
LECTURE 9: QUADRATIC RESIDUES AND THE LAW OF
QUADRATIC RECIPROCITY

1. Basic properties of quadratic residues

We now investigate residues with special properties of algebraic type.

Definition 1.1. (i) When (a,m) = 1 and xn ≡ a (mod m) has a solution,
then we say that a is an nth power residue modulo m.

(ii) When (a,m) = 1, we say that a is a quadratic residue modulo m provided
that the congruence x2 ≡ a (mod m) is soluble. If the latter congruence is
insoluble, then we say that a is a quadratic non-residue modulo m.

Theorem 1.2. Suppose that p is a prime number and (a, p) = 1. Then the
congruence xn ≡ a (mod p) is soluble if and only if

a
p−1

(n,p−1) ≡ 1 (mod p).

Proof. Let g be a primitive root modulo p. Then for some natural number r
one has a ≡ gr (mod p). If

a
p−1

(n,p−1) ≡ 1 (mod p),

then

g
r(p−1)
(n,p−1) ≡ 1 (mod p).

But since g is primitive, the latter congruence can hold only when

(p− 1)

∣∣∣∣ r(p− 1)

(n, p− 1)
,

whence (n, p− 1) | r. But by the Euclidean Algorithm, there exist integers u
and v with nu+ (p− 1)v = (n, p− 1), so on writing r = k(n, p− 1), we obtain

a ≡ gk(n,p−1) ≡ (gku)n(gp−1)kv ≡ (gku)n (mod p).

Thus a is indeed an nth power residue under these circumstances.

On the other hand, if the congruence xn ≡ a (mod p) is soluble, then

a
p−1

(n,p−1) ≡ (xp−1)n/(n,p−1) ≡ 1 (mod p),

on making use of Fermat’s Little Theorem. This completes the proof of the
theorem. �

Example 1.3. Determine whether or not 3 is a 4th power residue modulo 17.

Observe that on making use of Theorem 1.2, the congruence x4 ≡ 3 (mod 17)
is soluble if and only if 316/4 ≡ 1 (mod 17), that is, if 81 ≡ 1 (mod 17). Since
this congruence is not satisfied, one finds that 3 is not a 4th power residue
modulo 17.
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Definition 1.4. When p is an odd prime number, define the Legendre sym-

bol

(
a

p

)
by

(
a

p

)
=


+1, when a is a quadratic residue modulo p,

−1, when a is a quadratic non-residue modulo p,

0, when p | a.

Theorem 1.5 (Euler’s criterion). When p is an odd prime, one has(
a

p

)
≡ a(p−1)/2 (mod p).

Proof. If a(p−1)/2 ≡ 1 (mod p), then the desired conclusion is an immediate
consequence of Theorem 1.2. The conclusion is also immediate when p | a. It
remains to consider the situation in which a(p−1)/2 6≡ 1 (mod p). Let a be an
integer with (a, p) = 1, write r = a(p−1)/2, and note that in view of Fermat’s
Little Theorem, one has r2 = ap−1 ≡ 1 (mod p), whence r ≡ ±1 (mod p).
Then if r 6≡ 1 (mod p), one necessarily has r ≡ −1 (mod p). Thus, in the
situation in which a(p−1)/2 6≡ 1 (mod p), wherein Theorem 1.2 establishes that
a is a quadratic non-residue modulo p, one has a(p−1)/2 ≡ −1 (mod p), and
so the desired conclusion follows once again. This completes the proof of the
theorem. �

Theorem 1.6. Let p be an odd prime number. Then

(i) for all integers a and b, one has(
ab

p

)
=

(
a

p

)(
b

p

)
;

(ii) whenever a ≡ b (mod p), one has(
a

p

)
=

(
b

p

)
;

(iii) whenever (a, p) = 1, one has(
a2

p

)
= 1 and

(
a2b

p

)
=

(
b

p

)
;

(iv) one has (
1

p

)
= 1 and

(
−1

p

)
= (−1)(p−1)/2.

