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Abstract. We study dynamical properties of automorphisms of compact nilmanifolds
and prove that every ergodic automorphism is exponentially mixing and exponentially
mixing of higher orders. This allows to establish probabilistic limit theorems and regu-
larity of solutions of the cohomological equation for such automorphisms. Our method
is based on the quantitative equidistribution results for polynomial maps combined with
Diophantine estimates.

1. Introduction

Dynamics and ergodic theory of toral automorphisms have been well understood for
quite some time. Ergodic toral automorphisms are always mixing and even Bernoulli [14],
and have dense sets of periodic points [24]. However, unless they are hyperbolic, the
toral automorphisms lack the specification property and, in particular, don’t have Markov
partitions [20]. Nonetheless, it is known that ergodic toral automorphisms satisfy the
central limit theorem and its refinements [19, 17]. Regarding the quantitative aspects Lind
established exponential mixing for ergodic toral automorphisms using Fourier analysis [21].
Surprisingly, some of these ergodic-theoretic properties turned out to be more delicate for
automorphisms of compact nilmanifolds and still remained unexplored. In particular, the
exponential mixing, which is one of the main results of this paper, has not been established
and does not easily follow using the harmonic analysis on nilpotent Lie groups.

1.1. Exponential mixing. Let G be a simply connected nilpotent Lie group and Λ a
discrete cocompact subgroup. The space X = G/Λ is called a compact nilmanifold. An
automorphism α of X is a diffeomorphism of X which lifts to an automorphism of G. We
denote by µ the Haar probability measure onX. Then α preserves µ. The ergodic-theoretic
properties of the dynamical system αy (X,µ) have been studied by Parry [25]. He proved
that an automorphism is ergodic if and only if the induced map on the maximal toral
quotient is ergodic, and every ergodic automorphism satisfies the Kolmogorov property.
In particular, it is mixing of all orders. In this paper we establish quantitative mixing
properties of such automorphisms. We fix a right-invariant Riemannian metric on G
which also defines a metric on X and denote by Cθ(X) the space of θ-Hölder functions on
X.

Now we state the first main result of the paper.
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Theorem 1.1. Let α be an ergodic automorphism of a compact nilmanifold X. Then
there exists ρ = ρ(θ) ∈ (0, 1) such that for all f0, f1 ∈ Cθ(X) and n ∈ N,∫

X
f0(x)f1(αn(x)) dµ(x) =

(∫
X
f0 dµ

)(∫
X
f1 dµ

)
+O (ρn‖f0‖Cθ‖f1‖Cθ) .

The proof of Theorem 1.1 is based on an equidistribution result for the exponential
map established in Section 2 (see Corollary 2.3 below), which is deduced from the work of
Green and Tao [12]. This result shows that images of boxes under the exponential map are
equidistributed inX provided that a certain Diophantine condition holds. We complete the
proof of Theorem 1.1 in Section 3. The main idea is to relate the correlations 〈f0, f1 ◦ αn〉 to
averages along suitable foliations in X and apply the equidistribution result established in
Section 2. In order to verify the Diophantine condition we use the Diophantine properties
of algebraic numbers. This leads to the proof of Theorem 1.1 under an irreducibility
condition, and the proof of the theorem in general uses an inductive argument.

We also establish multiple exponential mixing for ergodic automorphisms of compact
nilmanifolds. For ergodic toral automorphisms, multiple exponential mixing was proved
by Pène [26] and Dolgopyat [8].

Theorem 1.2. Let α be an ergodic automorphism of a compact nilmanifolds X. Then
there exists ρ = ρ(θ) ∈ (0, 1) such that for all f0, . . . , fs ∈ Cθ(X) and n0, . . . , ns ∈ N,∫

X

(
s∏
i=0

fi(α
ni(x))

)
dµ(x) =

s∏
i=0

(∫
X
fi dµ

)
+O

(
ρmini 6=j |ni−nj |

s∏
i=0

‖fi‖Cθ

)
.

The proof of Theorem 1.2 is given in Section 4. The first step of the proof is to establish
an equidistribution result for images of exponential map in X × · · · ×X (see Proposition
4.2). Then we approximate higher order correlations by averages of the exponential map.
As in the proof of Theorem 1.1, we first consider the irreducible case and then deduce the
theorem in general using an inductive argument.

1.2. Probabilistic limit theorems. It is well-known that the exponential mixing prop-
erty is closely related to other chaotic properties of dynamical systems and, in particular,
to the central limit theorem for observables f ◦ αn. While one does not imply the other
in general, the martingale differences approach [13, Ch. 5] usually allows to deduce the
proof of the central limit theorem from quantitative equidistribution of unstable folia-
tions. Using this approach, the central limit theorem and its generalisations have been
established for ergodic toral automorphisms in [19, 17] and for ergodic automorphisms of
3-dimensional nilmanifolds in [4]. Here we extend these results to general nilmanifolds.

Theorem 1.3. Let α be an ergodic automorphism of a compact nilmanifolds X and f ∈
Cθ(X) with

∫
X f dµ = 0 which is not a measurable coboundary (i.e., f 6= φ ◦α−φ for any

measurable function φ on X). Then there exists σ = σ(f) > 0, the so-called variance of
f , such that

µ

({
x ∈ X :

1√
n

n−1∑
i=0

f(αi(x)) ∈ (a, b)

})
→ 1√

2πσ

∫ b

a
e−t

2/(2σ2) dt

as n→∞.
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We also prove the central limit theorem for subsequences, and the Donsker and Strassen
invariance principles for ergodic automorphisms of nilmanifolds. We refer to Section 6 for
a detailed discussion of the results. The main ingredient of the proof is the exponential
equidistribution of leaves of unstable foliations, which is established for this purpose in
Section 5.

1.3. Cohomological equation. Let α be a measure-preserving transformation of a prob-
ability space (X,µ) and f : X → R is a measurable function. The functional equation

(1.1) f = φ ◦ α− φ, φ : X → R,

is called the cohomological equation. This equation plays important role in many aspects
of the theory of dynamical systems (for instance, existence of smooth invariant measures,
existence of conjugacies, existence of isospectral deformations, rigidity of group actions).
If a measurable solution φ of (1.1) exists, the function f is called a measurable coboundary.
It is easy to see that a solution of (1.1) is unique (up to measure zero) up to an additive
constant when α is ergodic with respect to µ.

We will apply the exponential mixing property to investigate regularity of solutions of
the cohomological equation.

Theorem 1.4. Let α be an ergodic automorphism of a compact nilmanifold X, and let
f ∈ C∞(X) be such that (1.1) has a measurable solution. Then there exists a C∞ solution
of (1.1).

The first result of this type was proved by Livsic [22] for Anosov diffeomorphism and
flows. More precisely, if α is an Anosov diffeomorphism and the given C∞ function f is
a measurable coboundary, then the cohomological equation (1.1) has a C∞ solution φ.
There are also versions of this result for Hölder functions and Ck functions. Recently,
Wilkinson [35] has generalised Livsic’ results to partially hyperbolic diffeomorphisms that
satisfy the accessibility property. Automorphisms of nilmanifolds however do not have the
accessibility property. In fact, the problem of regularity of solutions of the coboundary
equation for ergodic toral automorphisms, which are not hyperbolic, turns out to be quite
subtle [33, 16]. Veech [33] has constructed an example of f ∈ C1(Td) which sums to zero
along periodic orbits, but the cohomological equation (1.1) has no C1 solutions. By [33],
if f ∈ Ck(Td) with k > d and (1.1) has a measurable solution, then there exists a solution
in Ck−d(Td). We are not aware of any results regarding regularity of solutions of (1.1) for
a general ergodic toral automorphism when f ∈ Ck(Td) with k < d.

Theorem 1.4 is proved in Section 7. We use a construction from Section 6 to show
that there exists a square-integrable solution. Then we use a new method of proving
smoothness as developed by Fisher, Kalinin and Spatzier in [10]: we consider the solution
as a distribution on the space of Hölder functions and study its regularity along the stable,
unstable and central foliations of α. While regularity along the first two foliations can be
deduced using the standard contraction argument, the regularity along the central foliation
is deduced from the exponential mixing property.

Combining Theorem 1.3 and 1.4, we observe that C∞ functions with variance 0 are
truly exceptional.
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Corollary 1.5. Let α be an ergodic automorphism of a compact nilmanifold X, and let
f ∈ C∞(X) have σ(f) = 0. Then f is a C∞ coboundary.

1.4. Further generalisations.

• We note that the results established here can be generalised to affine diffeomor-
phisms of a compact nilmanifold X = G/Λ. Those are diffeomorphisms σ : X → X
that can be lifted to affine maps σ̃ of G, i.e., maps σ̃ that have constant derivatives
with respect to a right invariant framing of G. Since every such diffeomorphism σ
is of the form σ(x) = g0α(x) for g0 ∈ G and an automorphism α of X, our method
applies to such maps as well (see Remark 3.4 below).
• More generally, one may consider infra-nilmanifolds [6]. Let G be a simply con-

nected nilpotent Lie group, C a compact subgroup of Aut(G), and Γ a discrete
torsion-free subgroup of GoC such that G/Γ is compact. The space Y = G/Γ is
called an infra-nilmanifold. By [1, Th. 1], the group Λ = G ∩ Γ has finite index in
Γ. Hence, the infra-nilmanifold Y is finitely covered by the nilmanifold X = G/Λ.
An affine diffeomorphism of Y is a diffeomorphism which lifts to an affine map of
G. Every such diffeomorphism is of the form g 7→ g0α(g), where g0 ∈ G and α
is an automorphism of G that preserves the orbits of Γ. By [7, Theorem 3.4], we
must have αΓα−1 = Γ. Since by [1, Prop. 2] Λ is the maximal normal nilpotent
subgroup of Γ, we deduce that α(Λ) = αΛα−1 = Λ. Therefore, every affine dif-
feomorphism of Y lifts to an affine diffeomorphism of X, and our results can be
generalised to this setting.
• Our techniques also allow to establish exponential mixing properties for Zk-actions

by automorphisms of nilmanifolds when k ≥ 2. Since this requires more delicate
Diophantine estimates, we pursue this in a sequel paper [11]. This result has found
a striking application to the problem of global rigidity of smooth actions. Given
any C∞-action of Zk, k ≥ 2, on a nilmanifold that has sufficiently many Anosov
elements, Fisher, Kalinin and the second author showed in [10] that this action is
C∞-conjugate to an affine action on the nilmanifold.
• In view of the works of Katznelson [14] and Parry [25], it is natural to ask whether

ergodic automorphisms of compact nilmanifolds are Bernoulli. Surprisingly, we
could not find this result in the literature, and in Section 8 we establish the
Bernoulli property. While this easily follows from the works of Marcuard [23]
and Rudolph [29], and the proof does not rely on the main ideas of this paper, we
include this result in Section 8 to complete our discussion of ergodic properties of
nilmanifold automorphisms.

Acknowledgements. We are indebted to J. Rauch for discussions concerning his reg-
ularity theorems with M. Taylor. Also we thank F. Ledrappier for the reference to Le
Borgne’s work which was crucial to our applications to the central limit theorem. A.G.
would like to thank the University of Michigan for hospitality during his visit when the
work on this project had started. R.S. thanks the University of Bristol for hospitality and
support during this work.
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2. Equidistribution of box maps

Let G be a simply connected nilpotent Lie group, Λ a discrete cocompact subgroup,
and X = G/Λ the corresponding nilmanifold equipped with the Haar probability measure
µ. We fix a a right invariant Riemannian metric d on G which also defines a metric on X.
Let L(G) be the Lie algebra of G and exp : L(G) → G the exponential map. The aim of
this section is to investigate distribution of images of the maps

Rk → X : t 7→ g1 exp(ι(t))g2Λ

with g1, g2 ∈ G and an affine map ι : Rk → L(G).
The lattice subgroup Λ defines a rational structure on L(G). Let π : G→ G/G′ denote

the factor map, where G′ is the commutator subgroup. We also have the corresponding
map Dπ : L(G)→ L(G/G′). We fix an identification G/G′ ' L(G/G′) ' Rl that respects
the rational structures.

We call a box map an affine map

ι : B := [0, T1]× · · · × [0, Tk]→ L(G)

of the form

(2.1) ι : (t1, . . . , tk) 7→ v + t1w1 + · · ·+ tkwk

with v, w1, . . . , wk ∈ L(G). We denote by

|B| := T1 · · ·Tk
the volume of the box B and by

min(B) := min
i=1,...,k

Ti,

the length of the shortest side of B.

