## **P-ADIC NUMBERS**

Let us begin by recalling how the real numbers  $\mathbb{R}$  are defined starting from  $\mathbb{Q}$ . One begins with two ingredients: (i) the set of rational numbers  $\mathbb{Q}$ , and (ii) the ordinary absolute value  $|\cdot|$ . Now consider the set of Cauchy sequences in  $\mathbb{Q}$ , that is, the set of sequences  $(a_n)_{n=1}^{\infty}$  satisfying the property that whenever  $\varepsilon > 0$ , there exists  $N = N(\varepsilon)$  such that whenever  $n > m > N(\varepsilon)$ , one has  $|a_n - a_m| < \varepsilon$ . Define

 $\mathcal{R} = \{(a_n)_{n=1}^{\infty} : a_n \in \mathbb{Q} \text{ for each } n, \text{ and } (a_n) \text{ is a Cauchy sequence} \}.$ 

One can show that  $\mathcal{R}$  forms a ring under addition and multiplication defined coordinatewise in the obvious fashion. Now identify two Cauchy sequences  $(a_n)$ and  $(b_n)$  when  $\lim_{n\to\infty} |a_n - b_n| = 0$ . Modulo this equivalence, we may label Cauchy sequences, say  $\alpha = (a_n)$ , and then call the set of all of these elements the real numbers. [A more precise treatment would show that the set  $\mathcal{I}$  of Cauchy sequences with limit 0 forms an ideal in  $\mathcal{R}$ , and then that the quotient  $\mathcal{R}/\mathcal{I}$  inherits the axioms for a field, and that  $|\cdot|$  can be extended to  $\mathcal{R}/\mathcal{I}$  with the usual properties for the real numbers satisfied with this definition of  $|\cdot|$ . But we are being sketchy here, and so we will not get bogged down in such details.] One can prove that  $\mathbb{R}$  is complete with respect to the absolute value  $|\cdot|$  inherited from  $\mathbb{Q}$ , and we refer to  $\mathbb{R}$  as being the completion of  $\mathbb{Q}$  with respect to  $|\cdot|$ .

We now define a substitute for the absolute value that measures the power of a given prime dividing the argument.

**Definition 0.1.** Let p be a prime number. Any non-zero rational number  $\alpha$  can be written uniquely in the form  $\alpha = p^r u/v$ , where  $u \in \mathbb{Z}$ ,  $v \in \mathbb{N}$  and  $r \in \mathbb{Z}$ , such that  $p \nmid uv$  and (u, v) = 1. We define the *p*-adic absolute value  $|\cdot|_p$  by setting  $|0|_p = 0$ , and when  $\alpha \in \mathbb{Q} \setminus \{0\}$ , by putting  $|\alpha|_p = p^{-r}$ , with r defined as above.

**Exercises** (i) Show that  $|\alpha|_p \ge 0$  for all  $\alpha \in \mathbb{Q}$ , with equality only for  $\alpha = 0$ ; (ii) that  $|\alpha\beta|_p = |\alpha|_p |\beta|_p$  for all  $\alpha, \beta \in \mathbb{Q}$ ; (iii) that  $|\alpha + \beta|_p \le \max\{|\alpha|_p, |\beta|_p\}$  for all  $\alpha, \beta \in \mathbb{Q}$ .

The last inequality is known as the *ultrametric inequality*, and constitutes a stronger version of the triangle inequality.

