
LECTURE 8: PRIMITIVE ROOTS

1. Orders of residues modulo m

We will be interested in understanding multiplicative structure of the set of
reduced residues. Recall that by Euler’s Theorem, when (a,m) = 1, we have

aφ(m) ≡ 1 (mod m).

Could we have ah ≡ 1 (mod m) for a smaller exponent h? This leads to the
notions of order and of primitive root.

Definition 1.1. Let m be a natural number, and let a be any integer with
(a,m) = 1. Let h be the least positive integer with ah ≡ 1 (mod m). Then we
say that the order of a modulo m is h (or that a belongs to h modulo
m).

We note that if the congruence ah ≡ 1 (mod m) holds with small h, the cryp-
tographic protocols discussed in Lecture 5, (which are based on transmission
of residues ai (mod m)) become vulnerable.

Lemma 1.2. Let m ∈ N and a ∈ Z satisfy (a,m) = 1. Then the order h of
a modulo m exists, and h | φ(m). Moreover, whenever ak ≡ 1 (mod m), one
has h | k.

Proof. By Euler’s theorem, one has aφ(m) ≡ 1 (mod m), and so the order of
a modulo m clearly exists. Suppose then that h is the order of a modulo m,
and further that ak ≡ 1 (mod m). Then it follows from the division algorithm
that there exist integers q and r with k = hq + r and 0 6 r < h. But then we
obtain

ak = (ah)qar ≡ ar ≡ 1 (mod m),

whence r = 0. Thus we have h | k, and in particular we deduce that h |
φ(m). �

Lemma 1.3. Suppose that a has order h modulom. Then ak has order h/(h, k)
modulo m.

Proof. By Lemma 1.2, one has (ak)j ≡ 1 (mod m) if and only if h | kj. But

h | kj ⇐⇒ h/(h, k) | (k/(h, k))j ⇐⇒ h/(h, k) | j.
Thus the least positive integer j such that (ak)j ≡ 1 (mod m) is j = h/(h, k).

�

Lemma 1.4. Suppose that a has order h modulo m, and b has order k modulo
m. Then whenever (h, k) = 1, it follows that the product ab has order hk
modulo m.
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Proof. Let r denote the order of ab modulo m. Then since

(ab)hk = (ah)k(bk)h ≡ 1 (mod m),

it follows from Lemma 1.2 that r | hk. But we also have

brh ≡ (ah)rbrh ≡ (ab)rh ≡ 1 (mod m),

whence k | rh. Since (h, k) = 1, moreover, the latter implies that k | r.
Similarly, on reversing the roles of a and b, we see that h | r. Then since
(h, k) = 1, we deduce that hk | r. We therefore conclude that hk | r | hk, and
thus r = hk. �

Definition 1.5. If g has order φ(m) modulo m, then g is called a primitive
root modulo m.

Note: If g is a primitive root modulo m, then {1, g, . . . , gφ(m)−1} form a
reduced residue system modulo m, and the multiplication table is very simple:

gi · gj ≡ g(i+j) (mod φ(m)) (mod m).

In this case, we say that the set (Z/mZ)× of reduced residues modulo m form
a cyclic group Cφ(m) under multiplication:

(Z/mZ)× = {1, g, . . . , gφ(m)−1} ∼= Cφ(m).

2. Existence of primitive roots

Now we investigate existence of primitive roots.

Theorem 2.1. If p is a prime number, then there exists a primitive root
modulo p, and in fact there are exactly φ(p−1) distinct primitive roots modulo
p.

Proof. When p = 2, the conclusion of the theorem is immediate, so we suppose
henceforth that p is an odd prime. Observe first that each of the residues
1, 2, . . . , p− 1 have order equal to some divisor d of p− 1 modulo p. Let ψ(d)
denote the number of residues that have order d modulo p. Then plainly,∑

d|p−1

ψ(d) = p− 1. (2.1)

We aim to show that for each divisor d of p− 1, one has

ψ(d) 6 φ(d). (2.2)

We recall that we have proved that for every m,∑
d|n

φ(d) = m.

Hence, given the validity of (2.1)–(2.2), one obtains

p− 1 =
∑
d|p−1

ψ(d) 6
∑
d|p−1

φ(d) = p− 1,
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and so the central inequality must hold with equality for every d. The desired
conclusion then follows from the case d = p − 1 of the consequent relation
ψ(d) = φ(d).

