
P-ADIC NUMBERS

Let us begin by recalling how the real numbers R are defined starting from
Q. One begins with two ingredients: (i) the set of rational numbers Q, and (ii)
the ordinary absolute value | · |. Now consider the set of Cauchy sequences in
Q, that is, the set of sequences (an)∞n=1 satisfying the property that whenever
ε > 0, there exists N = N(ε) such that whenever n > m > N(ε), one has
|an − am| < ε. Define

R = {(an)∞n=1 : an ∈ Q for each n, and (an) is a Cauchy sequence}.
One can show that R forms a ring under addition and multiplication defined
coordinatewise in the obvious fashion. Now identify two Cauchy sequences (an)
and (bn) when limn→∞ |an − bn| = 0. Modulo this equivalence, we may label
Cauchy sequences, say α = (an), and then call the set of all of these elements
the real numbers. [A more precise treatment would show that the set I of
Cauchy sequences with limit 0 forms an ideal in R, and then that the quotient
R/I inherits the axioms for a field, and that | · | can be extended to R/I with
the usual properties for the real numbers satisfied with this definition of | · |.
But we are being sketchy here, and so we will not get bogged down in such
details.] One can prove that R is complete with respect to the absolute value
| · | inherited from Q, and we refer to R as being the completion of Q with
respect to | · |.

We now define a substitute for the absolute value that measures the power
of a given prime dividing the argument.

Definition 0.1. Let p be a prime number. Any non-zero rational number α
can be written uniquely in the form α = pru/v, where u ∈ Z, v ∈ N and r ∈ Z,
such that p - uv and (u, v) = 1. We define the p-adic absolute value | · |p by
setting |0|p = 0, and when α ∈ Q \ {0}, by putting |α|p = p−r, with r defined
as above.

Exercises (i) Show that |α|p > 0 for all α ∈ Q, with equality only for α = 0;
(ii) that |αβ|p = |α|p|β|p for all α, β ∈ Q; (iii) that |α + β|p 6 max{|α|p, |β|p}
for all α, β ∈ Q.

The last inequality is known as the ultrametric inequality, and constitutes a
stronger version of the triangle inequality.

Now define Cauchy sequences in Q with respect to |·|p just as in the classical
situation above. We say that (an)∞n=1 is Cauchy with respect to the p-adic
absolute value if, whenever ε > 0, there exists a positive number N(ε) such
that whenever n > m > N(ε), one has |an − am|p < ε. Define next

Qp = {(an)∞n=1 : an ∈ Q for each n, and (an) is Cauchy with respect to | · |p}.
One can show that Qp forms a ring under addition and multiplication defined
coordinatewise in the obvious fashion. Now identify two Cauchy sequences (an)
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and (bn) when limn→∞ |an − bn|p = 0. Modulo this equivalence, we may label
Cauchy sequences, say α = (an), and then call the set of all of these elements
the p-adic numbers Qp. [Again, a more precise treatment would show that the
set Ip of Cauchy sequences with limit 0 forms an ideal in Qp, and then that the
quotient Qp/Ip inherits the axioms for a field, and that | · |p can be extended
to Qp/Ip with properties analogous to those satisfied by | · |p on Q enjoyed by
| · |p on Qp. Again, we are being sketchy here, and so we avoid getting bogged
down in such details.] One can prove that Qp is complete with respect to the
p-adic absolute value | · |p inherited from Q, and we refer to Qp as being the
completion of Q with respect to | · |p.

Example 0.2 (Conway and Sloane). We give an example of a sequence in
Q with respect to | · |5 that has a limit in Q5 that can be interpreted as 2/3.
Consider the sequence (an)∞n=1 defined by a1 = 4, a2 = 34, a3 = 334, . . . , and in
general an = d10n/3e. Then for every natural number n, one has 3an−2 = 10n,
and hence |3an − 2|5 = 5−n. Thus we see that limn→∞ |3an − 2|5 = 0, whence
(an) converges in the 5-adic sense to 2/3.

Remark 0.3. One has
∑∞

n=0 an converges in Qp ⇐⇒ limn→∞ an = 0.

Write sN for the partial sum
∑N

n=0 an. Then in order to justify this remark,
note on the one hand that if

∑∞
n=0 an converges, then

lim
N→∞

aN = lim
N→∞

(sN − sN−1) = lim
N→∞

sN − lim
M→∞

sM = 0.

On the other hand, if limn→∞ an = 0, then given any positive number ε, there
exists a positive number N(ε) such that whenever n > N(ε), then one has
|an|p < ε. But then whenever N > M > N(ε), one has

|sN − sM |p = |aM+1 + · · ·+ aN |p 6 max
M<n6N

|an|p < ε,

by making use of the ultrametric inequality. Thus we see that (sN) is a Cauchy
sequence with respect to | · |p, and hence has a limit.

The set of p-adic numbers with absolute value at most 1 is known as the
p-adic integers Zp, so that Zp = {α ∈ Qp : |α|p 6 1}. Notice that the set of
integers Z can be naturally embedded into Zp, and likewise Q can be naturally
embedded into Qp.

Fact 0.4. If α ∈ Qp, then for some non-negative integer N , one can write α
in the shape

α =
∞∑

n=−N

anp
n,

in which the coefficients ai lie in the set {0, 1, . . . , p− 1}.

One can check, for example, that in Q7,

1

5
= 3 + 1 · 7 + 4 · 72 + 5 · 73 + 2 · 74 + 1 · 75 + . . . .



P-ADIC NUMBERS 3

Theorem 0.5 (Hensel’s lemma revisited). Let f ∈ Zp[x], and suppose that a
is an integer satisfying the condition |f(a)|p < |f ′(a)|2p. Then there exists a
unique p-adic integer α such that

f(α) = 0 and |α− a|p 6 |f ′(a)|−1p |f(a)|p.

Example 0.6. We saw earlier that the congruence 22 + 1 ≡ 0 (mod 5) gives
rise to a chain of solutions to the congruence x2 + 1 ≡ 0 (mod 5n). On writing
f(x) = x2 + 1, we have |f(2)|5 = |5|5 = 5−1, and |f ′(2)|5 = |2 · 2|5 = 1, whence
|f(2)|5 < |f ′(2)|25. Then it follows from the 5-adic version of Hensel’s lemma
that there exists α ∈ Z5 for which f(α) = 0 and |α − 2|5 6 5−1. If we simply
choose the truncation of the 5-adic expansion of α modulo 5n, say αn, then of
course we obtain a solution x = αn of the congruence x2 + 1 (mod 5n). In this
sense, the 5-adic solution x = α of the equation x2+1 = 0 encodes information
concerning all of the associated congruences modulo 5n.

We finish this sketch of the p-adic numbers by pointing out that the inter-
action between completion and algebraic closure is not as simple for the p-adic
numbers as for the real numbers. Thus, the completion of Q with respect to
the ordinary absolute value | · | is R, and the algebraic closure of R is C, the
latter being both complete and algebraically closed. Given a prime number
p on the other hand, the completion of Q with respect to the p-adic absolute
value |·|p is Qp, and the algebraic closure of Qp is a larger field Qp. It transpires

that Qp is not itself complete (in contrast to the situation for C). It is possible

to extend the absolute value | · |p to a p-adic absolute value ‖ · ‖p on Qp, then

complete the latter with respect to ‖ ·‖p. The result is a field Q̂p which is both
complete and algebraically closed. This represents the proper p-adic analogue
of the complex numbers.