Theorem 2.1. There exist L1, L2 > 0 such that for every δ ∈ (0, 1/2) and every box map
ι : B → L(G) as in (2.1), one of the following holds:

(i) For every Lipschitz function f : X → R, u ∈ L(G), and g ∈ G,

(2.2)

∣∣∣∣ 1

|B|

∫
B
f(exp(u) exp(ι(t))gΛ) dt−

∫
X
f dµ

∣∣∣∣ ≤ δ‖f‖Lip.
(ii) There exists z ∈ Zl\{0} such that

(2.3) ‖z‖ � δ−L1 and | 〈z,Dπ(wi)〉 | � δ−L2/Ti for all i = 1, . . . , k.

Here and in the rest of the paper we explicitly list dependences of implied constants on
relevant parameters. In particular, in (2.3) the implied constants are independent of the
box map.

Proof : We suppose that (i) fails for some Lipschitz function f , u ∈ L(G), and g ∈ G.
Then will show that (ii) holds. We pick L ≥ 2 such that

(2.4) max{‖u‖, ‖v‖, T1‖w1‖, . . . , Tk‖wk‖} ≤ δ−L.

Making a linear change of variables in the integral (2.2), we arrange that Ti ≥ 1 and
‖wi‖ ≤ 1.
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For x1, x2, x3 ∈ L(G), we consider the map

P (x1, x2, x3) := exp(x1) exp(x2 + x3) exp(−x2) exp(−x1).

We note that G can be equipped with a structure of algebraic group so that exp is a
polynomial isomorphism. Hence, the map P can be written as

P (x1, x2, x3) = exp(p1(x1, x2, x3)e1 + · · ·+ pd(x1, x2, x3)ed)

for some polynomials pi. Since P (x1, x2, 0) = e, these polynomials satisfy pi(x1, x2, 0) = 0.
Hence, assuming that ‖x3‖ ≤ 1, we obtain

|pi(x1, x2, x3)| � (1 + ‖x1‖)deg(pi)(1 + ‖x2‖)deg(pi)‖x3‖, i = 1, . . . , d.

Since in the neighborhood of the origin,

d(e, P (x1, x2, x3))� max
i=1,...,d

|pi(x1, x2, x3)|,

we deduce that there exists C0 ≥ 2 such that for every ε ∈ (0, 1/2) and x1, x2, x3 ∈ L(G)
satisfying ‖x1‖, ‖x2‖ ≤ (k + 1)ε−1 and ‖x3‖ ≤ kεC0 , we have

(2.5) d(e, P (x1, x2, x3)) ≤ ε.

We set s = dδ−CLe, where C ≥ C0 is sufficiently large and will be specified later (see (2.7)
and (2.12)–(2.13) below). Let

N := {(n1, . . . , nk) : ni = 0, . . . , Ni − 1},

where Ni := dTise ≥ s. We consider the polynomial map

p(n) := exp(u) exp

(
v +

k∑
i=1

ni
s
wi

)
g, n ∈ N .

For ti ∈ [nis ,
ni+1
s ], we apply (2.5) with

x1 := u, x2 := v +
k∑
i=1

ni
s
wi, x3 :=

k∑
i=1

(
ti −

ni
s

)
wi, ε = δL.

It follows from (2.4) that

‖x1‖ ≤ δ−L,

‖x2‖ ≤ δ−L +

k∑
i=1

(Ni − 1)s−1‖wi‖ ≤ δ−L +

k∑
i=1

Ti‖wi‖ ≤ (k + 1)δ−L,

‖x3‖ ≤
k∑
i=1

s−1‖wi‖ ≤ ks−1 ≤ kδCL.
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Hence, (2.5) gives

d

(
p(n)Λ, exp(u) exp

(
v +

k∑
i=1

tiwi

)
gΛ

)
(2.6)

≤d

(
e, exp(u) exp

(
v +

k∑
i=1

tiwi

)
gp(n)−1

)

=d

e, exp(u) exp

(
v +

k∑
i=1

tiwi

)
exp

(
v +

k∑
i=1

ni
s
wi

)−1

exp(u)−1

 ≤ δL.

For n = (n1, · · · , nk) ∈ N , we set

Bn :=

[
n1

s
,
n1 + 1

s

]
× · · · ×

[
nk
s
,
nk + 1

s

]
.

It follows from (2.6) that for every Lipschitz function f and n ∈ N ,

∣∣∣∣f(p(n)Λ)|Bn| −
∫
Bn

f(exp(u) exp(ι(t))gΛ) dt

∣∣∣∣ ≤ δLs−k‖f‖Lip.
We also observe that B ⊃ ∪n∈NBn, and

∣∣∣∣∣B −
( ⋃
n∈N

Bn

)∣∣∣∣∣ ≤ ks−1T1 · · ·Tk ≤ ks−k−1N1 · · ·Nk.

Therefore, we deduce that

∣∣∣∣∣∑
n∈N

f(p(n)Λ)|Bn| −
∫
B
f(exp(u) exp(ι(t))gΛ) dt

∣∣∣∣∣
≤
∑
n∈N

∣∣∣∣f(p(n)Λ)|Bn| −
∫
Bn

f(exp(u) exp(ι(t))gΛ) dt

∣∣∣∣+ ks−k−1N1 · · ·Nk‖f‖Lip

≤
(
δL + ks−1

)
s−kN1 · · ·Nk‖f‖Lip,
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and ∣∣∣∣∣ 1

N1 · · ·Nk

∑
n∈N

f(p(n)Λ)− 1

|B|

∫
B
f(exp(u) exp(ι(t))gΛ) dt

∣∣∣∣∣
≤

∣∣∣∣∣ 1

N1 · · ·Nk

∑
n∈N

f(p(n)Λ)− sk

N1 · · ·Nk

∫
B
f(exp(u) exp(ι(t))gΛ) dt

∣∣∣∣∣
+

(
1

|B|
− sk

N1 · · ·Nk

)
|B|‖f‖Lip

≤
(
δL + ks−1

)
‖f‖Lip +

(
1− skT1 · · ·Tk

N1 · · ·Nk

)
‖f‖Lip

≤
(
δL + ks−1

)
‖f‖Lip +

(
1− (N1 − 1) · · · (Nk − 1)

N1 · · ·Nk

)
‖f‖Lip

≤
(
δL + cks

−1
)
‖f‖Lip ≤ (δL + ckδ

CL)‖f‖Lip

with some ck > 0. Here in the last line, we used that Ni = dTise ≥ s = dδ−CLe. We
choose C = C(k) > C0 > 0, so that

(2.7) δ2 + ckδ
CL ≤ 3δ/4.

Then since we are assuming that (2.2) fails, we deduce from the previous estimate that

(2.8)

∣∣∣∣∣ 1

N1 · · ·Nk

∑
n∈N

f(p(n)Λ)−
∫
X
f dµ

∣∣∣∣∣ ≥ (δ − δL − ckδCL)‖f‖Lip ≥ δ/4‖f‖Lip.

Now we apply [12, Th. 8.6] to the polynomial map p(n). Note that

π (p(n)) = Dπ

(
u+ v +

k∑
i=1

ni
s
wi

)
+ π(g),

and

π (p(n))− π (p(n− ei)) =
Dπ(wi)

s
.

By [12, Th. 8.6], there exist L1, L2 > 0 such that for every ρ ∈ (0, 1/2) and N1, . . . , Nk ≥
1, one of the following holds:

(i′) For every Lipschitz function f : X → R,

(2.9)

∣∣∣∣∣ 1

N1 · · ·Nk

∑
n∈N

f(p(n)Λ)−
∫
X
f dµ

∣∣∣∣∣ ≤ ρ‖f‖Lip.
(ii′′) There exists z ∈ Zl\{0} such that

(2.10) ‖z‖ � ρ−L1 and dist

(〈
z,
Dπ(wi)

s

〉
,Z
)
� ρ−L2/Ni, i = 1, . . . , k,

where the implied constants depend only on the degree of the polynomial map.
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Comparing (2.8) and (2.9), we deduce that (ii′′) holds with ρ = δ/4, and there exists
z ∈ Zl\{0} such that

(2.11) ‖z‖ � δ−L1 and dist

(〈
z,
Dπ(wi)

s

〉
,Z
)
� δ−L2/Ni, i = 1, . . . , k.

Since ‖wi‖ ≤ 1, we obtain

(2.12)

∣∣∣∣〈z, Dπ(wi)

s

〉∣∣∣∣ ≤ ‖z‖‖Dπ‖‖wi‖s−1 � δ−L1+CL ≤ δ−L1+C .

Taking C = C(L1) > 0 sufficiently large, the above estimate implies that

(2.13)

∣∣∣∣〈z, Dπ(wi)

s

〉∣∣∣∣ ≤ 1/4.

Then

dist

(〈
z,
Dπ(wi)

s

〉
,Z
)

=

∣∣∣∣〈z, Dπ(wi)

s

〉∣∣∣∣ ,
and it follows from (2.11) that

|〈z,Dπ(wi)〉| � sδ−L2/Ni ≤ δ−L2/Ti, i = 1, . . . , k.

Hence, (2.3) holds, as required. This completes the proof of the theorem. �

We call a box map ι, defined as in (2.1), (c1, c2)-Diophantine if there exists at least one
vector w ∈ Ω := [−1, 1]Dπ(w1) + · · ·+ [−1, 1]Dπ(wk) such that

(2.14) |〈z, w〉| ≥ c1‖z‖−c2 for all z ∈ Zl\{0}.
We emphasize that only one element of Ω has to satisfy the relevant Diophantine con-

dition. This allows for the following remark which we will use later, e.g. in the proof of
Theorem 3.1.

Remark 2.2. Let ι be a (c1, c2)-Diophantine box map, W the subspace spanned by the
image of ι, and S a compact subset of GL(W ). Then there exists a constant c = c(S) > 0,
which only depends on S, such that for all s ∈ S, the box map s◦ι is (c c1, c2)-Diophantine.
Indeed, since S is compact, there exists c = c(S) > 0 such that for every s ∈ S,

[−1, 1]Dπ(w1) + · · ·+ [−1, 1]Dπ(wk) ⊂ [−c−1, c−1]Dπ(sw1) + · · ·+ [−c−1, c−1]Dπ(swk).

If w ∈ [−1, 1]Dπ(w1) + · · · + [−1, 1]Dπ(wk) satisfies (2.14), then cw ∈ [−1, 1]Dπ(sw1) +
· · ·+ [−1, 1]Dπ(swk) and satisfies (2.14) with c1 replaced by c c1. Hence, the box map s◦ ι
is (c c1, c2)-Diophantine.

The following corollary will play a crucial role in the next section.

Corollary 2.3. Given θ, c1, c2 > 0, there exists κ = κ(c2, θ) > 0 such that for every
θ-Hölder function f : X → R, u ∈ L(G), (c1, c2)-Diophantine box map ι : B → L(G), and
x ∈ X, we have

1

|B|

∫
B
f(exp(u) exp(ι(t))x) dt =

∫
X
f dµ+Oc1,c2(min(B)−κ‖f‖Cθ).
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Proof : We first give a proof assuming that the function f is Lipschitz.
We write the box map ι as

ι(t) = v + t1w1 + · · ·+ tkwk, t ∈ B = [0, T1]× · · · × [0, Tk]

with v, w1, . . . , wk ∈W and T1, . . . , Tk > 0.

We take κ, ε > 0 such that −L2κ+1
L1κ

> c2 and moreover −L2(κ+ε)+1
L1κ

> c2, where L1 and

L2 are as in Theorem 2.1. Let δ = min(B)−κ. We first assume that min(B) is sufficiently
large, so that δ < 1/2. Then by Theorem 2.1, either

(2.15)

∣∣∣∣ 1

|B|

∫
B
f(exp(u) exp(ι(t))x) dt−

∫
X
f dµ

∣∣∣∣ ≤ min(B)−κ‖f‖Lip

for all Lipschitz functions f : X → R, u ∈ L(G) and x ∈ X, or there exists z ∈ Zl\{0}
such that

‖z‖ � min(B)L1κ,

| 〈z,Dπ(wi)〉 | � min(B)L2κ/Ti ≤ min(B)L2κ−1, i = 1, . . . , k.

If the latter holds, then we deduce that there exists z ∈ Zl\{0} such that

| 〈z,Dπ(wi)〉 | � min(B)−L2ε min(B)L2(κ+ε)−1 � min(B)−L2ε‖z‖−
−L2(κ+ε)+1

L1κ

≤ min(B)−L2ε‖z‖−c2

for all i = 1, . . . , k. Writing w =
∑k

i=1 aiDπ(wi) with ai ∈ [−1, 1], we also deduce that

| 〈z,Dπ(w)〉 | ≤
k∑
i=1

| 〈z,Dπ(wi)〉 | � min(B)−L2ε‖z‖−c2 .