In order to verify our claim, suppose that d | p−1 and ψ(d) 6= 0. Let a be any
residue that has order d modulo p. It follows that a, a2, . . . , ad are mutually
incongruent solutions of the congruence xd ≡ 1 (mod p). For certainly, for
each positive integer j one has (aj)d = (ad)j ≡ 1 (mod p). In addition, if it
were the case that for two exponents i and j with 1 6 i < j 6 d, one has
aj ≡ ai (mod p), then there would exist a positive integer h = j − i < d
with ah ≡ 1 (mod p), contradicting the assumption that a has order d. By
Lagrange’s theorem, meanwhile, there are at most d solutions modulo p to the
congruence xd ≡ 1 (mod p), and thus the above list of residues constitutes the
entire solution set modulo p. Next, on making use of Lemma 1.3, we find that
whenever (m, d) > 1, the residue am has order d/(m, d) < d, and so the only
reduced residues modulo p of order d are congruent to am (mod p) for some
integer m with 1 6 m 6 d and (m, d) = 1. There are consequently precisely
φ(d) such residues.

What we have shown thus far is that for each divisor d of p − 1, one has
either ψ(d) = φ(d), or else ψ(d) = 0. This is a strong form of the inequality
ψ(d) 6 φ(d) that we sought, and so our earlier discussion confirms that the
number of distinct primitive roots modulo p is φ(p− 1). �

Theorem 2.2. Suppose that g is a primitive root modulo p. Then there exists
an integer x such that the residue g1 = g + px is a primitive root modulo p2.
When p is odd, moreover, this residue g1 is a primitive root modulo pk for
every natural number k.

Proof. Let g be a primitive root modulo p. Write g1 = g + px, in which x is
interpreted as a variable to be assigned in due course. In view of the expansion

(g + px)p−1 ≡ gp−1 + p(p− 1)xgp−2 (mod p2),

one may write gp−11 = 1 + pz, in which

z ≡ gp−1 − 1

p
+ (p− 1)gp−2x (mod p). (2.3)

The coefficient of x in (2.3) is not divisible by p, and so we can find an integer
x for which (z, p) = 1 (first choose such a z, and then solve for x in (2.3)). We
fix such an integer x, and now show that for every prime p this construction
ensures that g1 is a primitive root modulo p2, and moreover that when p is odd,
then the residue g1 is a primitive root modulo pk for every natural number k.

Suppose, for some k > 2, that g1 has order d modulo pk. Then by Lemma
1.2, it follows that d | pk−1(p− 1). But g1 is a primitive root modulo p, and so
in particular one has (p−1) | d. Consequently, one must have d = pj(p−1) for
some integer j with 0 6 j 6 k− 1. But in view of our earlier observation, one
has (z, p) = 1, and thus gp−11 6≡ 1 (mod p2). Then g1 is always a primitive root

modulo p2. When p is odd, moreover, we may write (1 + pz)p
j

= 1 + pj+1zj,
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for a suitable integer zj with (zj, p) = 1. Thus we obtain the relation

gd1 = (gp−11 )p
j

= (1 + pz)p
j

= 1 + pj+1zj.

Then since g1 has order d modulo pk, this last expression must be congruent to
1 modulo pk, and hence j+ 1 > k. Then since j 6 k−1, the only possibility is
that j = k− 1, and we are forced to conclude that d = φ(pk). We have shown,
therefore, that g1 is a primitive root modulo pk, and this completes the proof
of the theorem. �

Corollary 2.3. The number of primitive roots modulo p is φ(p−1), the number
modulo p2 is (p−1)φ(p−1), and when p is odd, the number modulo pj (j > 3)
is pj−2(p− 1)φ(p− 1).

Proof. For each modulus in question, say m, there exists a primitive root g,
and moreover gk is primitive modulo m if and only if (k, φ(m)) = 1. But
the φ(m) residues gk (mod m) are all distinct for 1 6 k 6 φ(m), so every
reduced residue has this form. Then the φ(φ(m)) residues gk (mod m) with
(k, φ(m)) = 1 comprise all of the primitive roots modulo m. The desired
conclusion now follows on making use of the multiplicative property of the
Euler totient. �

Theorem 2.4. (i) There exists a primitive root modulo m if and only if m =
1, 2, 4, pα or 2pα, in which p is an odd prime number and α is a natural number.

(ii) When j > 3, the order of 5 modulo 2j is 2j−2. Furthermore, every reduced
residue class modulo 2j may be written in the form (−1)l5m, where l = 0 or 1
and 1 6 m 6 2j−2, and in which the integers l and m are unique.

