LECTURE 8: PRIMITIVE ROOTS

1. Orders of residues modulo m

We will be interested in understanding multiplicative structure of the set of reduced residues. Recall that by Euler's Theorem, when $(a, m)=1$, we have

$$
a^{\phi(m)} \equiv 1(\bmod m) .
$$

Could we have $a^{h} \equiv 1(\bmod m)$ for a smaller exponent h ? This leads to the notions of order and of primitive root.

Definition 1.1. Let m be a natural number, and let a be any integer with $(a, m)=1$. Let h be the least positive integer with $a^{h} \equiv 1(\bmod m)$. Then we say that the order of a modulo m is h (or that a belongs to h modulo m).

We note that if the congruence $a^{h} \equiv 1(\bmod m)$ holds with small h, the cryptographic protocols discussed in Lecture 5, (which are based on transmission of residues $a^{i}(\bmod m)$) become vulnerable.

Lemma 1.2. Let $m \in \mathbb{N}$ and $a \in \mathbb{Z}$ satisfy $(a, m)=1$. Then the order h of a modulo m exists, and $h \mid \phi(m)$. Moreover, whenever $a^{k} \equiv 1(\bmod m)$, one has $h \mid k$.

Proof. By Euler's theorem, one has $a^{\phi(m)} \equiv 1(\bmod m)$, and so the order of a modulo m clearly exists. Suppose then that h is the order of a modulo m, and further that $a^{k} \equiv 1(\bmod m)$. Then it follows from the division algorithm that there exist integers q and r with $k=h q+r$ and $0 \leqslant r<h$. But then we obtain

$$
a^{k}=\left(a^{h}\right)^{q} a^{r} \equiv a^{r} \equiv 1 \quad(\bmod m)
$$

whence $r=0$. Thus we have $h \mid k$, and in particular we deduce that $h \mid$ $\phi(m)$.

Lemma 1.3. Suppose that a has order h modulo m. Then a^{k} has order $h /(h, k)$ modulo m.

Proof. By Lemma 1.2, one has $\left(a^{k}\right)^{j} \equiv 1(\bmod m)$ if and only if $h \mid k j$. But

$$
h|k j \Longleftrightarrow h /(h, k)|(k /(h, k)) j \Longleftrightarrow h /(h, k) \mid j .
$$

Thus the least positive integer j such that $\left(a^{k}\right)^{j} \equiv 1(\bmod m)$ is $j=h /(h, k)$.

Lemma 1.4. Suppose that a has order h modulo m, and b has order k modulo m. Then whenever $(h, k)=1$, it follows that the product ab has order $h k$ modulo m.

Proof. Let r denote the order of $a b$ modulo m. Then since

$$
(a b)^{h k}=\left(a^{h}\right)^{k}\left(b^{k}\right)^{h} \equiv 1 \quad(\bmod m)
$$

it follows from Lemma 1.2 that $r \mid h k$. But we also have

$$
b^{r h} \equiv\left(a^{h}\right)^{r} b^{r h} \equiv(a b)^{r h} \equiv 1 \quad(\bmod m)
$$

whence $k \mid r h$. Since $(h, k)=1$, moreover, the latter implies that $k \mid r$. Similarly, on reversing the roles of a and b, we see that $h \mid r$. Then since $(h, k)=1$, we deduce that $h k \mid r$. We therefore conclude that $h k|r| h k$, and thus $r=h k$.

Definition 1.5. If g has order $\phi(m)$ modulo m, then g is called a primitive root modulo m.

Note: If g is a primitive root modulo m, then $\left\{1, g, \ldots, g^{\phi(m)-1}\right\}$ form a reduced residue system modulo m, and the multiplication table is very simple:

$$
g^{i} \cdot g^{j} \equiv g^{(i+j)(\bmod \phi(m))}(\bmod m)
$$

In this case, we say that the set $(\mathbb{Z} / m \mathbb{Z})^{\times}$of reduced residues modulo m form a cyclic group $C_{\phi(m)}$ under multiplication:

$$
(\mathbb{Z} / m \mathbb{Z})^{\times}=\left\{1, g, \ldots, g^{\phi(m)-1}\right\} \cong C_{\phi(m)}
$$

2. Existence of primitive roots

Now we investigate existence of primitive roots.
Theorem 2.1. If p is a prime number, then there exists a primitive root modulo p, and in fact there are exactly $\phi(p-1)$ distinct primitive roots modulo p.

