EXPONENTIAL MIXING OF NILMANIFOLD AUTOMORPHISMS

ALEXANDER GORODNIK* AND RALF SPATZIER""

ABSTRACT. We study dynamical properties of automorphisms of compact nilmanifolds
and prove that every ergodic automorphism is exponentially mixing and exponentially
mixing of higher orders. This allows to establish probabilistic limit theorems and regu-
larity of solutions of the cohomological equation for such automorphisms. Our method
is based on the quantitative equidistribution results for polynomial maps combined with
Diophantine estimates.

1. INTRODUCTION

Dynamics and ergodic theory of toral automorphisms have been well understood for
quite some time. Ergodic toral automorphisms are always mixing and even Bernoulli [14],
and have dense sets of periodic points [24]. However, unless they are hyperbolic, the
toral automorphisms lack the specification property and, in particular, don’t have Markov
partitions [20]. Nonetheless, it is known that ergodic toral automorphisms satisfy the
central limit theorem and its refinements [19, [17]. Regarding the quantitative aspects Lind
established exponential mixing for ergodic toral automorphisms using Fourier analysis [21].
Surprisingly, some of these ergodic-theoretic properties turned out to be more delicate for
automorphisms of compact nilmanifolds and still remained unexplored. In particular, the
exponential mixing, which is one of the main results of this paper, has not been established
and does not easily follow using the harmonic analysis on nilpotent Lie groups.

1.1. Exponential mixing. Let G be a simply connected nilpotent Lie group and A a
discrete cocompact subgroup. The space X = G/A is called a compact nilmanifold. An
automorphism a of X is a diffeomorphism of X which lifts to an automorphism of G. We
denote by u the Haar probability measure on X. Then « preserves . The ergodic-theoretic
properties of the dynamical system « ~ (X, p) have been studied by Parry [25]. He proved
that an automorphism is ergodic if and only if the induced map on the maximal toral
quotient is ergodic, and every ergodic automorphism satisfies the Kolmogorov property.
In particular, it is mixing of all orders. In this paper we establish quantitative mixing
properties of such automorphisms. We fix a right-invariant Riemannian metric on G
which also defines a metric on X and denote by C?(X) the space of §-Hélder functions on
X.
Now we state the first main result of the paper.
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Theorem 1.1. Let a be an ergodic automorphism of a compact nilmanifold X. Then
there exists p = p(0) € (0,1) such that for all fo, fy € C°(X) and n € N,

| o) fi(a” ) duto) = ( /. fodu> ( /. fldu>+O(p"!foHcst1Hce)-

The proof of Theorem is based on an equidistribution result for the exponential
map established in Section |2| (see Corollary below), which is deduced from the work of
Green and Tao [12]. This result shows that images of boxes under the exponential map are
equidistributed in X provided that a certain Diophantine condition holds. We complete the
proof of Theoremin Section The main idea is to relate the correlations (fo, fi1 o a™) to
averages along suitable foliations in X and apply the equidistribution result established in
Section [2| In order to verify the Diophantine condition we use the Diophantine properties
of algebraic numbers. This leads to the proof of Theorem under an irreducibility
condition, and the proof of the theorem in general uses an inductive argument.

We also establish multiple exponential mixing for ergodic automorphisms of compact
nilmanifolds. For ergodic toral automorphisms, multiple exponential mixing was proved
by Péne [26] and Dolgopyat [§].

Theorem 1.2. Let « be an ergodic automorphism of a compact nilmanifolds X. Then
there exists p = p(0) € (0,1) such that for all fo,..., fs € C%(X) and ng,...,ns €N,

S S S
/ (H fila™ <x>>) du(x) =] ( / fi du) +0 (pmmi# e T ||f;-||ce> :
X \i=o0 i=0 X i=0

The proof of Theorem is given in Section[d] The first step of the proof is to establish
an equidistribution result for images of exponential map in X X --- x X (see Proposition
. Then we approximate higher order correlations by averages of the exponential map.
As in the proof of Theorem we first consider the irreducible case and then deduce the
theorem in general using an inductive argument.

1.2. Probabilistic limit theorems. It is well-known that the exponential mixing prop-
erty is closely related to other chaotic properties of dynamical systems and, in particular,
to the central limit theorem for observables f o @’. While one does not imply the other
in general, the martingale differences approach [I3] Ch. 5] usually allows to deduce the
proof of the central limit theorem from quantitative equidistribution of unstable folia-
tions. Using this approach, the central limit theorem and its generalisations have been
established for ergodic toral automorphisms in [19] [I7] and for ergodic automorphisms of
3-dimensional nilmanifolds in [4]. Here we extend these results to general nilmanifolds.

Theorem 1.3. Let a be an ergodic automorphism of a compact nilmanifolds X and f €
C%(X) with Jx fdp =0 which is not a measurable coboundary (i.e., f # ¢poa—¢ for any
measurable function ¢ on X ). Then there exists o = o(f) > 0, the so-called variance of
f, such that

1 n_l i 1 b —12/(202)
u({xeX.\/ﬁZf(a(:L‘))E(a,b)}>—>ma/Ge 207) dt

1=0

as n — 0.
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We also prove the central limit theorem for subsequences, and the Donsker and Strassen
invariance principles for ergodic automorphisms of nilmanifolds. We refer to Section [6] for
a detailed discussion of the results. The main ingredient of the proof is the exponential
equidistribution of leaves of unstable foliations, which is established for this purpose in
Section Bl

1.3. Cohomological equation. Let a be a measure-preserving transformation of a prob-
ability space (X, p) and f: X — R is a measurable function. The functional equation

(L.1) f=doa—-9, ¢:X R,

is called the cohomological equation. This equation plays important role in many aspects
of the theory of dynamical systems (for instance, existence of smooth invariant measures,
existence of conjugacies, existence of isospectral deformations, rigidity of group actions).
If a measurable solution ¢ of exists, the function f is called a measurable coboundary.
It is easy to see that a solution of is unique (up to measure zero) up to an additive
constant when « is ergodic with respect to p.

We will apply the exponential mixing property to investigate regularity of solutions of
the cohomological equation.

Theorem 1.4. Let a be an ergodic automorphism of a compact nilmanifold X, and let
f € C®(X) be such that has a measurable solution. Then there exists a C™ solution

of .

The first result of this type was proved by Livsic [22] for Anosov diffeomorphism and
flows. More precisely, if a is an Anosov diffeomorphism and the given C* function f is
a measurable coboundary, then the cohomological equation has a C* solution ¢.
There are also versions of this result for Holder functions and C* functions. Recently,
Wilkinson [35] has generalised Livsic’ results to partially hyperbolic diffeomorphisms that
satisfy the accessibility property. Automorphisms of nilmanifolds however do not have the
accessibility property. In fact, the problem of regularity of solutions of the coboundary
equation for ergodic toral automorphisms, which are not hyperbolic, turns out to be quite
subtle [33] [16]. Veech [33] has constructed an example of f € C'(T%) which sums to zero
along periodic orbits, but the cohomological equation has no C! solutions. By [33],
if f € C*(T?) with k > d and has a measurable solution, then there exists a solution
in C*=4(T%). We are not aware of any results regarding regularity of solutions of for
a general ergodic toral automorphism when f € C*(T?) with k < d.

Theorem is proved in Section [, We use a construction from Section [6] to show
that there exists a square-integrable solution. Then we use a new method of proving
smoothness as developed by Fisher, Kalinin and Spatzier in [10]: we consider the solution
as a distribution on the space of Holder functions and study its regularity along the stable,
unstable and central foliations of . While regularity along the first two foliations can be
deduced using the standard contraction argument, the regularity along the central foliation
is deduced from the exponential mixing property.

Combining Theorem [1.3] and we observe that C°° functions with variance 0 are
truly exceptional.
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Corollary 1.5. Let a be an ergodic automorphism of a compact nilmanifold X, and let
feC®X) have o(f) =0. Then f is a C> coboundary.

1.4. Further generalisations.

e We note that the results established here can be generalised to affine diffeomor-
phisms of a compact nilmanifold X = G/A. Those are diffeomorphisms o : X — X
that can be lifted to affine maps & of G, i.e., maps & that have constant derivatives
with respect to a right invariant framing of G. Since every such diffeomorphism o
is of the form o(x) = goa(x) for go € G and an automorphism « of X, our method
applies to such maps as well (see Remark below).

e More generally, one may consider infra-nilmanifolds [6]. Let G be a simply con-
nected nilpotent Lie group, C' a compact subgroup of Aut(G), and T" a discrete
torsion-free subgroup of G x C such that G/I" is compact. The space Y = G/I is
called an infra-nilmanifold. By [I, Th. 1], the group A = G NI has finite index in
I'. Hence, the infra-nilmanifold Y is finitely covered by the nilmanifold X = G//A.
An affine diffeomorphism of Y is a diffeomorphism which lifts to an affine map of
G. Every such diffeomorphism is of the form g — goa(g), where go € G and «
is an automorphism of G that preserves the orbits of I". By [7, Theorem 3.4], we
must have al'a™! = I'. Since by [I, Prop. 2] A is the maximal normal nilpotent
subgroup of T', we deduce that a(A) = aAa~! = A. Therefore, every affine dif-
feomorphism of Y lifts to an affine diffeomorphism of X, and our results can be
generalised to this setting.

e Our techniques also allow to establish exponential mixing properties for Z¥-actions
by automorphisms of nilmanifolds when & > 2. Since this requires more delicate
Diophantine estimates, we pursue this in a sequel paper [IT]. This result has found
a striking application to the problem of global rigidity of smooth actions. Given
any C™-action of ZF, k > 2, on a nilmanifold that has sufficiently many Anosov
elements, Fisher, Kalinin and the second author showed in [I0] that this action is
C™°-conjugate to an affine action on the nilmanifold.

e In view of the works of Katznelson [14] and Parry [25], it is natural to ask whether
ergodic automorphisms of compact nilmanifolds are Bernoulli. Surprisingly, we
could not find this result in the literature, and in Section [§ we establish the
Bernoulli property. While this easily follows from the works of Marcuard [23]
and Rudolph [29], and the proof does not rely on the main ideas of this paper, we
include this result in Section [8] to complete our discussion of ergodic properties of
nilmanifold automorphisms.

