P-ADIC NUMBERS

Let us begin by recalling how the real numbers \mathbb{R} are defined starting from \mathbb{Q}. One begins with two ingredients: (i) the set of rational numbers \mathbb{Q}, and (ii) the ordinary absolute value $|\cdot|$. Now consider the set of Cauchy sequences in \mathbb{Q}, that is, the set of sequences $\left(a_{n}\right)_{n=1}^{\infty}$ satisfying the property that whenever $\varepsilon>0$, there exists $N=N(\varepsilon)$ such that whenever $n>m>N(\varepsilon)$, one has $\left|a_{n}-a_{m}\right|<\varepsilon$. Define

$$
\mathcal{R}=\left\{\left(a_{n}\right)_{n=1}^{\infty}: a_{n} \in \mathbb{Q} \text { for each } n, \text { and }\left(a_{n}\right) \text { is a Cauchy sequence }\right\}
$$

One can show that \mathcal{R} forms a ring under addition and multiplication defined coordinatewise in the obvious fashion. Now identify two Cauchy sequences (a_{n}) and $\left(b_{n}\right)$ when $\lim _{n \rightarrow \infty}\left|a_{n}-b_{n}\right|=0$. Modulo this equivalence, we may label Cauchy sequences, say $\alpha=\left(a_{n}\right)$, and then call the set of all of these elements the real numbers. [A more precise treatment would show that the set \mathcal{I} of Cauchy sequences with limit 0 forms an ideal in \mathcal{R}, and then that the quotient $\mathcal{R} / \mathcal{I}$ inherits the axioms for a field, and that $|\cdot|$ can be extended to $\mathcal{R} / \mathcal{I}$ with the usual properties for the real numbers satisfied with this definition of $|\cdot|$. But we are being sketchy here, and so we will not get bogged down in such details.] One can prove that \mathbb{R} is complete with respect to the absolute value $|\cdot|$ inherited from \mathbb{Q}, and we refer to \mathbb{R} as being the completion of \mathbb{Q} with respect to $|\cdot|$.

We now define a substitute for the absolute value that measures the power of a given prime dividing the argument.

Definition 0.1. Let p be a prime number. Any non-zero rational number α can be written uniquely in the form $\alpha=p^{r} u / v$, where $u \in \mathbb{Z}, v \in \mathbb{N}$ and $r \in \mathbb{Z}$, such that $p \nmid u v$ and $(u, v)=1$. We define the p-adic absolute value $|\cdot|_{p}$ by setting $|0|_{p}=0$, and when $\alpha \in \mathbb{Q} \backslash\{0\}$, by putting $|\alpha|_{p}=p^{-r}$, with r defined as above.

Exercises (i) Show that $|\alpha|_{p} \geqslant 0$ for all $\alpha \in \mathbb{Q}$, with equality only for $\alpha=0$; (ii) that $|\alpha \beta|_{p}=|\alpha|_{p}|\beta|_{p}$ for all $\alpha, \beta \in \mathbb{Q}$; (iii) that $|\alpha+\beta|_{p} \leqslant \max \left\{|\alpha|_{p},|\beta|_{p}\right\}$ for all $\alpha, \beta \in \mathbb{Q}$.

The last inequality is known as the ultrametric inequality, and constitutes a stronger version of the triangle inequality.