Proof. When $p=2$, the conclusion of the theorem is immediate, so we suppose henceforth that p is an odd prime. Observe first that each of the residues $1,2, \ldots, p-1$ have order equal to some divisor d of $p-1$ modulo p. Let $\psi(d)$ denote the number of residues that have order d modulo p. Then plainly,

$$
\begin{equation*}
\sum_{d \mid p-1} \psi(d)=p-1 \tag{2.1}
\end{equation*}
$$

We aim to show that for each divisor d of $p-1$, one has

$$
\begin{equation*}
\psi(d) \leqslant \phi(d) \tag{2.2}
\end{equation*}
$$

We recall that we have proved that for every m,

$$
\sum_{d \mid n} \phi(d)=m
$$

Hence, given the validity of (2.1)-(2.2), one obtains

$$
p-1=\sum_{d \mid p-1} \psi(d) \leqslant \sum_{d \mid p-1} \phi(d)=p-1
$$

and so the central inequality must hold with equality for every d. The desired conclusion then follows from the case $d=p-1$ of the consequent relation $\psi(d)=\phi(d)$.

In order to verify our claim, suppose that $d \mid p-1$ and $\psi(d) \neq 0$. Let a be any residue that has order d modulo p. It follows that a, a^{2}, \ldots, a^{d} are mutually incongruent solutions of the congruence $x^{d} \equiv 1(\bmod p)$. For certainly, for each positive integer j one has $\left(a^{j}\right)^{d}=\left(a^{d}\right)^{j} \equiv 1(\bmod p)$. In addition, if it were the case that for two exponents i and j with $1 \leqslant i<j \leqslant d$, one has $a^{j} \equiv a^{i}(\bmod p)$, then there would exist a positive integer $h=j-i<d$ with $a^{h} \equiv 1(\bmod p)$, contradicting the assumption that a has order d. By Lagrange's theorem, meanwhile, there are at most d solutions modulo p to the congruence $x^{d} \equiv 1(\bmod p)$, and thus the above list of residues constitutes the entire solution set modulo p. Next, on making use of Lemma 1.3, we find that whenever $(m, d)>1$, the residue a^{m} has order $d /(m, d)<d$, and so the only reduced residues modulo p of order d are congruent to $a^{m}(\bmod p)$ for some integer m with $1 \leqslant m \leqslant d$ and $(m, d)=1$. There are consequently precisely $\phi(d)$ such residues.

What we have shown thus far is that for each divisor d of $p-1$, one has either $\psi(d)=\phi(d)$, or else $\psi(d)=0$. This is a strong form of the inequality $\psi(d) \leqslant \phi(d)$ that we sought, and so our earlier discussion confirms that the number of distinct primitive roots modulo p is $\phi(p-1)$.

Theorem 2.2. Suppose that g is a primitive root modulo p. Then there exists an integer x such that the residue $g_{1}=g+p x$ is a primitive root modulo p^{2}. When p is odd, moreover, this residue g_{1} is a primitive root modulo p^{k} for every natural number k.

Proof. Let g be a primitive root modulo p. Write $g_{1}=g+p x$, in which x is interpreted as a variable to be assigned in due course. In view of the expansion

$$
(g+p x)^{p-1} \equiv g^{p-1}+p(p-1) x g^{p-2} \quad\left(\bmod p^{2}\right)
$$

one may write $g_{1}^{p-1}=1+p z$, in which

$$
\begin{equation*}
z \equiv \frac{g^{p-1}-1}{p}+(p-1) g^{p-2} x \quad(\bmod p) \tag{2.3}
\end{equation*}
$$

The coefficient of x in (2.3) is not divisible by p, and so we can find an integer x for which $(z, p)=1$ (first choose such a z, and then solve for x in (2.3)). We fix such an integer x, and now show that for every prime p this construction ensures that g_{1} is a primitive root modulo p^{2}, and moreover that when p is odd, then the residue g_{1} is a primitive root modulo p^{k} for every natural number k.

Suppose, for some $k \geqslant 2$, that g_{1} has order d modulo p^{k}. Then by Lemma 1.2, it follows that $d \mid p^{k-1}(p-1)$. But g_{1} is a primitive root modulo p, and so in particular one has $(p-1) \mid d$. Consequently, one must have $d=p^{j}(p-1)$ for some integer j with $0 \leqslant j \leqslant k-1$. But in view of our earlier observation, one has $(z, p)=1$, and thus $g_{1}^{p-1} \not \equiv 1\left(\bmod p^{2}\right)$. Then g_{1} is always a primitive root modulo p^{2}. When p is odd, moreover, we may write $(1+p z)^{p^{j}}=1+p^{j+1} z_{j}$,
for a suitable integer z_{j} with $\left(z_{j}, p\right)=1$. Thus we obtain the relation

$$
g_{1}^{d}=\left(g_{1}^{p-1}\right)^{p^{j}}=(1+p z)^{p^{j}}=1+p^{j+1} z_{j} .
$$

