
LECTURE 7: POLYNOMIAL CONGRUENCES TO PRIME
POWER MODULI

1. Hensel Lemma for nonsingular solutions

Although there is no analogue of Lagrange’s Theorem for prime power mod-
uli, there is an algorithm for determining when a solution modulo p gener-
ates solutions to higher power moduli. The motivation comes from Newton’s
method for approximating roots over the real numbers.

Suppose that x = a is a solution of the polynomial congruence

f(x) ≡ 0 (mod pj),

and we want to use it to get a solution modulo pj+1. Th idea is to search for
solutions of the form x = a+ tpj. The Taylor expansion gives

f(a+ tpj) = f(a) + tpjf ′(a) + t2p2jf ′′(a)/2! + · · ·+ tnpnjf (n)(a)/n!,

where n is the degree of f . Despite the presence of reciprocals of factorials,
the coefficients in the above Taylor expansion are necessarily integral. Indeed,
if f(x) = xm then f (k)(a)/k! =

(
m
k

)
am−k ∈ Z, and it follows for general f by

linearity. Hence,

f(a+ tpj) = f(a) + tpjf ′(a) (mod pj+1).

Since pj|f(a), the congruence f(a+ tpj) ≡ 0 (mod pj+1) is equivalent to

tf ′(a) ≡ −f(a)

pj
(mod p).

This congruences have either zero, one, or p solutions. In the case when f ′(a) 6≡
0 (mod p), it has exactly one solution. We conclude:

Theorem 1.1 (Hensel Lemma). Let f ∈ Z[x]. Suppose that

f(a) ≡ 0 (mod pj) and f ′(a) 6≡ 0 (mod p).

Then there exists a unique t (mod p) such that

f(a+ tpj) ≡ 0 (mod pj+1).

Hensel’s lemma implies that every a solution xj of f(x) ≡ 0 (mod pj) satisfy-
ing f ′(xj) 6≡ 0 (mod p) lifts to a unique solution xj+1 of f(x) ≡ 0 (mod pj+1)
such that xj+1 ≡ xj (mod pj). This solution could be computed using the
recursive formula:

xj+1 = xj − f(xj)f
′(xj)

−1 (mod pj+1),

where f ′(xj)
−1 denotes the multiplicative inverse of f ′(xj) modulo p.

Example 1.2. Solve the congruence x3 + x+ 4 ≡ 0 (mod 73).
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(I) We first solve the corresponding congruence modulo 7, since any solution x
modulo 73 must also satisfy x3 + x+ 4 ≡ 0 (mod 7). By an exhaustive search
(try x = 0,±1,±2,±3), we find that the only solution is x ≡ 2 (mod 7).

(II) Next, we try to solve the corresponding congruence modulo 72, since any
solution x modulo 73 must also satisfy x3 +x+4 ≡ 0 (mod 72). But such solu-
tions must also satisfy the corresponding solution modulo 7, so x ≡ 2 (mod 7).
Then we put x = 2 + 7y and substitute. We need to solve

(2 + 7y)3 + (2 + 7y) + 4 ≡ 0 (mod 72).

Notice that when we use the Binomial Theorem to expand the cube, any terms
involving 72 or 73 can be ignored. Thus we need to solve

(23 + 3 · 22 · 7y) + (2 + 7y) + 4 = 14 + 13 · 7y ≡ 0 (mod 72),

or equivalently,
13y + 2 ≡ −y + 2 ≡ 0 (mod 7).

Then we put y = 2 and find that x = 2 + 7y = 16 satisfies the congruence
x3 + x+ 4 ≡ 0 (mod 72).

(III) We can now repeat the previous strategy (and in fact, we can repeat this
as many times as necessary). So we substitute x = 16 + 72z and solve for z to
obtain a solution modulo 73. Thus we need to solve

(16 + 72z)3 + (16 + 72z) + 4 ≡ (163 + 3 ·162 ·72z) + (16 + 72z) + 4 ≡ 0 (mod 73).

