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PREFACE

The computer algebra system Magma is designed to provide a software environment for
computing with the structures which arise in areas such as algebra, number theory, al-
gebraic geometry and (algebraic) combinatorics. Magma enables users to define and to
compute with structures such as groups, rings, fields, modules, algebras, schemes, curves,
graphs, designs, codes and many others. The main features of Magma include:

• Algebraic Design Philosophy: The design principles underpinning both the user lan-
guage and system architecture are based on ideas from universal algebra and category
theory. The language attempts to approximate as closely as possible the usual mathe-
matical modes of thought and notation. In particular, the principal constructs in the
user language are set, (algebraic) structure and morphism.

• Explicit Typing: The user is required to explicitly define most of the algebraic structures
in which calculations are to take place. Each object arising in the computation is then
defined in terms of these structures.

• Integration: The facilities for each area are designed in a similar manner using generic
constructors wherever possible. The uniform design makes it a simple matter to pro-
gram calculations that span different classes of mathematical structures or which involve
the interaction of structures.

• Relationships: Magma provides a mechanism that manages “relationships” between
complex bodies of information. For example, when substructures and quotient struc-
tures are created by the system, the natural homomorphisms that arise are always
stored. These are then used to support automatic coercion between parent and child
structures.

• Mathematical Databases: Magma has access to a large number of databases containing
information that may be used in searches for interesting examples or which form an
integral part of certain algorithms. Examples of current databases include factorizations
of integers of the form pn ± 1, p a prime; modular equations; strongly regular graphs;
maximal subgroups of simple groups; integral lattices; K3 surfaces; best known linear
codes and many others.

• Performance: The intention is that Magma provide the best possible performance
both in terms of the algorithms used and their implementation. The design philosophy
permits the kernel implementor to choose optimal data structures at the machine level.
Most of the major algorithms currently installed in the Magma kernel are state-of-the-
art and give performance similar to, or better than, specialized programs.

The theoretical basis for the design of Magma is founded on the concepts and methodology
of modern algebra. The central notion is that of an algebraic structure. Every object
created during the course of a computation is associated with a unique parent algebraic
structure. The type of an object is then simply its parent structure.
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Algebraic structures are first classified by variety: a variety being a class of structures
having the same set of defining operators and satisfying a common set of axioms. Thus,
the collection of all rings forms a variety. Within a variety, structures are partitioned into
categories. Informally, a family of algebraic structures forms a category if its members all
share a common representation. All varieties possess an abstract category of structures
(the finitely presented structures). However, categories based on a concrete representation
are as least as important as the abstract category in most varieties. For example, within
the variety of algebras, the family of finitely presented algebras constitutes an abstract
category, while the family of matrix algebras constitutes a concrete category.

Magma comprises a novel user programming language based on the principles outlined
above together with program code and databases designed to support computational re-
search in those areas of mathematics which are algebraic in nature. The major areas
represented in Magma V2.19 include group theory, ring theory, commutative algebra,
arithmetic fields and their completions, module theory and lattice theory, finite dimen-
sional algebras, Lie theory, representation theory, homological algebra, general schemes
and curve schemes, modular forms and modular curves, L-functions, finite incidence struc-
tures, linear codes and much else.

This set of volumes (known as the Handbook) constitutes the main reference work on
Magma. It aims to provide a comprehensive description of the Magma language and the
mathematical facilities of the system, In particular, it documents every function and oper-
ator available to the user. Our aim (not yet achieved) is to list not only the functionality
of the Magma system but also to show how the tools may be used to solve problems in
the various areas that fall within the scope of the system. This is attempted through the
inclusion of tutorials and sophisticated examples. Finally, starting with the edition corre-
sponding to release V2.8, this work aims to provide some information about the algorithms
and techniques employed in performing sophisticated or time-consuming operations. It will
take some time before this goal is fully realised.

We give a brief overview of the organization of the Handbook.

• Volume 1 contains a terse summary of the language together with a description of the
central datatypes: sets, sequences, tuples, mappings, etc. An index of all intrinsics
appears at the end of the volume.

• Volume 2 deals with basic rings and linear algebra. The rings include the integers, the
rationals, finite fields, univariate and multivariate polynomial rings as well as real and
complex fields. The linear algebra section covers matrices and vector spaces.

• Volume 3 covers global arithmetic fields. The major topics are number fields, their
orders and function fields. More specialised topics include quadratic fields , cyclotomic
fields and algebraically closed fields.

• Volume 4 is concerned with local arithmetic fields. This covers p-adic rings and their
extension and power series rings including Laurent and Puiseux series rings,
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• Volume 5 describes the facilities for finite groups and, in particular, discusses permu-
tation groups, matrix groups and finite soluble groups defined by a power-conjugate
presentation. A chapter is devoted to databases of groups.

• Volume 6 describes the machinery provided for finitely presented groups. Included
are abelian groups, general finitely presented groups, polycyclic groups, braid groups
and automatic groups. This volume gives a description of the machinery provided for
computing with finitely presented semigroups and monoids.

• Volume 7 is devoted to aspects of Lie theory and module theory. The Lie theory includes
root systems, root data, Coxeter groups, reflection groups and Lie groups.

• Volume 8 covers algebras and representation theory. Associative algebras include
structure-constant algebras, matrix algebras, basic algebras and quaternion algebras.
Following an account of Lie algebras there is a chapter on quantum groups and another
on universal enveloping algebras. The representation theory includes group algebras,
K[G]-modules, character theory, representations of the symmetric group and represen-
tations of Lie groups.

• Volume 9 covers commutative algebra and algebraic geometry. The commutative alge-
bra material includes constructive ideal theory, affine algebras and their modules, in-
variant rings and differential rings. In algebraic geometry the main topics are schemes,
sheaves and toric varieties. Also included are chapters describing specialised machinery
for curves and surfaces.

• Volume 10 describes the machinery pertaining to arithmetic geometry. The main topics
include the arithmetic properties of low genus curves such as conics, elliptic curves and
hyperelliptic curves. The volume concludes with a chapter on L-series.

• Volume 11 is concerned with modular forms.

• Volume 12 covers various aspects of geometry and combinatorial theory. The geometry
section includes finite planes, finite incidence geometry and convex polytopes. The
combinatorial theory topics comprise enumeration, designs, Hadamard matrices, graphs
and networks.

• Volume 13 is primarily concerned with coding theory. Linear codes over both fields
and finite rings are considered at length. Further chapters discuss machinery for AG-
codes, LDPC codes, additive codes and quantum error-correcting codes. The volume
concludes with short chapters on pseudo-random sequences and on linear programming.

Although the Handbook has been compiled with care, it is possible that the semantics of
some facilities have not been described adequately. We regret any inconvenience that this
may cause, and we would be most grateful for any comments and suggestions for improve-
ment. We would like to thank users for numerous helpful suggestions for improvement and
for pointing out misprints in previous versions.
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The development of Magma has only been possible through the dedication and enthusi-
asm of a group of very talented mathematicians and computer scientists. Since 1990, the
principal members of the Magma group have included: Geoff Bailey, Mark Bofinger, Wieb
Bosma, Gavin Brown, John Brownie, Herbert Brückner, Nils Bruin, Steve Collins, Scott
Contini, Bruce Cox, Brendan Creutz, Steve Donnelly, Willem de Graaf, Andreas-Stephan
Elsenhans, Claus Fieker, Damien Fisher, Alexandra Flynn, Volker Gebhardt, Katharina
Geißler, Sergei Haller, Michael Harrison, Emanuel Herrmann, Florian Heß, David How-
den, Al Kasprzyk, David Kohel, Paulette Lieby, Graham Matthews, Scott Murray, Anne
O‘Kane, Catherine Playoust, Richard Rannard, Colva Roney-Dougal, Dan Roozemond,
Andrew Solomon, Bernd Souvignier, Ben Smith, Allan Steel, Damien Stehlé, Nicole Suther-
land, Don Taylor, Bill Unger, John Voight, Alexa van der Waall, Mark Watkins and Greg
White.

John Cannon
Sydney, December 2012
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The Magma machinery for symmetric functions is based on the Symmetrica package
developed by Abalbert Kerber (Bayreuth) and colleagues. The Magma version was
implemented by Axel Kohnert of the Bayreuth group.

The PERM package developed by Jeff Leon (UIC) is used to determine automorphism
groups of designs and also to determine isomorphism of pairs of designs.

Automorphism groups and isomorphism of Hadamard matrices are determined by con-
verting to a similar problem for graphs and then applying Brendan McKay’s (ANU)
program nauty. The adaption was undertaken by Paulette Lieby and Geoff Bailey.

The calculation of the automorphism groups of graphs and the determination of graph
isomorphism is performed using Brendan McKay’s (ANU) program nauty (version 2.2).
Databases of graphs and machinery for generating such databases have also been made
available by Brendan. He has also collaborated in the design of the sparse graph machinery.

The code to perform the regular expression matching in the regexp intrinsic function
comes from the V8 regexp package written by Henry Spencer (Toronto).
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Commutative Algebra

Gregor Kemper (TU München) has contributed most of the major algorithms of the
Invariant Theory module of Magma, together with many other helpful suggestions in the
area of Commutative Algebra.

Alexa van der Waall (Simon Fraser) has implemented the module for differential Galois
theory.

Galois Groups

Jürgen Klüners (Kassel) has made major contributions to the Galois theory machin-
ery for function fields and number fields. In particular, he implemented functions for
constructing the subfield lattice and automorphism group of a field and also the subfield
lattice of the normal closure of a field. In joint work with Claus Fieker (Magma), Jürgen
has recently developed a new method for determining the Galois group of a polynomial of
arbitary high degree.

Jürgen Klüners (Kassel) and Gunter Malle (Kassel) made available their extensive
tables of polynomials realising all Galois groups over Q up to degree 15.

Galois Representations

Jeremy Le Borgne (Rennes) contributed his package for working with mod p Galois
representations.

Code for constructing Artin representations of the Galois group of the absolute extension
of a number field was developed by Tim Dokchitser (Cambridge).

Jared Weinstein (UCLA) wrote the package on admissible representations of GL2(Qp).

Geometry

The Magma code for computing with incidence geometries has been developed by Dimitri
Leemans (Brussels).

Algorithms for testing whether two convex polytopes embedded in a lattice are isomorphic
or equivalent have been implemented by Al Kasprzyk (Imperial College). Of particular
note is Al’s implementation of the PALP normal form algorithm.

Global Arithmetric Fields

Jean-Francois Biasse (Calgary) implemented a quadratic sieve for computing the class
group of a quadratic field. He also developed a generalisation of the sieve for number fields
having degree greater than 2.

Florian Heß (TU Berlin) has contributed a major package for determining all isomor-
phisms between a pair of algebraic function fields.
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David Kohel (Singapore–NUS, Magma) has contributed to the machinery for binary
quadratic forms and has implemented rings of Witt vectors.

Jürgen Klüners (Düsseldorf) and Sebastian Pauli (UNC Greensboro) have developed
algorithms for computing the Picard group of non-maximal orders and for embedding the
unit group of non-maximal orders into the unit group of the field.

The facilities for general number fields and global function fields in Magma are based on
the KANT V4 package developed by Michael Pohst and collaborators, first at Düsseldorf
and then at TU Berlin. This package provides extensive machinery for computing with
maximal orders of number fields and their ideals, Galois groups and function fields. Par-
ticularly noteworthy are functions for computing the class and unit group, and for solving
Diophantine equations.

The fast algorithm of Bosma and Stevenhagen for computing the 2-part of the ideal class
group of a quadratic field has been implemented by Mark Watkins (Bristol).

Group Theory: Finitely-Presented Groups

See also the subsection Group Theory: Soluble Groups.

A new algorithm for computing all normal subgroups of a finitely presented group up to
a specified index has been designed and implemented by David Firth and Derek Holt
(Warwick).

The function for determining whether a given finite permutation group is a homomor-
phic image of a finitely presented group has been implemented in C by Volker Gebhardt
(Magma) from a Magma language prototype developed by Derek Holt (Warwick). A
variant developed by Derek allows one to determine whether a small soluble group is a
homomorphic image.

A small package for working with subgroups of free groups has been developed by Derek
Holt (Warwick). He has also provided code for computing the automorphism group of a
free group.

Versions of Magma from V2.8 onwards employ the Advanced Coset Enumerator designed
by George Havas (UQ) and implemented by Colin Ramsay (UQ). George has also
contributed to the design of the machinery for finitely presented groups.

Derek Holt (Warwick) developed a modified version of his program, kbmag, for inclusion
within Magma. The Magma facilities for groups and monoids defined by confluent rewrite
systems, as well as automatic groups, are supported by this code.

Derek Holt (Warwick) has provided a Magma implementation of his algorithm for testing
whether two finitely presented groups are isomorphic.

An improved version of the Plesken-Fabianska algorithm for finding L2-quotients of a
finitely presented group has been developed and implemented by Sebastian Jambor
(Aachen).
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The low index subgroup function is implemented by code that is based on a Pascal program
written by Charlie Sims (Rutgers).

Group Theory: Finite Groups

A variation of the Product Replacement Algorithm for generating random elements of a
group due to Henrik Bäärnhielm and Charles Leedham-Green has been coded with
their assistance.

A Small Groups database containing all groups having order at most 2000, excluding
order 1024 has been made available by Hans Ulrich Besche (Aachen), Bettina Eick
(Braunschweig), and Eamonn O’Brien (Auckland). This library incorporates “directly”
the libraries of 2-groups of order dividing 256 and the 3-groups of order dividing 729,
which were prepared and distributed at various intervals by Mike Newman (ANU) and
Eamonn O’Brien and various assistants, the first release dating from 1987.

Michael Downward and Eamonn O’Brien (Auckland) provided functions to access
much of the data in the on-line Atlas of Finite Simple Groups for the sporadic groups. A
function to select “good” base points for sporadic groups was provided by Eamonn and
Robert Wilson (QMUL).

The Small Groups database was augmented in V2.14 by code that can enumerate all groups
of any square-free order. This code was developed by Bettina Eick (Braunschweig) and
Eamonn O’Brien (Auckland).

The calculation of automorphism groups (for permutation and matrix groups) and deter-
mining group isomorphism is performed by code written by Derek Holt (Warwick).

Lifting-style algorithms have been developed by Derek Holt (Warwick) for computing
structural information in groups given in terms of the Composition Tree data structure.
The operations include centralisers, conjugacy classes, normalizers, subgroup conjugacy
and maximal subgroups.

Magma includes a database of almost-simple groups defined on standard generators. The
database was originally conceived by Derek Holt (Warwick) with a major extension by
Volker Gebhardt (Magma) and sporadic additions by Bill Unger (Magma).

The routine for computing the subgroup lattice of a group (as distinct from the list of all
conjugacy classes of subgroups) is based on code written by Dimitri Leemans (Brussels).

Csaba Schneider (Lisbon) has implemented code which allows the user to write an
arbitrary element of a classical group as an SLP in terms of its standard generators.

Robert Wilson (QMUL) has made available the data contained in the on-line ATLAS
of Finite Group Representations for use in a Magma database of permutation and matrix
representations for finite simple groups. See http://brauer.maths.qmul.ac.uk/Atlas/.
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Group Theory: Matrix Groups

The Composition Tree (CT) package developed by Henrik Bäärnhielm (Auckland),
Derek Holt (Warwick), Charles Leedham-Green (QMUL) and Eamonn O’Brien
(Auckland), working with numerous collaborators, was first released in V2.17. This package
is designed for computing structural information for large matrix groups defined over a
finite field.

Constructive recognition of quasi-simple groups belonging to the Suzuki and two Ree
families have been implemented by Hendrik Bäärnhielm (QMUL). The package includes
code for constructing their Sylow p-subgroups and maximal subgroups.

The maximal subgroups of all classical groups having degree not exceeding 12 have been
constructed and implemented in Magma by John Bray (QMUL), Derek Holt (Warwick)
and Colva Roney-Dougal (St Andrews).

Peter Brooksbank (Bucknell) implemented a Magma version of his algorithm for per-
forming constructive black-box recognition of low-dimensional symplectic and unitary
groups. He also gave the Magma group permission to base its implementation of the
Kantor-Seress algorithm for black-box recognition of linear groups on his GAP implemen-
tation.

Code which computes the normaliser of a linear group defined over a finite field, using
a theorem of Aschbacher rather than backtrack search, has been provided by Hannah
Coutts (St Andrews).

A package, “Infinite”, has been developed by Alla Detinko (Galway), Dane Flannery
(Galway) and Eamonn O’Brien (Auckland) for computing with groups defined over
number fields, or (rational) function fields in zero or positive characteristic.

An algorithm for determining the conjugacy of any pair of matrices in GL(2, Z) was de-
veloped and implemented by D. Husert (University of Paderborn). In particular, this
allows the conjugacy of elements having infinite order to be determined.

Markus Kirschmer (RWTH, Aachen) has provided a package for computing with finite
subgroups of GL(n,Z). A Magma database of the maximal finite irreducible subgroups
of Sp2n(Q) for 1 ≤ i ≤ 11 has also been made available by Markus.

A much improved algorithm for computing the normaliser or centraliser of a finite subgroup
of GL(n, Z) has been implemented by Markus Kirschmer (Aachen). Markus has also
implemented an algorithm that tests finite subgroups for conjugacy.

Procedures to list irreducible (soluble) subgroups of GL(2, q) and GL(3, q) for arbitrary q
have been provided by Dane Flannery (Galway) and Eamonn O’Brien (Auckland).

A Monte-Carlo algorithm to determine the defining characteristic of a quasisimple group
of Lie type has been contributed by Martin Liebeck (Imperial) and Eamonn O’Brien
(Auckland).

A Monte-Carlo algorithm for non-constructive recognition of simple groups has been con-
tributed by Gunter Malle (Kaiserslautern) and Eamonn O’Brien (Auckland). This
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procedure includes an algorithm of Babai et al which identifies a quasisimple group of Lie
type.

Magma incorporates a database of the maximal finite rational subgroups of GL(n,Q)
up to dimension 31. This database as constructed by Gabriele Nebe (Aachen) and
Wilhelm Plesken (Aachen). A database of quaternionic matrix groups constructed by
Gabriele is also included.

A function that determines whether a matrix group G (defined over a finite field) is the
normaliser of an extraspecial group in the case where the degree of G is an odd prime uses
the new Monte-Carlo algorithm of Alice Niemeyer (Perth) and has been implemented
in Magma by Eamonn O’Brien (Auckland).

The package for recognizing large degree classical groups over finite fields was designed
and implemented by Alice Niemeyer (Perth) and Cheryl Praeger (Perth). It has been
extended to include 2-dimensional linear groups by Eamonn O’Brien (Auckland).

Eamonn O’Brien (Auckland) has contributed a Magma implementation of algorithms
for determining the Aschbacher category of a subgroup of GL(n, q).

Eamonn O’Brien (Auckland) has provided implementations of constructive recognition
algorithms for the matrix groups (P)SL(2, q) and (P)SL(3, q).

A fast algorithm for determining subgroup conjugacy based on Aschbacher’s theorem clas-
sifying the maximal subgroups of a linear group has been designed and implemented by
Colva Roney-Dougal (St Andrews).

A package for constructing the Sylow p-subgroups of the classical groups has been imple-
mented by Mark Stather (Warwick).

Generators in the natural representation of a finite group of Lie type were constructed
and implemented by Don Taylor (Sydney) with some assistance from Leanne Rylands
(Western Sydney).

Group Theory: Soluble Groups

The soluble quotient algorithm in Magma was designed and implemented by Herbert
Brückner (Aachen).

Code producing descriptions of the groups of order p4, p5, p6, p7 for p > 3 was contributed
by Boris Girnat, Robert McKibbin, Mike Newman, Eamonn O’Brien, and Mike
Vaughan-Lee.

A new approach to the more efficient calculation of the automorphism group of a finite
soluble group has been developed and implemented David Howden (Warwick). A slight
variation of the algorithm is used to test isomorphism.

Most of the algorithms for p-groups and many of the algorithms implemented in Magma
for finite soluble groups are largely due to Charles Leedham–Green (QMUL, London).
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The NQ program of Werner Nickel (Darmstadt) is used to compute nilpotent quotients
of finitely presented groups. Version 2.2 of NQ was installed in Magma V2.14 by Bill
Unger (Magma) and Michael Vaughan-Lee (Oxford).

The p-quotient program, developed by Eamonn O’Brien (Auckland) based on earlier
work by George Havas and Mike Newman (ANU), provides a key facility for studying
p-groups in Magma. Eamonn’s extensions in Magma of this package for generating p-
groups, computing automorphism groups of p-groups, and deciding isomorphism of p-
groups are also included. He has contributed software to count certain classes of p-groups
and to construct central extensions of soluble groups.

The package for classifying metacyclic p-groups has been developed by Eamonn O’Brien
(Auckland) and Mike Vaughan-Lee (Oxford).

Group Theory: Permutation Groups

Derek Holt (Warwick) has implemented the Magma version of the Bratus/Pak algorithm
for black-box recognition of the symmetric and alternating groups.

Alexander Hulpke (Colorado State) has made available his database of all transitive
permutation groups of degree up to 30. This incorporates the earlier database of Greg
Butler (Concordia) and John McKay (Concordia) containing all transitive groups of
degree up to 15.

The PERM package developed by Jeff Leon (UIC) for efficient backtrack searching in
permutation groups is used for most of the permutation group constructions that employ
backtrack search.

A table containing all primitive groups having degree less than 2,500 has been provided by
Colva Roney-Dougal (St Andrews). The groups of degree up to 1,000 were done jointly
with Bill Unger (Magma).

A table containing all primitive groups having degrees in the range 2,500 to 4,095 has
been provided by Hannah Coutts, Martyn Quick and Colva Roney-Dougal (all at
St Andrews).

Colva Roney-Dougal (St Andrews) has implemented the Beals et al algorithm for per-
forming black-box recognition on the symmetric and alternating groups.

Derek Holt (Warwick) has constructed a table of irreducible representations of quasisim-
ple groups (up to degree 100). Some representations were contributed by Allan Steel,
Volker Gebhardt and Bill Unger (all Magma).

A Magma database has been constructed from the permutation and matrix representations
contained in the on-line Atlas of Finite Simple Groups with the assistance of its author
Robert Wilson (QMUL).
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Homological Algebra

The packages for chain complexes and basic algebras have been developed by Jon F.
Carlson (Athens, GA).

Sergei Haller developed Magma code for computing the first cohomology group of a
finite group with coefficients in a finite (not necessarily abelian) group. This formed the
basis of a package for computing Galois cohomology of linear algebra groups.

Machinery for computing group cohomology and for producing group extensions has been
developed by Derek Holt (Warwick). There are two parts to this machinery. The first
part comprises Derek’s older C-language package for permutation groups while the second
part comprises a recent Magma language package for group cohomology.

In 2011, Derek Holt (Warwick) implemented an alternative algorithm for finding the
dimension of the cohomology group Hn(G,K), for G a finite group, and K a finite field.
In this approach the dimension is found using projective covers and dimension shifting.

The code for computing A∞-structures in group cohomology was developed by Mikael
Vejdemo Johansson (Jena).

L-Functions

Tim Dokchitser (Cambridge) has implemented efficient computation of many kinds of
L-functions, including those attached to Dirichlet characters, number fields, Artin repre-
sentations, elliptic curves and hyperelliptic curves. Vladimir Dokchitser (Cambridge)
has contributed theoretical ideas.

Anton Mellit has contributed code for computing symmetric powers and tensor products
of L-functions.

Lattices and Quadratic Forms

The construction of the sublattice of an integral lattice is performed by code developed by
Markus Kirschmer (Aachen).

A collection of lattices derived from the on-line tables of lattices prepared by Neil Sloane
(AT&T Research) and Gabriele Nebe (Aachen) is included in Magma.

The original functions for computing automorphism groups and isometries of integral lat-
tices are based on the AUTO and ISOM programs of Bernd Souvignier (Nijmegen). In
V2.16 they are replaced by much faster versions developed by Bill Unger (Magma).

Coppersmith’s method (based on LLL) for finding small roots of univariate polynomials
modulo an integer has been implemented by Damien Stehlé (ENS Lyon).

Given a quadratic form F in an arbitrary number of variables, Mark Watkins (Bristol)
has used Denis Simon’s ideas as the basis of an algorithm he has implemented in Magma
for finding a large (totally) isotropic subspace of F .
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Lie Theory

The major structural machinery for Lie algebras has been implemented for Magma by
Willem de Graaf (Utrecht) and is based on his ELIAS package written in GAP. He has
also implemented a separate package for finitely presented Lie rings.

A database of soluble Lie algebras of dimensions 2, 3 and 4 over all fields has been im-
plemented by Willem de Graaf (Trento). Willem has also provided a database of all
nilpotent Lie algebras of dimension up to 6 over all base fields (except characteristic 2
when the dimension is 6).

More recent extensions to the Lie algebra package developed by Willem de Graaf
(Trento) include quantum groups, universal enveloping algebras, the semisimple subal-
gebras of a simple Lie algebra and nilpotent orbits for simple Lie algebras.

A fast algorithm for multiplying the elements of Coxeter groups based on their automatic
structure has been designed and implemented by Bob Howlett (Sydney). Bob has also
contributed Magma code for computing the growth function of a Coxeter group.

Machinery for computing the W -graphs for Lie types An, E6, E7 and E8 has been supplied
by Bob Howlett (Sydney). Subsequently, Bob supplied code for working with directed
W -graphs.

The original version of the code for root systems and permutation Coxeter groups was
modelled, in part, on the Chevie package of GAP and implemented by Don Taylor
(Sydney) with the assistance of Frank Lübeck (Aachen).

Functions that construct any finite irreducible unitary reflection group in Cn have been
implemented by Don Taylor (Sydney). Extension to the infinite case was implemented
by Scott Murray (Sydney).

The current version of Lie groups in Magma has been implemented by Scott Murray
(Sydney) and Sergei Haller with some assistance from Don Taylor (Sydney).

An extensive package for computing the combinatorial properties of highest weight rep-
resentations of a Lie algebra has been written by Dan Roozemond (Eindhoven). This
code is based in the LiE package with permission of the authors.

Code has been contributed by Robert Zeier (Technical University of Munich) for deter-
mining the irreducible simple subalgebras of the Lie algebra su(k).

Linear Algebra and Module Theory

Parts of the ATLAS (Automatically Tuned Linear Algebra Software) created by R. Clint
Whaley et al. (UTSA) are used for some fundamental matrix algorithms over finite fields
GF(p), where p is about the size of a machine integer.
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Local Arithmetric Fields

Sebastian Pauli (TU Berlin) has implemented his algorithm for factoring polynomials
over local fields within Magma. This algorithm may also be used for the factorization of
ideals, the computation of completions of global fields, and for splitting extensions of local
fields into towers of unramified and totally ramified extensions.

Modular Forms

Kevin Buzzard (Imperial College) made available his code for computing modular forms
of weight one. The Magma implementation was developed using this as a starting point.

Lassina Dembélé (Warwick) wrote part of the code implementing his algorithm for
computing Hilbert modular forms.

Enrique González-Jiménez (Madrid) contributed a package to compute curves over Q,
of genus at least 2, which are images of X1(N) for a given level N .

Matthew Greenberg (Calgary) and John Voight (Vermont) developed and imple-
mented an algorithm for computing Hilbert modular forms using Shimura curves.

A new implementation (V2.19) of Brandt modules associated to definite quaternion orders,
over Z and over function fields Fq[t], has been developed by Markus Kirschmer (Aachen)
and Steve Donnelly (Magma).

David Kohel (Singapore-NUS, Magma) has provided implementations of division poly-
nomials and isogeny structures for Brandt modules and modular curves. Jointly with
William Stein (Harvard), he implemented the module of supersingular points.

Allan Lauder (Oxford) has contributed code for computing the characteristic polynomial
of a Hecke operator acting on spaces of overconvergent modular forms.

Magma routines for constructing building blocks of modular abelian varieties were con-
tributed by Jordi Quer (Cataluna).

A package for computing with modular symbols (known as HECKE) has been developed by
William Stein (Harvard). William has also provided much of the package for modular
forms.

In 2003–2004, William Stein (Harvard) developed extensive machinery for computing
with modular abelian varieties within Magma.

A package for computing with congruence subgroups of the group PSL(2,R) has been
developed by Helena Verrill (LSU).

John Voight (Vermont) produced the package for Shimura curves and arithmetic Fuchsian
groups.

Dan Yasaki (UNC) provided the package for Bianchi modular forms.
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Primality and Factorisation

The factorisation of integers of the form pn ± 1, for small primes p, makes use of tables
compiled by Richard Brent that extend tables developed by the Cunningham project.
In addition Magma uses Richard’s intelligent factorization code FACTOR.

One of the main integer factorization tools available in Magma is due to Arjen
K. Lenstra (EPFL) and his collaborators: a multiple polynomial quadratic sieve de-
veloped by Arjen from his “factoring by email” MPQS during visits to Sydney in 1995 and
1998.

The primality of integers is proven using the ECPP (Elliptic Curves and Primality Prov-
ing) package written by François Morain (Ecole Polytechnique and INRIA). The ECPP

program in turn uses the BigNum package developed jointly by INRIA and Digital PRL.

Magma uses the GMP-ECM implementation of the Elliptic Curve Method (ECM) for
integer factorisation. This was developed by Pierrick Gaudry, Jim Fougeron, Lau-
rent Fousse, Alexander Kruppa, Dave Newman, and Paul Zimmermann. See
http://gforge.inria.fr/projects/ecm/.

Real and Complex Arithmetic

The complex arithmetic in Magma uses the MPC package which is being developed by
Andreas Enge, Philippe Théveny and Paul Zimmermann. (For more information
see www.multiprecision.org/mpc/).

Xavier Gourdon (INRIA, Paris) made available his C implementation of A. Schönhage’s
splitting-circle algorithm for the fast computation of the roots of a polynomial to a specified
precision. Xavier also assisted with the adaptation of his code for the Magma kernel.

Some portions of the GNU GMP multiprecision integer library (http://gmplib.org)
are used for integer multiplication.

Most real arithmetic in Magma is based on the MPFR package which is developed by
Paul Zimmermann (Nancy) and associates. (See www.mpfr.org).

Representation Theory

The algorithm of John Dixon for constructing the ordinary irreducible representation of a
finite group from its character has been implemented by Derek Holt (Warwick).

Derek Holt (Warwick) has made a number of important contributions to the design of
the module theory algorithms employed in Magma.

An algorithm of Sam Conlon for determining the degrees of the ordinary irreducible charac-
ters of a soluble group (without determining the full character table) has been implemented
by Derek Holt (Warwick).

In 2011, Derek Holt (Warwick) and John Cannon (Magma) developed a package for
computing the projective indecomposable KG-modules for a finite group G.
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The algorithms used in Magma for finding the lattice of submodules and the endomor-
phism ring of a KG-module (K a finite field) were developed by Charles Leedham-
Green (QMW, London) and Allan Steel (Magma).

Topology

A basic module for defining and computing with simplicial complexes was developed by
Mikael Johansson (Jena).

Nathan Dunfield (Cornell) and William Thurston (Cornell) made available their
database of the fundamental groups of the 10,986 small-volume closed hyperbolic man-
ifolds in the Hodgson-Weeks census.
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Handbook Contributors

Introduction

The Handbook of Magma Functions is the work of many individuals. It was based on a
similar Handbook written for Cayley in 1990. Up until 1997 the Handbook was mainly
written by Wieb Bosma, John Cannon and Allan Steel but in more recent times, as Magma
expanded into new areas of mathematics, additional people became involved. It is not
uncommon for some chapters to comprise contributions from 8 to 10 people. Because of
the complexity and dynamic nature of chapter authorship, rather than ascribe chapter
authors, in the table below we attempt to list those people who have made significant
contributions to chapters.

We distinguish between:

• Principal Author, i.e. one who primarily conceived the core element(s) of a chapter
and who was also responsible for the writing of a large part of its current content, and

◦ Contributing Author, i.e. one who has written a significant amount of content but
who has not had primary responsibility for chapter design and overall content.

It should be noted that attribution of a person as an author of a chapter carries no im-
plications about the authorship of the associated computer code: for some chapters it will
be true that the author(s) listed for a chapter are also the authors of the corresponding
code, but in many chapters this is either not the case or only partly true. Some informa-
tion about code authorship may be found in the sections Magma Development Team and
External Contributors.

The attributions given below reflect the authorship of the material comprising the V2.19
edition. Since many of the authors have since moved on to other careers, we have not
been able to check that all of the attributions below are completely correct. We would
appreciate hearing of any omissions.

In the chapter listing that follows, for each chapter the start of the list of principal authors
(if any) is denoted by • while the start of the list of contributing authors is denoted by ◦.
People who have made minor contributions to one or more chapters are listed in a general
acknowledgement following the chapter listing.



ACKNOWLEDGEMENTS xxxi

The Chapters

1 Statements and Expressions • W.Bosma, A. Steel
2 Functions, Procedures and Packages • W.Bosma, A. Steel
3 Input and Output • W.Bosma, A. Steel
4 Environment and Options • A. Steel ◦ W.Bosma
5 Magma Semantics • G.Matthews
6 The Magma Profiler • D.Fisher
7 Debugging Magma Code • D.Fisher
8 Introduction to Aggregates • W.Bosma
9 Sets • W.Bosma, J. Cannon ◦ A. Steel

10 Sequences • W.Bosma, J. Cannon
11 Tuples and Cartesian Products • W.Bosma
12 Lists • W.Bosma
13 Associative Arrays • A. Steel
14 Coproducts • A. Steel
15 Records • W.Bosma
16 Mappings • W.Bosma
17 Introduction to Rings • W.Bosma
18 Ring of Integers • W.Bosma, A. Steel ◦ S.Contini, B. Smith
19 Integer Residue Class Rings • W.Bosma ◦ S.Donnelly, W. Stein
20 Rational Field • W.Bosma
21 Finite Fields • W.Bosma, A. Steel
22 Nearfields • D.Taylor
23 Univariate Polynomial Rings • A. Steel
24 Multivariate Polynomial Rings • A. Steel
25 Real and Complex Fields • W.Bosma
26 Matrices • A. Steel
27 Sparse Matrices • A. Steel
28 Vector Spaces • J.Cannon, A. Steel
29 Polar Spaces • D.Taylor
30 Lattices • A. Steel, D. Stehlé
31 Lattices With Group Action • B. Souvignier ◦ M.Kirschmer
32 Quadratic Forms • S.Donnelly
33 Binary Quadratic Forms • D.Kohel
34 Number Fields • C.Fieker ◦ W.Bosma, N. Sutherland
35 Quadratic Fields • W.Bosma
36 Cyclotomic Fields • W.Bosma, C. Fieker
37 Orders and Algebraic Fields • C.Fieker ◦ W.Bosma, N. Sutherland
38 Galois Theory of Number Fields • C.Fieker ◦ J.Klüners, K.Geißler
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39 Class Field Theory • C.Fieker
40 Algebraically Closed Fields • A. Steel
41 Rational Function Fields • A. Steel ◦ A. van derWaall
42 Algebraic Function Fields • F.Heß ◦ C.Fieker, N. Sutherland
43 Class Field Theory For Global Function Fields • C.Fieker
44 Artin Representations • T.Dokchitser
45 Valuation Rings • W.Bosma
46 Newton Polygons • G.Brown, N. Sutherland
47 p-adic Rings and their Extensions • D.Fisher, B. Souvignier ◦ N. Sutherland
48 Galois Rings • A. Steel
49 Power, Laurent and Puiseux Series • A. Steel
50 Lazy Power Series Rings • N. Sutherland
51 General Local Fields • N. Sutherland
52 Algebraic Power Series Rings • T.Beck, M.Harrison
53 Introduction to Modules • J.Cannon
54 Free Modules • J.Cannon, A. Steel
55 Modules over Dedekind Domains • C.Fieker, N. Sutherland
56 Chain Complexes • J.Carlson
57 Groups • J.Cannon ◦ W.Unger
58 Permutation Groups • J.Cannon ◦ B.Cox, W.Unger
59 Matrix Groups over General Rings • J.Cannon ◦ B.Cox, E.A.O’Brien, A. Steel
60 Matrix Groups over Finite Fields • E.A.O’Brien
61 Matrix Groups over Infinite Fields • E.A.O’Brien
62 Matrix Groups over Q and Z • M.Kirschmer, B. Souvignier
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USING THE HANDBOOK

Most sections within a chapter of this Handbook consist of a brief introduction and expla-
nation of the notation, followed by a list of Magma functions, procedures and operators.

Each entry in this list consists of an expression in a box, and an indented explanation of
use and effects. The typewriter typefont is used for commands that can be used literally;
however, one should be aware that most functions operate on variables that must have
values assigned to them beforehand, and return values that should be assigned to variables
(or the first value should be used in an expression). Thus the entry:

Xgcd(a, b)

The extended gcd; returns integers d, l and m such that d is the greatest common divisor
of the integers a and b, and d = l ∗ a + m ∗ b.
indicates that this function could be called in Magma as follows:

g, a, b := Xgcd(23, 28);

If the function has optional named parameters, a line like the following will be found in
the description:

Proof BoolElt Default : true

The first word will be the name of the parameter, the second word will be the type
which its value should have, and the rest of the line will indicate the default for the
parameter, if there is one. Parameters for a function call are specified by appending a
colon to the last argument, followed by a comma-separated list of assignments (using :=)
for each parameter. For example, the function call IsPrime(n: Proof := false) calls
the function IsPrime with argument n but also with the value for the parameter Proof
set to false.

Whenever the symbol # precedes a function name in a box, it indicates that the par-
ticular function is not yet available but should be in the future.

An index is provided at the end of each volume which contains all the intrinsics in the
Handbook.

Running the Examples

All examples presented in this Handbook are available to Magma users. If your Magma
environment has been set up correctly, you can load the source for an example by using
the name of the example as printed in boldface at the top (the name has the form HmEn,
where m is the Chapter number and n is the Example number). So, to run the first
example in the Chapter 28, type:

load "H28E1";
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Chapter 1

STATEMENTS AND EXPRESSIONS

1.1 Introduction

This chapter contains a very terse overview of the basic elements of the Magma language.

1.2 Starting, Interrupting and Terminating

If Magma has been installed correctly, it may be activated by typing ‘magma’.

<Ctrl>-C

Interrupt Magma while it is performing some task (that is, while the user does
not have a ‘prompt’) to obtain a new prompt. Magma will try to interrupt at a
convenient point (this may take some time). If <Ctrl>-C is typed twice within half
a second, Magma will exit completely immediately.

quit;

<Ctrl>-D

Terminate the current Magma-session.

<Ctrl>-\

Immediately quit Magma (send the signal SIGQUIT to the Magma process on
Unix machines). This is occasionally useful when <Ctrl>-C does not seem to work.

1.3 Identifiers

Identifiers (names for user variables, functions etc.) must begin with a letter, and this
letter may be followed by any combination of letters or digits, provided that the name is
not a reserved word (see the chapter on reserved words a complete list). In this definition
the underscore is treated as a letter; but note that a single underscore is a reserved word.
Identifier names are case-sensitive; that is, they are distinguished from one another by
lower and upper case.

Intrinsic Magma functions usually have names beginning with capital letters (current
exceptions are pCore, pQuotient and the like, where the p indicates a prime). Note that
these identifiers are not reserved words; that is, one may use names of intrinsic functions
for variables.
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1.4 Assignment
In this section the basic forms of assignment of values to identifiers are described.

1.4.1 Simple Assignment

x := expression;

Given an identifier x and an expression expression, assign the value of expression to
x.

Example H1E1

> x := 13;

> y := x^2-2;

> x, y;

13 167

Intrinsic function names are identifiers just like the x and y above. Therefore it is possible to
reassign them to your own variable.

> f := PreviousPrime;

> f(y);

163

In fact, the same can also be done with the infix operators, except that it is necessary to enclose
their names in quotes. Thus it is possible to define your own function Plus to be the function
taking the arguments of the intrinsic + operator.

> Plus := ’+’;

> Plus(1/2, 2);

5/2

Note that redefining the infix operator will not change the corresponding mutation assignment
operator (in this case +:=).

x1, x2, ..., xn := expression;

Assignment of n ≥ 1 values, returned by the expression on the right hand side. Here
the xi are identifiers, and the right hand side expression must return m ≥ n values;
the first n of these will be assigned to x1, x2, ..., xn respectively.

:= expression;

Ignore the value(s) returned by the expression on the right hand side.

assigned x

An expression which yields the value true if the ‘local’ identifier x has a value
currently assigned to it and false otherwise. Note that the assigned-expression
will return false for intrinsic function names, since they are not ‘local’ variables
(the identifiers can be assigned to something else, hiding the intrinsic function).
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Example H1E2

The extended greatest common divisor function Xgcd returns 3 values: the gcd d of the arguments
m and n, as well as multipliers x and y such that d = xm + yn. If one is only interested in the
gcd of the integers m = 12 and n = 15, say, one could use:

> d := Xgcd(12, 15);

To obtain the multipliers as well, type

> d, x, y := Xgcd(12, 15);

while the following offers ways to retrieve two of the three return values.

> d, x := Xgcd(12, 15);

> d, _, y := Xgcd(12, 15);

> _, x, y := Xgcd(12, 15);

1.4.2 Indexed Assignment

x[expression1][expression2]...[expressionn] := expression;

x[expression1,expression2,...,expressionn] := expression;

If the argument on the left hand side allows indexing at least n levels deep, and if
this indexing can be used to modify the argument, this offers two equivalent ways
of accessing and modifying the entry indicated by the expressions expri. The most
important case is that of (nested) sequences.

Example H1E3

Left hand side indexing can be used (as is explained in more detail in the chapter on sequences)
to modify existing entries.

> s := [ [1], [1, 2], [1, 2, 3] ];

> s;

[

[ 1 ],

[ 1, 2 ],

[ 1, 2, 3 ]

]

> s[2, 2] := -1;

> s;

[

[ 1 ],

[ 1, -1 ],

[ 1, 2, 3 ]

]
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1.4.3 Generator Assignment
Because of the importance of naming the generators in the case of finitely presented mag-
mas, special forms of assignment allow names to be assigned at the time the magma itself
is assigned.

E<x1, x2, ...xn> := expression;

If the right hand side expression returns a structure that allows naming of ‘gener-
ators’, such as finitely generated groups or algebras, polynomial rings, this assigns
the first n names to the variables x1, x2, ..., xn. Naming of generators usu-
ally has two aspects; firstly, the strings x1, x2, ...xn are used for printing of the
generators, and secondly, to the identifiers x1, x2, ...xn are assigned the values
of the generators. Thus, except for this side effect regarding printing, the above
assignment is equivalent to the n + 1 assignments:

E := expression;
x1 := E.1; x2 := E.2; ... xn := E.n;

E<[x]> := expression;

If the right hand side expression returns a structure S that allows naming of ‘gener-
ators’, this assigns the names of S to be those formed by appending the numbers 1,
2, etc. in order enclosed in square brackets to x (considered as a string) and assigns
x to the sequence of the names of S.

Example H1E4

We demonstrate the sequence method of generator naming.