Then since g_{1} has order d modulo p^{k}, this last expression must be congruent to 1 modulo p^{k}, and hence $j+1 \geqslant k$. Then since $j \leqslant k-1$, the only possibility is that $j=k-1$, and we are forced to conclude that $d=\phi\left(p^{k}\right)$. We have shown, therefore, that g_{1} is a primitive root modulo p^{k}, and this completes the proof of the theorem.

Corollary 2.3. The number of primitive roots modulo p is $\phi(p-1)$, the number modulo p^{2} is $(p-1) \phi(p-1)$, and when p is odd, the number modulo $p^{j}(j \geqslant 3)$ is $p^{j-2}(p-1) \phi(p-1)$.

Proof. For each modulus in question, say m, there exists a primitive root g, and moreover g^{k} is primitive modulo m if and only if $(k, \phi(m))=1$. But the $\phi(m)$ residues $g^{k}(\bmod m)$ are all distinct for $1 \leqslant k \leqslant \phi(m)$, so every reduced residue has this form. Then the $\phi(\phi(m))$ residues $g^{k}(\bmod m)$ with $(k, \phi(m))=1$ comprise all of the primitive roots modulo m. The desired conclusion now follows on making use of the multiplicative property of the Euler totient.

Theorem 2.4. (i) There exists a primitive root modulo m if and only if $m=$ $1,2,4, p^{\alpha}$ or $2 p^{\alpha}$, in which p is an odd prime number and α is a natural number. (ii) When $j \geqslant 3$, the order of 5 modulo 2^{j} is 2^{j-2}. Furthermore, every reduced residue class modulo 2^{j} may be written in the form $(-1)^{l} 5^{m}$, where $l=0$ or 1 and $1 \leqslant m \leqslant 2^{j-2}$, and in which the integers l and m are unique.

Proof. When $m=2,4$, the residues 1, 3, respectively, are primitive roots. When $m=p^{\alpha}$ the desired conclusion is immediate from Theorem 2.2. Suppose then that $m=2 p^{\alpha}$. If g is a primitive root modulo p^{α} (and such exist by Theorem 2.2), then one of g and $g+p^{\alpha}$ is an odd integer, say g^{\prime}. The order of g^{\prime} modulo $2 p^{\alpha}$ must be at least $\phi\left(p^{\alpha}\right)$, since g^{\prime} is primitive modulo p^{α}. But $\phi\left(2 p^{\alpha}\right)=\phi(2) \phi\left(p^{\alpha}\right)=\phi\left(p^{\alpha}\right)$, so that the latter observation already ensures that g^{\prime} is primitive modulo $2 p^{\alpha}$.

Suppose next that m is none of $1,2,4, p^{\alpha}$ or $2 p^{\alpha}$, for any odd prime p. Then provided that m is not a power of 2 , there exist integers n_{1} and n_{2} with $\left(n_{1}, n_{2}\right)=1, n_{1}>n_{2}>2$ and $m=n_{1} n_{2}$. But then $\phi\left(n_{1}\right)$ and $\phi\left(n_{2}\right)$ are both even, whence

$$
a^{\phi(m) / 2}=\left(a^{\phi\left(n_{1}\right)}\right)^{\phi\left(n_{2}\right) / 2} \equiv 1 \quad\left(\bmod n_{1}\right) \quad \text { whenever }(a, m)=1
$$

and

$$
a^{\phi(m) / 2}=\left(a^{\phi\left(n_{2}\right)}\right)^{\phi\left(n_{1}\right) / 2} \equiv 1 \quad\left(\bmod n_{2}\right) \quad \text { whenever }(a, m)=1
$$

Then since $\left(n_{1}, n_{2}\right)=1$ and $m=n_{1} n_{2}$, we find that $a^{\phi(m) / 2} \equiv 1(\bmod m)$ whenever $(a, m)=1$. No reduced residue modulo m, therefore, has order exceeding $\phi(m) / 2$, and so, in particular, no residue can be a primitive root modulo m.

