LECTURE 8: PRIMITIVE ROOTS

1. ORDERS OF RESIDUES MODULO m

We will be interested in understanding multiplicative structure of the set of
reduced residues. Recall that by Euler’s Theorem, when (a,m) = 1, we have

a®™ =1 (mod m).

Could we have a" = 1 (mod m) for a smaller exponent h? This leads to the
notions of order and of primitive root.

Definition 1.1. Let m be a natural number, and let a be any integer with
(a,m) = 1. Let h be the least positive integer with a” =1 (mod m). Then we
say that the order of ¢ modulo m is h (or that a belongs to h modulo

We note that if the congruence a” = 1 (mod m) holds with small h, the cryp-
tographic protocols discussed in Lecture 5, (which are based on transmission
of residues a* (mod m)) become vulnerable.

Lemma 1.2. Let m € N and a € Z satisfy (a,m) = 1. Then the order h of
a modulo m exists, and h | ¢(m). Moreover, whenever a* =1 (mod m), one

has h | k.

Proof. By Euler’s theorem, one has a®™ = 1 (mod m), and so the order of
a modulo m clearly exists. Suppose then that h is the order of a modulo m,
and further that a* =1 (mod m). Then it follows from the division algorithm
that there exist integers ¢ and r with £ = hq +r and 0 < r < h. But then we
obtain

a" = (a")%"=a"=1 (modm),
whence 7 = 0. Thus we have h | k, and in particular we deduce that h |

o(m). O

Lemma 1.3. Suppose that a has order h modulo m. Then a* has order h/(h, k)
modulo m.

Proof. By Lemma 1.2, one has (a*)? =1 (mod m) if and only if h | kj. But
hlkj < h/(h k)| (k/(h,k))] <= h/(hk) ][]

Thus the least positive integer j such that (a*)? =1 (mod m) is j = h/(h, k).
0J

Lemma 1.4. Suppose that a has order h modulo m, and b has order k modulo
m. Then whenever (h,k) = 1, it follows that the product ab has order hk

modulo m.
1
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Proof. Let r denote the order of ab modulo m. Then since
(ab)™ = (a")*(0")" =1 (mod m),
it follows from Lemma 1.2 that r | hk. But we also have
V= (") = (ab)™ =1 (mod m),

whence k | rh. Since (h,k) = 1, moreover, the latter implies that & | r.
Similarly, on reversing the roles of a and b, we see that h | r. Then since
(h,k) =1, we deduce that hk | r. We therefore conclude that hk | r | hk, and
thus r = hk. 0J

Definition 1.5. If g has order ¢(m) modulo m, then g is called a primitive
root modulo m.

Note: If g is a primitive root modulo m, then {1,g,...,¢?™ =} form a
reduced residue system modulo m, and the multiplication table is very simple:

g - gF = i+ (mod é(m)) (mod m).

In this case, we say that the set (Z/mZ)* of reduced residues modulo m form
a cyclic group Cy(,y under multiplication:

(Z/mZ)* ={1,g,...,g""™ 7'} = Cy).

2. EXISTENCE OF PRIMITIVE ROOTS
Now we investigate existence of primitive roots.

Theorem 2.1. If p is a prime number, then there exists a primitive root
modulo p, and in fact there are exactly ¢(p—1) distinct primitive roots modulo

p.

Proof. When p = 2, the conclusion of the theorem is immediate, so we suppose
henceforth that p is an odd prime. Observe first that each of the residues
1,2,...,p— 1 have order equal to some divisor d of p — 1 modulo p. Let v (d)
denote the number of residues that have order d modulo p. Then plainly,

S vl =p-1 (2.)
dlp—1
We aim to show that for each divisor d of p — 1, one has
¥(d) < o(d). (2.2)
We recall that we have proved that for every m,
> old) =m.
dn
Hence, given the validity of (2.1)-(2.2), one obtains

p=1=Y (<D ¢d=p-1,

dlp—1 djp—1
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and so the central inequality must hold with equality for every d. The desired
conclusion then follows from the case d = p — 1 of the consequent relation
U(d) = ¢(d).