Now define Cauchy sequences in \mathbb{Q} with respect to $|\cdot|_{p}$ just as in the classical situation above. We say that $\left(a_{n}\right)_{n=1}^{\infty}$ is Cauchy with respect to the p-adic absolute value if, whenever $\varepsilon>0$, there exists a positive number $N(\varepsilon)$ such that whenever $n>m>N(\varepsilon)$, one has $\left|a_{n}-a_{m}\right|_{p}<\varepsilon$. Define next $\mathcal{Q}_{p}=\left\{\left(a_{n}\right)_{n=1}^{\infty}: a_{n} \in \mathbb{Q}\right.$ for each n, and $\left(a_{n}\right)$ is Cauchy with respect to $\left.|\cdot|_{p}\right\}$. One can show that \mathcal{Q}_{p} forms a ring under addition and multiplication defined coordinatewise in the obvious fashion. Now identify two Cauchy sequences $\left(a_{n}\right)$
and $\left(b_{n}\right)$ when $\lim _{n \rightarrow \infty}\left|a_{n}-b_{n}\right|_{p}=0$. Modulo this equivalence, we may label Cauchy sequences, say $\alpha=\left(a_{n}\right)$, and then call the set of all of these elements the p-adic numbers \mathbb{Q}_{p}. [Again, a more precise treatment would show that the set \mathcal{I}_{p} of Cauchy sequences with limit 0 forms an ideal in \mathcal{Q}_{p}, and then that the quotient $\mathcal{Q}_{p} / \mathcal{I}_{p}$ inherits the axioms for a field, and that $|\cdot|_{p}$ can be extended to $\mathcal{Q}_{p} / \mathcal{I}_{p}$ with properties analogous to those satisfied by $|\cdot|_{p}$ on \mathbb{Q} enjoyed by $|\cdot|_{p}$ on \mathbb{Q}_{p}. Again, we are being sketchy here, and so we avoid getting bogged down in such details.] One can prove that \mathbb{Q}_{p} is complete with respect to the p-adic absolute value $|\cdot|_{p}$ inherited from \mathbb{Q}, and we refer to \mathbb{Q}_{p} as being the completion of \mathbb{Q} with respect to $|\cdot|_{p}$.

Example 0.2 (Conway and Sloane). We give an example of a sequence in \mathbb{Q} with respect to $|\cdot|_{5}$ that has a limit in \mathbb{Q}_{5} that can be interpreted as $2 / 3$. Consider the sequence $\left(a_{n}\right)_{n=1}^{\infty}$ defined by $a_{1}=4, a_{2}=34, a_{3}=334, \ldots$, and in general $a_{n}=\left\lceil 10^{n} / 3\right\rceil$. Then for every natural number n, one has $3 a_{n}-2=10^{n}$, and hence $\left|3 a_{n}-2\right|_{5}=5^{-n}$. Thus we see that $\lim _{n \rightarrow \infty}\left|3 a_{n}-2\right|_{5}=0$, whence $\left(a_{n}\right)$ converges in the 5 -adic sense to $2 / 3$.

Remark 0.3. One has $\sum_{n=0}^{\infty} a_{n}$ converges in $\mathbb{Q}_{p} \Longleftrightarrow \lim _{n \rightarrow \infty} a_{n}=0$.
Write s_{N} for the partial sum $\sum_{n=0}^{N} a_{n}$. Then in order to justify this remark, note on the one hand that if $\sum_{n=0}^{\infty} a_{n}$ converges, then

$$
\lim _{N \rightarrow \infty} a_{N}=\lim _{N \rightarrow \infty}\left(s_{N}-s_{N-1}\right)=\lim _{N \rightarrow \infty} s_{N}-\lim _{M \rightarrow \infty} s_{M}=0
$$

On the other hand, if $\lim _{n \rightarrow \infty} a_{n}=0$, then given any positive number ε, there exists a positive number $N(\varepsilon)$ such that whenever $n>N(\varepsilon)$, then one has $\left|a_{n}\right|_{p}<\varepsilon$. But then whenever $N>M>N(\varepsilon)$, one has

$$
\left|s_{N}-s_{M}\right|_{p}=\left|a_{M+1}+\cdots+a_{N}\right|_{p} \leqslant \max _{M<n \leqslant N}\left|a_{n}\right|_{p}<\varepsilon,
$$

by making use of the ultrametric inequality. Thus we see that $\left(s_{N}\right)$ is a Cauchy sequence with respect to $|\cdot|_{p}$, and hence has a limit.