> P<[X]> := PolynomialRing(RationalField(), 5);

> P;

Polynomial ring of rank 5 over Rational Field

Lexicographical Order

Variables: X[1], X[2], X[3], X[4], X[5]

> X;

[

X[1],

X[2],

X[3],

X[4],

X[5]

]

> &+X;

X[1] + X[2] + X[3] + X[4] + X[5]

> (&+X)^2;

X[1]^2 + 2*X[1]*X[2] + 2*X[1]*X[3] + 2*X[1]*X[4] +

2*X[1]*X[5] + X[2]^2 + 2*X[2]*X[3] + 2*X[2]*X[4] +

2*X[2]*X[5] + X[3]^2 + 2*X[3]*X[4] + 2*X[3]*X[5] +

X[4]^2 + 2*X[4]*X[5] + X[5]^2
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AssignNames(∼S, [s1, ... sn] )

If S is a structure that allows naming of ‘generators’ (see the Index for a complete
list), this procedure assigns the names specified by the strings to these generators.
The number of generators has to match the length of the sequence. This will result
in the creation of a new structure.

Example H1E5

> G<a, b> := Group<a, b | a^2 = b^3 = a^b*b^2>;

> w := a * b;

> w;

a * b

> AssignNames(~G, ["c", "d"]);

> G;

Finitely presented group G on 2 generators

Relations

c^2 = d^-1 * c * d^3

d^3 = d^-1 * c * d^3

> w;

a * b

> Parent(w);

Finitely presented group on 2 generators

Relations

a^2 = b^-1 * a * b^3

b^3 = b^-1 * a * b^3

> G eq Parent(w);

true

1.4.4 Mutation Assignment

x o:= expression;

This is the mutation assignment : the expression is evaluated and the operator o is
applied on the result and the current value of x, and assigned to x again. Thus the
result is equivalent to (but an optimized version of): x := x o expression;. The
operator may be any of the operations join, meet, diff, sdiff, cat, *, +, -, /,
^, div, mod, and, or, xor provided that the operation is legal on its arguments of
course.
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Example H1E6

The following simple program to produce a set consisting of the first 10 powers of 2 involves the
use of two different mutation assignments.

> x := 1;

> S := { };

> for i := 1 to 10 do

> S join:= { x };

> x *:= 2;

> end for;

> S;

{ 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 }

1.4.5 Deletion of Values

delete x

(Statement.) Delete the current value of the identifier x. The memory occupied is
freed, unless other variables still refer to it. If x is the name of an intrinsic Magma
function that has been reassigned to, the identifier will after deletion again refer to
that intrinsic function. Intrinsic functions cannot be deleted.

1.5 Boolean values

This section deals with logical values (“Booleans”).
Booleans are primarily of importance as (return) values for (intrinsic) predicates. It is

important to know that the truth-value of the operators and and or is always evaluated
left to right , that is, the left-most clause is evaluated first, and if that determines the value
of the operator evaluation is aborted; if not, the next clause is evaluated, etc. So, for
example, if x is a boolean, it is safe (albeit silly) to type:

> if x eq true or x eq false or x/0 eq 1 then
> "fine";
> else
> "error";
> end if;

even though x/0 would cause an error (”Bad arguments”, not ”Division by zero”!) upon
evaluation, because the truth value will have been determined before the evaluation of x/0
takes place.
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1.5.1 Creation of Booleans

Booleans()

The Boolean structure.

#B

Cardinality of Boolean structure (2).

true

false

The Boolean elements.

Random(B)

Return a random Boolean.

1.5.2 Boolean Operators

x and y

Returns true if both x and y are true, false otherwise. If x is false, the expression
for y is not evaluated.

x or y

Returns true if x or y is true (or both are true), false otherwise. If x is true,
the expression for y is not evaluated.

x xor y

Returns true if either x or y is true (but not both), false otherwise.

not x

Negate the truth value of x.

1.5.3 Equality Operators
Magma provides two equality operators: eq for strong (comparable) equality testing, and
cmpeq for weak equality testing. The operators depend on the concept of comparability.
Objects x and y in Magma are said to be comparable if both of the following points hold:
(a)x and y are both elements of a structure S or there is a structure S such x and y will

be coerced into S by automatic coercion;
(b)There is an equality test for elements of S defined within Magma.

The possible automatic coercions are listed in the descriptions of the various Magma
modules. For instance, the table in the introductory chapter on rings shows that inte-
gers can be coerced automatically into the rational field so an integer and a rational are
comparable.

x eq y

If x and y are comparable, return true if x equals y (which will always work by the
second rule above). If x and y are not comparable, an error results.
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x ne y

If x and y are comparable, return true if x does not equal y. If x and y are not
comparable, an error results.

x cmpeq y

If x and y are comparable, return whether x equals y. Otherwise, return false.
Thus this operator always returns a value and an error never results. It is useful
when comparing two objects of completely different types where it is desired that
no error can happen. However, it is strongly recommended that eq is usually used
to allow Magma to pick up common unintentional type errors.

x cmpne y

If x and y are comparable, return whether x does not equal y. Otherwise, return
true. Thus this operator always returns a value and an error never results. It is
useful when comparing two objects of completely different types where it is desired
that no error can happen. However, it is strongly recommended that ne is usually
used to allow Magma to pick up common unintentional type errors.

Example H1E7

We illustrate the different semantics of eq and cmpeq.

> 1 eq 2/2;

true

> 1 cmpeq 2/2;

true

> 1 eq "x";

Runtime error in ’eq’: Bad argument types

> 1 cmpeq "x";

false

> [1] eq ["x"];

Runtime error in ’eq’: Incompatible sequences

> [1] cmpeq ["x"];

false

1.5.4 Iteration
A Boolean structure B may be used for enumeration: for x in B do, and x in B in set
and sequence constructors.
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Example H1E8

The following program checks that the functions ne and xor coincide.

> P := Booleans();

> for x, y in P do

> (x ne y) eq (x xor y);

> end for;

true

true

true

true

Similarly, we can test whether for any pair of Booleans x, y it is true that

x = y ⇐⇒ (x ∧ y) ∨ (¬x ∧ ¬y).

> equal := true;

> for x, y in P do

> if (x eq y) and not ((x and y) or (not x and not y)) then

> equal := false;

> end if;

> end for;

> equal;

true

1.6 Coercion

Coercion is a fundamental concept in Magma. Given a structures A and B, there is
often a natural mathematical mapping from A to B (e.g., embedding, projection), which
allows one to transfer elements of A to corresponding elements of B. This is known as
coercion. Natural and obvious coercions are supported in Magma as much as possible;
see the relevant chapters for the coercions possible between various structures.

S ! x

Given a structure S and an object x, attempt to coerce x into S and return the
result if successful. If the attempt fails, an error ensues.

IsCoercible(S, x)

Given a structure S and an object x, attempt to coerce x into S; if successful, return
true and the result of the coercion, otherwise return false.
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1.7 The where . . . is Construction
By the use of the where ... is construction, one can within an expression temporarily
assign an identifier to a sub-expression. This allows for compact code and efficient re-use
of common sub-expressions.

expression1 where identifier is expression2

expression1 where identifier := expression2

This construction is an expression that temporarily assigns the identifier to the
second expression and then yields the value of the first expression. The identifier
may be referred to in the first expression and it will equal the value of the second
expression. The token := can be used as a synonym for is. The scope of the
identifier is the where ... is construction alone except for when the construction
is part of an expression list — see below.

The where operator is left-associative. This means that there can be multiple
uses of where ... is constructions and each expression can refer to variables bound
in the enclosing constructions.

Another important feature is found in a set or sequence constructor. If there
are where ... is constructions in the predicate, then any variables bound in them
may be referred to in the expression at the beginning of the constructor. If the
whole predicate is placed in parentheses, then any variables bound in the predicate
do not extend to the expression at the beginning of the constructor.

The where operator also extends left in expression lists. That is, if there is an
expression E in a expression list which is a where construction (or chain of where
constructions), the identifiers bound in that where construction (or chain) will be
defined in all expressions in the list which are to the left of E. Expression lists
commonly arise as argument lists to functions or procedures, return arguments,
print statements (with or without the word ‘print’) etc. A where construction also
overrides (hides) any where construction to the right of it in the same list. Using
parentheses around a where expression ensures that the identifiers bound within it
are not seen outside it.

Example H1E9

The following examples illustrate simple uses of where ... is.

> x := 1;

> x where x is 10;

10

> x;

1

> Order(G) + Degree(G) where G is Sym(3);

9

Since where is left-associative we may have multiple uses of it. The use of parentheses, of course,
can override the usual associativity.

> x := 1;
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> y := 2;

> x + y where x is 5 where y is 6;

11

> (x + y where x is 5) where y is 6; // the same

11

> x + y where x is (5 where y is 6);

7

> x + y where x is y where y is 6;

12

> (x + y where x is y) where y is 6; // the same

12

> x + y where x is (y where y is 6);

8

We now illustrate how the left expression in a set or sequence constructor can reference the
identifiers of where constructions in the predicate.

> { a: i in [1 .. 10] | IsPrime(a) where a is 3*i + 1 };
{ 7, 13, 19, 31 }
> [<x, y>: i in [1 .. 10] | IsPrime(x) and IsPrime(y)

> where x is y + 2 where y is 2 * i + 1];

[ <5, 3>, <7, 5>, <13, 11>, <19, 17> ]

We next demonstrate the semantics of where constructions inside expression lists.

> // A simple use:

> [a, a where a is 1];

[ 1, 1 ]

> // An error: where does not extend right

> print [a where a is 1, a];

User error: Identifier ’a’ has not been declared

> // Use of parentheses:

> [a, (a where a is 1)] where a is 2;

[ 2, 1 ]

> // Another use of parentheses:

> print [a, (a where a is 1)];

User error: Identifier ’a’ has not been declared

> // Use of a chain of where expressions:

> [<a, b>, <b, a> where a is 1 where b is 2];

[ <1, 2>, <2, 1> ]

> // One where overriding another to the right of it:

> [a, a where a is 2, a where a is 3];

[ 2, 2, 3 ]
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1.8 Conditional Statements and Expressions
The conditional statement has the usual form if ... then ... else ... end if;. It
has several variants. Within the statement, a special prompt will appear, indicating that
the statement has yet to be closed. Conditional statements may be nested.

The conditional expression, select ... else, is used for in-line conditionals.

1.8.1 The Simple Conditional Statement

if Boolean expression then
statements1

else
statements2

end if;

if Boolean expression then
statements

end if;

The standard conditional statement: the value of the Boolean expression is evalu-
ated. If the result is true, the first block of statements is executed, if the result
is false the second block of statements is executed. If no action is desired in the
latter case, the construction may be abbreviated to the second form above.

if Boolean expression1 then
statements1

elif Boolean expression2 then
statements2

else
statements3

end if;

Since nested conditions occur frequently, elif provides a convenient abbreviation
for else if, which also restricts the ‘level’:

if Boolean expression then
statements1

elif Boolean expression2 then
statements2

else
statements3

end if;

is equivalent to

if Boolean expression1 then
statements1

else
if Boolean expression2 then
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statements2
else

statements3
end if;

end if;

Example H1E10

> m := Random(2, 10000);

> if IsPrime(m) then

> m, "is prime";

> else

> Factorization(m);

> end if;

[ <23, 1>, <37, 1> ]

1.8.2 The Simple Conditional Expression

Boolean expression select expression1 else expression2

This is an expression, of which the value is that of expression1 or expression2,
depending on whether Boolean expression is true or false.

Example H1E11

Using the select ... else construction, we wish to assign the sign of y to the variable s.

> y := 11;

> s := (y gt 0) select 1 else -1;

> s;

1

This is not quite right (when y = 0), but fortunately we can nest select ... else constructions:

> y := -3;

> s := (y gt 0) select 1 else (y eq 0 select 0 else -1);

> s;

-1

> y := 0;

> s := (y gt 0) select 1 else (y eq 0 select 0 else -1);

> s;

0

The select ... else construction is particularly important in building sets and sequences,
because it enables in-line if constructions. Here is a sequence containing the first 100 entries of
the Fibonacci sequence:

> f := [ i gt 2 select Self(i-1)+Self(i-2) else 1 : i in [1..100] ];
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1.8.3 The Case Statement

case expression :
when expression, . . . , expression:

statements
...

when expression, . . . , expression:
statements

end case;

The expression following case is evaluated. The statements following the first ex-
pression whose value equals this value are executed, and then the case statement
has finished. If none of the values of the expressions equal the value of the case
expression, then the statements following else are executed. If no action is desired
in the latter case, the construction may be abbreviated to the second form above.

Example H1E12

> x := 73;

> case Sign(x):

> when 1:

> x, "is positive";

> when 0:

> x, "is zero";

> when -1:

> x, "is negative";

> end case;

73 is positive

1.8.4 The Case Expression

case< expression |
expressionleft,1 : expressionright,1,

...
expressionleft,n : expressionright,n,
default : expressiondef >

This is the expression form of case. The expression is evaluated to the value v.
Then each of the left-hand expressions expressionleft,i is evaluated until one is found
whose value equals v; if this happens the value of the corresponding right-hand
expression expressionright,i is returned. If no left-hand expression with value v is
found the value of the default expression expressiondef is returned.

The default case cannot be omitted, and must come last.
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1.9 Error Handling Statements
Magma has facilities for both reporting and handling errors. Errors can arise in a variety
of circumstances within Magma’s internal code (due to, for instance, incorrect usage of
a function, or the unexpected failure of an algorithm). Magma allows the user to raise
errors in their own code, as well as catch many kinds of errors.

1.9.1 The Error Objects
All errors in Magma are of type Err. Error objects not only include a description of
the error, but also information relating to the location at which the error was raised, and
whether the error was a user error, or a system error.

Error(x)

Constructs an error object with user information given by x, which can be of any
type. The object x is stored in the Object attributed of the constructed error object,
and the Type attribute of the object is set to “ErrUser”. The remaining attributes
are uninitialized until the error is raised by an error statement; at that point they
are initialized with the appropriate positional information.

e‘Position

Stores the position at which the error object e was raised. If the error object has
not yet been raised, the attribute is undefined.

e‘Traceback

Stores the stack traceback giving the position at which the error object e was raised.
If the error object has not yet been raised, the attribute is undefined.

e‘Object

Stores the user defined error information for the error. If the error is a system error,
then this will be a string giving a textual description of the error.

e‘Type

Stores the type of the error. Currently, there are only two types of errors in Magma:
“Err” denotes a system error, and “ErrUser” denotes an error raised by the user.

1.9.2 Error Checking and Assertions

error expression, ..., expression;

Raises an error, with the error information being the printed value of the expressions.
This statement is useful, for example, when an illegal value of an argument is passed
to a function.

error if Boolean expression, expression, ..., expression;

If the given boolean expression evaluates to true, then raises an error, with the error
information being the printed value of the expressions. This statement is designed
for checking that certain conditions must be met, etc.
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assert Boolean expression;

assert2 Boolean expression;

assert3 Boolean expression;

These assertion statements are useful to check that certain conditions are satisfied.
There is an underlying Assertions flag, which is set to 1 by default.

For each statement, if the Assertions flag is less than the level specified by
the statement (respectively 1, 2, 3 for the above statements), then nothing is done.
Otherwise, the given boolean expression is evaluated and if the result is false, an
error is raised, with the error information being an appropriate message.

It is recommended that when developing package code, assert is used for im-
portant tests (always to be tested in any mode), while assert2 is used for more
expensive tests, only to be checked in the debug mode, while assert3 is be used for
extremely stringent tests which are very expensive.

Thus the Assertions flag can be set to 0 for no checking at all, 1 for normal
checks, 2 for debug checks and 3 for extremely stringent checking.

1.9.3 Catching Errors

try
statements1

catch e
statements2

end try;

The try/catch statement lets users handle raised errors. The semantics of a
try/catch statement are as follows: the block of statements statements1 is ex-
ecuted. If no error is raised during its execution, then the block of statements
statements2 is not executed; if an error is raised at any point in statements1, ex-
ecution immediately transfers to statements2 (the remainder of statements1 is not
executed). When transfer is controlled to the catch block, the variable named e
is initialized to the error that was raised by statements1; this variable remains in
scope until the end of the catch block, and can be both read from and written
to. The catch block can, if necessary, reraise e, or any other error object, using an
error statement.

Example H1E13

The following example demonstrates the use of error objects, and try/catch statements.

> procedure always_fails(x)

> error Error(x);

> end procedure;

>

> try

> always_fails(1);
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> always_fails(2); // we never get here

> catch e

> print "In catch handler";

> error "Error calling procedure with parameter: ", e‘Object;

> end try;

In catch handler

Error calling procedure with parameter: 1

1.10 Iterative Statements
Three types of iterative statement are provided in Magma: the for-statement providing
definite iteration and the while- and repeat-statements providing indefinite iteration.

Iteration may be performed over an arithmetic progression of integers or over any finite
enumerated structure. Iterative statements may be nested. If nested iterations occur over
the same enumerated structure, abbreviations such as for x, y in X do may be used;
the leftmost identifier will correspond to the outermost loop, etc. (For nested iteration in
sequence constructors, see Chapter 10.)

Early termination of the body of loop may be specified through use of the ‘jump’
commands break and continue.

1.10.1 Definite Iteration

for i := expression1 to expression2 by expression3 do
statements

end for;

The expressions in this for loop must return integer values, say b, e and s (for
‘begin’, ‘end’ and ‘step’) respectively. The loop is ignored if either s > 0 and b > e,
or s < 0 and b < e. If s = 0 an error occurs. In the remaining cases, the value
b + k · s will be assigned to i, and the statements executed, for k = 0, 1, 2, . . . in
succession, as long as b + k · s ≤ e (for e > 0) or b + k · s ≥ e (for e < 0).

If the required step size is 1, the above may be abbreviated to:

for i := expression1 to expression2 do
statements

end for;

for x in S do
statements

end for;

Each of the elements of the finite enumerated structure S will be assigned to x in
succession, and each time the statements will be executed. It is possible to nest
several of these for loops compactly as follows.

for x11, ..., x1n1 in S1, ..., xm1, ..., xmnm in Sm do
statements

end for;
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1.10.2 Indefinite Iteration

while Boolean expression do
statements

end while;

Check whether or not the Boolean expression has the value true; if it has, execute
the statements. Repeat this until the expression assumes the value false, in which
case statements following the end while; will be executed.

Example H1E14

The following short program implements a run of the famous 3x+1 problem on a random integer
between 1 and 100.

> x := Random(1, 100);

> while x gt 1 do

> x;

> if IsEven(x) then

> x div:= 2;

> else

> x := 3*x+1;

> end if;

> end while;

13

40

20

10

5

16

8

4

2

repeat
statements

until Boolean expression;

Execute the statements, then check whether or not the Boolean expression has the
value true. Repeat this until the expression assumes the value false, in which case
the loop is exited, and statements following it will be executed.
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Example H1E15

This example is similar to the previous one, except that it only prints x and the number of steps
taken before x becomes 1. We use a repeat loop, and show that the use of a break statement
sometimes makes it unnecessary that the Boolean expression following the until ever evaluates
to true. Similarly, a while true statement may be used if the user makes sure the loop will be
exited using break.

> x := Random(1, 1000);

> x;

172

> i := 0;

> repeat

> while IsEven(x) do

> i +:= 1;

> x div:= 2;

> end while;

> if x eq 1 then

> break;

> end if;

> x := 3*x+1;

> i +:= 1;

> until false;

> i;

31

1.10.3 Early Exit from Iterative Statements

continue;

The continue statement can be used to jump to the end of the innermost enclosing
loop: the termination condition for the loop is checked immediately.

continue identifier;

As in the case of break, this allows jumps out of nested for loops: the termina-
tion condition of the loop with loop variable identifier is checked immediately after
continue identifier is encountered.

break;

A break inside a loop causes immediate exit from the innermost enclosing loop.

break identifier;

In nested for loops, this allows breaking out of several loops at once: this will cause
an immediate exit from the loop with loop variable identifier.
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Example H1E16

> p := 10037;

> for x in [1 .. 100] do

> for y in [1 .. 100] do

> if x^2 + y^2 eq p then

> x, y;

> break x;

> end if;

> end for;

> end for;

46 89

Note that break instead of break x would have broken only out of the inner loop; the output in
that case would have been:

46 89

89 46

1.11 Runtime Evaluation: the eval Expression

Sometimes it is convenient to able to evaluate expressions that are dynamically constructed
at runtime. For instance, consider the problem of implementing a database of mathematical
objects in Magma. Suppose that these mathematical objects are very large, but can be
constructed in only a few lines of Magma code (a good example of this would be Magma’s
database of best known linear codes). It would be very inefficient to store these objects
in a file for later retrieval; a better solution would be to instead store a string giving
the code necessary to construct each object. Magma’s eval feature can then be used to
dynamically parse and execute this code on demand.

eval expression

The eval expression works as follows: first, it evaluates the given expression, which
must evaluate to a string. This string is then treated as a piece of Magma code
which yields a result (that is, the code must be an expression, not a statement), and
this result becomes the result of the eval expression.

The string that is evaluated can be of two forms: it can be a Magma expression,
e.g., “1+2”, “Random(x)”, or it can be a sequence of Magma statements. In the
first case, the string does not have to be terminated with a semicolon, and the result
of the expression given in the string will be the result of the eval expression. In the
second case, the last statement given in the string should be a return statement; it
is easiest to think of this case as defining the body of a function.

The string that is used in the eval expression can refer to any variable that is
in scope during the evaluation of the eval expression. However, it is not possible
for the expression to modify any of these variables.
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Example H1E17

In this example we demonstrate the basic usage of the eval keyword.

> x := eval "1+1"; // OK

> x;

2

> eval "1+1;"; // not OK

2

>> eval "1+1;"; // not OK

^

Runtime error: eval must return a value

> eval "return 1+1;"; // OK

2

> eval "x + 1"; // OK

3

> eval "x := x + 1; return x";

>> eval "x := x + 1; return x";

^

In eval expression, line 1, column 1:

>> x := x + 1; return x;

^

Located in:

>> eval "x := x + 1; return x";

^

User error: Imported environment value ’x’ cannot be used as a local

Example H1E18

In this example we demonstrate how eval can be used to construct Magma objects specified with
code only available at runtime.

> M := Random(MatrixRing(GF(2), 5));

> M;

[1 1 1 1 1]

[0 0 1 0 1]

[0 0 1 0 1]

[1 0 1 1 1]

[1 1 0 1 1]

> Write("/tmp/test", M, "Magma");

> s := Read("/tmp/test");

> s;

MatrixAlgebra(GF(2), 5) ! [ GF(2) | 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1,

1, 0, 1, 1, 1, 1, 1, 0, 1, 1 ]

> M2 := eval s;

> assert M eq M2;
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1.12 Comments and Continuation

//

One-line comment: any text following the double slash on the same line will be
ignored by Magma.

/* */

Multi-line comment: any text between /* and */ is ignored by Magma.

\

Line continuation character: this symbol and the <return> immediately following is
ignored by Magma. Evaluation will continue on the next line without interruption.
This is useful for long input lines.

Example H1E19

> // The following produces an error:

> x := 12

> 34;

User error: bad syntax

> /* but this is correct

> and reads two lines: */

> x := 12\

> 34;

> x;

1234

1.13 Timing

Cputime()

Return the CPU time (as a real number of default precision) used since the beginning
of the Magma session. Note that for the MSDOS version, this is the real time
used since the beginning of the session (necessarily, since process CPU time is not
available).

Cputime(t)

Return the CPU time (as a real number of default precision) used since time t. Time
starts at 0.0 at the beginning of a Magma session.

Realtime()

Return the absolute real time (as a real number of default precision), which is the
number of seconds since 00:00:00 GMT, January 1, 1970. For the MSDOS version,
this is the real time used since the beginning of the session.
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Realtime(t)

Return the real time (as a real number of default precision) elapsed since time t.

ClockCycles()

Return the number of clock cycles of the CPU since Magma’s startup. Note that
this matches the real time (i.e., not process user/system time). If the operation is
not supported on the current processor, zero is returned.

time statement;

Execute the statement and print the time taken when the statement is completed.

vtime flag: statement;

vtime flag, n: statement:

If the verbose flag flag (see the function SetVerbose) has a level greater than or
equal to n, execute the statement and print the time taken when the statement is
completed. If the flag has level 0 (i.e., is not turned on), still execute the statement,
but do not print the timing. In the first form of this statement, where a specific
level is not given, n is taken to be 1. This statement is useful in Magma code found
in packages where one wants to print the timing of some sub-algorithm if and only
if an appropriate verbose flag is turned on.

Example H1E20

The time command can be used to time a single statement.

> n := 2^109-1;

> time Factorization(n);

[<745988807, 1>, <870035986098720987332873, 1>]

Time: 0.149

Alternatively, we can extract the current time t and use Cputime. This method can be used to
time the execution of several statements.

> m := 2^111-1;

> n := 2^113-1;

> t := Cputime();

> Factorization(m);

[<7, 1>, <223, 1>, <321679, 1>, <26295457, 1>, <319020217, 1>, <616318177, 1>]

> Factorization(n);

[<3391, 1>, <23279, 1>, <65993, 1>, <1868569, 1>, <1066818132868207, 1>]

> Cputime(t);

0.121

We illustrate a simple use of vtime with vprint within a function.

> function MyFunc(G)

> vprint User1: "Computing order...";

> vtime User1: o := #G;
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> return o;

> end function;

> SetVerbose("User1", 0);

> MyFunc(Sym(4));

24

> SetVerbose("User1", 1);

> MyFunc(Sym(4));

Computing order...

Time: 0.000

24

1.14 Types, Category Names, and Structures

The following functions deal with types or category names and general structures. Magma
has two levels of granularity when referring to types. In most cases, the coarser grained
types (of type Cat) are used. Examples of these kinds of types are “polynomial rings”
(RngUPol) and “finite fields” (FldFin). However, sometimes more specific typing informa-
tion is sometimes useful. For instance, the algorithm used to factorize polynomials differs
significantly, depending on the coefficient ring. Hence, we might wish to implement a spe-
cialized factorization algorithm polynomials over some particular ring type. Due to this
need, Magma also supports extended types.

An extended type (of type ECat) can be thought of as a type taking a parame-
ter. Using extended types, we can talk about “polynomial rings over the integers”
(RngUPol[RngInt]), or “maps from the integers to the rationals” (Map[RngInt, FldRat]).
Extended types can interact with normal types in all ways, and thus generally only need
to be used when the extra level of information is required.

Type(x)

Category(x)

Given any object x, return the type (or category name) of x.

ExtendedType(x)

ExtendedCategory(x)

Given any object x, return the extended type (or category name) of x.

ISA(T, U)

Given types (or extended types) T and U , return whether T ISA U , i.e., whether
objects of type T inherit properties of type U . For example, ISA(RngInt, Rng) is
true, because the ring of integers Z is a ring.
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MakeType(S)

Given a string S specifying a type return the actual type corresponding to S. This
is useful when some intrinsic name hides the symbol which normally refers to the
actual type.

ElementType(S)

Given any structure S, return the type of the elements of S. For example, the
element type of the ring of integers Z is RngIntElt since that is the type of the
integers which lie in Z.

CoveringStructure(S, T)

Given structures S and T , return a covering structure C for S and T , so that S and
T both embed into C. An error results if no such covering structure exists.

ExistsCoveringStructure(S, T)

Given structures S and T , return whether a covering structure C for S and T exists,
and if so, return such a C, so that S and T both embed into C.

Example H1E21

We demonstrate the type and structure functions.

> Type(3);

RngIntElt

> t := MakeType("RngIntElt");

> t;

RngIntElt

> Type(3) eq t;

true

> Z := IntegerRing();

> Type(Z);

RngInt

> ElementType(Z);

RngIntElt

> ISA(RngIntElt, RngElt);

true

> ISA(RngIntElt, GrpElt);

false

> ISA(FldRat, Fld);

true

The following give examples of when covering structures exist or do not exist.

> Q := RationalField();

> CoveringStructure(Z, Q);

Rational Field

> ExistsCoveringStructure(Z, DihedralGroup(3));

false
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> ExistsCoveringStructure(Z, CyclotomicField(5));

true Cyclotomic Field of order 5 and degree 4

> ExistsCoveringStructure(CyclotomicField(3), CyclotomicField(5));

true Cyclotomic Field of order 15 and degree 8

> ExistsCoveringStructure(GF(2), GF(3));

false

> ExistsCoveringStructure(GF(2^6), GF(2, 15));

true Finite field of size 2^30

Our last example demonstrates the use of extended types:

> R<x> := PolynomialRing(Integers());

> ExtendedType(R);

RngUPol[RngInt]

> ISA(RngUPol[RngInt], RngUPol);

true

> f := x + 1;

> ExtendedType(f);

RngUPolElt[RngInt]

> ISA(RngUPolElt[RngInt], RngUPolElt);

true

1.15 Random Object Generation

Pseudo-random quantities are used in several Magma algorithms, and may also be gener-
ated explicitly by some intrinsics. Throughout the Handbook, the word ‘random’ is used
for ‘pseudo-random’.

Since V2.7 (June 2000), Magma contains an implementation of the Monster random
number generator of G. Marsaglia [Mar00]. The period of this generator is 229430 − 227382

(approximately 108859), and passes all of the stringent tests in Marsaglia’s Diehard test
suite [Mar95]. Since V2.13 (July 2006), this generator is combined with the MD5 hash
function to produce a higher-quality result.

Because the generator uses an internal array of machine integers, one ‘seed’ variable
does not express the whole state, so the method for setting or getting the generator state
is by way of a pair of values: (1) the seed for initializing the array, and (2) the number of
steps performed since the initialization.

SetSeed(s, c)

SetSeed(s)

(Procedure.) Reset the random number generator to have initial seed s (0 ≤ s <
232), and advance to step c (0 ≤ c < 264). If c is not given, it is taken to be
0. Passing -Sn to Magma at startup is equivalent to typing SetSeed(n); after
startup.
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GetSeed()

Return the initial seed s used to initialize the random-number generator and also
the current step c. This is the complement to the SetSeed function.

Random(S)

Given a finite set or structure S, return a random element of S.

Random(a, b)

Return a random integer lying in the interval [a, b], where a ≤ b.

Random(b)

Return a random integer lying in the interval [0, b], where b is a non-negative in-
teger. Because of the good properties of the underlying Monster generator, calling
Random(1) is a good safe way to produce a sequence of random bits.

Example H1E22

We demonstrate how one can return to a previous random state by the use of GetSeed and
SetSeed. We begin with initial seed 1 at step 0 and create a multi-set of 100,000 random integers
in the range [1..4].

> SetSeed(1);

> GetSeed();

1 0

> time S := {* Random(1, 4): i in [1..100000] *};

Time: 0.490

> S;

{* 1^^24911, 2^^24893, 3^^25139, 4^^25057 *}

We note the current state by GetSeed, and then print 10 random integers in the range [1..100].

> GetSeed();

1 100000

> [Random(1, 100): i in [1 .. 10]];

[ 85, 41, 43, 69, 66, 61, 63, 31, 84, 11 ]

> GetSeed();

1 100014

We now restart with a different initial seed 23 (again at step 0), and do the same as before, noting
the different random integers produced.

> SetSeed(23);

> GetSeed();

23 0

> time S := {* Random(1, 4): i in [1..100000] *};

Time: 0.500

> S;

{* 1^^24962, 2^^24923, 3^^24948, 4^^25167 *}

> GetSeed();
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23 100000

> [Random(1, 100): i in [1 .. 10]];

[ 3, 93, 11, 62, 6, 73, 46, 52, 100, 30 ]

> GetSeed();

23 100013

Finally, we restore the random generator state to what it was after the creation of the multi-set
for the first seed. We then print the 10 random integers in the range [1..100], and note that they
are the same as before.

> SetSeed(1, 100000);

> [Random(1, 100): i in [1 .. 10]];

[ 85, 41, 43, 69, 66, 61, 63, 31, 84, 11 ]

> GetSeed();

1 100014

1.16 Miscellaneous

IsIntrinsic(S)

Given a string S, return true if and only an intrinsic with the name S exists in the
current version of Magma. If the result is true, return also the actual intrinsic.

Example H1E23

We demonstrate the function IsIntrinsic.

> IsIntrinsic("ABCD");

false

> l, a := IsIntrinsic("Abs");

> l;

true

> a(-3);

3
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Chapter 2

FUNCTIONS, PROCEDURES
AND PACKAGES

2.1 Introduction
Functions are one of the most fundamental elements of the Magma language. The first
section describes the various ways in which a standard function may be defined while the
second section describes the definition of a procedure (i.e. a function which doesn’t return
a value). The second half of the chapter is concerned with user-defined intrinsic functions
and procedures.

2.2 Functions and Procedures
There are two slightly different syntactic forms provided for the definition of a user function
(as opposed to an intrinsic function). For the case of a function whose definition can be
expressed as a single expression, an abbreviated form is provided. The syntax for the
definition of user procedures is similar. Names for functions and procedures are ordinary
identifiers and so obey the rules as given in Chapter 1 for other variables.

2.2.1 Functions

f := function(x1, ..., xn: parameters)
statements

end function;

function f(x1, ..., xn: parameters)
statements

end function;

This creates a function taking n ≥ 0 arguments, and assigns it to f . The statements
may comprise any number of valid Magma statements, but at least one of them
must be of the form return expression;. The value of that expression (possibly
dependent on the values of the arguments x1, . . . , xn) will be the return value for
the function; failure to return a value will lead to a run-time error when the func-
tion is invoked. (In fact, a return statement is also required for every additional
‘branch’ of the function that has been created using an if ... then ... else
... construction.)

The function may return multiple values. Usually one uses the form return ex-
pression, . . ., expression;. If one wishes to make the last return value(s) undefined
(so that the number of return values for the function is the same in all ‘branches’ of
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the function) the underscore symbol ( ) may be used. (The undefined symbol may
only be used for final values of the list.) This construct allows behaviour similar to
the intrinsic function IsSquare, say, which returns true and the square root of its
argument if that exists, and false and the undefined value otherwise. See also the
example below.

If there are parameters given, they must consist of a comma-separated list of
clauses each of the form identifier := value. The identifier gives the name of
the parameter, which can then be treated as a normal value argument within the
statements. The value gives a default value for the parameter, and may depend
on any of the arguments or preceding parameters; if, when the function is called,
the parameter is not assigned a value, this default value will be assigned to the
parameter. Thus parameters are always initialized. If no parameters are desired,
the colon following the last argument, together with parameters, may be omitted.

The only difference between the two forms of function declaration lies in recur-
sion. Functions may invoke themselves recursively since their name is part of the
syntax; if the first of the above declarations is used, the identifier f cannot be used
inside the definition of f (and $$ will have to be used to refer to f itself instead),
while the second form makes it possible to refer to f within its definition.

An invocation of the user function f takes the form f(m1, ..., mn), where
m1, . . . , mn are the actual arguments.

f := function(x1, ..., xn, ...: parameters)
statements

end function;

function f(x1, ..., xn, ...: parameters)
statements

end function;

This creates a variadic function, which can take n or more arguments. The semantics
are identical to the standard function definition described above, with the exception
of function invocation. An invocation of a variadic function f takes the form f(y1,
..., ym), where y1, . . . , ym are the arguments to the function, and m ≥ n. These
arguments get bound to the parameters as follows: for i < n, the argument yi is
bound to the parameter xi. For i ≥ n, the arguments yi are bound to the last
parameter xn as a list [∗yn, . . . , ym∗].

f := func< x1, ..., xn: parameters | expression>;

This is a short form of the function constructor designed for the situation in which
the value of the function can be defined by a single expression. A function f is
created which returns the value of the expression (possibly involving the function
arguments x1, . . . , xn). Optional parameters are permitted as in the standard func-
tion constructor.

f := func< x1, ..., xn, ...: parameters | expression>;

This is a short form of the function constructor for variadic functions, otherwise
identical to the short form describe above.
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Example H2E1

This example illustrates recursive functions.

> fibonacci := function(n)

> if n le 2 then

> return 1;

> else

> return $$(n-1) + $$(n-2);

> end if;

> end function;

>

> fibonacci(10)+fibonacci(12);

199

> function Lucas(n)

> if n eq 1 then

> return 1;

> elif n eq 2 then

> return 3;

> else

> return Lucas(n-1)+Lucas(n-2);

> end if;

> end function;

>

> Lucas(11);

199

> fibo := func< n | n le 2 select 1 else $$(n-1) + $$(n-2) >;

> fibo(10)+fibo(12);

199

Example H2E2

This example illustrates the use of parameters.

> f := function(x, y: Proof := true, Al := "Simple")

> return <x, y, Proof, Al>;

> end function;

>

> f(1, 2);

<1, 2, true, Simple>

> f(1, 2: Proof := false);

<1, 2, false, Simple>

> f(1, 2: Al := "abc", Proof := false);

<1, 2, false, abc>
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Example H2E3

This example illustrates the returning of undefined values.

> f := function(x)

> if IsOdd(x) then

> return true, x;

> else

> return false, _;

> end if;

> end function;

>

> f(1);

true 1

> f(2);

false

> a, b := f(1);

> a;

true

> b;

1

> a, b := f(2);

> a;

false

> // The following produces an error:

> b;

>> b;

^

User error: Identifier ’b’ has not been assigned

Example H2E4

This example illustrates the use of variadic functions.

> f := function(x, y, ...)

> print "x: ", x;

> print "y: ", y;

> return [x + z : z in y];

> end function;

>

> f(1, 2);

x: 1

y: [* 2*]

[ 3 ]

> f(1, 2, 3);

x: 1

y: [* 2, 3*]

[ 3, 4 ]

> f(1, 2, 3, 4);
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x: 1

y: [* 2, 3, 4*]

[ 3, 4, 5 ]

2.2.2 Procedures

p := procedure(x1, ..., xn: parameters)
statements

end procedure;

procedure p(x1, ..., xn: parameters)
statements

end procedure;

The procedure, taking n ≥ 0 arguments and defined by the statements is created and
assigned to p. Each of the arguments may be either a variable (yi) or a referenced
variable (∼yi). Inside the procedure only referenced variables (and local variables)
may be (re-)assigned to. The procedure p is invoked by typing p(x1, ..., xn),
where the same succession of variables and referenced variables is used (see the
example below). Procedures cannot return values.

If there are parameters given, they must consist of a comma-separated list of
clauses each of the form identifier := value. The identifier gives the name of
the parameter, which can then be treated as a normal value argument within the
statements. The value gives a default value for the parameter, and may depend
on any of the arguments or preceding parameters; if, when the function is called,
the parameter is not assigned a value, this default value will be assigned to the
parameter. Thus parameters are always initialized. If no parameters are desired,
the colon following the last argument, together with parameters, may be omitted.

As in the case of function, the only difference between the two declarations lies
in the fact that the second version allows recursive calls to the procedure within
itself using the identifier (p in this case).

p := procedure(x1, ..., xn, ...: parameters)
statements

end procedure;

procedure p(x1, ..., xn, ...: parameters)
statements

end procedure;

Creates and assigns a new variadic procedure to p. The use of a variadic procedure
is identical to that of a variadic function, described previously.
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p := proc< x1, ..., xn: parameters | expression>;

This is a short form of the procedure constructor designed for the situation in which
the action of the procedure may be accomplished by a single statement. A procedure
p is defined which calls the procedure given by the expression. This expression must
be a simple procedure call (possibly involving the procedure arguments x1, . . . , xn).
Optional parameters are permitted as in the main procedure constructor.

p := proc< x1, ..., xn, ...: parameters | expression>;

This is a short form of the procedure constructor for variadic procedures.

Example H2E5

By way of simple example, the following (rather silly) procedure assigns a Boolean to the variable
holds, according to whether or not the first three arguments x, y, z satisfy x2 + y2 = z2. Note
that the fourth argument is referenced, and hence can be assigned to; the first three arguments
cannot be changed inside the procedure.

> procedure CheckPythagoras(x, y, z, ~h)

> if x^2+y^2 eq z^2 then

> h := true;

> else

> h := false;

> end if;

> end procedure;

We use this to find some Pythagorean triples (in a particularly inefficient way):

> for x, y, z in { 1..15 } do

> CheckPythagoras(x, y, z, ~h);

> if h then

> "Yes, Pythagorean triple!", x, y, z;

> end if;

> end for;

Yes, Pythagorean triple! 3 4 5

Yes, Pythagorean triple! 4 3 5

Yes, Pythagorean triple! 5 12 13

Yes, Pythagorean triple! 6 8 10

Yes, Pythagorean triple! 8 6 10

Yes, Pythagorean triple! 9 12 15

Yes, Pythagorean triple! 12 5 13

Yes, Pythagorean triple! 12 9 15
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2.2.3 The forward Declaration

forward f;

The forward declaration of a function or procedure f ; although the assignment of a
value to f is deferred, f may be called from within another function or procedure
already.

The forward statement must occur on the ‘main’ level, that is, outside other
functions or procedures. (See also Chapter 5.)

Example H2E6

We give an example of mutual recursion using the forward declaration. In this example we define
a primality testing function which uses the factorization of n − 1, where n is the number to be
tested. To obtain the complete factorization we need to test whether or not factors found are
prime. Thus the prime divisor function and the primality tester call each other.
First we define a simple function that proves primality of n by finding an integer of multiplicative
order n− 1 modulo n.

> function strongTest(primdiv, n)

> return exists{ x : x in [2..n-1] | \

> Modexp(x, n-1, n) eq 1 and

> forall{ p : p in primdiv | Modexp(x, (n-1) div p, n) ne 1 }

> };

> end function;

Next we define a rather crude isPrime function: for odd n > 3 it first checks for a few (3) random
values of a that an−1 ≡ 1 mod n, and if so, it applies the above primality prover. For that we
need the not yet defined function for finding the prime divisors of an integer.

> forward primeDivisors;

> function isPrime(n)

> if n in { 2, 3 } or

> IsOdd(n) and

> forall{ a : a in { Random(2, n-2): i in [1..3] } |

> Modexp(a, n-1, n) eq 1 } and

> strongTest( primeDivisors(n-1), n )

> then

> return true;

> else

> return false;

> end if;

> end function;

Finally, we define a function that finds the prime divisors. Note that it calls the isPrime function.
Note also that this function is recursive, and that it calls a function upon its definition, in the
form func< ..> ( .. ).

> primeDivisors := function(n)

> if isPrime(n) then

> return { n };
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> else

> return func< d | primeDivisors(d) join primeDivisors(n div d) >

> ( rep{ d : d in [2..Isqrt(n)] | n mod d eq 0 });

> end if;

> end function;

> isPrime(1087);

true;

2.3 Packages

2.3.1 Introduction
For brevity, in this section we shall use the term function to include both functions and
procedures.

The term intrinsic function or intrinsic refers to a function whose signature is stored in
the system table of signatures. In terms of their origin, there are two kinds of intrinsics,
system intrinsics (or standard functions) and user intrinsics, but they are indistinguishable
in their use. A system intrinsic is an intrinsic that is part of the definition of the Magma
system, whereas a user intrinsic is an informal addition to Magma, created by a user of
the system. While most of the standard functions in Magma are implemented in C, a
growing number are implemented in the Magma language. User intrinsics are defined in
the Magma language using a package mechanism (the same syntax, in fact, as that used
by developers to write standard functions in the Magma language).