Acknowledgements. We are indebted to J. Rauch for discussions concerning his reg-
ularity theorems with M. Taylor. Also we thank F. Ledrappier for the reference to Le
Borgne’s work which was crucial to our applications to the central limit theorem. A.G.
would like to thank the University of Michigan for hospitality during his visit when the
work on this project had started. R.S. thanks the University of Bristol for hospitality and
support during this work.
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2. EQUIDISTRIBUTION OF BOX MAPS

Let G be a simply connected nilpotent Lie group, A a discrete cocompact subgroup,
and X = G//A the corresponding nilmanifold equipped with the Haar probability measure
. We fix a a right invariant Riemannian metric d on G which also defines a metric on X.
Let £(G) be the Lie algebra of G and exp : £L(G) — G the exponential map. The aim of
this section is to investigate distribution of images of the maps

R¥ = X 1t g exp(u(t))goA

with g1, 92 € G and an affine map ¢ : R¥ — £(G).

The lattice subgroup A defines a rational structure on £(G). Let 7 : G — G/G’ denote
the factor map, where G’ is the commutator subgroup. We also have the corresponding
map Dr : L(G) — L(G/G"). We fix an identification G/G’ ~ L(G/G’) ~ R! that respects
the rational structures.

We call a box map an affine map

t:B:=[0,T1] x --- x [0,T}] — L(G)

of the form
(2.1) L:(tl,...,tk)'—>U+t1w1+"'+tkwk
with v, wy,...,w; € L(G). We denote by

the volume of the box B and by

min(B) := min T;,

i=1,...,

the length of the shortest side of B.

Theorem 2.1. There exist Ly, Ly > 0 such that for every § € (0,1/2) and every box map
t: B — L(G) as in , one of the following holds:
(i) For every Lipschitz function f: X — R, u € L(G), and g € G,

1
(22) 1 L St e @t~ [ rau] <1l
1Bl Jp X
(ii) There eists z € Z'\{0} such that
(2.3) |2l < 675 and |{z, Dm(w;))| < 8 2/T; foralli=1,... k.

Here and in the rest of the paper we explicitly list dependences of implied constants on
relevant parameters. In particular, in the implied constants are independent of the
box map.

Proof: We suppose that (i) fails for some Lipschitz function f, u € L(G), and g € G.
Then will show that (ii) holds. We pick L > 2 such that

(2.4) max{][ull, [[v]l, Tilfwa], - .., Tallwgl} < 67*.

Making a linear change of variables in the integral (2.2), we arrange that 7; > 1 and
Jwi]| < 1.
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For z1, 29,23 € L(G), we consider the map

P(x1,29,x3) := exp(z1) exp(za + x3) exp(—x2) exp(—z1).

We note that G can be equipped with a structure of algebraic group so that exp is a
polynomial isomorphism. Hence, the map P can be written as

P(x1,z2,23) = exp(p1(x1, 22, x3)e1 + - - - + pa(x1, T2, 3)eq)

for some polynomials p;. Since P(x1,x2,0) = e, these polynomials satisfy p;(z1, z2,0) = 0.
Hence, assuming that ||z3|| < 1, we obtain

Ipi(w1, w2, 3)| < (1+ |1 ) 4B (1 + [|ao ) 4B |, i =1,...,d.
Since in the neighborhood of the origin,

d(e, P(x1,z2,23)) < max_ |pi(z1, 22, 23)],

[RRRS}

we deduce that there exists Cy > 2 such that for every € € (0,1/2) and z1, 22,23 € L(G)
satisfying [|z1|), [|#2]| < (k + 1)e™! and ||a3]| < ke®0, we have

(2.5) d(e, P(x1,22,23)) < €.
We set s = [6~CF], where C' > Cy is sufficiently large and will be specified later (see

and (2.12)—(2.13) below). Let
N:Z {(n1,...,nk) LNy :0,...,Ni—1},
where N; := [T;s]| > s. We consider the polynomial map

k
p(n) := exp(u) exp (U + Z 2le> g, nenN.

i=1

For t; € [, "ZH] we apply (2.5) with

k
1 = u, = Z Wy, xg:zZ(t —&)wz‘, e= 6"
- s
It follows from ([2.4]) that

e || < 67F,

2]l < 6~ L+Z i = 1)s ™ will <67 L+ZT\|wzH<(k+1)5

=1

s < Zs”llwi\l < kst < koCL.



EXPONENTIAL MIXING OF NILMANIFOLD AUTOMORPHISMS

Hence, ([2.5)) gives

k
(2.6) d <p(n)A, exp(u) exp (U + Z tiwi> gA)

i=1

k
<d (e, exp(u) exp (v + Z tiwi> gp(n)1>

i=1

k k -1
=d | e,exp(u) exp <v + Z tiwi> exp (v + Z ?wz> exp(u)*l < oL
i=1 i=1

For n = (ny, -+ ,ni) € N, we set

)

S S S S

PP LTS O L)
It follows from ([2.6)) that for every Lipschitz function f and n € N,

‘f(p(N)A)IBn! —/B f(exp(u) exp(c(t))gA) dt’ < 8% 7H| fllzip-

We also observe that B D U, By, and

s (ys)

Therefore, we deduce that

< k’SilTl T < ksikilNl - Np.

> FomNIBal = [ flespln)explu(t)ad) di

neN

< 3 [FNIB] — [ flexplu) eplO)od)di| + b5 Ny Nl
neN Bn

< (6" 4+ ks™h) sTENy - Nil| £l Lips
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and
' ,;vf yB|/feXP exp(c(t))gA) dt
Sk
n%;/f 1...Nk/Bf(exp(u)exp(L(t))gA)dt

(2 VBl
IB] Ny N Lip

_ sV
< 6+ Wb+ (1= S )

< (6 + ks™) | llip + (1 e e >) 1z

< (6% +ees™) If lzip < (8% + cd“ DI fllip

with some ¢, > 0. Here in the last line, we used that N; = [Tis] > s = [0~ L], We
choose C' = C(k) > Cy > 0, so that

(2.7) 6% 4+ 6t < 35/4.

Then since we are assuming that (2.2)) fails, we deduce from the previous estimate that

28 |5 3 Sl / fdu| >

neN

(0 — 0% — e8I fllLip = 6 /40 | Lip-

Now we apply [12, Th. 8.6] to the polynomial map p(n). Note that

k .
7 (p(n)) = Dr (u oty Zw) +(g),

i=1
and
D w;
® (o) — 7 (pln — ) = 2T,
By [12], Th. 8.6], there exist Ly, Lo > 0 such that for every p € (0,1/2) and Ny, ..., N
1, one of the following holds:

v

(i') For every Lipschitz function f: X — R,

. Nsz /deu

neN

(2.9) < pllfllzip-

(ii”) There exists z € Z'\{0} such that
Dw(wi)

(2.10) |z < p~f* and  dist <<z, >,Z) <p 2N, i=1,..k,

where the implied constants depend only on the degree of the polynomial map.
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Comparing (2.8) and (2.9), we deduce that (ii”) holds with p = §/4, and there exists
z € Z'\{0} such that
Dr(w;)
s

(2.11) |z < 6711 and dist <<z, > ,Z> <0 2N i=1,.. k.

Since ||w;|| < 1, we obtain

(o2

Taking C' = C(L;1) > 0 sufficiently large, the above estimate implies that

(2.13) (= 2

S

o (- 222) )| et
s s
and it follows from that

|(z, Drr(w;))| < s6~ 12 /N; <6 12/T;, i=1,... k.
Hence, ([2.3]) holds, as required. This completes the proof of the theorem. <

(2.12) < |zl D7 ||wi|s7t < 67 EFCL < 7 IHC,

<1/4.

Then

We call a box map ¢, defined as in (2.1)), (¢1, c2)-Diophantine if there exists at least one
vector w € Q := [—1,1]D7(wy) + - - - + [—1, 1] Dm(wg) such that

(2.14) [(z,w)| > c1]|z]| 72 for all z € ZN\{0}.
We emphasize that only one element of € has to satisfy the relevant Diophantine con-

dition. This allows for the following remark which we will use later, e.g. in the proof of
Theorem [3.1]

Remark 2.2. Let ¢ be a (c1, c2)-Diophantine box map, W the subspace spanned by the
image of ¢, and S a compact subset of GL(W). Then there exists a constant ¢ = ¢(S) > 0,
which only depends on S, such that for all s € S, the box map so¢ is (c¢1, ¢2)-Diophantine.
Indeed, since S is compact, there exists ¢ = ¢(S) > 0 such that for every s € S,

[~1,1]D7(wy) + - -- 4 [-1,1]Da(wy) € [—c¢ L ¢ Dr(swy) 4 - - + [, ¢ Dr(swy).

If we [-1,1]Dm(wy) + -+ + [—1,1]Dr(wy) satisfies (2.14), then cw € [—1,1]Dn(swy) +
-+ [=1,1]D7(swy) and satisfies (2.14]) with ¢; replaced by cc;. Hence, the box map so¢
is (c ¢, c2)-Diophantine.

The following corollary will play a crucial role in the next section.

Corollary 2.3. Given 0,c1,co > 0, there exists kK = k(ce,0) > 0 such that for every
0-Hélder function f: X — R, u € L(G), (c1,c2)-Diophantine box map v : B — L(G), and
x € X, we have

1 o
‘B,/Bf(exp(u)exp(a(t))x)dt_/deu+ochcg(mm(3) 1 fllco)-
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Proof: We first give a proof assuming that the function f is Lipschitz.
We write the box map ¢ as

u(t) =v+tiws + -+ twg, te€B=1[0,T1] x---x[0,T}]

with v, wy,...,wy € W and T1,...,T > 0.
We take x,e > 0 such that % > co and moreover % > co, where Ly and

Ly are as in Theorem Let 6 = min(B)™". We first assume that min(B) is sufficiently
large, so that 6 < 1/2. Then by Theorem either

(2.15) ],; [ sevwesputera - [ fdﬂ‘ < min(B)~| fllLiy

for all Lipschitz functions f : X — R, u € £(G) and x € X, or there exists z € Z'\{0}
such that

2]} < min(B)"",
| (z, Dm(w;)) | < min(B)F2%/T; < min(B)F2"~1 i=1,... k.
If the latter holds, then we deduce that there exists z € Z!\ {0} such that

—Lo(k+e)+1
| (z, Dr(w;)) | < min(B)~** min(B)"2(+9~1 « min(B) ||z 4

< min(B) "2~

foralli=1,...,k Writing w = Zle a;Dm(w;) with a; € [—1, 1], we also deduce that

k
[ (z, Dr(w)) | < 3 [{z, Dr(w;)) | < min(B)~F2| |72
=1

When min(B) is sufficiently large, this estimate contradicts (2.14]). Hence, we conclude
that when min(B) > Ty = Ty(c1, ¢2), (2.15) holds and

1 ' B |
@ /B fexp(u) exp(t)x) dt = /X fdp~+ O(min(B)™"|| fllLip)-

It is also clear that this estimate holds in the range [0,7p] with the implicit constant
depending on Tp, and this completes proof of the corollary for Lipschitz functions.