Now define Cauchy sequences in  $\mathbb{Q}$  with respect to  $|\cdot|_p$  just as in the classical situation above. We say that  $(a_n)_{n=1}^{\infty}$  is Cauchy with respect to the *p*-adic absolute value if, whenever  $\varepsilon > 0$ , there exists a positive number  $N(\varepsilon)$  such that whenever  $n > m > N(\varepsilon)$ , one has  $|a_n - a_m|_p < \varepsilon$ . Define next

 $Q_p = \{(a_n)_{n=1}^{\infty} : a_n \in \mathbb{Q} \text{ for each } n, \text{ and } (a_n) \text{ is Cauchy with respect to } |\cdot|_p\}.$ One can show that  $Q_p$  forms a ring under addition and multiplication defined coordinatewise in the obvious fashion. Now identify two Cauchy sequences  $(a_n)$ 

## P-ADIC NUMBERS

and  $(b_n)$  when  $\lim_{n\to\infty} |a_n - b_n|_p = 0$ . Modulo this equivalence, we may label Cauchy sequences, say  $\alpha = (a_n)$ , and then call the set of all of these elements the *p*-adic numbers  $\mathbb{Q}_p$ . [Again, a more precise treatment would show that the set  $\mathcal{I}_p$  of Cauchy sequences with limit 0 forms an ideal in  $\mathcal{Q}_p$ , and then that the quotient  $\mathcal{Q}_p/\mathcal{I}_p$  inherits the axioms for a field, and that  $|\cdot|_p$  can be extended to  $\mathcal{Q}_p/\mathcal{I}_p$  with properties analogous to those satisfied by  $|\cdot|_p$  on  $\mathbb{Q}$  enjoyed by  $|\cdot|_p$  on  $\mathbb{Q}_p$ . Again, we are being sketchy here, and so we avoid getting bogged down in such details.] One can prove that  $\mathbb{Q}_p$  is complete with respect to the *p*-adic absolute value  $|\cdot|_p$  inherited from  $\mathbb{Q}$ , and we refer to  $\mathbb{Q}_p$  as being the completion of  $\mathbb{Q}$  with respect to  $|\cdot|_p$ .

**Example 0.2** (Conway and Sloane). We give an example of a sequence in  $\mathbb{Q}$  with respect to  $|\cdot|_5$  that has a limit in  $\mathbb{Q}_5$  that can be interpreted as 2/3. Consider the sequence  $(a_n)_{n=1}^{\infty}$  defined by  $a_1 = 4$ ,  $a_2 = 34$ ,  $a_3 = 334$ , ..., and in general  $a_n = \lceil 10^n/3 \rceil$ . Then for every natural number n, one has  $3a_n - 2 = 10^n$ , and hence  $|3a_n - 2|_5 = 5^{-n}$ . Thus we see that  $\lim_{n\to\infty} |3a_n - 2|_5 = 0$ , whence  $(a_n)$  converges in the 5-adic sense to 2/3.

Remark 0.3. One has  $\sum_{n=0}^{\infty} a_n$  converges in  $\mathbb{Q}_p \iff \lim_{n \to \infty} a_n = 0$ .

Write  $s_N$  for the partial sum  $\sum_{n=0}^{N} a_n$ . Then in order to justify this remark, note on the one hand that if  $\sum_{n=0}^{\infty} a_n$  converges, then

$$\lim_{N \to \infty} a_N = \lim_{N \to \infty} (s_N - s_{N-1}) = \lim_{N \to \infty} s_N - \lim_{M \to \infty} s_M = 0.$$

On the other hand, if  $\lim_{n\to\infty} a_n = 0$ , then given any positive number  $\varepsilon$ , there exists a positive number  $N(\varepsilon)$  such that whenever  $n > N(\varepsilon)$ , then one has  $|a_n|_p < \varepsilon$ . But then whenever  $N > M > N(\varepsilon)$ , one has

$$|s_N - s_M|_p = |a_{M+1} + \dots + a_N|_p \leq \max_{M < n \leq N} |a_n|_p < \varepsilon,$$

by making use of the ultrametric inequality. Thus we see that  $(s_N)$  is a Cauchy sequence with respect to  $|\cdot|_p$ , and hence has a limit.