This section explains the construction of user intrinsics by means of packages. From
now on, intrinsic will be used as an abbreviation for user intrinsic.

It is useful to summarize the properties possessed by an intrinsic function that are not
possessed by an ordinary user-defined function. Firstly, the signature of every intrinsic
function is stored in the system’s table of signatures. In particular, such functions will
appear when signatures are listed and printing the function’s name will produce a summary
of the behaviour of the function. Secondly, intrinsic functions are compiled into the Magma
internal pseudo-code. Thus, once an intrinsic function has been debugged, it does not have
to be compiled every time it is needed. If the definition of the function involves a large
body of code, this can save a significant amount of time when the function definition has
to be loaded.

An intrinsic function is defined in a special type of file known as a package. In general
terms a package is a Magma source file that defines constants, one or more intrinsic
functions, and optionally, some ordinary functions. The definition of an intrinsic function
may involve Magma standard functions, functions imported from other packages and
functions whose definition is part of the package. It should be noted that constants and
functions (other than intrinsic functions) defined in a package will not be visible outside
the package, unless they are explicitly imported.

The syntax for the definition of an intrinsic function is similar to that of an ordinary
function except that the function header must define the function’s signature together with
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text summarizing the semantics of the function. As noted above, an intrinsic function
definition must reside in a package file. It is necessary for Magma to know the location
of all necessary package files. A package may be attached or detached through use of the
Attach or Detach procedures. More generally, a family of packages residing in a directory
tree may be specified through provision of a spec file which specifies the locations of a
collection of packages relative to the position of the spec file. Automatic attaching of the
packages in a spec file may be set by means of an environment variable (MAGMA SYSTEM SPEC
for the Magma system packages and MAGMA USER SPEC for a users personal packages).

So that the user does not have to worry about explicitly compiling packages, Magma
has an auto-compile facility that will automatically recompile and reload any package that
has been modified since the last compilation. It does this by comparing the time stamp on
the source file (as specified in an Attach procedure call or spec file) with the time stamp on
the compiled code. To avoid the possible inefficiency caused by Magma checking whether
the file is up to date every time an intrinsic function is referenced, the user can indicate
that the package is stable by including the freeze; directive at the top of the package
containing the function definition.

A constant value or function defined in the body of a package may be accessed in a
context outside of its package through use of the import statement. The arguments for an
intrinsic function may be checked through use of the require statement and its variants.
These statements have the effect of generating an error message at the level of the caller
rather than in the called intrinsic function.

See also the section on user-defined attributes for the declare attributes directive
to declare user-defined attributes used by the package and related packages.

2.3.2 Intrinsics
Besides the definition of constants at the top, a package file just consists of intrinsics.
There is only one way a intrinsic can be referred to (whether from within or without the
package). When a package is attached, its intrinsics are incorporated into Magma. Thus
intrinsics are ‘global’ — they affect the global Magma state and there is only one set of
Magma intrinsics at any time. There are no ‘local’ intrinsics.

A package may contain undefined references to identifiers. These are presumed to be
intrinsics from other packages which will be attached subsequent to the loading of this
package.

intrinsic name(arg-list [, ...]) [ -> ret-list ]
{comment-text}

statements
end intrinsic;

The syntax of a intrinsic declaration is as above, where name is the name of the
intrinsic (any identifier; use single quotes for non-alphanumeric names like ’+’);
arg-list is the argument list (optionally including parameters preceded by a colon);
optionally there is an arrow and return type list ret-list; the comment text is any text
within the braces (use \} to get a right brace within the text, and use " to repeat
the comment from the immediately preceding intrinsic); and statements is a list of
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statements making up the body. arg-list is a list of comma-separated arguments of
the form

name::type
∼name::type
∼name

where name is the name of the argument (any identifier), and type designates the
type, which can be either a simple category name, an extended type, or one of the
following:

. Any type
[ ] Sequence type
{ } Set type
{[ ]} Set or Sequence type
{@ @} Iset type
{* *} Multiset type
< > Tuple type

or a composite type:

[type] Sequences over type
{type} Sets over type
{[type]} Sets or sequences over type
{@type@} Indexed sets over type
{*type*} Multisets over type

where type is either a simple or extended type. The reference form type ∼name
requires that the input argument must be initialized to an object of that type. The
reference form ∼name is a plain reference argument — it need not be initialized.
Parameters may also be specified—these are just as in functions and procedures
(preceded by a colon). If arg-list is followed by “. . .” then the intrinsic is variadic,
with semantics similar to that of a variadic function, described previously.

ret-list is a list of comma-separated simple types. If there is an arrow and the
return list, the intrinsic is assumed to be functional; otherwise it is assumed to be
procedural.

The body of statements should return the correct number and types of arguments
if the intrinsic is functional, while the body should return nothing if the intrinsic is
procedural.

Example H2E7

A functional intrinsic for greatest common divisors taking two integers and returning another:

intrinsic myGCD(x::RngIntElt, y::RngIntElt) -> RngIntElt

{ Return the GCD of x and y}
return ...;
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end intrinsic;

A procedural intrinsic for Append taking a reference to a sequence Q and any object then modi-
fying Q:

intrinsic Append(∼ Q::SeqEnum, . x)

{ Append x to Q }
...;

end intrinsic;

A functional intrinsic taking a sequence of sets as arguments 2 and 3:

intrinsic IsConjugate(G::GrpPerm, R::[ { } ], S::[ { } ]) -> BoolElt

{ True iff partitions R and S of the support of G are conjugate in G }
return ...;

end intrinsic;

2.3.3 Resolving Calls to Intrinsics
It is often the case that many intrinsics share the same name. For instance, the intrinsic

Factorization has many implementations for various object types. We will call such
intrinsics overloaded intrinsics, or refer to each of the participating intrinsics as an overload.
When the user calls such an overloaded intrinsic, Magma must choose the “best possible”
overload.

Magma’s overload resolution process is quite simple. Suppose the user is calling an
intrinsic of arity r, with a list of parameters 〈p1, . . . , pr〉. Let the tuple of the types of these
parameters be 〈t1, . . . , tr〉, and let S be the set of all relevant overloads (that is, overloads
with the appropriate name and of arity r). We will represent overloads as r-tuples of types.

To pick the “best possible” overload, for each parameter p ∈ {p1, . . . , pr}, Magma finds
the set Si ⊆ S of participating intrinsics which are the best matches for that parameter.
More specifically, an intrinsic s = 〈u1, . . . , ur〉 is included in Si if and only if ti is a ui, and
no participating intrinsic s′ = 〈v1, . . . , vr〉 exists such that ti is a vi and vi is a ui. Once the
sets Si are computed, Magma finds their intersection. If this intersection is empty, then
there is no match. If this intersection has cardinality greater than one, then the match is
ambiguous. Otherwise, Magma calls the overload thus obtained.

An example at this point will make the above process clearer:

Example H2E8

We demonstrate Magma’s lookup mechanism with the following example. Suppose we have the
following overloaded intrinsics:

intrinsic overloaded(x::RngUPolElt, y::RngUPolElt) -> RngIntElt

{ Overload 1 }
return 1;

end intrinsic;

intrinsic overloaded(x::RngUPolElt[RngInt], y::RngUPolElt) -> RngIntElt
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{ Overload 2 }
return 2;

end intrinsic;

intrinsic overloaded(x::RngUPolElt, y::RngUPolElt[RngInt]) -> RngIntElt

{ Overload 3 }
return 3;

end intrinsic;

intrinsic overloaded(x::RngUPolElt[RngInt], y::RngUPolElt[RngInt]) -> RngIntElt

{ Overload 4 }
return 4;

end intrinsic;

The following Magma session illustrates how the lookup mechanism operates for the intrinsic
overloaded:

> R1<x> := PolynomialRing(Integers());

> R2<y> := PolynomialRing(Rationals());

> f1 := x + 1;

> f2 := y + 1;

> overloaded(f2, f2);

1

> overloaded(f1, f2);

2

> overloaded(f2, f1);

3

> overloaded(f1, f1);

4

2.3.4 Attaching and Detaching Package Files
The procedures Attach and Detach are provided to attach or detach package files. Once a
file is attached, all intrinsics within it are included in Magma. If the file is modified, it is
automatically recompiled just after the user hits return and just before the next statement
is executed. So there is no need to re-attach the file (or ‘re-load’ it). If the recompilation of
a package file fails (syntax errors, etc.), all of the intrinsics of the package file are removed
from the Magma session and none of the intrinsics of the package file are included again
until the package file is successfully recompiled. When errors occur during compilation of
a package, the appropriate messages are printed with the string ‘[PC]’ at the beginning of
the line, indicating that the errors are detected by the Magma package compiler.

If a package file contains the single directive freeze; at the top then the package file
becomes frozen — it will not be automatically recompiled after each statement is entered
into Magma. A frozen package is recompiled if need be, however, when it is attached (thus
allowing fixes to be updated) — the main point of freezing a package which is ‘stable’ is
to stop Magma looking at it between every statement entered into Magma interactively.
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When a package file is complete and tested, it is usually installed in a spec file so it
is automatically attached when the spec file is attached. Thus Attach and Detach are
generally only used when one is developing a single package file containing new intrinsics.

Attach(F)

Procedure to attach the package file F .

Detach(F)

Procedure to detach the package file F .

freeze;

Freeze the package file in which this appears at the top.

2.3.5 Related Files
There are two files related to any package source file file.m:

file.sig sig file containing signature information;
file.lck lock file.

The lock file exists while a package file is being compiled. If someone else tries to
compile the file, it will just sit there till the lock file disappears. In various circumstances
(system down, Magma crash) .lck files may be left around; this will mean that the next
time Magma attempts to compile the associated source file it will just sit there indefinitely
waiting for the .lck file to disappear. In this case the user should search for .lck files
that should be removed.

2.3.6 Importing Constants

import "filename": ident list;

This is the general form of the import statement, where "filename" is a string and
ident list is a list of identifiers.

The import statement is a normal statement and can in fact be used anywhere in
Magma, but it is recommended that it only be used to import common constants
and functions/procedures shared between a collection of package files. It has the fol-
lowing semantics: for each identifier I in the list ident list, that identifier is declared
just like a normal identifier within Magma. Within the package file referenced by
filename, there should be an assignment of the same identifier I to some object O.
When the identifier I is then used as an expression after the import statement, the
value yielded is the object O.

The file that is named in the import statement must already have been attached
by the time the identifiers are needed. The best way to achieve this in practice is to
place this file in the spec file, along with the package files, so that all the files can
be attached together.

Thus the only way objects (whether they be normal objects, procedures or func-
tions) assigned within packages can be referenced from outside the package is by an
explicit import with the ‘import’ statement.
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Example H2E9

Suppose we have a spec file that lists several package files. Included in the spec file is the file
defs.m containing:

MY LIMIT := 10000;

function fred(x)

return 1/x;

end function;

Then other package files (in the same directory) listed in the spec file which wish to use these
definitions would have the line

import "defs.m": MY LIMIT, fred;

at the top. These could then be used inside any intrinsics of such package files. (If the package
files are not in the same directory, the pathname of defs.m will have to be given appropriately in
the import statement.)

2.3.7 Argument Checking
Using ‘require’ etc. one can do argument checking easily within intrinsics. If a necessary
condition on the argument fails to hold, then the relevant error message is printed and the
error pointer refers to the caller of the intrinsic. This feature allows user-defined intrinsics
to treat errors in actual arguments in exactly the same way as they are treated by the
Magma standard functions.

require condition: print args;

The expression condition may be any yielding a Boolean value. If the value is false,
then print args is printed and execution aborts with the error pointer pointing to
the caller. The print arguments print args can consist of any expressions (depending
on arguments or variables already defined in the intrinsic).

requirerange v, L, U;

The argument variable v must be the name of one of the argument variables (includ-
ing parameters) and must be of integer type. L and U may be any expressions each
yielding an integer value. If v is not in the range [L, . . . , U ], then an appropriate
error message is printed and execution aborts with the error pointer pointing to the
caller.

requirege v, L;

The argument variable v must be the name of one of the argument variables (in-
cluding parameters) and must be of integer type. L must yield an integer value. If
v is not greater than or equal to L, then an appropriate error message is printed
and execution aborts with the error pointer pointing to the caller.
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Example H2E10

A trivial version of Binomial(n, k) which checks that n ≥ 0 and 0 ≤ k ≤ n.

intrinsic Binomial(n::RngIntElt, k::RngIntElt) -> RngIntElt

{ Return n choose k }
requirege n, 0;

requirerange k, 0, n;

return Factorial(n) div Factorial(n - k) div Factorial(k);

end intrinsic;

A simple function to find a random p-element of a group G.

intrinsic pElement(G::Grp, p::RngIntElt) -> GrpElt

{ Return p-element of group G }
require IsPrime(p): "Argument 2 is not prime";

x := random{x: x in G | Order(x) mod p eq 0};

return x^(Order(x) div p);

end intrinsic;

2.3.8 Package Specification Files
A spec file (short for ‘specification file’) lists a complete tree of Magma package files.

This makes it easy to collect many package files together and attach them simultaneously.
The specification file consists of a list of tokens which are just space-separated words.

The tokens describe a list of package files and directories containing other packages. The
list is described as follows. The files that are to be attached in the directory indicated by
S are listed enclosed in { and } characters. A directory may be listed there as well, if it is
followed by a list of files from that directory (enclosed in braces again); arbitrary nesting
is allowed this way. A filename of the form +spec is interpreted as another specification file
whose contents will be recursively attached when AttachSpec (below) is called. The files
are taken relative to the directory that contains the specification file. See also the example
below.

AttachSpec(S)

If S is a string indicating the name of a spec file, this command attaches all the files
listed in S. The format of the spec file is given above.

DetachSpec(S)

If S is a string indicating the name of a spec file, this command detaches all the files
listed in S. The format of the spec file is given above.



50 THE MAGMA LANGUAGE Part I

Example H2E11

Suppose we have a spec file /home/user/spec consisting of the following lines:

{

Group

{

chiefseries.m

socle.m

}

Ring

{

funcs.m

Field

{

galois.m

}

}

}

Then there should be the files

/home/user/spec/Group/chiefseries.m

/home/user/spec/Group/socle.m

/home/user/spec/Ring/funcs.m

/home/user/spec/Ring/Field/galois.m

and if one typed within Magma

AttachSpec("/home/user/spec");

then each of the above files would be attached. If instead of the filename galois.m we have
+galspec, then the file /home/user/spec/Ring/Field/galspec would be a specification file itself
whose contents would be recursively attached.

2.3.9 User Startup Specification Files
The user may specify a list of spec files to be attached automatically when Magma starts
up. This is done by setting the environment variable MAGMA USER SPEC to a colon separated
list of spec files.

Example H2E12

One could have

setenv MAGMA USER SPEC "$HOME/Magma/spec:/home/friend/Magma/spec"

in one’s .cshrc . Then when Magma starts up, it will attach all packages listed in the spec files
$HOME/Magma/spec and /home/friend/Magma/spec.
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2.4 Attributes

This section is placed beside the section on packages because the use of attributes is most
common within packages.
For any structure within Magma, it is possible to have attributes associated with it. These
are simply values stored within the structure and are referred to by named fields in exactly
the same manner as Magma records.

There are two kinds of structure attributes: predefined system attributes and user-
defined attributes. Both kinds are discussed in the following subsections. A description of
how attributes are accessed and assigned then follows.

2.4.1 Predefined System Attributes
The valid fields of predefined system attributes are automatically defined at the startup of
Magma. These fields now replace the old method of using the procedure AssertAttribute
and the function HasAttribute (which will still work for some time to preserve backwards
compatibility). For each name which is a valid first argument for AssertAttribute and
HasAttribute, that name is a valid attribute field for structures of the appropriate cate-
gory. Thus the backquote method for accessing attributes described in detail below should
now be used instead of the old method. For such attributes, the code:

> S‘Name := x;

is completely equivalent to the code:

> AssertAttribute(S, "Name", x);

(note that the function AssertAttribute takes a string for its second argument so the
name must be enclosed in double quotes). Similarly, the code:

> if assigned S‘Name then
> x := S‘Name;
> // do something with x...
> end if;

is completely equivalent to the code:

> l, x := HasAttribute(S, "Name");
> if l then
> // do something with x...
> end if;

(note again that the function HasAttribute takes a string for its second argument so the
name must be enclosed in double quotes).

Note also that if a system attribute is not set, referring to it in an expression (using the
backquote operator) will not trigger the calculation of it (while the corresponding intrinsic
function will if it exists); rather an error will ensue. Use the assigned operator to test
whether an attribute is actually set.
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2.4.2 User-defined Attributes
For any category C, the user can stipulate valid attribute fields for structures of C. After
this is done, any structure of category C may have attributes assigned to it and accessed
from it.

There are two ways of adding new valid attributes to a category C: by the procedure
AddAttribute or by the declare attributes package declaration. The former should be
used outside of packages (e.g. in interactive usage), while the latter must be used within
packages to declare attribute fields used by the package and related packages.

AddAttribute(C, F)

(Procedure.) Given a category C, and a string F , append the field name F to
the list of valid attribute field names for structures belonging to category C. This
procedure should not be used within packages but during interactive use. Previous
fields for C are still valid – this just adds another valid one.

declare attributes C: F1, . . . , Fn;

Given a category C, and a comma-separated list of identifiers F1, . . . , Fn append
the field names specified by the identifiers to the list of valid attribute field names
for structures belonging to category C. This declaration directive must be used
within (and only within) packages to declare attribute fields used by the package
and packages related to it which use the same fields. It is not a statement but
a directive which is stored with the other information of the package when it is
compiled and subsequently attached – not when any code is actually executed.

2.4.3 Accessing Attributes
Attributes of structures are accessed in the same way that records are: using the backquote
(‘) operator. The double backquote operator (‘‘) can also be used if the field name is a
string.

S‘fieldname

S‘‘N

Given a structure S and a field name, return the current value for the given field in
S. If the value is not assigned, an error results. The field name must be valid for
the category of S. In the S‘‘N form, N is a string giving the field name.

assigned S‘fieldname

assigned S‘‘N

Given a structure S and a field name, return whether the given field in S currently
has a value. The field name must be valid for the category of S. In the S‘‘N form,
N is a string giving the field name.
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S‘fieldname := expression;

S‘‘N := expression;

Given a structure S and a field name, assign the given field of S to be the value of
the expression (any old value is first discarded). The field name must be valid for
the category of S. In the S‘‘N form, N is a string giving the field name.

delete S‘fieldname;

delete S‘‘N;

Given a structure S and a field name, delete the given field of S. The field then
becomes unassigned in S. The field name must be valid for the category of S and the
field must be currently assigned in S. This statement is not allowed for predefined
system attributes. In the S‘‘N form, N is a string giving the field name.

GetAttributes(C)

Given a category C, return the valid attribute field names for structures belonging
to category C as a sorted sequence of strings.

ListAttributes(C)

(Procedure.) Given a category C, list the valid attribute field names for structures
belonging to category C.

2.5 User-defined Verbose Flags
Verbose flags may be defined by users within packages.

declare verbose F, m;

Given a verbose flag name F (without quotes), and a literal integer m, create the
verbose flag F , with the maximal allowable level for the flag set to m. This directive
may only be used within package files.

2.5.1 Examples
In this subsection we give examples which illustrate all of the above features.

Example H2E13

We illustrate how the predefined system attributes may be used. Note that the valid arguments for
AssertAttribute and HasAttribute documented elsewhere now also work as system attributes so
see the documentation for these functions for details as to the valid system attribute field names.

> // Create group G.

> G := PSL(3, 2);

> // Check whether order known.

> assigned G‘Order;

false

> // Attempt to access order -- error since not assigned.

> G‘Order;
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>> G‘Order;

^

Runtime error in ‘: Attribute ’Order’ for this structure

is valid but not assigned

> // Force computation of order by intrinsic Order.

> Order(G);

168

> // Check Order field again.

> assigned G‘Order;

true

> G‘Order;

168

> G‘‘"Order"; // String form for field

168

> o := "Order";

> G‘‘o;

168

> // Create code C and set its minimum weight.

> C := QRCode(GF(2), 31);

> C‘MinimumWeight := 7;

> C;

[31, 16, 7] Quadratic Residue code over GF(2)

...

Example H2E14

We illustrate how user attributes may be defined and used in an interactive session. This situation
would arise rarely – more commonly, attributes would be used within packages.

> // Add attribute field MyStuff for matrix groups.

> AddAttribute(GrpMat, "MyStuff");

> // Create group G.

> G := GL(2, 3);

> // Try illegal field.

> G‘silly;

>> G‘silly;

^

Runtime error in ‘: Invalid attribute ’silly’ for this structure

> // Try legal but unassigned field.

> G‘MyStuff;

>> G‘MyStuff;

^

Runtime error in ‘: Attribute ’MyStuff’ for this structure is valid but not

assigned

> // Assign field and notice value.

> G‘MyStuff := [1, 2];

> G‘MyStuff;
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[ 1, 2 ]

Example H2E15

We illustrate how user attributes may be used in packages. This is the most common usage of such
attributes. We first give some (rather naive) Magma code to compute and store a permutation
representation of a matrix group. Suppose the following code is stored in the file permrep.m.

declare attributes GrpMat: PermRep, PermRepMap;

intrinsic PermutationRepresentation(G::GrpMat) -> GrpPerm

{A permutation group representation P of G, with homomorphism f: G -> P};

// Only compute rep if not already stored.

if not assigned G‘PermRep then

G‘PermRepMap, G‘PermRep := CosetAction(G, sub<G|>);

end if;

return G‘PermRep, G‘PermRepMap;

end intrinsic;

Note that the information stored will be reused in subsequent calls of the intrinsic. Then the
package can be attached within a Magma session and the intrinsic PermutationRepresentation

called like in the following code (assumed to be run in the same directory).

> Attach("permrep.m");

> G := GL(2, 2);

> P, f := PermutationRepresentation(G);

> P;

Permutation group P acting on a set of cardinality 6

(1, 2)(3, 5)(4, 6)

(1, 3)(2, 4)(5, 6)

> f;

Mapping from: GrpMat: G to GrpPerm: P

Suppose the following line were also in the package file:

declare verbose MyAlgorithm, 3;

Then there would be a new verbose flag MyAlgorithm for use anywhere within Magma, with the
maximum 3 for the level.
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2.6 User-Defined Types
Since Magma V2.19, types may be defined by users within packages. This facility allows
the user to declare new type names and create objects with such types and then supply
some basic primitives and intrinsic functions for such objects.

The new types are known as user-defined types. The way these are typically used is that
after declaring such a type T , the user supplies package intrinsics to: (1) create objects of
type T and set relevant attributes to define the objects; (2) perform some basic primitives
which are common to all objects in Magma; (3) perform non-trivial computations on
objects of type T .

2.6.1 Declaring User-Defined Types
The following declarations are used to declare user-defined types. They may only be
placed in package files, i.e., files that are included either by using Attach or a spec
file (see above). Declarations may appear in any package file and at any place within the
file at the top level (not in a function, etc.). In particular, it is not required that the
declaration of a type appears before package code which refers to the type (as long as the
type is declared before running the code). Examples below will illustrate how the basic
declarations are used.

declare type T;

Declare the given type name T (without quotes) to be a user-defined type.

declare type T : P1, . . . , Pn;

Declare the given type name T (without quotes) to be a user-defined type, and
also declare T to inherit from the user types P1, . . . , Pn (which must be declared
separately). As a result, ISA(T, Pi) will be true for each i and when intrinsic
signatures are scanned at a function call, an object of type T will match an argument
of a signature with type Pi for any i.

NB: currently one may not inherit from existing Magma internal types or virtual
types (categories). It is hoped that this restriction will be removed in the future.

declare type T [E];

Declare the given type names T and E (both without quotes) to be user-defined
types. This form also specifies that E is the element type corresponding to T ; i.e., if
an object x has an element of type T for its parent, then x must have type E. This
relationship is needed for the construction of sets and sequences which have objects
of type T as a universe. The type E may also be declared separately, but this is not
necessary.

declare type T [E] : P1, . . . , Pn;

This is a combination of the previous kinds two declarations: T and E are declared
as user-defined types while E is also declared to be the element type of T , and T is
declared to inherit from user-defined types P1, . . . , Pn.
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2.6.2 Creating an Object

New(T)

Create an empty object of type T , where T is a user-defined type. Typically, after
setting X to the result of this function, the user should set attributes in X to define
relevant properties of the object which are characteristic of objects of type T .

2.6.3 Special Intrinsics Provided by the User
Let T be a user-defined type. Besides the declaration of T , the following special intrinsics
are mostly required to be defined for type T (the requirements are specified for each
kind of intrinsic). These intrinsics allow the internal Magma functions to perform some
fundamental operations on objects of type T . Note that the special intrinsics need not be
in one file or in the same file as the declaration.

intrinsic Print(X::T)
{Print X}

// Code: Print X with no new line, via printf
end intrinsic;

intrinsic Print(X::T, L::MonStgElt)
{Print X at level L}

// Code: Print X at level L with no new line, via printf
end intrinsic;

Exactly one of these intrinsics must be provided by the user for type T . Each is a
procedure rather than a function (i.e., nothing is returned), and should contain one or
more print statements. The procedure is called automatically by Magma whenever the
object X of type T is to be printed. A new line should not occur at the end of the last (or
only) line of printing: one should use printf (see examples below).

When the second form of the intrinsic is provided, it allows X to be printed differently
depending on the print level L, which is a string equal to one of "Default", "Minimal",
"Maximal", "Magma".

intrinsic Parent(X::T) -> .
{Parent of X}

// Code: Return the parent of X
end intrinsic;

This intrinsic is only needed when T is an element type, so objects of type T have
parents. It should be a user-provided package function, which takes an object X of type T
(user-defined), and returns the parent of X, assuming it has one. In such a case, typically
the attribute Parent will be defined for X and so X‘Parent should simply be returned.
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intrinsic ’in’(e::., X::T) -> BoolElt
{Return whether e is in X}

// Code: Return whether e is in X
end intrinsic;

This intrinsic is only needed when objects of type T (user-defined) have elements, and
should be a user-provided package function, which takes any object e and an object X of
type T (user-defined), and returns whether e is an element of X.

intrinsic IsCoercible(X::T, y::.) -> BoolElt, .
{Return whether y is coercible into X and the result if so}

// Code: do tests on the type of y to see whether coercible
// On failure, do:
// return false, "Illegal coercion"; // Or more particular message
// Assumed coercible now; set x to result of coercion into X
return true, x;

end intrinsic;

Assuming that objects of type T (user-defined) have elements (and so coercion into
such objects makes sense), this must be a user-provided package function, which takes an
object X of type T (user-defined) and an object Y of any type. If Y is coercible into
X, the function should return true and the result of the coercion (whose parent should
be X). Otherwise, the function should return false and a string giving the reason for
failure. If this package intrinsic is provided, then the coercion operation X!y will also
automatically work for an object X of type T (i.e., the internal coercion code in Magma
will automatically call this function).

2.6.4 Examples
Some basic examples illustrating the general use of user-defined types are given here. Non-
trivial examples can also be found in much of the standard Magma package code (one can
search for "declare type" in the package .m files to see several typical uses).

Example H2E16

In this first simple example, we create a user-defined type MyRat which is used for a primitive
representation of rational numbers. Of course, a serious version would keep the numerators &
denominators always reduced, but for simplicity we skip such details. We define the operations +

and * here; one would typically add other operations like -, eq and IsZero, etc.

declare type MyRat;

declare attributes MyRat: Numer, Denom;

intrinsic MyRational(n::RngIntElt, d::RngIntElt) -> MyRat

{Create n/d}
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require d ne 0: "Denominator must be non-zero";

r := New(MyRat);

r‘Numer := n;

r‘Denom := d;

return r;

end intrinsic;

intrinsic Print(r::MyRat)

{Print r}

n := r‘Numer;

d := r‘Denom;

g := GCD(n, d);

if d lt 0 then g := -g; end if;

printf "%o/%o", n div g, d div g; // NOTE: no newline!

end intrinsic;

intrinsic ’+’(r::MyRat, s::MyRat) -> MyRat

{Return r + s}

rn := r‘Numer;

rd := r‘Denom;

sn := s‘Numer;

sd := s‘Denom;

return MyRational(rn*sd + sn*rd, rd*sd);

end intrinsic;

intrinsic ’*’(r::MyRat, s::MyRat) -> MyRat

{Return r * s}

rn := r‘Numer;

rd := r‘Denom;

sn := s‘Numer;

sd := s‘Denom;

return MyRational(rn*sn, rd*sd);

end intrinsic;

Assuming the above code is placed in a file MyRat.m, one could attach it in Magma and then do
some simple operations, as follows.

> Attach("myrat.m");

> r := MyRational(3, -9);

> r;

-1/3

> s := MyRational(4, 7);

> s;

> r+s;

5/21

> r*s;

-4/21
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Example H2E17

In this example, we define a type DirProd for direct products of rings, and a corresponding element
type DirProdElt for their elements. Objects of type DirProd contain a tuple Rings with the rings
making up the direct product, while objects of type DirProdElt contain a tuple Element with the
elements of the corresponding rings, and also a reference to the parent direct product object.

/* Declare types and attributes */

// Note that we declare DirProdElt as element type of DirProd:

declare type DirProd[DirProdElt];

declare attributes DirProd: Rings;

declare attributes DirProdElt: Elements, Parent;

/* Special intrinsics for DirProd */

intrinsic DirectProduct(Rings::Tup) -> DirProd

{Create the direct product of given rings (a tuple)}

require forall{R: R in Rings | ISA(Type(R), Rng)}:

"Tuple entries are not all rings";

D := New(DirProd);

D‘Rings := Rings;

return D;

end intrinsic;

intrinsic Print(D::DirProd)

{Print D}

Rings := D‘Rings;

printf "Direct product of %o", Rings; // NOTE: no newline!

end intrinsic;

function CreateElement(D, Elements)

// Create DirProdElt with parent D and given Elements

x := New(DirProdElt);

x‘Elements := Elements;

x‘Parent := D;

return x;

end function;

intrinsic IsCoercible(D::DirProd, x::.) -> BoolElt, .

{Return whether x is coercible into D and the result if so}

Rings := D‘Rings;

n := #Rings;

if Type(x) ne Tup then

return false, "Coercion RHS must be a tuple";

end if;

if #x ne n then

return false, "Wrong length of tuple for coercion";

end if;
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Elements := <>;

for i := 1 to n do

l, t := IsCoercible(Rings[i], x[i]);

if not l then

return false, Sprintf("Tuple entry %o not coercible", i);

end if;

Append(~Elements, t);

end for;

y := CreateElement(D, Elements);

return true, y;

end intrinsic;

/* Special intrinsics for DirProdElt */

intrinsic Print(x::DirProdElt)

{Print x}

printf "%o", x‘Elements; // NOTE: no newline!

end intrinsic;

intrinsic Parent(x::DirProdElt) -> DirProd

{Parent of x}

return x‘Parent;

end intrinsic;

intrinsic ’+’(x::DirProdElt, y::DirProdElt) -> DirProdElt

{Return x + y}

D := Parent(x);

require D cmpeq Parent(y): "Incompatible arguments";

Ex := x‘Elements;

Ey := y‘Elements;

return CreateElement(D, <Ex[i] + Ey[i]: i in [1 .. #Ex]>);

end intrinsic;

intrinsic ’*’(x::DirProdElt, y::DirProdElt) -> DirProdElt

{Return x * y}

D := Parent(x);

require D cmpeq Parent(y): "Incompatible arguments";

Ex := x‘Elements;

Ey := y‘Elements;

return CreateElement(D, <Ex[i] * Ey[i]: i in [1 .. #Ex]>);

end intrinsic;

A sample Magma session using the above package is as follows. We create elements x, y of a direct
product D and do simple operations on x, y. One would of course add other intrinsic functions
for basic operations on the elements.

> Attach("DirProd.m");

> Z := IntegerRing();
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> Q := RationalField();

> F8<a> := GF(2^3);

> F9<b> := GF(3^2);

> D := DirectProduct(<Z, Q, F8, F9>);

> x := D!<1, 2/3, a, b>;

> y := D!<2, 3/4, a+1, b+1>;

> x;

<1, 2/3, a, b>

> Parent(x);

Direct product of <Integer Ring, Rational Field, Finite field of

size 2^3, Finite field of size 3^2>

> y;

<2, 3/4, a^3, b^2>

> x+y;

<3, 17/12, 1, b^3>

> x*y;

<2, 1/2, a^4, b^3>

> D!x;

<1, 2/3, a, b>

> S := [x, y]; S;

[

<1, 2/3, a, b>,

<2, 3/4, a^3, b^2>

]

>

> &+S;

<3, 17/12, 1, b^3>
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Chapter 3

INPUT AND OUTPUT

3.1 Introduction

This chapter is concerned with the various facilities provided for communication between
Magma and its environment. The first section describes character strings and their op-
erations. Following this, the various forms of the print-statement are presented. Next
the file type is introduced and its operations summarized. The chapter concludes with
a section listing system calls. These include facilities that allow the user to execute an
operating system command from within Magma or to run an external process.

3.2 Character Strings

Strings of characters play a central role in input/output so that the operations provided for
strings to some extent reflect this. However, if one wishes, a more general set of operations
are available if the string is first converted into a sequence. We will give some examples of
this below.

Magma provides two kinds of strings: normal character strings, and binary strings.
Character strings are an inappropriate choice for manipulating data that includes non-
printable characters. If this is required, a better choice is the binary string type. This type
is similar semantically to a sequence of integers, in which each character is represented by
its ASCII value between 0 and 255. The difference between a binary string and a sequence
of integers is that a binary string is stored internally as an array of bytes, which is a more
space-efficient representation.

3.2.1 Representation of Strings
Character strings may consist of all ordinary characters appearing on your keyboard, in-
cluding the blank (space). Two symbols have a special meaning: the double-quote " and
the backslash \. The double-quote is used to delimit a character string, and hence cannot
be used inside a string; to be able to use a double-quote in strings the backslash is designed
to be an escape character and is used to indicate that the next symbol has to be taken
literally; thus, by using \" inside a string one indicates that the symbol " has to be taken
literally and is not to be interpreted as the end-of-string delimiter. Thus:

> "\"Print this line in quotes\"";
"Print this line in quotes"

To obtain a literal backslash, one simply types two backslashes; for characters other than
double-quotes and backslash it does not make a difference when a backslash precedes them
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inside a string, with the exception of n, r and t. Any occurrence of \n or \r inside a string
is converted into a <new-line> while \t is converted into a <tab>. For example:

> "The first line,\nthe second line, and then\ran\tindented line";
The first line,
the second line, and then
an indented line

Note that a backslash followed by a return allows one to conveniently continue the current
construction on the next line; so \<return> inside a string will be ignored, except that
input will continue on a new line on your screen.

Binary strings, on the hand, can consist of any character, whether printable or non-
printable. Binary strings cannot be constructed using literals, but must be constructed
either from a character string, or during a read operation from a file.

3.2.2 Creation of Strings

"abc"

Create a string from a succession of keyboard characters (a, b, c) enclosed in double
quotes " ".

BinaryString(s)

BString(s)

Create a binary string from the character string s.

s cat t

s * t

Concatenate the strings s and t.

s cat:= t

s *:= t

Modification-concatenation of the string s with t: concatenate s and t and put the
result in s.

&cat s

&* s

Given an enumerated sequence s of strings, return the concatenation of these strings.

s ^ n

Form the n-fold concatenation of the string s, for n ≥ 0. If n = 0 this is the empty
string, if n = 1 it equals s, etc.

s[i]

Returns the substring of s consisting of the i-th character.
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s[i]

Returns the numeric value representing the i-th character of s.

ElementToSequence(s)

Eltseq(s)

Returns the sequence of characters of s (as length 1 strings).

ElementToSequence(s)

Eltseq(s)

Returns the sequence of numeric values representing the characters of s.

Substring(s, n, k)

Return the substring of s of length k starting at position n.

3.2.3 Integer-Valued Functions

#s

The length of the string s.

Index(s, t)

Position(s, t)

This function returns the position (an integer p with 0 < p ≤ #s) in the string s
where the beginning of a contiguous substring t occurs. It returns 0 if t is not a
substring of s. (If t is the empty string, position 1 will always be returned, even if
s is empty as well.)

3.2.4 Character Conversion
To perform more sophisticated operations, one may convert the string into a sequence

and use the extensive facilities for sequences described in the next part of this manual; see
the examples at the end of this chapter for details.

StringToCode(s)

Returns the code number of the first character of string s. This code depends on
the computer system that is used; it is ASCII on most UNIX machines.

CodeToString(n)

Returns a character (string of length 1) corresponding to the code number n, where
the code is system dependent (see previous entry).
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StringToInteger(s)

Returns the integer corresponding to the string of decimal digits s. All non-space
characters in the string s must be digits (0, 1, . . . , 9), except the first character,
which is also allowed to be + or −. An error results if any other combination of
characters occurs. Leading zeros are omitted.

StringToInteger(s, b)

Returns the integer corresponding to the string of digits s, all assumed to be written
in base b. All non-space characters in the string s must be digits less than b (if b is
greater than 10, ‘A’ is used for 10, ‘B’ for 11, etc.), except the first character, which
is also allowed to be + or −. An error results if any other combination of characters
occurs.

StringToIntegerSequence(s)

Returns the sequence of integers corresponding to the string s of space-separated
decimal numbers. All non-space characters in the string s must be digits (0, 1, . . . , 9),
except the first character after each space, which is also allowed to be + or −.
An error results if any other combination of characters occurs. Leading zeros are
omitted. Each number can begin with a sign (+ or −) without a space.

IntegerToString(n)

Convert the integer n into a string of decimal digits; if n is negative the first character
of the string will be −. (Note that leading zeros and a + sign are ignored when
Magma builds an integer, so the resulting string will never begin with + or 0
characters.)

IntegerToString(n, b)

Convert the integer n into a string of digits with the given base (which must be in
the range [2 . . . 36]); if n is negative the first character of the string will be −.

3.2.5 Boolean Functions

s eq t

Returns true if and only if the strings s and t are identical. Note that blanks are
significant.

s ne t

Returns true if and only if the strings s and t are distinct. Note that blanks are
significant.

s in t

Returns true if and only if s appears as a contiguous substring of t. Note that the
empty string is contained in every string.
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s notin t

Returns true if and only if s does not appear as a contiguous substring of t. Note
that the empty string is contained in every string.

s lt t

Returns true if s is lexicographically less than t, false otherwise. Here the ordering
on characters imposed by their ASCII code number is used.

s le t

Returns true if s is lexicographically less than or equal to t, false otherwise. Here
the ordering on characters imposed by their ASCII code number is used.

s gt t

Returns true if s is lexicographically greater than t, false otherwise. Here the
ordering on characters imposed by their ASCII code number is used.

s ge t

Returns true if s is lexicographically greater than or equal to t, false otherwise.
Here the ordering on characters imposed by their ASCII code number is used.

Example H3E1

> "Mag" cat "ma";

Magma

Omitting double-quotes usually has undesired effects:

> "Mag cat ma";

Mag cat ma

And note that there are two different equalities involved in the following!

> "73" * "9" * "42" eq "7" * "3942";

true

> 73 * 9 * 42 eq 7 * 3942;

true

The next line shows how strings can be concatenated quickly, and also that strings of blanks can
be used for formatting:

> s := ("Mag" cat "ma? ")^2;

> s, " "^30, s[4]^12, "!";

Magma? Magma? mmmmmmmmmmmm !

Here is a way to list (in a sequence) the first occurrence of each of the ten digits in the decimal
expansion of π, using IntegerToString and Position.

> pi := Pi(RealField(1001));

> dec1000 := Round(10^1000*(pi-3));

> I := IntegerToString(dec1000);

> [ Position(I, IntegerToString(i)) : i in [0..9] ];
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[ 32, 1, 6, 9, 2, 4, 7, 13, 11, 5 ]

Using the length # and string indexing [ ] it is also easy to count the number of occurrences of
each digit in the string containing the first 1000 digits.

> [ #[i : i in [1..#I] | I[i] eq IntegerToString(j)] : j in [0..9] ];

[ 93, 116, 103, 102, 93, 97, 94, 95, 101, 106 ]

We would like to test if the ASCII-encoding of the string ‘Magma’ appears. This could be done
as follows, using StringToCode and in, or alternatively, Position. To reduce the typing, we first
abbreviate IntegerToString to is and StringToCode to sc.

> sc := StringToCode;

> its := IntegerToString;

> M := its(sc("M")) * its(sc("a")) * its(sc("g")) * its(sc("m")) * its(sc("a"));

> M;

779710310997

> M in I;

false

> Position(I, M);

0

So ‘Magma’ does not appear this way. However, we could be satisfied if the letters appear
somewhere in the right order. To do more sophisticated operations (like this) on strings, it is
necessary to convert the string into a sequence, because sequences constitute a more versatile
data type, allowing many more advanced operations than strings.

> Iseq := [ I[i] : i in [1..#I] ];

> Mseq := [ M[i] : i in [1..#M] ];

> IsSubsequence(Mseq, Iseq);

false

> IsSubsequence(Mseq, Iseq: Kind := "Sequential");

true

Finally, we find that the string ‘magma’ lies in between ‘Pi’ and ‘pi’:

> "Pi" le "magma";

true

> "magma" lt "pi";

true
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3.2.6 Parsing Strings

Split(S, D)

Split(S)

Given a string S, together with a string D describing a list of separator characters,
return the sequence of strings obtained by splitting S at any of the characters
contained in D. That is, S is considered as a sequence of fields, with any character
in D taken to be a delimiter separating the fields. If D is omitted, it is taken to be
the string consisting of the newline character alone (so S is split into the lines found
in it). If S is desired to be split into space-separated words, the argument " \t\n"
should be given for D.

Example H3E2

We demonstrate elementary uses of Split.

> Split("a b c d", " ");

[ a, b, c, d ]

> // Note that an empty field is included if the

> // string starts with the separator:

> Split(" a b c d", " ");

[ , a, b, c, d ]

> Split("abxcdyefzab", "xyz");

[ ab, cd, ef, ab ]

> // Note that no splitting happens if the delimiter

> // is empty:

> Split("abcd", "");

[ abcd ]

Regexp(R, S)

Given a string R specifying a regular expression, together with a string S, return
whether S matches R. If so, return also the matched substring of S, together
with the sequence of matched substrings of S corresponding to the parenthesized
expressions of R. This function is based on the freely distributable reimplementation
of the V8 regexp package by Henry Spencer. The syntax and interpretation of the
characters |, *, +, ?, ^, $, [], \ is the same as in the UNIX command egrep.
The parenthesized expressions are numbered in left-to-right order of their opening
parentheses. Note that the parentheses should not have an initial backslash before
them as the UNIX commands grep and ed require.
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Example H3E3

We demonstrate some elementary uses of Regexp.

