Rational points on algebraic varieties and homogeneous flows

Alex Gorodnik CalTech

Basic questions

Consider a system of polynomial equations $X = \{f_1(x_0, \dots, x_d) = \dots = f_k(x_0, \dots, x_d) = 0\}.$

Question Is the set $X(\mathbb{Q})$ infinite or finite?

Question

Is the set $X(\mathbb{Q})$ dense in $\begin{pmatrix} Zariski \ topology \\ Euclidean \ topology \end{pmatrix}$?

We assume, first, that f_i 's are homogeneous.

Then

$$X(\mathbb{Q}) \subset \mathbb{P}^d(\mathbb{Q}) = \text{projective space.}$$

For projective varieties, the relation

geometry \longleftrightarrow arithmetic

is more transparent.

Height function

Given $p \in \mathbb{P}^n(\mathbb{Q})$,

$$p = [x_0, \ldots, x_n]$$

with $x_0, ..., x_n \in \mathbb{Z}$, $gcd(x_0, ..., x_n) = 1$.

Define the height function

$$H(p) = \max_i |x_i|.$$

Every rational embedding

$$\iota: X \to \mathbb{P}^n$$

gives a height function

$$H_{\iota}(x) = H(\iota(x)), \quad x \in X(\mathbb{Q}).$$

Refined basic questions

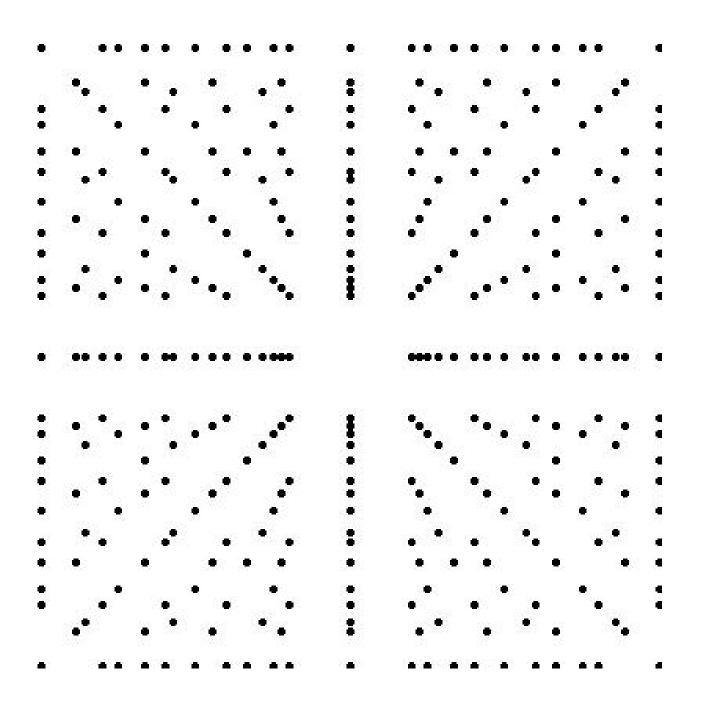
We may ask quantitative questions about

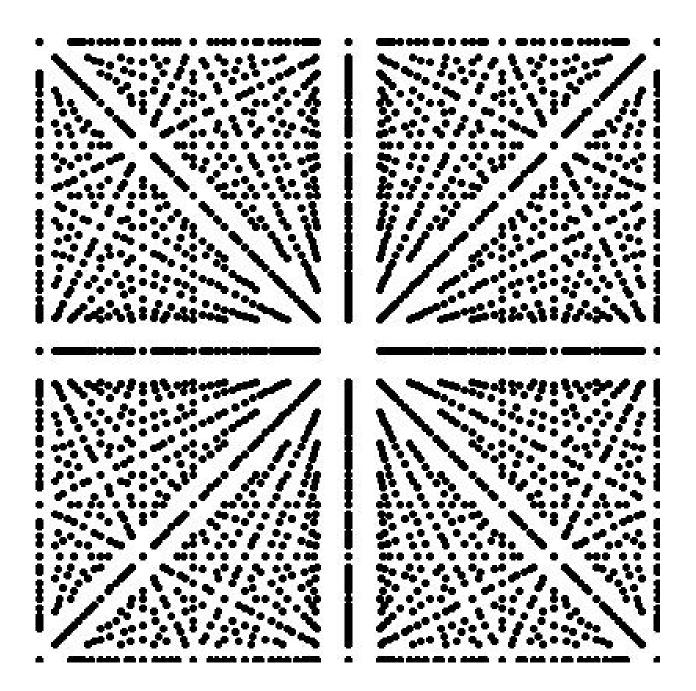
- size of $X(\mathbb{Q})$,
- distribution of $X(\mathbb{Q})$ in $X(\mathbb{R})$.