In order to verify our claim, suppose that d | p—1 and ¥(d) # 0. Let a be any
residue that has order d modulo p. It follows that a,a?,...,a? are mutually
incongruent solutions of the congruence z¢ = 1 (mod p). For certainly, for
each positive integer j one has (a/)? = (a?) = 1 (mod p). In addition, if it
were the case that for two exponents ¢ and 7 with 1 < ¢ < 5 < d, one has
@/ = a' (mod p), then there would exist a positive integer h = j —i < d
with @ = 1 (mod p), contradicting the assumption that a has order d. By
Lagrange’s theorem, meanwhile, there are at most d solutions modulo p to the
congruence ¢ = 1 (mod p), and thus the above list of residues constitutes the
entire solution set modulo p. Next, on making use of Lemma 1.3, we find that
whenever (m,d) > 1, the residue a™ has order d/(m,d) < d, and so the only
reduced residues modulo p of order d are congruent to a™ (mod p) for some
integer m with 1 < m < d and (m,d) = 1. There are consequently precisely
¢(d) such residues.

What we have shown thus far is that for each divisor d of p — 1, one has
either ¢(d) = ¢(d), or else ¥(d) = 0. This is a strong form of the inequality
¥(d) < ¢(d) that we sought, and so our earlier discussion confirms that the
number of distinct primitive roots modulo p is ¢(p — 1). O

Theorem 2.2. Suppose that g is a primitive root modulo p. Then there exists
an integer x such that the residue g, = g + px is a primitive root modulo p*.
When p is odd, moreover, this residue g, is a primitive root modulo p* for
every natural number k.

Proof. Let g be a primitive root modulo p. Write ¢g; = g + pz, in which z is
interpreted as a variable to be assigned in due course. In view of the expansion

(9+pe)' " =g +p(p—xg"™?  (mod p*),
one may write ¢*~' = 1 + pz, in which
g -1
p

The coefficient of = in (2.3) is not divisible by p, and so we can find an integer
x for which (z,p) = 1 (first choose such a z, and then solve for x in (2.3)). We
fix such an integer x, and now show that for every prime p this construction
ensures that g; is a primitive root modulo p?, and moreover that when p is odd,
then the residue g; is a primitive root modulo p* for every natural number k.

Suppose, for some k > 2, that g; has order d modulo p*. Then by Lemma
1.2, it follows that d | p*~!(p — 1). But g, is a primitive root modulo p, and so
in particular one has (p—1) | d. Consequently, one must have d = p’(p—1) for
some integer j with 0 < 7 < k — 1. But in view of our earlier observation, one
has (z,p) = 1, and thus ¢? ' # 1 (mod p?). Then g, is always a primitive root
modulo p?. When p is odd, moreover, we may write (1 + pz)?’ =1+ p'™z,

+(p—1)g* %z (mod p). (2.3)

z
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for a suitable integer z; with (z;,p) = 1. Thus we obtain the relation
gi= (g7 )" = L+p2) =1+,

Then since g; has order d modulo p*, this last expression must be congruent to
1 modulo p*, and hence j+1 > k. Then since j < k — 1, the only possibility is
that j = k — 1, and we are forced to conclude that d = ¢(p*). We have shown,
therefore, that ¢; is a primitive root modulo p¥, and this completes the proof
of the theorem. O

Corollary 2.3. The number of primitive roots modulo p is ¢(p—1), the number
modulo p* is (p—1)¢(p—1), and when p is odd, the number modulo p’ (j > 3)

is P’ (p—1)p(p — 1).

Proof. For each modulus in question, say m, there exists a primitive root g,
and moreover ¢* is primitive modulo m if and only if (k,¢(m)) = 1. But
the ¢(m) residues ¢g¥ (mod m) are all distinct for 1 < k < ¢(m), so every
reduced residue has this form. Then the ¢(¢(m)) residues g* (mod m) with

(k,¢(m)) = 1 comprise all of the primitive roots modulo m. The desired
conclusion now follows on making use of the multiplicative property of the
Euler totient. O

Theorem 2.4. (1) There exists a primitive root modulo m if and only if m =
1,2,4,p% or2p®, in which p is an odd prime number and « is a natural number.
(1) When j > 3, the order of 5 modulo 27 is 22=2. Furthermore, every reduced
residue class modulo 29 may be written in the form (—1)'5™, where | =0 or 1
and 1 <m < 272, and in which the integers | and m are unique.