> Regexp("b.*d", "abcde");

true bcd []

> Regexp("b(.*)d", "abcde");

true bcd [ c ]

> Regexp("b.*d", "xyz");

false

> date := "Mon Jun 17 10:27:27 EST 1996";

> _, _, f := Regexp("([0-9][0-9]):([0-9][0-9]):([0-9][0-9])", date);

> f;

[ 10, 27, 27 ]

> h, m, s := Explode(f);

> h, m, s;

10 27 27

3.3 Printing

3.3.1 The print-Statement

print expression;

print expression, ..., expression;

print expression: parameters;

Print the value of the expression. Some limited ways of formatting output are
described in the section on strings. Four levels of printing (that may in specific
cases coincide) exist, and may be indicated after the colon: Default (which is the
same as the level obtained if no level is indicated), Minimal, Maximal, and Magma.
The last of these produces output representing the value of the identifier as valid
Magma-input (when possible).
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3.3.2 The printf and fprintf Statements

printf format, expression, ..., expression;

Print values of the expressions under control of format. The first argument, the
format string, must be a string which contains two types of objects: plain char-
acters, which are simply printed, and conversion specifications (indicated by the %
character), each of which causes conversion and printing of zero or more of the ex-
pressions. (Use %% to get a literal percent character.) Currently, the only conversion
specifications allowed are: %o and %O, which stand for “object”, %m, which stands
for “magma”, and %h, which stands for “hexadecimal”.

The hexadecimal conversion specification will print its argument in hexadecimal;
currently, it only supports integer arguments. The object and magma conversion
specifications each print the corresponding argument; they differ only in the printing
mode used. The %o form uses the default printing mode, while the %O form uses
the printing mode specified by the next argument (as a string). The “magma”
conversion specification uses a printing mode of Magma. It is thus equivalent to (but
shorter than) using %O and an extra argument of "Magma".

For each of these conversion specifications, the object can be printed in a field
of a particular width by placing extra characters immediately after the % character:
digits describing a positive integer, specifying a field with width equal to that number
and with right-justification; digits describing a negative integer, specifying a field
with width equal to the absolute value of the number and with left-justification;
or the character * specifying a field width given by the next appropriate expression
argument (with justification determined by the sign of the number). This statement
is thus like the C language function printf(), except that %o (and %O and %m) covers
all kinds of objects — it is not necessary to have different conversion specifications
for the different types of Magma objects. Note also that this statement does not
print a newline character after its arguments while the print statement does (a \n
character should be placed in the format string if this is desired). A newline character
will be printed just before the next prompt, though, if there is an incomplete line
at that point.

Example H3E4

The following statements demonstrate simple uses of printf.

> for i := 1 to 150 by 33 do printf "[%3o]\n", i; end for;

[ 1]

[ 34]

[ 67]

[100]

[133]

> for i := 1 to 150 by 33 do printf "[%-3o]\n", i; end for;

[1 ]

[34 ]

[67 ]
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[100]

[133]

> for w := 1 to 5 do printf "[%*o]", w, 1; end for;

[1][ 1][ 1][ 1][ 1]

Example H3E5

Some further uses of the printf statement are illustrated below.

> x := 3;

> y := 4;

> printf "x = %o, y = %o\n", x, y;

x = 3, y = 4

> printf "G’"; printf "day";

G’day

> p := 53.211;

> x := 123.2;

> printf "%.3o%% of %.2o is %.3o\n", p, x, p/100.0 * x;

53.211% of 123.20 is 65.556

> Zx<x> := PolynomialRing(Integers());

> printf "%O\n", x, "Magma";

Polynomial(\[0, 1])

fprintf file, format, expression, ..., expression;

Print values of the expressions under control of format into the file given by file.
The first argument file must be either a string specifying a file which can be opened
for appending (tilde expansion is performed on the filename), or an file object (see
the section below on external files) opened for writing. The rest of the arguments
are exactly as in the printf statement. In the string (filename) case, the file is
opened for appending, the string obtained from the formatted printing of the other
arguments is appended to the file, and the file is closed. In the file object case,
the string obtained from the formatted printing of the other arguments is simply
appended to the file. Note that this statement, like printf, does not print a newline
character after its arguments (a \n character should be placed in the format string
if this is desired).

Example H3E6

The following statements demonstrate a (rather contrived) use of fprintf with a file pipe.

> p := 1000000000000000000000000000057;

> F := POpen("sort -n", "w");

> for i := 100 to 110 do

> fprintf F, "%30o (2^%o mod p)\n", 2^i mod p, i;

> end for;

> // Close F and then see output on standard output:
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> delete F;

37107316853453566312041115519 (2^109 mod p)

70602400912917605986812821219 (2^102 mod p)

74214633706907132624082231038 (2^110 mod p)

129638414606681695789005139447 (2^106 mod p)

141204801825835211973625642438 (2^103 mod p)

259276829213363391578010278894 (2^107 mod p)

267650600228229401496703205319 (2^100 mod p)

282409603651670423947251284876 (2^104 mod p)

518553658426726783156020557788 (2^108 mod p)

535301200456458802993406410638 (2^101 mod p)

564819207303340847894502569752 (2^105 mod p)

3.3.3 Verbose Printing (vprint, vprintf)
The following statements allow convenient printing of information conditioned by whether
an appropriate verbose flag is turned on.

vprint flag: expression, ..., expression;

vprint flag, n: expression, ..., expression;

If the verbose flag flag (see the function SetVerbose) has a level greater than or
equal to n, print the expressions to the right of the colon exactly as in the print
statement. If the flag has level 0 (i.e. is not turned on), do nothing. In the first
form of this statement, where a specific level is not given, n is taken to be 1. This
statement is useful in Magma code found in packages where one wants to print
verbose information if an appropriate verbose flag is turned on.

vprintf flag: format, expression, ..., expression;

vprintf flag, n: format, expression, ..., expression;

If the verbose flag flag (see the function SetVerbose) has a level greater than or
equal to n, print using the format and the expressions to the right of the colon
exactly as in the printf statement. If the flag has level 0 (i.e. is not turned on),
do nothing. In the first form of this statement, where a specific level is not given, n
is taken to be 1. This statement is useful in Magma code found in packages where
one wants to print verbose information if an appropriate verbose flag is turned on.
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3.3.4 Automatic Printing
Magma allows automatic printing of expressions: basically, a statement consisting of an
expression (or list of expressions) alone is taken as a shorthand for the print-statement.

Some subtleties are involved in understanding the precise behaviour of Magma in
interpreting lone expressions as statements. The rules Magma follows are outlined here.
In the following, a call-form means any expression of the form f(arguments); that is,
anything which could be a procedure call or a function call.

(a)Any single expression followed by a semicolon which is not a call-form is printed, just
as if you had ‘print’ in front of it.

(b)For a single call-form followed by a semicolon (which could be a function call or proce-
dure call), the first signature which matches the input arguments is taken and if that is
procedural, the whole call is taken as a procedure call, otherwise it is taken as function
call and the results are printed.

(c) A comma-separated list of any expressions is printed, just as if you had ‘print’ in front of
it. Here any call-form is taken as a function call only so procedure calls are impossible.

(d)A print level modifier is allowed after an expression list (whether the list has length 1
or more). Again any call-form is taken as a function call only so procedure calls are
impossible.

(e) Any list of objects printed, whether by any of the above rules or by the ‘print’ statement,
is placed in the previous value buffer. $1 gives the last printed list, $2 the one before,
etc. Note that multi-return values stay as a list of values in the previous value buffer.
The only way to get at the individual values of such a list is by assignment to a list
of identifiers, or by where (this is of course the only way to get the second result out
of Quotrem, etc.). In other places, a $1 expression is evaluated with principal value
semantics.

Magma also provides procedures to manipulate the previous value buffer in which $1, etc.
are stored.

ShowPrevious()

Show all the previous values stored. This does not change the contents of the
previous value buffer.

ShowPrevious(i)

Show the i-th previous value stored. This does not change the contents of the
previous value buffer.

ClearPrevious()

Clear all the previous values stored. This is useful for ensuring that no more memory
is used than that referred to by the current identifiers.
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SetPreviousSize(n)

Set the size of the previous value buffer (this is not how many values are defined in
it at the moment, but the maximum number that will be stored). The default size
is 3.

GetPreviousSize()

Return the size of the previous value buffer.

Example H3E7

Examples which illustrate point (a):

> 1;

1

> x := 3;

> x;

3

Examples which illustrate point (b):

> 1 + 1; // really function call ’+’(1, 1)

2

> Q := [ 0 ];

> Append(~Q, 1); // first (in fact only) match is procedure call

> Append(Q, 1); // first (in fact only) match is function call

[ 0, 1, 1 ]

> // Assuming fp is assigned to a procedure or function:

> fp(x); // whichever fp is at runtime

> SetVerbose("Meataxe", true); // simple procedure call

Examples which illustrate point (c):

> 1, 2;

1 2

> // Assuming f assigned:

> f(x), 1; // f only can be a function

> SetVerbose("Meataxe", true), 1; // type error in ’SetVerbose’

> // (since no function form)

Examples which illustrate point (d):

> 1: Magma;

1

> Sym(3), []: Maximal;

Symmetric group acting on a set of cardinality 3

Order = 6 = 2 * 3

[]

> SetVerbose("Meataxe", true): Magma; // type error as above

Examples which illustrate point (e):

> 1;
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1

> $1;

1

> 2, 3;

2 3

> $1;

2 3

> Quotrem(124124, 123);

1009 17

> $1;

1009 17

> a, b := $1;

> a;

1009

3.3.5 Indentation
Magma has an indentation level which determines how many initial spaces should be
printed before each line. The level can be increased or decreased. Each time the top
level of Magma is reached (i.e. a prompt is printed), the level is reset to 0. The level is
usually changed in verbose output of recursive functions and procedures. The functions
SetIndent and GetIndent are used to control and examine the number of spaces used for
each indentation level (default 4).

IndentPush()

Increase (push) the indentation level by 1. Thus the beginning of a line will have s
more spaces than before, where s is the current number of indentation spaces.

IndentPop()

Decrease (pop) the indentation level by 1. Thus the beginning of a line will have s
less spaces than before, where s is the current number of indentation spaces. If the
current level is already 0, an error occurs.

3.3.6 Printing to a File

PrintFile(F, x)

Write(F, x)

Overwrite BoolElt Default : false

Print x to the file specified by the string F . If this file already exists, the output
will be appended, unless the optional parameter Overwrite is set to true, in which
case the file is overwritten.
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WriteBinary(F, s)

Overwrite BoolElt Default : false

Write the binary string s to the file specified by the string F . If this file already
exists, the output will be appended, unless the optional parameter Overwrite is set
to true, in which case the file is overwritten.

PrintFile(F, x, L)

Write(F, x, L)

Overwrite BoolElt Default : false

Print x in format defined by the string L to the file specified by the string F . If
this file already exists, the output will be appended unless the optional parameter
Overwrite is set to true, in which case the file is overwritten. The level L can be
any of the print levels on the print command above (i.e., it must be one of the
strings "Default", "Minimal", "Maximal", or "Magma").

PrintFileMagma(F, x)

Overwrite BoolElt Default : false

Print x in Magma format to the file specified by the string F . If this file already
exists, the output will be appended, unless the optional parameter Overwrite is set
to true, in which case the file is overwritten.

3.3.7 Printing to a String
Magma allows the user to obtain the string corresponding to the output obtained when
printing an object by means of the Sprint function. The Sprintf function allows format-
ted printing like the printf statement.

Sprint(x)

Sprint(x, L)

Given any Magma object x, this function returns a string containing the output
obtained when x is printed. If a print level L is given also (a string), the printing
is done according to that level (see the print statement for the possible printing
levels).

Sprintf(F, ...)

Given a format string F , together with appropriate extra arguments corresponding
to F , return the string resulting from the formatted printing of F and the arguments.
The format string F and arguments should be exactly as for the printf statement
– see that statement for details.
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Example H3E8

We demonstrate elementary uses of Sprintf.

> Q := [Sprintf("{%4o<->%-4o}", x, x): x in [1,10,100,1000]];

> Q;

[ { 1<->1 }, { 10<->10 }, { 100<->100 }, {1000<->1000} ]

3.3.8 Redirecting Output

SetOutputFile(F)

Overwrite BoolElt Default : false

Redirect all Magma output to the file specified by the string F . By using
SetOutputFile(F: Overwrite := true) the file F is emptied before output is
written onto it.

UnsetOutputFile()

Close the output file, so that output will be directed to standard output again.

HasOutputFile()

If Magma currently has an output or log file F , return true and F ; otherwise return
false.

3.4 External Files
Magma provides a special file type for the reading and writing of external files. Most of
the standard C library functions can be applied to such files to manipulate them.

3.4.1 Opening Files

Open(S, T)

Given a filename (string) S, together with a type indicator T , open the file named by
S and return a Magma file object associated with it. Tilde expansion is performed
on S. The standard C library function fopen() is used, so the possible characters
allowed in T are the same as those allowed for that function in the current operating
system, and have the same interpretation. Thus one should give the value "r" for
T to open the file for reading, and give the value "w" for T to open the file for
writing, etc. (Note that in the PC version of Magma, the character "b" should
also be included in T if the file is desired to be opened in binary mode.) Once a file
object is created, various I/O operations can be performed on it — see below. A
file is closed by deleting it (i.e. by use of the delete statement or by reassigning the
variable associated with the file); there is no Fclose function. This ensures that the
file is not closed while there are still multiple references to it. (The function is called
Open instead of Fopen to follow Perl-style conventions. The following functions also
follow such conventions where possible.)
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3.4.2 Operations on File Objects

Flush(F)

Given a file F , flush the buffer of F .

Tell(F)

Given a file F , return the offset in bytes of the file pointer within F .

Seek(F, o, p)

Perform fseek(F, o, p); i.e. move the file pointer of F to offset o (relative to p: 0
means beginning, 1 means current, 2 means end).

Rewind(F)

Perform rewind(F); i.e. move the file pointer of F to the beginning.

Put(F, S)

Put (write) the characters of the string S to the file F .

Puts(F, S)

Put (write) the characters of the string S, followed by a newline character, to the
file F .

Getc(F)

Given a file F , get and return one more character from file F as a string. If F is at
end of file, a special EOF marker string is returned; the function IsEof should be
applied to the character to test for end of file. (Thus the only way to loop over a
file character by character is to get each character and test whether it is the EOF
marker before processing it.)

Gets(F)

Given a file F , get and return one more line from file F as a string. The newline
character is removed before the string is returned. If F is at end of file, a special
EOF marker string is returned; the function IsEof should be applied to the string
to test for end of file.

IsEof(S)

Given a string S, return whether S is the special EOF marker.

Ungetc(F, c)

Given a character (length one string) C, together with a file F , perform ungetc(C,
F); i.e. push the character C back into the input buffer of F .
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Example H3E9

We write a function to count the number of lines in a file. Note the method of looping over the
characters of the file: we must get the line and then test whether it is the special EOF marker.

> function LineCount(F)

> FP := Open(F, "r");

> c := 0;

> while true do

> s := Gets(FP);

> if IsEof(s) then

> break;

> end if;

> c +:= 1;

> end while;

> return c;

> end function;

> LineCount("/etc/passwd");

59

3.4.3 Reading a Complete File

Read(F)

Function that returns the contents of the text-file with name indicated by the string
F . Here F may be an expression returning a string.

ReadBinary(F)

Function that returns the contents of the text-file with name indicated by the string
F as a binary string.

Example H3E10

In this example we show how Read can be used to import the complete output from a separate C

program into a Magma session. We assume that a file mystery.c (of which the contents are shown
below) is present in the current directory. We first compile it, from within Magma, and then use
it to produce output for the Magma version of our mystery function.

> Read("mystery.c");

#include <stdio.h>

main(argc, argv)

int argc;

char **argv;

{

int n, i;

n = atoi(argv[1]);

for (i = 1; i <= n; i++)

printf("%d\n", i * i);
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return 0;

}

> System("cc mystery.c -o mystery");

> mysteryMagma := function(n)

> System("./mystery " cat IntegerToString(n) cat " >outfile");

> output := Read("outfile");

> return StringToIntegerSequence(output);

> end function;

> mysteryMagma(5);

[ 1, 4, 9, 16, 25 ]

3.5 Pipes

Pipes are used to communicate with newly-created processes. Currently pipes are only
available on UNIX systems.

The Magma I/O module is currently undergoing revision, and the current pipe facilities
are a mix of the old and new methods. A more uniform model will be available in future
releases.

3.5.1 Pipe Creation

POpen(C, T)

Given a shell command line C, together with a type indicator T , open a pipe between
the Magma process and the command to be executed. The standard C library
function popen() is used, so the possible characters allowed in T are the same as
those allowed for that function in the current operating system, and have the same
interpretation. Thus one should give the value "r" for T so that Magma can read
the output from the command, and give the value "w" for T so that Magma can
write into the input of the command. See the Pipe intrinsic for a method for sending
input to, and receiving output from, a single command.

Important: this function returns a File object, and the I/O functions for files
described previously must be used rather then those described in the following.

Pipe(C, S)

Given a shell command C and an input string S, create a pipe to the command C,
send S into the standard input of C, and return the output of C as a string. Note
that for many commands, S should finish with a new line character if it consists of
only one line.
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Example H3E11

We write a function which returns the current time as 3 values: hour, minutes, seconds. The
function opens a pipe to the UNIX command “date” and applies regular expression matching to
the output to extract the relevant fields.

> function GetTime()

> D := POpen("date", "r");

> date := Gets(D);

> _, _, f := Regexp("([0-9][0-9]):([0-9][0-9]):([0-9][0-9])", date);

> h, m, s := Explode(f);

> return h, m, s;

> end function;

> h, m, s := GetTime();

> h, m, s;

14 30 01

> h, m, s := GetTime();

> h, m, s;

14 30 04

3.5.2 Operations on Pipes
When a read request is made on a pipe, the available data is returned. If no data is
currently available, then the process waits until some does becomes available, and returns
that. (It will also return if the pipe has been closed and hence no more data can be
transmitted.) It does not continue trying to read more data, as it cannot tell whether or
not there is some “on the way”.

The upshot of all this is that care must be exercised as reads may return less data than
is expected.

Read(P : parameters)

Max RngIntElt Default : 0
Waits for data to become available for reading from P and then returns it as a string.
If the parameter Max is set to a positive value then at most that many characters
will be read. Note that less than Max characters may be returned, depending on the
amount of currently available data.

If the pipe has been closed then the special EOF marker string is returned.

ReadBytes(P : parameters)

Max RngIntElt Default : 0
Waits for data to become available for reading from P and then returns it as a
sequence of bytes (integers in the range 0..255). If the parameter Max is set to a
positive value then at most that many bytes will be read. Note that less than Max
bytes may be returned, depending on the amount of currently available data.

If the pipe has been closed then the empty sequence is returned.
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Write(P, s)

Writes the characters of the string s to the pipe P .

WriteBytes(P, Q)

Writes the bytes in the byte sequence Q to the pipe P . Each byte must be an integer
in the range 0..255.

3.6 Sockets
Sockets may be used to establish communication channels between machines on the same
network. Once established, they can be read from or written to in much the same ways
as more familiar I/O constructs like files. One major difference is that the data is not
instantly available, so the I/O operations take much longer than with files. Currently
sockets are only available on UNIX systems.

Strictly speaking, a socket is a communication endpoint whose defining information
consists of a network address and a port number. (Even more strictly speaking, the
communication protocol is also part of the socket. Magma only uses TCP sockets, however,
so we ignore this point from now on.)

The network address selects on which of the available network interfaces communication
will take place; it is a string identifying the machine on that network, in either domain name
or dotted-decimal format. For example, both "localhost" and "127.0.0.1" identify
the machine on the loopback interface (which is only accessible from the machine itself),
whereas "foo.bar.com" or "10.0.0.3" might identify the machine in a local network,
accessible from other machines on that network.

The port number is just an integer that identifies the socket on a particular network
interface. It must be less than 65 536. A value of 0 will indicate that the port number
should be chosen by the operating system.

There are two types of sockets, which we will call client sockets and server sockets. The
purpose of a client socket is to initiate a connection to a server socket, and the purpose of a
server socket is to wait for clients to initiate connections to it. (Thus the server socket needs
to be created before the client can connect to it.) Once a server socket accepts a connection
from a client socket, a communication channel is established and the distinction between
the two becomes irrelevant, as they are merely each side of a communication channel.

In the following descriptions, the network address will often be referred to as the host.
So a socket is identified by a (host, port) pair, and an established communication channel
consists of two of these pairs: (local-host, local-port), (remote-host, remote-port).

3.6.1 Socket Creation

Socket(H, P : parameters)

LocalHost MonStgElt Default : none

LocalPort RngIntElt Default : 0
Attempts to create a (client) socket connected to port P of host H. Note: these are
the remote values; usually it does not matter which local values are used for client
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sockets, but for those rare occasions where it does they may be specified using the
parameters LocalHost and LocalPort. If these parameters are not set then suitable
values will be chosen by the operating system. Also note that port numbers below
1 024 are usually reserved for system use, and may require special privileges to be
used as the local port number.

Socket( : parameters)

LocalHost MonStgElt Default : none

LocalPort RngIntElt Default : 0

Attempts to create a server socket on the current machine, that can be used to
accept connections. The parameters LocalHost and LocalPort may be used to
specify which network interface and port the socket will accept connections on; if
either of these are not set then their values will be determined by the operating
system. Note that port numbers below 1 024 are usually reserved for system use,
and may require special privileges to be used as the local port number.

WaitForConnection(S)

This may only be used on server sockets. It waits for a connection attempt to
be made, and then creates a new socket to handle the resulting communication
channel. Thus S may continue to be used to accept connection attempts, while the
new socket is used for communication with whatever entity just connected. Note:
this new socket is not a server socket.

3.6.2 Socket Properties

SocketInformation(S)

This routine returns the identifying information for the socket as a pair of tuples.
Each tuple is a <host, port> pair — the first tuple gives the local information and the
second gives the remote information. Note that this second tuple will be undefined
for server sockets.

3.6.3 Socket Predicates

IsServerSocket(S)

Returns whether S is a server socket or not.
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3.6.4 Socket I/O
Due to the nature of the network, it takes significant time to transmit data from one
machine to another. Thus when a read request is begun it may take some time to complete,
usually because the data to be read has not yet arrived. Also, data written to a socket
may be broken up into smaller pieces for transmission, each of which may take different
amounts of time to arrive. Thus, unlike files, there is no easy way to tell if there is still
more data to be read; the current lack of data is no indicator as to whether more might
arrive.

When a read request is made on a socket, the available data is returned. If no data is
currently available, then the process waits until some does becomes available, and returns
that. (It will also return if the socket has been closed and hence no more data can be
transmitted.) It does not continue trying to read more data, as it cannot tell whether or
not there is some “on the way”.

The upshot of all this is that care must be exercised as reads may return less data than
is expected.

Read(S : parameters)

Max RngIntElt Default : 0

Waits for data to become available for reading from S and then returns it as a string.
If the parameter Max is set to a positive value then at most that many characters
will be read. Note that less than Max characters may be returned, depending on the
amount of currently available data.

If the socket has been closed then the special EOF marker string is returned.

ReadBytes(S : parameters)

Max RngIntElt Default : 0

Waits for data to become available for reading from S and then returns it as a
sequence of bytes (integers in the range 0..255). If the parameter Max is set to a
positive value then at most that many bytes will be read. Note that less than Max
bytes may be returned, depending on the amount of currently available data.

If the socket has been closed then the empty sequence is returned.

Write(S, s)

Writes the characters of the string s to the socket S.

WriteBytes(S, Q)

Writes the bytes in the byte sequence Q to the socket S. Each byte must be an
integer in the range 0..255.
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Example H3E12

Here is a trivial use of sockets to send a message from one Magma process to another running on
the same machine. The first Magma process sets up a server socket and waits for another Magma

to contact it.

> // First Magma process

> server := Socket(: LocalHost := "localhost");

> SocketInformation(server);

<localhost, 32794>

> S1 := WaitForConnection(server);

The second Magma process establishes a client socket connection to the first, writes a greeting
message to it, and closes the socket.

> // Second Magma process

> S2 := Socket("localhost", 32794);

> SocketInformation(S2);

<localhost, 32795> <localhost, 32794>

> Write(S2, "Hello, other world!");

> delete S2;

The first Magma process is now able to continue; it reads and displays all data sent to it until the
socket is closed.

> // First Magma process

> SocketInformation(S1);

<localhost, 32794> <localhost, 32795>

> repeat

> msg := Read(S1);

> msg;

> until IsEof(msg);

Hello, other world!

EOF

3.7 Interactive Input

read identifier;

read identifier, prompt;

This statement will cause Magma to assign to the given identifier the string of
characters appearing (at run-time) on the following line. This allows the user to
provide an input string at run-time. If the optional prompt is given (a string), that
is printed first.
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readi identifier;

readi identifier, prompt;

This statement will cause Magma to assign to the given identifier the literal integer
appearing (at run-time) on the following line. This allows the user to specify integer
input at run-time. If the optional prompt is given (a string), that is printed first.

3.8 Loading a Program File

load "filename";

Input the file with the name specified by the string. The file will be read in, and
the text will be treated as Magma input. Tilde expansion of file names is allowed.

iload "filename";

(Interactive load.) Input the file with the name specified by the string. The file will
be read in, and the text will be treated as Magma input. Tilde expansion of file
names is allowed. In contrast to load, the user has the chance to interact as each
line is read in:

As the line is read in, it is displayed and the system waits for user response. At
this point, the user can skip the line (by moving “down”), edit the line (using the
normal editing keys) or execute it (by pressing “enter”). If the line is edited, the
new line is executed and the original line is presented again.

3.9 Saving and Restoring Workspaces

save "filename";

Copy all information present in the current Magma workspace onto a file specified
by the string "filename". The workspace is left intact, so executing this command
does not interfere with the current computation.

restore "filename";

Copy a previously stored Magma workspace from the file specified by the string
"filename" into central memory. Information present in the current workspace prior
to the execution of this command will be lost. The computation can now proceed
from the point it was at when the corresponding save-command was executed.
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3.10 Logging a Session

SetLogFile(F)

Overwrite BoolElt Default : false

Set the log file to be the file specified by the string F : all input and output will be
sent to this log file as well as to the terminal. If a log file is already in use, it is closed
and F is used instead. By using SetLogFile(F: Overwrite := true) the file F is
emptied before input and output are written onto it. See also HasOutputFile.

UnsetLogFile()

Stop logging Magma’s output.

SetEchoInput(b)

Set to true or false according to whether or not input from external files should also
be sent to standard output.

3.11 Memory Usage

GetMemoryUsage()

Return the current memory usage of Magma (in bytes as an integer). This is the
process data size, which does not include the executable code.

GetMaximumMemoryUsage()

Return the maximum memory usage of Magma (in bytes as an integer) which has
been attained since last reset (see ResetMaximumMemoryUsage). This is the maxi-
mum process data size, which does not include the executable code.

ResetMaximumMemoryUsage()

Reset the value of the maximum memory usage of Magma to be the current memory
usage of Magma (see GetMaximumMemoryUsage).

3.12 System Calls

Alarm(s)

A procedure which when used on UNIX systems, sends the signal SIGALRM to the
Magma process after s seconds. This allows the user to specify that a Magma-
process should self-destruct after a certain period.

ChangeDirectory(s)

Change to the directory specified by the string s. Tilde expansion is allowed.

GetCurrentDirectory()

Returns the current directory as a string.
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Getpid()

Returns Magma’s process ID (value of the Unix C system call getpid()).

Getuid()

Returns the user ID (value of the Unix C system call getuid()).

System(C)

Execute the system command specified by the string C. This is done by calling the
C function system().

This also returns the system command’s return value as an integer. On most
Unix systems, the lower 8 bits of this value give the process status while the next 8
bits give the value given by the command to the C function exit() (see the Unix
manual entries for system(3) or wait(2), for example). Thus one should normally
divide the result by 256 to get the exit value of the program on success.

See also the Pipe intrinsic function.

%! shell-command

Execute the given command in the Unix shell then return to Magma. Note that this
type of shell escape (contrary to the one using a System call) takes place entirely
outside Magma and does not show up in Magma’s history.

3.13 Creating Names
Sometimes it is necessary to create names for files from within Magma that will not clash
with the names of existing files.

Tempname(P)

Given a prefix string P , return a unique temporary name derived from P (by use of
the C library function mktemp()).
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Chapter 4

ENVIRONMENT AND OPTIONS

4.1 Introduction
This chapter describes the environmental features of Magma, together with options which
can be specified at start-up on the command line, or within Magma by the Set- proce-
dures. The history and line-editor features of Magma are also described.

4.2 Command Line Options
When starting up Magma, various command-line options can be supplied, and a list of
files to be automatically loaded can also be specified. These files may be specified by simply
listing their names as normal arguments (i.e., without a - option) following the Magma
command. For each such file name, a search for the specified file is conducted, starting in
the current directory, and in directories specified by the environment variable MAGMA PATH
after that if necessary. It is also possible to have a startup file, in which one would usually
store personal settings of parameters and variables. The startup file is specified by the
MAGMA STARTUP FILE environment variable which should be set in the user’s .cshrc file or
similar. This environment variable can be overridden by the -s option, or cancelled by the
-n option. The files specified by the arguments to Magma are loaded after the startup
file. Thus the startup file is not cancelled by giving extra file arguments, which is what is
usually desired.

Magma also allows one to set variables from the command line — if one of the argu-
ments is of the form var:=val, where var is a valid identifier (consisting of letters, under-
scores, or non-initial digits) and there is no space between var and the :=, then the variable
var is assigned within Magma to the string value val at the point where that argument
is processed. (Functions like StringToInteger should be used to convert the value to an
object of another type once inside Magma.)

magma -b

If the -b argument is given to Magma, the opening banner and all other introduc-
tory messages are suppressed. The final “total time” message is also suppressed.
This is useful when sending the whole output of a Magma process to a file so that
extra removing of unwanted output is not needed.

magma -c filename

If the -c argument is given to Magma, followed by a filename, the filename is as-
sumed to refer to a package source file and the package is compiled and Magma then
exits straight away. This option is rarely needed since packages are automatically
compiled when attached.
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magma -d

If the -d option is supplied to Magma, the licence for the current magmapassfile
is dumped. That is, the expiry date and the valid hostids are displayed. Magma
then exits.

magma -n

If the -n option is supplied to Magma, any startup file specified by the environment
variable MAGMA STARTUP FILE or by the -s option is cancelled.

magma -q name

If the -q option is supplied to Magma, then Magma operates in a special manner
as a slave (with the given name) for the MPQS integer factorisation algorithm. Please
see that function for more details.

magma -r workspace

If the -r option is supplied to Magma, together with a workspace file, that
workspace is automatically restored by Magma when it starts up.

magma -s filename

If the -s option is supplied to Magma, the given filename is used for the
startup file for Magma. This overrides the variable of the environment variable
MAGMA STARTUP FILE if it has been set. This option should not be used (as it was
before), for automatically loading files since that can be done by just listing them
as arguments to the Magma process.

magma -S integer

When starting up Magma, it is possible to specify a seed for the generation of
pseudo-random numbers. (Pseudo-random quantities are used in several Magma
algorithms, and may also be generated explicitly by some intrinsics.) The seed
should be in the range 0 to (232− 1) inclusive. If -S is not followed by any number,
or if the -S option is not used, Magma selects the seed itself.

Example H4E1

By typing the command

magma file1 x:=abc file2

Magma would start up, read the user’s startup file specified by MAGMA STARTUP FILE if existent,
then read the file file1, then assign the variable x to the string value "abc", then read the file
file2, then give the prompt.
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4.3 Environment Variables

This section lists some environment variables used by Magma. These variables are set
by an appropriate operating system command and are used to define various search paths
and other run-time options.

MAGMA STARTUP FILE

The name of the default start-up file. It can be overridden by the magma -s com-
mand.

MAGMA PATH

Search path for files that are loaded (a colon separated list of directories). It need not
include directories for the libraries, just personal directories. This path is searched
before the library directories.

MAGMA MEMORY LIMIT

Limit on the size of the memory that may be used by a Magma-session (in bytes).

MAGMA LIBRARY ROOT

The root directory for the Magma libraries (by supplying an absolute path name).
From within Magma SetLibraryRoot and GetLibraryRoot can be used to change
and view the value.

MAGMA LIBRARIES

Give a list of Magma libraries (as a colon separated list of sub-directories of the
library root directory). From within Magma SetLibraries and GetLibraries can
be used to change and view the value.

MAGMA SYSTEM SPEC

The Magma system spec file containing the system packages automatically attached
at start-up.

MAGMA USER SPEC

The personal user spec file containing the user packages automatically attached at
start-up.

MAGMA HELP DIR

The root directory for the Magma help files.

MAGMA TEMP DIR

Optional variable containing the directory Magma is to use for temporary files.
If not specified, this defaults to /tmp (on Unix-like systems) or the system-wide
temporary directory (on Windows systems).
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4.4 Set and Get

The Set- procedures allow the user to attach values to certain environment variables. The
Get- functions enable one to obtain the current values of these variables.

SetAssertions(b)

GetAssertions()

Controls the checking of assertions (see the assert statement and related statements
in the chapter on the language). Default is SetAssertions(1). The relevant values
are 0 for no checking at all, 1 for normal checks, 2 for debug checks and 3 for
extremely stringent checking.

SetAutoColumns(b)

GetAutoColumns()

If enabled, the IO system will try to determine the number of columns in the win-
dow by using ioctl(); when a window change or a stop/cont occurs, the Columns
variable (below) will be automatically updated. If disabled, the Columns vari-
able will only be changed when explicitly done so by SetColumns. Default is
SetAutoColumns(true).

SetAutoCompact(b)

GetAutoCompact()

Control whether automatic compaction is performed. Normally the memory man-
ager of Magma will compact all of its memory between each statement at the top
level. This removes fragmentation and reduces excessive memory usage. In some
very rare situations, the compactions may become very slow (one symptom is that
an inordinate pause occurs between prompts when only a trivial operation or noth-
ing is done). In such cases, turning the automatic compaction off may help (at the
cost of possibly more use of memory). Default is SetAutoCompact(true).

SetBeep(b)

GetBeep()

Controls ‘beeps’. Default is SetBeep(true).

SetColumns(n)

GetColumns()

Controls the number of columns used by the IO system. This affects the line editor
and the output system. (As explained above, if AutoColumns is on, this variable
will be automatically determined.) The number of columns will determine how
words are wrapped. If set to 0, word wrap is not performed. The default value is
SetColumns(80) (unless SetAutoColumns(true)).
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GetCurrentDirectory()

Returns the current directory as a string. (Use ChangeDirectory(s) to change the
working directory.)

SetEchoInput(b)

GetEchoInput()

Set to true or false according to whether or not input from external files should
also be sent to standard output.

GetEnvironmentValue(s)

GetEnv(s)

Returns the value of the external environment variable s as a string.

SetHistorySize(n)

GetHistorySize()

Controls the number of lines saved in the history. If the number is set to 0, no
history is preserved.

SetIgnorePrompt(b)

GetIgnorePrompt()

Controls the option to ignore the prompt to allow the pasting of input lines back
in. If enabled, any leading ’>’ characters (possibly separated by white space) are
ignored by the history system when the input file is a terminal, unless the line
consists of the ’>’ character alone (without a following space), which could not
come from a prompt since in a prompt a space or another character follows a ’>’.
Default is SetIgnorePrompt(false).

SetIgnoreSpaces(b)

GetIgnoreSpaces()

Controls the option to ignore spaces when searching in the line editor. If the user
moves up or down in the line editor using <Ctrl>-P or <Ctrl>-N (see the line editor
key descriptions) and if the cursor is not at the beginning of the line, a search is
made forwards or backwards, respectively, to the first line which starts with the
same string as the string consisting of all the characters before the cursor. While
doing the search, spaces are ignored if and only if this option is on (value true).
Default is SetIgnoreSpaces(true).

SetIndent(n)

GetIndent()

Controls the indentation level for formatting output. The default is SetIndent(4).
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SetLibraries(s)

GetLibraries()

Controls the Magma library directories via environment variable MAGMA LIBRARIES.
The procedure SetLibraries takes a string, which will be taken as the (colon-
separated) list of sub-directories in the library root directory for the libraries; the
function GetLibraryRoot returns the current value as a string. These directories
will be searched when you try to load a file; note however that first the directories
indicated by the current value of your path environment variable MAGMA PATH will
be searched. See SetLibraryRoot for the root directory.

SetLibraryRoot(s)

GetLibraryRoot()

Controls the root directory for the Magma libraries, via the environment variable
MAGMA LIBRARY ROOT. The procedure SetLibraryRoot takes a string, which will be
the absolute pathname for the root of the libraries; the function GetLibraryRoot
returns the current value as a string. See also SetLibraries

SetLineEditor(b)

GetLineEditor()

Controls the line editor. Default is SetLineEditor(true).

SetLogFile(F)

Overwrite BoolElt Default : false

UnsetLogFile()

Procedure. Set the log file to be the file specified by the string F : all input and
output will be sent to this log file as well as to the terminal. If a log file is already
in use, it is closed and F is used instead. The parameter Overwrite can be used to
indicate that the file should be truncated before writing input and output on it; by
default the file is appended.

SetMemoryLimit(n)

GetMemoryLimit()

Set the limit (in bytes) of the memory which the memory manager will allocate (no
limit if 0). Default is SetMemoryLimit(0).

SetNthreads(n)

GetNthreads()

Set the number of threads to be used in multi-threaded algorithms to be n, if
POSIX threads are enabled in this version of Magma. Currently, this affects the
coding theory minimum weight algorithm (MinimumWeight) and the F4 Gröbner
basis algorithm for medium-sized primes (Groebner).
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SetOutputFile(F)

Overwrite BoolElt Default : false

UnsetOutputFile()

Start/stop redirecting all Magma output to a file (specified by the string F ). The
parameter Overwrite can be used to indicate that the file should be truncated
before writing output on it.

SetPath(s)

GetPath()

Controls the path by which the searching of files is done. The path consists of a colon
separated list of directories which are searched in order (“.” implicitly assumed at
the front). Tilde expansion is done on each directory. (May be overridden by the
environment variable MAGMA PATH.)

SetPrintLevel(l)

GetPrintLevel()

Controls the global printing level, which is one of "Minimal", "Magma", "Maximal",
"Default". Default is SetPrintLevel("Default").

SetPrompt(s)

GetPrompt()

Controls the terminal prompt (a string). Expansion of the following % escapes
occurs:
%% The character %
%h The current history line number.
%S The parser ‘state’: when a new line is about to be read while the parser has

only seen incomplete statements, the state consists of a stack of words like
“if”, “while”, indicating the incomplete statements.

%s Like %S except that only the topmost word is displayed.
Default is SetPrompt("%S> ").

SetQuitOnError(b)

Set whether Magma should quit on any error to b. If b is true, Magma
will completely quit when any error (syntax, runtime, etc.) occurs. Default is
SetQuitOnError(false).

SetRows(n)

GetRows()

Controls the number of rows in a page used by the IO system. This affects the
output system. If set to 0, paging is not performed. Otherwise a prompt is given
after the given number of rows for a new page. The default value is SetRows(0).
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GetTempDir()

Returns the directory Magma uses for storing temporary files. May be influenced
on startup via the MAGMA TEMP DIR environment variable (see Section 4.3).

SetTraceback(n)

GetTraceback()

Controls whether Magma should produce a traceback of user function calls before
each error message. The default value is SetTraceback(true).

SetSeed(s, c)

GetSeed()

Controls the initialization seed and step number for pseudo-random number gener-
ation. For details, see the section on random object generation in the chapter on
statements and expressions.

GetVersion()

Return integers x, y and z such the current version of Magma is Vx.y–z.

SetViMode(b)

GetViMode()

Controls the type of line editor used: Emacs (false) or VI style. Default is
SetViMode(false).

4.5 Verbose Levels
By turning verbose printing on for certain modules within Magma, some information on
computations that are performed can be obtained. For each option, the verbosity may
have different levels. The default is level 0 for each option.

There are also 5 slots available for user-defined verbose flags. The flags can be set in
user programs by SetVerbose("Usern", true) where n should be one of 1, 2, 3, 4, 5, and
the current setting is returned by GetVerbose("Usern").

SetVerbose(s, i)

SetVerbose(s, b)

Set verbose level for s to be level i or b. Here the argument s must be a string. The
verbosity may have different levels. An integer i for the second argument selects the
appropriate level. A second argument i of 0 or b of false means no verbosity. A
boolean value for b of true for the second argument selects level 1. (See above for
the valid values for the string s).

GetVerbose(s)

Return the value of verbose flag s as an integer. (See above for the valid values for
the string s).
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IsVerbose(s)

Return the whether the value of verbose flag s is non-zero. (See above for the valid
values for the string s).

IsVerbose(s, l)

Return the whether the value of verbose flag s is greater than or equal to l. (See
above for the valid values for the string s).

ListVerbose()

List all verbose flags. That is, print each verbose flag and its maximal level.

ClearVerbose()

Clear all verbose flags. That is, set the level for all verbose flags to 0.

4.6 Other Information Procedures

The following procedures print information about the current state of Magma.

ShowMemoryUsage()

(Procedure.) Show Magma’s current memory usage.

ShowIdentifiers()

(Procedure.) List all identifiers that have been assigned to.

ShowValues()

(Procedure.) List all identifiers that have been assigned to with their values.

Traceback()

(Procedure.) Display a traceback of the current Magma function invocations.

ListSignatures(C)

Isa BoolElt Default : true

Search MonStgElt Default : “Both”
ShowSrc BoolElt Default : false

List all intrinsic functions, procedures and operators having objects from category
C among their arguments or return values. The parameter Isa may be set to false
so that any categories which C inherit from are not considered. The parameter
Search, with valid string values Both, Arguments, ReturnValues, may be used
to specify whether the arguments, the return values, or both, are considered (de-
fault both). ShowSrc can be used to see where package intrinsics are defined. Use
ListCategories for the names of the categories.
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ListSignatures(F, C)

Isa BoolElt Default : true

Search MonStgElt Default : “Both”
ShowSrc BoolElt Default : false

Given an intrinsic F and category C, list all signatures of F which match the
category C among their arguments or return values. The parameters are as for the
previous procedure.

ListCategories()

ListTypes()

Procedure to list the (abbreviated) names for all available categories in Magma.

4.7 History
Magma provides a history system which allows the recall and editing of previous lines.
The history system is invoked by typing commands which begin with the history character
‘%’. Currently, the following commands are available.

%p

List the contents of the history buffer. Each line is preceded by its history line
number.

%pn

List the history line n in %p format.

%pn1 n2

List the history lines in the range n1 to n2 in %p format.

%P

List the contents of the history buffer. The initial numbers are not printed.

%Pn

List the history line n in %P format.

%Pn1 n2

List the history lines in the range n1 to n2 in %P format.

%s

List the contents of the history buffer with an initial statement for each line to reset
the random number seed to the value it was just before the line was executed. This
is useful when one wishes to redo a computation using exactly the same seed as
before but does not know what the seed was at the time.
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%sn

Print the history line n in %s format.

%sn1 n2

Print the history lines in the range n1 to n2 in %s format.

%S

As for %s except that the statement to set the seed is only printed if the seed has
changed since the previous time it was printed. Also, it is not printed if it would
appear in the middle of a statement (i.e., the last line did not end in a semicolon).

%Sn

Print the history line n in %S format.

%Sn1 n2

Print the history lines in the range n1 to n2 in %S format.