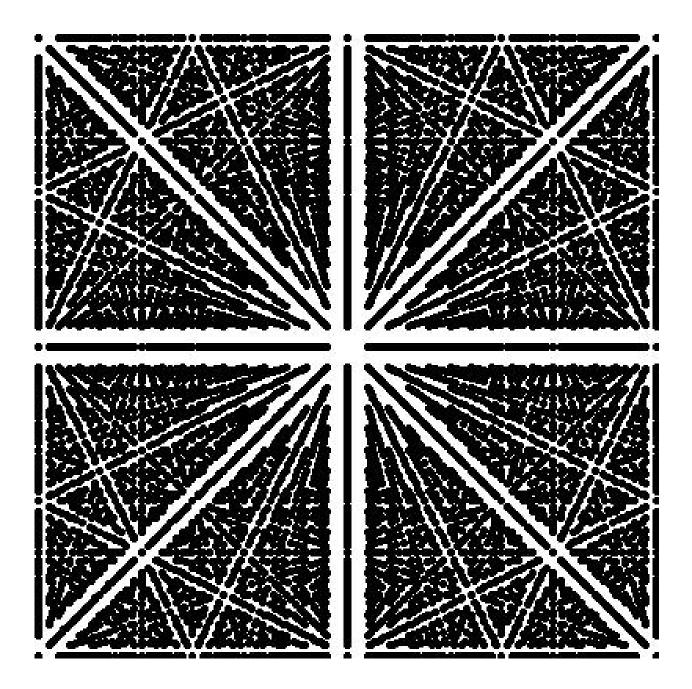
Question (size of $X(\mathbb{Q})$)

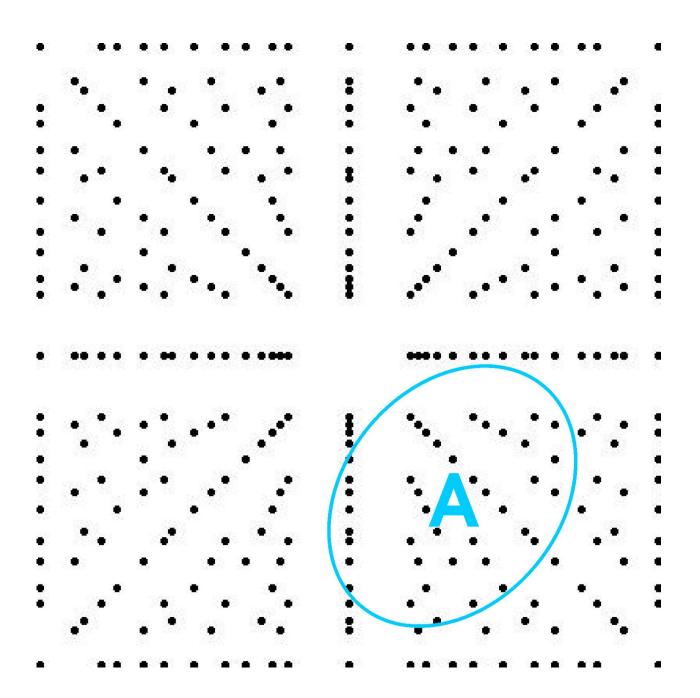
What is the order of growth of

 $N_T(X,\iota) = \#\{x \in X(\mathbb{Q}) : H_\iota(x) < T\}$ as $T \to \infty$?









