficient way for generating large
prime numbers and, in particular, testing that a given number is prime. One of
the most basic test is based on the Fermat’s Little Theorem. Recall that if the
number n is prime, then for any a = 1, . . . , n− 1, we have an−1 ≡ 1 (mod n).
Hence, if we find a = 1, . . . , n− 1 such that

an−1 6≡ 1 (mod n), (3.1)

then a is composite. This motivates the following definition.

Definition 3.1. A number a = 1, . . . , n− 1 is called a Fermat witness for n if
(3.1) holds.

Example 3.2. Let n = 225 + 1 Fermat thought that n is prime, but it is not.
Although

2n−1 ≡ 1 (mod n),
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one can check that
3n−1 6≡ 1 (mod n).

Let n = 2214 + 1. This number has 4933 digits. While

2n−1 ≡ 1 (mod n),

one can check that
3n−1 6≡ 1 (mod n),

so that n is composite. Compositeness of n was first shown in 1961, but a
nontrivial factor of n was found in 2010.

Theorem 3.3. If n is composite, then there exists at least one Fermat witness.

Proof. Indeed, if a be a proper divisor of n, then a divides both an−1 and n,
so that (3.1) is impossible. �

However, finding a Fermat witness could be difficult. We show that in most
cases the proportion of Fermat witnesses for composite numbers exceeds 50%.

Theorem 3.4. Suppose that bn−1 6≡ 1 (mod n) for some b with (b, n) = 1.
Then

|{a = 1, . . . , n− 1 : an−1 6≡ 1 (mod n)} > n− 1

2
.

Proof. We consider the sets

A = {a = 1, . . . , n− 1 : an−1 ≡ 1 (mod n)},
B = {a = 1, . . . , n− 1 : (a, n) = 1, an−1 6≡ 1 (mod n)},
C = {a = 1, . . . , n− 1 : (a, n) > 1}.

These sets are disjoint, A ∪ B ∪ C = {1, . . . , n − 1}, and B ∪ C are precisely
the Fermat witnesses for n.

For b ∈ B and a ∈ A,

(ab)n−1 ≡ an−1bn−1 ≡ bn−1 6≡ 1 (mod n),

and (ab, n) = 1. This shows Ab (mod n) ⊂ B. If ab ≡ a′b (mod n), then
a = a′, so that the size of Ab (mod n) is equal to the size of A. Hence, we
deduce that |B| > |A|. We obtain

n− 1 = |A|+ |B|+ |C| > |A|+ |A|+ 1 > 2|A|.
This shows that |A| < (n− 1)/2 and |B ∪ C| > (n− 1)/2, as required.

�

Unfortunately, this theorem does not apply for some composite numbers.
We say that n is a Carmichael number if n is composite and an−1 ≡ 1 (mod n)
for all a such that (a, n) = 1. The first five Carmichael numbers are 561,
1105, 1729, 2465, 2821. Alford, Granville, and Pomerance proved that there
are infinitely many Carmichael numbers.

A refined version of the Fermat test, which nowadays is used in many com-
putational programmes, goes under the name — Miller-Rabin test. It is based
on the following observation.
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Theorem 3.5. If n > 2 is a prime number and n − 1 = 2ek, then for al
a = 1, . . . , n − 1, either ak ≡ 1 (mod n) or a2

ik ≡ −1 (mod n) for some
i = 0, . . . , e− 1.

Proof. We observe that

a2
ek − 1 = (a2

e−1k)2 − 1

= (a2
e−1k − 1)(a2

e−1k + 1)

= · · ·

= (ak − 1)(ak + 1)(a2k + 1) · · · (a2e−1k + 1).

If n is a prime number, then an−1− 1 ≡ 0 (mod n), and n must divide at least
one of the factors in the above product. This implies the theorem. �

This result provides a useful way to test primality.

Definition 3.6. Let n > 1 be an odd integer and n − 1 = 2ek for odd k. A
number a = 1, . . . , n− 1 is called a Miller-Rabin witness for n if

ak 6≡ 1 (mod n) and a2
ik 6≡ −1 (mod n) for all i = 1, . . . , n− 1.

It was shown if n is odd and composite, then the proportion of Miller–Rabin
witnesses is always at least 75%. Hence, it is easier to find a Miller–Rabin
witness than a Fermat witness.

Aside: It was proven assuming The Generalised Riemann Hypothesis (a very

difficult conjecture in Number Theory) that if n is odd and composite, then there

exists a a Miller–Rabin witness of size at most 2(log n)2. Hence, the Rabin–Miller

test is expected to provide a polynomial-time algorithm for testing primality.