%

Reenter the last line into the input stream.

%n

Reenter the line specified by line number n into the input stream.

%n1 n2

Reenter the history lines in the range n1 to n2 into the input stream.

%e

Edit the last line. The editor is taken to be the value of the EDITOR environment
variable if is set, otherwise “/bin/ed” is used. If after the editor has exited the file
has not been changed then nothing is done. Otherwise the contents of the new file
are reentered into the input stream.

%en

Edit the line specified by line number n.

%en1 n2

Edit the history lines in the range n1 to n2.

%! shell-command

Execute the given command in the Unix shell then return to Magma.
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4.8 The Magma Line Editor

Magma provides a line editor with both Emacs and VI style key bindings. To enable the
VI style of key bindings, type

SetViMode(true)

and type

SetViMode(false)

to revert to the Emacs style of key bindings. By default ViMode is false; that is, the
Emacs style is in effect.

Many key bindings are the same in both Emacs and VI style. This is because some VI
users like to be able to use some Emacs keys (like <Ctrl>-P) as well as the VI command
keys. Thus key bindings in Emacs which are not used in VI insert mode can be made
common to both.

4.8.1 Key Bindings (Emacs and VI mode)
<Ctrl>-key means hold down the Control key and press key.

<Return>

Accept the line and print a new line. This works in any mode.

<Backspace>

<Delete>

Delete the previous character.

<Tab>

Complete the word which the cursor is on or just after. If the word doesn’t have a
unique completion, it is first expanded up to the common prefix of all the possible
completions. An immediately following Tab key will list all of the possible comple-
tions. Currently completion occurs for system functions and procedures, parameters,
reserved words, and user identifiers.

<Ctrl>-A

Move to the beginning of the line (“alpha” = “beginning”).

<Ctrl>-B

Move back a character (“back”).

<Ctrl>-C

Abort the current line and start a new line.

<Ctrl>-D
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On an empty line, send a EOF character (i.e., exit at the top level of the command
interpreter). If at end of line, list the completions. Otherwise, delete the character
under the cursor (“delete”).

<Ctrl>-E

Move to the end of the line (“end”).

<Ctrl>-F

Move forward a character (“forward”).

<Ctrl>-H

Same as Backspace.

<Ctrl>-I

Same as Tab.

<Ctrl>-J

Same as Return.

<Ctrl>-K

Delete all characters from the cursor to the end of the line (“kill”).

<Ctrl>-L

Redraw the line on a new line (helpful if the screen gets wrecked by programs like
“write”, etc.).

<Ctrl>-M

Same as <Return>.

<Ctrl>-N

Go forward a line in the history buffer (“next”). If the cursor is not at the begin-
ning of the line, go forward to the first following line which starts with the same
string (ignoring spaces iff the ignore spaces option is on — see SetIgnoreSpaces)
as the string consisting of all the characters before the cursor. Also, if <Ctrl>-N
is typed initially at a new line and the last line entered was actually a recall of a
preceding line, then the next line after that is entered into the current buffer. Thus
to repeat a sequence of lines (with minor modifications perhaps to each), then one
only needs to go back to the first line with <Ctrl>-P (see below), press <Return>,
then successively press <Ctrl>-N followed by <Return> for each line.

<Ctrl>-P

Go back a line in the history buffer (“previous”). If the cursor is not at the beginning
of the line, go back to the first preceding line which starts with the same string
(ignoring spaces iff the ignore spaces option is on — see SetIgnoreSpaces) as the
string consisting of all the characters before the cursor. For example, typing at a
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new line x:= and then <Ctrl>-P will go back to the last line which assigned x (if a
line begins with, say, x :=, it will also be taken).

<Ctrl>-U

Clear the whole of the current line.

<Ctrl>-Vchar

Insert the following character literally.

<Ctrl>-W

Delete the previous word.

<Ctrl>-X

Same as <Ctrl>-U.

<Ctrl>-Y

Insert the contents of the yank-buffer before the character under the cursor.

<Ctrl>-Z

Stop Magma.

<Ctrl>-

Undo the last change.

<Ctrl>-\
Immediately quit Magma.

On most systems the arrow keys also have the obvious meaning.

4.8.2 Key Bindings in Emacs mode only
Mkey means press the Meta key and then key. (At the moment, the Meta key is only the
Esc key.)

Mb

MB

Move back a word (“Back”).

Mf

MF

Move forward a word (“Forward”).
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4.8.3 Key Bindings in VI mode only
In the VI mode, the line editor can also be in two modes: the insert mode and the command
mode. When in the insert mode, any non-control character is inserted at the current cursor
position. The command mode is then entered by typing the Esc key. In the command
mode, various commands are given a range giving the extent to which they are performed.
The following ranges are available:

0

Move to the beginning of the line.

$

Move to the end of the line.

<Ctrl>-space

Move to the first non-space character of the line.

%

Move to the matching bracket. (Bracket characters are (, ), [, ], {, }, <, and >.)

;

Move to the next character. (See ‘F’, ‘f’, ‘T’, and ‘t’.)

,

Move to the previous character. (See ‘F’, ‘f’, ‘T’, and ‘t’.)

B

Move back a space-separated word (“Back”).

b

Move back a word (“back”).

E

Move forward to the end of the space-separated word (“End”).

e

Move forward to the end of the word (“end”).

Fchar

Move back to the first occurrence of char.

fchar

Move forward to the first occurrence of char.

h

H

Move back a character (<Ctrl>-H = Backspace).



110 THE MAGMA LANGUAGE Part I

l

L

Move back a character (<Ctrl>-L = forward on some keyboards).

Tchar

Move back to just after the first occurrence of char.

tchar

Move forward to just before the first occurrence of char.

w

Move forward a space-separated word (“Word”).

W

Move forward a word (“word”).

Any range may be preceded by a number to multiply to indicate how many times the
operation is done. The VI-mode also provides the yank-buffer, which contains characters
which are deleted or “yanked” – see below.

The following keys are also available in command mode:

A

Move to the end of the line and change to insert mode (“Append”).

a

Move forward a character (if not already at the end of the line) and change to insert
mode (“append”).

C

Delete all the characters to the end of line and change to insert mode (“Change”).

crange

Delete all the characters to the specified range and change to insert mode (“change”).

D

Delete all the characters to the end of line (“Delete”).

drange

Delete all the characters to the specified range (“delete”).

I

Move to the first non-space character in the line and change to insert mode (“In-
sert”).

i
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Change to insert mode (“insert”).

j

Go forward a line in the history buffer (same as <Ctrl>-N).

k

Go back a line in the history buffer (same as <Ctrl>-P).

P

Insert the contents of the yank-buffer before the character under the cursor.

p

Insert the contents of the yank-buffer before the character after the cursor.

R

Enter over-type mode: typed characters replace the old characters under the cursor
without insertion. Pressing Esc returns to the command mode.

rchar

Replace the character the cursor is over with char.

S

Delete the whole line and change to insert mode (“Substitute”).

s

Delete the current character and change to insert mode (“substitute”).

U
u

Undo the last change.

X

Delete the character to the left of the cursor.

x

Delete the character under the cursor.

Y

“Yank” the whole line - i.e., copy the whole line into the yank-buffer (“Yank”).

yrange

Copy all characters from the cursor to the specified range into the yank-buffer
(“yank”).
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4.9 The Magma Help System

Magma provides extensive online help facilities that can be accessed in different ways. The
easiest way to access the documentation is by typing:

magmahelp

Which should start some browser (usually netscape) on the main page of the Magma
documentation.

The easiest way to get some information about any Magma intrinsic is by typing:
(Here we assume you to be interested in FundamentalUnit)

> FundamentalUnit;

Which now will list all signatures for this intrinsic (i.e. all known ways to use this function):

> FundamentalUnit;
Intrinsic ’FundamentalUnit’
Signatures:

(<FldQuad> K) -> FldQuadElt
(<RngQuad> O) -> RngQuadElt

The fundamental unit of K or O
(<RngQuad> R) -> RngQuadElt

Fundamental unit of the real quadratic order.

Next, to get more detailed information, try

> ?FundamentalUnit

But now several things could happen depending on the installation. Using the default,
you get

===========================================================
PATH: /magma/ring-field-algebra/quadratic/operation/\

class-group/FundamentalUnit
KIND: Intrinsic
===========================================================
FundamentalUnit(K) : FldQuad -> FldQuadElt
FundamentalUnit(O) : RngQuad -> RngQuadElt

A generator for the unit group of the order O or the
maximal order

of the quadratic field K.
===========================================================

Second, a WWW-browser could start on the part of the online help describing your
function (or at least the index of the first character). Third, some arbitrary program could
be called to provide you with the information.

If SetVerbose("Help", true); is set, Magma will show the exact command used and
the return value obtained.
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SetHelpExternalBrowser(S, T)

SetHelpExternalBrowser(S)

Defines the external browser to be used if SetHelpUseExternalBrowser(true) is
in effect. The string has to be a valid command taking exactly one argument (%s)
which will we replaced by a URL. In case two strings are provided, the second
defines a fall-back system. Typical use for this is to first try to use an already
running browser and if this fails, start a new one.

SetHelpUseExternalBrowser(b)

Tells Magma to actually use (or stop to use) the external browser. If both
SetHelpUseExternalSystem and SetHelpUseExternalBrowser are set to true, the
assignment made last will be effective.

SetHelpExternalSystem(s)

This will tell Magma to use a user defined external program to access the help.
The string has to contain exactly one %s which will be replaced by the argument to
?. The resulting string must be a valid command.

SetHelpUseExternalSystem(b)

Tells Magma to actually use (or stop to use) the external help system. If both
SetHelpUseExternalSystem and SetHelpUseExternalBrowser are set to true, the
assignment made last will be effective.

GetHelpExternalBrowser()

Returns the currently used command strings.

GetHelpExternalSystem()

Returns the currently used command string.

GetHelpUseExternal()

The first value is the currently used value from SetHelpUseExternalBrowser, the
second reflects SetHelpUseExternalSystem.

4.9.1 Internal Help Browser
Magma has a very powerful internal help-browser that can be entered with

> ??
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Chapter 5

MAGMA SEMANTICS

5.1 Introduction
This chapter describes the semantics of Magma (how expressions are evaluated, how
identifiers are treated, etc.) in a fairly informal way. Although some technical language
is used (particularly in the opening few sections) the chapter should be easy and essential
reading for the non-specialist. The chapter is descriptive in nature, describing how Magma
works, with little attempt to justify why it works the way it does. As the chapter proceeds,
it becomes more and more precise, so while early sections may gloss over or omit things
for the sake of simplicity and learnability, full explanations are provided later.

It is assumed that the reader is familiar with basic notions like a function, an operator,
an identifier, a type ...

And now for some buzzwords: Magma is an imperative, call by value, statically scoped,
dynamically typed programming language, with an essentially functional subset. The
remainder of the chapter explains what these terms mean, and why a user might want to
know about such things.

5.2 Terminology
Some terminology will be useful. It is perhaps best to read this section only briefly, and
to refer back to it when necessary.

The term expression will be used to refer to a textual entity. The term value will be
used to refer to a run-time value denoted by an expression. To understand the difference
between an expression and a value consider the expressions 1+2 and 3. The expressions
are textually different but they denote the same value, namely the integer 3.

A function expression is any expression of the form function ... end function or of
the form func< ... | ... >. The former type of function expression will be said to be
in the statement form, the latter in the expression form. A function value is the run-time
value denoted by a function expression. As with integers, two function expressions can be
textually different while denoting the same (i.e., extensionally equal) function value. To
clearly distinguish function values from function expressions, the notation FUNC( ... : ...
) will be used to describe function values.

The formal arguments of a function in the statement form are the identifiers that
appear between the brackets just after the function keyword, while for a function in the
expression form they are the identifiers that appear before the |. The arguments to a
function are the expressions between the brackets when a function is applied.

The body of a function in the statement form is the statements after the formal ar-
guments. The body of a function in the expression form is the expression after the |
symbol.
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An identifier is said to occur inside a function expression when it is occurs textually
anywhere in the body of a function.

5.3 Assignment

An assignment is an association of an identifier to a value. The statement,

> a := 6;

establishes an association between the identifier a and the value 6 (6 is said to be the value
of a, or to be assigned to a). A collection of such assignments is called a context.

When a value V is assigned to an identifier I one of two things happens:
(1) if I has not been previously assigned to, it is added to the current context and associated

with V . I is said to be declared when it is assigned to for the first time.
(2) if I has been previously assigned to, the value associated with I is changed to V . I is

said to be re-assigned.
The ability to assign and re-assign to identifiers is why Magma is called an imperative
language.

One very important point about assignment is illustrated by the following example.
Say we type,

> a := 6;
> b := a+7;

After executing these two lines the context is [ (a,6), (b,13) ]. Now say we type,

> a := 0;

The context is now [ (a,0), (b,13) ]. Note that changing the value of a does not
change the value of b because b’s value is statically determined at the point where it is
assigned. Changing a does not produce the context [ (a,0), (b,7) ].

5.4 Uninitialized Identifiers

Before executing a piece of code Magma attempts to check that it is semantically well
formed (i.e., that it will execute without crashing). One of the checks Magma makes is to
check that an identifier is declared (and thus initialized) before it is used in an expression.
So, for example assuming a had not been previously declared, then before executing either
of the following lines Magma will raise an error:

> a;
> b := a;

Magma can determine that execution of either line will cause an error since a has no as-
signed value. The user should be aware that the checks made for semantic well-formedness
are necessarily not exhaustive!
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There is one important rule concerning uninitialized identifiers and assignment. Con-
sider the line,

> a := a;

Now if a had been previously declared then this is re-assignment of a. If not then it is
an error since a on the right hand side of the := has no value. To catch this kind of
error Magma checks the expression on the right hand side of the := for semantic well
formedness before it declares the identifiers on the left hand side of the :=. Put another
way the identifiers on the left hand side are not considered to be declared in the right hand
side, unless they were declared previously.

5.5 Evaluation in Magma

Evaluation is the process of computing (or constructing) a value from an expression. For
example the value 3 can be computed from the expression 1+2. Computing a value from
an expression is also known as evaluating an expression.

There are two aspects to evaluation, namely when and how it is performed. This section
discusses these two aspects.

5.5.1 Call by Value Evaluation
Magma employs call by value evaluation. This means that the arguments to a function
are evaluated before the function is applied to those arguments. Assume f is a function
value. Say we type,

> r := f( 6+7, true or false );

Magma evaluates the two arguments to 13 and true respectively, before applying f .
While knowing the exact point at which arguments are evaluated is not usually very

important, there are cases where such knowledge is crucial. Say we type,

> f := function( n, b )
> if b then return n else return 1;
> end function;

and we apply f as follows

> r := f( 4/0, false );

Magma treats this as an error since the 4/0 is evaluated, and an error produced, before
the function f is applied.

By contrast some languages evaluate the arguments to a function only if those argu-
ments are encountered when executing the function. This evaluation process is known as
call by name evaluation. In the above example r would be set to the value 1 and the ex-
pression 4/0 would never be evaluated because b is false and hence the argument n would
never be encountered.
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Operators like + and ∗ are treated as infix functions. So

> r := 6+7;

is treated as the function application,

> r := ’+’(6,7);

Accordingly all arguments to an operator are evaluated before the operator is applied.
There are three operators, ‘select’, ‘and’ and ‘or’ that are exceptions to this rule and

are thus not treated as infix functions. These operators use call by name evaluation and
only evaluate arguments as need be. For example if we type,

> false and (4/0 eq 6);

Magma will reply with the answer false since Magma knows that false and X for all X
is false.

5.5.2 Magma’s Evaluation Process
Let us examine more closely how Magma evaluates an expression as it will help later in
understanding more complex examples, specifically those using functions and maps. To
evaluate an expression Magma proceeds by a process of identifier substitution, followed by
simplification to a canonical form. Specifically expression evaluation proceeds as follows,
(1) replace each identifier in the expression by its value in the current context.
(2) simplify the resultant value to its canonical form.
The key point here is that the replacement step takes an expression and yields an unsim-
plified value! A small technical note: to avoid the problem of having objects that are part
expressions, part values, all substitutions in step 1 are assumed to be done simultaneously
for all identifiers in the expression. The examples in this chapter will however show the
substitutions being done in sequence and will therefore be somewhat vague about what
exactly these hybrid objects are!

To clarify this process assume that we type,

> a := 6;
> b := 7;

producing the context [ (a,6), (b,7) ]. Now say we type,

> c := a+b;

This produces the context [ (a,6), (b,7), (c,13) ]. By following the process outlined
above we can see how this context is calculated. The steps are,
(1) replace a in the expression a+b by its value in the current context giving 6+b.
(2) replace b in 6+b by its value in the current context giving 6+7.
(3) simplify 6+7 to 13

The result value of 13 is then assigned to c giving the previously stated context.
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5.5.3 Function Expressions
Magma’s evaluation process might appear to be an overly formal way of stating the obvious
about calculating expression values. This formality is useful, however when it comes to
function (and map) expressions.

Functions in Magma are first class values, meaning that Magma treats function values
just like it treats any other type of value (e.g., integer values). A function value may be
passed as an argument to another function, may be returned as the result of a function,
and may be assigned to an identifier in the same way that any other type of value is. Most
importantly however function expressions are evaluated exactly as are all other expressions.
The fact that Magma treats functions as first class values is why Magma is said to have
an essentially functional subset.

Take the preceding example. It was,

> a := 6;
> b := 7;
> c := a+b;

giving the context [ (a,6),(b,7),(c,13) ]. Now say I type,

> d := func< n | a+b+c+n >;

Magma uses the same process to evaluate the function expression func< n | a+b+c+n >
on the right hand side of the assignment d := ... as it does to evaluate expression a+b on
the right hand side of the assignment c := .... So evaluation of this function expression
proceeds as follows,

(1) replace a in the expression func< n | a+b+c+n > by its value in the current context
giving func< n | 6+b+c+n >.

(2) replace b in func< n | 6+b+c+n > by its value in the current context giving func< n
| 6+7+c+n >.

(3) replace c in func< n | 6+7+c+n > by its value in the current context giving FUNC(n :
6+7+13+n)

(4) simplify the resultant value FUNC(n : 6+7+13+n) to the value FUNC(n : 26+n).

Note again that the process starts with an expression and ends with a value, and that
throughout the function expression is evaluated just like any other expression. A small
technical point: function simplification may not in fact occur but the user is guaranteed
that the simplification process will at least produce a function extensionally equal to the
function in its canonical form.

The resultant function value is now assigned to d just like any other type of value would
be assigned to an identifier yielding the context [ (a,6),(b,7), (c,8), (d,FUNC(n :
26+n)) ].

As a final point note that changing the value of any of a, b, and c, does not change the
value of d!
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5.5.4 Function Values Assigned to Identifiers
Say we type the following,

> a := 1;
> b := func< n | a >;
> c := func< n | b(6) >;

The first line leaves a context of the form [ (a,1) ]. The second line leaves a context of
the form [ (a,1), (b,FUNC(n : 1)) ].

The third line is evaluated as follows,
(1) replace the value of b in the expression func< n | b(6) > by its value in the current

context giving FUNC(n : (FUNC(n : 1))(6)).
(2) simplify this value to FUNC(n : 1) since applying the function value FUNC(n : 1)

to the argument 6 always yields 1.
The key point here is that identifiers whose assigned value is a function value (in this case
b), are treated exactly like identifiers whose assigned value is any other type of value.

Now look back at the example at the end of the previous section. One step in the series
of replacements was not mentioned. Remember that + is treated as a shorthand for an
infix function. So a+b is equivalent to ’+’(a,b). + is an identifier (assigned a function
value), and so in the replacement part of the evaluation process there should have been an
extra step, namely,
(4) replace + in func< n : 6+7+13+n > by its value in the current context giving FUNC(n

: A( A( A(6,7), 13 ), n )).
(5) simplify the resultant value to FUNC(n : A( 26, n )). where A is the (function)

value that is the addition function.

5.5.5 Recursion and Mutual Recursion
How do we write recursive functions? Function expressions have no names so how can a
function expression apply itself to do recursion?

It is tempting to say that the function expression could recurse by using the identifier
that the corresponding function value is to be assigned to. But the function value may
not be being assigned at all: it may simply be being passed as an actual argument to
some other function value. Moreover even if the function value were being assigned to an
identifier the function expression cannot use that identifier because the assignment rules
say that the identifiers on the left hand side of the := in an assignment statement are not
considered declared on the right hand side, unless they were previously declared.

The solution to the problem is to use the $$ pseudo-identifier. $$ is a placeholder for
the function value denoted by the function expression inside which the $$ occurs. An
example serves to illustrate the use of $$. A recursive factorial function can be defined as
follows,

> factorial := function(n)
> if n eq 1 then
> return 1;
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> else
> return n * $$(n-1);
> end if;
> end function;

Here $$ is a placeholder for the function value that the function expression function(n)
if n eq ... end function denotes (those worried that the denoted function value ap-
pears to be defined in terms of itself are referred to the fixed point semantics of recursive
functions in any standard text on denotational semantics).

A similar problem arises with mutual recursion where a function value f applies another
function value g, and g likewise applies f . For example,

> f := function(...) ... a := g(...); ... end function;
> g := function(...) ... b := f(...); ... end function;

Again Magma’s evaluation process appears to make this impossible, since to construct f
Magma requires a value for g, but to construct g Magma requires a value for f . Again
there is a solution. An identifier can be declared ‘forward’ to inform Magma that a
function expression for the forward identifier will be supplied later. The functions f and
g above can therefore be declared as follows,

> forward f, g;
> f := function(...) ... a := g(...); ... end function;
> g := function(...) ... b := f(...); ... end function;

(strictly speaking it is only necessary to declare g forward as the value of f will be known by
the time the function expression function(...) ... b := f(...); ... end function
is evaluated).

5.5.6 Function Application
It was previously stated that Magma employs call by value evaluation, meaning that the
arguments to a function are evaluated before the function is applied. This subsection
discusses how functions are applied once their arguments have been evaluated.

Say we type,

> f := func< a, b | a+b >;

producing the context [ (f,FUNC(a,b : a+b)) ].
Now say we apply f by typing,

> r := f( 1+2, 6+7 ).

How is the value to be assigned to r calculated? If we follow the evaluation process we will
reach the final step which will say something like,

“simplify (FUNC(a, b : A(a,b)))(3,13) to its canonical form”
where as before A is the value that is the addition function. How is this simplification
performed? How are function values applied to actual function arguments to yield result
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values? Not unsurprisingly the answer is via a process of substitution. The evaluation of
a function application proceeds as follows,

(1) replace each formal argument in the function body by the corresponding actual argu-
ment.

(2) simplify the function body to its canonical form.

Exactly what it means to “simplify the function body ...” is intentionally left vague as the
key point here is the process of replacing formal arguments by values in the body of the
function.

5.5.7 The Initial Context
The only thing that remains to consider with the evaluation semantics, is how to get the
ball rolling. Where do the initial values for things like the addition function come from?
The answer is that when Magma starts up it does so with an initial context defined. This
initial context has assignments of all the built-in Magma function values to the appropriate
identifiers. The initial context contains for example the assignment of the addition function
to the identifier +, the multiplication function to the identifier *, etc.

If, for example, we start Magma and immediately type,

> 1+2;

then in evaluating the expression 1+2 Magma will replace + by its value in the initial
context.

Users interact with this initial context by typing statements at the top level (i.e.,
statements not inside any function or procedure). A user can change the initial context
through re-assignment or expand it through new assignments.

5.6 Scope

Say we type the following,

> temp := 7;
> f := function(a,b)
> temp := a * b;
> return temp^2;
> end function;

If the evaluation process is now followed verbatim, the resultant context will look like
[ (temp,7), (f,FUNC(a,b : 7 := a*b; return 7^2;)) ], which is quite clearly not
what was intended!
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5.6.1 Local Declarations
What is needed in the previous example is some way of declaring that an identifier, in this
case temp, is a ‘new’ identifier (i.e., distinct from other identifiers with the same name)
whose use is confined to the enclosing function. Magma provides such a mechanism, called
a local declaration. The previous example could be written,

> temp := 7;
> f := function(a,b)
> local temp;
> temp := a * b;
> return temp^2;
> end function;

The identifier temp inside the body of f is said to be ‘(declared) local’ to the enclosing
function. Evaluation of these two assignments would result in the context being [ (temp,
7), (f, FUNC(a,b : local temp := a*b; return local temp^2;)) ] as intended.

It is very important to remember that temp and local temp are distinct ! Hence if we
now type,

> r := f(3,4);

the resultant context would be [ (temp,7), (f,FUNC(a,b : local temp := a*b;
return local temp^2;)), (r,144) ]. The assignment to local temp inside the body
of f does not change the value of temp outside the function. The effect of an assignment
to a local identifier is thus localized to the enclosing function.

5.6.2 The ‘first use’ Rule
It can become tedious to have to declare all the local variables used in a function body.
Hence Magma adopts a convention whereby an identifier can be implicitly declared ac-
cording to how it is first used in a function body. The convention is that if the first use
of an identifier inside a function body is on the left hand side of a :=, then the identifier
is considered to be local, and the function body is considered to have an implicit local
declaration for this identifier at its beginning. There is in fact no need therefore to declare
temp as local in the previous example as the first use of temp is on the left hand side of a
:= and hence temp is implicitly declared local.

It is very important to note that the term ‘first use’ refers to the first textual use of an
identifier. Consider the following example,

> temp := 7;
> f := function(a,b)
> if false then
> temp := a * b;
> return temp;
> else
> temp;
> return 1;
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> end if;
> end function;

The first textual use of temp in this function body is in the line

> temp := a * b;

Hence temp is considered as a local inside the function body. It is not relevant that the
if false ... condition will never be true and so the first time temp will be encountered
when f is applied to some arguments is in the line

> temp;

‘First use’ means ‘first textual use’, modulo the rule about examining the right hand side
of a := before the left!

5.6.3 Identifier Classes
It is now necessary to be more precise about the treatment of identifiers in Magma. Every
identifier in a Magma program is considered to belong to one of three possible classes,
these being:
(a) the class of value identifiers
(b)the class of variable identifiers
(c) the class of reference identifiers
The class an identifier belongs to indicates how the identifier is used in a program.

The class of value identifiers includes all identifiers that stand as placeholders for values,
namely:
(a) all loop identifiers;
(b)the $$ pseudo-identifier;
(c) all identifiers whose first use in a function expression is as a value (i.e., not on the left

hand side of an :=, nor as an actual reference argument to a procedure).
Because value identifiers stand as placeholders for values to be substituted during the
evaluation process, they are effectively constants, and hence they cannot be assigned to.
Assigning to a value identifier would be akin to writing something like 7 := 8;!

The class of variable identifiers includes all those identifiers which are declared as local,
either implicitly by the first use rule, or explicitly through a local declaration. Identifiers
in this class may be assigned to.

The class of reference identifiers will be discussed later.

5.6.4 The Evaluation Process Revisited
The reason it is important to know the class of an identifier is that the class of an identifier
effects how it is treated during the evaluation process. Previously it was stated that the
evaluation process was,
(1) replace each identifier in the expression by its value in the current context.
(2) simplify the resultant value to its canonical form.
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Strictly speaking the first step of this process should read,
(1′) replace each free identifier in the expression by its value in the current context, where

an identifier is said to be free if it is a value identifier which is not a formal argument,
a loop identifier, or the $$ identifier.

This definition of the replacement step ensures for example that while computing the value
of a function expression F , Magma does not attempt to replace F ’s formal arguments with
values from the current context!

5.6.5 The ‘single use’ Rule
As a final point on identifier classes it should be noted that an identifier may belong to
only one class within an expression. Specifically therefore an identifier can only be used
in one way inside a function body. Consider the following function,

> a := 7;
> f := function(n) a := a; return a; end function;

It is not the case that a is considered as a variable identifier on the left hand side of the
:=, and as a value identifier on the right hand side of the :=. Rather a is considered to be
a value identifier as its first use is as a value on the right hand side of the := (remember
that Magma inspects the right hand side of an assignment, and hence sees a first as a
value identifier, before it inspects the left hand side where it sees a being used as a variable
identifier).

5.7 Procedure Expressions

To date we have only discussed function expressions, these being a mechanism for com-
puting new values from the values of identifiers in the current context. Together with
assignment this provides us with a means of changing the current context – to compute a
new value for an identifier in the current context, we call a function and then re-assign the
identifier with the result of this function. That is we do

> X := f(Y);

where Y is a list of arguments possibly including the current value of X.
At times however using re-assignment to change the value associated with an identifier

can be both un-natural and inefficient. Take the problem of computing some reduced form
of a matrix. We could write a function that looked something like this,

reduce :=
function( m )

local lm;
...
lm := m;
while not reduced do
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...
lm := some_reduction(m);
...

end while;
...
end function;

Note that the local lm is necessary since we cannot assign to the function’s formal argument
m since it stands for a value (and values cannot be assigned to). Note also that the function
is inefficient in its space usage since at any given point in the program there are at least
two different copies of the matrix (if the function was recursive then there would be more
than two copies!).

Finally the function is also un-natural. It is perhaps more natural to think of writing a
program that takes a given matrix and changes that matrix into its reduced form (i.e., the
original matrix is lost). To accommodate for this style of programming, Magma includes
a mechanism, the procedure expression with its reference arguments, for changing an
association of an identifier and a value in place.

Before examining procedure expressions further, it is useful to look at a simple example
of a procedure expression. Say we type:

> a := 5; b := 6;

giving the context [ (a,5), (b,6) ]. Say we now type the following:

> p := procedure( x, ~y ) y := x; end procedure;

This gives us a context that looks like [ (a,5), (b,6), (p, PROC(x,∼y : y := x;))
], using a notation analogous to the FUNC notation.

Say we now type the following statement,

> p(a, ~b);

This is known as a call of the procedure p (strictly it should be known as a call to the
procedure value associated with the identifier p, since like functions, procedures in Magma
are first class values!). Its effect is to change the current context to [ (a,5), (b,5),
(p, PROC(a,∼b : b := a;)) ]. a and x are called actual and formal value arguments
respectively since they are not prefixed by a ∼, while b and y are called actual and formal
reference arguments respectively because they are prefixed by a ∼.

This example illustrates the defining attribute of procedures, namely that rather than
returning a value, a procedure changes the context in which it is called. In this case the
value of b was changed by the call to p. Observe however that only b was changed by the
call to p as only b in the call, and its corresponding formal argument y in the definition,
are reference arguments (i.e., prefixed with a ∼). A procedure may therefore only change
that part of the context associated with its reference arguments! All other parts of the
context are left unchanged. In this case a and p were left unchanged!

Note that apart from reference arguments (and the corresponding fact that that pro-
cedures do not return values), procedures are exactly like functions. In particular:
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a) procedures are first class values that can be assigned to identifiers, passed as arguments,
returned from functions, etc.

b) procedure expressions are evaluated in the same way that function expressions are.

c) procedure value arguments (both formal and actual) behave exactly like function argu-
ments (both formal and actual). Thus procedure value arguments obey the standard
substitution semantics.

d) procedures employ the same notion of scope as functions.

e) procedure calling behaves like function application.

f) procedures may be declared ‘forward’ to allow for (mutual) recursion.

g) a procedure may be assigned to an identifier in the initial context.

The remainder of this section will thus restrict itself to looking at reference arguments, the
point of difference between procedures and functions.

5.8 Reference Arguments

If we look at a context it consists of a set of pairs, each pair being a name (an identifier)
and a value (that is said to be assigned to that identifier).

When a function is applied actual arguments are substituted for formal arguments,
and the body of the function is evaluated. The process of evaluating an actual argument
yields a value and any associated names are ignored. Magma’s evaluation semantics treats
identifiers as ’indexes’ into the context – when Magma wants the value of say x it searches
through the context looking for a pair whose name component is x. The corresponding
value component is then used as the value of x and the name part is simply ignored
thereafter.

When we call a procedure with a reference argument, however, the name components
of the context become important. When, for example we pass x as an actual reference
argument to a formal reference argument y in some procedure, Magma remembers the
name x. Then if y is changed (e.g., by assignment) in the called procedure, Magma,
knowing the name x, finds the appropriate pair in the calling context and updates it by
changing its corresponding value component. To see how this works take the example in
the previous section. It was,

> a := 5; b := 6;
> p := procedure( x, ~y ) y := x; end procedure;
> p(a, ~b);

In the call Magma remembers the name b. Then when y is assigned to in the body of p,
Magma knows that y is really b in the calling context, and hence changes b in the calling
context appropriately. This example shows that an alternate way of thinking of reference
arguments is as synonyms for the same part of (or pair in) the calling context.
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5.9 Dynamic Typing
Magma is a dynamically typed language. In practice this means that:
(a) there is no need to declare the type of identifiers (this is especially important for iden-

tifiers assigned function values!).
(b)type violations are only checked for when the code containing the type violation is

actually executed.
To make these ideas clearer consider the following two functions,

> f := func< a, b | a+b >;
> g := func< a, b | a+true >;

First note that there are no declarations of the types of any of the identifiers.
Second consider the use of + in the definition of function f . Which addition function

is meant by the + in a+b? Integer addition? Matrix addition? Group addition? ... Or
in other words what is the type of the identifier + in function f? Is it integer addition,
matrix addition, etc.? The answer to this question is that + here denotes all possible
addition function values (+ is said to denote a family of function values), and Magma will
automatically chose the appropriate function value to apply when it knows the type of a
and b.

Say we now type,

> f(1,2);

Magma now knows that a and b in f are both integers and thus + in f should be taken
to mean the integer addition function. Hence it will produce the desired answer of 3.

Finally consider the definition of the function g. It is clear X+true for all X is a type
error, so it might be expected that Magma would raise an error as soon as the definition of
g is typed in. Magma does not however raise an error at this point. Rather it is only when
g is applied and the line return a + true is actually executed that an error is raised.

In general the exact point at which type checking is done is not important. Sometimes
however it is. Say we had typed the following definition for g,

> g := function(a,b)
> if false then
> return a+true;
> else
> return a+b;
> end if;
> end function;

Now because the if false condition will never be true, the line return a+true will never
be executed, and hence the type violation of adding a to true will never be raised!

One closing point: it should be clear now that where it was previously stated that
the initial context “contains assignments of all the built-in Magma function values to the
appropriate identifiers”, in fact the initial context contains assignments of all the built-in
Magma function families to the appropriate identifiers.
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5.10 Traps for Young Players

This section describes the two most common sources of confusion encountered when using
Magma’s evaluation strategy.

5.10.1 Trap 1
We boot Magma. It begins with an initial context something like [ ..., (’+’,A),
(’-’,S), ... ] where A is the (function) value that is the addition function, and S is
the (function) value that is the subtraction function.

Now say we type,

> ’+’ := ’-’;
> 1 + 2;

Magma will respond with the answer -1.
To see why this is so consider the effect of each line on the current context. After the

first line the current context will be [ ..., (’+’,S), (’-’,S), ... ], where S is as
before. The identifier + has been re-assigned. Its new value is the value of the identifier ’-’
in the current context, and the value of ’-’ is the (function) value that is the subtraction
function. Hence in the second line when Magma replaces the identifier + with its value in
the current context, the value that is substituted is therefore S, the subtraction function!

5.10.2 Trap 2
Say we type,

> f := func< n | n + 1 >;
> g := func< m | m + f(m) >;

After the first line the current context is [ (f,FUNC( n : n+1)) ]. After the sec-
ond line the current context is [ (f,FUNC( n : n+1)), (g,FUNC(m : m + FUNC(n :
n+1)(m))) ].

If we now type,

> g(6);

Magma will respond with the answer 13.
Now say we decide that our definition of f is wrong. So we now type in a new definition

for f as follows,

> f := func< n | n + 2 >;

If we again type,

> g(6);

Magma will again reply with the answer 13!
To see why this is so consider how the current context changes. After typing in the

initial definitions of f and g the current context is [ (f, FUNC(n : n+1)), (g, FUNC(m
: m + FUNC(n : n+1)(m))) ]. After typing in the second definition of f the current
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context is [ (f, FUNC(n : n+2)), (g, FUNC(m : m + FUNC(n : n+1)(m)))]. Re-
member that changing the value of one identifier, in this case f , does not change the value
of any other identifiers, in this case g! In order to change the value of g to reflect the new
value of f , g would have to be re-assigned.
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5.11 Appendix A: Precedence
The table below defines the relative precedence of operators in Magma, with decreasing
strength (so operators higher in the table bind more strongly). The column on the right
indicates whether the operator is left-, right-, or non-associative.

‘ ‘‘ left
( left
[ left
assigned right
~ non
# non
&* &+ &and &cat &join &meet &or non-associative
$ $$ non
. left
@ @@ left
! !! right
^ right
unary- right
cat left
* / div mod left
+ - left
meet left
sdiff left
diff left
join left
adj in notadj notin notsubset subset non
cmpeq cmpne eq ge gt le lt ne left
not right
and left
or xor left
^^ non
? else select right
-> left
= left
:= is where left
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5.12 Appendix B: Reserved Words
The list below contains all reserved words in the Magma language; these cannot be used
as identifier names.

elif is require
adj else join requirege
and end le requirerange
assert eq load restore
assert2 error local return
assert3 eval lt save
assigned exists meet sdiff
break exit mod select
by false ne subset
case for not then
cat forall notadj time
catch forward notin to
clear fprintf notsubset true
cmpeq freeze or try
cmpne function print until
continue ge printf vprint
declare gt procedure vprintf
default if quit vtime
delete iload random when
diff import read where
div in readi while
do intrinsic repeat xor
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Chapter 6

THE MAGMA PROFILER

6.1 Introduction

One of the most important aspects of the development cycle is optimization. It is often the
case that during the implementation of an algorithm, a programmer makes erroneous as-
sumptions about its run-time behavior. These errors can lead to performance which differs
in surprising ways from the expected output. The unfortunate tendency of programmers
to optimize code before establishing run-time bottlenecks tends to exacerbate the problem.

Experienced programmers will thus often be heard repeating the famous mantra “Pre-
mature optimization is the root of all evil”, coined by Sir Charles A. R. Hoare, the inventor
of the Quick sort algorithm. Instead of optimizing during the initial implementation, it is
generally better to perform an analysis of the run-time behaviour of the complete program,
to determine what are the actual bottlenecks. In order to assist in this task, Magma pro-
vides a profiler, which gives the programmer a detailed breakdown of the time spent in a
program. In this chapter, we provide an overview of how to use the profiler.

6.2 Profiler Basics

The Magma profiler records timing information for each function, procedure, map, and
intrinsic call made by your program. When the profiler is switched on, upon the entry and
exit to each such call the current system clock time is recorded. This information is then
stored in a call graph, which can be viewed in various ways.

SetProfile(b)

Turns profiling on (if b is true) or off (if b is false). Profiling information is stored
cumulatively, which means that in the middle of a profiling run, the profiler can
be switched off during sections for which profiling information is not wanted. At
startup, the profiler is off. Turning the profiler on will slow down the execution of
your program slightly.

ProfileReset()

Clear out all information currently recorded by the profiler. It is generally a good
idea to do this after the call graph has been obtained, so that future profiling runs
in the same Magma session begin with a clean slate.
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ProfileGraph()

Get the call graph based upon the information recorded up to this point by the
profiler. This function will return an error if the profiler has not yet been turned
on.

The call graph is a directed graph, with the nodes representing the functions
that were called during the program’s execution. There is an edge in the call graph
from a function x to a function y if y was called during the execution of x. Thus,
recursive calls will result in cycles in the call graph.

Each node in the graph has an associated label, which is a record with the
following fields:
(i) Name: the name of the function
(ii) Time: the total time spent in the function
(iii) Count: the number of times the function was called

Each edge 〈x, y〉 in the graph also has an associated label, which is a record with
the following fields:
(i) Time: the total time spent in function y when it was called from function x

(ii) Count: the total number of times function y was called by function x

Example H6E1

We illustrate the basic use of the profiler in the following example. The code we test is a simple
implementation of the Fibonacci sequence; this can be replaced by any Magma code that needs
to be profiled.

> function fibonacci(n)

> if n eq 1 or n eq 2 then

> return 1;

> else

> return fibonacci(n - 1) + fibonacci(n - 2);

> end if;

> end function;

>

> SetProfile(true);

> time assert fibonacci(27) eq Fibonacci(27);

Time: 10.940

> SetProfile(false);

> G := ProfileGraph();

> G;

Digraph

Vertex Neighbours

1 2 3 6 7 ;

2 2 3 4 5 ;

3 ;

4 ;

5 ;
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6 ;

7 ;

> V := Vertices(G);

> Label(V!1);

rec<recformat<Name: Strings(), Time: RealField(), Count: IntegerRing()> |

Name := <main>,

Time := 10.93999999999999950262,

Count := 1

>

> Label(V!2);

rec<recformat<Name: Strings(), Time: RealField(), Count: IntegerRing()> |

Name := fibonacci,

Time := 10.93999999999999950262,

Count := 392835

>

> E := Edges(G);

> Label(E![1,2]);

rec<recformat<Time: RealField(), Count: IntegerRing()> |

Time := 10.93999999999999950262,

Count := 1

>

6.3 Exploring the Call Graph

6.3.1 Internal Reports
The above example demonstrates that while the call graph contains some useful informa-
tion, it does not afford a particularly usable interface. The Magma profiler contains some
profile report generators which can be used to study the call graph in a more intuitive way.

The reports are all tabular, and have a similar set of columns:

(i) Index: The numeric identifier for the function in the vertex list of the call graph.

(ii) Name: The name of the function. The function name will be followed by an asterisk
if a recursive call was made through it.

(iii) Time: The time spent in the function; depending on the report, the meaning might
vary slightly.

(iv) Count: The number of times the function was called; depending on the report, the
meaning might vary slightly.
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ProfilePrintByTotalCount(G)

Percentage BoolElt Default : false

Max RngIntElt Default : −1
Print the list of functions in the call graph, sorted in descending order by the total
number of times they were called. The Time and Count fields of the report give the
total time and total number of times the function was called. If Percentage is true,
then the Time and Count fields represent their values as percentages of the total
value. If Max is non-negative, then the report only displays the first Max entries.

ProfilePrintByTotalTime(G)

Percentage BoolElt Default : false

Max RngIntElt Default : −1
Print the list of functions in the call graph, sorted in descending order by the total
time spent in them. Apart from the sort order, this function’s behaviour is identical
to that of ProfilePrintByTotalCount.

ProfilePrintChildrenByCount(G, n)

Percentage BoolElt Default : false

Max RngIntElt Default : −1
Given a vertex n in the call graph G, print the list of functions called by the function
n, sorted in descending order by the number of times they were called by n. The
Time and Count fields of the report give the time spent during calls by the function
n and the number of times the function was called by the function n. If Percentage
is true, then the Time and Count fields represent their values as percentages of the
total value. If Max is non-negative, then the report only displays the first Max entries.

ProfilePrintChildrenByTime(G, n)

Percentage BoolElt Default : false

Max RngIntElt Default : −1
Given a vertex n in the call graph G, print the list of functions in the called by
the function n, sorted in descending order by the time spent during calls by the
function n. Apart from the sort order, this function’s behaviour is identical to that
of ProfilePrintChildrenByCount.