For Holder functions, we use the following well-known approximation result. While
we only use the estimate of the Lipschitz norm here, we will need this lemma in full in
Section [Tl

Lemma 2.4. Given ¢ >0 and 0 < 0 < 1, for any 0-Holder function f: X — R, there is
a C* function f. : X — R which satisfies the following bounds

(2.16) 1z = flloo < %I fllce and | fellip < €= PO fllgo.

Furthermore, for alll € N,

(2.17) Ifeller <o &= MO £l go.
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Proof: Given a §-Hélder function f: X — R, we set

/ belg™) f(g) dm(g),

where m denotes the Haar measure on GG, and ¢, is a nonnegative function such that

6Ly < € ) / gedm=1, supp(de) C Be(e).

Then
e = Fllon < ma / belgV)IF (g2) — (@) dm(g) < || fl|co-

For z,y € X satisfying d(z,y) < €, we can write y = ha with h € Bc(e). Then

[fe(@) = fe(y)| < /G [@c(97") = e(hg™")|f (92)] dm(g) < & T £ o

Hence,

1fellzip < € P71 £l o
We can further assume that ¢. satisfies for all [ € N,

Ieller <o e ™|,
and it follows that

1fller <o ™ 07 fll o,

as the lemma claims. ¢

Returning to the proof of Corollary we obtain
1 1
g [ fexpw)exptia) dt = - [ flexplu) exple)e) dt + O fco)
|B| /B |B| /B
= [ e +0 (win(B) " Sl + 1 o)
= [ £du+0 (O min(B) " + )l o)

To optimise the error term, we set € = min(B)~"/(dm(X)+0+1) ~ We readily obtain the
corollary for Holder functions. <

We remark that the procedure just outlined applies quite generally, and allows to go from
estimates for Lipschitz functions to ones for Holder functions. In particular, exponential
mixing for Lipschitz or even only smooth functions always implies exponential mixing for
Holder functions.
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3. MIXING
In this section, we prove Theorem|[I.IJon exponential mixing. Let us recall the statement:

Theorem 3.1. Let a be an ergodic automorphism of a compact nilmanifold X = G/A.
Then there exists p = p(0) € (0,1) such that for all §-Hélder functions fo, fi : X — R and

n €N,
[ o) a(a ) du(o) = ( /. fodﬂ> ( /. fldu>+O(p"!foHcer1Hce)~

We denote by p the Haar probability measure on X, and by m the Haar measure on GG
which is normalised, so that m(F) = 1 where F' is a fundamental domain for G/A.

Every automorphism § of G defines a Lie-algebra automorphism Dg : L(G) — L(G)
such that $oexp = expoDf. If B(A) C A, then Df preserves the rational structure of
L(G) defined by A.

As in Section [2] we equip the group G with the structure of an algebraic group, so that
exp is a polynomial isomorphism. More precisely, one can construct a basis, a so-called
Malcev basis, {e1,...,eq} of L(G)q, such that the map

R > G- (tl, e ,td) — exp(tlel) .. -exp(tded)
is a polynomial isomorphism,
A = exp(Zey) - - exp(Zea),

and
F .= eXp([O) 1)61) T exp([oa 1)ed) cG
is a fundamental domain for G/A (see [5 1.2.7, 5.1.6, 5.3.1]).
We present the proof of Theorem in two stages: in Section [3.1] we give a proof
assuming a suitable irreducibility condition, and in Section we reduce the proof to the
irreducible case using an inductive argument.

3.1. Proof under an irreducibility assumption. Let w be a (real or complex) eigen-
vector of Da acting on £(G) ® C with eigenvalue A such that |A| > 1. Such an eigenvector
exists by the following lemma.

Lemma 3.2. If a is an ergodic automorphism of a nontrivial compact nilmanifold X =
G/A, then Da has an eigenvalue A with [\ > 1.

Proof: By [B, 5.4.13], AG'/G" is a lattice in G/G’ ~ R!. The automorphism « defines
a linear automorphism of the torus 7' := G/(AG’) ~ R!/L, where L is a lattice in R!, and
there is an a-equivariant map X — 7T induced by 7. Since a|g: preserves the lattice L,
it follows that the eigenvalues of a|p: are algebraic integers. If we suppose that all these
eigenvalues satisfy |A\| < 1, then it follows from [9, Th. 1.31] that all the eigenvalues of
a|pe are roots of unity. Then the automorphism «|r is not ergodic, and this contradicts
ergodicity of a. Hence, a|p has an eigenvalue A with |A\| > 1, and this implies that Do
has such an eigenvalue as well. ©

Since Da preserves the rational structure on L£(G) defined by the lattice A, we may
choose the eigenvector w with coordinates in the algebraic closure Q. In the real case,
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we denote by W the corresponding one-dimensional eigenspace of £(G). In the complex
case, we denote by W the two-dimensional subspace (w,w) N L(G), where w denotes the
complex conjugate. We note that in a suitable basis

(3.1) Dalw =7r-w

where r = |\| > 1 and w is a rotation by angle Im(\).

In this subsection, we give a proof of Theorem assuming that D7 (W) is not contained
in any proper rational subspace of R'. This condition is used to guarantee existence of a
“generic” vector in Dm(W) given by the following lemma.

Lemma 3.3. Let V C R! be a subspace defined over QMR such that V is not contained

in any proper subspace defined over Q. Then there exists w € V N @l whose coordinates
are real numbers linearly independent over Q.

Proof: Let {v1,...,vs} be a basis of V' whose coordinates v;; are in QNR. We denote
by K the field generated by these coordinates. Clearly, K is a finite extension of Q. We
can pick aq,...,as € Q N R which are linearly independent over K (for instance, we can
take a sufficiently large finite extension K’ of K and choose {«;} from a basis of K’ over

We set w = > "7 | a;v;. Suppose that there exists ¢ € Q' such that ¢-w = 0. Then we
have

l S S l
c-w:ch (Z%’%’j) :Z chvij a; = 0.

j=1 i=1 i=1 \ j=1

Now because 22:1 cjvi; is in K, it follows that 22:1 c;vij = 0 for all 4, and ¢-V = 0.
Since V is not contained in any proper rational subspace, we conclude that ¢ = 0, which
concludes the proof. <

As we remarked above, the subspace W is defined over Q. Moreover, since W is invariant
under complex conjugation, it is defined over Q N R. This implies that the subspace
Dr(W) is also defined over @ N R. Hence, by Lemma Dn(W) contains a vector w
whose coordinates are real algebraic numbers that are linearly independent over Q. By [2,
Th. 7.3.2], there exist ¢1,ca > 0 (in fact, one can take any ¢y > [ — 1) such that

(3.2) | (z,w) | > c1]]z]| % for all z € Z'\{0},

This will allow us to apply Corollary to box maps RI™W) —, 1/,

Let E C L(G) be the preimage of the fundamental domain F' under the exponential
map. Since F is the image of [0,1)? under a polynomial isomorphism, it is a domain in
L(G) with a piecewise smooth boundary. We fix a basis of £(G) which contains the basis
of W and consider a tessellation of £L(G) by cubes C' of size € with respect to this basis.
Then

(3.3)

E-|Jc

CCcE

<L e
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Using the above notation, we rewrite the original integral as
B4 [ h@AE@) ) = [ Hen)fie"@)8) dnlg)
X
/ folexp(u)A) fi(exp((Da)"u)A) du,

where we used that the Haar measure on G is the image of a suitably normalibed Lebesgue
measure on L£(G) under the exponential map [5, 1.2.10]. It follows from ) that

(3.5) / folexp(u)A) fi (exp((Da) w)A) du
-y / folexp(u)A) fi (exp((Da) w)A) du + O(el folleo | llco).

CCE
For every cube C in the above sum, we fix uc € C. Then for all u € C,

|folexp(u)A) — fo(exp(uc)A)| < d(exp(u), exp(uc))l| follip < €[l follco,

and

(3.6) / folexp(w)A) f1 (exp((Da) u)A) du

— o (exp(uc)A) /C fi(exp((Da) " u)A) du + Ol foll ol fu o).

Since the cubes C are chosen in a compatible way with the subspace W, they can be
written as C = B’ + B where B is a cube in W and B’ is a cube in the complementary
subspace. Given a cube B C W, we introduce a box map ¢ : R¥2W) — W defined with
respect to the fixed basis of W, such that ¢t5([0, ]™"W)) = B. Since w is a rotation, it
follows from Remark [2.2] that for some ¢ > 0, each of the box maps

RINW) Wt s v+ wip(t), v e L(G),

is (cep, c2)-Diophantine. Therefore, applying Corollary we obtain there exists k > 0
such that for every v € L(G),

(3. 7)
/ Fu(exp(v + (Da)B)A) db — ¢~ dim(W) / Fu(exp(v + (Da) s (t)A) dt

[0,6]dim(w>

|B|

= (rne)—dim(W)/[o o Fi(exp(v + w™eg(t)A) dt

_ /X Frdp+ 0 (")~ fill o) -

Since this estimate is uniform over v € £(G), we deduce that
1 / fi(exp((Da)"uw)A) du = /1/ / f1(exp((Da)™V' + (Da)"b)A) dbdlt/
ICl Je |B'l|B| Jp /B

_ /X Frdp+ 0 (")~ fill o) -
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Combining the last estimate with (3.5)) and (3.6, we deduce that

/fo exp(u)A) f1(exp((Da)"u)A du—(z Jo(exp(uc)A \C|>/ frdp

CCFE

O <<Z Cl(r"e)™" +69> ||f0||00||f1|09) :
CCE

Since fj is #-Holder and diam(C') < €, we obtain using (3.3)),

(3.8) S folexp(uc)A)Cl = 3 / folexp(u)A) du + O foll o)

CCFE CCE

_ /E folexp(w)A) du + O(e|| fol| o)
:/h@+mMMm)
X

/fo exp(u)A) fi (exp((Da)"u)A) du = (/ n du) (/ fodu)
+0 (079 + ) folloolilloe)

To optimise the error term, we choose € = r~"%/(5+0)  Then

/ fol) fr (0" ()) / folexp(u)A) f1(exp((Da)"u)A) du
X

_ </X h du> (/X f du) +0 (I follesll filloo)

where p = r—r0/(n+0) ¢ (0,1). This proves Theorem under the irreducibility assump-
tion.
We also observe that Corollary implies the following stronger version of estimate

(3.7): for every h € G, automorphism f of G such that 8 =id on G/G’, and v € L(G),

/ £ (hB(exp(v + (Da)"t)A) dt = / frdp+ 0 ()~ fal o)

Hence,

|B|
Indeed, using that 8 o exp = exp oDf, we obtain

B / Fu(hB(exp(v + (Da) 1)) dt

= I [y BB (DD )

Since (D7)(Dp) = D, the box maps
t— (DB)v+ (DB)w"tp(t)
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are also (ccq,ce)-Diophantine, and the same estimate as in (3.7) holds. Therefore, the
above argument implies that

39 [ B @) dute) - ( / fodﬂ> ( /. fldu>+0(P"||fo||cellf1||ce)

uniformly on h € G and automorphisms 8 which preserve A and act trivially on G/G’.