Proof. These conclusions are essentially immediate from Theorem 1.5. For
example, the latter theorem shows that(

ab

p

)
≡ (ab)(p−1)/2 ≡ a(p−1)/2b(p−1)/2 ≡

(
a

p

)(
b

p

)
(mod p),

and so the conclusion of part (i) of the theorem follows on noting that since p
is odd, one cannot have 1 ≡ −1 (mod p). Parts (ii) and (iv) are trivial from
the last observation, and part (iii) follows from Fermat’s Little Theorem. �
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Note: The number of solutions of the congruence x2 ≡ a (mod p) is given

by 1 +

(
a

p

)
. For when (a, p) = 1 and the congruence is soluble, one has two

distinct solutions and 1 +

(
a

p

)
= 1 + 1 = 2. In the corresponding case in

which the congruence is insoluble, one has 1 +

(
a

p

)
= 1 + (−1) = 0. When

(a, p) > 1, one the other hand, one has the single solution x ≡ 0 (mod p), and

then 1 +

(
a

p

)
= 1 + 0 = 1.

The above observation provides a means of analysing the solubility of qua-
dratic equations. For if (a, p) = 1 and p > 2, then the congruence ax2+bx+c ≡
0 (mod p) is soluble if and only if (2ax + b)2 ≡ b2 − 4ac (mod p) is soluble,
that is, if and only if either b2 − 4ac ≡ 0 (mod p), or else(

b2 − 4ac

p

)
= 1.

The number of solutions of the congruence is therefore precisely

1 +

(
b2 − 4ac

p

)
.

It is clear from the multiplicative property of

(
·
p

)
that it suffices now to

compute

(
q

p

)
for odd prime numbers q and

(
2

p

)
in order to calculate

(
a

p

)
in general.

2. The law of quadratic reciprocity

We now come to one of the most beautiful results of our course — the Law
of Quadratic Reciprocity, which Gauss called the “aureum theorema” (“golden
theorem”). Euler was the first to make conjectures equivalent to Quadratic
Reciprocity, but he was unable to prove it. Legendre also worked on this
problem very seriously and developed many valuable ideas, in particular, he
also introduced the Legendre symbol. Finally, Gauss gave a complete proof
of the Law of Quadratic Reciprocity in 1797, when he was 19. Now there are
over 200 different proofs of this fundamental result.

Theorem 2.1 (Law of Quadratic Reciprocity; Gauss). Let p and q be distinct
odd prime numbers. Then(

p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4.
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Rewriting the expression on the right hand side of the last equation in the
shape (

p

q

)(
q

p

)
= (−1)

1
2
(p−1)·1

2
(q−1),

we see that

(
p

q

)
=

(
q

p

)
unless p and q are both congruent to 3 modulo 4.

We a give the proof of quadratic reciprocity which is due to Eisenstein. It
is based on the following way to compute the Legendre symbol:

Lemma 2.2 (Eisenstein). For an odd prime p and (a, p) = 1,(
a

p

)
= (−1)

∑(p−1)/2
k=1 b2ka/pc.

Proof. Let E = {2, 4, . . . , p− 1}. For every x ∈ E, we write

xa = bxa/pcp + rx, 0 6 rx < p.

We observe that each of the numbers (−1)rxrx is congruent to an element of E.
This is clear when rx is even, and when rx is odd, (−1)rxrx ≡ p− rx (mod p)
where p − rx ∈ E. We also claim that if (−1)rxrx ≡ (−1)ryry (mod p), then
x = y. Indeed, if rx ≡ ry (mod p), then xa ≡ ya (mod p), and it follows
that x ≡ y (mod p). If rx ≡ −ry (mod p), then xa ≡ −ya (mod p), and
x ≡ −y (mod p), and p|(x+y), but x+y 6 2(p−1), so that this is impossible.
Hence, we conclude that

{(−1)rxrx (mod p) : x ∈ E} = E,

and ∏
x∈E

x ≡
∏
x∈E

(−1)rxrx ≡ (−1)
∑

x∈E rx
∏
x∈E

rx (mod p).

On the other hand,∏
x∈E

rx ≡
∏
x∈E

xa ≡ a(p−1)/2
∏
x∈E

x (mod p).

Since
(

a
p

)
≡ a(p−1)/2 (mod p), we deduce that(

a

p

)
= (−1)

∑
x∈E rx .