When min(B) is sufficiently large, this estimate contradicts (2.14). Hence, we conclude
that when min(B) ≥ T0 = T0(c1, c2), (2.15) holds and

1

|B|

∫
B
f(exp(u) exp(t)x) dt =

∫
X
f dµ+O(min(B)−κ‖f‖Lip).

It is also clear that this estimate holds in the range [0, T0] with the implicit constant
depending on T0, and this completes proof of the corollary for Lipschitz functions.

For Hölder functions, we use the following well-known approximation result. While
we only use the estimate of the Lipschitz norm here, we will need this lemma in full in
Section 7.

Lemma 2.4. Given ε > 0 and 0 < θ ≤ 1, for any θ-Hölder function f : X → R, there is
a C∞ function fε : X → R which satisfies the following bounds

(2.16) ‖fε − f‖C0 ≤ εθ‖f‖Cθ and ‖fε‖Lip � ε− dim(X)−1‖f‖C0 .

Furthermore, for all l ∈ N,

(2.17) ‖fε‖Cl �l ε
− dim(X)−l‖f‖C0 .
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Proof : Given a θ-Hölder function f : X → R, we set

fε(x) :=

∫
G
φε(g

−1)f(gx) dm(g),

where m denotes the Haar measure on G, and φε is a nonnegative function such that

‖φε‖Lip � ε− dim(X)−1,

∫
G
φε dm = 1, supp(φε) ⊂ Bε(e).

Then

‖fε − f‖C0 ≤ max
x∈X

∫
G
φε(g

−1)|f(gx)− f(x)| dm(g) ≤ εθ‖f‖Cθ .

For x, y ∈ X satisfying d(x, y) < ε, we can write y = hx with h ∈ Bε(e). Then

|fε(x)− fε(y)| ≤
∫
G
|φε(g−1)− φε(hg−1)|f(gx)| dm(g)� ε− dim(X)−1‖f‖C0 .

Hence,

‖fε‖Lip � ε− dim(X)−1‖f‖C0 .

We can further assume that φε satisfies for all l ∈ N,

‖φε‖Cl �l ε
− dim(X)−l‖φ‖Cl ,

and it follows that

‖fε‖Cl �l ε
−dim(X)−l‖f‖C0 ,

as the lemma claims. �

Returning to the proof of Corollary 2.3, we obtain

1

|B|

∫
B
f(exp(u) exp(t)x) dt =

1

|B|

∫
B
fε(exp(u) exp(t)x) dt+O(εθ‖f‖Cθ)

=

∫
X
fε dµ+O

(
min(B)−κ‖fε‖Lip + εθ‖f‖Cθ

)
=

∫
X
f dµ+O

(
(ε− dim(X)−1 min(B)−κ + εθ)‖f‖Cθ

)
.

To optimise the error term, we set ε = min(B)−κ/(dim(X)+θ+1). We readily obtain the
corollary for Hölder functions. �

We remark that the procedure just outlined applies quite generally, and allows to go from
estimates for Lipschitz functions to ones for Hölder functions. In particular, exponential
mixing for Lipschitz or even only smooth functions always implies exponential mixing for
Hölder functions.
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3. Mixing

In this section, we prove Theorem 1.1 on exponential mixing. Let us recall the statement:

Theorem 3.1. Let α be an ergodic automorphism of a compact nilmanifold X = G/Λ.
Then there exists ρ = ρ(θ) ∈ (0, 1) such that for all θ-Hölder functions f0, f1 : X → R and
n ∈ N, ∫

X
f0(x)f1(αn(x)) dµ(x) =

(∫
X
f0 dµ

)(∫
X
f1 dµ

)
+O (ρn‖f0‖Cθ‖f1‖Cθ) .

We denote by µ the Haar probability measure on X, and by m the Haar measure on G
which is normalised, so that m(F ) = 1 where F is a fundamental domain for G/Λ.

Every automorphism β of G defines a Lie-algebra automorphism Dβ : L(G) → L(G)
such that β ◦ exp = exp ◦Dβ. If β(Λ) ⊂ Λ, then Dβ preserves the rational structure of
L(G) defined by Λ.

As in Section 2, we equip the group G with the structure of an algebraic group, so that
exp is a polynomial isomorphism. More precisely, one can construct a basis, a so-called
Malcev basis, {e1, . . . , ed} of L(G)Q, such that the map

Rd → G : (t1, . . . , td) 7→ exp(t1e1) · · · exp(tded)

is a polynomial isomorphism,

Λ = exp(Ze1) · · · exp(Zed),
and

F := exp([0, 1)e1) · · · exp([0, 1)ed) ⊂ G
is a fundamental domain for G/Λ (see [5, 1.2.7, 5.1.6, 5.3.1]).

We present the proof of Theorem 3.1 in two stages: in Section 3.1, we give a proof
assuming a suitable irreducibility condition, and in Section 3.2, we reduce the proof to the
irreducible case using an inductive argument.

3.1. Proof under an irreducibility assumption. Let w be a (real or complex) eigen-
vector of Dα acting on L(G)⊗C with eigenvalue λ such that |λ| > 1. Such an eigenvector
exists by the following lemma.

Lemma 3.2. If α is an ergodic automorphism of a nontrivial compact nilmanifold X =
G/Λ, then Dα has an eigenvalue λ with |λ| > 1.

Proof : By [5, 5.4.13], ΛG′/G′ is a lattice in G/G′ ' Rl. The automorphism α defines
a linear automorphism of the torus T := G/(ΛG′) ' Rl/L, where L is a lattice in Rl, and
there is an α-equivariant map X → T induced by π. Since α|Rl preserves the lattice L,
it follows that the eigenvalues of α|Rl are algebraic integers. If we suppose that all these
eigenvalues satisfy |λ| ≤ 1, then it follows from [9, Th. 1.31] that all the eigenvalues of
α|Rl are roots of unity. Then the automorphism α|T is not ergodic, and this contradicts
ergodicity of α. Hence, α|Rl has an eigenvalue λ with |λ| > 1, and this implies that Dα
has such an eigenvalue as well. �

Since Dα preserves the rational structure on L(G) defined by the lattice Λ, we may
choose the eigenvector w with coordinates in the algebraic closure Q. In the real case,
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we denote by W the corresponding one-dimensional eigenspace of L(G). In the complex
case, we denote by W the two-dimensional subspace 〈w, w̄〉 ∩ L(G), where w̄ denotes the
complex conjugate. We note that in a suitable basis

(3.1) Dα|W = r · ω

where r = |λ| > 1 and ω is a rotation by angle Im(λ).
In this subsection, we give a proof of Theorem 3.1 assuming thatDπ(W ) is not contained

in any proper rational subspace of Rl. This condition is used to guarantee existence of a
“generic” vector in Dπ(W ) given by the following lemma.

Lemma 3.3. Let V ⊂ Rl be a subspace defined over Q ∩ R such that V is not contained

in any proper subspace defined over Q. Then there exists w ∈ V ∩ Ql
whose coordinates

are real numbers linearly independent over Q.

Proof : Let {v1, . . . , vs} be a basis of V whose coordinates vij are in Q ∩ R. We denote
by K the field generated by these coordinates. Clearly, K is a finite extension of Q. We
can pick α1, . . . , αs ∈ Q ∩ R which are linearly independent over K (for instance, we can
take a sufficiently large finite extension K ′ of K and choose {αi} from a basis of K ′ over
K).

We set w =
∑s

i=1 αivi. Suppose that there exists c ∈ Ql such that c · w = 0. Then we
have

c · w =

l∑
j=1

cj

(
s∑
i=1

αivij

)
=

s∑
i=1

 l∑
j=1

cjvij

αi = 0.

Now because
∑l

j=1 cjvij is in K, it follows that
∑l

j=1 cjvij = 0 for all i, and c · V = 0.
Since V is not contained in any proper rational subspace, we conclude that c = 0, which
concludes the proof. �

As we remarked above, the subspace W is defined over Q. Moreover, since W is invariant
under complex conjugation, it is defined over Q ∩ R. This implies that the subspace
Dπ(W ) is also defined over Q ∩ R. Hence, by Lemma 3.3, Dπ(W ) contains a vector w
whose coordinates are real algebraic numbers that are linearly independent over Q. By [2,
Th. 7.3.2], there exist c1, c2 > 0 (in fact, one can take any c2 > l − 1) such that

(3.2) | 〈z, w〉 | ≥ c1‖z‖−c2 for all z ∈ Zl\{0},

This will allow us to apply Corollary 2.3 to box maps Rdim(W ) →W .
Let E ⊂ L(G) be the preimage of the fundamental domain F under the exponential

map. Since E is the image of [0, 1)d under a polynomial isomorphism, it is a domain in
L(G) with a piecewise smooth boundary. We fix a basis of L(G) which contains the basis
of W and consider a tessellation of L(G) by cubes C of size ε with respect to this basis.
Then

(3.3)

∣∣∣∣∣E − ⋃
C⊂E

C

∣∣∣∣∣� ε.
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Using the above notation, we rewrite the original integral as∫
X
f0(x)f1(αn(x)) dµ(x) =

∫
F
f0(gΛ)f1(αn(g)Λ) dm(g)(3.4)

=

∫
E
f0(exp(u)Λ)f1(exp((Dα)nu)Λ) du,

where we used that the Haar measure on G is the image of a suitably normalised Lebesgue
measure on L(G) under the exponential map [5, 1.2.10]. It follows from (3.3) that∫

E
f0(exp(u)Λ)f1(exp((Dα)nu)Λ) du(3.5)

=
∑
C⊂E

∫
C
f0(exp(u)Λ)f1(exp((Dα)nu)Λ) du+O(ε‖f0‖C0‖f1‖C0).

For every cube C in the above sum, we fix uC ∈ C. Then for all u ∈ C,

|f0(exp(u)Λ)− f0(exp(uC)Λ)| ≤ d(exp(u), exp(uC))‖f0‖Lip � εθ‖f0‖Cθ ,
and ∫

C
f0(exp(u)Λ)f1(exp((Dα)nu)Λ) du(3.6)

=f0(exp(uC)Λ)

∫
C
f1(exp((Dα)nu)Λ) du+O(εθ‖f0‖Cθ‖f1‖Cθ).

Since the cubes C are chosen in a compatible way with the subspace W , they can be
written as C = B′ + B where B is a cube in W and B′ is a cube in the complementary
subspace. Given a cube B ⊂W , we introduce a box map ιB : Rdim(W ) →W , defined with
respect to the fixed basis of W , such that ιB([0, ε]dim(W )) = B. Since ω is a rotation, it
follows from Remark 2.2 that for some c > 0, each of the box maps

Rdim(W ) →W : t 7→ v + ωnιB(t), v ∈ L(G),

is (c c1, c2)-Diophantine. Therefore, applying Corollary 2.3, we obtain there exists κ > 0
such that for every v ∈ L(G),

1

|B|

∫
B
f1(exp(v + (Dα)nb)Λ) db = ε− dim(W )

∫
[0,ε]dim(W )

f1(exp(v + (Dα)nιB(t))Λ) dt

(3.7)

= (rnε)− dim(W )

∫
[0,rnε]dim(W )

f1(exp(v + ωnιB(t))Λ) dt

=

∫
X
f1 dµ+O

(
(rnε)−κ‖f1‖Cθ

)
.

Since this estimate is uniform over v ∈ L(G), we deduce that

1

|C|

∫
C
f1(exp((Dα)nu)Λ) du =

1

|B′||B|

∫
B′

∫
B
f1(exp((Dα)nb′ + (Dα)nb)Λ) dbdb′

=

∫
X
f1 dµ+O

(
(rnε)−κ‖f1‖Cθ

)
.
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Combining the last estimate with (3.5) and (3.6), we deduce that∫
E
f0(exp(u)Λ)f1(exp((Dα)nu)Λ) du =

(∑
C⊂E

f0(exp(uC)Λ)|C|

)∫
X
f1 dµ

+O

((∑
C⊂E
|C|(rnε)−κ + εθ

)
‖f0‖Cθ‖f1‖Cθ

)
.

Since f0 is θ-Hölder and diam(C)� ε, we obtain using (3.3),∑
C⊂E

f0(exp(uC)Λ)|C| =
∑
C⊂E

∫
C
f0(exp(u)Λ) du+O(εθ‖f0‖Cθ)(3.8)

=

∫
E
f0(exp(u)Λ) du+O(εθ‖f0‖Cθ)

=

∫
X
f0 dµ+O(εθ‖f0‖Cθ).