Proof. When m = 2, 4, the residues 1, 3, respectively, are primitive roots.
When m = pα the desired conclusion is immediate from Theorem 2.2. Suppose
then that m = 2pα. If g is a primitive root modulo pα (and such exist by
Theorem 2.2), then one of g and g + pα is an odd integer, say g′. The order
of g′ modulo 2pα must be at least φ(pα), since g′ is primitive modulo pα. But
φ(2pα) = φ(2)φ(pα) = φ(pα), so that the latter observation already ensures
that g′ is primitive modulo 2pα.

Suppose next that m is none of 1, 2, 4, pα or 2pα, for any odd prime p.
Then provided that m is not a power of 2, there exist integers n1 and n2 with
(n1, n2) = 1, n1 > n2 > 2 and m = n1n2. But then φ(n1) and φ(n2) are both
even, whence

aφ(m)/2 = (aφ(n1))φ(n2)/2 ≡ 1 (mod n1) whenever (a,m) = 1,

and

aφ(m)/2 = (aφ(n2))φ(n1)/2 ≡ 1 (mod n2) whenever (a,m) = 1.

Then since (n1, n2) = 1 and m = n1n2, we find that aφ(m)/2 ≡ 1 (mod m)
whenever (a,m) = 1. No reduced residue modulo m, therefore, has order
exceeding φ(m)/2, and so, in particular, no residue can be a primitive root
modulo m.
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It remains to consider the situation in which m = 2j with j > 3. We begin
by establishing that for each α with α > 2, one has 2α ‖ (52α−2 − 1). This is
clear when α = 2. Suppose then that the assertion holds when α = t. Then
2t ‖ (52t−2 − 1), whence 2 ‖ (52t−2

+ 1), and thus 2t+1 ‖ (52t−2 − 1)(52t−2
+ 1), or

equivalently, one has 2t+1 ‖ (52t−1 − 1). Then the assertion that we presently
seek to establish holds with α = t + 1 whenever it holds with α = t, whence
by induction it holds for all α > 2.

Since 2α ‖ (52α−2 − 1) for α > 2, it follows that 5 has order precisely 2α−2

modulo 2α, and this establishes the first claim of the second part of the the-
orem. Observe next that there are 2α−2 distinct reduced residues modulo 2α

of the shape 5k, all of which are congruent to 1 modulo 4 (why?), and so the
remaining reduced residues modulo 2α must all be congruent to −1 modulo 4,
and are hence of the shape −5k. Thus all reduced residues modulo 2α may be
written in the form (−1)l5m, where l = 0 or 1 and 1 6 m 6 2α−2. Further-
more, these choices for l and m are distinct, for the total number of residues
represented in this manner is at most 2α−1, and yet there are precisely 2α−1

residues to be represented. That there are no primitive roots modulo 2α when
α > 2 follows on noting that (−1)l5m has order at most 2α−2 < φ(2α) when
α > 3. �

Our main result can be summarised as follows:

(Z/prZ)× ∼= Cφ(pr), when p is odd,

(Z/2Z)× ∼= C1,

(Z/4Z)× ∼= C2,

(Z/2rZ)× ∼= C2 × C2r−2 , when r > 3.

Making use of the Chinese Remainder Theorem, we infer that if

m = 2e
∏
pr‖m
p>2

pr,

then

(Z/mZ)× ∼= Ge ×
∏
pr‖m
p>2

Cφ(pr),

where

Ge
∼=


C1, when e = 0, 1,

C2, when e = 2,

C2 × C2e−2 , when e > 3.

This allows to deduce the following improvement of Euler’s theorem. Put

e(ph) =

{
φ(ph), when p is odd, and when ph = 2 or 4,
1
2
φ(ph), when p = 2 and h > 3,
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and then define the (Carmichael) function

λ(n) = lcm
ph‖n

e(ph).

It is clear from the above discussion that whenever (a, n) = 1, one has

aλ(n) ≡ 1 (mod n),

providing a refinement of Euler’s theorem. Moreover, for every natural number
n, it is apparent also that there exists an integer a with (a, n) = 1 having order
precisely λ(n) modulo n.

Aside: It is an interesting problem what is the least positive integer gp which
gives a primitive root modulo a prime p. Currently, it is known, due to the work
of Wang, that assuming the Generalised Riemann Hypothesis (a difficult unsolved
problem in Number Theory), we have

gp 6 C ω(p− 1)6(log p)2,

where ω(n) denotes the number of distinct prime factors of an integer n.

Artin conjectured in 1924 that every positive integer a which is not a square

is a primitive root modulo p for infinitely many primes p. This conjecture is still

open in general, but Hooley in 1967 proved this conjecture assuming the Generalised

Riemann Hypothesis.