The set of *p*-adic numbers with absolute value at most 1 is known as the *p*-adic integers  $\mathbb{Z}_p$ , so that  $\mathbb{Z}_p = \{\alpha \in \mathbb{Q}_p : |\alpha|_p \leq 1\}$ . Notice that the set of integers  $\mathbb{Z}$  can be naturally embedded into  $\mathbb{Z}_p$ , and likewise  $\mathbb{Q}$  can be naturally embedded into  $\mathbb{Q}_p$ .

**Fact 0.4.** If  $\alpha \in \mathbb{Q}_p$ , then for some non-negative integer N, one can write  $\alpha$  in the shape

$$\alpha = \sum_{n=-N}^{\infty} a_n p^n,$$

in which the coefficients  $a_i$  lie in the set  $\{0, 1, \ldots, p-1\}$ .

One can check, for example, that in  $\mathbb{Q}_7$ ,

$$\frac{1}{5} = 3 + 1 \cdot 7 + 4 \cdot 7^2 + 5 \cdot 7^3 + 2 \cdot 7^4 + 1 \cdot 7^5 + \dots$$

**Theorem 0.5** (Hensel's lemma revisited). Let  $f \in \mathbb{Z}_p[x]$ , and suppose that a is an integer satisfying the condition  $|f(a)|_p < |f'(a)|_p^2$ . Then there exists a unique p-adic integer  $\alpha$  such that

$$f(\alpha) = 0$$
 and  $|\alpha - a|_p \leq |f'(a)|_p^{-1} |f(a)|_p$ .

**Example 0.6.** We saw earlier that the congruence  $2^2 + 1 \equiv 0 \pmod{5}$  gives rise to a chain of solutions to the congruence  $x^2 + 1 \equiv 0 \pmod{5^n}$ . On writing  $f(x) = x^2 + 1$ , we have  $|f(2)|_5 = |5|_5 = 5^{-1}$ , and  $|f'(2)|_5 = |2 \cdot 2|_5 = 1$ , whence  $|f(2)|_5 < |f'(2)|_5^2$ . Then it follows from the 5-adic version of Hensel's lemma that there exists  $\alpha \in \mathbb{Z}_5$  for which  $f(\alpha) = 0$  and  $|\alpha - 2|_5 \leq 5^{-1}$ . If we simply choose the truncation of the 5-adic expansion of  $\alpha$  modulo  $5^n$ , say  $\alpha_n$ , then of course we obtain a solution  $x = \alpha_n$  of the congruence  $x^2 + 1 \pmod{5^n}$ . In this sense, the 5-adic solution  $x = \alpha$  of the equation  $x^2 + 1 = 0$  encodes information concerning all of the associated congruences modulo  $5^n$ .

We finish this sketch of the *p*-adic numbers by pointing out that the interaction between completion and algebraic closure is not as simple for the *p*-adic numbers as for the real numbers. Thus, the completion of  $\mathbb{Q}$  with respect to the ordinary absolute value  $|\cdot|$  is  $\mathbb{R}$ , and the algebraic closure of  $\mathbb{R}$  is  $\mathbb{C}$ , the latter being both complete and algebraically closed. Given a prime number *p* on the other hand, the completion of  $\mathbb{Q}$  with respect to the *p*-adic absolute value  $|\cdot|_p$  is  $\mathbb{Q}_p$ , and the algebraic closure of  $\mathbb{Q}_p$  is a larger field  $\overline{\mathbb{Q}}_p$ . It transpires that  $\overline{\mathbb{Q}}_p$  is not itself complete (in contrast to the situation for  $\mathbb{C}$ ). It is possible to extend the absolute value  $|\cdot|_p$  to a *p*-adic absolute value  $||\cdot|_p$  on  $\overline{\mathbb{Q}}_p$ , then complete the latter with respect to  $||\cdot||_p$ . The result is a field  $\widehat{\overline{\mathbb{Q}}}_p$  which is both complete and algebraically closed. This represents the proper *p*-adic analogue of the complex numbers.