Remark 3.4. Let 0 : X — X be an affine diffeomorphism of a compact nilmanifold X.
Then o(z) = gia(z) for g1 € G and an automorphism «, and 0" (x) = g,a"(x) for g, € G.
Since the estimate is uniform over h € G, it also holds for affine diffeomorphisms.
This allows to extend the main results of this paper to affine diffeomorphisms.

3.2. Proof of mixing in general. We prove Theorem in general using induction on
the dimension of the nilmanifold X.

Let w € L(G) ® C be an eigenvector of the automorphism Do with eigenvalue A of
maximal modulus. Since « is ergodic, [A| > 1 by Lemma [3.2 We set W = L(G) N (w, ).
Since Doy has eigenvalues A and ), it follows either that Da“m w1 must have eigenvalues
of modulus [A|? > ||, or [W, W] = 0. Hence exp(W) is an abelian Lie subgroup of G. By
[32] Ch. 3, Sec. 5], there exists a closed connected normal subgroup M containing exp(W)
such that M /(M NA) is compact, and for almost every g € G, we have exp(W)gA = MgA.
Replacing the lattice A by gAg™!, we may assume without loss of generality that
(3.10) exp(W)A = MA.

Lemma 3.5. (i) The group M is a-invariant.
(ii) Denoting by m : M — M/M’ the factor map, Dn(W) is not contained in any
proper rational subspace of L(M/M').
(iii) [G, M] < M'.

Proof: We note that the group M can be described as the smallest closed connected
normal subgroup containing exp(W) and intersecting A in a lattice ([32, Ch. 3, Sec. 5]).
Equivalently, M is the smallest closed connected subgroup whose Lie algebra £(M) is an
ideal in £(G) that contains W and is defined over Q with respect to the rational structure
defined by A. To show that M is invariant under «, we observe that

L(a(M)) = Da(L(M))
also satisfies the above properties, and so does
LM Na(M))=L(M)NDa(L(M)).

Therefore, a(M) = M by minimality of M proving (i).

To prove (ii), we consider the torus factor MA/A — T := MA/(AM') induced by the
map 7. If m(W) is contained in a proper rational subspace of L(M/M'), then the image
of Dr(W) in T is not dense, which contradicts (3.10). This shows (ii).

Since the vector w has coordinates in Q, so does the vector Drr(w). For o € Gal(Q/Q),
we denote by Dr(w)? its Galois conjugate. Then (Dr(w)? : 0 € Gal(Q/Q)) is a rational
subspace, contains Dm(W) and, hence, cannot be a proper subspace. This shows that
Gal(Q/Q) acts transitively on the eigenvalues of D in V := L(M/M’). In particular, it
follows that V' does not contain any proper rational subspaces invariant under Da. Now
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we consider the adjoint action Ad of G on V. Since G is nilpotent, the set V& of G-fixed
points in V is not trivial. Since V¢ is (Da)-invariant and rational, we conclude that
V& = V. This implies that every g € G,

(Ad(g) — id)(L(M)) € L(M)',

and the last claim of the lemma follows. ¢

The nilmanifold X = G/A fibers over the nilmanifold Y = G/(MA) with fibers isomor-
phic to Z = MA/A ~ M/(M N A), and we have the disintegration formula

(3.11) Afw=ﬂéﬂwmmmmwxfeam,

where py and pz denote the normalised invariant measures on Y and Z respectively.
Since the groups M and A are a-invariant, a defines transformations of Y and Z, and we
obtain

312 [ f@ie@)dute) = [ [ phie @) duats) ) du (o)
= [ ([ #wonte @ @) duzts) ) dmrta),

where F' C G is a bounded fundamental domain for G/(MA), and mp denotes the measure
on F' induced by uy.
We claim that for some fixed p € (0,1) and every g € F,

(3.13) /Zfo(gz)fl(an( )a(2)) dpz (= (/ fo(gz) duz(z ) (/ f1(a"(g)z) dpz(2 ))
+ 0" follcell frllce)

uniformly on g € F. To prove the claim above, we write
a"(g) =amA\ withae F,me M, A€ A.
Then
[ w2 e @a () duz(z) = [ folohlamB(a” (2) dnzt),

where 3 denotes the transformation of Z induced by the automorphism m — AmA~!,
m € M. We note that 8 acts trivially on M /M’ by Lemma Let

o0(z) := fo(gz) and ¢1(2) := fi(az) with z € Z.
Since g,a € F, we have

[dollco < llfollce and  [|é1llce < [lf1llco,
and since a(MA) = a"(g)(MA),

/¢1dﬂz—/f1 z) dpz(z).
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Therefore, it follows from (3.9) that there exists p € (0,1) such that

/Z b0(2) 61 (mB(a™(2)))) dpiz(2)

- < X duz) ( [ d#z) + 00" dollcn |61 1)
~([ rtrauzta)) ([ st @21 auzta)) + 0 ool llo)

uniformly over g,a € F, m € M, and automorphisms /3 of Z which act trivially on M/M’.
This proves the claim (3.13]), and we conclude that

(3.14) /fo ) fi(ex )du(w)—/on(y)fl(a"(y))duy(y)+0(p”HfoHcer1Hco)7

where the functions f; : Y — R are defined by y I fi(yz) dpz(z). We note that

/YﬁdMYZ/sz‘du-

Since dim(Y") < dim(X), Theorem follows from (3.14) by induction on dimension.

4. MULTIPLE MIXING

In this section, we prove Theorem on multiple exponential mixing. Let us recall the
statement:

Theorem 4.1. Let « be an ergodic automorphism of a compact nilmanifolds X = G/A.
Then there exists p = p(0) € (0,1) such that for all 0-Holder function fo,...,fs: X - R
and ng,...,ng € N,

/ (1210 fila™ (:s))) dy(a) = H ( /5 du) Lo (pmini# o Q || mw) |

=0

We note that alternately one can also deduce Theorem from Dolgopyat’s work on
multiple mixing [8, Theorem 2|, and Corollary below. However, our approach, which
is a simple variation of the basic argument from Section [3] allows the treatment to be
self-contained.

Without loss of generality, we may assume that ng =0 and 0 < nq; < --- < ng.

As a preparation for the proof, we establish a result regarding equidistribution of images
of box maps that generalises Corollary We call a box map, defined as in , co-
bounded if ||w;|| < co for alli =1,... k.

Proposition 4.2. Given cy,c1,c2,0 > 0, there exists k = k(c2,0) > 0 such that for all
0-Holder functions fi,...,fs: X = R, uy,...,us € L(G), automorphisms P1,...,Bs of G
such that B8; = id on G/G', 0 < r; < --- < rs, co-bounded and (¢, ca)-Diophantine box
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maps ti,...,ts: B— L(G), and x1,...,x5 € X, we have
1 S S
o [ (T sttt | a =] ( 5 du)
1Bl Jp \ -7 i=1 WX
+ Oco,cl,CQ (O'(B,Tl, LR TS)_H H ”f2||09> ’
i=1
where o(B,r1,...,rs) = min{min(ryB), rer; Y, ..., rory '}

Proof: We first note that using the approximation argument as in the proof of Corol-
lary one can reduce the proof of the proposition to the case when the functions are
Lipschitz. Since this part is very similar to the proof of Corollary we omit details,
and assume right away that the f;’s are Lipschitz.

The proof involves applying Theoremto the nilmanifold X* = G*/A®. Let L1, Ly > 0

be the constants from this theorem. To simplify notation, we write o = o(B,71,...,7s).
Let § = o~ where x > 0 is chosen so that —ftle)l+l o co and moreover 7(”+6)5:L11R+L2)+1 >

L1k
¢y for some fixed € > 0. First, we assume that o is sufficiently large so that 6 € (0,1/2).

We write the box maps ¢; as
1)

)

Li(t):v¢+t1w —I—"'—i—tkwgk), tEB:[O,Tl] X - X [O,Tk],
with Ui,ng) € L(G) and T, ... T}, > 0 and set
f=A® - fs: X° =R,
u=(uy,...,us) € L(G)?,
t:B— L(G)® : t — (DBre1(rit), ..., DBsts(rst)),
r=(x1,...,25) € X°.

Then
/B (Zl_[l fz-(exp(ui)ﬁi(exp(Li(rit))))a:i> db = /Bf(exp(u) exp(t(t))x) dt.

