LECTURE 7: POLYNOMIAL CONGRUENCES TO PRIME
POWER MODULI

1. HENSEL LEMMA FOR NONSINGULAR SOLUTIONS

Although there is no analogue of Lagrange’s Theorem for prime power mod-
uli, there is an algorithm for determining when a solution modulo p gener-
ates solutions to higher power moduli. The motivation comes from Newton’s
method for approximating roots over the real numbers.

Suppose that x = a is a solution of the polynomial congruence
f(x) =0 (mod p),

and we want to use it to get a solution modulo p*!. Th idea is to search for
solutions of the form x = a + tp’. The Taylor expansion gives

fla+tp') = fla) + 89 f'(a) + 2p¥ f"(a) /2! + -+ £"p" [ (a) nl,
where n is the degree of f. Despite the presence of reciprocals of factorials,
the coefficients in the above Taylor expansion are necessarily integral. Indeed,
if f(z) = 2™ then f®(a)/k! = ()a™ " € Z, and it follows for general f by
linearity. Hence,
fla+tp’) = f(a) +tp’ f'(a) (mod p'™).
Since p’|f(a), the congruence f(a + tp’) =0 (mod p’™!) is equivalent to

tf'(a) = —% (mod p).

This congruences have either zero, one, or p solutions. In the case when f’(a) #
0 (mod p), it has exactly one solution. We conclude:

Theorem 1.1 (Hensel Lemma). Let f € Z[z]. Suppose that
fla)=0 (mod p’) and f'(a)# 0 (mod p).

Then there ezists a unique t (mod p) such that
fla+tp?) =0 (mod ™).

Hensel’s lemma implies that every a solution z; of f(z) = 0 (mod p’) satisfy-
ing f'(x;) # 0 (mod p) lifts to a unique solution ;1 of f(z) =0 (mod p/*)
such that z;11 = z; (mod p’). This solution could be computed using the
recursive formula:

i = x5 — fa;) f'(2;)7" (mod p*h),

where f/(z;)~! denotes the multiplicative inverse of f’(x;) modulo p.

Example 1.2. Solve the congruence 23 + z + 4 = 0 (mod 73).
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(I) We first solve the corresponding congruence modulo 7, since any solution z
modulo 72 must also satisfy 23 + x +4 = 0 (mod 7). By an exhaustive search
(try = 0,+£1, £2, £3), we find that the only solution is = 2 (mod 7).

(IT) Next, we try to solve the corresponding congruence modulo 72, since any
solution z modulo 72 must also satisfy 23 +2+4 = 0 (mod 7?). But such solu-
tions must also satisfy the corresponding solution modulo 7, so z = 2 (mod 7).
Then we put x = 2 + Ty and substitute. We need to solve

2+ 7y)° + (2+ 7y) +4 =0 (mod 7%).
Notice that when we use the Binomial Theorem to expand the cube, any terms
involving 72 or 73 can be ignored. Thus we need to solve
(2°+3-22-Ty)+ (2+Ty) +4=14+13- Ty =0 (mod 77),
or equivalently,
1By +2=—-y+2=0 (mod 7).
Then we put y = 2 and find that x = 2 + 7y = 16 satisfies the congruence
3+ 2+ 4=0 (mod 7?).
(IIT) We can now repeat the previous strategy (and in fact, we can repeat this

as many times as necessary). So we substitute x = 16 + 72z and solve for z to
obtain a solution modulo 73. Thus we need to solve

(16 +7*2)* + (16 +7%2) +4 = (16° +3-16*- 7°2) + (16 + 7*2) +4 = 0 (mod 7%).
But 163 + 16 + 4 is divisible by 72 (why do we know this?), and in fact is equal
to 84 - 72. Then we need to solve

84-7*+(3-16*+1)- 72 =0 (mod 7°),
which is equivalent to

(3-162+ 1)z +84 =0 (mod 7),

or 13z = 0 (mod 7). So we put z = 0, and find that = 16 (mod 7°) solves
3+ 2 +4=0 (mod 7).
Example 1.3. Let f(z) = 22 + 1. Find the solutions of the congruence
f(x) =0 (mod 5%).

Observe that the congruence z? + 1 = 0 (mod 5) has the solutions =z =
+2 (mod 5) (note that there are at most 2 solutions modulo 5, by Lagrange’s
theorem). Consider first the solution z; = 2 of the latter congruence. One
finds that f'(z1) = 2x; = —1 (mod 5). It follows that 5 Af'(z1), and since
f(z1) =5 = 0 (mod 5), we may apply Hensel’s iteration to find integers z,
(n > 1) with f(x,) =0 (mod 5™). We obtain

f(x1) 3

=1 — =2-—=7 d 5°
e f'(z1) —1 (mo )
50 50 5
2 2
x4z57—ﬂ557—ﬂ533075182 (mod 5%).
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Thus z = 182 provides a solution of the congruence z2+1 =0 (mod 5%). Pro-
ceeding similarly, one may lift the alternate solution x = —2 to the congruence
22+ 1 =0 (mod 5) to obtain the solution x = —182 (mod 5%). Note that in
each instance, the lifting process provided by Hensel’s lemma led to a unique
residue modulo 5% corresponding to each starting solution modulo 5.

2. HENSEL LEMMA IN GENERAL
Now we consider the problem of lifting solutions when f’(a) =0 (mod p).

Example 2.1. Let f(z) = 2? — 4z + 13. Find all of the solutions of the
congruence f(r) =0 (mod 3%).