Refined basic questions

$$\frac{\#\{x \in X(\mathbb{Q}) \cap A : H_{\iota}(x) < T\}}{\#\{x \in X(\mathbb{Q}) : H_{\iota}(x) < T\}} = ?$$

Consider the probability measure on $X(\mathbb{R})$:

$$\mu_{\iota,T} = \frac{1}{N_T(X,\iota)} \sum_{x \in X(\mathbb{Q}): H_\iota(x) < T} \delta_x.$$

Question (distribution of $X(\mathbb{Q})$) What are the limits of $\mu_{\iota,T}$ as $T \to \infty$?

Projective Space

1. (counting)

$$N_T(\mathbb{P}^d) = \#\{x \in \mathbb{Z}^{d+1} : H(x) < T, \gcd(x) = 1\}$$

 $\sim c \cdot T^{d+1}.$

2. (distribution) We make the identification $\mathbb{P}^d(\mathbb{R})\simeq S^d/\{\pm 1\}.$

Then

$$\mu_T \to c \cdot rac{d\Omega(x)}{(\max_i |x_i|)^{d+1}} \quad \text{as } T \to \infty,$$

where $d\Omega$ is the Lebesgue measure on $S^d/\{\pm 1\}$.

Geometry of $X(\mathbb{C}) \longrightarrow X(\mathbb{Q})$

Obvious obstructions:

1. For
$$X = \{x^2 + y^2 + z^2 = 0\}$$
, $X(\mathbb{Q}) = \emptyset$.

On the other hand, $X(\mathbb{Q}(i))$ is large.

Have to pass to a finite extension of \mathbb{Q} !

2. Let

 $X = \{(x_0, x_1, x_2, y_0, y_1) \in \mathbb{P}^2 \times \mathbb{P}^1 : x_0 y_1 = x_1 y_0\},\$ $H_{k,l}(x, y) = H(x)^k H(y)^l, \quad k, l \in \mathbb{N}.$ Consider

$$Y = X \cap \{x_0 = x_1 = 0\} \simeq \mathbb{P}^1,$$
$$X - Y \simeq \mathbb{P}^2 - \{\text{point}\}.$$

For k > l,

$$N_T(X-Y) = o(N_T(Y))$$

as $T \to \infty$.

Have to exclude "abnormal" subvarieties!

Dimension one (smooth curves)

Complete answer is known:

everything is determined by the genus g of $X(\mathbb{C})$.

g = 0	g = 1	$g \geq 2$
projective line	elliptic curves	$\{x^n + y^n = z^n\}, n \ge 4$
$N_T(X) \sim c \cdot T^a$	$N_T(X) \sim c \cdot (\log T)^a$	$N_T(X) < \infty$

Higher dimensions

For simplicity, we consider a smooth variety

$$X = \{f_1(x) = \dots = f_k(x) = 0\} \subset \mathbb{P}^d$$

and assume that $\{f_i = 0\}$'s are "transversal".

Let

 $\kappa = d + 1 - d_1 - \cdots - d_k$ where $d_i = \deg(f_i)$.

Heuristic argument $\Rightarrow N_T(X) \approx T^{\kappa}$.

$\kappa > 0$	$\kappa = 0$	$\kappa < 0$
Fano varieties	intermediate type	general type
$X(\mathbb{Q})$ is large	?	$X(\mathbb{Q})$ is small

Fano varieties

Conjecture (Batyrev, Manin, Tschinkel) For some open $U \subset X$,

 $N_T(U,\iota) \sim c \cdot T^{a_\iota} (\log T)^{b_\iota - 1}$ as $T \to \infty$

where $a_{\iota} \in \mathbb{Q}^+$ and $b_{\iota} \in \mathbb{N}$ are given explicitly in terms of the geometric invariants of X.