Applying Theorem we deduce that for every ¢ € (0,1/2), either

(11) 31 L fewt e - [ 7au] <61l
or there exists (21,...,2s) € (Z")*\{0} such that

(4.2) Iz, ||zl < 675 = gtln

and

(4.3) er <zj, DwDﬁj(w](-i))> < 62/ min(B) = 0" /min(B) foralli=1,... k.
j=1

We note that since 3; = id on G/G’, we have DrDf; = Dm.
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Suppose that 1)1) holds. Since ij(Z)H < ¢g by assumption, using the triangle
inequality we deduce that

s—1
’<Zs, Dﬂ(w§i>)>‘ < UHLQ/min(rsB) + ZJ“LI/(rsrj_l) < ghillatle)—1
j=1

foralli=1,...,k. Then by (4.2),

. —(kte)(L1+Lo)+1
‘<ZS,D7T(U1§’L))>‘ < O.*(L1+L2)EO_(I€+6)(L1+L2)71 < O_*(L1+L2)5”Z”—+

=

Since the box map ¢ is (c1, c3)-Diophantine, there exists w; € Zle[—l, 1]D7r(w§i)) which
satisfies (2.14]). On the other hand, it follows from the previous estimate that

k
[z D)) < 3 |(z00 Dn(wi) )| < o= E L2 5] =2,
=1

When o is sufficiently large, this estimate contradicts (2.14]), unless z; = 0. Hence, we
deduce that z; = 0.
Now we repeat the above argument and deduce from (4.2)—(4.3) that

s—2
‘<2371, Dﬂ'(wgz_)l)>‘ < O'KLQ/IniH(T‘sle) + Z O'HLI/(T‘SflT‘;l) < gr(litLz)—1
j=1
for all i = 1,...,k, and ultimately that z;_; = 0, when o is sufficiently large. Hence, we
conclude that (z1,...,25) =0 when o > 0y = 0¢(co, c1, c2). Therefore, in this range (4.1))

holds with § = 0™". This proves the claim of the proposition for sufficiently large o. It is
also clear that this estimate holds in the range [0, o¢] with the implicit constant depending
on og. This completes the proof of the proposition. ¢

4.1. Multiple mixing under irreducibility assumption. In this section, we prove
Theorem under the irreducibility condition as in Section Namely, W denotes a
(Da)-invariant subspace of £(G) such that D7(W) is not contained in a proper rational
subspace and holds.

As in , we obtain

/X fo(z) <ZH1 fi(a""(ﬂf))> dp(x) = /E folexp(u)A) (ZH1 fi(exp((Da)""U)A)> du.
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As in Section we tessellate the region E by cubes C of size € which are compatible
with the subspace W and get

(4.4) / folexp(u (H filexp( Da)"'u)A)> du
=> fo(exp(uc)A)/ (H fi(eXP((DOJ)"iU)A)> du+O (691_[ Hfz'Hoe> ;
¢ \i=1 i=0

CCE

where uc € C. Each cube C can be written as C = B’ + B where B is a cube in W
and B’ is a cube in the complementary subspace. For every cube B, we take a box map
g : RV W such that t5(]0, €)™ (W)) = B. Because w is a rotation, there exists
co > 0 such that each of the box maps

RIW) 5 Wt 0+ w™p(t), ve (@), neN,

is cg-bounded. It was also observed in Section that each of these maps is (c1,co)-
Diophantine. Hence, Proposition implies that there exists x € (0,1) such that uni-
formly on vy,...,vs € L(G),

1 2 o,
(4.5) B /B <];[1 fi(exp(v; + (D) b)A)) db

—— dim(W) <H filexp(v; + rnz‘meB(t))A)> dt
=1

[O,E}dim(W)
S S
=11 </ fi du) +0 (U_HH ||fi||00> ;
i=1 WX i=1
where o = min{er™ 27" . p"s7Ms-1} Since this estimate is uniform over v;’s, we

conclude that

&1 (Tttoaranm) o
i=1
1 - nip/ n; /
=B1B| //B (il_[lfi(exp((Da) v + (Do) b)A)) dbdb

:11 </X 4 d“) o <U[[1 |fi|rce> .

Now it follows from (4.4 @ ) that

/ Jo(exp(u <H Jiexp(( Da)”’u)A)) du
- ; o "+ ¢ : || e
(Zfo exp(uc)A IC\>H(/szdu)+0<( ¥ )H)Hfznc),

CCE i=1
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and by (B,
/ Folexp(u (H Fi(exp( D@%)A)) du:ﬁ < /X fi du>

=0

+0 < T Hlflllce> -

—kn1/(0+k)

Finally, taking e = r , we obtain

| fota) (H fi<a"i<x>>> du)

/ folexp(u (H fi(exp( Da)”m)A)) du
_ H </ fz du) +0 <min{r0n1/(9+m)7rn2—n1, . Tns_ns—l}_ﬁ H Hf1HC€> )
X =1

=0

This completes the proof of Theorem under the irreducibility assumption.

The proof of the general case will be given in the following section using an inductive
argument. For this purpose, we note that the above argument gives the following stronger
result: there exists p € (0,1) such that for every hi,...,h; € G and automorphisms
Bi,...,Bs of G which preserve A that act trivially on G/G’, we have

(4.6) /X fol) (fomﬁi(a"i(x)))) du(z)
=1
— > ) min{ni,ne—ni,...,ns—Ns_1} > Moo
E](/Xf’d“) +O<p iljonfluc)

uniformly over h;’s and (3;’s. Indeed, Proposition implies that in (4.5) we have, more
generally,

|;;|/B (H Ji(hifi(exp(vi + (Da)"%))A)) db
i=1

:E[ ([ san) +o <a[[ ||fi||c&> |

and the rest of the proof can be carried out as well.

4.2. Proof of multiple mixing in general. We use notation introduced in Section
In particular, W denotes a (Da)-invariant subspace of £(G), and we arrange that
exp(W)A = MA where M is closed connected normal a-invariant subgroup containing
exp(WW) such that M /(M N A) is compact.

The nilmanifold X = G/A fibers in a-invariant fashion over the nilmanifold ¥ =
G/(MA) with fibers isomorphic to Z = MA/A ~ M/(M N A), and the disintegration
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formula (3.11)) holds. Using this disintegration formula, we obtain, similarly to (3.12]),

(4.7) /X fol) (foa%))) dpi(z)
=1
-/ ( | fotw) (H fila™ <y>a”i<z>>> duz(Z)> dpy (y)
Y A i=1
- / ( / folg2) (H fi<a”i<g>a"f<z>>) duz(Z)) dmp(g).
F\/ 2 i=1

We claim that there exists p € (0,1) such that for every g € F,

@s) [ hie) (H fi<a”i<g>am<z>>) e

</fogz dyiz(z ) (/f " (g)2) duz (2 ) ( H||fz||ce>

uniformly on g € F. To prove this claim, we write a"i(g) = a;m;\; with a; € F, m; € M,
and \; € A. Then

/Zfo(gz) (Hfi(ani(g)am ) d:uZ /fO gz (H f’L azmzﬁz )))) d:uZ(z)v
=1

where 3; denotes the transformation of Z induced by the automorphism m — A\;mA; L
m € M. Note that by Lemma the automorphism 3; is trivial on M/M’. Let

o0(z) = fo(gz) and ¢i(z) := fi(a;z), i=1,...,s, withz¢€ Z.

Since g and a;’s belong to the compact set F',

||¢z’||c€ <|lfillge, i=0,...5,
and since a;(MA) = a™i(g)(M

/éf)zd,uz—/f "i(g)z)duz(z), i=1,...,s.

Applying the estimate , we deduce that for some p € (0,1),

| @t ([[ @(mi@-(am(z)))) dyiz(2)
—li[ </Z bi duz) +0 <Pnﬁ H¢z‘\|ce>
(/ follg2) duz (= ) (/ fi(a™ (9)2) duz (= ) ( Hlllelce>-
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This implies the claim . Now combining with , we deduce that
(4.9) /X fo(z) (L[l fi(a""(fﬁ))> dp(x) = /Y foly) <£[1 ﬁ'(a”i(y))> dpy ()
+0 (p" 11 rfiuce> .
i=1

where the functions f; : Y — R are defined by y — [, f;(yz) duz(z). Clearly,

/Yﬁqu:/Xfidu-

Since dim(Y") < dim(X ), Theorem [4.1) now follows from (4.9)) by induction on dimension.

5. EQUIDISTRIBUTION OF UNSTABLE MANIFOLDS

In this section we prove an equidistribution result for unstable manifolds. Besides its
own intrinsic interest, we will use this later in our treatment of probabilistic limit theorems
in Section [6l

Let a be an ergodic automorphism of a compact nilmanifold X = G/A. We denote by
W< C L(G) the unstable subspace of Da, namely, the subspace of L(G) spanned by Jordan
subspaces of Da with eigenvalues A satisfying |A| > 1. Note that since [W® W] C W?,
exp(W?) is a Lie subgroup of G. We decompose W as a direct sum W = @fﬂWf‘,
so that Dalwe acts as a (real) Jordan block. Namely, each subspace Wi has a basis
{wy,...,ws} such that

(5.1) (Da)w; = Aw; + wir1, i< s,

(Da)ws = Aws,
where A is a real eigenvalue of Da, or a basis {wy,w], ..., ws,w,} such that
(5.2) (Da)w; = aw; + bw; + wiy1, (Da)w; = —bw; + aw; + wiyq, i <s,
(5.3) (Da)ws = aws + bwl,, (Da)w), = —bws + aw?,

where A = a + bi is a complex eigenvalue of Da. We order the subspaces W* with respect
to the size of |A\|. Then

(5.4) (W, W C @jsiWS
For each 4, we define a map v; : R¥™W:) 5 exp(W,,) which is either
Uit (t1, ..., ts) — exp(tiwy) - - - exp(tsws)
in the real case, or
it (1,8 . ts, th) > exp(tiwy + tw]) - - - exp(tsws + thw?)

in the complex case. Let ¢ : RU™WY) _y exp(We) be the product of the maps ;. It
follows from ([5.4]) that 1) is a diffeomorphism and that the image of the Lebesgue measure
gives the Haar measure on exp(W®) [5, 1.2.7].
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Theorem 5.1. Let « be an ergodic automorphism of a compact nilmanifold X = G/A.
Then there exist & = r(0) > 0 and p = p(0) € (0,1) such that for every box B C RI™W?)
0-Holder function f: X - R, h € G, and g € G, we have

1 n — min(B) " p" 0
" /B F(a™ (hap(b))gA) db = /X f dpu+ O(min(B) ™" p"|| fl| o).