Hence, ∫
E
f0(exp(u)Λ)f1(exp((Dα)nu)Λ) du =

(∫
X
f1 dµ

)(∫
X
f0 dµ

)
+O

(
(rnε)−κ + εθ)‖f0‖Cθ‖f1‖Cθ

)
.

To optimise the error term, we choose ε = r−nκ/(κ+θ). Then∫
X
f0(x)f1(αn(x)) dµ(x) =

∫
E
f0(exp(u)Λ)f1(exp((Dα)nu)Λ) du

=

(∫
X
f0 dµ

)(∫
X
f1 dµ

)
+O (ρn‖f0‖Cθ‖f1‖Cθ) ,

where ρ = r−κθ/(κ+θ) ∈ (0, 1). This proves Theorem 3.1 under the irreducibility assump-
tion.

We also observe that Corollary 2.3 implies the following stronger version of estimate
(3.7): for every h ∈ G, automorphism β of G such that β = id on G/G′, and v ∈ L(G),

1

|B|

∫
B
f1(hβ(exp(v + (Dα)nt))Λ) dt =

∫
X
f1 dµ+O

(
(rnε)−κ‖f1‖Cθ

)
.

Indeed, using that β ◦ exp = exp ◦Dβ, we obtain

1

|B|

∫
B
f1(hβ(exp(v + (Dα)nt))Λ) dt

=(rnε)− dim(W )

∫
[0,rnε]dim(W )

f1(exp((Dβ)v + (Dβ)ωnιB(t))Λ)dt.

Since (Dπ)(Dβ) = Dπ, the box maps

t 7→ (Dβ)v + (Dβ)ωnιB(t)
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are also (c c1, c2)-Diophantine, and the same estimate as in (3.7) holds. Therefore, the
above argument implies that∫

X
f0(x)f1(hβ(αn(x))) dµ(x) =

(∫
X
f0 dµ

)(∫
X
f1 dµ

)
+O (ρn‖f0‖Cθ‖f1‖Cθ)(3.9)

uniformly on h ∈ G and automorphisms β which preserve Λ and act trivially on G/G′.

Remark 3.4. Let σ : X → X be an affine diffeomorphism of a compact nilmanifold X.
Then σ(x) = g1α(x) for g1 ∈ G and an automorphism α, and σn(x) = gnα

n(x) for gn ∈ G.
Since the estimate (3.9) is uniform over h ∈ G, it also holds for affine diffeomorphisms.
This allows to extend the main results of this paper to affine diffeomorphisms.

3.2. Proof of mixing in general. We prove Theorem 3.1 in general using induction on
the dimension of the nilmanifold X.

Let w ∈ L(G) ⊗ C be an eigenvector of the automorphism Dα with eigenvalue λ of
maximal modulus. Since α is ergodic, |λ| > 1 by Lemma 3.2. We set W = L(G)∩ 〈w, w̄〉.
Since Dα|W has eigenvalues λ and λ̄, it follows either that Dα|[W,W ] must have eigenvalues

of modulus |λ|2 > |λ|, or [W,W ] = 0. Hence exp(W ) is an abelian Lie subgroup of G. By
[32, Ch. 3, Sec. 5], there exists a closed connected normal subgroup M containing exp(W )

such that M/(M ∩Λ) is compact, and for almost every g ∈ G, we have exp(W )gΛ = MgΛ.
Replacing the lattice Λ by gΛg−1, we may assume without loss of generality that

(3.10) exp(W )Λ = MΛ.

Lemma 3.5. (i) The group M is α-invariant.
(ii) Denoting by π : M → M/M ′ the factor map, Dπ(W ) is not contained in any

proper rational subspace of L(M/M ′).
(iii) [G,M ] < M ′.

Proof : We note that the group M can be described as the smallest closed connected
normal subgroup containing exp(W ) and intersecting Λ in a lattice ([32, Ch. 3, Sec. 5]).
Equivalently, M is the smallest closed connected subgroup whose Lie algebra L(M) is an
ideal in L(G) that contains W and is defined over Q with respect to the rational structure
defined by Λ. To show that M is invariant under α, we observe that

L(α(M)) = Dα(L(M))

also satisfies the above properties, and so does

L(M ∩ α(M)) = L(M) ∩Dα(L(M)).

Therefore, α(M) = M by minimality of M proving (i).
To prove (ii), we consider the torus factor MΛ/Λ → T := MΛ/(ΛM ′) induced by the

map π. If π(W ) is contained in a proper rational subspace of L(M/M ′), then the image
of Dπ(W ) in T is not dense, which contradicts (3.10). This shows (ii).

Since the vector w has coordinates in Q, so does the vector Dπ(w). For σ ∈ Gal(Q/Q),
we denote by Dπ(w)σ its Galois conjugate. Then

〈
Dπ(w)σ : σ ∈ Gal(Q/Q)

〉
is a rational

subspace, contains Dπ(W ) and, hence, cannot be a proper subspace. This shows that
Gal(Q/Q) acts transitively on the eigenvalues of Dα in V := L(M/M ′). In particular, it
follows that V does not contain any proper rational subspaces invariant under Dα. Now
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we consider the adjoint action Ad of G on V . Since G is nilpotent, the set V G of G-fixed
points in V is not trivial. Since V G is (Dα)-invariant and rational, we conclude that
V G = V . This implies that every g ∈ G,

(Ad(g)− id)(L(M)) ⊂ L(M)′,

and the last claim of the lemma follows. �

The nilmanifold X = G/Λ fibers over the nilmanifold Y = G/(MΛ) with fibers isomor-
phic to Z = MΛ/Λ 'M/(M ∩ Λ), and we have the disintegration formula

(3.11)

∫
X
f dµ =

∫
Y

∫
Z
f(yz) dµZ(z)dµY (y), f ∈ C(X),

where µY and µZ denote the normalised invariant measures on Y and Z respectively.
Since the groups M and Λ are α-invariant, α defines transformations of Y and Z, and we
obtain ∫

X
f0(x)f1(αn(x)) dµ(x) =

∫
Y

(∫
Z
f0(yz)f1(αn(y)αn(z)) dµZ(z)

)
dµY (y)(3.12)

=

∫
F

(∫
Z
f0(gz)f1(αn(g)αn(z)) dµZ(z)

)
dmF (g),

where F ⊂ G is a bounded fundamental domain for G/(MΛ), and mF denotes the measure
on F induced by µY .

We claim that for some fixed ρ ∈ (0, 1) and every g ∈ F ,∫
Z
f0(gz)f1(αn(g)αn(z)) dµZ(z) =

(∫
Z
f0(gz) dµZ(z)

)(∫
Z
f1(αn(g)z) dµZ(z)

)
(3.13)

+O(ρn‖f0‖Cθ‖f1‖Cθ)

uniformly on g ∈ F . To prove the claim above, we write

αn(g) = amλ with a ∈ F , m ∈M , λ ∈ Λ.

Then ∫
Z
f0(gz)f1(αn(g)αn(z)) dµZ(z) =

∫
Z
f0(gz)f1(amβ(αn(z))) dµZ(z),

where β denotes the transformation of Z induced by the automorphism m 7→ λmλ−1,
m ∈M . We note that β acts trivially on M/M ′ by Lemma 3.5. Let

φ0(z) := f0(gz) and φ1(z) := f1(az) with z ∈ Z.

Since g, a ∈ F , we have

‖φ0‖Cθ � ‖f0‖Cθ and ‖φ1‖Cθ � ‖f1‖Cθ ,

and since a(MΛ) = αn(g)(MΛ),∫
Z
φ1 dµZ =

∫
Z
f1(αn(g)z) dµZ(z).
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Therefore, it follows from (3.9) that there exists ρ ∈ (0, 1) such that∫
Z
φ0(z)φ1(mβ(αn(z)))) dµZ(z)

=

(∫
Z
φ0 dµZ

)(∫
Z
φ1 dµZ

)
+O(ρn‖φ0‖Cθ‖φ1‖Cθ)

=

(∫
Z
f1(gz) dµZ(z)

)(∫
Z
f0(αn(g)z) dµZ(z)

)
+O(ρn‖f0‖Cθ‖f1‖Cθ)

uniformly over g, a ∈ F , m ∈M , and automorphisms β of Z which act trivially on M/M ′.
This proves the claim (3.13), and we conclude that

(3.14)

∫
X
f0(x)f1(αn(x)) dµ(x) =

∫
Y
f̄0(y)f̄1(αn(y)) dµY (y) +O(ρn‖f0‖Cθ‖f1‖Cθ),

where the functions f̄i : Y → R are defined by y 7→
∫
Z fi(yz) dµZ(z). We note that∫

Y
f̄i dµY =

∫
X
fi dµ.

Since dim(Y ) < dim(X), Theorem 3.1 follows from (3.14) by induction on dimension.

4. Multiple mixing

In this section, we prove Theorem 1.2 on multiple exponential mixing. Let us recall the
statement:

Theorem 4.1. Let α be an ergodic automorphism of a compact nilmanifolds X = G/Λ.
Then there exists ρ = ρ(θ) ∈ (0, 1) such that for all θ-Hölder function f0, . . . , fs : X → R
and n0, . . . , ns ∈ N,∫

X

(
s∏
i=0

fi(α
ni(x))

)
dµ(x) =

s∏
i=0

(∫
X
fi dµ

)
+O

(
ρmini 6=j |ni−nj |

s∏
i=0

‖fi‖Cθ

)
.

We note that alternately one can also deduce Theorem 4.1 from Dolgopyat’s work on
multiple mixing [8, Theorem 2], and Corollary 5.2 below. However, our approach, which
is a simple variation of the basic argument from Section 3, allows the treatment to be
self-contained.

Without loss of generality, we may assume that n0 = 0 and 0 < n1 < · · · < ns.
As a preparation for the proof, we establish a result regarding equidistribution of images

of box maps that generalises Corollary 2.3. We call a box map, defined as in (2.1), c0-
bounded if ‖wi‖ ≤ c0 for all i = 1, . . . , k.

Proposition 4.2. Given c0, c1, c2, θ > 0, there exists κ = κ(c2, θ) > 0 such that for all
θ-Hölder functions f1, . . . , fs : X → R, u1, . . . , us ∈ L(G), automorphisms β1, . . . , βs of G
such that βi = id on G/G′, 0 < r1 < · · · < rs, c0-bounded and (c1, c2)-Diophantine box
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maps ι1, . . . , ιs : B → L(G), and x1, . . . , xs ∈ X, we have

1

|B|

∫
B

(
s∏
i=1

fi(exp(ui)βi(exp(ιi(rit)))xi)

)
dt =

s∏
i=1

(∫
X
fi dµ

)

+Oc0,c1,c2

(
σ(B, r1, . . . , rs)

−κ
s∏
i=1

‖fi‖Cθ

)
,

where σ(B, r1, . . . , rs) = min{min(r1B), rsr
−1
s−1, . . . , r2r

−1
1 }.

Proof : We first note that using the approximation argument as in the proof of Corol-
lary 2.3, one can reduce the proof of the proposition to the case when the functions are
Lipschitz. Since this part is very similar to the proof of Corollary 2.3, we omit details,
and assume right away that the fi’s are Lipschitz.

The proof involves applying Theorem 2.1 to the nilmanifoldXs = Gs/Λs. Let L1, L2 > 0
be the constants from this theorem. To simplify notation, we write σ = σ(B, r1, . . . , rs).

Let δ = σ−κ where κ > 0 is chosen so that −κ(L1+L2)+1
L1κ

> c2 and moreover −(κ+ε)(L1+L2)+1
L1κ

>

c2 for some fixed ε > 0. First, we assume that σ is sufficiently large so that δ ∈ (0, 1/2).
We write the box maps ιi as

ιi(t) = vi + t1w
(1)
i + · · ·+ tkw

(k)
i , t ∈ B = [0, T1]× · · · × [0, Tk],

with vi, w
(j)
i ∈ L(G) and T1, . . . Tk, > 0 and set

f = f1 ⊗ · · · ⊗ fs : Xs → R,
u = (u1, . . . , us) ∈ L(G)s,

ι : B → L(G)s : t 7→ (Dβ1ι1(r1t), . . . , Dβsιs(rst)),

x = (x1, . . . , xs) ∈ Xs.

Then ∫
B

(
s∏
i=1

fi(exp(ui)βi(exp(ιi(rit))))xi

)
db =

∫
B
f(exp(u) exp(ι(t))x) dt.