Example H6E2

Continuing with the previous example, we examine the call graph using profile reports.

> ProfilePrintByTotalTime(G);

Index Name Time Count

1 <main> 10.940 1

2 fibonacci 10.940 392835

3 eq(<RngIntElt> x, <RngIntElt> y) -> BoolElt 1.210 710646
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4 -(<RngIntElt> x, <RngIntElt> y) -> RngIntElt 0.630 392834

5 +(<RngIntElt> x, <RngIntElt> y) -> RngIntElt 0.250 196417

6 Fibonacci(<RngIntElt> n) -> RngIntElt 0.000 1

7 SetProfile(<BoolElt> v) 0.000 1

> ProfilePrintChildrenByTime(G, 2);

Function: fibonacci

Function Time: 10.940

Function Count: 392835

Index Name Time Count

2 fibonacci (*) 182.430 392834

3 eq(<RngIntElt> x, <RngIntElt> y) -> BoolElt 1.210 710645

4 -(<RngIntElt> x, <RngIntElt> y) -> RngIntElt 0.630 392834

5 +(<RngIntElt> x, <RngIntElt> y) -> RngIntElt 0.250 196417

* A recursive call is made through this child

6.3.2 HTML Reports

While the internal reports are useful for casual inspection of a profile run, for detailed
examination a text-based interface has serious limitations. Magma’s profiler also supports
the generation of HTML reports of the profile run. The HTML report can be loaded
up in any web browser. If Javascript is enabled, then the tables in the report can be
dynamically sorted by any field, by clicking on the column heading you wish to perform
a sort with. Clicking the column heading multiple times will alternate between ascending
and descending sorts.

ProfileHTMLOutput(G, prefix)

Given a call graph G, an HTML report is generated using the file prefix prefix.
The index file of the report will be “prefix.html”, and exactly n additional files will
be generated with the given filename prefix, where n is the number of functions in
the call graph.

6.4 Recursion and the Profiler

Recursive calls can cause some difficulty with profiler results. The profiler takes care to
ensure that double-counting does not occur, but this can lead to unintuitive results, as the
following example shows.
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Example H6E3

In the following example, recursive is a recursive function which simply stays in a loop for half
a second, and then recurses if not in the base case. Thus, the total running time should be
approximately (n + 1)/2 seconds, where n is the parameter to the function.

> procedure delay(s)

> t := Cputime();

> repeat

> _ := 1+1;

> until Cputime(t) gt s;

> end procedure;

>

> procedure recursive(n)

> if n ne 0 then

> recursive(n - 1);

> end if;

>

> delay(0.5);

> end procedure;

>

> SetProfile(true);

> recursive(1);

> SetProfile(false);

> G := ProfileGraph();

Printing the profile results by total time yield no surprises:

> ProfilePrintByTotalTime(G);

Index Name Time Count

1 <main> 1.020 1

2 recursive 1.020 2

5 delay 1.020 2

8 Cputime(<FldReElt> T) -> FldReElt 0.130 14880

7 +(<RngIntElt> x, <RngIntElt> y) -> RngIntElt 0.020 14880

9 gt(<FldReElt> x, <FldReElt> y) -> BoolElt 0.020 14880

3 ne(<RngIntElt> x, <RngIntElt> y) -> BoolElt 0.000 2

4 -(<RngIntElt> x, <RngIntElt> y) -> RngIntElt 0.000 1

6 Cputime() -> FldReElt 0.000 2

10 SetProfile(<BoolElt> v) 0.000 1

However, printing the children of recursive, and displaying the results in percentages, does yield
a surprise:

> ProfilePrintChildrenByTime(G, 2 : Percentage);

Function: recursive

Function Time: 1.020

Function Count: 2

Index Name Time Count

5 delay 100.00 33.33

2 recursive (*) 50.00 16.67
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3 ne(<RngIntElt> x, <RngIntElt> y) -> BoolElt 0.00 33.33

4 -(<RngIntElt> x, <RngIntElt> y) -> RngIntElt 0.00 16.67

* A recursive call is made through this child

At first glance, this doesn’t appear to make sense, as the sum of the time column is 150%! The
reason for this behavior is because some time is “double counted”: the total time for the first call
to recursive includes the time for the recursive call, which is also counted separately. In more
detail:

> V := Vertices(G);

> E := Edges(G);

> Label(V!1)‘Name;

<main>

> Label(V!2)‘Name;

recursive

> Label(E![1,2])‘Time;

1.019999999999999795718

> Label(E![2,2])‘Time;

0.51000000000000000888

> Label(V!2)‘Time;

1.019999999999999795718

As can seen in the above, the total time for recursive is approximately one second, as expected.
The double-counting of the recursive call can be seen in the values of Time for the edges [1,2]

and [2,2].
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Chapter 7

DEBUGGING MAGMA CODE

7.1 Introduction

In ordered to facilitate the debugging of complex pieces of Magma code, Magma includes
a debugger. This debugger is very much a prototype, and can cause Magma to crash.

SetDebugOnError(f)

If f is true, then upon an error Magma will break into the debugger. The usage
of the debugger is described in the next section.

7.2 Using the Debugger

When use of the debugger is enabled and an error occurs, Magma will break into the
command-line debugger. The syntax of the debugger is modelled on the GNU GDB de-
bugger for C programs, and supports the following commands (acceptable abbreviations
for the commands are given in parentheses):

backtrace (bt) Print out the stack of function and procedure calls, from
the top level to the point at which the error occurred. Each line i this trace gives a
single frame, which consists of the function/procedure that was called, as well as all
local variable definitions for that function. Each frame is numbered so that it can be
referenced in other debugger commands.

frame (f) n Change the current frame to the frame numbered n (the
list of frames can be obtained using the backtrace command). The current frame is
used by other debugger commands, such as print, to determine the context within
which expressions should be evaluated. The default current frame is the top-most
frame.

list (l) [n] Print a source code listing for the current context (the
context is set by the frame command). If n is specified, then the list command will
print n lines of source code; the default value is 10.

print (p) expr Evaluate the expression expr in the current context (the
context is set by the frame command). The print command has semantics identical
to evaluating the expression eval "expr" at the current point in the program.

help (h) Print brief help on usage.

quit (q) Quit the debugger and return to the Magma session.
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Example H7E1

We now give a sample session in the debugger. In the following, we have written a function
to evaluate f(n) = Σn

i=11/n, but have in our implementation we have accidentally included the
evaluation of the term at n = 0.

> function f(n)

> if n ge 0 then

> return 1.0 / n + f(n - 1);

> else

> return 1.0 / n;

> end if;

> end function;

>

> SetDebugOnError(true);

> f(3);

f(

n: 3

)

f(

n: 2

)

f(

n: 1

)

f(

n: 0

)

>> return 1.0 / n + f(n - 1);

^

Runtime error in ’/’: Division by zero

debug> p n

0

debug> p 1.0 / (n + 1)

1.00000000000000000000000000000

debug> bt

#0 *f(

n: 0

) at <main>:1

#1 f(

n: 1

) at <main>:1

#2 f(

n: 2

) at <main>:1

#3 f(

n: 3

) at <main>:1

debug> f 1
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debug> p n

1

debug> p 1.0 / n

1.00000000000000000000000000000
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Chapter 8

INTRODUCTION TO AGGREGATES

8.1 Introduction

This part of the Handbook comprises four chapters on aggregate objects in Magma as
well as a chapter on maps.

Sets, sequences, tuples and lists are the four main types of aggregates, and each has its
own specific purpose. Sets are used to collect objects that are elements of some common
structure, and the most important operation is to test element membership. Sequences
also contain objects of a common structure, but here the emphasis is on the ordering of
the objects, and the most important operation is that of accessing (or modifying) elements
at given positions. Sets will contain at most one copy of any element, whereas sequences
may contain arbitrarily many copies of the same object. Enumerated sets and sequences
are of arbitrary but finite length and will store all elements explicitly (with the exception
of arithmetic progressions), while formal sets and sequences may be infinite, and use a
Boolean function to test element membership. Indexed sets are a hybrid form of sets al-
lowing indexing like sequences. Elements of Cartesian products of structures in Magma
will be called tuples; they are of fixed length, and each coefficient must be in the corre-
sponding structure of the defining Cartesian product. Lists are arbitrary finite ordered
collections of objects of any type, and are mainly provided to the user to store assorted
data to which access is not critical.

8.2 Restrictions on Sets and Sequences

Here we will explain the subtleties behind the mechanism dealing with sets and sequences
and their universes and parents. Although the same principles apply to their formal
counterparts, we will only talk about enumerated sets and sequences here, for two reasons:
the enumerated versions are much more useful and common, and the very restricted number
of operations on formal sets/sequences make issues of universe and overstructure of less
importance for them.

In principle, every object e in Magma has some parent structure S such that e ∈ S;
this structure can be used for type checking (are we allowed to apply function f to e?),
algorithm look-up etc. To avoid storing the structure with every element of a set or
sequence and having to look up the structure of every element separately, only elements
of a common structure are allowed in sets or sequences, and that common parent will only
be stored once.
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8.2.1 Universe of a Set or Sequence
This common structure is called the universe of the set or sequence. In the general con-
structors it may be specified up front to make clear what the universe for the set or sequence
will be; the difference between the sets i and s in

> i := { IntegerRing() | 1, 2, 3 };
> s := { RationalField() | 1, 2, 3 };
lies entirely in their universes. The specification of the universe may be omitted if there is
an obvious common overstructure for the elements. Thus the following provides a shorter
way to create the set containing 1, 2, 3 and having the ring of integers as universe:

> i := { 1, 2, 3 };
Only empty sets and sequences that have been obtained directly from the constructions

> S := { };
> T := [ ];

do not have their universe defined – we will call them the null set or sequence. (There
are two other ways in which empty sets and sequences arise: it is possible to create empty
sequences with a prescribed universe, using

> S := { U | };
> T := [ U | ];

and it may happen that a non-empty set/sequence becomes empty in the course of a
computation. In both cases these empty objects have their universe defined and will not
be null).

Usually (but not always: the exception will be explained below) the universe of a set
or sequence is the parent for all its elements; thus the ring of integers is the parent of 2
in the set i = {1, 2, 3}, rather than that set itself. The universe is not static, and it is not
necessarily the same structure as the parent of the elements before they were put in the
set or sequence. To illustrate this point, suppose that we try to create a set containing
integers and rational numbers, say T = {1, 2, 1/3}; then we run into trouble with the rule
that the universe must be common for all elements in T ; the way this problem is solved
in Magma is by automatic coercion: the obvious universe for T is the field of rational
numbers of which 1/3 is already an element and into which any integer can be coerced in
an obvious way. Hence the assignment

> T := { 1, 2, 1/3 }
will result in a set with universe the field of rationals (which is also present when Magma
is started up). Consequently, when we take the element 1 of the set T , it will have the
rational field as its parent rather than the integer ring! It will now be clear that

> s := { 1/1, 2, 3 };
is a shorter way to specify the set of rational numbers 1,2, 3 than the way we saw before, but
in general it is preferable to declare the universe beforehand using the { U | } notation.
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Of course

> T := { Integers() | 1, 2, 1/3 }
would result in an error because 1/3 cannot be coerced into the ring of integers.

So, usually not every element of a given structure can be coerced into another structure,
and even if it can, it will not always be done automatically. The possible (automatic)
coercions are listed in the descriptions of the various Magma modules. For instance, the
table in the introductory chapter on rings shows that integers can be coerced automatically
into the rational field.

In general, every Magma structure is valid as a universe. This includes enumerated
sets and sequences themselves, that is, it is possible to define a set or sequence whose
elements are confined to be elements of a given set or sequence. So, for example,

> S := [ [ 1..10 ] | x^2+x+1 : x in { -3 .. 2 by 1 } ];

produces the sequence [7, 3, 1, 1, 3, 7] of values of the polynomial x2 + x + 1 for x ∈ Z with
−3 ≤ x ≤ 2. However, an entry of S will in fact have the ring of integers as its parent
(and not the sequence [1..10]), because the effect of the above assignment is that the values
after the | are calculated and coerced into the universe, which is [1..10]; but coercing an
element into a sequence or set means that it will in fact be coerced into the universe of
that sequence/set, in this case the integers. So the main difference between the above
assignment and

> T := [ Integers() | x^2+x+1 : x in { -3 .. 2 by 1} ];

is that in the first case it is checked that the resulting values y satisfy 1 ≤ y ≤ 10, and an
error would occur if this is violated:

> S := [ [ 1..10 ] | x^2+x+1 : x in { -3 .. 3 by 1} ];

leads to a run-time error.
In general then, the parent of an element of a set or sequence will be the universe of the

set or sequence, unless that universe is itself a set or sequence, in which case the parent
will be the universe of this universe, and so on, until a non-set or sequence is encountered.

8.2.2 Modifying the Universe of a Set or Sequence
Once a (non-null) set or sequence S has been created, the universe has been defined. If one
attempts to modify S (that is, to add elements, change entries etc. using a procedure that
will not reassign the result to a new set or sequence), the universe will not be changed,
and the modification will only be successful if the new element can be coerced into the
current universe. Thus,

> Z := Integers();
> T := [ Z | 1, 2, 3/3 ];
> T[2] := 3/4;

will result in an error, because 3/4 cannot be coerced into Z.
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The universe of a set or sequence S can be explicitly modified by creating a parent for
S with the desired universe and using the ! operator for the coercion; as we will see in
the next subsection, such a parent can be created using the PowerSet and PowerSequence
commands. Thus, for example, the set {1, 2} can be made into a sequence of rationals as
follows:

> I := { 1, 2 };
> P := PowerSet( RationalField() );
> J := P ! I;

The coercion will be successful if every element of the sequence can be coerced into the
new universe, and it is not necessary that the old universe could be coerced completely
into the new one: the set {3/3} of rationals can be coerced into PowerSet(Integers()).
As a consequence, the empty set (or sequence) with any universe can be coerced into the
power set (power sequence) of any other universe.

Binary functions on sets or sequences (like join or cat) can only applied to sets and
sequences that are compatible: the operation on S with universe A and T with universe B
can only be performed if a common universe C can be found such that the elements of S
and T are all elements of C. The compatibility conditions are dependent on the particular
Magma module to which A and B belong (we refer to the corresponding chapters of this
manual for further information) and do also apply to elements of a ∈ A and b ∈ B —
that is, the compatibility conditions for S and T are the same as the ones that determine
whether binary operations on a ∈ A and b ∈ B are allowed. For example, we are able to
join a set of integers and a set of rationals:

> T := { 1, 2 } join { 1/3 };
for the same reason that we can do

> c := 1 + 1/3;

(automatic coercion for rings). The resulting set T will have the rationals as universe.
The basic rules for compatibility of two sets or sequences are then:
(1) every set/sequence is compatible with the null set/sequence (which has no universe

defined (see above));
(2) two sets/sequences with the same universe are compatible;
(3) a set/sequence S with universe A is compatible with set/sequence T with universe B

if the elements of A can be automatically coerced into B, or vice versa;
(4)more generally, a set/sequence S with universe A is also compatible with set/sequence

T with universe B if Magma can automatically find an over-structure for the parents
A and B (see below);

(5)nested sets and sequences are compatible only when they are of the same ‘depth’ and
‘type’ (that is, sets and sequences appear in exactly the same recursive order in both)
and the universes are compatible.

The possibility of finding an overstructure C for the universe A and B of sets or sequences
S and T (such that A ⊂ C ⊃ B), is again module-dependent. We refer the reader for
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details to the Introductions of Parts III–VI, and we give some examples here; the next
subsection contains the rules for parents of sets and sequences.

8.2.3 Parents of Sets and Sequences
The universe of a set or sequence S is the common parent for all its elements; but S itself
is a Magma object as well, so it should have a parent too.

The parent of a set is a power set: the set of all subsets of the universe of S. It
can be created using the PowerSet function. Similarly, PowerSequence(A) creates the
parent structure for a sequence of elements from the structure A – that is, the elements of
PowerSequence(A) are all sequences of elements of A.

The rules for finding a common overstructure for structures A and B, where either A or
B is a set/sequence or the parent of a set/sequence, are as follows. (If neither A nor B is
a set, sequence, or its parent we refer to the Part of this manual describing the operations
on A and B.)

(1)The overstructure of A and B is the same as that of B and A.

(2) If A is the null set or sequence (empty, and no universe specified) the overstructure of
A and B is B.

(3) If A is a set or sequence with universe U , the overstructure of A and B is the over-
structure of U and B; in particular, the overstructure of A and A will be the universe
U of A.

(4) If A is the parent of a set (a power set), then A and B can only have a common
overstructure if B is also the parent of a set, in which case the overstructure is the
power set of the overstructure of the universes U and V of A and B respectively.
Likewise for sequences instead of sets.

We give two examples to illustrate rules (3) and (4). It is possible to create a set with a
set as its universe:

> S := { { 1..100 } | x^3 : x in [ 0..3 ] };
If we wish to intersect this set with some set of integers, say the formal set of odd integers

> T := {! x : x in Integers() | IsOdd(x) !};
> W := S meet T;

then we can only do that if we can find a universe for W , which must be the common
overstructure of the universe U = {1, 2, . . . , 100} of S and the universe ‘ring of integers’ of
T . By rule (3) above, this overstructure of U = {1, 2, . . . , 100} will be the overstructure
of the universe of U and the ring of integers; but the universe of U is the ring of integers
(because it is the default for the set {1, 2, . . . , 100}), and hence the overstructure we are
looking for (and the universe for W ) will be the ring of integers.

For the second example we look at sequences of sequences:

> a := [ [ 1 ], [ 1, 2, 3 ] ];
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> b := [ [ 2/3 ] ];

so a is a sequence of sequences of integers, and b is a sequence of sequences of rationals. If
we wish to concatenate a and b,

> c := a cat b;

we will only succeed if we find a universe for c. This universe must be the common
overstructure of the universes of a and b, which are the ‘power sequence of the integers’
and the ‘power sequence of the rationals’ respectively. By rule (4), the overstructure of
these two power sequences is the power sequence of the common overstructure of the
rationals and the integers, which is the rationals themselves. Hence c will be a sequence
of sequences of rationals, and the elements of a will have to be coerced.

8.3 Nested Aggregates
Enumerated sets and sequences can be arbitrarily nested (that is, one may create sets of
sets, as well as sequences of sets etc.); tuples can also be nested and may be freely mixed
with sets and sequences (as long as the proper Cartesian product parent can be created).
Lists can be nested, and one may create lists of sets or sequences or tuples.

8.3.1 Multi-indexing
Since sequences (and lists) can be nested, assignment functions and mutation operators

allow you to use multi-indexing, that is, one can use a multi-index i1, i2, . . . , ir rather than
a single i to reach r levels deep. Thus, for example, if S = [ [1, 2], [2, 3] ], instead of

> S[2][2] := 4;

one may use the multi-index 2, 2 to obtain the same effect of changing the 3 into a 4:

> S[2,2] := 4;

All ij in the multi-index i1, i2, . . . , ir have to be greater than 0, and an error will also be
flagged if any ij indexes beyond the length at level j, that is, if ij > #S[i1, . . . , ij−1],
(which means i1 > #S for j = 1). There is one exception: the last index ir is allowed to
index beyond the current length of the sequence at level r if the multi-index is used on the
left-hand side of an assignment, in which case any intermediate terms will be undefined.
This generalizes the possibility to assign beyond the length of a ‘flat’ sequence. In the
above example the following assignments are allowed:

> S[2,5] := 7;

(and the result will be S = [ [1, 2], [2, 3, undef, undef, 7] ])

> S[4] := [7];

(and the result will be S = [ [1, 2], [2, 3], undef, [7] ]). But the following results in an
error:

> S[4,1] := 7;

Finally we point out that multi-indexing should not be confused with the use of sequences as
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indexes to create subsequences. For example, to create a subsequence of S = [5, 13, 17, 29]
consisting of the second and third terms, one may use

> S := [ 5, 13, 17, 29 ];
> T := S[ [2, 3] ];

To obtain the second term of this subsequence one could have done:

> x := S[ [2, 3] ][2];

(so x now has the value S[3] = 17), but it would have been more efficient to index the
indexing sequence, since it is rather expensive to build the subsequence [ S[2], S[3] ] first,
so:

> x := S[ [2, 3][2] ];

has the same effect but is better (of course x := S[3] would be even better in this simple
example.) To add to the confusion, it is possible to mix the above constructions for
indexing, since one can use lists of sequences and indices for indexing; continuing our
example, there is now a third way to do the same as above, using an indexing list that
first takes out the subsequence consisting of the second and third terms and then extracts
the second term of that:

> x := S[ [2, 3], 2 ];

Similarly, the construction

> X := S[ [2, 3], [2] ];

pulls out the subsequence consisting of the second term of the subsequence of terms two
and three of S, in other words, this assigns the sequence consisting of the element 17, not
just the element itself!
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Chapter 9

SETS

9.1 Introduction
A set in Magma is a (usually unordered) collection of objects belonging to some common
structure (called the universe of the set). There are four basic types of sets: enumer-
ated sets, whose elements are all stored explicitly (with one exception, see below); formal
sets, whose elements are stored implicitly by means of a predicate that allows for testing
membership; indexed sets, which are restricted enumerated sets having a numbering on
elements; and multisets, which are enumerated sets with possible repetition of elements.
In particular, enumerated and indexed sets and multisets are always finite, and formal sets
are allowed to be infinite.

9.1.1 Enumerated Sets
Enumerated sets are finite, and can be specified in three basic ways (see also section 2
below): by listing all elements; by an expression involving elements of some finite structure;
and by an arithmetic progression. If an arithmetic progression is specified, the elements
are not calculated explicitly until a modification of the set necessitates it; in all other cases
all elements of the enumerated set are stored explicitly.

9.1.2 Formal Sets
A formal set consists of the subset of elements of some carrier set (structure) on which a
certain predicate assumes the value ‘true’.

The only set-theoretic operations that can be performed on formal sets are union,
intersection, difference and symmetric difference, and element membership testing.

9.1.3 Indexed Sets
For some purposes it is useful to be able to access elements of a set through an index map,
which numbers the elements of the set. For that purpose Magma has indexed sets, on
which a very few basic set operations are allowed (element membership testing) as well
as some sequence-like operations (such as accessing the i-th term, getting the index of an
element, appending and pruning).

9.1.4 Multisets
For some purposes it is useful to construct a set with some of its members repeated. For
that purpose Magma has multisets, which take into account the repetition of members.
The number of times an object x occurs in a multiset S is called the multiplicity of x
in S. Magma has the ˆˆ operator to specify a multiplicity: the expression x^^n means
the object x with multiplicity n. In the following, whenever any multiset constructor or
function expects an element y, the expression xˆˆn may usually be used.
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9.1.5 Compatibility
The binary operators for sets do not allow mixing of the four types of sets (so one cannot
take the intersection of an enumerated set and a formal set, for example), but it is easy to
convert an enumerated set into a formal set – see the section on binary operators below –
and there are functions provided for making an enumerated set out of an indexed set or a
multiset (and vice versa).

By the limitation on their construction formal sets can only contain elements from one
structure in Magma. The elements of enumerated sets are also restricted, in the sense
that either some universe must be specified upon creation, or Magma must be able to find
such universe automatically. The rules for compatibility of elements and the way Magma
deals with these universes are the same for sequences and sets, and are described in the
previous chapter. The restrictions on indexed sets are the same as those for enumerated
sets.

9.1.6 Notation
Certain expressions appearing in the sections below (possibly with subscripts) have a
standard interpretation:
U the universe: any Magma structure;
E the carrier set for enumerated sets: any enumerated structure (it must be possible to

loop over its elements – see the Introduction to this Part (Chapter 8));
F the carrier set for formal sets: any structure for which membership testing using in is

defined – see the Introduction to this Part (Chapter 8));
x a free variable which successively takes the elements of E (or F in the formal case) as

its values;
P a Boolean expression that usually involves the variable(s) x, x1, . . . , xk;
e an expression that also usually involves the variable(s) x, x1, . . . , xk.

9.2 Creating Sets
The customary braces { and } are used to define enumerated sets. Formal sets are delimited
by the composite braces {! and !}. For indexed sets {@ and @} are used. For multisets {*
and *} are used.

9.2.1 The Formal Set Constructor
The formal set constructor has the following fixed format (the expressions appearing in
the construct are defined above):

{! x in F | P(x) !}
Form the formal set consisting of the subset of elements x of F for which P (x) is
true. If P (x) is true for every element of F , the set constructor may be abbreviated
to {! x in F !}. Note that the universe of a formal set will always be equal to
the carrier set F .
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9.2.2 The Enumerated Set Constructor
Enumerated sets can be constructed by expressions enclosed in braces, provided that the
values of all expressions can be automatically coerced into some common structure, as out-
lined in the Introduction, (Chapter 8). All general constructors have an optional universe
(U in the list below) up front, that allows the user to specify into which structure all terms
of the sets should be coerced.

{ }
The null set: an empty set that does not have its universe defined.

{ U | }
The empty set with universe U .

{ e1, e2, ..., en }
Given a list of expressions e1, . . . , en, defining elements a1, a2, . . . , an all belonging
to (or automatically coercible into) a single algebraic structure U , create the set
{ a1, a2, ..., an } of elements of U .

Example H9E1

We create a set by listing its elements explicitly.

> S := { (7^2+1)/5, (8^2+1)/5, (9^2-1)/5 };
> S;

{ 10, 13, 16 }
> Parent(S);

Set of subsets of Rational Field

Thus S was created as a set of rationals, because / on integers has a rational result. If one wishes
to obtain a set of integers, one could specify the universe (or one could use div, or one could use
! on every element to coerce it into the ring of integers):

> T := { Integers() | (7^2+1)/5, (8^2+1)/5, (9^2-1)/5 };
> T;

{ 10, 13, 16 }
> Parent(T);

Set of subsets of Integer Ring

{ U | e1, e2, ..., en }
Given a list of expressions e1, . . . , en, which define elements a1, a2, . . . , an that are
all coercible into U , create the set {a1, a2, ..., an } of elements of U .
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{ e(x) : x in E | P(x) }
Form the set of elements e(x), all belonging to some common structure, for those
x ∈ E with the property that the predicate P (x) is true. The expressions appearing
in this construct have the interpretation given in the Introduction (Chapter 8) (in
particular, E must be a finite structure that can be enumerated).

If P (x) is true for every value of x in E, then the set constructor may be abbre-
viated to { e(x) : x in E }.

{ U | e(x) : x in E | P(x) }
Form the set of elements of U consisting of the values e(x) for those x ∈ E for which
the predicate P (x) is true (an error results if not all e(x) are coercible into U). The
expressions appearing in this construct have the same interpretation as before.

If P is always true, it may be omitted (including the |).
{ e(x1,...,xk) : x1 in E1, ..., xk in Ek | P(x1, ..., xk) }

The set consisting of those elements e(x1, . . . , xk), in some common structure, for
which x1, . . . , xk in E1, . . . , Ek have the property that P (x1, . . . , xk) is true. The
expressions appearing in this construct have the interpretation given in the Intro-
duction (Chapter 8).

Note that if two successive allowable structures Ei and Ei+1 are identical, then
the specification of the carrier sets for xi and xi+1 may be abbreviated to xi, xi+1

in Ei.
Also, if P (x1, ..., xk) is always true, it may be omitted (including the |).

{ U | e(x1,...,xk) : x1 in E1, ..., xk in Ek | P(x1, ..., xk) }
As in the previous entry, the set consisting of those elements e(x1, . . . , xk) for which
P (x1, . . . , xk) is true, is formed, as a set of elements of U (an error occurs if not all
e(x1, . . . , xk) are elements of or coercible into U).

Again, identical successive structures may be abbreviated, and a predicate that
is always true may be omitted.

Example H9E2

Now that Fermat’s last theorem may have been proven, it may be of interest to find integers
that almost satisfy xn + yn = zn. In this example we find all 2 < x, y, z < 1000 such that
x3 + y3 = z3 + 1. First we build a set of cubes, then two sets of pairs for which the sum of cubes
differs from a cube by 1. Note that we build a set rather than a sequence of cubes because we
only need fast membership testing. Also note that the resulting sets of pairs do not have their
elements in the order in which they were found.

> cubes := { Integers() | x^3 : x in [1..1000] };
> plus := { <a, b> : a in [2..1000], b in [2..1000] | \

> b ge a and (a^3+b^3-1) in cubes };
> plus;

{
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< 9, 10 >,

< 135, 235 >

< 334, 438 >,

< 73, 144 >,

< 64, 94 >,

< 244, 729 >

}
Note that we spend a lot of time cubing integers this way. For a more efficient approach, see a
subsequent example.

9.2.3 The Indexed Set Constructor
The creation of indexed sets is similar to that of enumerated sets.

{@ @}
The null set: an empty indexed set that does not have its universe defined.

{@ U | @}
The empty indexed set with universe U .

{@ e1, e2, ..., en @}
Given a list of expressions e1, . . . , en, defining elements a1, a2, . . . , an all belonging
to (or automatically coercible into) a single algebraic structure U , create the indexed
set Q = { a1, a2, ..., an } of elements of U .

{@ U | e1, e2, ..., em @}
Given a list of expressions e1, . . . , em, which define elements a1, a2, . . . , an that are
all coercible into U , create the indexed set Q = {a1, a2, ..., an } of elements of U .

{@ e(x) : x in E | P(x) @}
Form the indexed set of elements e(x), all belonging to some common structure,
for those x ∈ E with the property that the predicate P (x) is true. The expres-
sions appearing in this construct have the interpretation given in the Introduction
(Chapter 8) (in particular, E must be a finite structure that can be enumerated).

If P is always true, it may be omitted (including the |).
{@ U | e(x) : x in E | P(x) @}

Form the indexed set of elements of U consisting of the values e(x) for those x ∈ E
for which the predicate P (x) is true (an error results if not all e(x) are coercible
into U). The expressions appearing in this construct have the same interpretation
as before.

If P is always true, it may be omitted (including the |).
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{@ e(x1,...,xk) : x1 in E1, ..., xk in Ek | P(x1, ..., xk) @}
The indexed set consisting of those elements e(x1, . . . , xk) (in some common struc-
ture), for which x1, . . . , xk in E1 × . . .×Ek have the property that P (x1, . . . , xk) is
true. The expressions appearing in this construct have the interpretation given in
the Introduction (Chapter 8).

Note that if two successive allowable structures Ei and Ei+1 are identical, then
the specification of the carrier sets for xi and xi+1 may be abbreviated to xi, xi+1

in Ei.
Also, if P (x1, ..., xk) is always true, it may be omitted.

{@ U | e(x1,...,xk) : x1 in E1, ..., xk in Ek | P(x1, ..., xk)@}
As in the previous entry, the indexed set consisting of those elements e(x1, . . . , xk)
for which P (x1, . . . , xk) is true is formed, as an indexed set of elements of U (an
error occurs if not all e(x1, . . . , xk) are elements of or coercible into U).

Again, identical successive structures may be abbreviated, and a predicate that
is always true may be omitted.

Example H9E3

In the previous example we found pairs x, y such that x3 + y3 differs by one from some cube z3.
Using indexed sets it is somewhat easier to retrieve the integer z as well. We give a small example.
Note also that it is beneficial to know here that evaluation of expressions proceeds left to right.

> cubes := { @ Integers() | z^3 : z in [1..25] @};
> plus := { <x, y, z> : x in [-10..10], y in [-10..10], z in [1..25] |

> y ge x and Abs(x) gt 1 and Abs(y) gt 1 and (x^3+y^3-1) in cubes

> and (x^3+y^3-1) eq cubes[z] };
> plus;

{ <-6, 9, 8>, <9, 10, 12>, <-8, 9, 6> }

9.2.4 The Multiset Constructor
The creation of multisets is similar to that of enumerated sets. An important difference
is that repetitions are significant and the operator ˆˆ (mentioned above) may be used to
specify the multiplicity of an element.

{* *}
The null set: an empty multiset that does not have its universe defined.

{* U | *}
The empty multiset with universe U .
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{* e1, e2, ..., en *}
Given a list of expressions e1, . . . , en, defining elements a1, a2, . . . , an all belonging to
(or automatically coercible into) a single algebraic structure U , create the multiset
Q = {∗ a1, a2, ..., an ∗} of elements of U .

{* U | e1, e2, ..., em *}
Given a list of expressions e1, . . . , em, which define elements a1, a2, . . . , an that are
all coercible into U , create the multiset Q = {∗ a1, a2, ..., an ∗} of elements of U .

{* e(x) : x in E | P(x) *}
Form the multiset of elements e(x), all belonging to some common structure, for
those x ∈ E with the property that the predicate P (x) is true. The expressions
appearing in this construct have the interpretation given in the Introduction (Chap-
ter 8) (in particular, E must be a finite structure that can be enumerated).

If P is always true, it may be omitted (including the |).

{* U | e(x) : x in E | P(x) *}
Form the multiset of elements of U consisting of the values e(x) for those x ∈ E
for which the predicate P (x) is true (an error results if not all e(x) are coercible
into U). The expressions appearing in this construct have the same interpretation
as before.

If P is always true, it may be omitted (including the |).

{* e(x1,...,xk) : x1 in E1, ..., xk in Ek | P(x1, ..., xk) *}
The multiset consisting of those elements e(x1, . . . , xk) (in some common structure),
for which x1, . . . , xk in E1 × . . .× Ek have the property that P (x1, . . . , xk) is true.
The expressions appearing in this construct have the interpretation given in the
Introduction (Chapter 8).

Note that if two successive allowable structures Ei and Ei+1 are identical, then
the specification of the carrier sets for xi and xi+1 may be abbreviated to xi, xi+1

in Ei.
Also, if P (x1, ..., xk) is always true, it may be omitted.

{* U | e(x1,...,xk) : x1 in E1, ..., xk in Ek | P(x1, ..., xk)*}
As in the previous entry, the multiset consisting of those elements e(x1, . . . , xk) for
which P (x1, . . . , xk) is true is formed, as an multiset of elements of U (an error
occurs if not all e(x1, . . . , xk) are elements of or coercible into U).

Again, identical successive structures may be abbreviated, and a predicate that
is always true may be omitted.
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Example H9E4

Here we demonstrate the use of the multiset constructors.

> M := {* 1, 1, 1, 3, 5 *};
> M;

{* 1^^3, 3, 5 *}
> M := {* 1^^4, 2^^5, 1/2^^3 *};
> M;

> // Count frequency of digits in first 1000 digits of pi:

> pi := Pi(RealField(1001));

> dec1000 := Round(10^1000*(pi-3));

> I := IntegerToString(dec1000);

> F := {* I[i]: i in [1 .. #I] *};

> F;

{* 7^^95, 3^^102, 6^^94, 2^^103, 9^^106, 5^^97,

1^^116, 8^^101, 4^^93, 0^^93 *}
> for i := 0 to 9 do i, Multiplicity(F, IntegerToString(i)); end for;

0 93

1 116

2 103

3 102

4 93

5 97

6 94

7 95

8 101

9 106

9.2.5 The Arithmetic Progression Constructors
Some special constructors exist to create and store enumerated sets of integers in arithmetic
progression efficiently. This only works for arithmetic progressions of elements of the ring
of integers.

{ i..j }
{ U | i..j }

The enumerated set whose elements form the arithmetic progression i, i + 1, i +
2, . . . , j, where i and j are (expressions defining) integers. If j is less than i then
the empty set will be created.

The only universe U that is legal here is the ring of integers.
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{ i .. j by k }
{ U | i .. j by k }

The enumerated set consisting of the integers forming the arithmetic progression
i, i + k, i + 2 ∗ k, . . . , j, where i, j and k are (expressions defining) integers (but
k 6= 0).

If k is positive then the last element in the progression will be the greatest integer
of the form i + n ∗ k that is less than or equal to j. If j is less than i, the empty set
will be constructed.

If k is negative then the last element in the progression will be the least integer
of the form i + n ∗ k that is greater than or equal to j. If j is greater than i, the
empty set will be constructed.

As for the previous constructor, only the ring of integers is allowed as a legal
universe U .

Example H9E5

It is possible to use the arithmetic progression constructors to save typing in the creation of
‘arithmetic progressions’ of elements of other structures than the ring of integers, but it should
be kept in mind that the result will not be treated especially efficiently like the integer case. Here
is the ‘wrong’ way, as well as two correct ways to create a set of 10 finite field elements.

> S := { FiniteField(13) | 1..10 };
Runtime error in { .. }: Invalid set universe

> S := { FiniteField(13) | x : x in { 1..10 } };
> S;

{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
> G := PowerSet(FiniteField(13));

> S := G ! { 1..10 };
> S;

{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

9.3 Power Sets

The PowerSet constructor returns a structure comprising the subsets of a given structure
R; it is mainly useful as a parent for other set and sequence constructors. The only
operations that are allowed on power sets are printing, testing element membership, and
coercion into the power set (see the examples below).

PowerSet(R)

The structure comprising all enumerated subsets of structure R.

PowerIndexedSet(R)

The structure comprising all indexed subsets of structure R.
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PowerMultiset(R)

The structure consisting of all submultisets of the structure R.

S in P

Returns true if enumerated set S is in the power set P , that is, if all elements of
the set S are contained in or coercible into R, where P is the power set of R; false
otherwise.

PowerFormalSet(R)

The structure comprising all formal subsets of structure R.

S in P

Returns true if indexed set S is in the power set P , that is, if all elements of the
set S are contained in or coercible into R, where P is the power set of R; false
otherwise.

S in P

Returns true if multiset S is in the power set P , that is, if all elements of the set S
are contained in or coercible into R, where P is the power set of R; false otherwise.

P ! S

Return a set with universe R consisting of the elements of the set S, where P is the
power set of R. An error results if not all elements of S can be coerced into R.

P ! S

Return an indexed set with universe R consisting of the elements of the set S, where
P is the power set of R. An error results if not all elements of S can be coerced into
R.

P ! S

Return an multiset with universe R consisting of the elements of the set S, where P
is the power set of R. An error results if not all elements of S can be coerced into
R.
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Example H9E6

> S := { 1 .. 10 };
> P := PowerSet(S);

> P;

Set of subsets of { 1 .. 10 }
> F := { 6/3, 12/4 };
> F in P;

true

> G := P ! F;

> Parent(F);

Set of subsets of Rational Field

> Parent(G);

Set of subsets of { 1 .. 10 }

9.3.1 The Cartesian Product Constructors

Using car< > and CartesianProduct( ), it is possible to create the Cartesian product of
sets (or, in fact, of any combination of structures), but the result will be of type ‘Cartesian
product’ rather than set, and the elements are tuples – we refer the reader to Chapter 11
for details.

9.4 Sets from Structures

Set(M)

Given a finite structure that allows explicit enumeration of its elements, return the
set containing its elements (having M as its universe).

FormalSet(M)

Given a structure M , return the formal set consisting of its elements.



176 SETS, SEQUENCES, AND MAPPINGS Part II

9.5 Accessing and Modifying Sets

Enumerated sets can be modified by inserting or removing elements. Indexed sets allow
some sequence-like operators for modification and access.

9.5.1 Accessing Sets and their Associated Structures

#R

Cardinality of the enumerated, indexed, or multi- set R. Note that for a multiset,
repetitions are significant, so the result may be greater than the underlying set.

Category(S)

Type(S)

The category of the object S. For a set this will be one of SetEnum, SetIndx,
SetMulti, or SetFormal. For a power set the type is one of PowSetEnum,
PowSetIndx, PowSetMulti.

Parent(R)

Returns the parent structure of R, that is, the structure consisting of all (enumer-
ated) sequences over the universe of R.

Universe(R)

Returns the ‘universe’ of the (enumerated or indexed or multi- or formal) set R,
that is, the common structure to which all elements of the set belong. An error is
signalled when R is the null set.

Index(S, x)

Position(S, x)

Given an indexed set S, and an element x, returns the index i such that S[i] = x if
such index exists, or return 0 if x is not in S. If x is not in the universe of S, an
attempt will be made to coerce it; an error occurs if this fails.

S[i]

Return the i-th entry of indexed set S. If i < 1 or i > #S an error occurs. Note
that indexing is not allowed on the left hand side.

S[I]

The indexed set {S[i1], . . . , S[ir]} consisting of terms selected from the indexed set
S, according to the terms of the integer sequence I. If any term of I lies outside the
range 1 to #S, then an error results. If I is the empty sequence, then the empty
set with universe the same as that of S is returned.
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Example H9E7

We build an indexed set of sets to illustrate the use of the above functions.

> B := { @ { i : i in [1..k] } : k in [1..5] @};
> B;

{ @

{ 1 },
{ 1, 2 },
{ 1, 2, 3 },
{ 1, 2, 3, 4 },
{ 1, 2, 3, 4, 5 },

@}
> #B;

5

> Universe(B);

Set of subsets of Integer Ring

> Parent(B);

Set of indexed subsets of Set of subsets of Integer Ring

> Category(B);

SetIndx

> Index(B, { 2, 1});
2

> #B[2];

2

> Universe(B[2]);

Integer Ring

9.5.2 Selecting Elements of Sets
Most finite structures in Magma, including enumerated sets, allow one to obtain a random
element using Random. There is an alternative (and often preferable) option for enumerated
sets in the random{ } constructor. This makes it possible to choose a random element of
the set without generating the whole set first.

Likewise, rep{ } is an alternative to the general Rep function returning a representative
element of a structure, having the advantage of aborting the construction of the set as soon
as one element has been found.

Here, E will again be an enumerable structure, that is, a structure that allows enumer-
ation of its elements (see the Appendix for an exhaustive list).

Note that random{ e(x) : x in E | P(x)} does not return a random element of
the set of values e(x), but rather a value of e(x) for a random x in E which satisfies P
(and mutatis mutandis for rep).

See the subsection on Notation in the Introduction (Chapter 8) for conventions regard-
ing e, x, E, P .
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Random(R)

A random element chosen from the enumerated, indexed or multi- set R. Every
element has an equal probability of being chosen for enumerated or indexed sets,
and a weighted probability in proportion to its multiplicity for multisets. Succes-
sive invocations of the function will result in independently chosen elements being
returned as the value of the function. If R is empty an error occurs.

random{ e(x) : x in E | P(x) }
Given an enumerated structure E and a Boolean expression P , return the value of
the expression e(y) for a randomly chosen element y of E for which P (y) is true.

P may be omitted if it is always true.

random{e(x1, ..., xk) : x1 in E1, ..., xk in Ek | P(x1, ..., xk)}
Given enumerated structures E1, . . . , Ek, and a Boolean expression P (x1, . . ., xk),
return the value of the expression e(y1, · · · , yk) for a randomly chosen element <
y1, . . . , yk > of E1 × · · · × Ek, for which P (y1, . . . , yk) is true.

P may be omitted if it is always true.
If successive structures Ei and Ei+1 are identical, then the abbreviation xi, xi+1

in Ei may be used.

Example H9E8

Here are two ways to find a ‘random’ primitive element for a finite field.

> p := 10007;

> F := FiniteField(p);

> proots := { z : z in F | IsPrimitive(z) };
> #proots;

5002

> Random(proots);

5279

This way, a set of 5002 elements is built (and primitivity is checked for all elements of F ), and a
random choice is made. Alternatively, we use random.