Proof: We give a proof using an inductive argument similar to the proof of exponential
mixing in Section [3}

Let W = W N (w,w) where w is the eigenvector of Da in W. More explicitly,
W = (w,) or W = (ws, w}) with notation (5.1)-(5.2). As in Section we deduce that
there exists a closed normal subgroup M of G containing exp(WW) such that M/(M N A)
is compact and for almost all g € G,

(5.5) exp(W)gA = MgA.

The map ¢ : RI™W) 5 oxp(W*) can be written as a product ¢ = £ - with £ :
RAMW)=dim(W) _ oxp(W) and 5 : RI™W) — exp(W), where 7 : ¢t — exp(tw,) or
n : (t,t) — exp(tws + t'wl) and ¢ is the product of the remaining exponential maps
appearing in . Then

/B F (o™ (b (b)) gA) db = /C /D f(a™ (he () (v))gA) dudv,

where C is a box in RIMW)=dm(W) and D is a box in R4™W) such that B = C x D.
We first show that images of the map 7 are equidistributed in a suitable sense. Namely,

we claim that there exists p € (0,1) such that for every h € G and every gA € X
such that (5.5)) holds,

(5.6) |,ﬁ, /D F(a™ (hn(t))gA) dt = /Z F(a™ (h)gmA) pz(m) + (0" fllco).

where 17 denotes the invariant normalised measure on the nilmanifold Z = M /(M N A).
Let Fy C G be a bounded subset such that G = FyA. Then there exists a bounded subset
F of GG such that G = FM(goAgo_l) for all gg € Fy. Indeed, we can take F' = FOFO_l. We
note that in ([5.6) we may assume that g € Fj, and to simplify notation, we replace A by
ghg™. The holds with g = e. We note that our estimates below (in particular,
(5.8))) are uniform on g. Indeed, we use the equidistribution of (c1, ce)-Diophantine box
maps in the proof, and the constants ¢; and ¢ will not depend on g because they are
determined by the projections to the torus G/(G'gAg™') = G/(G'A).

Next we write a”(h) = amA with a € F', m € M, and A € A. Then

(5.7) / F(a" (hn(t))A) dt = /D f(amB(a™(n(t))A) dt,

where [ denotes the automorphism of M defined by m +— AmA~!. We note that 3
acts trivially on M/M’ by Lemma To analyse , we apply Corollary to the
nilmanifold Z = M /(M N A). Settlng d(2) := f(az), z € Z, we get

/D FlamB(a™(n(t)A) dt = / B(mB(a™ (n(t))A) dt,



26 ALEXANDER GORODNIK AND RALF SPATZIER

and since a € F, we have

[@llce <[l Flico-
For the next computation, let us assume that dim(WW') = 2. When dim(W) = 1, the proof
is similar and simpler. We observe that Daly = rw where r > 1 and w is a rotation of
W, so that

B(a”(n(t,1))) = exp(r" (t(DBw"ws) + t'(DBw"w)))).
Making a change of variables,

/ B(mB(a™ (n()A) dt = =20 / o(m exp(in(t)A) dt,
D r*D

where ¢,, denotes the box map (¢,t") — t(Dfw"ws)+t'(DPw"w’). We note that (Dx)(Dj) =
Dm. Since exp(W)A = MA, it follows that Dm(W) is not contained in any proper ra-
tional subspace. In particular, it follows from Lemma and [2, Th. 7.3.2] that Dm(W)
contains a vector w satisfying the Diophantine condition @ . Since w is an isometry,

this implies that the box map ¢, is (c1, ¢2)-Diophantine where él, ¢o are uniform in n and
B (see Remark [2.2)). Therefore, Corollary implies that there exists k£ > 0 such that

1 o
/D] /MDﬁb(mﬁ(exp(Ln(t)))A)dt:/Z¢d,uz+0(m1n(r D)™ ¢l o)

This shows that
! " = az z min(D) Fr="" 0
W/Df(amﬁ(a (n(t)))A) dt—/Zf( ) dpz(z) + O(min(D) 1fllce)

(5.8)

:/Zf(a"(h)z)duz(z)+O(min(B)‘“,0”||f||09)

with p =% € (0,1). This proves (5.6]).
Next, we apply the above argument inductively. For a Hélder function f on X = G/A,
we define a function f on X = G/MA by

FlgMA) = / f(gmA)duz(m).
M/(MNA)

Clearly,

) ) Illoe < [l £llco- o
Let G = G/M, A = (MA)/M, and p : G — G be the projection map. Then X ~ G/A.

We note that Dp(W*) is precisely the unstable space of Da acting on L£(G). It follows
from (/5.6 that there exists p € (0, 1) such that

1 " = L f (o (hy)(b))gA min(B) " p" 0
o e emnen o= 1 [ (i0)a8) -+ 0min(B) o)

where 1) is the product of the maps of the form

Ui (t1, ..., ts) — exp(tiwy) - - - exp(tsws),
or
Uiz (1,1 .. s, ) = exp(tywy + tyw)) - - - exp(tss + o).
with w; = Dp(w;) and w; = Dp(w!), h = p(h) and § = p(g). In this product we may skip
terms with w; = 0 or @, = 0 (note that if w; = 0, then w, = 0 and conversely). Then the
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relations — are still satisfied. In particular, the last exponential in the obtained
product corresponds to the subspace Dp(W®) N (w, w) where w is an eigenvector of Do in
L(G) with the eigenvalue of maximal modulus. Now we can again apply the _argument as
in the proof of (5.6 . ) reducing the number of terms in the product defining 7). Repeating
the same argument repeatedly, we deduce that for some p € (0,1) and x > 0,

! " = n : —K n
51 [, St en o= [ g (gmA) dus(m) + Ofanin(B) 5" o)

where M is a closed normal a-invariant subgroup containing exp(W®) such that M /(MNA)
is compact. We observe that D« acting on £(G /M) has no eigenvalues with absolute value
greater than one. Since « is ergodic, it follows from Lemma that M = G. This proves
the theorem for the set of g € G that satisfy at every inductive step, with the estimate
which is uniform over g. Since this set has full measure, we conclude that the estimate
holds for all g completing the proof of the theorem. ©

The following corollary will be used in the proof of the limit theorems in the next
section.

Corollary 5.2. Let Q2 be a domain in W with a piecewise smooth boundary. Then there
exist k = k(0) > 0 and p = p(f) € (0,1) such that for every 0-Holder function f: X — R,
g € G and € > 0, we have

/Qf(a”(w(b))g/\) db = |Q] /deu+ O ((19:9] +e"p" 12| fll o) »
where 0. denotes the e-neighbourhood of the boundary of €.
Proof: We tessellate W by cubes B of size €. Then

Q_ U B é |6EQ|a
BCQ
and
/ Fla™((b)gA) db = 3 / F(a" ((b))gA) db+ 0182 || f[| o).
BCQ
By Theorem [5.1] for some x > 0 and p € (0,1),
/ F(a"($(5))gA) db = |B| / fdy+ O(Ble || fll o).
X
Therefore,
/ F(™(1h(b))gA) db = (Z rB\> / fdu+0 <<raﬁr+ > rB|e—“p”> Hfuce)
Q BCQ X BCQ

=19 /X fdp+ O((102 + |Qe™p™) [ fll co)-

This completes the proof of corollary. ¢
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6. CENTRAL LIMIT THEOREM AND INVARIANCE PRINCIPLES

Let us first review the terminology regarding the central limit theorem and other prob-
abilistic limit theorems. Let a : X — X be a measure-preserving map of a probability
space (X, u). For a function f : X — R, we consider a sequence of observables f o a™. If
the dynamical system o ~ X is sufficiently chaotic, this sequence is expected to behave
similarly to a sequence of independent random variables. We set

n—1
Sulf,2) =) flai(x)),
1=0

and for simplicity assume that [, fdu = 0.

The sequence f o o™ satisfies the central limit theorem if there exists o > 0 such that

n~128,(f,-) converges in distribution to the normal law with mean 0 and variance o2.

More generally, the sequence f o ™ satisfies the central limit theorem for subsequences if
there exists ¢ > 0 such that for every increasing sequence of measurable functions k,(x)

knr(;”) = ¢ for some fixed constant

taking values in N such that for almost all x, lim,
0 < ¢ < o0, the sequence n_1/2Skn(.)(f, -) converges in distribution to the normal law with
mean 0 and variance o2/c. We define S;(f,z) for all t > 0 by linear interpolation of its
values at integral points. The sequence f o™ satisfies the Donsker invariance principle if
there exists o > 0 such that the sequence of random functions (no?)~/28,:(f, ) € C([0, 1])
converges in distribution to the standard Brownian motion in C(]0, 1]). The sequence foa™
satisfies the Strassen invariance principle if there exists o > 0 such that for almost every
x, the sequence of functions (2na?loglogn) =128, (f, ) is relatively compact in C([0, 1])
and its limit set is precisely the set of absolutely continuous functions g on [0, 1] such that
g(0) =0 and fol g'(t)?dt < 1. This is a strong version of the law of the iterated logarithm.

In this section we establish the above limit theorems for sequences generated by ergodic
automorphisms of compact nilmanifolds. In the case of toral automorphism, these theo-
rems have been established by LeBorgne [I7] using the method of martingale differences,
and we follow a similar approach. We shall use the following general result:

Theorem 6.1. Let (X, B, iu,a) be an invertible ergodic dynamical system and f € L?(X)
such that [y fdu = 0. Let A be a sub-o-algebra of B such that A, = o "(A) is a

non-increasing sequence of o-algebras satisfying

(6.1) SB[ Az <00 and ST IF = B(f | Az < o0,

n>0 n<0
Then

(i) o? = [y f2dp+ 23232 [x(fo o) f du is finite.
(ii) 0 =0 < f is an L? coboundary < f is a measurable coboundary.
(iii) If o > 0, then f o a™ satisfies the central limit theorem, the central limit theorem
of subsequences, and the Donsker and Strassen invariance principles.

It is well-known (see, for instance, [34, Theorem 4.13]) that under the assumption
the function f has a decomposition f = (¢ o o — @) + 9 with ¢, € L?(X), where 1 o o™
is a reverse martingale difference with respect to the o-algebras A,, and o = [[¢]|2. In
particular, o < oo and if ¢ = 0, then f is an L? coboundary. On the other hand, if f is a
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measurable coboundary, then 1 is also a measurable coboundary, and it follows from [31]]
that ¢» = 0, so that o = 0. For (iii) we refer to [13, Ch. 5].
The following is the main result of this section:

Theorem 6.2. Let o be an ergodic automorphism of a compact nilmanifold X, and let f
be a Holder function on X which has zero integral and is not a measurable coboundary.
Then the sequence f o o™ satisfies the central limit theorem, the central limit theorem of
subsequences, and the Donsker and Strassen invariance principles.