Applying Theorem 2.1, we deduce that for every δ ∈ (0, 1/2), either

(4.1)

∣∣∣∣ 1

|B|

∫
B
f(exp(u) exp(ι(t))) dt−

∫
X
f dµ

∣∣∣∣ ≤ δ‖f‖Lip,
or there exists (z1, . . . , zs) ∈ (Zl)s\{0} such that

(4.2) ‖z1‖, . . . , ‖zs‖ � δ−L1 = σκL1

and

(4.3)

∣∣∣∣∣∣
s∑
j=1

rj

〈
zj , DπDβj(w

(i)
j )
〉∣∣∣∣∣∣� δ−L2/min(B) = σκL2/min(B) for all i = 1, . . . , k.

We note that since βj = id on G/G′, we have DπDβj = Dπ.
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Suppose that (4.2)–(4.3) holds. Since ‖w(i)
j ‖ ≤ c0 by assumption, using the triangle

inequality we deduce that

∣∣∣〈zs, Dπ(w(i)
s )
〉∣∣∣� σκL2/min(rsB) +

s−1∑
j=1

σκL1/(rsr
−1
j ) ≤ σκ(L1+L2)−1

for all i = 1, . . . , k. Then by (4.2),∣∣∣〈zs, Dπ(w(i)
s )
〉∣∣∣� σ−(L1+L2)εσ(κ+ε)(L1+L2)−1 � σ−(L1+L2)ε‖z‖−

−(κ+ε)(L1+L2)+1
L1κ

≤ σ−(L1+L2)ε‖z‖−c2 .

Since the box map ιs is (c1, c2)-Diophantine, there exists ws ∈
∑k

i=1[−1, 1]Dπ(w
(i)
s ) which

satisfies (2.14). On the other hand, it follows from the previous estimate that

|〈zs, Dπ(ws)〉| ≤
k∑
i=1

∣∣∣〈zs, Dπ(w(i)
s )
〉∣∣∣� σ−(L1+L2)ε‖z‖−c2 .

When σ is sufficiently large, this estimate contradicts (2.14), unless zs = 0. Hence, we
deduce that zs = 0.

Now we repeat the above argument and deduce from (4.2)–(4.3) that

∣∣∣〈zs−1, Dπ(w
(i)
s−1)

〉∣∣∣� σκL2/min(rs−1B) +
s−2∑
j=1

σκL1/(rs−1r
−1
j ) ≤ σκ(L1+L2)−1

for all i = 1, . . . , k, and ultimately that zs−1 = 0, when σ is sufficiently large. Hence, we
conclude that (z1, . . . , zs) = 0 when σ ≥ σ0 = σ0(c0, c1, c2). Therefore, in this range (4.1)
holds with δ = σ−κ. This proves the claim of the proposition for sufficiently large σ. It is
also clear that this estimate holds in the range [0, σ0] with the implicit constant depending
on σ0. This completes the proof of the proposition. �

4.1. Multiple mixing under irreducibility assumption. In this section, we prove
Theorem 4.1 under the irreducibility condition as in Section 3.1. Namely, W denotes a
(Dα)-invariant subspace of L(G) such that Dπ(W ) is not contained in a proper rational
subspace and (3.1) holds.

As in (3.4), we obtain

∫
X
f0(x)

(
s∏
i=1

fi(α
ni(x))

)
dµ(x) =

∫
E
f0(exp(u)Λ)

(
s∏
i=1

fi(exp((Dα)niu)Λ)

)
du.
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As in Section 3.1, we tessellate the region E by cubes C of size ε which are compatible
with the subspace W and get∫

E
f0(exp(u)Λ)

(
s∏
i=1

fi(exp((Dα)niu)Λ)

)
du(4.4)

=
∑
C⊂E

f0(exp(uC)Λ)

∫
C

(
s∏
i=1

fi(exp((Dα)niu)Λ)

)
du+O

(
εθ

s∏
i=0

‖fi‖Cθ

)
,

where uC ∈ C. Each cube C can be written as C = B′ + B where B is a cube in W
and B′ is a cube in the complementary subspace. For every cube B, we take a box map
ιB : Rdim(W ) → W such that ιB([0, ε]dim(W )) = B. Because ω is a rotation, there exists
c0 > 0 such that each of the box maps

Rdim(W ) →W : t 7→ v + ωnιB(t), v ∈ L(G), n ∈ N,

is c0-bounded. It was also observed in Section 3.1 that each of these maps is (c1, c2)-
Diophantine. Hence, Proposition 4.2 implies that there exists κ ∈ (0, 1) such that uni-
formly on v1, . . . , vs ∈ L(G),

1

|B|

∫
B

(
s∏
i=1

fi(exp(vi + (Dα)nib)Λ)

)
db(4.5)

=ε− dim(W )

∫
[0,ε]dim(W )

(
s∏
i=1

fi(exp(vi + rniωniιB(t))Λ)

)
dt

=
s∏
i=1

(∫
X
fi dµ

)
+O

(
σ−κ

s∏
i=1

‖fi‖Cθ

)
,

where σ = min{εrn1 , rn2−n1 , . . . , rns−ns−1}. Since this estimate is uniform over vi’s, we
conclude that

1

|C|

∫
C

(
s∏
i=1

fi(exp((Dα)niu)Λ)

)
du

=
1

|B′||B|

∫
B′

∫
B

(
s∏
i=1

fi(exp((Dα)nib′ + (Dα)nib)Λ)

)
dbdb′

=
s∏
i=1

(∫
X
fi dµ

)
+O

(
σ−κ

s∏
i=1

‖fi‖Cθ

)
.

Now it follows from (4.4) that∫
E
f0(exp(u)Λ)

(
s∏
i=1

fi(exp((Dα)niu)Λ)

)
du

=

(∑
C⊂E

f0(exp(uC)Λ)|C|

)
s∏
i=1

(∫
X
fi dµ

)
+O

(
(σ−κ + εθ)

s∏
i=0

‖fi‖Cθ

)
,
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and by (3.8),∫
E
f0(exp(u)Λ)

(
s∏
i=1

fi(exp((Dα)niu)Λ)

)
du =

s∏
i=0

(∫
X
fi dµ

)

+O

(
(σ−κ + εθ)

s∏
i=0

‖fi‖Cθ

)
.

Finally, taking ε = r−κn1/(θ+κ), we obtain∫
X
f0(x)

(
s∏
i=1

fi(α
ni(x))

)
dµ(x)

=

∫
E
f0(exp(u)Λ)

(
s∏
i=1

fi(exp((Dα)niu)Λ)

)
du

=

s∏
i=0

(∫
X
fi dµ

)
+O

(
min{rθn1/(θ+κ), rn2−n1 , . . . , rns−ns−1}−κ

s∏
i=1

‖fi‖Cθ

)
.

This completes the proof of Theorem 4.1 under the irreducibility assumption.
The proof of the general case will be given in the following section using an inductive

argument. For this purpose, we note that the above argument gives the following stronger
result: there exists ρ ∈ (0, 1) such that for every h1, . . . , h1 ∈ G and automorphisms
β1, . . . , βs of G which preserve Λ that act trivially on G/G′, we have∫

X
f0(x)

(
s∏
i=1

fi(hiβi(α
ni(x)))

)
dµ(x)(4.6)

=
s∏
i=0

(∫
X
fi dµ

)
+O

(
ρmin{n1,n2−n1,...,ns−ns−1}

s∏
i=0

‖fi‖Cθ

)
uniformly over hi’s and βi’s. Indeed, Proposition 4.2 implies that in (4.5) we have, more
generally,

1

|B|

∫
B

(
s∏
i=1

fi(hiβi(exp(vi + (Dα)nib))Λ)

)
db

=
s∏
i=1

(∫
X
fi dµ

)
+O

(
σ−κ

s∏
i=1

‖fi‖Cθ

)
,

and the rest of the proof can be carried out as well.

4.2. Proof of multiple mixing in general. We use notation introduced in Section
3.2. In particular, W denotes a (Dα)-invariant subspace of L(G), and we arrange that

exp(W )Λ = MΛ where M is closed connected normal α-invariant subgroup containing
exp(W ) such that M/(M ∩ Λ) is compact.

The nilmanifold X = G/Λ fibers in α-invariant fashion over the nilmanifold Y =
G/(MΛ) with fibers isomorphic to Z = MΛ/Λ ' M/(M ∩ Λ), and the disintegration
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formula (3.11) holds. Using this disintegration formula, we obtain, similarly to (3.12),∫
X
f0(x)

(
s∏
i=1

fi(α
ni(x))

)
dµ(x)(4.7)

=

∫
Y

(∫
Z
f0(yz)

(
s∏
i=1

fi(α
ni(y)αni(z))

)
dµZ(z)

)
dµY (y)

=

∫
F

(∫
Z
f0(gz)

(
s∏
i=1

fi(α
ni(g)αni(z))

)
dµZ(z)

)
dmF (g).

We claim that there exists ρ ∈ (0, 1) such that for every g ∈ F ,∫
Z
f0(gz)

(
s∏
i=1

fi(α
ni(g)αn1(z))

)
dµZ(z)(4.8)

=

(∫
Z
f0(gz) dµZ(z)

) s∏
i=1

(∫
Z
fi(α

ni(g)z) dµZ(z)

)
+O

(
ρn

s∏
i=0

‖fi‖Cθ

)
uniformly on g ∈ F . To prove this claim, we write αni(g) = aimiλi with ai ∈ F , mi ∈M ,
and λi ∈ Λ. Then∫

Z
f0(gz)

(
s∏
i=1

fi(α
ni(g)αni(z))

)
dµZ(z) =

∫
Z
f0(gz)

(
s∏
i=1

fi(aimiβi(α
ni(z)))

)
dµZ(z),

where βi denotes the transformation of Z induced by the automorphism m 7→ λimλ
−1
i ,

m ∈M . Note that by Lemma 3.5 the automorphism βi is trivial on M/M ′. Let

φ0(z) := f0(gz) and φi(z) := fi(aiz), i = 1, . . . , s, with z ∈ Z.

Since g and ai’s belong to the compact set F ,

‖φi‖Cθ � ‖fi‖Cθ , i = 0, . . . s,

and since ai(MΛ) = αni(g)(MΛ),∫
Z
φi dµZ =

∫
Z
fi(α

ni(g)z) dµZ(z), i = 1, . . . , s.

Applying the estimate (4.6), we deduce that for some ρ ∈ (0, 1),∫
Z
φ0(z)

(
s∏
i=1

φi(miβi(α
ni(z)))

)
dµZ(z)

=

s∏
i=1

(∫
Z
φi dµZ

)
+O

(
ρn

s∏
i=0

‖φi‖Cθ

)

=

(∫
Z
f0(gz) dµZ(z)

) s∏
i=1

(∫
Z
fi(α

ni(g)z) dµZ(z)

)
+O

(
ρn

s∏
i=0

‖fi‖Cθ

)
.
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This implies the claim (4.8). Now combining (4.8) with (4.7), we deduce that∫
X
f0(x)

(
s∏
i=1

fi(α
ni(x))

)
dµ(x) =

∫
Y
f̄0(y)

(
s∏
i=1

f̄i(α
ni(y))

)
dµY (y)(4.9)

+O

(
ρn

s∏
i=1

‖fi‖Cθ

)
.

where the functions f̄i : Y → R are defined by y 7→
∫
Z fi(yz) dµZ(z). Clearly,∫

Y
f̄i dµY =

∫
X
fi dµ.

Since dim(Y ) < dim(X), Theorem 4.1 now follows from (4.9) by induction on dimension.

5. Equidistribution of unstable manifolds

In this section we prove an equidistribution result for unstable manifolds. Besides its
own intrinsic interest, we will use this later in our treatment of probabilistic limit theorems
in Section 6.

Let α be an ergodic automorphism of a compact nilmanifold X = G/Λ. We denote by
Wα ⊂ L(G) the unstable subspace ofDα, namely, the subspace of L(G) spanned by Jordan
subspaces of Dα with eigenvalues λ satisfying |λ| > 1. Note that since [Wα,Wα] ⊂ Wα,
exp(Wα) is a Lie subgroup of G. We decompose Wα as a direct sum Wα = ⊕`i=1W

α
i ,

so that Dα|Wα
i

acts as a (real) Jordan block. Namely, each subspace Wα
i has a basis

{w1, . . . , ws} such that

(Dα)wi = λwi + wi+1, i < s,(5.1)

(Dα)ws = λws,

where λ is a real eigenvalue of Dα, or a basis {w1, w
′
1, . . . , ws, w

′
s} such that

(Dα)wi = awi + bw′i + wi+1, (Dα)w′i = −bwi + aw′i + w′i+1, i < s,(5.2)

(Dα)ws = aws + bw′s, (Dα)w′s = −bws + aw′s,(5.3)

where λ = a+ bi is a complex eigenvalue of Dα. We order the subspaces Wα
i with respect

to the size of |λ|. Then

(5.4) [Wα,Wα
i ] ⊂ ⊕j>iWα

j .

