Homework problem set

(1) Let (x_n) be a sequence of real numbers such that

$$x_{m+n} \le x_m + x_n$$

Then the following limit exists

$$\lim_{n \to \infty} \frac{x_n}{n} = \lim_{n \ge 1} \frac{x_n}{n}.$$

(2) Let μ be a probability measure on $SL_2(\mathbb{R})$ defined by

$$\mu = p_1 \delta_{a_1} + p_2 \delta_{a_2},$$

where
$$p_1, p_2 > 0, p_1 + p_2 = 1$$
 and
(i) $a_1 = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}, a_2 = \begin{pmatrix} \lambda^{-1} & 0 \\ 0 & \lambda \end{pmatrix}$ with $\lambda > 1$,
(ii) $a_1 = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}, a_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ with $\lambda > 1$.

Compute the top Lyapunov exponent of the random products defined by μ .

- (3) Let ν be a probability measure on $\operatorname{GL}(d, \mathbb{C})$, and $\Omega = \operatorname{GL}(d, \mathbb{C})^{\mathbb{N}}$ equipped with the product measure $\mathbb{P} = \nu^{\otimes \mathbb{N}}$.
 - (i) Show that the shift-map

$$\theta: \Omega \to \Omega: (\omega_n) \mapsto (\omega_{n+1})$$

is mixing, that is, for every measurable $A, B \subset \Omega$,

 $\mathbb{P}(\theta^{-n}A \cap B) \to \mathbb{P}(A)\mathbb{P}(A) \quad \text{as } n \to \infty.$

- (ii) Show that every measurable θ -invariant subset of Ω has measure zero or one.
- (4) With notation as in Lecture 2, verify that
 - (i) $\|\pi(g)f\|_2 = \|f\|_2$ for all $g \in \mathrm{SL}(d, \mathbb{C})$ and $f \in \mathcal{H}$,
 - (ii) $||P_{\nu}f||_2 \leq ||f||_2$ for all $f \in \mathcal{H}$,

 - (iii) $P_{\nu_1}P_{\nu_2} = P_{\nu_1*\nu_2},$ (iv) $P_{\nu}^* = P_{\nu^{\vee}}$ where $d\nu^{\vee}(g) = d\nu(g^{-1}).$
- (5) Let A_n be a sequence of matrices in $GL(d, \mathbb{C})$. Prove that the following statements are equivalent:
 - (i) For some proper measure ν on $\mathbb{P}(\mathbb{C}^d)$, $A_n\nu$ converges to a Dirac measure δ_z .
 - (ii) For any proper measure ν on $\mathbb{P}(\mathbb{C}^d)$, $A_n\nu$ converges to a Dirac measure δ_z .
 - (iii) All limit points of $\frac{A_n}{\|A_n\|}$ are rank-one matrices with the range $\langle z \rangle$.

- (6) Prove that a closed subgroup of GL(d, C) acts totally irreducibly on C^d if and only if each closed normal subgroup of finite index acts irreducibly.
- (7) Let ν be a proper probability measure on $\mathbb{P}(\mathbb{C}^d)$. Let

$$G = \{g \in \operatorname{GL}(d, \mathbb{C}) : g \cdot \nu = \nu\}.$$

Prove that every limit point of the sequence $\frac{g_n}{\|g_n\|}$ with $g_n \in G$ is nondegenerate.

(8) With notation as in Lecture 4 (page 4), show that

$$E(\phi, \mathcal{F}_n) = \int_{\Omega} \phi(\omega) \prod_{i \ge n+1} d\mu(\omega_i).$$

(9) Show that if $\{\phi_n\}$ is a martingale with respect to σ -algebras \mathcal{F}_n , then

(i) $E(\phi_{n+k}|\mathcal{F}_n) = \phi_n$ for all $k \ge 0$, (ii) $E(\phi_{n+1}) = E(\phi_n)$.

- (10) Show that a sequence of real numbers (x_n) converges (possibly to $\pm \infty$) iff $u_{\infty}(a, b) < \infty$ for all intervals (a, b) iff $u_{\infty}(a, b) < \infty$ for all intervals (a, b) with $a, b \in \mathbb{Q}$.
- (11) Let μ a probability measure on $\operatorname{GL}(d, \mathbb{C})$ and assume that its Lyapunov exponents satisfy

$$\lambda_1 > \cdots > \lambda_d.$$

Show that the action of the semigroup S_{μ} , the closed semigroup generated by the support of μ , is contracting on $\wedge^{i} \mathbb{C}^{d}$ for $i = 1, \ldots, d-1$.

(12) Consider a sequence of independent identically distributed matrices $X_n \in \operatorname{GL}(d, \mathbb{C}), n \geq 1$, such that

$$X_n = \left(\begin{array}{cc} A_n & B_n \\ 0 & C_n \end{array}\right).$$

Let $\lambda, \lambda_1, \lambda_2$ denote the top Lyapunov exponents of X_n, A_n, B_n respectively. Prove that

$$\lambda = \max\{\lambda_1, \lambda_2\}.$$

(13) Suppose that $S \subset \operatorname{GL}(d, \mathbb{C})$ is contacting on $\wedge^i \mathbb{C}^d$. Prove that the set $\{s^{-1} : s \in S\}$ is contacting on $\wedge^{d-i} \mathbb{C}^d$.