Conjecture (Peyre)

The measure

$$\mu_{\iota,T} = \frac{1}{N_T(X,\iota)} \sum_{x \in X(\mathbb{Q}): H_\iota(x) < T} \delta_x$$

converges as $T \to \infty$ to an explicit smooth measure on $X(\mathbb{R})$.

Known results

These conjectures has been extensively studied for a number of homogeneous varieties:

- 1. flag varieties (Franke, Manin, Tschinkel; 1989),
- compactifications of multiplicative groups (Batyrev, Tschinkel; 1995),
- 3. compactifications of additive groups (Chambert-Loir, Tschinkel; 2002),
- 4. compactifications of Heisenberg group (Shalika, Tschinkel; 2002),

We have proved the conjectures for

- the wonderful compactifications of semisimple groups,
- the wonderful compactifications of some symmetric varieties.

Wonderful compactification

Let

- $G = \mathsf{PGL}_{n+1},$
- $r: G \rightarrow \operatorname{GL}_N$ "generic" irreducible representation,
- X =Zarski closure of r(G) in $\mathbb{P}^{N^2 1}$.

X is the wonderful compactification of G (de Concini-Procesi).

- 1. X is smooth.
- 2. X is a union of finitely many G-orbits.
- 3. G is Zariski open in X, and

$$X - G = X_1 \cup \dots \cup X_n$$

where X_i are smooth subvarieties intersecting transversally.

\mathbb{Q} -points on C.–P. compactification

Theorem (Maucourant, Oh, G.) For every rational embedding $\iota : X \to \mathbb{P}^d$,

 $N_T(G,\iota) \sim c \cdot T^{a_{\iota}} (\log T)^{b_{\iota}-1}$ as $T \to \infty$.

A different proof of this theorem was also given by Shalika, Takloo-Bighash, and Tschinkel.

Theorem (Maucourant, Oh, G.)

 $\mu_{\iota,T} \to \mu_{\iota,\infty}$ as $T \to \infty$ where $\mu_{\iota,\infty}$ is an explicit measure on $G(\mathbb{R})$.

For example, when $\iota = id$, we have

$$r(G(\mathbb{R})) \subset \mathsf{GL}_N(\mathbb{R})$$

and

$$d\mu_{\iota,\infty}(g) = rac{d\mu_{\mathsf{haar}}(g)}{\|r(g)\|_{\infty}^{a_{\iota}}}, \quad g \in G(\mathbb{R}).$$

Integral points

Consider a variety

$$U = \{f_1 = \cdots = f_k = 0\}.$$

Question

What is the order of growth of

 $N_T(U) = \#\{x \in U(\mathbb{Z}) : \|x\|_{\infty} < T\}$?

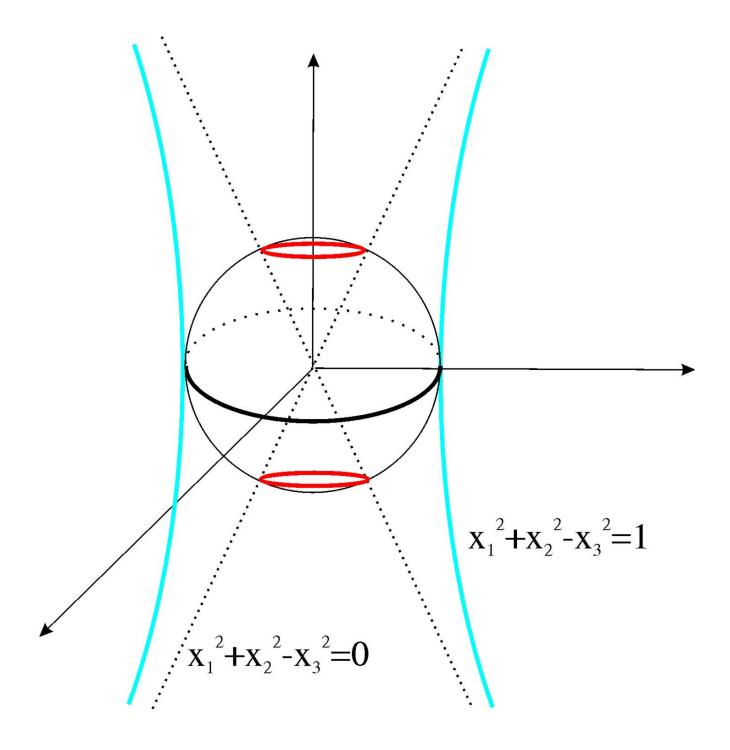
Suppose that $U \subset a$ projective variety = X.