For each i, we define a map ψi : Rdim(Wα
i ) → exp(Wα) which is either

ψi : (t1, . . . , ts) 7→ exp(t1w1) · · · exp(tsws)

in the real case, or

ψi : (t1, t
′
1 . . . , ts, t

′
s) 7→ exp(t1w1 + t′1w

′
1) · · · exp(tsws + t′sw

′
s)

in the complex case. Let ψ : Rdim(Wα) → exp(Wα) be the product of the maps ψi. It
follows from (5.4) that ψ is a diffeomorphism and that the image of the Lebesgue measure
gives the Haar measure on exp(Wα) [5, 1.2.7].
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Theorem 5.1. Let α be an ergodic automorphism of a compact nilmanifold X = G/Λ.

Then there exist κ = κ(θ) > 0 and ρ = ρ(θ) ∈ (0, 1) such that for every box B ⊂ Rdim(Wα),
θ-Hölder function f : X → R, h ∈ G, and g ∈ G, we have

1

|B|

∫
B
f(αn(hψ(b))gΛ) db =

∫
X
f dµ+O(min(B)−κρn‖f‖Cθ).

Proof : We give a proof using an inductive argument similar to the proof of exponential
mixing in Section 3.

Let W = Wα ∩ 〈w, w̄〉 where w is the eigenvector of Dα in Wα
` . More explicitly,

W = 〈ws〉 or W = 〈ws, w′s〉 with notation (5.1)–(5.2). As in Section 3.2, we deduce that
there exists a closed normal subgroup M of G containing exp(W ) such that M/(M ∩ Λ)
is compact and for almost all g ∈ G,

(5.5) exp(W )gΛ = MgΛ.

The map ψ : Rdim(Wα) → exp(Wα) can be written as a product ψ = ξ · η with ξ :

Rdim(Wα)−dim(W ) → exp(Wα) and η : Rdim(W ) → exp(W ), where η : t 7→ exp(tws) or
η : (t, t′) 7→ exp(tws + t′w′s) and ξ is the product of the remaining exponential maps
appearing in ψ. Then∫

B
f(αn(hψ(b))gΛ) db =

∫
C

∫
D
f(αn(hξ(u)η(v))gΛ) dudv,

where C is a box in Rdim(Wα)−dim(W ) and D is a box in Rdim(W ) such that B = C ×D.
We first show that images of the map η are equidistributed in a suitable sense. Namely,

we claim that there exists ρ ∈ (0, 1) such that for every h ∈ G and every gΛ ∈ X
such that (5.5) holds,

(5.6)
1

|D|

∫
D
f(αn(hη(t))gΛ) dt =

∫
Z
f(αn(h)gmΛ)µZ(m) +O(ρn‖f‖Cθ),

where µZ denotes the invariant normalised measure on the nilmanifold Z = M/(M ∩ Λ).
Let F0 ⊂ G be a bounded subset such that G = F0Λ. Then there exists a bounded subset
F of G such that G = FM(g0Λg−1

0 ) for all g0 ∈ F0. Indeed, we can take F = F0F
−1
0 . We

note that in (5.6) we may assume that g ∈ F0, and to simplify notation, we replace Λ by
gΛg−1. Then (5.6) holds with g = e. We note that our estimates below (in particular,
(5.8)) are uniform on g. Indeed, we use the equidistribution of (c1, c2)-Diophantine box
maps in the proof, and the constants c1 and c2 will not depend on g because they are
determined by the projections to the torus G/(G′gΛg−1) = G/(G′Λ).

Next we write αn(h) = amλ with a ∈ F , m ∈M , and λ ∈ Λ. Then

(5.7)

∫
D
f(αn(hη(t))Λ) dt =

∫
D
f(amβ(αn(η(t)))Λ) dt,

where β denotes the automorphism of M defined by m 7→ λmλ−1. We note that β
acts trivially on M/M ′ by Lemma 3.5. To analyse (5.7), we apply Corollary 2.3 to the
nilmanifold Z = M/(M ∩ Λ). Setting φ(z) := f(az), z ∈ Z, we get∫

D
f(amβ(αn(η(t)))Λ) dt =

∫
D
φ(mβ(αn(η(t)))Λ) dt,
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and since a ∈ F , we have
‖φ‖Cθ � ‖f‖Cθ .

For the next computation, let us assume that dim(W ) = 2. When dim(W ) = 1, the proof
is similar and simpler. We observe that Dα|W = rω where r > 1 and ω is a rotation of
W , so that

β(αn(η(t, t′))) = exp(rn(t(Dβωnws) + t′(Dβωnw′s))).

Making a change of variables,∫
D
φ(mβ(αn(η(t)))Λ) dt = r−2n

∫
rnD

φ(m exp(ιn(t))Λ) dt,

where ιn denotes the box map (t, t′) 7→ t(Dβωnws)+t
′(Dβωnw′s). We note that (Dπ)(Dβ) =

Dπ. Since exp(W )Λ = MΛ, it follows that Dπ(W ) is not contained in any proper ra-
tional subspace. In particular, it follows from Lemma 3.3 and [2, Th. 7.3.2] that Dπ(W )
contains a vector w satisfying the Diophantine condition (2.14). Since ω is an isometry,
this implies that the box map ιn is (c1, c2)-Diophantine where c1, c2 are uniform in n and
β (see Remark 2.2). Therefore, Corollary 2.3 implies that there exists κ > 0 such that

1

|rnD|

∫
rnD

φ(mβ(exp(ιn(t)))Λ) dt =

∫
Z
φdµZ +O(min(rnD)−κ‖φ‖Cθ)(5.8)

This shows that
1

|D|

∫
D
f(amβ(αn(η(t)))Λ) dt =

∫
Z
f(az) dµZ(z) +O(min(D)−κr−κn‖f‖Cθ)

=

∫
Z
f(αn(h)z) dµZ(z) +O(min(B)−κρn‖f‖Cθ)

with ρ = rκ ∈ (0, 1). This proves (5.6).
Next, we apply the above argument inductively. For a Hölder function f on X = G/Λ,

we define a function f̄ on X̄ = G/MΛ by

f̄(gMΛ) :=

∫
M/(M∩Λ)

f(gmΛ)dµZ(m).

Clearly,
‖f̄‖Cθ ≤ ‖f‖Cθ .

Let Ḡ = G/M , Λ̄ = (MΛ)/M , and p : G → Ḡ be the projection map. Then X̄ ' Ḡ/Λ̄.
We note that Dp(Wα) is precisely the unstable space of Dα acting on L(Ḡ). It follows
from (5.6) that there exists ρ ∈ (0, 1) such that

1

|B|

∫
B
f(αn(hψ(b))gΛ) db =

1

|B|

∫
B
f̄(αn(h̄ψ̄(b))ḡΛ̄) db+O(min(B)−κρn‖f‖Cθ),

where ψ̄ is the product of the maps of the form

ψ̄i : (t1, . . . , ts) 7→ exp(t1w̄1) · · · exp(tsw̄s),

or
ψ̄i : (t1, t

′
1 . . . , ts, t

′
s) 7→ exp(t1w̄1 + t′1w̄

′
1) · · · exp(tsw̄s + t′sw̄

′
s).

with w̄i = Dp(wi) and w̄′i = Dp(w′i), h̄ = p(h) and ḡ = p(g). In this product we may skip
terms with w̄i = 0 or w̄′i = 0 (note that if w̄i = 0, then w̄′i = 0 and conversely). Then the
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relations (5.1)–(5.2) are still satisfied. In particular, the last exponential in the obtained
product corresponds to the subspace Dp(Wα)∩〈w, w̄〉 where w is an eigenvector of Dα in
L(Ḡ) with the eigenvalue of maximal modulus. Now we can again apply the argument as
in the proof of (5.6) reducing the number of terms in the product defining ψ̄. Repeating
the same argument repeatedly, we deduce that for some ρ ∈ (0, 1) and κ > 0,

1

|B|

∫
B
f(αn(hψ(b))gΛ) db =

∫
M/(M∩Λ)

f(αn(h)gmΛ) dµZ(m) +O(min(B)−κρn‖f‖Cθ),

whereM is a closed normal α-invariant subgroup containing exp(Wα) such thatM/(M∩Λ)
is compact. We observe that Dα acting on L(G/M) has no eigenvalues with absolute value
greater than one. Since α is ergodic, it follows from Lemma 3.2 that M = G. This proves
the theorem for the set of g ∈ G that satisfy (5.5) at every inductive step, with the estimate
which is uniform over g. Since this set has full measure, we conclude that the estimate
holds for all g completing the proof of the theorem. �

The following corollary will be used in the proof of the limit theorems in the next
section.

Corollary 5.2. Let Ω be a domain in Wα with a piecewise smooth boundary. Then there
exist κ = κ(θ) > 0 and ρ = ρ(θ) ∈ (0, 1) such that for every θ-Hölder function f : X → R,
g ∈ G and ε > 0, we have∫

Ω
f(αn(ψ(b))gΛ) db = |Ω|

∫
X
f dµ+O

(
(|∂εΩ|+ ε−κρn|Ω|)‖f‖Cθ

)
,

where ∂εΩ denotes the ε-neighbourhood of the boundary of Ω.

Proof : We tessellate Wα by cubes B of size ε. Then∣∣∣∣∣Ω− ⋃
B⊂Ω

B

∣∣∣∣∣ ≤ |∂εΩ|,
and ∫

Ω
f(αn(ψ(b))gΛ) db =

∑
B⊂Ω

∫
B
f(αn(ψ(b))gΛ) db+O(|∂εΩ|‖f‖C0).

By Theorem 5.1, for some κ > 0 and ρ ∈ (0, 1),∫
B
f(αn(ψ(b))gΛ) db = |B|

∫
X
f dµ+O(|B|ε−κρn‖f‖Cθ).

Therefore,∫
Ω
f(αn(ψ(b))gΛ) db =

(∑
B⊂Ω

|B|

)∫
X
f dµ+O

((
|∂εΩ|+

∑
B⊂Ω

|B|ε−κρn
)
‖f‖Cθ

)

= |Ω|
∫
X
f dµ+O((|∂εΩ|+ |Ω|ε−κρn)‖f‖Cθ).

This completes the proof of corollary. �
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6. Central limit theorem and invariance principles

Let us first review the terminology regarding the central limit theorem and other prob-
abilistic limit theorems. Let α : X → X be a measure-preserving map of a probability
space (X,µ). For a function f : X → R, we consider a sequence of observables f ◦ αn. If
the dynamical system α y X is sufficiently chaotic, this sequence is expected to behave
similarly to a sequence of independent random variables. We set

Sn(f, x) =
n−1∑
i=0

f(αi(x)),

and for simplicity assume that
∫
X f dµ = 0.

The sequence f ◦ αn satisfies the central limit theorem if there exists σ > 0 such that
n−1/2Sn(f, ·) converges in distribution to the normal law with mean 0 and variance σ2.
More generally, the sequence f ◦ αn satisfies the central limit theorem for subsequences if
there exists σ > 0 such that for every increasing sequence of measurable functions kn(x)

taking values in N such that for almost all x, limn→∞
kn(x)
n = c for some fixed constant

0 < c <∞, the sequence n−1/2Skn(·)(f, ·) converges in distribution to the normal law with

mean 0 and variance σ2/c. We define St(f, x) for all t ≥ 0 by linear interpolation of its
values at integral points. The sequence f ◦αn satisfies the Donsker invariance principle if
there exists σ > 0 such that the sequence of random functions (nσ2)−1/2Snt(f, ·) ∈ C([0, 1])
converges in distribution to the standard Brownian motion in C([0, 1]). The sequence f◦αn
satisfies the Strassen invariance principle if there exists σ > 0 such that for almost every
x, the sequence of functions (2nσ2 log log n)−1/2Snt(f, x) is relatively compact in C([0, 1])
and its limit set is precisely the set of absolutely continuous functions g on [0, 1] such that

g(0) = 0 and
∫ 1

0 g
′(t)2 dt ≤ 1. This is a strong version of the law of the iterated logarithm.