To find the sub-o-algebra A suitable for Theorem we use the results of Section
combined with the works of Lind [2I] and Le Borgne [17]. We call a measurable partition
P of X J-fine if the diameter of any set in P is at most d. We say that a partition generates
under « if the o-algebra generated by all o (P) with n € Z is the Borel o-algebra of X
modulo null sets. Given a partition P and x € X, we denote by P(x) the element of the
partition that contains x. Given integers k < [, we denote by P,lg the partition generated
by a*(P),...,a {(P). We also set P°(x) = N> Ph(z).

Proposition 6.3. Let P be a finite measurable partition of X such that for every P € P,

e P is the closure of its interior,
e the boundary of P is piecewise smooth,
e the diameter of P is at most J.

Then if § is sufficiently small,

(i) the partition P generates under c,
(i) for almost every x, the atoms P§°(x) are contained in the stable manifolds W?*(x)
of x, and the diameter of P3°(z) in W*(x) is bounded,
(iii) for almost every x € X, the atoms P3°(z) have non-empty interior in the stable
manifolds W?*(x).

Proof of (i)—(i1). The proof follows that of [2I, Th. 1] almost completely albeit with
some differences in the final argument involving isometries. We will show that « almost
surely separates points, i.e., that for some null set X in X, if z,y € X\ Xy, then for some
n, the points a™(x) and a”(y) belong to different elements of the partition P. It then
follows from Rohklin’s work [28] that P generates under a.

There exist ¢g > 1 and §y > 0 such that for every w € L(G) satisfying ||w| < o and
z e X,

(6.2) cg ' wll < d(z, exp(w)z) < col|w]-

We assume that ¢ is sufficiently small, so that || Dal|cod < o, and if p and ¢ belong to the
same element P of the partition, then ¢ = exp(w)p with |Jw|| < dp. Since diam(P) < 9,
we have ||w| < ¢pd. We observe that

(6.3) d(a(p), a"(q)) = d(a™(p), exp((Da)"w)a" (p)).

Suppose that ||(Da)"w| — oo as n — oo. We pick the greatest n > 0 such that
H(Da)an < ¢pd. Then

cod < |[(Da)" w]| < || Dallcod < do,
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and it follows from (6.2)—(6.3)) that d(a™!(p),a" "' (q)) > 6. Hence, a"*!(p) and a1 (q)
belong to different elements of the partition.

A similar argument also applies when |[|(Da)"w| — oo as n — —oo. Therefore, it
remains to consider the case when w € E'*° which is the span of eigenspaces of Da with
eigenvalues of modulus one. We adapt Lind’s idea [2I] for this situation. Let K denote
the closed group of isometries generated by § := Da|giso. Then [ acts ergodically on K
by translations. Since « is mixing, the product o x 8 acts ergodically on X x K. It follows
from ergodicity and Fubini’s theorem that there exists a null set Xy C X and k € K such
that the sequence (" (z), 8™k) is dense in X x K for every x € X\ X(. Then the sequence
(a"(x), ™) is also dense in X x K. ‘

Now suppose that p,q € X\ Xy and ¢ = exp(w)p for some nonzero w € E**°. Given an
element P € P, we set

P(w,e) ={x € P: d(exp(w)z, P) > €}.
When ¢ > 0 is sufficiently small, this set has a nonempty interior. Hence, for every
p € X\ Xy, there exists n such that

a"(p) € P(w,e) and d(exp(w),exp((Da)"w)) < €/2.
Then
d(a"(q), P) = d(exp((Da)"w)z, P)

> d(exp(w)x, P) — d(exp((Da)"w)z, exp(w)z) > €/2.
In particular, o™ (p) € P and a™(q) ¢ P. This proves that P generates under o. The part
(ii) can be proved by the same argument. <

To prove Proposition [6.3(iii), we follow Le Borgne’s approach [17] for toral automor-
phisms. We pick ¢, rg € (0,1) such that the map o~ expands the distance on W* by at
least cry™ for n > 0, and take r € (rp,1). Let

Vi i=A{z € X : Pg°(x) D Bpnse(x) N W ()}
Proposition [6.3{(iii) immediately follows from the following lemma.
Lemma 6.4. u(X\V,) < r".

Proof: Let
W, :={y € X : d(y),0P(a’(y))) > 7'67“”/02 for all j > 0}.
If y is in W), then P(a?(y)) contains the ball in W*(a’(y)) of radius rér”/cQ. Hence,
a7/ (P(a?(y))) contains the ball in W?*(y) of radius 7" /c. Since
Pe(y) = (o (P’ (9)),
J=0

we conclude that V,, D W,,.

To prove the lemma, it suffices to estimate pu(X\W,,). It follows from our assumption
on the partition P that

p{y € X : d(y,0P(y)) < €}) < ¢,
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and since « is measure-preserving, for every j > 0,
n({y € X : (@ (y), 0P (e () < rgr"/c}) < ™.

Hence,

pw(X\W,,) < Zr%r" < r",
j=0

which implies the lemma. ©

We also mention an alternative way to construct a suitable sequence of o-algebras,
which was used, for instance, in [3| [I8]. We define a new partition

P(x) = Plx) N Wj(),
where W4 (x) is the d-neighbourhood of x in the stable manifold, and set
Pre(x) = () e (P(a! (x))).
j>n

Then the property (ii) is automatically satisfied, and one just needs to check (iii). However,
it seems that the result regarding generating partitions, generalising [2I] to nilmanifolds,
might be useful for other applications.

Proof of Theorem [6.4 Let A be the o-algebra generated by the partition P3° and
A, = a"(A) = Pe. Tt is clear that the sequence A,, is non-increasing. To prove the
theorem, it suffices to check the conditions . Since the partition P;° is measurable in
the sense of [28], for almost every z,

E(flA) (@) = / £(8) dmpe o) (),

Pre(x)

where mpes(,) is the conditional probability measure on Pp°(z).
To verify the second part of (6.1]), we observe that when P§°(a”(x)) C W?(x),

diam (P2 (z)) = diam(a~"(Pg°(a™(x))))

decays exponentially as n — —oo uniformly on z. Since the function f is §-Holder, it
follows that for some 7 € (0,1),

If = E(f | Al <7 "(Ifllce and > ||If = E(f | An)ll2 < oo.

n<0
To check the other condition in (6.1)), we observe that by Lemma

(6.4) / B(F A dp < 7 2o
X\Of"(vn)

On the other hand, for xz € a="(V},),
Byn (" (z)) " W?(a"(z)) C P(a"(z)) and Br”ran (z) N W?(x) C a” " (P(a"(x))).
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Since the diameter of P(x) is at most 6, as soon as r"ry" > 6, we get that P(z) C
By jpn (). Hence, by Proposition for almost every € a~"(V,),

- | et |
(65)  Pg(x)=[)a (Pl @)W (z)= [] a "(P(a"(z))) N W (x).
n=0 n=0

Thus, P3°(x) is the intersection of the stable manifold of z with at most finitely many
sets whose boundaries consist of finitely many piecewise smooth submanifolds. Then the
right hand side of (6.5)) equals to exp(€2;)z, and hence

(6.6) P (x) = exp(Qy)x,

where €2, is a domain in the unstable subspace W = W ' of D(a™!) in £(G) whose
boundary is piecewise smooth and depends smoothly on z. In particular, |0.Q,| < €
uniformly on x € X. It follows from that

Pp(x) = a7 "(Pge (' (2))) = exp((Da) " Q).

Then by [3, Prop. 4.3],
1

where m,, is the Haar measure on exp(W)z. Now we apply Corollary It follows from
the definition of V;, that for z € a™"(V},), we have |Q,| > r"™. Hence, by Corollary
for every x € a™"(V,,) and € > 0,

1 m — ’869‘ E—K 7 0
e |, i) o(( L p)ufuc)
=0 (™ + o) fleo)

where p € (0,1). We take e = (r™p")"/+1) | If we also take r sufficiently close to 1, then
this quantity decays exponentially as n — oo. Then

| o B P < 75

for some 7 € (0,1). Combining this estimate with (6.4), we deduce the first part of (6.1)).
Now the theorem follows from Theorem [6.1l ©

7. COHOMOLOGICAL EQUATION

In this section we apply exponential mixing to establish regularity of solutions of the
cohomological equation. We recall that for ergodic systems the solution is unique up to a
constant, up to measure zero.

Theorem 7.1. Let a be an ergodic automorphism of a compact nilmanifold X and f €
C®(X) such that f = ¢ o a — ¢ for some measurable function ¢. Then ¢ is almost
everywhere equal to a C*° function.
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The method of proof of Theorem applies to other classes of homogeneous partially
hyperbolic systems for which exponential mixing holds. For instance, we may consider an
ergodic partially hyperbolic left translation on the homogeneous space G/T", where G is
connected semisimple Lie group and I' is a cocompact irreducible lattice. This dynamical
system is also exponentially mixing for Holder functions [I5, Appendix], and the argu-
ment of Theorem applies. For X = SL4(R)/SL4(Z), an analogous result for Holder
functions f was established in [I8]. Furthermore, we get both Holder and smooth ver-
sions of Theorem for compact G/T" and G semi simple from Wilkinson’s general result
for accessible partially hyperbolic diffeomorphisms [35, Theorem A] under the additional
assumption that the left translation projected to any factor of G does not belong to a
compact subgroup.

Before starting the proof, we need to develop some language and review a result on
regularity of distributions. Let M be a compact manifold. We fix a Riemannian metric
on M, and denote by C? = C?(M) the space of §-Holder functions on M. We let (C?)* be
the dual space to C?. Note that any smooth function on M naturally belongs to any C?.
Hence any element in (C?)* defines a distribution on smooth functions on M. Conversely,
(C%)* is the space of distributions (dual to C* functions) which extend to continuous
linear functionals on C?. As for notation, we will write the pairing D(g) = (D, g) for
D e (C%* and g € .

Let F be a C* foliation on M, and consider a C*° vector field V' tangent to F. Given
a distribution D on M, define the derivative V(D) by evaluating on C*° test functions
g as follows: (V(D),g) = —(D,V(g)) where V(g) denotes the directional derivative of g
along V.