> random{ x : x in F | IsPrimitive(x) };
4263

In this case random elements in F are chosen until one is found that is primitive. Since almost half
of F ’s elements are primitive, only very few primitivity tests will be done before success occurs.

Representative(R)

Rep(R)

An arbitrary element chosen from the enumerated, indexed, or multi- set R.
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ExtractRep(∼R, ∼r)
Assigns an arbitrary element chosen from the enumerated set R to r, and removes
it from R. Thus the set R is modified, as well as the element r. An error occurs if
R is empty.

rep{ e(x) : x in E | P(x) }
Given an enumerated structure E and a Boolean expression P , return the value of
the expression e(y) for the first element y of E for which P (y) is true. If P (x) is
false for every element of E, an error will occur.

rep{ e(x1, ..., xk) : x1 in E1, ..., xk in Ek | P(x1, ..., xk) }
Given enumerated structures E1, . . . , Ek, and a Boolean expression P (x1, . . ., xk),
return the value of the expression e(y1, · · · , yk) for the first element < y1, . . . , yk >
of E1 × · · · × Ek, for which P (y1, . . . , yk) is true. An error occurs if no element of
E1 × · · · × Ek satisfies P .

P may be omitted if it is always true.
If successive structures Ei and Ei+1 are identical, then the abbreviation xi, xi+1

in Ei may be used.

Example H9E9

As an illustration of the use of ExtractRep, we modify an earlier example, and find cubes satisfying
x3 + y3 = z3 − 1 (with x, y, z ≤ 1000).

> cubes := { Integers() | x^3 : x in [1..1000] };
> cc := cubes;

> min := { };
> while not IsEmpty(cc) do

> ExtractRep(~cc, ~a);

> for b in cc do

> if a+b+1 in cubes then

> min join:= { <a, b> };
> end if;

> end for;

> end while;

> { < Iroot(x[1], 3), Iroot(x[2], 3) > : x in min };
{ <138, 135>, <823, 566>, <426, 372>, <242, 720>,

<138, 71>, <426, 486>, <6, 8> }
Note that instead of taking cubes over again, we only have to take cube roots in the last line (on
the small resulting set) once.
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Minimum(S)

Min(S)

Given a non-empty enumerated, indexed, or multi- set S, such that lt and eq are
defined on the universe of S, this function returns the minimum of the elements of
S. If S is an indexed set, the position of the minimum is also returned.

Maximum(S)

Max(S)

Given a non-empty enumerated, indexed, or multi- set S, such that lt and eq are
defined on the universe of S, this function returns the maximum of the elements of
S. If S is an indexed set, the position of the maximum is also returned.

Hash(x)

Given a Magma object x which can be placed in a set, return the hash value of
x used by the set machinery. This is a fixed but arbitrary non-negative integer
(whose maximum value is the maximum value of a C unsigned long on the particular
machine). The crucial property is that if x and y are objects and x equals y then the
hash values of x and y are equal (even if x and y have different internal structures).
Thus one could implement sets manually if desired by the use of this function.

9.5.3 Modifying Sets

Include(∼S, x)

Include(S, x)

Create the enumerated, indexed, or multi- set obtained by putting the element x in
S (S is unchanged if S is not a multiset and x is already in S). If S is an indexed
set, the element will be appended at the end. If S is a multiset, the multiplicity of
x will be increased accordingly. If x is not in the universe of S, an attempt will be
made to coerce it; an error occurs if this fails.

There are two versions of this: a procedure, where S is replaced by the new set,
and a function, which returns the new set. The procedural version takes a reference
∼ S to S as an argument.

Note that the procedural version is much more efficient since the set S will not
be copied.

Exclude(∼S, x)

Exclude(S, x)

Create a new set by removing the element x from S. If S is an enumerated set,
nothing happens if x is not in S. If S is a multiset, the multiplicity of x will be
decreased accordingly. If x is not in the universe of S, an attempt will be made to
coerce it; an error occurs if this fails.
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There are two versions of this: a procedure, where S is replaced by the new set,
and a function, which returns the new set. The procedural version takes a reference
∼ S to S as an argument.

Note that the procedural version is much more efficient since the set S will not
be copied.

ChangeUniverse(∼S, V)

ChangeUniverse(S, V)

Given an enumerated, indexed, or multi- set S with universe U and a structure
V which contains U , construct a new set of the same type which consists of the
elements of S coerced into V .

There are two versions of this: a procedure, where S is replaced by the new set,
and a function, which returns the new set. The procedural version takes a reference
∼ S to S as an argument.

Note that the procedural version is much more efficient since the set S will not
be copied.

CanChangeUniverse(S, V)

Given an enumerated, indexed, or multi- set S with universe U and a structure V
which contains U , attempt to construct a new set T of the same type which consists
of the elements of S coerced into V ; if successful, return true and T , otherwise
return false.

Example H9E10

This example uses Include and Exclude to find a set (if it exists) of cubes of integers such that
the elements of a given set R can be expressed as the sum of two of those.

> R := { 218, 271, 511 };
> x := 0;

> cubes := { 0 };
> while not IsEmpty(R) do

> x +:= 1;

> c := x^3;

> Include(~cubes, c);

> Include(~cubes, -c);

> for z in cubes do

> Exclude(~R, z+c);

> Exclude(~R, z-c);

> end for;

> end while;

We did not record how the elements of R were obtained as sums of a pair of cubes. For that, the
following suffices.

> R := { 218, 271, 511 }; // it has been emptied !

> { { x, y } : x, y in cubes | x+y in R };
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{
{ -729, 1000 },
{ -125, 343 },
{ -1, 512 },

}

SetToIndexedSet(E)

Given an enumerated set E, this function returns an indexed set with the same
elements (and universe) as E.

IndexedSetToSet(S)

Isetset(S)

Given an indexed set S, this function returns an enumerated set with the same
elements (and universe) as E.

IndexedSetToSequence(S)

Isetseq(S)

Given an indexed set S, this function returns a sequence with the same elements
(and universe) as E.

MultisetToSet(S)

Given a multiset S, this function returns an enumerated set with the same elements
(and universe) as S.

SetToMultiset(E)

Given an enumerated set E, this function returns a multiset with the same elements
(and universe) as E.

SequenceToMultiset(Q)

Given an enumerated sequence E, this function returns a multiset with the same
elements (and universe) as E.



Ch. 9 SETS 183

9.6 Operations on Sets

9.6.1 Boolean Functions and Operators
As explained in the Introduction (Chapter 8), when elements are taken out of a set their
parent will be the universe of the set (or, if the universe is itself a set, the universe of the
universe, etc.); in particular, the set itself is not the parent. Hence equality testing on set
elements is in fact equality testing between two elements of certain algebraic structures,
and the sets are irrelevant. We only list the (in)equality operator for convenience here.

Element membership testing is of critical importance for all types of sets.
Testing whether or not R is a subset of S can be done if R is an enumerated or indexed

set and S is any set; hence (in)equality testing is only possible between sets that are not
formal sets.

IsNull(R)

Returns true if and only if the enumerated, indexed, or multi- set R is empty and
does not have its universe defined.

IsEmpty(R)

Returns true if and only if the enumerated, indexed or multi- set R is empty.

x eq y

Given an element x of a set R with universe U and an element y of a set S with
universe V , where a common overstructure W can be found with U ⊂ W ⊃ V (see
the Introduction (Chapter 8) for details on overstructures), return true if and only
if x and y are equal as elements of W .

x ne y

Given an element x of a set R with universe U and an element y of a set S with
universe V , where a common overstructure W can be found with U ⊂ W ⊃ V (see
the Introduction (Chapter 8) for details on overstructures), return true if and only
if x and y are distinct as elements of W .

x in R

Returns true if and only if the element x is a member of the set R. If x is not an
element of the universe U of R, it is attempted to coerce x into U ; if this fails, an
error occurs.

x notin R

Returns true if and only if the element x is not a member of the set R. If x is not
an element of the parent structure U of R, it is attempted to coerce x into U ; if this
fails, an error occurs.
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R subset S

Returns true if the enumerated, indexed or multi- set R is a subset of the set S,
false otherwise. For multisets, if an element x of R has multiplicity n in R, the
multiplicity of x in S must be at least n. Coercion of the elements of R into S is
attempted if necessary, and an error occurs if this fails.

R notsubset S

Returns true if the enumerated, indexed, or multi- set R is a not a subset of the set
S, false otherwise. Coercion of the elements of R into S is attempted if necessary,
and an error occurs if this fails.

R eq S

Returns true if and only if R and S are identical sets, where R and S are enumerated,
indexed or multi- sets For indexed sets, the index function is irrelevant for deciding
equality. For multisets, matching multiplicities must also be equal. Coercion of the
elements of R into S is attempted if necessary, and an error occurs if this fails.

R ne S

Returns true if and only if R and S are distinct sets, where R and S are enumerated
indexed, or multi- sets. For indexed sets, the index function is irrelevant for deciding
equality. For multisets, matching multiplicities must also be equal. Coercion of the
elements of R into S is attempted if necessary, and an error occurs if this fails.

IsDisjoint(R, S)

Returns true iff the enumerated, indexed or multi- sets R and S are disjoint. Co-
ercion of the elements of R into S is attempted if necessary, and an error occurs if
this fails.

9.6.2 Binary Set Operators
For each of the following operators, R and S are sets of the same type. If R and S are
both formal sets, then an error will occur unless both have been constructed with the same
carrier structure F in the definition. If R and S are both enumerated, indexed, or multi-
sets, then an error occurs unless the universes of R and S are compatible, as defined in
the Introduction to this Part (Chapter 8).
Note that

Q := { ! x in R !}
converts an enumerated set R into a formal set Q.

R join S

Union of the sets R and S (see above for the restrictions on R and S). For multisets,
matching multiplicities are added in the union.
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R meet S

Intersection of the sets R and S (see above for the restrictions on R and S). For
multisets, the minimum of matching multiplicities is stored in the intersection.

R diff S

Difference of the sets R and S. i.e., the set consisting of those elements of R which
are not members of S (see above for the restrictions on R and S). For multisets, the
difference contains any elements of R remaining after removing the corresponding
elements of S the appropriate number of times.

R sdiff S

Symmetric difference of the sets R and S. i.e., the set consisting of those elements
which are members of either R or S but not both (see above for the restrictions
on R and S). Alternatively, it is the union of the difference of R with S and the
difference of S with R.

Example H9E11

> R := { 1, 2, 3 };
> S := { 1, 1/2, 1/3 };
> R join S;

{ 1/3, 1/2, 1, 2, 3 }
> R meet S;

{ 1 }
> R diff S;

{ 2, 3 }
> S diff R;

{ 1/3, 1/2 }
> R sdiff S;

{ 1/3, 1/2, 2, 3 }

9.6.3 Other Set Operations

Multiplicity(S, x)

Return the multiplicity in multiset S of element x. If x is not in S, zero is returned.

Multiplicities(S)

Returns the sequence of multiplicities of distinct elements in the multiset S. The
order is the same as the internal enumeration order of the elements.

Subsets(S)

The set of all subsets of S.
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Subsets(S, k)

The set of subsets of S of size k. If k is larger than the cardinality of S then the
result will be empty.

RandomSubset(S, k)

A random subset of S of size k. It is an error if k is larger than the size of S.

Multisets(S, k)

The set of multisets consisting of k not necessarily distinct elements of S.

Subsequences(S, k)

The set of sequences of length k with elements from S.

Permutations(S)

The set of permutations (stored as sequences) of the elements of S.

Permutations(S, k)

The set of permutations (stored as sequences) of each of the subsets of S of cardi-
nality k.

9.7 Quantifiers

To test whether some enumerated set is empty or not, one may use the IsEmpty function.
However, to use IsEmpty, the set has to be created in full first. The existential quantifier
exists enables one to do the test and abort the construction of the set as soon as an
element is found; moreover, the element found will be assigned to a variable.

Likewise, forall enables one to abort the construction of the set as soon as an element
not satisfying a certain property is encountered.

Note that exists(t){ e(x) : x in E | P(x) } is not designed to return true if an
element of the set of values e(x) satisfies P , but rather if there is an x ∈ E satisfying P (x)
(in which case e(x) is assigned to t).

For the notation used here, see the beginning of this chapter.

exists(t){ e(x): x in E | P(x) }
exists(t1, ..., tr){ e(x) : x in E | P(x) }

Given an enumerated structure E and a Boolean expression P (x), the Boolean value
true is returned if E contains at least one element x for which P (x) is true. If P (x)
is not true for any element x of E, then the Boolean value false is returned.

Moreover, if P (x) is found to be true for the element y, say, of E, then in the first
form of the exists expression, variable t will be assigned the value of the expression
e(y). If P (x) is never true for an element of E, t will be left unassigned. In the
second form, where r variables t1, . . . , tr are given, the result e(y) should be a tuple
of length r; each variable will then be assigned to the corresponding component of
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the tuple. Similarly, all the variables will be left unassigned if P (x) is never true.
The clause (t) may be omitted entirely.

P may be omitted if it is always true.

exists(t){e(x1, ..., xk): x1 in E1, ..., xk in Ek | P(x1, ..., xk)}
exists(t1, ..., tr){ e(x1, ..., xk) : x1 in E1, ..., xk in Ek | P }

Given enumerated structures E1, . . . , Ek, and a Boolean expression P (x1, . . ., xk),
the Boolean value true is returned if there is an element < y1, . . ., yk > in the
Cartesian product E1× · · · ×Ek, such that P (y1, . . . , yk) is true. If P (x1, . . . , xk) is
not true for any element (y1, . . ., yk) of E1 × · · · ×Ek, then the Boolean value false
is returned.

Moreover, if P (x1, . . ., xk) is found to be true for the element < y1, . . . , yk > of
E1 × · · · × Ek, then in the first form of the exists expression, the variable t will be
assigned the value of the expression e(y1, · · · , yk). If P (x1, . . ., xk) is never true for
an element of E1×· · ·×Ek, then the variable t will be left unassigned. In the second
form, where r variables t1, . . . , tr are given, the result e(y1, · · · , yk) should be a tuple
of length r; each variable will then be assigned to the corresponding component of
the tuple. Similarly, all the variables will be left unassigned if P (x1, . . ., xk) is never
true. The clause (t) may be omitted entirely.

P may be omitted if it is always true.
If successive structures Ei and Ei+1 are identical, then the abbreviation xi, xi+1

in Ei may be used.

Example H9E12

As a variation on an earlier example, we check whether or not some integers can be written as
sums of cubes (less than 103 in absolute value):

> exists(t){ <x, y> : x, y in [ t^3 : t in [-10..10] ] | x + y eq 218 };
true

> t;

<-125, 343>

> exists(t){ <x, y> : x, y in [ t^3 : t in [1..10] ] | x + y eq 218 };
false

> t;

>> t;

^

User error: Identifier ’t’ has not been declared
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forall(t){ e(x) : x in E | P(x) }
forall(t1, ..., tr){ e(x) : x in E | P(x) }

Given an enumerated structure E and a Boolean expression P (x), the Boolean value
true is returned if P (x) is true for every element x of E.

If P (x) is not true for at least one element x of E, then the Boolean value false
is returned.

Moreover, if P (x) is found to be false for the element y, say, of E, then in the first
form of the exists expression, variable t will be assigned the value of the expression
e(y). If P (x) is true for every element of E, t will be left unassigned. In the second
form, where r variables t1, . . . , tr are given, the result e(y) should be a tuple of
length r; each variable will then be assigned to the corresponding component of the
tuple. Similarly, all the variables will be left unassigned if P (x) is always true. The
clause (t) may be omitted entirely.

P may be omitted if it is always true.

forall(t){e(x1, ..., xk): x1 in E1, ..., xk in Ek | P(x1, ..., xk)}
forall(t1, ..., tr){ e(x1, ..., xk) : x1 in E1, ..., xk in Ek | P }

Given sets E1, . . . , Ek, and a Boolean expression P (x1, . . ., xk), the Boolean value
true is returned if P (x1, . . . , xk) is true for every element (x1, . . ., xk) in the Carte-
sian product E1 × · · · × Ek.

If P (x1, . . . , xk) fails to be true for some element (y1, . . ., yk) of E1 × · · · × Ek,
then the Boolean value false is returned.

Moreover, if P (x1, . . ., xk) is false for the element < y1, . . . , yk > of E1×· · ·×Ek,
then in the first form of the exists expression, the variable t will be assigned the
value of the expression e(y1, · · · , yk). If P (x1, . . ., xk) is true for every element of
E1×· · ·×Ek, then the variable t will be left unassigned. In the second form, where
r variables t1, . . . , tr are given, the result e(y1, · · · , yk) should be a tuple of length
r; each variable will then be assigned to the corresponding component of the tuple.
Similarly, all the variables will be left unassigned if P (x1, . . ., xk) is never true. The
clause (t) may be omitted entirely.

P may be omitted if it is always true.
If successive structures Ei and Ei+1 are identical, then the abbreviation xi, xi+1

in Ei may be used.

Example H9E13

This example shows that forall and exists may be nested.
It is well known that every prime that is 1 modulo 4 can be written as the sum of two squares,
but not every integer m congruent to 1 modulo 4 can. In this example we explore for small m
whether perhaps m± ε (with |ε| ≤ 1) is always a sum of squares.

> forall(u){ m : m in [5..1000 by 4] |

> exists{ <x, y, z> : x, y in [0..30], z in [-1, 0, 1] |

> x^2+y^2+z eq m } };
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false

> u;

77

9.8 Reduction and Iteration over Sets

Both enumerated and indexed sets allow enumeration of their elements; formal sets do not.
For indexed sets the enumeration will occur according to the order given by the indexing.

Instead of using a loop to apply the same binary associative operator to all elements of
an enumerated or indexed set, it is in certain cases possible to use the reduction operator
&.

x in S

Enumerate the elements of an enumerated or indexed set S. This can be used in
loops, as well as in the set and sequence constructors.

&o S

Given an enumerated or indexed set S = { a1, a2, . . . , an} of elements belonging to
an algebraic structure U , and an (associative) operator ◦ : U × U → U , form the
element ai1 ◦ ai2 ◦ ai3 ◦ . . . ◦ ain , for some permutation i1, . . . , in of 1, . . . , n.

Currently, the following operators may be used to reduce enumerated sets: +,
*, and, or, join, meet and +, *, and, or to reduce indexed sets. An error
will occur if the operator is not defined on U .

If S contains a single element a, then the value returned is a. If S is the null set
(empty and no universe specified) or S is empty with universe U (and the operation
is defined in U), then the result (or error) depends on the operation and upon U .
The following table defines the return value:

empty null

&+ U ! 0 error

&∗ U ! 1 error

&and true true

&or false false

&join empty null

&meet error error

Warning: since the reduction may take place in an arbitrary order on the argu-
ments a1, . . . , an, the result is not unambiguously defined if the operation is not
commutative on the arguments!
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Example H9E14

The function choose defined below takes a set S and an integer k as input, and produces a set of
all subsets of S with cardinality k.

> function choose(S, k)

> if k eq 0 then

> return { { } };
> else

> return &join{{ s join { x} : s in choose(S diff { x}, k-1) } : x in S};
> end if;

> end function;

So, for example:

> S := { 1, 2, 3, 4 };
> choose(S, 2);

{
{ 1, 3 },
{ 1, 4 },
{ 2, 4 },
{ 2, 3 },
{ 1, 2 },
{ 3, 4 }

}
Try to guess what happens if k < 0.
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Chapter 10

SEQUENCES

10.1 Introduction

A sequence in Magma is a linearly ordered collection of objects belonging to some common
structure (called the universe of the sequence).

There are two types of sequence: enumerated sequences, of which the elements are all
stored explicitly (with one exception, see below); and formal sequences, of which elements
are stored implicitly by means of a predicate that allows for testing membership. In
particular, enumerated sequences are always finite, and formal sequences are allowed to be
infinite. In this chapter a sequence will be either a formal or an enumerated sequence.

10.1.1 Enumerated Sequences
An enumerated sequence of length l is an array of indefinite length of which only finitely
many terms – including the l-th term, but no term of bigger index — have been defined
to be elements of some common structure. Such sequence is called complete if all of the
terms (from index 1 up to the length l) are defined.

In practice the length of an enumerated sequence must be less than 230.
Incomplete enumerated sequences are allowed as a convenience for the programmer in

building complete enumerated sequences. Some sequence functions require their arguments
to be complete; if that is the case, it is mentioned explicitly in the description below.
However, all functions using sequences in other Magma modules always assume that
a sequence that is passed in as an argument is complete. Note that the following line
converts a possibly incomplete sequence S into a complete sequence T :

T := [ s : s in S ];
because the enumeration using the in operator simply ignores undefined terms.

Enumerated sequences of Booleans are highly optimized (stored as bit-vectors).

10.1.2 Formal Sequences
A formal sequence consists of elements of some range set on which a certain predicate
assumes the value ‘true’.

There is only a very limited number of operations that can be performed on them.
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10.1.3 Compatibility
The binary operators for sequences do not allow mixing of the formal and enumerated
sequence types (so one cannot take the concatenation of an enumerated sequence and a
formal sequence, for example); but it is easy to convert an enumerated sequence into a
formal sequence – see the section on binary operators below.

By the limitation on their construction formal sequences can only contain elements from
one structure in Magma. The elements of enumerated sequences are also restricted, in
the sense that either some common structure must be specified upon creation, or Magma
must be able to find such universe automatically. The rules for compatibility of elements
and the way Magma deals with these parents is the same for sequences and sets, and is
outlined in Chapter 8.

10.2 Creating Sequences

Square brackets are used for the definition of enumerated sequences; formal sequences are
delimited by the composite brackets [! and !].

Certain expressions appearing below (possibly with subscripts) have the standard in-
terpretation:

U the universe: any Magma structure;

E the range set for enumerated sequences: any enumerated structure (it must be possible
to loop over its elements – see the Introduction to this Part);

F the range set for formal sequences: any structure for which membership testing using
in is defined – see the Introduction to this Part);

x a free variable which successively takes the elements of E (or F in the formal case) as
its values;

P a Boolean expression that usually involves the variable(s) x, x1, . . . , xk;

e an expression that also usually involves the variable(s) x, x1, . . . , xk.

10.2.1 The Formal Sequence Constructor
The formal sequence constructor has the following fixed format (the expressions appearing
in the construct are defined above):

[! x in F | P(x) !]

Create the formal sequence consisting of the subsequence of elements x of F for
which P (x) is true. If P (x) is true for every element of F , the sequence constructor
may be abbreviated to [! x in F !]
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10.2.2 The Enumerated Sequence Constructor
Sequences can be constructed by expressions enclosed in square brackets, provided that
the values of all expressions can be automatically coerced into some common structure,
as outlined in the Introduction. All general constructors have the universe U optionally
up front, which allows the user to specify into which structure all terms of the sequences
should be coerced.

[ ]

The null sequence (empty, and no universe specified).

[ U | ]

The empty sequence with universe U .

[ e1, e2, ..., en ]

Given a list of expressions e1, . . . , en, defining elements a1, a2, . . . , an all belonging to
(or automatically coercible into) a single algebraic structure U , create the sequence
Q = [a1, a2, ..., an ] of elements of U .

As for multisets, one may use the expression x^^n to specify the object x with
multiplicity n: this is simply interpreted to mean x repeated n times (i.e., no internal
compaction of the repetition is done).

[ U | e1, e2, ..., em ]

Given a list of expressions e1, . . . , em, which define elements a1, a2, . . . , an that are
all coercible into U , create the sequence Q = [a1, a2, ..., an ] of elements of U .

[ e(x) : x in E | P(x) ]

Form the sequence of elements e(x), all belonging to some common structure, for
those x ∈ E with the property that the predicate P (x) is true. The expressions
appearing in this construct have the interpretation given at the beginning of this
section.

If P (x) is true for every element of E, the sequence constructor may be abbre-
viated to [ e(x) : x in E ] .

[ U | e(x) : x in E | P(x) ]

Form the sequence of elements of U consisting of the values e(x) for those x ∈ E
for which the predicate P (x) is true (an error results if not all e(x) are coercible
into U). The expressions appearing in this construct have the same interpretation
as above.

[ e(x1,...,xk) : x1 in E1, ..., xk in Ek | P(x1, ..., xk) ]

The sequence consisting of those elements e(x1, . . . , xk), in some common structure,
for which x1, . . . , xk in E1, . . . , Ek have the property that P (x1, . . . , xk) is true.

The expressions appearing in this construct have the interpretation given at the
beginning of this section.
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Note that if two successive ranges Ei and Ei+1 are identical, then the specification
of the ranges for xi and xi+1 may be abbreviated to xi, xi+1 in Ei.

Also, if P (x1, ..., xk) is always true, it may be omitted.

[ U | e(x1,...,xk) : x1 in E1, ..., xk in Ek | P(x1, ..., xk) ]

As in the previous entry, the sequence consisting of those elements e(x1, . . . , xk)
for which P (x1, . . . , xk) is true is formed, as a sequence of elements of U (an error
occurs if not all e(x1, . . . , xk) are coercible into U).

10.2.3 The Arithmetic Progression Constructors
Since enumerated sequences of integers arise so often, there are a few special constructors
to create and handle them efficiently in case the entries are in arithmetic progression. The
universe must be the ring of integers. Some effort is made to preserve the special way of
storing arithmetic progressions under sequence operations.

[ i..j ]

[ U | i..j ]

The enumerated sequence of integers whose elements form the arithmetic progression
i, i + 1, i + 2, . . . , j, where i and j are (expressions defining) arbitrary integers. If j
is less than i then the empty sequence of integers will be created.

The universe U , if it is specified, has to be the ring of integers; any other universe
will lead to an error.

[ i .. j by k ]

[ U | i .. j by k ]

The enumerated sequence consisting of the integers forming the arithmetic progres-
sion i, i + k, i + 2 ∗ k, . . . , j, where i, j and k are (expressions defining) arbitrary
integers (but k 6= 0).

If k is positive then the last element in the progression will be the greatest integer
of the form i + n ∗ k that is less than or equal to j; if j is less than i, the empty
sequence of integers will be constructed.

If k is negative then the last element in the progression will be the least integer
of the form i + n ∗ k that is greater than or equal to j; if j is greater than i, the
empty sequence of integers will be constructed.

The universe U , if it is specified, has to be the ring of integers; any other universe
will lead to an error.

Example H10E1

As in the case of sets, it is possible to use the arithmetic progression constructors to save some
typing in the creation of sequences of elements of rings other than the ring of integers, but the
result will not be treated especially efficiently.

> s := [ IntegerRing(200) | x : x in [ 25..125 ] ];
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10.2.4 Literal Sequences
A literal sequence is an enumerated sequence all of whose terms are from the same structure
and all of these are ‘typed in’ literally. The sole purpose of literal sequences is to load
certain enumerated sequences very fast and very space-efficiently; this is only useful when
reading in very large sequences (all of whose elements must have been specified literally,
that is, not as some expression other than a literal), but then it may save a lot of time.
The result will be an enumerated sequence, that is, not distinguished in any way from
other such sequences.

At present, only literal sequences of integers are supported.

\[ m1, ..., mn ]

Given a succession of literal integers m1, . . . , mn, build the enumerated sequence
[m1, . . . , mn], in a time and space efficient way.

10.3 Power Sequences

The PowerSequence constructor returns a structure comprising the enumerated sequences
of a given structure R; it is mainly useful as a parent for other set and sequence con-
structors. The only operations that are allowed on power sequences are printing, testing
element membership, and coercion into the power sequence (see the examples below).

PowerSequence(R)

The structure comprising all enumerated sequences of elements of structure R. If R
itself is a sequence (or set) then the power structure of its universe is returned.

S in P

Returns true if enumerated sequence S is in the power sequence P , that is, if all
elements of the sequence S are contained in or coercible into R, where P is the
power sequence of R; false otherwise.

P ! S

Return a sequence with universe R consisting of the entries of the enumerated se-
quence S, where P is the power sequence of R. An error results if not all elements
of S can be coerced into R.

Example H10E2

> S := [ 1 .. 10 ];

> P := PowerSequence(S);

> P;

Set of sequences over [ 1 .. 10 ]

> F := [ 6/3, 12/4 ];

> F in P;

true

> G := P ! F;
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> Parent(F);

Set of sequences over Rational Field

> Parent(G);

Set of sequences over [ 1 .. 10 ]

10.4 Operators on Sequences

This section lists functions for obtaining information about existing sequences, for modify-
ing sequences and for creating sequences from others. Most of these operators only apply
to enumerated sequences.

10.4.1 Access Functions

#S

Returns the length of the enumerated sequence S, which is the index of the last
term of S whose value is defined. The length of the empty sequence is zero.

Parent(S)

Returns the parent structure for a sequence S, that is, the structure consisting of
all (enumerated) sequences over the universe of S.

Universe(S)

Returns the ‘universe’ of the sequence S, that is, the common structure to which all
elements of the sequence belong. This universe may itself be a set or sequence. An
error is signalled when S is the null sequence.

S[i]

The i-th term si of the sequence S. If i ≤ 0, or i > #S + 1, or S[i] is not defined,
then an error results. Here i is allowed to be a multi-index (see Introduction for
the interpretation). This can be used as the left hand side of an assignment: S[i]
:= x redefines the i-th term of the sequence S to be x. If i ≤ 0, then an error
results. If i > n, then the sequence [s1, . . . , sn, sn+1, . . . , si−1, x] replaces S, where
sn+1, . . . , si−1 are all undefined. Here i is allowed to be a multi-index.

An error occurs if x cannot be coerced into the universe of S.
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10.4.2 Selection Operators on Enumerated Sequences
Here, S denotes an enumerated sequence [s1, . . . , sn]. Further, i and j are integers or
multi-indices (see Introduction).

S[I]

The sequence [si1 , . . . , sir ] consisting of terms selected from the sequence S, accord-
ing to the terms of the integer sequence I. If any term of I lies outside the range 1
to #S, then an error results. If I is the empty sequence, then the empty set with
universe the same as that of S is returned.

The effect of T := S[I] differs from that of T := [ S[i] : i in I ]: if in
the first case an undefined entry occurs for i ∈ I between 1 and #S it will be copied
over; in the second such undefined entries will lead to an error.

Minimum(S)

Min(S)

Given a non-empty, complete enumerated sequence S such that lt and eq are defined
on the universe of S, this function returns two values: a minimal element s in S, as
well as the first position i such that s = S[i].

Maximum(S)

Max(S)

Given a non-empty, complete enumerated sequence S such that gt and eq are defined
on the universe of S, this function returns two values: a maximal element s in S, as
well as the first position i such that s = S[i].

Index(S, x)

Index(S, x, f)

Position(S, x)

Position(S, x, f)

Returns either the position of the first occurrence of x in the sequence S, or zero
if S does not contain x. The second variants of each function starts the search at
position f . This can save time in second (and subsequent) searches for the same
entry further on. If no occurrence of x in S from position f onwards is found, then
zero is returned.

Representative(R)

Rep(R)

An (arbitrary) element chosen from the enumerated sequence R
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Random(R)

A random element chosen from the enumerated sequence R. Every element has an
equal probability of being chosen. Successive invocations of the function will result
in independently chosen elements being returned as the value of the function. If R
is empty an error occurs.

Explode(R)

Given an enumerated sequence R of length r this function returns the r entries of
the sequence (in order).

Eltseq(R)

The enumerated sequence R itself. This function is just included for completeness.

10.4.3 Modifying Enumerated Sequences
The operations given here are available as both procedures and functions. In the procedure
version, the given sequence is destructively modified ‘in place’. This is very efficient, since
it is not necessary to make a copy of the sequence. In the function version, the given
sequence is not changed, but a modified version of it is returned. This is more suitable if
the old sequence is still required. Some of the functions also return useful but non-obvious
values.

Here, S denotes an enumerated sequence, and x an element of some structure V . The
modifications involving S and x will only be successful if x can be coerced into the universe
of S; an error occurs if this fails. (See the Introduction to this Part).

Append(∼S, x)

Append(S, x)

Create an enumerated sequence by adding the object x to the end of S, i.e., the
enumerated sequence [s1, . . . sn, x].

There are two versions of this: a procedure, where S is replaced by the appended
sequence, and a function, which returns the new sequence. The procedural version
takes a reference ∼ S to S as an argument.

Note that the procedural version is much more efficient since the sequence S will
not be copied.

Exclude(∼S, x)

Exclude(S, x)

Create an enumerated sequence obtained by removing the first occurrence of the
object x from S, i.e., the sequence [s1,. . . si−1, si+1, . . ., sn], where si is the first
term of S that is equal to x. If x is not in S then this is just S.

There are two versions of this: a procedure, where S is replaced by the new
sequence, and a function, which returns the new sequence. The procedural version
takes a reference ∼ S to S as an argument.
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Note that the procedural version is much more efficient since the sequence S will
not be copied.

Include(∼S, x)

Include(S, x)

Create a sequence by adding the object x to the end of S, provided that no term of S
is equal to x. Thus, if x does not occur in S, the enumerated sequence [s1, . . . , sn, x]
is created.

There are two versions of this: a procedure, where S is replaced by the new
sequence, and a function, which returns the new sequence. The procedural version
takes a reference ∼ S to S as an argument.

Note that the procedural version is much more efficient since the sequence S will
not be copied.

Insert(∼S, i, x)

Insert(S, i, x)

Create the sequence formed by inserting the object x at position i in S and moving
the terms S[i], . . . , S[n] down one place, i.e., the enumerated sequence [s1,. . . si−1,
x, si, . . ., sn]. Note that i may be bigger than the length n of S, in which case the
new length of S will be i, and the entries S[n + 1], . . . , S[i− 1] will be undefined.

There are two versions of this: a procedure, where S is replaced by the new
sequence, and a function, which returns the new sequence. The procedural version
takes a reference ∼ S to S as an argument.

Note that the procedural version is much more efficient since the sequence S will
not be copied.

Insert(∼S, k, m, T)

Insert(S, k, m, T)

Create the sequence [s1, . . ., sk−1, t1, . . ., tl, sm+1, . . ., sn]. If k ≤ 0 or
k > m + 1, then an error results. If k = m + 1 then the terms of T will be
inserted into S immediately before the term sk. If k > n, then the sequence
[s1, . . . , sn, sn+1, . . . , sk−1, t1, . . . , tl] is created, where sn+1, . . . , sk−1 are all unde-
fined. In the case where T is the empty sequence, terms sk, . . . , sm are deleted from
S.

There are two versions of this: a procedure, where S is replaced by the new
sequence, and a function, which returns the new sequence. The procedural version
takes a reference ∼ S to S as an argument.

Note that the procedural version is much more efficient since the sequence S will
not be copied.
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Prune(∼S)
Prune(S)

Create the enumerated sequence formed by removing the last term of the sequence
S, i.e., the sequence [s1, . . ., sn−1]. An error occurs if S is empty.

There are two versions of this: a procedure, where S is replaced by the new
sequence, and a function, which returns the new sequence. The procedural version
takes a reference ∼ S to S as an argument.

Note that the procedural version is much more efficient since the sequence S will
not be copied.

Remove(∼S, i)

Remove(S, i)

Create the enumerated sequence formed by removing the i-th term from S, i.e., the
sequence [s1,. . . si−1, si+1, . . ., sn]. An error occurs if i < 1 or i > n.

There are two versions of this: a procedure, where S is replaced by the new
sequence, and a function, which returns the new sequence. The procedural version
takes a reference ∼ S to S as an argument.

Note that the procedural version is much more efficient since the sequence S will
not be copied.

Reverse(∼S)
Reverse(S)

Create the enumerated sequence formed by reversing the order of the terms in the
complete enumerated sequence S, i.e., the sequence [sn, . . . , s1].

There are two versions of this: a procedure, where S is replaced by the new
sequence, and a function, which returns the new sequence. The procedural version
takes a reference ∼ S to S as an argument.

Note that the procedural version is much more efficient since the sequence S will
not be copied.

Rotate(∼S, p)

Rotate(S, p)

Given a complete sequence S and an integer p, create the enumerated sequence
formed by cyclically rotating the terms of the sequence p terms: if p is positive,
rotation will be to the right; if p is negative, S is cyclically rotated −p terms to the
left; if p is zero nothing happens.

There are two versions of this: a procedure, where S is replaced by the new
sequence, and a function, which returns the new sequence. The procedural version
takes a reference ∼ S to S as an argument.

Note that the procedural version is much more efficient since the sequence S will
not be copied.
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Sort(∼S)
Sort(S)

Given a complete enumerated sequence S whose terms belong to a structure on which
lt and eq are defined, create the enumerated sequence formed by (quick-)sorting
the terms of S into increasing order.

There are two versions of this: a procedure, where S is replaced by the new
sequence, and a function, which returns the new sequence. The procedural version
takes a reference ∼ S to S as an argument.

Note that the procedural version is much more efficient since the sequence S will
not be copied.

Sort(∼S, C)

Sort(∼S, C, ∼p)
Sort(S, C)

Given a complete enumerated sequence S and a comparison function C which com-
pares elements of S, create the enumerated sequence formed by sorting the terms
of S into increasing order with respect to C. The comparison function C must take
two arguments and return an integer less than, equal to, or greater than 0 accord-
ing to whether the first argument is less than, equal to, or greater than the second
argument (e.g.: func<x, y | x - y>).

There are three versions of this: a procedure, where S is replaced by the new
sequence, a procedure, where S is replaced by the new sequence and the correspond-
ing permutation p is set, and a function, which returns the new sequence and the
corresponding permutation. The procedural version takes a reference ∼ S to S as
an argument. Note that the procedural version is much more efficient since the
sequence S will not be copied.

ParallelSort(∼S, ∼T)
Given a complete enumerated sequence S, sorts it in place and simultaneously sorts
T in the same order. That is, whenever the sorting process would swap the two
elements S[i] and S[j] then the two elements T[i] and T[j] are also swapped.

Undefine(∼S, i)

Undefine(S, i)

Create the sequence which is the same as the enumerated sequence S but with the
i-th term of S undefined; i may be bigger than #S, but i ≤ 0 produces an error.

There are two versions of this: a procedure, where S is replaced by the new
sequence, and a function, which returns the new sequence. The procedural version
takes a reference ∼ S to S as an argument.

Note that the procedural version is much more efficient since the sequence S will
not be copied.
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ChangeUniverse(S, V)

ChangeUniverse(S, V)

Given a sequence S with universe U and a structure V which contains U , construct
a sequence which consists of the elements of S coerced into V .

There are two versions of this: a procedure, where S is replaced by the new
sequence, and a function, which returns the new sequence. The procedural version
takes a reference ∼ S to S as an argument.

Note that the procedural version is much more efficient since the sequence S will
not be copied.

CanChangeUniverse(S, V)

Given a sequence S with universe U and a structure V which contains U , attempt
to construct a sequence T which consists of the elements of S coerced into V ; if
successful, return true and T , otherwise return false.

Example H10E3

We present three ways to obtain the Farey series Fn of degree n.
The Farey series Fn of degree n consists of all rational numbers with denominator less than or
equal to n, in order of magnitude. Since we will need numerator and denominator often, we first
abbreviate those functions.

> D := Denominator;

> N := Numerator;

The first method calculates the entries in order. It uses the fact that for any three consecutive

Farey fractions p
q
, p′

q′ ,
p′′
q′′ of degree n:

p′′ = bq + n

q′
cp′ − p, q′′ = bq + n

q′
cq′ − q.

> farey := function(n)

> f := [ RationalField() | 0, 1/n ];

> p := 0;

> q := 1;

> while p/q lt 1 do

> p := ( D(f[#f-1]) + n) div D(f[#f]) * N(f[#f]) - N(f[#f-1]);

> q := ( D(f[#f-1]) + n) div D(f[#f]) * D(f[#f]) - D(f[#f-1]);

> Append(~f, p/q);

> end while;

> return f;

> end function;

The second method calculates the Farey series recursively. It uses the property that Fn may

be obtained from Fn−1 by inserting a new fraction (namely p+p′
q+q′ ) between any two consecutive

rationals p
q

and p′
q′ in Fn−1 for which q + q′ equals n.

> function farey(n)



Ch. 10 SEQUENCES 205

> if n eq 1 then

> return [RationalField() | 0, 1 ];

> else

> f := farey(n-1);

> i := 0;

> while i lt #f-1 do

> i +:= 1;

> if D(f[i]) + D(f[i+1]) eq n then

> Insert( ~f, i+1, (N(f[i]) + N(f[i+1]))/(D(f[i]) + D(f[i+1])));

> end if;

> end while;

> return f;

> end if;

> end function;

The third method is very straightforward, and uses Sort and Setseq (defined above).

> farey := func< n |

> Sort(Setseq({ a/b : a in { 0..n}, b in { 1..n} | a le b }))>;
> farey(6);

[ 0, 1/6, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 1 ]

10.4.4 Creating New Enumerated Sequences from Existing Ones

S cat T

The enumerated sequence formed by concatenating the terms of S with the terms
of T , i.e. the sequence [s1, . . . , sn, t1, . . . , tm].

If the universes of S and T are different, an attempt to find a common overstruc-
ture is made; if this fails an error results (see the Introduction).

S cat:= T

Mutation assignment: change S to be the concatenation of S and T . Functionally
equivalent to S := S cat T.

If the universes of S and T are different, an attempt to find a common overstruc-
ture is made; if this fails an error results (see the Introduction).

Partition(S, p)

Given a complete non-empty sequence S as well as an integer p that divides the
length n of S, construct the sequence whose terms are the sequences formed by
taking p terms of S at a time.
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Partition(S, P)

Given a complete non-empty sequence S as well as a complete sequence of positive
integers P , such that the sum of the entries of P equals the length of S, construct
the sequence whose terms are the sequences formed by taking P [i] terms of S, for
i = 1, . . . , #P .

Setseq(S)

SetToSequence(S)

Given a set S, construct a sequence whose terms are the elements of S taken in
some arbitrary order.

Seqset(S)

SequenceToSet(S)

Given a sequence S, create a set whose elements are the distinct terms of S.

Example H10E4

The following example illustrates several of the access, creation and modification operations on
sequences.
Given a rational number r, this function returns a sequence of different integers di such that
r =

∑
1/di [Bee93].

> egyptian := function(r)

> n := Numerator(r);

> d := Denominator(r);

> s := [d : i in [1..n]];

> t := { d};
> i := 2;

> while i le #s do

> c := s[i];

> if c in t then

> Remove(~s, i);

> s cat:= [c+1, c*(c+1)];

> else

> t join:= { c};
> i := i+1;

> end if;

> end while;

> return s;

> end function;

Note that the result may be rather larger than necessary:

> e := egyptian(11/13);

> // Check the result!

> &+[1/d : d in e];

11/13
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> #e;

2047

> #IntegerToString(Maximum(e));

1158

while instead of this sequence of 2047 integers, the biggest of the entries having 1158 decimal
digits, the following equation also holds:

1

3
+

1

4
+

1

6
+

1

12
+

1

78
=

11

13
.

10.4.4.1 Operations on Sequences of Booleans
The following operation work pointwise on sequences of booleans of equal length.

And(S, T)

And(∼S, T)

The sequence whose ith entry is the logical and of the ith entries of S and T . The
result is placed in S if it is given by reference (∼).