Proof. When m = 2, 4, the residues 1, 3, respectively, are primitive roots.
When m = p“ the desired conclusion is immediate from Theorem 2.2. Suppose
then that m = 2p®. If g is a primitive root modulo p* (and such exist by
Theorem 2.2), then one of g and g + p® is an odd integer, say ¢’. The order
of ¢ modulo 2p® must be at least ¢(p®), since ¢’ is primitive modulo p*. But
o(2p%) = #(2)p(p*) = ¢(p®), so that the latter observation already ensures
that ¢’ is primitive modulo 2p®.

Suppose next that m is none of 1, 2, 4, p* or 2p®, for any odd prime p.
Then provided that m is not a power of 2, there exist integers n; and ns with
(n1,n2) =1, ny > ny > 2 and m = nyny. But then ¢(ny) and ¢(ny) are both
even, whence

a®miz = (@#me(m2)/2 = 1 (mod ny) whenever (a,m) =1,
and
a®m/? — (#M2)#()/2 = 1 (mod ny) whenever (a,m) = 1.

Then since (ny,n2) = 1 and m = nyny, we find that a®™/2 = 1 (mod m)
whenever (a,m) = 1. No reduced residue modulo m, therefore, has order
exceeding ¢(m)/2, and so, in particular, no residue can be a primitive root
modulo m.
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It remains to consider the situation in which m = 27 with j > 3. We begin
by establishing that for each o with o > 2, one has 2* || (5" — 1). This is
clear when o = 2. Suppose then that the assertion holds when o = ¢. Then
20 || (5% —1), whence 2 || (5% 41), and thus 2:+1 || (52" —1)(5* " +1), or
equivalently, one has 2/ || (52" — 1). Then the assertion that we presently
seek to establish holds with o = ¢ + 1 whenever it holds with o« = ¢, whence
by induction it holds for all a@ > 2.

Since 2 || (52" — 1) for a > 2, it follows that 5 has order precisely 22
modulo 2%, and this establishes the first claim of the second part of the the-
orem. Observe next that there are 22 distinct reduced residues modulo 2%
of the shape 5%, all of which are congruent to 1 modulo 4 (why?), and so the
remaining reduced residues modulo 2¢ must all be congruent to —1 modulo 4,
and are hence of the shape —5%. Thus all reduced residues modulo 2% may be
written in the form (—1)'5™, where [ = 0 or 1 and 1 < m < 272 Further-
more, these choices for [ and m are distinct, for the total number of residues
represented in this manner is at most 27!, and yet there are precisely 2%~1
residues to be represented. That there are no primitive roots modulo 2% when
a > 2 follows on noting that (—1)'5™ has order at most 2°72 < ¢(2%) when
a > 3. O

Our main result can be summarised as follows:
(Z[p"Z)* = Cyry, when p is odd,
(Z)27)* = (Y,
(Z]AZ)* = Oy,
(Z)2"7)* = Cy x Cyr—2, when r > 3.

Making use of the Chinese Remainder Theorem, we infer that if

m=2"T]»,

p'llm
p>2
then
(Z/mZ)* = Ge x | Copry.
p"llm
p>2
where
Ch, when e = 0, 1,
G, = Oy, when e = 2,

Cy X Coe—2, when e > 3.
This allows to deduce the following improvement of Euler’s theorem. Put

e(p") =

#(p"),  when p is odd, and when p" = 2 or 4,
so(p"), when p=2and h > 3,
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and then define the (Carmichael) function
A(n) = lem e(p”).
pn
It is clear from the above discussion that whenever (a,n) = 1, one has
™ =1 (mod n),

providing a refinement of Euler’s theorem. Moreover, for every natural number
n, it is apparent also that there exists an integer a with (a,n) = 1 having order
precisely A\(n) modulo n.

Aside: It is an interesting problem what is the least positive integer g, which
gives a primitive root modulo a prime p. Currently, it is known, due to the work
of Wang, that assuming the Generalised Riemann Hypothesis (a difficult unsolved
problem in Number Theory), we have

9p < Cw(p —1)°(logp)?,
where w(n) denotes the number of distinct prime factors of an integer n.

Artin conjectured in 1924 that every positive integer a which is not a square
is a primitive root modulo p for infinitely many primes p. This conjecture is still
open in general, but Hooley in 1967 proved this conjecture assuming the Generalised
Riemann Hypothesis.