Given smooth vector fields Vi,...,V;, we call V;,, V;, ... V; D the partial derivatives of
order m of D. Suppose that we can cover M with open sets U such that we can find smooth
vector fields Vi,..., V., which span the tangent spaces to F at any point of /. Suppose
moreover that all partial derivatives of any order m, V;,, Vi, ...V, D of a distribution D
belong to (C%)*, for all such choices of « and Vi,...V, . Then for any other C* vector
fields V/, ...V} tangent to F, the partial derivatives V/,V; ... V] D also belong to (C?)*
as follows from a partition of unity argument. Thus we can say that partials along F of
a distribution belong to (C?)*, without any reference to a particular set of vector ﬁeldsE|

The following result is inspired by results of Rauch and Taylor in [27], and was known
to Rauch for the case of C'*° foliations. We are not aware of a simple reference. It is also
a straight-forward consequence of a similar much more technical result for Holder folia-
tions proved in [I0], namely that the wavefront set of a distribution for which the partial
derivatives of all orders along a single foliation belong to the dual of Holder functions is
co-normal to the foliation. We refer to |27, [10] for more details.

Corollary 7.2 ([10]). Let Fi,...,F, be C* foliations on a compact manifold M whose
tangent spaces span the tangent spaces to M at all points. Consider a distribution D
defined by integration against an L' function ¢. Assume that any partial derivative of D
of any order along the foliations F,. .., Fy belongs to (C®)* for all > 0. Then ¢ is C™.

"n our application we will have globally defined vector fields for which the partials exist for all orders,
and we will not need this comment.
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We are now ready to tackle the proof of Theorem Let us first give an outline
of the argument. Using Theorem we first show in Lemma that the function ¢
has to be in L?(X). Then we describe ¢ as distribution. We consider three dynamically
defined foliations for a: the unstable foliation W*, the stable foliation W€, and the central
foliation W¢. The unstable foliation is tangent to the right invariant distribution on X
corresponding to the sum of all generalized eigenspaces with eigenvalues || > 1, the stable
foliation is tangent to the right invariant distribution on X corresponding to the sum of all
generalized eigenspaces with eigenvalues |A| < 1, and the central foliation is tangent to the
right invariant distribution on X corresponding to the sum of all generalized eigenspaces
with eigenvalues |A\| = 1. Note that these distributions are integrable as is easily seen by
taking Lie brackets. We show that the distribution derivatives of ¢ along the foliations
WeE, WY, WE€ of a define distributions on Holder functions. This is established in Lemmas
and Since all these foliations are smooth, Corollary [7.2] shows that the function ¢
is C*°.

We now establish Lemmas and [7.5 which will finish the proof of Theorem

Lemma 7.3. The function ¢ in Theorem[7.1] is in L?.

Proof: Recall that along the proof of Theorem we have verified the conditions of
Theorem Hence, the lemma follows from part (ii) of this theorem. ¢

Define the distributions P™ and P~ by evaluating them on test functions g € C*°(X)
by

P(g)=> (foayg) and P (g9)=) (foa ' g).
=0 =1

Note that [ [ dp=0since f is an L? coboundary. Hence, by exponential mixing (Theo-

rem |1.1)), these sums converge as long as the test function g is Holder, and P+, P~ € (09~
Moreover, since (¢ o o', g) — 0 as i — +too. we get by a telescoping-sum argument that

Pt(g) = ;(f oal,g) = ;wﬁo ot —goal g) = lim (poa™ —¢.9) = ~(¢.9).

Similarly, we see that P~ (g) = (¢,g). Hence, the distribution Pt = —P~ is given by
integration against the L?-function ¢. We will use this to show that ¢ is smooth.

According to Corollary it suffices to show that partial derivatives of all orders of
the distribution PT™ = —P~ along any of the three foliations W?*, W% and W¢ belong to
(C%)* for any 0 > 0. We will show this in the next two lemmas.

Lemma 7.4. Partial derivatives of all orders of the distribution P* = —P~ along W*
and W* belong to (C?)* for any 6 > 0.

Proof: Let V be a right invariant vector field tangent to W?® and g a C* test function.
Then

o0 [e.9]

(V(PT),9) = (P, V(9)) == (foa',V(g)) =D (V(foa'),g).

=0 i=0
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The derivative V(f o ') decays exponentially fast since V is tangent to W?. Hence,

[(V(P), 9)| < llgllco,

and in particular, V/(P*) € (C%)* for all # > 0. Since PT™ = —P~, an analogous proof
shows that V(PT) lies in the dual of Holder functions for all vector fields V tangent to W".
A similar argument also applies to higher order derivatives along vector fields tangent to
W? or W*. We refer for the details to [I0, Lemma 5.1]. ©

Finally, we show that partials of all orders of P™ = —P~ along W¢ are distributions
on Holder functions. This argument uses exponential decay very strongly, and was first
discovered in [10]. For a detailed account we refer to [10, Lemma 5.1].

Lemma 7.5. Partial derivatives of all orders of the distribution P™ = —P~ along W¢
belong to (C?)* for any 6 > 0.

Proof: Let V be a right invariant vector field tangent to W€, and let g be a C*° function.
Then the partial derivative of PT along V is given by

(7.1) (V(PY),9) =) (V(foa'),g) == (foa,V(g),
1=0 1=0

and we have estimates for all of these expressions in terms of the Hélder norm of V(g),
due the exponential mixing of . We will show that this distribution extends to Holder
functions g by approximating g by smooth functions g. and carefully balancing the speed
of the approximation with the loss of exponential decay due to the growth of the C'-norm
of g.. More precisely, we shall show that there exists £ = £(0) € (0,1) such that for every
g € C?(X) and sufficiently large i,

(7.2) (V(foa), g <& - IIfllcllglce.

It would follow from (7.1)) and (7.2) that V(P*) € (C%)*.
We recall from Lemma [2.4] that for € > 0, there is a C*° function g. such that

(7.3) 9 — gllco < €%lgllge and [|gellce < 7™ 2||gllco

where m = dim(X). We first estimate [(V(f o a?), gc)|. By the exponential mixing (The-
orem and since V' is bounded, we have for some p € (0,1),

(7.4) [(foa', V(gD < Pl fller IV (ga)ller < ol fller e 2 lglloo-

On the other hand, we can estimate |(f o,V (g — g:))| = |(V(f 0 a?), g — g:)| as follows.
First, we note that the derivatives V(f oa?) by the chain rule are composites of derivatives
of f and derivatives of o/ along W¢. The latter grows at most polynomially since W¢ is
the central foliation for a. Hence, for any 7 > 0, there is ¢, € Z such that

| D(a[we)|l < (1+n)"  for all i > i,.
Hence, for all 7 > i,, we get the estimate

IV(foa)lco < @+n)lfler,
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and

(7.5) [(V(foa'),g—ga)l < V(foa))lco llg = gelloo < (L +n)lIfler e”llglco-

We have exponential decay with respect to ¢ in ([7.4]), but exponential growth in (7.5 at
first sight. However, choosing e carefully depending on i, we can still achieve exponential

decay in (7.5)), and hence for [(V(f o a’),g)|. More precisely, we take e = p# 2. Then
we obtain from ([7.4]) that

6

[(foa, V(gD < (p7572) " [ fller liglco,
and from (7.5) that for i > i,,

(V(foad),g— gl < (0 +mpm2) | fllcrllgllcr-

(%)
Now we choose n > 0 so that £ := (14 7)p?+=+2 < 1. Finally, we obtain from the last two
inequalities that for ¢ > i,,

(V(foa), ) <& IIfllerllglce.

This proves and shows that V(PT) extends to a continuous linear functional on the
space of #-Holder functions. A similar argument shows that higher order derivatives of PT
along the central foliation define distributions dual to Holder functions. For the details
we refer to [10, Lemma 5.1].

We also mention that one can give a different argument for the estimate using the
linearity of v along the foliation W¢. First, we can assume that |  9dp = 0 because for
constant g, the estimate follows from integration by parts. Then we can write V(f o
a') = V;(f) o o' for another differential operator V;. One can show that the Holder norm
of Vi(f) grows polynomially. Hence, can be deduced from the exponential mixing.
The argument that we presented above is more versatile, and it applies to (nonlinear)
diffeomorphisms satisfying the exponential mixing property. ©

This finishes the proof of Theorem

8. BERNOULLI PROPERTY

Here we show that ergodic automorphisms on compact nilmanifolds are Bernoulli com-
bining results from [14], [23], and [29]. It was already shown in [25] that such automor-
phisms satisfy the Kolmogorov property.

Theorem 8.1. Ergodic automorphisms on compact nilmanifolds are Bernoulls.

Proof: Let a be an ergodic automorphism of a compact nilmanifold X = G/A. We will
argue by induction on the dimension of X. We note that when X is a torus, this result
was established by Katznelson in [I4], and this forms the base of induction. Let Z be the
centre of G. It follows from [5, 5.2.3] that ZA is a closed subgroup of G. Then a ~ X
is measurably isomorphic to a skew product with the base « ~Y = G/(ZA) and fibers
isomorphic to the torus T'= ZA/A, where the action on the fibers is by affine linear maps
t— zy + a(t), z, € Z. We consider two cases.
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First, suppose that the automorphism « acts ergodically on the torus T'. Then it follows
from Marcuard’s theorem [23, Theorem 4] that o ~ X is measurably isomorphic to the
direct product of the systems o« ~ Y and @ ~ T'. Hence, it follows from the inductive
assumption that a ~ X is measurably isomorphic to the product of two Bernoulli maps,
and thus Bernoulli.

Second, suppose that the action of o on the torus ' = ZA/A is not ergodic. Then T
contains a nontrivial subtorus Ty = ZpA/A, where Zj is a closed connected subgroup of
Z, on which « acts isometrically, and a ~ X is measurably isomorphic to a skew product
with the base @ ~ G/(ZpA) and the fibers isomorphic to torus Tp, where the action on
the fibers is by affine linear maps ¢t — 2, + «(t), 2z, € Zy. We note that this is an isometric
extension of the base, and by the inductive assumption, the base is Bernoulli. Hence, we
can apply Rudolph’s theorem [29] which shows that weakly mixing isometric extensions
of Bernoulli maps are Bernoulli. ©
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