In this section we establish the above limit theorems for sequences generated by ergodic
automorphisms of compact nilmanifolds. In the case of toral automorphism, these theo-
rems have been established by LeBorgne [17] using the method of martingale differences,
and we follow a similar approach. We shall use the following general result:

Theorem 6.1. Let (X,B, µ, α) be an invertible ergodic dynamical system and f ∈ L2(X)
such that

∫
X f dµ = 0. Let A be a sub-σ-algebra of B such that An = α−n(A) is a

non-increasing sequence of σ-algebras satisfying

(6.1)
∑
n>0

‖E(f | An)‖2 <∞ and
∑
n<0

‖f − E(f | An)‖2 <∞.

Then

(i) σ2 =
∫
X f

2 dµ+ 2
∑∞

j=1

∫
X(f ◦ αj)f dµ is finite.

(ii) σ = 0 ⇔ f is an L2 coboundary ⇔ f is a measurable coboundary.
(iii) If σ > 0, then f ◦ αn satisfies the central limit theorem, the central limit theorem

of subsequences, and the Donsker and Strassen invariance principles.

It is well-known (see, for instance, [34, Theorem 4.13]) that under the assumption (6.1)
the function f has a decomposition f = (φ ◦ α− φ) + ψ with φ, ψ ∈ L2(X), where ψ ◦ αn
is a reverse martingale difference with respect to the σ-algebras An, and σ = ‖ψ‖2. In
particular, σ <∞ and if σ = 0, then f is an L2 coboundary. On the other hand, if f is a
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measurable coboundary, then ψ is also a measurable coboundary, and it follows from [31]
that ψ = 0, so that σ = 0. For (iii) we refer to [13, Ch. 5].

The following is the main result of this section:

Theorem 6.2. Let α be an ergodic automorphism of a compact nilmanifold X, and let f
be a Hölder function on X which has zero integral and is not a measurable coboundary.
Then the sequence f ◦ αn satisfies the central limit theorem, the central limit theorem of
subsequences, and the Donsker and Strassen invariance principles.

To find the sub-σ-algebra A suitable for Theorem 6.1, we use the results of Section 5
combined with the works of Lind [21] and Le Borgne [17]. We call a measurable partition
P of X δ-fine if the diameter of any set in P is at most δ. We say that a partition generates
under α if the σ-algebra generated by all αn(P) with n ∈ Z is the Borel σ-algebra of X
modulo null sets. Given a partition P and x ∈ X, we denote by P(x) the element of the
partition that contains x. Given integers k ≤ l, we denote by P lk the partition generated

by α−k(P), . . . , α−l(P). We also set P∞k (x) = ∩l≥kP lk(x).

Proposition 6.3. Let P be a finite measurable partition of X such that for every P ∈ P,

• P is the closure of its interior,
• the boundary of P is piecewise smooth,
• the diameter of P is at most δ.

Then if δ is sufficiently small,

(i) the partition P generates under α,
(ii) for almost every x, the atoms P∞0 (x) are contained in the stable manifolds Ws(x)

of x, and the diameter of P∞0 (x) in Ws(x) is bounded,
(iii) for almost every x ∈ X, the atoms P∞0 (x) have non-empty interior in the stable

manifolds Ws(x).

Proof of (i)–(ii). The proof follows that of [21, Th. 1] almost completely albeit with
some differences in the final argument involving isometries. We will show that α almost
surely separates points, i.e., that for some null set X0 in X, if x, y ∈ X\X0, then for some
n, the points αn(x) and αn(y) belong to different elements of the partition P. It then
follows from Rohklin’s work [28] that P generates under α.

There exist c0 > 1 and δ0 > 0 such that for every w ∈ L(G) satisfying ‖w‖ < δ0 and
x ∈ X,

(6.2) c−1
0 ‖w‖ ≤ d(x, exp(w)x) ≤ c0 ‖w‖.

We assume that δ is sufficiently small, so that ‖Dα‖c0δ < δ0, and if p and q belong to the
same element P of the partition, then q = exp(w)p with ‖w‖ < δ0. Since diam(P ) ≤ δ,
we have ‖w‖ ≤ c0δ. We observe that

(6.3) d(αn(p), αn(q)) = d(αn(p), exp((Dα)nw)αn(p)).

Suppose that ‖(Dα)nw‖ → ∞ as n → ∞. We pick the greatest n ≥ 0 such that
‖(Dα)nw‖ ≤ c0δ. Then

c0δ < ‖(Dα)n+1w‖ ≤ ‖Dα‖c0δ < δ0,
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and it follows from (6.2)–(6.3) that d(αn+1(p), αn+1(q)) > δ. Hence, αn+1(p) and αn+1(q)
belong to different elements of the partition.

A similar argument also applies when ‖(Dα)nw‖ → ∞ as n → −∞. Therefore, it
remains to consider the case when w ∈ Eiso which is the span of eigenspaces of Dα with
eigenvalues of modulus one. We adapt Lind’s idea [21] for this situation. Let K denote
the closed group of isometries generated by β := Dα|Eiso . Then β acts ergodically on K
by translations. Since α is mixing, the product α×β acts ergodically on X×K. It follows
from ergodicity and Fubini’s theorem that there exists a null set X0 ⊂ X and k ∈ K such
that the sequence (αn(x), βnk) is dense in X×K for every x ∈ X\X0. Then the sequence
(αn(x), βn) is also dense in X ×K.

Now suppose that p, q ∈ X\X0 and q = exp(w)p for some nonzero w ∈ Eiso. Given an
element P ∈ P, we set

P (w, ε) = {x ∈ P : d(exp(w)x, P ) > ε}.
When ε > 0 is sufficiently small, this set has a nonempty interior. Hence, for every
p ∈ X\X0, there exists n such that

αn(p) ∈ P (w, ε) and d(exp(w), exp((Dα)nw)) < ε/2.

Then

d(αn(q), P ) = d(exp((Dα)nw)x, P )

≥ d(exp(w)x, P )− d(exp((Dα)nw)x, exp(w)x) > ε/2.

In particular, αn(p) ∈ P and αn(q) /∈ P . This proves that P generates under α. The part
(ii) can be proved by the same argument. �

To prove Proposition 6.3(iii), we follow Le Borgne’s approach [17] for toral automor-
phisms. We pick c, r0 ∈ (0, 1) such that the map α−n expands the distance on Ws by at
least c r−n0 for n ≥ 0, and take r ∈ (r0, 1). Let

Vn := {x ∈ X : P∞0 (x) ⊃ Brn/c(x) ∩Ws(x)}.
Proposition 6.3(iii) immediately follows from the following lemma.

Lemma 6.4. µ(X\Vn)� rn.

Proof : Let

Wn := {y ∈ X : d(αj(y), ∂P(αj(y))) ≥ rj0r
n/c2 for all j ≥ 0}.

If y is in Wn, then P(αj(y)) contains the ball in Ws(αj(y)) of radius rj0r
n/c2. Hence,

α−j(P(αj(y))) contains the ball in Ws(y) of radius rn/c. Since

P∞0 (y) =
⋂
j≥0

α−j(P(αj(y))),

we conclude that Vn ⊃Wn.
To prove the lemma, it suffices to estimate µ(X\Wn). It follows from our assumption

on the partition P that

µ({y ∈ X : d(y, ∂P(y)) ≤ ε})� ε,
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and since α is measure-preserving, for every j ≥ 0,

µ({y ∈ X : d(αj(y), ∂P(αj(y))) ≤ rj0r
n/c})� rj0r

n.

Hence,

µ(X\Wn)�
∑
j≥0

rj0r
n � rn,

which implies the lemma. �

We also mention an alternative way to construct a suitable sequence of σ-algebras,
which was used, for instance, in [3, 18]. We define a new partition

P̃(x) = P(x) ∩Ws
δ (x),

where Ws
δ (x) is the δ-neighbourhood of x in the stable manifold, and set

P̃∞n (x) =
⋂
j≥n

α−j(P̃(αj(x))).

Then the property (ii) is automatically satisfied, and one just needs to check (iii). However,
it seems that the result regarding generating partitions, generalising [21] to nilmanifolds,
might be useful for other applications.

Proof of Theorem 6.2. Let A be the σ-algebra generated by the partition P∞0 and
An = α−n(A) = P∞n . It is clear that the sequence An is non-increasing. To prove the
theorem, it suffices to check the conditions (6.1). Since the partition P∞n is measurable in
the sense of [28], for almost every x,

E(f |An)(x) =

∫
P∞n (x)

f(y) dmP∞n (x)(y),

where mP∞n (x) is the conditional probability measure on P∞n (x).
To verify the second part of (6.1), we observe that when P∞0 (αn(x)) ⊂ Ws(x),

diam(P∞n (x)) = diam(α−n(P∞0 (αn(x))))

decays exponentially as n → −∞ uniformly on x. Since the function f is θ-Hölder, it
follows that for some τ ∈ (0, 1),

‖f − E(f | An)‖2 � τ−n‖f‖Cθ and
∑
n<0

‖f − E(f | An)‖2 <∞.

To check the other condition in (6.1), we observe that by Lemma 6.4,

(6.4)

∫
X\α−n(Vn)

|E(f |An)|2 dµ� rn‖f‖2C0 .

On the other hand, for x ∈ α−n(Vn),

Brn/c(α
n(x)) ∩Ws(αn(x)) ⊂ P(αn(x)) and Brnr−n0

(x) ∩Ws(x) ⊂ α−n(P(αn(x))).
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Since the diameter of P(x) is at most δ, as soon as rnr−n0 > δ, we get that P(x) ⊂
Brn/rn0 (x). Hence, by Proposition 6.3, for almost every x ∈ α−n(Vn),

(6.5) P∞0 (x) =
∞⋂
n=0

α−n(P(αn(x))) ∩Ws(x) =

⌈
log δ

log(r/r0)

⌉⋂
n=0

α−n(P(αn(x))) ∩Ws(x).

Thus, P∞0 (x) is the intersection of the stable manifold of x with at most finitely many
sets whose boundaries consist of finitely many piecewise smooth submanifolds. Then the
right hand side of (6.5) equals to exp(Ωx)x, and hence

(6.6) P∞0 (x) = exp(Ωx)x,

where Ωx is a domain in the unstable subspace W = Wα−1
of D(α−1) in L(G) whose

boundary is piecewise smooth and depends smoothly on x. In particular, |∂εΩx| � ε
uniformly on x ∈ X. It follows from (6.6) that

P∞n (x) = α−n(P∞0 (αn(x))) = exp((Dα)−nΩx)x.

Then by [3, Prop. 4.3],

mP∞n (x) =
1

mx(P∞n (x))
mx|P∞n (x),

where mx is the Haar measure on exp(W )x. Now we apply Corollary 5.2. It follows from
the definition of Vn that for x ∈ α−n(Vn), we have |Ωx| � rn. Hence, by Corollary 5.2,
for every x ∈ α−n(Vn) and ε > 0,

1

mx(P∞n (x))

∫
P∞n (x)

f(y) dmx(y) = O

((
|∂εΩ|
|Ω|

+ ε−κρn
)
‖f‖Cθ

)
= O

(
(εr−n + ε−κρn)‖f‖Cθ

)
,

where ρ ∈ (0, 1). We take ε = (rnρn)1/(κ+1). If we also take r sufficiently close to 1, then
this quantity decays exponentially as n→∞. Then∫

α−n(Vn)
|E(f |An)|2 dµ� τn‖f‖2Cθ

for some τ ∈ (0, 1). Combining this estimate with (6.4), we deduce the first part of (6.1).
Now the theorem follows from Theorem 6.1. �

7. Cohomological equation

In this section we apply exponential mixing to establish regularity of solutions of the
cohomological equation. We recall that for ergodic systems the solution is unique up to a
constant, up to measure zero.

Theorem 7.1. Let α be an ergodic automorphism of a compact nilmanifold X and f ∈
C∞(X) such that f = φ ◦ α − φ for some measurable function φ. Then φ is almost
everywhere equal to a C∞ function.
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The method of proof of Theorem 7.1 applies to other classes of homogeneous partially
hyperbolic systems for which exponential mixing holds. For instance, we may consider an
ergodic partially hyperbolic left translation on the homogeneous space G/Γ, where G is
connected semisimple Lie group and Γ is a cocompact irreducible lattice. This dynamical
system is also exponentially mixing for Hölder functions [15, Appendix], and the argu-
ment of Theorem 7.1 applies. For X = SLd(R)/SLd(Z), an analogous result for Hölder
functions f was established in [18]. Furthermore, we get both Hölder and smooth ver-
sions of Theorem 7.1 for compact G/Γ and G semi simple from Wilkinson’s general result
for accessible partially hyperbolic diffeomorphisms [35, Theorem A] under the additional
assumption that the left translation projected to any factor of G does not belong to a
compact subgroup.