Question

What are the limits of the measures

$$\nu_T = \frac{1}{N_T(U)} \sum_{x \in U(\mathbb{Z}): \|x\|_{\infty} < T} \delta_x$$

in $X(\mathbb{R})$ as $T \to \infty$?



\mathbb{Z} -points on C.-P. compactifications

Clearly, the integral points $G(\mathbb{Z})$ are accumulating on the boundary

 $(X-G)(\mathbb{R}) = X_1(\mathbb{R}) \cup \cdots \cup X_n(\mathbb{R}).$

Theorem (Oh, Shah, G.)

The measure ν_T converges to an explicit smooth measure supported on $\cap_{i \in I} X_i(\mathbb{R})$ for some $I \subset \{1, \ldots, n\}$.

Theorem (Oh, Shah, G.)

Let $x_0 \in (X - G)(\mathbb{R})$ and $\varepsilon > 0$ (small). Then

$$\#\left\{x\in G(\mathbb{Z}): \begin{array}{l} d(x,x_0)<\varepsilon\\ \|x\|_{\infty}$$

The constants $a_{x_0} \in \mathbb{Q}^+$ and $b_{x_0} \in \mathbb{N}$ are determined by the location of x_0 with respect to X_i 's and have explicit formulas in terms of geometric invariants of the varieties X, X_1, \ldots, X_n .

New results

S = the space of simplectic forms (more generally, some symmetric varieties), X = the wonderful compactification of S.

Theorem (Oh, G.) For every rational embedding $\iota : X \to \mathbb{P}^d$, $N_T(S, \iota) \sim c \cdot T^{a_\iota} (\log T)^{b_\iota - 1}$ as $T \to \infty$.

The proof uses dynamics of unipotent flows.

Ideas behind the proof: adeles

Completions of \mathbb{Q} : $\mathbb{Q}_{\infty} = \mathbb{R}$, \mathbb{Q}_p , p - prime.

The adele ring is defined by

 $\mathbb{A} = \{ (x_p)_{p \leq \infty} : x_p \in \mathbb{Q}_p, |x_p|_p \leq 1 \text{ for almost all } p \}.$

Then $G(\mathbb{A})$ is a *locally compact* group.

The set of rational points

 $G(\mathbb{Q}) \hookrightarrow G(\mathbb{A})$,

embedded diagonally $g \mapsto (g, g, ...)$, is a *discrete* subgroup of $G(\mathbb{A})$ with

 $\operatorname{Vol}(G(\mathbb{Q})\backslash G(\mathbb{A})) < \infty.$

Now the set of \mathbb{Q} -points can be studied using

- Harmonic analysis on $L^2(G(\mathbb{Q})\backslash G(\mathbb{A}))$,
- Dynamics of subgroup actions on $G(\mathbb{Q})\backslash G(\mathbb{A})$.

Volume heuristic

One can define local height function

 $H_{\iota,p}: G(\mathbb{Q}_p) \to \mathbb{R}$

so that

$$H_{\iota}(g) = \prod_{p} H_{\iota,p}(g) \quad \text{for } g \in G(\mathbb{Q}).$$

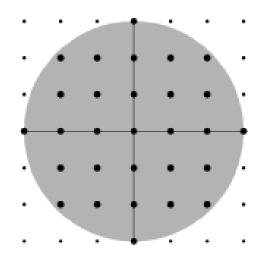
Setting

$$B_T = \{g \in G(\mathbb{A}) : H_\iota(g) < T\},\$$

the question becomes:

 $#(G(\mathbb{Q}) \cap B_T) \sim ?$

Volume heuristic



One expects that

 $\#(G(\mathbb{Q}) \cap B_T) \sim \operatorname{Vol}(B_T)$ when $\operatorname{Vol}(G(\mathbb{Q}) \setminus G(\mathbb{A})) = 1$.