It remains to consider the situation in which $m=2^{j}$ with $j \geqslant 3$. We begin by establishing that for each α with $\alpha \geqslant 2$, one has $2^{\alpha} \|\left(5^{2^{\alpha-2}}-1\right)$. This is clear when $\alpha=2$. Suppose then that the assertion holds when $\alpha=t$. Then $2^{t} \|\left(5^{2^{t-2}}-1\right)$, whence $2 \|\left(5^{2^{t-2}}+1\right)$, and thus $2^{t+1} \|\left(5^{2^{t-2}}-1\right)\left(5^{2^{t-2}}+1\right)$, or equivalently, one has $2^{t+1} \|\left(5^{2^{t-1}}-1\right)$. Then the assertion that we presently seek to establish holds with $\alpha=t+1$ whenever it holds with $\alpha=t$, whence by induction it holds for all $\alpha \geqslant 2$.

Since $2^{\alpha} \|\left(5^{2^{\alpha-2}}-1\right)$ for $\alpha \geqslant 2$, it follows that 5 has order precisely $2^{\alpha-2}$ modulo 2^{α}, and this establishes the first claim of the second part of the theorem. Observe next that there are $2^{\alpha-2}$ distinct reduced residues modulo 2^{α} of the shape 5^{k}, all of which are congruent to 1 modulo 4 (why?), and so the remaining reduced residues modulo 2^{α} must all be congruent to -1 modulo 4 , and are hence of the shape -5^{k}. Thus all reduced residues modulo 2^{α} may be written in the form $(-1)^{l} 5^{m}$, where $l=0$ or 1 and $1 \leqslant m \leqslant 2^{\alpha-2}$. Furthermore, these choices for l and m are distinct, for the total number of residues represented in this manner is at most $2^{\alpha-1}$, and yet there are precisely $2^{\alpha-1}$ residues to be represented. That there are no primitive roots modulo 2^{α} when $\alpha>2$ follows on noting that $(-1)^{l} 5^{m}$ has order at most $2^{\alpha-2}<\phi\left(2^{\alpha}\right)$ when $\alpha \geqslant 3$.

Our main result can be summarised as follows:

$$
\begin{aligned}
\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times} & \cong C_{\phi\left(p^{r}\right)}, \quad \text { when } p \text { is odd, } \\
(\mathbb{Z} / 2 \mathbb{Z})^{\times} & \cong C_{1}, \\
(\mathbb{Z} / 4 \mathbb{Z})^{\times} & \cong C_{2}, \\
\left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{\times} & \cong C_{2} \times C_{2^{r-2}}, \quad \text { when } r \geqslant 3
\end{aligned}
$$

Making use of the Chinese Remainder Theorem, we infer that if

$$
m=2^{e} \prod_{\substack{p^{r} \| m \\ p>2}} p^{r}
$$

then

$$
(\mathbb{Z} / m \mathbb{Z})^{\times} \cong G_{e} \times \prod_{\substack{p^{r} \| m \\ p>2}} C_{\phi\left(p^{r}\right)}
$$

where

$$
G_{e} \cong \begin{cases}C_{1}, & \text { when } e=0,1 \\ C_{2}, & \text { when } e=2 \\ C_{2} \times C_{2^{e-2}}, & \text { when } e \geqslant 3\end{cases}
$$

This allows to deduce the following improvement of Euler's theorem. Put

$$
e\left(p^{h}\right)= \begin{cases}\phi\left(p^{h}\right), & \text { when } p \text { is odd, and when } p^{h}=2 \text { or } 4, \\ \frac{1}{2} \phi\left(p^{h}\right), & \text { when } p=2 \text { and } h \geqslant 3,\end{cases}
$$

and then define the (Carmichael) function

$$
\lambda(n)=\underset{p^{h} \| n}{\operatorname{lcm}} e\left(p^{h}\right) .
$$

It is clear from the above discussion that whenever $(a, n)=1$, one has

$$
a^{\lambda(n)} \equiv 1(\bmod n)
$$

providing a refinement of Euler's theorem. Moreover, for every natural number n, it is apparent also that there exists an integer a with $(a, n)=1$ having order precisely $\lambda(n)$ modulo n.

Aside: It is an interesting problem what is the least positive integer g_{p} which gives a primitive root modulo a prime p. Currently, it is known, due to the work of Wang, that assuming the Generalised Riemann Hypothesis (a difficult unsolved problem in Number Theory), we have

$$
g_{p} \leqslant C \omega(p-1)^{6}(\log p)^{2}
$$

where $\omega(n)$ denotes the number of distinct prime factors of an integer n.
Artin conjectured in 1924 that every positive integer a which is not a square is a primitive root modulo p for infinitely many primes p. This conjecture is still open in general, but Hooley in 1967 proved this conjecture assuming the Generalised Riemann Hypothesis.