Before starting the proof, we need to develop some language and review a result on
regularity of distributions. Let M be a compact manifold. We fix a Riemannian metric
on M , and denote by Cθ = Cθ(M) the space of θ-Hölder functions on M . We let (Cθ)∗ be
the dual space to Cθ. Note that any smooth function on M naturally belongs to any Cθ.
Hence any element in (Cθ)∗ defines a distribution on smooth functions on M . Conversely,
(Cθ)∗ is the space of distributions (dual to C∞ functions) which extend to continuous
linear functionals on Cθ. As for notation, we will write the pairing D(g) = 〈D, g〉 for
D ∈ (Cθ)∗ and g ∈ Cθ.

Let F be a C∞ foliation on M , and consider a C∞ vector field V tangent to F . Given
a distribution D on M , define the derivative V (D) by evaluating on C∞ test functions
g as follows: 〈V (D), g〉 = −〈D,V (g)〉 where V (g) denotes the directional derivative of g
along V .

Given smooth vector fields V1, . . . , Vr, we call Vi1 , Vi2 . . . VimD the partial derivatives of
order m of D. Suppose that we can cover M with open sets U such that we can find smooth
vector fields V1, . . . , Vr which span the tangent spaces to F at any point of U . Suppose
moreover that all partial derivatives of any order m, Vi1 , Vi2 . . . VimD of a distribution D
belong to (Cθ)∗, for all such choices of U and V1, . . . Vr . Then for any other C∞ vector
fields V ′1 , . . . V

′
r tangent to F , the partial derivatives V ′i1 , V

′
i2
. . . V ′imD also belong to (Cθ)∗

as follows from a partition of unity argument. Thus we can say that partials along F of
a distribution belong to (Cθ)∗, without any reference to a particular set of vector fields.1

The following result is inspired by results of Rauch and Taylor in [27], and was known
to Rauch for the case of C∞ foliations. We are not aware of a simple reference. It is also
a straight-forward consequence of a similar much more technical result for Hölder folia-
tions proved in [10], namely that the wavefront set of a distribution for which the partial
derivatives of all orders along a single foliation belong to the dual of Hölder functions is
co-normal to the foliation. We refer to [27, 10] for more details.

Corollary 7.2 ([10]). Let F1, . . . ,Fr be C∞ foliations on a compact manifold M whose
tangent spaces span the tangent spaces to M at all points. Consider a distribution D
defined by integration against an L1 function φ. Assume that any partial derivative of D
of any order along the foliations F1, . . . ,Fr belongs to (Cθ)∗ for all θ > 0. Then φ is C∞.

1In our application we will have globally defined vector fields for which the partials exist for all orders,
and we will not need this comment.
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We are now ready to tackle the proof of Theorem 7.1. Let us first give an outline
of the argument. Using Theorem 6.1, we first show in Lemma 7.3 that the function φ
has to be in L2(X). Then we describe φ as distribution. We consider three dynamically
defined foliations for α: the unstable foliationWu, the stable foliationWc, and the central
foliation Wc. The unstable foliation is tangent to the right invariant distribution on X
corresponding to the sum of all generalized eigenspaces with eigenvalues |λ| > 1, the stable
foliation is tangent to the right invariant distribution on X corresponding to the sum of all
generalized eigenspaces with eigenvalues |λ| < 1, and the central foliation is tangent to the
right invariant distribution on X corresponding to the sum of all generalized eigenspaces
with eigenvalues |λ| = 1. Note that these distributions are integrable as is easily seen by
taking Lie brackets. We show that the distribution derivatives of φ along the foliations
Ws, Wu, Wc of α define distributions on Hölder functions. This is established in Lemmas
7.4 and 7.5. Since all these foliations are smooth, Corollary 7.2 shows that the function φ
is C∞.

We now establish Lemmas 7.3, 7.4 and 7.5 which will finish the proof of Theorem 7.1.

Lemma 7.3. The function φ in Theorem 7.1 is in L2.

Proof : Recall that along the proof of Theorem 6.2 we have verified the conditions of
Theorem 6.1. Hence, the lemma follows from part (ii) of this theorem. �

Define the distributions P+ and P− by evaluating them on test functions g ∈ C∞(X)
by

P+(g) =

∞∑
i=0

〈f ◦ αi, g〉 and P−(g) =

∞∑
i=1

〈f ◦ α−i, g〉.

Note that
∫
X f dµ = 0 since f is an L2 coboundary. Hence, by exponential mixing (Theo-

rem 1.1), these sums converge as long as the test function g is Hölder, and P+, P− ∈ (Cθ)∗.
Moreover, since 〈φ ◦ αi, g〉 → 0 as i→ ±∞. we get by a telescoping-sum argument that

P+(g) =

∞∑
i=0

〈f ◦ αi, g〉 =

∞∑
i=0

〈φ ◦ αi+1 − φ ◦ αi, g〉 = lim
N→∞

〈φ ◦ αN − φ, g〉 = −〈φ, g〉.

Similarly, we see that P−(g) = 〈φ, g〉. Hence, the distribution P+ = −P− is given by
integration against the L2-function φ. We will use this to show that φ is smooth.

According to Corollary 7.2, it suffices to show that partial derivatives of all orders of
the distribution P+ = −P− along any of the three foliations Ws, Wu and Wc belong to
(Cθ)∗ for any θ > 0. We will show this in the next two lemmas.

Lemma 7.4. Partial derivatives of all orders of the distribution P+ = −P− along Ws

and Wu belong to (Cθ)∗ for any θ > 0.

Proof : Let V be a right invariant vector field tangent to Ws and g a C∞ test function.
Then

〈V (P+), g〉 = −〈P+, V (g)〉 = −
∞∑
i=0

〈f ◦ αi, V (g)〉 =

∞∑
i=0

〈V (f ◦ αi), g〉.
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The derivative V (f ◦ αi) decays exponentially fast since V is tangent to W s. Hence,

|〈V (P+), g〉| � ‖g‖C0 ,

and in particular, V (P+) ∈ (Cθ)∗ for all θ > 0. Since P+ = −P−, an analogous proof
shows that V (P+) lies in the dual of Hölder functions for all vector fields V tangent toWu.
A similar argument also applies to higher order derivatives along vector fields tangent to
Ws or Wu. We refer for the details to [10, Lemma 5.1]. �

Finally, we show that partials of all orders of P+ = −P− along Wc are distributions
on Hölder functions. This argument uses exponential decay very strongly, and was first
discovered in [10]. For a detailed account we refer to [10, Lemma 5.1].

Lemma 7.5. Partial derivatives of all orders of the distribution P+ = −P− along Wc

belong to (Cθ)∗ for any θ > 0.

Proof : Let V be a right invariant vector field tangent toWc, and let g be a C∞ function.
Then the partial derivative of P+ along V is given by

(7.1) 〈V (P+), g〉 =
∞∑
i=0

〈V (f ◦ αi), g〉 = −
∞∑
i=0

〈f ◦ αi, V (g)〉,

and we have estimates for all of these expressions in terms of the Hölder norm of V (g),
due the exponential mixing of α. We will show that this distribution extends to Hölder
functions g by approximating g by smooth functions gε and carefully balancing the speed
of the approximation with the loss of exponential decay due to the growth of the C l-norm
of gε. More precisely, we shall show that there exists ξ = ξ(θ) ∈ (0, 1) such that for every
g ∈ Cθ(X) and sufficiently large i,

(7.2) |〈V (f ◦ αi), g〉| � ξi · ‖f‖C1‖g‖Cθ .

It would follow from (7.1) and (7.2) that V (P+) ∈ (Cθ)∗.
We recall from Lemma 2.4 that for ε > 0, there is a C∞ function gε such that

(7.3) ‖gε − g‖C0 ≤ εθ‖g‖Cθ and ‖gε‖C2 � ε−m−2‖g‖C0

where m = dim(X). We first estimate |〈V (f ◦ αi), gε〉|. By the exponential mixing (The-
orem 1.1) and since V is bounded, we have for some ρ ∈ (0, 1),

(7.4) |〈f ◦ αi, V (gε)〉| � ρi‖f‖C1‖V (gε)‖C1 � ρi‖f‖C1 ε−m−2‖g‖C0 .

On the other hand, we can estimate |〈f ◦ αi, V (g − gε)〉| = |〈V (f ◦ αi), g − gε〉| as follows.
First, we note that the derivatives V (f ◦αi) by the chain rule are composites of derivatives
of f and derivatives of αi along Wc. The latter grows at most polynomially since Wc is
the central foliation for α. Hence, for any η > 0, there is iη ∈ Z+ such that

‖D(αi|Wc)‖ < (1 + η)i for all i ≥ iη.

Hence, for all i > iη, we get the estimate

‖V (f ◦ αi)‖C0 ≤ (1 + η)i‖f‖C1 ,
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and

(7.5) |〈V (f ◦ αi), g − gε〉| ≤ ‖V (f ◦ αi)‖C0 ‖g − gε‖C0 ≤ (1 + η)i‖f‖C1 εθ‖g‖Cθ .
We have exponential decay with respect to i in (7.4), but exponential growth in (7.5) at
first sight. However, choosing ε carefully depending on i, we can still achieve exponential

decay in (7.5), and hence for |〈V (f ◦ αi), g〉|. More precisely, we take ε = ρ
i

θ+m+2 . Then
we obtain from (7.4) that

|〈f ◦ αi, V (gε)〉| �
(
ρ

θ
θ+m+2

)i
‖f‖C1 ‖g‖C0 ,

and from (7.5) that for i > iη,

|〈V (f ◦ αi), g − gε〉| ≤
(

(1 + η)ρ
θ

θ+m+2

)i
‖f‖C1‖g‖Cθ .

Now we choose η > 0 so that ξ := (1 + η)ρ
θ

θ+m+2 < 1. Finally, we obtain from the last two
inequalities that for i > iη,

|〈V (f ◦ αi), g〉| � ξi · ‖f‖C1‖g‖Cθ .
This proves (7.2) and shows that V (P+) extends to a continuous linear functional on the
space of θ-Hölder functions. A similar argument shows that higher order derivatives of P+

along the central foliation define distributions dual to Hölder functions. For the details
we refer to [10, Lemma 5.1].

We also mention that one can give a different argument for the estimate (7.2) using the
linearity of α along the foliation Wc. First, we can assume that

∫
X g dµ = 0 because for

constant g, the estimate (7.2) follows from integration by parts. Then we can write V (f ◦
αi) = Vi(f) ◦ αi for another differential operator Vi. One can show that the Hölder norm
of Vi(f) grows polynomially. Hence, (7.2) can be deduced from the exponential mixing.
The argument that we presented above is more versatile, and it applies to (nonlinear)
diffeomorphisms satisfying the exponential mixing property. �

This finishes the proof of Theorem 7.1.

8. Bernoulli property

Here we show that ergodic automorphisms on compact nilmanifolds are Bernoulli com-
bining results from [14], [23], and [29]. It was already shown in [25] that such automor-
phisms satisfy the Kolmogorov property.

Theorem 8.1. Ergodic automorphisms on compact nilmanifolds are Bernoulli.

Proof : Let α be an ergodic automorphism of a compact nilmanifold X = G/Λ. We will
argue by induction on the dimension of X. We note that when X is a torus, this result
was established by Katznelson in [14], and this forms the base of induction. Let Z be the
centre of G. It follows from [5, 5.2.3] that ZΛ is a closed subgroup of G. Then α y X
is measurably isomorphic to a skew product with the base α y Y = G/(ZΛ) and fibers
isomorphic to the torus T = ZΛ/Λ, where the action on the fibers is by affine linear maps
t 7→ zy + α(t), zy ∈ Z. We consider two cases.
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First, suppose that the automorphism α acts ergodically on the torus T . Then it follows
from Marcuard’s theorem [23, Theorem 4] that α y X is measurably isomorphic to the
direct product of the systems α y Y and α y T . Hence, it follows from the inductive
assumption that α y X is measurably isomorphic to the product of two Bernoulli maps,
and thus Bernoulli.

Second, suppose that the action of α on the torus T = ZΛ/Λ is not ergodic. Then T
contains a nontrivial subtorus T0 = Z0Λ/Λ, where Z0 is a closed connected subgroup of
Z, on which α acts isometrically, and αy X is measurably isomorphic to a skew product
with the base α y G/(Z0Λ) and the fibers isomorphic to torus T0, where the action on
the fibers is by affine linear maps t 7→ zy +α(t), zy ∈ Z0. We note that this is an isometric
extension of the base, and by the inductive assumption, the base is Bernoulli. Hence, we
can apply Rudolph’s theorem [29] which shows that weakly mixing isometric extensions
of Bernoulli maps are Bernoulli. �
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