Finally, we observe that rx ≡ bxa/pc (mod 2). This implies the lemma. �

Proof of Quadratic Reciprocity. We shall use the formulas for
(

p
q

)
and

(
q
p

)
provided by the Einsenstein Lemma. The main idea of the proof is that the
sums

(p−1)/2∑
k=1

b2kq/pc and

(q−1)/2∑
k=1

b2kp/qc

can be interpreted geometrically.
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We may think about b2kq/pc as the number of points (x, y) with x = 2k and

y equal to positive integer at most b2kq/pc. Then the sum
∑(p−1)/2

k=1 b2kq/pc
is equal to the number of integral points with even x-coordinate contained in
the interior of triangle ABD. Note that there are no integral points on the
line AB (why?). We note that the number of integral points contained in the
interior of rectangle AFBD and lying on a fixed integral vertical line is equal to
q − 1, thus, even. This implies that the number of integral points in KHBD
with even x-coordinate is equal modulo 2 to the number of integral points
in HJB with even x-coordinate. We also observe that the transformation
(x, y)→ (p−x, q−y) send the integral points with even x-coordinates contained
in HJB to the integral points with odd x-coordinates contained in AHK.
Finally, we conclude that he number of integral points with even x-coordinate
contained in the interior of triangle ABD is congruent modulo 2 to the sum of
the integral points with odd x-coordinates contained in AHK plus the integral
points with even x-coordinates contained in AHK, namely, it is precisely the
number of integral points contained in AHK. We obtain that

(p−1)/2∑
k=1

b2kq/pc ≡ v1 (mod 2),

where v1 is the number of integral points contained in AHK. The same argu-
ment gives that

(q−1)/2∑
k=1

b2kp/qc ≡ v2 (mod 2),

where v2 is the number of integral points contained in ALH. In view of Eisen-
stein’s Lemma, (

q

p

)(
p

q

)
= (−1)v1+v2 ,
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but v1 + v2 is precisely the number of integral points in ALHK. Hence,

v1 + v2 =
p− 1

2
· q − 1

2
.

This completes the proof. �

Theorem 2.3. For any odd prime p,(
2

p

)
= (−1)(p

2−1)/8.

Proof. We use that

(p−1)/2∑
k=1

b4k/pc = |{k ∈ N : p/4 < k < p/2}| = bp/2c − bp/4c.

When p = 8m± 1, then

(p−1)/2∑
k=1

b4k/pc = b4m± 1/2c − b2m± 1/4c ≡ 0 ≡ (p2 − 1)/8 (mod 2).

When p = 8m± 3, then

(p−1)/2∑
k=1

b4k/pc = b4m± 3/2c− b2m± 3/4c ≡ 2m± 1 ≡ 1 ≡ (p2− 1)/8 (mod 2).

�

Example 2.4. Determine the value of

(
−3

p

)
.

By Quadratic Reciprocity we have(
3

p

)(p
3

)
= (−1)(3−1)(p−1)/4 = (−1)(p−1)/2,

and by Euler’s criterion, on the other hand,(
−1

p

)
= (−1)(p−1)/2.

Thus we see that(
−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)(p−1)/2 · (−1)(p−1)/2

(p
3

)
=
(p

3

)
.

But (p
3

)
=


(

1

3

)
= 1, when p ≡ 1 (mod 3),(

2

3

)
= −1, when p ≡ 2 (mod 3).

Thus we deduce that(
−3

p

)
=

{
1, when p ≡ 1 (mod 3),

−1, when p ≡ 2 (mod 3).
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One can use this evaluation to show that the only possible prime divisors of
x2 + 3, for integral values of x, are 3 and primes p with p ≡ 1 (mod 3). From
here, an argument similar to that due to Euclid shows that there are infinitely
many primes congruent to 1 modulo 3.

Example 2.5. Determine the value of

(
21

71

)
.

Applying the multiplicative property of the Legendre symbol, followed by qua-
dratic reciprocity, one finds that(

21

71

)
=

(
3

71

)(
7

71

)
= (−1)(71−1)(3−1)/4+(71−1)(7−1)/4

(
71

3

)(
71

7

)
=

(
71

3

)(
71

7

)
=

(
2

3

)(
1

7

)
=

(
2

3

)
= −1.

So

(
21

71

)
= −1, and hence 21 is not a quadratic residue modulo 71.