Notice that
P —4r+13=2*+2r+1=(z+1)* (mod 3),

and hence z = —1 (mod 3) is the only solution of the congruence f(z) = 0
(mod 3). Next, since f'(z) = 2x — 4, we find that 3|f'(—1), We proceed
systematically:
(i) Observe first that all solutions satisfy = 2 (mod 3), and so any solution
x must satisfy x = 2, 5 or 8 modulo 9. One may verify that all three residue
classes satisfy f(z) =0 (mod 9).
(ii) Next we consider all residues modulo 27 satisfying x = 2, 5 or 8 modulo
9, and find that none of these (there are 9 such residues) provide solutions of
f(z) =0 (mod 27).

So there are no solutions to the congruence x> — 4z + 13 = 0 (mod 33).

This example shows that solutions modulo p in general may not lift to solu-
tions modulo some higher powers of p, but not necessarily to solutions modulo
arbitrarily high powers of p. Moreover, lifts of the solutions are not unique.

Theorem 2.2. Let f € Z[x]. Suppose that
fa) =0 (mod p’) and p" | f'(a).!
Then if j > 27 + 1, whenever b = a (mod p~7), one has
f(b) = f(a) (mod p’) and p" || f'(b).
Proof. Writing b = a + hp’~" and applying Taylor’s expansion, we obtain

F() = Flat b/ 7) = fla) + b7 a) o (a) T

The quadratic and higher terms in the above expansion are all divisible by
p?U=") But j > 27 + 1, whence 2(j —7) = j + (j —27) > j + 1, and so

fb) = f(a) + hp’ ™" f'(a) (mod p).
Since p” | f'(a), the latter shows that f(b) = f(a) (mod p’).

'Recall that p || A means that p|A and p+! fA.
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Applying Taylor’s theorem in like manner to f’ one finds that
f'(b) = f(a+hp ") = f'(a) (mod p’™ ")
= f'(a) (mod p™*1),
since j — 7 > 7+ 1. Then since p” || f'(a), one obtains p” || f'(b). O

A good news is that a solution f(z) = 0 (mod p?) gives rise to a solution
f(x) =0 (mod p’*1) provided that j is sufficiently large.

Theorem 2.3 (Hensel Lemma). Let f € Z[z]. Suppose that

fla)=0 (mod p) and p" | f'(a).
Then if j = 21 + 1, there is a unique residue t (mod p) such that

fla+tp’™) =0 (mod p'™).
Proof. Since p” || f'(a), we may write f'(a) = gp™ for a suitable integer g with
(9,p) = 1. Let g be any integer with gg = 1 (mod p), and write
a'=a—gfla)p™”
Then an application of Taylor’s theorem on this occasion supplies the congru-
ence

fla') = fla—gf(a)p™™) = f(a) —p " f(a)gf (a) (mod p*U~7),
since j > 7 and p7gf(a) =0 (mod p’ 7). But 2(j —7) = j+(j —27) = j+1,

and thus

fld) = fa) = (7" f(@)g)(gp") = f(a)(1 — gg) = 0 (mod p/*").
So there exists an integer ¢ with f(a +tp’~™) = 0 (mod p’*!), and indeed one
may take t = —p~7 f(a)(p™" f'(a))™! (mod p).
In order to establish the uniqueness of the integer t, suppose, if possible,
that two such integers ¢; and ¢, exist. Then one has

fla+tp ") =0= fla+tp’ ") (mod p’™),

whence by Taylor’s theorem, as above, one obtains

fa) +tp" 7 f'(a) = f(a) +t2p’ " f'(a) (mod p’*).
Thus ¢, f'(a) = tof'(a) (mod p™'). Sincep™ || f/(a), we obtain t; = t, (mod p).
This establishes the uniqueness of ¢ modulo p, completing our proof. O

Example 2.4. Consider the polynomial f(z) = x?+ x+223. We observe that
f(4) = 3% and f'(4) = 3% So f(4) = 0 (mod 3°). Searching for solutions of
f(x) =0 (mod 3%) of the form 4 + 27¢, we find that

f(4427t) = 3° + 3°¢ (mod 3°),

and unique ¢ = 2 gives such a solution f(58) =0 (mod 3°). Moreover, for any
t=0,1,...8,
f(58 + 81t) = 0 (mod 3°%).
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Some concluding observations may be of assistance:
(i) Hensel’s lemma allows one to lift repeatedly. Thus, whenever
f(a) =0 (mod p/) and p” || f'(a) with j > 27 +1
then there exists a unique residue ¢ modulo p such that, with o’ =
a+tpT,
f(a') =0 (mod p’™') and p7 || f'(a') with j +1 > 27 + 1,
and then we are set up to repeat this process.
(ii) Notice that in Hensel’s lemma, the residue ¢ modulo p is unique, and
given by
t=—(p~ f(a))(p""f'(a))"" (mod p),
so one only needs to compute (p~" f’(a))~! modulo p. Moreover,
p " f'(d)=p7 f'(a) (mod p),
so our initial inverse computation remains valid for subsequent lifting
processes.
(iii) If f(a) =0 (mod p/) and p™ || f'(a) and j > 27 + 1, then
fla+hp™™) = f(a) =0 (mod p’).
So there are p” solutions of f(x) = 0 (mod p’) corresponding to the
single solution x = a (mod p’), namely a + hp’~" with 0 < h < p”.