This volume heuristic fails, but luckily,

 $#(G(\mathbb{Q}) \cap B_T) \sim \operatorname{Vol}(G_0 \cap B_T)$

where G_0 is a finite index subgroup of $G(\mathbb{A})$.

Sketch of the proof

Let

$$F_T(h_1, h_2) = \sum_{\gamma \in G(\mathbb{Q})} \chi_{B_T}(h_1^{-1}\gamma h_2).$$

We have to show that

$$F_T(e,e) \sim \operatorname{Vol}(B_T).$$

For a "bump" function

 $\alpha(h_1, h_2) = \alpha_1(h_1)\alpha_2(h_2), \quad h_1, h_2 \in G(\mathbb{Q}) \setminus G(\mathbb{A}),$ we have, after a change of variable,

$$\langle F_T, \alpha \rangle = \cdots = \int_{B_T} \langle g \cdot \alpha_1, \alpha_2 \rangle dg.$$

If $g \cdot \alpha_1$ and α_2 become independent as $g \to \infty$:

$$\langle g \cdot \alpha_1, \alpha_2 \rangle \to (\int \alpha_1) \cdot (\int \alpha_2), \qquad (*)$$

then

$$\langle F_T, \alpha \rangle = \int_{B_T} \langle g \cdot \alpha_1, \alpha_2 \rangle dg$$

~ $\mathsf{Vol}(B_T) \cdot \left(\int \alpha_1 \right) \cdot \left(\int \alpha_2 \right),$

i.e.,

$$F_T \sim \text{Vol}(B_T)$$
 weakly

and, in fact, pointwise too.

(*) is deduced from quantitative property τ .

Property τ

Theorem (Clozel, 2003)

Let π be an irreducible representation

$$\pi = \otimes_p \pi_p \subset L^2(G(\mathbb{Q}) \backslash G(\mathbb{A})).$$

Then $\pi_p \neq 1$ is uniformly isolated from 1 in $\widehat{G(\mathbb{Q}_p)}$.

This theorem is the culmination of the work of many people:

- Jacquet–Langlands,
- Gelbart–Jacquet,
- Rogawski,
- Burger-Sarnak,
- Clozel.

Quantitative property τ

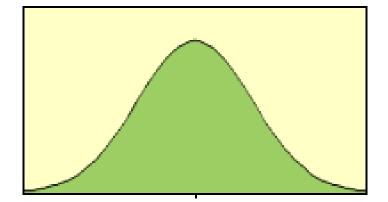
 $L^{2}(G(\mathbb{Q})\setminus G(\mathbb{A})) = L^{2}_{00} \perp \{1\text{-dim. representations}\}.$

Theorem (Maucourant, Oh, G.) There exists $\delta > 0$ such that for any smooth vectors

$$v = \otimes_p v_p, \ w = \otimes_p w_p \in L^2_{00},$$

we have

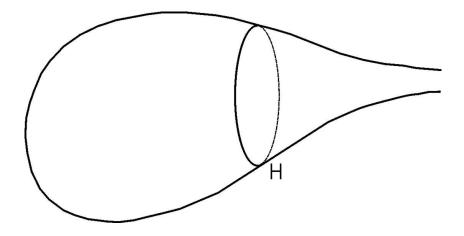
$$|\langle g \cdot v_p, w_p \rangle| \leq c(v_p, w_p) H_{\iota, p}(g)^{-\delta}, \quad g \in G(\mathbb{Q}_p).$$



Dynamical approach: motivation

$$\begin{split} M &= \text{ hyperbolic surface of finite area,} \\ T^1 M &= \text{ unit tangent bundle of } M \simeq \Gamma \setminus \mathsf{PSL}(2,\mathbb{R}), \\ h_t : T^1 M \to T^1 M \longrightarrow \text{ horocyclic flow} \\ x \mapsto x \left(\begin{array}{c} 1 & t \\ 0 & 1 \end{array} \right). \end{split}$$

