P-ADIC NUMBERS

Let us begin by recalling how the real numbers R are defined starting from
Q. One begins with two ingredients: (i) the set of rational numbers Q, and (ii)
the ordinary absolute value |- |. Now consider the set of Cauchy sequences in
Q, that is, the set of sequences (a,)2 ; satisfying the property that whenever
e > 0, there exists N = N(e) such that whenever n > m > N(e), one has
lan, — am| < €. Define

R ={(a,)22; : a, € Q for each n, and (a,) is a Cauchy sequence}.

One can show that R forms a ring under addition and multiplication defined
coordinatewise in the obvious fashion. Now identify two Cauchy sequences (a,,)
and (b,) when lim,,_, |a, — b,| = 0. Modulo this equivalence, we may label
Cauchy sequences, say a = (a,), and then call the set of all of these elements
the real numbers. [A more precise treatment would show that the set Z of
Cauchy sequences with limit 0 forms an ideal in R, and then that the quotient
R /T inherits the axioms for a field, and that | - | can be extended to R/Z with
the usual properties for the real numbers satisfied with this definition of | - |.
But we are being sketchy here, and so we will not get bogged down in such
details.] One can prove that R is complete with respect to the absolute value
| - | inherited from Q, and we refer to R as being the completion of Q with
respect to | - |.

We now define a substitute for the absolute value that measures the power
of a given prime dividing the argument.

Definition 0.1. Let p be a prime number. Any non-zero rational number «
can be written uniquely in the form o = p"u/v, where v € Z, v € Nand r € Z,
such that p t uv and (u,v) = 1. We define the p-adic absolute value | - |, by
setting |0[, = 0, and when o € Q \ {0}, by putting ||, = p~", with r defined
as above.

Exercises (i) Show that ||, > 0 for all a € Q, with equality only for o = 0;
(ii) that |af|, = |al,|B], for all «, 5 € Q; (iii) that |a + B, < max{|al,,|5],}
for all o, 5 € Q.

The last inequality is known as the ultrametric inequality, and constitutes a
stronger version of the triangle inequality.

Now define Cauchy sequences in Q with respect to |- |, just as in the classical
situation above. We say that (a,)32, is Cauchy with respect to the p-adic
absolute value if, whenever £ > 0, there exists a positive number N(g) such
that whenever n > m > N(¢), one has |a, — a,,|, < €. Define next

Q, ={(an)y2y : a, € Q for each n, and (a,) is Cauchy with respect to |- |,}.

n=1
One can show that Q, forms a ring under addition and multiplication defined

coordinatewise in the obvious fashion. Now identify two Cauchy sequences (ay,)
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and (b,) when lim,_, |a,, — b,|, = 0. Modulo this equivalence, we may label
Cauchy sequences, say a = (a,), and then call the set of all of these elements
the p-adic numbers Q,. [Again, a more precise treatment would show that the
set Z,, of Cauchy sequences with limit 0 forms an ideal in Q,,, and then that the
quotient Q, /T, inherits the axioms for a field, and that | - |, can be extended
to Q, /I, with properties analogous to those satisfied by |- |, on Q enjoyed by
|- |, on Q,. Again, we are being sketchy here, and so we avoid getting bogged
down in such details.] One can prove that Q, is complete with respect to the
p-adic absolute value | - |, inherited from Q, and we refer to Q, as being the
completion of Q with respect to | - |,.

Example 0.2 (Conway and Sloane). We give an example of a sequence in
Q with respect to | - |5 that has a limit in Q5 that can be interpreted as 2/3.
Consider the sequence (a,,)5°  defined by a1 = 4, as = 34, a3 = 334, ..., and in
general a,, = [10"/3]. Then for every natural number n, one has 3a, —2 = 10",
and hence |3a,, — 2|5 = 57". Thus we see that lim,,_,, |3a, — 2|5 = 0, whence
(a,,) converges in the 5-adic sense to 2/3.

Remark 0.3. One has >~ a, converges in Q, <= lim, o a, = 0.

Write sy for the partial sum 25:0 a,. Then in order to justify this remark,
note on the one hand that if >~ a, converges, then

lim ay = lim (sy —sy—1) = lim sy — lim sy = 0.

N—oo N—o0 N—o0 M—o0

On the other hand, if lim,,_, a, = 0, then given any positive number ¢, there
exists a positive number N(e) such that whenever n > N(eg), then one has

|an|, < €. But then whenever N > M > N(e), one has

‘SN - SM’p = ‘a/M+1 + - F aN’p < MIESXN ’an’p <g,

by making use of the ultrametric inequality. Thus we see that (sy) is a Cauchy
sequence with respect to | - |,, and hence has a limit.

The set of p-adic numbers with absolute value at most 1 is known as the
p-adic integers Z,, so that Z, = {a € Q, : |a|, < 1}. Notice that the set of
integers Z can be naturally embedded into Z,, and likewise Q can be naturally
embedded into Q,.

Fact 0.4. If o € Q,, then for some non-negative integer IV, one can write «
in the shape

[o.¢]
a = Z anpn7
n=—N
in which the coefficients a; lie in the set {0,1,...,p — 1}.

One can check, for example, that in Q7,

1
5:3+1-7+4.72+5.73+2.74+1.75+....
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Theorem 0.5 (Hensel’s lemma revisited). Let f € Zy[z], and suppose that a
is an integer satisfying the condition |f(a)l, < [f'(a)|2. Then there exists a
unique p-adic integer o such that

fla)=0 and |o—al, <|f'(a)l,"[f(a)],.

Example 0.6. We saw earlier that the congruence 2% +1 =0 (mod 5) gives
rise to a chain of solutions to the congruence z?+1 =0 (mod 5"). On writing
f(x) =2*+1, we have | f(2)|5 = |5|s =57, and |f/(2)]5 = |2- 2|5 = 1, whence
|f(2)]s < |f/(2)|2. Then it follows from the 5-adic version of Hensel’s lemma
that there exists a € Zjs for which f(a) =0 and |o — 2|5 < 5. If we simply
choose the truncation of the 5-adic expansion of a modulo 5", say «,,, then of
course we obtain a solution z = «,, of the congruence x? +1 (mod 5"). In this
sense, the 5-adic solution z = « of the equation 22 +1 = 0 encodes information
concerning all of the associated congruences modulo 5".

We finish this sketch of the p-adic numbers by pointing out that the inter-
action between completion and algebraic closure is not as simple for the p-adic
numbers as for the real numbers. Thus, the completion of Q with respect to
the ordinary absolute value |- | is R, and the algebraic closure of R is C, the
latter being both complete and algebraically closed. Given a prime number
p on the other hand, the completion of Q with respect to the p-adic absolute
value ||, is Qp, and the algebraic closure of Q, is a larger field Q,,. It transpires
that @p is not itself complete (in contrast to the situation for C). It is possible

to extend the absolute value |- |, to a p-adic absolute value | - ||, on Q,, then
complete the latter with respect to || ||, The result is a field Q, which is both

complete and algebraically closed. This represents the proper p-adic analogue
of the complex numbers.
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