But 163 + 16 + 4 is divisible by 72 (why do we know this?), and in fact is equal
to 84 · 72. Then we need to solve

84 · 72 + (3 · 162 + 1) · 72z ≡ 0 (mod 73),

which is equivalent to

(3 · 162 + 1)z + 84 ≡ 0 (mod 7),

or 13z ≡ 0 (mod 7). So we put z = 0, and find that x ≡ 16 (mod 73) solves
x3 + x+ 4 ≡ 0 (mod 73).

Example 1.3. Let f(x) = x2 + 1. Find the solutions of the congruence
f(x) ≡ 0 (mod 54).

Observe that the congruence x2 + 1 ≡ 0 (mod 5) has the solutions x ≡
±2 (mod 5) (note that there are at most 2 solutions modulo 5, by Lagrange’s
theorem). Consider first the solution x1 = 2 of the latter congruence. One
finds that f ′(x1) = 2x1 ≡ −1 (mod 5). It follows that 5 6 |f ′(x1), and since
f(x1) = 5 ≡ 0 (mod 5), we may apply Hensel’s iteration to find integers xn
(n > 1) with f(xn) ≡ 0 (mod 5n). We obtain

x2 ≡ x1 −
f(x1)

f ′(x1)
≡ 2− 5

−1
≡ 7 (mod 52),

x3 ≡ 7− 50

14
≡ 7− 50

−1
≡ 57 (mod 53)

x4 ≡ 57− 3250

114
≡ 57− 3250

−1
≡ 3307 ≡ 182 (mod 54).
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Thus x = 182 provides a solution of the congruence x2 +1 ≡ 0 (mod 54). Pro-
ceeding similarly, one may lift the alternate solution x = −2 to the congruence
x2 + 1 ≡ 0 (mod 5) to obtain the solution x ≡ −182 (mod 54). Note that in
each instance, the lifting process provided by Hensel’s lemma led to a unique
residue modulo 54 corresponding to each starting solution modulo 5.

2. Hensel Lemma in general

Now we consider the problem of lifting solutions when f ′(a) ≡ 0 (mod p).

Example 2.1. Let f(x) = x2 − 4x + 13. Find all of the solutions of the
congruence f(x) ≡ 0 (mod 34).

Notice that

x2 − 4x+ 13 ≡ x2 + 2x+ 1 ≡ (x+ 1)2 (mod 3),

and hence x ≡ −1 (mod 3) is the only solution of the congruence f(x) ≡ 0
(mod 3). Next, since f ′(x) = 2x − 4, we find that 3|f ′(−1), We proceed
systematically:

(i) Observe first that all solutions satisfy x ≡ 2 (mod 3), and so any solution
x must satisfy x ≡ 2, 5 or 8 modulo 9. One may verify that all three residue
classes satisfy f(x) ≡ 0 (mod 9).

(ii) Next we consider all residues modulo 27 satisfying x ≡ 2, 5 or 8 modulo
9, and find that none of these (there are 9 such residues) provide solutions of
f(x) ≡ 0 (mod 27).

So there are no solutions to the congruence x2 − 4x+ 13 ≡ 0 (mod 33).

This example shows that solutions modulo p in general may not lift to solu-
tions modulo some higher powers of p, but not necessarily to solutions modulo
arbitrarily high powers of p. Moreover, lifts of the solutions are not unique.

Theorem 2.2. Let f ∈ Z[x]. Suppose that

f(a) ≡ 0 (mod pj) and pτ ‖ f ′(a).1

Then if j > 2τ + 1, whenever b ≡ a (mod pj−τ ), one has

f(b) ≡ f(a) (mod pj) and pτ ‖ f ′(b).

Proof. Writing b = a+ hpj−τ and applying Taylor’s expansion, we obtain

f(b) = f(a+ hpj−τ ) = f(a) + hpj−τf ′(a) +
1

2!
f ′′(a)(hpj−τ )2 + . . .

The quadratic and higher terms in the above expansion are all divisible by
p2(j−τ). But j > 2τ + 1, whence 2(j − τ) = j + (j − 2τ) > j + 1, and so

f(b) ≡ f(a) + hpj−τf ′(a) (mod pj).

Since pτ | f ′(a), the latter shows that f(b) ≡ f(a) (mod pj).