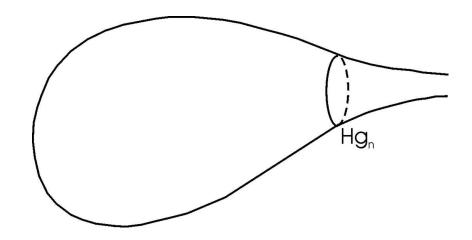
Let $\mathcal{H} \subset T^1 M$ be a closed orbit of h_t .



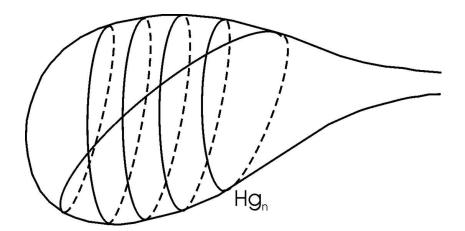
For a sequence of closed orbits

 $\mathcal{H}g_n$ with $g_n \to \infty$ in $\{h_t\} \setminus \mathsf{PSL}(2,\mathbb{R}),$

• $\mathcal{H}g_n
ightarrow \infty$,

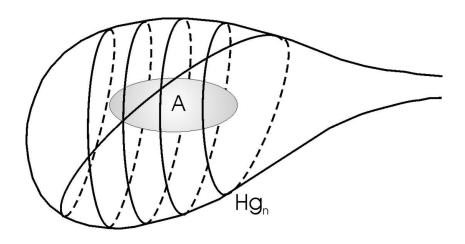


• $\mathcal{H}g_n$ is asymptotically dense.



Equidistribution

In the second case, the sequence $\mathcal{H}g_n$ becomes equidistributed:



$$\frac{\ell(\mathcal{H}g_n \cap A)}{\ell(\mathcal{H}g_n)} \to \operatorname{Area}(A) \quad \text{ as } n \to \infty.$$

To count rational points, we need similar equidistribution result for the space $G(\mathbb{Q})\setminus G(\mathbb{A})$.

Dynamical approach

Fix $v_0 \in X(\mathbb{Q})$.

Group G acts on X and $L = \text{Stab}_G(v_0)$.

Aim: compute the asymptotics of $\#(v_0G(\mathbb{Q}) \cap B_T) = \{x \in v_0G(\mathbb{Q}) : H_\iota(x) < T\}.$

Assume that $\mathcal{L} = G(\mathbb{Q})L(\mathbb{A})$ has finite volume.

Let

$$F_T(g) = \sum_{v \in v_0 G(\mathbb{Q})} \chi_{B_T}(vg).$$

For $\alpha : G(\mathbb{Q}) \setminus G(\mathbb{A}) \to \mathbb{R}$ with compact support,

$$\langle F_T, \alpha \rangle = \cdots = \int_{B_T} \left(\int \alpha \, d\nu_g \right) dg$$

where ν_g is the measure supported on $\mathcal{L}g$.

Equidistribution

Theorem (Oh, G.)

$$G = \mathsf{PGL}_{2n},$$

$$L = \mathsf{PSp}_{2n},$$

$$\nu_g = the \ measure \ supported$$

$$on \ \mathcal{L}g = G(\mathbb{Q})L(\mathbb{A})g \subset G(\mathbb{Q})\backslash G(\mathbb{A}).$$

Then for any continuous $\alpha : G(\mathbb{Q}) \setminus G(\mathbb{A}) \to \mathbb{R}$ with compact support,

 $\int \alpha \ d\nu_g \to \int \alpha \ d\mu$ as $g \to \infty$ in $L(\mathbb{A}) \setminus G(\mathbb{A})$

where

$$\mu = \begin{array}{l} measure \ invariant \ under \\ a \ finite \ index \ of \ subgroup \ of \ G(\mathbb{A}). \end{array}$$

The proof uses Ratner theory of unipotent flows.