The set of p-adic numbers with absolute value at most 1 is known as the p-adic integers \mathbb{Z}_{p}, so that $\mathbb{Z}_{p}=\left\{\alpha \in \mathbb{Q}_{p}:|\alpha|_{p} \leqslant 1\right\}$. Notice that the set of integers \mathbb{Z} can be naturally embedded into \mathbb{Z}_{p}, and likewise \mathbb{Q} can be naturally embedded into \mathbb{Q}_{p}.

Fact 0.4. If $\alpha \in \mathbb{Q}_{p}$, then for some non-negative integer N, one can write α in the shape

$$
\alpha=\sum_{n=-N}^{\infty} a_{n} p^{n}
$$

in which the coefficients a_{i} lie in the set $\{0,1, \ldots, p-1\}$.
One can check, for example, that in \mathbb{Q}_{7},

$$
\frac{1}{5}=3+1 \cdot 7+4 \cdot 7^{2}+5 \cdot 7^{3}+2 \cdot 7^{4}+1 \cdot 7^{5}+\ldots
$$

Theorem 0.5 (Hensel's lemma revisited). Let $f \in \mathbb{Z}_{p}[x]$, and suppose that a is an integer satisfying the condition $|f(a)|_{p}<\left|f^{\prime}(a)\right|_{p}^{2}$. Then there exists a unique p-adic integer α such that

$$
f(\alpha)=0 \quad \text { and } \quad|\alpha-a|_{p} \leqslant\left|f^{\prime}(a)\right|_{p}^{-1}|f(a)|_{p}
$$

Example 0.6. We saw earlier that the congruence $2^{2}+1 \equiv 0(\bmod 5)$ gives rise to a chain of solutions to the congruence $x^{2}+1 \equiv 0\left(\bmod 5^{n}\right)$. On writing $f(x)=x^{2}+1$, we have $|f(2)|_{5}=|5|_{5}=5^{-1}$, and $\left|f^{\prime}(2)\right|_{5}=|2 \cdot 2|_{5}=1$, whence $|f(2)|_{5}<\left|f^{\prime}(2)\right|_{5}^{2}$. Then it follows from the 5 -adic version of Hensel's lemma that there exists $\alpha \in \mathbb{Z}_{5}$ for which $f(\alpha)=0$ and $|\alpha-2|_{5} \leqslant 5^{-1}$. If we simply choose the truncation of the 5 -adic expansion of α modulo 5^{n}, say α_{n}, then of course we obtain a solution $x=\alpha_{n}$ of the congruence $x^{2}+1\left(\bmod 5^{n}\right)$. In this sense, the 5 -adic solution $x=\alpha$ of the equation $x^{2}+1=0$ encodes information concerning all of the associated congruences modulo 5^{n}.

We finish this sketch of the p-adic numbers by pointing out that the interaction between completion and algebraic closure is not as simple for the p-adic numbers as for the real numbers. Thus, the completion of \mathbb{Q} with respect to the ordinary absolute value $|\cdot|$ is \mathbb{R}, and the algebraic closure of \mathbb{R} is \mathbb{C}, the latter being both complete and algebraically closed. Given a prime number p on the other hand, the completion of \mathbb{Q} with respect to the p-adic absolute value $|\cdot|_{p}$ is \mathbb{Q}_{p}, and the algebraic closure of \mathbb{Q}_{p} is a larger field \mathbb{Q}_{p}. It transpires that $\overline{\mathbb{Q}}_{p}$ is not itself complete (in contrast to the situation for \mathbb{C}). It is possible to extend the absolute value $|\cdot|_{p}$ to a p-adic absolute value $\|\cdot\|_{p}$ on $\overline{\mathbb{Q}}_{p}$, then complete the latter with respect to $\|\cdot\|_{p}$. The result is a field $\widehat{\overline{\mathbb{Q}}}_{p}$ which is both complete and algebraically closed. This represents the proper p-adic analogue of the complex numbers.