1Recall that pi ‖ A means that pi|A and pi+1 6 |A.
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Applying Taylor’s theorem in like manner to f ′ one finds that

f ′(b) = f ′(a+ hpj−τ ) ≡ f ′(a) (mod pj−τ )

≡ f ′(a) (mod pτ+1),

since j − τ > τ + 1. Then since pτ ‖ f ′(a), one obtains pτ ‖ f ′(b). �

A good news is that a solution f(x) ≡ 0 (mod pj) gives rise to a solution
f(x) ≡ 0 (mod pj+1) provided that j is sufficiently large.

Theorem 2.3 (Hensel Lemma). Let f ∈ Z[x]. Suppose that

f(a) ≡ 0 (mod pj) and pτ ‖ f ′(a).

Then if j > 2τ + 1, there is a unique residue t (mod p) such that

f(a+ tpj−τ ) ≡ 0 (mod pj+1).

Proof. Since pτ ‖ f ′(a), we may write f ′(a) = gpτ for a suitable integer g with
(g, p) = 1. Let g be any integer with gg ≡ 1 (mod p), and write

a′ = a− gf(a)p−τ .

Then an application of Taylor’s theorem on this occasion supplies the congru-
ence

f(a′) = f(a− gf(a)p−τ ) ≡ f(a)− p−τf(a)gf ′(a) (mod p2(j−τ)),

since j > τ and p−τgf(a) ≡ 0 (mod pj−τ ). But 2(j− τ) = j+ (j−2τ) > j+ 1,
and thus

f(a′) ≡ f(a)− (p−τf(a)g)(gpτ ) = f(a)(1− gg) ≡ 0 (mod pj+1).

So there exists an integer t with f(a+ tpj−τ ) ≡ 0 (mod pj+1), and indeed one
may take t ≡ −p−jf(a)(p−τf ′(a))−1 (mod p).

In order to establish the uniqueness of the integer t, suppose, if possible,
that two such integers t1 and t2 exist. Then one has

f(a+ t1p
j−τ ) ≡ 0 ≡ f(a+ t2p

j−τ ) (mod pj+1),

whence by Taylor’s theorem, as above, one obtains

f(a) + t1p
j−τf ′(a) ≡ f(a) + t2p

j−τf ′(a) (mod pj+1).

Thus t1f
′(a) ≡ t2f

′(a) (mod pτ+1). Since pτ ‖ f ′(a), we obtain t1 ≡ t2 (mod p).
This establishes the uniqueness of t modulo p, completing our proof. �

Example 2.4. Consider the polynomial f(x) = x2 +x+223. We observe that
f(4) = 35 and f ′(4) = 32. So f(4) ≡ 0 (mod 35). Searching for solutions of
f(x) ≡ 0 (mod 36) of the form 4 + 27t, we find that

f(4 + 27t) ≡ 35 + 35t (mod 36),

and unique t = 2 gives such a solution f(58) ≡ 0 (mod 36). Moreover, for any
t = 0, 1, . . . 8,

f(58 + 81t) ≡ 0 (mod 36).
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Some concluding observations may be of assistance:

(i) Hensel’s lemma allows one to lift repeatedly. Thus, whenever

f(a) ≡ 0 (mod pj) and pτ ‖ f ′(a) with j > 2τ + 1

then there exists a unique residue t modulo p such that, with a′ =
a+ tpj−τ ,

f(a′) ≡ 0 (mod pj+1) and pτ ‖ f ′(a′) with j + 1 > 2τ + 1,

and then we are set up to repeat this process.
(ii) Notice that in Hensel’s lemma, the residue t modulo p is unique, and

given by

t ≡ −(p−jf(a))(p−τf ′(a))−1 (mod p),

so one only needs to compute (p−τf ′(a))−1 modulo p. Moreover,

p−τf ′(a′) ≡ p−τf ′(a) (mod p),

so our initial inverse computation remains valid for subsequent lifting
processes.

(iii) If f(a) ≡ 0 (mod pj) and pτ ‖ f ′(a) and j > 2τ + 1, then

f(a+ hpj−τ ) ≡ f(a) ≡ 0 (mod pj).

So there are pτ solutions of f(x) ≡ 0 (mod pj) corresponding to the
single solution x ≡ a (mod pj), namely a+ hpj−τ with 0 6 h 6 pτ .