Or(S, T)

Or(∼S, T)

The sequence whose ith entry is the logical or of the ith entries of S and T . The
result is placed in S if it is given by reference.

Xor(S, T)

Xor(∼S, T)

The sequence whose ith entry is the logical xor of the ith entries of S and T . The
result is placed in S if it is given by reference.

Not(S)

Not(∼S)
The sequence whose ith entry is the logical not of the ith entry of S. The result is
placed in S if it is given by reference.
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10.5 Predicates on Sequences

Boolean valued operators and functions on enumerated sequences exist to test whether
entries are defined (see previous section), to test for membership and containment, and to
compare sequences with respect to an ordering on its entries. On formal sequences, only
element membership can be tested.

IsComplete(S)

Boolean valued function, returning true if and only if each of the terms S[i] for
1 ≤ i ≤ #S is defined, for an enumerated sequence S.

IsDefined(S, i)

Given an enumerated sequence S and an index i, this returns true if and only if S[i]
is defined. (Hence the result is false if i > #S, but an error results if i < 1.) Note
that the index i is allowed to be a multi-index; if i = [i1, . . . , ir] is a multi-index and
ij > #S[i1, . . . , ij−1] the function returns false, but if S is s levels deep and r > s
while ij ≤ #S[i1, . . . , ij−1] for 1 ≤ j ≤ s, then an error occurs.

IsEmpty(S)

Boolean valued function, returning true if and only if the enumerated sequence S
is empty.

IsNull(S)

Boolean valued function, returning true if and only if the enumerated sequence S
is empty and its universe is undefined, false otherwise.

10.5.1 Membership Testing
Here, S and T denote sequences. The element x is always assumed to be compatible with
S.

x in S

Returns true if the object x occurs as a term of the enumerated or formal sequence
S, false otherwise. If x is not in the universe of S, coercion is attempted. If that
fails, an error results.

x notin S

Returns true if the object x does not occur as a term of the enumerated or formal
sequence S, false otherwise. If x is not in the universe of S, coercion is attempted.
If that fails, an error results.
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IsSubsequence(S, T)

IsSubsequence(S, T: Kind := option)

Kind MonStgElt Default : “Consecutive”
Returns true if the enumerated sequence S appears as a subsequence of consecutive
elements of the enumerated sequence T , false otherwise.

By changing the default value "Consecutive" of the parameter Kind to
"Sequential" or to "Setwise", this returns true if and only if the elements of
S appear in order (but not necessarily consecutively) in T , or if and only if all ele-
ments of S appear as elements of T ; so in the latter case the test is merely whether
the set of elements of S is contained in the set of elements of T .

If the universes of S and T are not the same, coercion is attempted.

S eq T

Returns true if the enumerated sequences S and T are equal, false otherwise. If
the universes of S and T are not the same, coercion is attempted.

S ne T

Returns true if the enumerated sequences S and T are not equal, false otherwise.
If the universes of S and T are not the same, coercion is attempted.

10.5.2 Testing Order Relations
Here, S and T denote complete enumerated sequences with universe U and V respectively,
such that a common overstructure W for U and V can be found (as outlined in the
Introduction), and such that on W an ordering on the elements is defined allowing the
Magma operators eq (=), le (≤), lt (<), gt (>), and ge (≥) to be invoked on its
elements.

With these comparison operators the lexicographical ordering is used to order complete
enumerated sequences. Sequences S and T are equal (S eq T) if and only if they have the
same length and all terms are the same. A sequence S precedes T (S lt T) in the ordering
imposed by that of the terms if at the first index i where S and T differ then S[i] < T [i].
If the length of T exceeds that of S and S and T agree in all places where S until after
the length of S, then S lt T is true also. In all other cases where S 6= T one has S gt T.

S lt T

Returns true if the sequence S precedes the sequence T under the ordering induced
from S, false otherwise. Thus, true is returned if and only if either S[k] < T [k]
and S[i] = T [i] (for 1 ≤ i < k) for some k, or S[i] = T [i] for 1 ≤ i ≤ #S and
#S < #T .

S le T

Returns true if the sequence S either precedes the sequence T , under the ordering
induced from S, or is equal to T , false otherwise. Thus, true is returned if and
only if either S[k] < T [k] and S[i] = T [i] (for 1 ≤ i < k) for some k, or S[i] = T [i]
for 1 ≤ i ≤ #S and #S ≤ #T .
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S ge T

Returns true if the sequence S either comes after the sequence T , under the ordering
induced from S, or is equal to T , false otherwise. Thus, true is returned if and
only if either S[k] > T [k] and S[i] = T [i] (for 1 ≤ i < k) for some k, or S[i] = T [i]
for 1 ≤ i ≤ #T and #S ≥ #T .

S gt T

Returns true if the sequence S comes after the sequence T under the ordering
induced from S, false otherwise. Thus, true is returned if and only if either
S[k] > T [k] and S[i] = T [i] (for 1 ≤ i < k) for some k, or S[i] = T [i] for 1 ≤ i ≤ #T
and #S > #T .

10.6 Recursion, Reduction, and Iteration

10.6.1 Recursion

It is often very useful to be able to refer to a sequence currently under construction, for
example to define the sequence recursively. For this purpose the Self operator is available.

Self(n)

Self()

This operator enables the user to refer to an already defined previous entry s[n] of
the enumerated sequence s inside the sequence constructor, or the sequence s itself.

Example H10E5

The example below shows how the sequence of the first 100 Fibonacci numbers can be created
recursively, using Self. Next it is shown how to use reduction on these 100 integers.

> s := [ i gt 2 select Self(i-2)+Self(i-1) else 1 : i in [1..100] ];

> &+s;

927372692193078999175
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10.6.2 Reduction
Instead of using a loop to apply the same binary associative operator to all elements of a
complete enumerated sequence, it is possible to use the reduction operator &.

&◦ S

Given a complete enumerated sequence S = [a1, a2, . . . , an] of elements belonging
to an algebraic structure U , and an (associative) operator ◦ : U ×U → U , form the
element a1 ◦ a2 ◦ a3 ◦ . . . ◦ an.

Currently, the following operators may be used to reduce sequences: +, *, and,
or, join, meet, cat. An error will occur if the operator is not defined on U .

If S contains a single element a, then the value returned is a. If S is the null
sequence (empty and no universe specified), then reduction over S leads to an error;
if S is empty with universe U in which the operation is defined, then the result (or
error) depends on the operation and upon U . The following table defines the return
value:

empty null

&+ U ! 0 error

&∗ U ! 1 error

&and true true

&or false false

&join empty null

&meet error error

&cat empty null

10.7 Iteration

Enumerated sequences allow iteration over their elements. In particular, they can be used
as the range set in the sequence and set constructors, and as domains in for loops.

When multiple range sequences are used, it is important to know in which order the
range are iterated over; the rule is that the repeated iteration takes place as nested loops
where the first range forms the innermost loop, etc. See the examples below.

for x in S do statements; end for;

An enumerated sequence S may be the range for the for-statement. The iteration
only enumerates the defined terms of the sequence.

Example H10E6

The first example shows how repeated iteration inside a sequence constructor corresponds to
nesting of loops.

> [<number, letter> : number in [1..5], letter in ["a", "b", "c"]];
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[ <1, a>, <2, a>, <3, a>, <4, a>, <5, a>, <1, b>, <2, b>, <3, b>, <4, b>, <5,

b>, <1, c>, <2, c>, <3, c>, <4, c>, <5, c> ]

> r := [];

> for letter in ["a", "b", "c"] do

> for number in [1..5] do

> Append(~r, <number, letter>);

> end for;

> end for;

> r;

[ <1, a>, <2, a>, <3, a>, <4, a>, <5, a>, <1, b>, <2, b>, <3, b>, <4, b>, <5,

b>, <1, c>, <2, c>, <3, c>, <4, c>, <5, c> ]

This explains why the first construction below leads to an error, whereas the second leads to the
desired sequence.

> // The following produces an error:

> [ <x, y> : x in [0..5], y in [0..x] | x^2+y^2 lt 16 ];

^

User error: Identifier ’x’ has not been declared

> [ <x, y> : x in [0..y], y in [0..5] | x^2+y^2 lt 16 ];

[ <0, 0>, <0, 1>, <1, 1>, <0, 2>, <1, 2>, <2, 2>, <0, 3>, <1, 3>, <2, 3> ]

Note the following! In the last line below there are two different things with the name x. One is
the (inner) loop variable, the other just an identifier with value 1000 that is used in the bound for
the other (outer) loop variable y: the limited scope of the inner loop variable x makes it invisible
to y, whence the error in the first case.

> // The following produces an error:

> #[ <x, y> : x in [0..5], y in [0..x] | x^2+y^2 lt 100 ];

^

User error: Identifier ’x’ has not been declared

> x := 1000;

> #[ <x, y> : x in [0..5], y in [0..x] | x^2+y^2 lt 100 ];

59
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Chapter 11

TUPLES AND CARTESIAN PRODUCTS

11.1 Introduction

A cartesian product may be constructed from a finite number of factors, each of which
may be a set or algebraic structure. The term tuple will refer to an element of a cartesian
product.

Note that the rules for tuples are quite different to those for sequences. Sequences are
elements of a cartesian product of n copies of a fixed set (or algebraic structure) while tuples
are elements of cartesian products where the factors may be different sets (structures). The
semantics for tuples are quite different to those for sequences. In particular, the parent
cartesian product of a tuple is fixed once and for all. This is in contrast to a sequence, which
may grow and shrink during its life (thus implying a varying parent cartesian product).

11.2 Cartesian Product Constructor and Functions

The special constructor car< ... > is used for the creation of cartesian products of
structures.

car< R1, ..., Rk >

Given a list of sets or algebraic structures R1, . . . , Rk, construct the cartesian prod-
uct set R1 × · · · ×Rk.

CartesianProduct(R, S)

Given structures R and S, construct the cartesian product set R × S. This is the
same as calling the car constructor with the two arguments R and S.

CartesianProduct(L)

Given a sequence or tuple L of structures, construct the cartesian product of the
elements of L.

CartesianPower(R, k)

Given a structure R and an integer k, construct the cartesian power set Rk.

Flat(C)

Given a cartesian product C of structures which may themselves be cartesian prod-
ucts, return the cartesian product of the base structures, considered in depth-first
order (see Flat for the element version).
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NumberOfComponents(C)

Given a cartesian product C, return the number of components of C.

Component(C, i)

C[i]

The i-th component of C.

#C

Given a cartesian product C, return the cardinality of C.

Rep(C)

Given a cartesian product C, return a representative of C.

Random(C)

Given a cartesian product C, return a random element of C.

Example H11E1

We create the product of Q and Z.

> C := car< RationalField(), Integers() >;

> C;

Cartesian Product<Rational Field, Ring of Integers>

11.3 Creating and Modifying Tuples

elt< C | a1, a2, ..., ak >

C ! < a1, a2, ..., ak >

Given a cartesian product C = R 1 × · · · × Rk and a sequence of elements
a1, a2, . . . , ak, such that ai belongs to the set Ri (i = 1, . . . , k), create the tuple
T =< a1, a2, ..., ak > of C.

< a1, a2, ..., ak >

Given a cartesian product C = R1×· · ·×Rk and a list of elements a1, a2, . . . , ak, such
that ai belongs to the set Ri, (i = 1, . . . , k), create the tuple T =< a1, a2, ..., ak >
of C. Note that if C does not already exist, it will be created at the time this
expression is evaluated.

Append(T, x)

Return the tuple formed by adding the object x to the end of the tuple T . Note
that the result lies in a new cartesian product of course.
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Append(∼T, x)

(Procedure.) Destructively add the object x to the end of the tuple T . Note that
the new T lies in a new cartesian product of course.

Prune(T)

Return the tuple formed by removing the last term of the tuple T . The length of
T must be greater than 1. Note that the result lies in a new cartesian product of
course.

Prune(∼T)
(Procedure.) Destructively remove the last term of the tuple T . The length of T
must be greater than 1. Note that the new T lies in a new cartesian product of
course.

Flat(T)

Construct the flattened version of the tuple T. The flattening is done in the same
way as Flat, namely depth-first.

Example H11E2

We build a set of pairs consisting of primes and their reciprocals.

> C := car< Integers(), RationalField() >;

> C ! < 26/13, 13/26 >;

<2, 1/2>

> S := { C | <p, 1/p> : p in [1..25] | IsPrime(p) };
> S;

{ <5, 1/5>, <7, 1/7>, <2, 1/2>, <19, 1/19>, <17, 1/17>, <23, 1/23>, <11, 1/11>,

<13, 1/13>, <3, 1/3> }
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11.4 Tuple Access Functions

Parent(T)

The cartesian product to which the tuple T belongs.

#T

Number of components of the tuple T .

T[i]

Return the i-th component of tuple T . Note that this indexing can also be used on
the left hand side for modification of T .

Explode(T)

Given a tuple T of length n, this function returns the n entries of T (in order).

TupleToList(T)

Tuplist(T)

Given a tuple T return a list containing the entries of T .

Example H11E3

> f := < 11/2, 13/3, RootOfUnity(3, CyclotomicField(3)) >;

> f;

<11/2, 13/3, (zeta_3)>

> #f;

3

> Parent(f);

Cartesian Product<Rational Field, Rational Field, Cyclotomic field Q(zeta_3)>

> f[1]+f[2]+f[3];

(1/6) * (59 + 6*zeta_3)

> f[3] := 7;

> f;

<11/2, 13/3, 7>

11.5 Equality

T eq U

Return true if and only if the tuples T and U are equal.

T ne U

Return true if and only if the tuples T and U are distinct.
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11.6 Other operations

&*T

For a tuple T where each component lies in a structure that supports multiplication
and such there exists a common over structure, return the product of the entries.
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Chapter 12

LISTS

12.1 Introduction

A list in Magma is an ordered finite collection of objects. Unlike sequences, lists are
not required to consist of objects that have some common parent. Lists are not stored
compactly and the operations provided for them are not extensive. They are mainly
provided to enable the user to gather assorted objects temporarily together.

12.2 Construction of Lists

Lists can be constructed by expressions enclosed in special brackets [* and *].

[* *]

The empty list.

[* e1, e2, ..., en *]

Given a list of expressions e1, . . . , en, defining elements a1, a2, . . . , an, create the list
containing a1, a2, . . . , an.

12.3 Creation of New Lists

Here, S denotes the list [∗ s1, . . . , sn ∗], while T denotes the list [∗ t1, . . . , tm ∗].

S cat T

The list formed by concatenating the terms of the list S with the terms of the list
T , i.e. the list [∗ s1, . . . , sn, t1, . . . , tm ∗].

S cat:= T

(Procedure.) Destructively concatenate the terms of the list T to S; i.e. so S becomes
the list [∗ s1, . . . , sn, t1, . . . , tm ∗].

Append(S, x)

The list formed by adding the object x to the end of the list S, i.e. the list
[∗ s1, . . . sn, x ∗].

Append(∼S, x)

(Procedure.) Destructively add the object x to the end of the list S; i.e. so S
becomes the list [∗ s1, . . . sn, x ∗].
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Insert(∼S, i, x)

Insert(S, i, x)

Create the list formed by inserting the object x at position i in S and moving the
terms S[i], . . . , S[n] down one place, i.e., the list [∗ s1, . . . , si−1, x, si, . . . , sn ∗]. Note
that i must not be bigger than n + 1 where n is the length of S.

There are two versions of this: a procedure, where S is replaced by the new list,
and a function, which returns the new list. The procedural version takes a reference
∼ S to S as an argument.

Note that the procedural version is much more efficient since the list S will not
be copied.

Prune(S)

The list formed by removing the last term of the list S, i.e. the list [∗ s1, . . ., sn−1 ∗].
Prune(∼S)

(Procedure.) Destructively remove the last term of the list S; i.e. so S becomes the
list [∗ s1, . . ., sn−1 ∗].

SequenceToList(Q)

Seqlist(Q)

Given a sequence Q, construct a list whose terms are the elements of Q taken in the
same order.

TupleToList(T)

Tuplist(T)

Given a tuple T , construct a list whose terms are the elements of T taken in the
same order.

Reverse(L)

Given a list L return the same list, but in reverse order.

12.4 Access Functions

#S

The length of the list S.

IsEmpty(S)

Return whether S is empty (has zero length).

S[i]

Return the i-th term of the list S. If either i ≤ 0 or i > #S+1, then an error results.
Here i is allowed to be a multi-index (see Section 8.3.1 for the interpretation).
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S[I]

Return the sublist of S given by the indices in the sequence I. Each index in I must
be in the range [1..l], where l is the length of S.

IsDefined(L, i)

Checks whether the ith item in L is defined or not, that is it returns true if i is at
most the length of L and false otherwise.

12.5 Assignment Operator

S[i] := x

Redefine the i-th term of the list S to be x. If i ≤ 0, then an error results. If
i = #S + 1, then x is appended to S. Otherwise, if i > #S + 1, an error results.
Here i is allowed to be a multi-index.
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Chapter 13

ASSOCIATIVE ARRAYS

13.1 Introduction

An associative array in Magma is an array which may be indexed by arbitrary elements of
an index structure I. The indexing may thus be by objects which are not integers. These
objects are known as the keys. For each current key there is an associated value. The
values associated with the keys need not lie in a fixed universe but may be of any type.

13.2 Operations

AssociativeArray()

Create the null associative array with no index universe. The first assignment to
the array will determine its index universe.

AssociativeArray(I)

Create the empty associative array with index universe I.

A[x] := y

Set the value in A associated with index x to be y. If x is not coercible into the
current index universe I of A, then an attempt is first made to lift the index universe
of A to contain both I and x.

A[x]

Given an index x coercible into the index universe I of A, return the value associated
with x. If x is not in the keys of A, then an error is raised.

IsDefined(A, x)

Given an index x coercible into the index universe I of A, return whether x is
currently in the keys of A and if so, return also the value A[x].

Remove(∼ A, x)

(Procedure.) Destructively remove the value indexed by x from the array A. If x is
not present as an index, then nothing happens (i.e., an error is not raised).

Universe(A)

Given an associative array A, return the index universe I of A, in which the keys of
A currently lie.



230 SETS, SEQUENCES, AND MAPPINGS Part II

Keys(A)

Given an associative array A, return the current keys of A as a set. Warning: this
constructs a new copy of the set of keys, so should only be called when that is
needed. It is not meant to be used as a quick access function.

Example H13E1

This example shows simple use of associative arrays. First we create an array indexed by rationals.

> A := AssociativeArray();

> A[1/2] := 7;

> A[3/8] := "abc";

> A[3] := 3/8;

> A[1/2];

7

> IsDefined(A, 3);

true 3/8

> IsDefined(A, 4);

false

> IsDefined(A, 3/8);

true abc

> Keys(A);

{ 3/8, 1/2, 3 }

> for x in Keys(A) do x, A[x]; end for;

1/2 7

3/8 abc

3 3/8

> Remove(~A, 3/8);

> IsDefined(A, 3/8);

false

> Keys(A);

{ 1/2, 3 }

> Universe(A);

Rational Field

We repeat that an associative array can be indexed by elements of any structure. We now index
an array by elements of the symmetric group S3.

> G := Sym(3);

> A := AssociativeArray(G);

> v := 1; for x in G do A[x] := v; v +:= 1; end for;

> A;

Associative Array with index universe GrpPerm: G, Degree 3, Order 2 * 3

> Keys(A);

{

(1, 3, 2),

(2, 3),

(1, 3),

(1, 2, 3),
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(1, 2),

Id(G)

}

> A[G!(1,3,2)];

3
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Chapter 14

COPRODUCTS

14.1 Introduction

Coproducts can be useful in various situations, as they may contain objects of entirely
different types. Although the coproduct structure will serve as a single parent for such
diverse objects, the proper parents of the elements are recorded internally and restored
whenever the element is retrieved from the coproduct.

14.2 Creation Functions

There are two versions of the coproduct constructor. Ordinarily, coproducts will be con-
structed from a list of structures. These structures are called the constituents of the
coproduct. A single sequence argument is allowed as well to be able to create coproducts
of parameterized families of structures conveniently.

14.2.1 Creation of Coproducts

cop< S1, S2, ..., Sk >

cop< [ S1, S2, ..., Sk ] >

Given a list or a sequence of two or more structures S1, S2, . . ., Sk, this function
creates and returns their coproduct C as well as a sequence of maps [m1, m2, . . .,
mk] that provide the injections mi : Si → C.

14.2.2 Creation of Coproduct Elements
Coproduct elements are usually created by the injections returned as the second return
value from the cop<> constructor. The bang (!) operator may also be used but only if the
type of the relevant constituent is unique for the particular coproduct.

m(e)

Given a coproduct injection map m and an element of one of the constituents of the
coproduct C, create the coproduct element version of e.

C ! e

Given a coproduct C and an element e of one of the constituents of C such that
the type of that constituent is unique within that coproduct, create the coproduct
element version of e.
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14.3 Accessing Functions

Injections(C)

Given a coproduct C, return the sequence of injection maps returned as the second
argument from the cop<> constructor.

#C

Given a coproduct C, return the length (number of constituents) of C.

Constituent(C, i)

Given a coproduct C and an integer i between 1 and the length of C, return the
i-th constituent of C.

Index(x)

Given an element x from a coproduct C, return the constituent number of C to
which x belongs.

14.4 Retrieve
The function described here restores an element of a coproduct to its original state.

Retrieve(x)

Given an element x of some coproduct C, return the element as an element of the
structure that formed its parent before it was mapped into C.

Example H14E1

We illustrate basic uses of the coproduct constructors and functions.

> C := cop<IntegerRing(), Strings()>;

> x := C ! 5;

> y := C ! "abc";

> x;

5

> y;

abc

> Parent(x);

Coproduct<Integer Ring, String structure>

> x eq 5;

true

> x eq y;

false

> Retrieve(x);

5

> Parent(Retrieve(x));

Integer Ring



Ch. 14 COPRODUCTS 237

14.5 Flattening
The function described here enables the ‘concatenation’ of coproducts into a single one.

Flat(C)

Given a coproduct C of structures which may themselves be coproducts, return the
coproduct of the base structures, considered in depth-first order.

14.6 Universal Map

UniversalMap(C, S, [ n1, ..., nm ])

Given maps n1, . . ., nm from structures S1, . . ., Sm that compose the coproduct C,
to some structure S, this function returns the universal map C → S.
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Chapter 15

RECORDS

15.1 Introduction
In a record several objects can be collected. The objects in a record are stored in record
fields, and are accessed by using fieldnames. Records are like tuples (and unlike sets or
sequences) in that the objects need not all be of the same kind. Though records and
tuples are somewhat similar, there are several differences too. The components of tuples
are indexed by integers, and every component must be defined. The fields of records are
indexed by fieldnames, and it is possible for some (or all) of the fields of a record not to
be assigned; in fact, a field of a record may be assigned or deleted at any time. A record
must be constructed according to a pre-defined record format, whereas a tuple may be
constructed without first giving the Cartesian product that is its parent, since Magma
can deduce the parent from the tuple.

In the definition of a record format, each field is given a fieldname. If the field is also
given a parent magma or a category, then in any record created according to this format,
that field must conform to this requirement. However, if the field is not given a parent
magma or category, there is no restriction on the kinds of values stored in that field;
different records in the format may contain disparate values in that field. By contrast,
every component of a Cartesian product is a magma, and the components of all tuples in
this product must be elements of the corresponding magma.

Because of the flexibility of records, with respect to whether a field is assigned and what
kind of value is stored in it, Boolean operators are not available for comparing records.

15.2 The Record Format Constructor
The special constructor recformat< ... > is used for the creation of record formats. A
record format must be created before records in that format are created.

recformat< L >

Construct the record format corresponding to the non-empty fieldname list L. Each
term of L must be one of the following:
(a)fieldname in which case there is no restriction on values that may be stored in

this field of records having this format;
(b)fieldname:expression where the expression evaluates to a magma which will be

the parent of values stored in this field of records having this format; or
(c) fieldname:expression where the expression evaluates to a category which will

be the category of values stored in this field of records having this format;

where fieldname consists of characters that would form a valid identifier name. Note
that it is not a string.
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Example H15E1

We create a record format with these fields: n, an integer; misc, which has no restrictions; and
seq, a sequence (with any universe possible).

> RF := recformat< n : Integers(), misc, seq : SeqEnum >;

> RF;

recformat<n: IntegerRing(), misc, seq: SeqEnum>

> Names(RF);

[ n, misc, seq ]

15.3 Creating a Record

Before a record is created, its record format must be defined. A record may be created by
assigning as few or as many of the record fields as desired.

rec< F | L >

Given a record format F , construct the record format corresponding to the field
assignment list L. Each term of L must be of the form fieldname : = expression
where fieldname is in F and the value of the expression conforms (directly or by
coercion) to any restriction on it. The list L may be empty, and there is no fixed
order for the fieldnames.

Example H15E2

We build some records having the record format RF.

> RF := recformat< n : Integers(), misc, seq : SeqEnum >;

> r := rec< RF | >;

> r;

rec<RF | >

> s := rec< RF | misc := "adsifaj", n := 42, seq := [ GF(13) | 4, 8, 1 ]>;

> s;

rec<RF | n := 42, misc := adsifaj, seq := [ 4, 8, 1 ]>

> t := rec< RF | seq := [ 4.7, 1.9 ], n := 51/3 >;

> t;

rec<RF | n := 17, seq := [ 4.7, 1.9 ]>

> u := rec< RF | misc := RModule(PolynomialRing(Integers(7)), 4) >;

> u;

rec<RF | misc := RModule of dimension 4 with base ring Univariate Polynomial

Algebra over Integers(7)>
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15.4 Access and Modification Functions

Fields of records may be inspected, assigned and deleted at any time.

Format(r)

The format of record r.

Names(F)

The fieldnames of the record format F returned as a sequence of strings.

Names(r)

The fieldnames of record r returned as a sequence of strings.

r‘fieldname

Return the field of record r with this fieldname. The format of r must include this
fieldname, and the field must be assigned in r.

r‘fieldname:= expression;

Reassign the given field of r to be the value of the expression. The format of r
must include this fieldname, and the expression’s value must satisfy (directly or by
coercion) any restriction on the field.

delete r‘fieldname

(Statement.) Delete the current value of the given field of record r.

assigned r‘fieldname

Returns true if and only if the given field of record r currently contains a value.

r‘‘s

Given an expression s that evaluates to a string, return the field of record r with the
fieldname corresponding to this string. The format of r must include this fieldname,
and the field must be assigned in r.

This syntax may be used anywhere that r‘fieldname may be used, including in
left hand side assignment, assigned and delete.
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Example H15E3

> RF := recformat< n : Integers(), misc, seq : SeqEnum >;

> r := rec< RF | >;

> s := rec< RF | misc := "adsifaj", n := 42, seq := [ GF(13) | 4, 8, 1 ]>;

> t := rec< RF | seq := [ 4.7, 1.9 ], n := 51/3 >;

> u := rec< RF | misc := RModule(PolynomialRing(Integers(7)), 4) >;

> V4 := u‘misc;

> assigned r‘seq;

false

> r‘seq := Append(t‘seq, t‘n); assigned r‘seq;

true

> r;

rec<RF | seq := [ 4.7, 1.9, 17 ]>

> // The following produces an error:

> t‘‘(s‘misc);

>> t‘‘(s‘misc);

^

Runtime error in ‘: Field ’adsifaj’ does not exist in this record

> delete u‘‘("m" cat "isc"); u;

rec<RF | >
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Chapter 16

MAPPINGS

16.1 Introduction
Mappings play a fundamental role in algebra and, indeed, throughout mathematics. Re-
flecting this importance, mappings are one of the fundamental datatypes in our language.
The most general way to define a mapping f : A → B in a programming language is
to write a function which, given any element of A, will return its image under f in B.
While this approach to the definition of mappings is completely general, it is desirable to
have mappings as an independent datatype. It is then possible to provide a very compact
notation for specifying important classes of mappings such as homomorphisms. Further, a
range of operations peculiar to the mapping type can be provided.

Mappings are created either through use of mapping constructors as described in this
Chapter, or through use of certain standard functions that return mappings as either
primary or secondary values.

All mappings are objects in the Magma category Map.

16.1.1 The Map Constructors
There are three main mapping constructors: the general map constructor map< >, the ho-
momorphism constructor hom< >, and the partial map constructor pmap< >. The general
form of all constructors is the same: inside the angle brackets there are two components
separated by a pipe |. To the left the user specifies a domain A and a codomain B, sepa-
rated by ->; to the right of the pipe the user specifies how images are obtained for elements
of the domain. The latter can be done in one of several ways: one specifies either the graph
of the map, or a rule describing how images are to be formed, or for homomorphisms, one
specifies generator images. We will describe each in the next subsections. The result is
something like map< A -> B | expression>.

The domain and codomain of the map can be arbitrary magmas. When a full map
(as opposed to a partial map) is constructed by use of a graph, the domain is necessarily
finite.

The main difference between maps and partial maps is that a partial map need not be
defined for every element of the domain. The main difference between these two types of
map and homomorphisms is that the latter are supposed to provide structure-preserving
maps between algebraic structures. On the one hand this makes it possible to allow the
specification of images for homomorphisms in a different fashion: homomorphism can be
given via images for generators of the domain. On the other hand homomorphisms are
restricted to cases where domain and (image in the) codomain have a similar structure.
The generator image form only makes sense for domains that are finitely presented. Ho-
momorphisms are described in more detail below.
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16.1.2 The Graph of a Map
Let A and B be structures. A subgraph of the cartesian product C = A×B is a subset G
of C such that each element of A appears at most once among the first components of the
pairs < a, b > of G. A subgraph having the additional property that every element of A
appears as the first component of some pair < a, b > of G is called a graph of A×B.

A mapping between A and B can be identified with a graph G of A×B, a partial map
can be identified with a subgraph. We now describe how a graph may be represented in
the context of the map constructor. An element of the graph of A×B can be given either
as a tuple <a, b>, or as an arrow pair a -> b. The specification of a (sub)graph in a map
constructor should then consist of either a (comma separated) list, a sequence, or a set of
such tuples or arrow pairs (a mixture is permitted).

16.1.3 Rules for Maps
The specification of a rule in the map constructor involves a free variable and an expression,
usually involving the free variable, separated by :->, for example x :-> 3*x - 1. The
scope of the free variable is restricted to the map constructor (so the use of x does not
interfere with values of x outside the constructor). A general expression is allowed in the
rule, which may involve intrinsic or user functions, and even in-line definitions of such
functions.

16.1.4 Homomorphisms
Probably the most useful form of the map-constructor is the version for homomorphisms.
Most interesting mappings in algebra are homomorphisms, and if an algebraic structure
A belongs to a family of algebraic structures which form a variety we have the fundamen-
tal result that a homomorphism is uniquely determined by the images of any generating
set. This provides us with a particularly compact way of defining and representing homo-
morphisms. While the syntax of the homomorphism constructor is similar to that of the
general mapping constructor, the semantics are sometimes different.

The kind of homomorphism built by the hom-constructor is determined entirely by the
domain: thus, a group homomorphism results from applying hom to a domain A that is
one of the types of group in Magma, a ring homomorphism results when A is a ring, etc.
As a consequence, the requirements on the specification of homomorphisms are dependent
on the category to which A belongs. Often, the codomain of a homomorphism is required
to belong to the same variety. But even within a category the specification may depend
on the type of structure; for details we refer the reader to the specific chapters.

A homomorphism can be specified using either a rule map or by generator images. In
the latter case the processor will seek to express an element as a word in the generators of
A when asked to compute its image. Thus A needs to be finitely presented.

16.1.5 Checking of Maps
It should be pointed out that checking the ‘correctness’ of mappings can be done to a
limited extent only. If the mapping is given by means of a graph, Magma will check
that no multiple images are specified, and that an image is given for every element of the
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domain (unless a partial map is defined). If a rule is given, it cannot be checked that it is
defined on all of the domain. Also, it is in general the responsibility of the user to ensure
that the images provided for a hom constructor do indeed define a homomorphism.

16.2 Creation Functions

In this section we describe the creation of maps, partial maps, and homomorphisms via the
various forms of the constructors, as well as maps that define coercions between algebraic
structures.

16.2.1 Creation of Maps
Maps between structures A and B may be specified either by providing the full graph (as
defined in the previous section) or by supplying an expression rule for finding images.

map< A -> B | G >

Given a finite structure A, a structure B and a graph G of A × B, construct the
mapping f : A → B, as defined by G. The graph G may be given by either a set,
sequence, or list of tuples or arrow-pairs as described in the Introduction to this
Chapter. Note that G must be a full graph, i.e., every element of A must occur
exactly once as a first component.

map< A -> B | x :-> e(x) >

Given a set or structure A, a set or structure B, a variable x and an expression e(x),
usually involving x, construct the mapping f : A → B, as defined by e(x). It is the
user’s responsibility to ensure that a value is defined for every x ∈ A. The scope of
the variable x is restricted to the map-constructor.

map< A -> B | x :-> e(x), y :-> i(y) >

Given a set or structure A, a set or structure B, a variable x, an expression e(x),
usually involving x, a variable y, and an expression i(y), usually involving y, con-
struct the mapping f : A → B, as defined by x 7→ e(x), with corresponding inverse
f−1 : B → A, as defined by y 7→ i(y). It is the user’s responsibility to ensure that
a value e(x) is defined for every x ∈ A, a value i(y) is defined for every y ∈ B, and
that i(y) is the true inverse of e(x). The scope of the variables x and y is restricted
to the map-constructor.
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16.2.2 Creation of Partial Maps
Partial mappings are quite different to both general mappings and homomorphisms, in
that images need not be defined for every element of the domain.

pmap< A -> B | G >

Given a finite structure A of cardinality n, a structure B and a subgraph G of A×B,
construct the partial map f : A → B, as defined by G. The subgraph G may be
given by either a set, sequence, or list of tuples or arrow-pairs as described in the
Introduction to this Chapter.

pmap< A -> B | x :-> e(x) >

Given a set A, a set B, a variable x and an expression e(x), construct the partial map
f : A → B, as defined by e(x). This form of the map constructor is a special case of
the previous one whereby the image of x can be defined using a single expression.
Again the scope of x is restricted to the map-constructor.

pmap< A -> B | x :-> e(x), y :-> i(y) >

This constructor is the same as the map constructor above which allows the inverse
map i(y) to be specified, except that the result is marked to be a partial map.

16.2.3 Creation of Homomorphisms
The principal construction for homomorphisms consists of the generator image form, where
the images of the generators of the domain are listed. Note that the kind of homomorphism
and the kind and number of generators for which images are expected, depend entirely on
the type of the domain. Moreover, some features of the created homomorphism, e.g.
whether checking of the homomorphism is done during creation or whether computing
preimages is possible, depend on the types of the domain and the codomain. We refer to
the appropriate handbook chapters for further information.

hom< A -> B | G >

Given a finitely generated algebraic structure A and a structure B, as well as a
graph G of A × B, construct the homomorphism f : A → B defined by extending
the map of the generators of A to all of A. The graph G may be given by either
a set, sequence, or list of tuples or arrow-pairs as described in the Introduction to
this Chapter.

The detailed requirements on the specification are module-dependent, and can
be found in the chapter describing the domain A.

hom< A -> B | y1, ..., yn >

hom< A -> B | x1 -> y1, ..., xn -> yn >

This is a module-dependent constructor for homomorphisms between structures A
and B; see the chapter describing the functions for A. In general after the bar the
images for all generators of the structure A must be specified.
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hom< A -> B | x :-> e(x) >

Given a structure A, a structure B, a variable x and an expression e(x), construct
the homomorphism f : A → B, as defined by e(x). This form of the map constructor
is a special case of the previous one whereby the image of x can be defined using a
single expression. Again the scope of x is restricted to the map-constructor.

hom< A -> B | x :-> e(x), y :-> i(y) >

This constructor is the same as the map constructor above which allows the inverse
map i(y) to be specified, except that the result is marked to be a homomorphism.

16.2.4 Coercion Maps
Magma has a sophisticated machinery for coercion of elements into structures other than
the parent. Non-automatic coercion is usually performed via the ! operator. To obtain
the coercion map corresponding to ! in a particular instance the Coercion function can
be used.

Coercion(D, C)

Bang(D, C)

Given structures D and C such that elements from D can be coerced into C, return
the map m that performs this coercion. Thus the domain of m will be D and the
codomain will be C.

16.3 Operations on Mappings

16.3.1 Composition
Although compatible maps can be composed by repeated application, say g(f(x)), it is
also possible to create a composite map.

f * g

Given a mapping f : A → B, and a mapping g : B → C, construct the composition
h of the mappings f and g as the mapping h = g ◦ f : A → C.

Components(f)

Returns the maps which were composed to form f .
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16.3.2 (Co)Domain and (Co)Kernel

The domain and codomain of any map can simply be accessed. Only for some intrinsic
maps and for maps with certain domains and codomains, also the formation of image,
kernel and cokernel is available.

Domain(f)

The domain of the mapping f .

Codomain(f)

The codomain of the mapping f .

Image(f)

Given a mapping f with domain A and codomain B, return the image of A in B
as a substructure of B. This function is currently supported only for some intrinsic
maps and for maps with certain domains and codomains.

Kernel(f)

Given the homomorphism f with domain A and codomain B, return the kernel of f
as a substructure of A. This function is currently supported only for some intrinsic
maps and for maps with certain domains and codomains.

16.3.3 Inverse

Inverse(m)

The inverse map of the map m.

16.3.4 Function

For a map given by a rule, it is possible to get access to the rule as a user defined function.

Function(f)

The function underlying the mapping f . Only available if f has been defined by
the user by means of a rule map (i. e., an expression for the image under f of an
arbitrary element of the domain).
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16.4 Images and Preimages
The standard mathematical notation is used to denote the calculation of a map image.
Some mappings defined by certain system intrinsics and constructors permit the taking of
preimages. However, preimages are not available for any mapping defined by means of the
mapping constructor.

a @ f

f(a)

Given a mapping f with domain A and codomain B, and an element a belonging
to A, return the image of a under f as an element of B.

S @ f

f(S)

Given a mapping f with domain A and codomain B, and a finite enumerated set,
indexed set, or sequence S of elements belonging to A, return the image of S under
f as an enumerated set, indexed set, or sequence of elements of B.

C @ f

f(C)

Given a homomorphism f with domain A and codomain B, and a substructure C
of A, return the image of C under f as a substructure of B.

y @@ f

Given a mapping f with domain A and codomain B, where f supports preimages,
and an element y belonging to B, return the preimage of y under f as an element
of A.

If the mapping f is a homomorphism, then a single element is returned as the
preimage of y. In order to obtain the full preimage of y, it is necessary to form the
coset K ∗ y@@f , where K is the kernel of f .

R @@ f

Given a mapping f with domain A and codomain B, where f supports preimages,
and a finite enumerated set, indexed set, or sequence of elements R belonging to B,
return the preimage of R under f as an enumerated set, indexed set, or sequence of
elements of A.

D @@ f

Given a mapping f with domain A and codomain B, where f supports preimages
and the kernel of f is known or can be computed, and a substructure D of B, return
the preimage of D under f as a substructure of A.

HasPreimage(x, f)

Return whether the preimage of x under f can be taken and the preimage as a
second argument if it can.
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16.5 Parents of Maps
Parents of maps are structures knowing a domain and a codomain. They are often used in
automorphism group calculations where a map is returned from an automorphism group
into the set of all automorphisms of some structure. Parents of maps all inherit from the
type PowMap. The type PowMapAut which inherits from PowMap is type which the parents
of automorphisms inherit from.

There is also a power structure of maps (of type PowStr, similar to that of other
structures) which is used as a common overstructure of the different parents.

Parent(m)

The parent of m.

Domain(P)

Codomain(P)

The domain and codomain of the maps for which P is the parent.

Maps(D, C)

Iso(D, C)

The parent of maps (or isomorphisms) from D to C. Iso will only return a different
structure to Maps if it has been specifically implemented for such maps.

Aut(S)

The parent of automorphisms of S.
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8-3009, 3010, 8-3044, 8-3082, 8-3115,
9-3310, 9-3406, 9-3429, 9-3492,
9-3504, 9-3507, 9-3648, 9-3661,
9-3681, 3682, 9-3692, 9-3707, 9-3745,
10-3967, 10-4141, 10-4158, 4159,
10-4204, 11-4344, 4345, 11-4372,
11-4397, 11-4437, 11-4487, 11-4501,
11-4543, 11-4591, 12-4718, 4719,
12-4795, 12-4816, 4817, 12-4819, 4820,
12-4824, 4825, 12-4852, 4853, 12-4860,
12-4879, 4880, 12-4934, 4935, 12-5008,
5009, 13-5084, 13-5202, 13-5216,
13-5263

!!, 3-933, 3-1142, 3-1218, 5-1536,
11-4444

∼, 12-4858
( , ), 2-590, 4-1404, 5-1466, 5-1537,

5-1652, 5-1871, 6-2085, 6-2352,
6-2370, 7-2447, 13-5086, 13-5203,
13-5217

( , , ), 5-1466, 5-1537, 5-1652, 5-1810,
5-2004, 6-2085, 6-2254, 6-2352,
6-2370

(,), 8-3118
( ), 1-235, 1-253, 2-604, 4-1416,

6-2088, 6-2101, 6-2174, 6-2333,
7-2766, 9-3316, 10-3958

*, 1-66, 1-251, 2-269, 2-273, 2-287,
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3-941, 3-952, 3-956, 3-976, 3-992,
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7-2488, 7-2519, 7-2551, 7-2556,
7-2571, 7-2576, 7-2588, 7-2632,
7-2651, 7-2693, 7-2765, 8-2983,
8-3014, 8-3034, 8-3045, 8-3068,
8-3082, 8-3117, 8-3127, 8-3149,
9-3226, 9-3280, 9-3290, 9-3311,
9-3316, 9-3322, 9-3413, 9-3433,
9-3504, 9-3536, 9-3584, 9-3682,
9-3699, 9-3705, 9-3711, 9-3871,
9-3889, 10-3970, 10-4113, 10-4147,
10-4162, 10-4205, 10-4259, 11-4344,
11-4347, 4348, 11-4372, 11-4375,
11-4402, 11-4487, 11-4507, 11-4570,
11-4592, 11-4619, 12-4700, 12-4782,
4783, 12-4796, 12-4817, 12-4820,
12-4835, 12-4857, 13-5085, 13-5203,
13-5216, 13-5265

*:=, 1-66, 2-270, 2-287, 2-337, 2-357,
2-377, 2-397, 2-417, 2-449, 2-481,
3-654, 3-1047, 4-1230, 4-1317,
5-1810, 6-2253, 6-2312, 7-2473,
8-3149, 10-3970, 10-4162, 12-4857

+, 2-269, 2-273, 2-287, 2-311, 2-314,
2-337, 2-339, 2-357, 2-377, 2-397,
2-417, 2-434, 2-449, 2-481, 2-539,
2-572, 2-589, 2-601, 3-653, 3-664,
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3-942, 3-952, 3-956, 3-976, 3-1047,
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8-2889, 8-2983, 8-3034, 8-3045,
8-3068, 8-3082, 8-3148, 3149, 9-3226,
9-3280, 9-3290, 9-3311, 9-3322,
9-3413, 9-3433, 9-3504, 9-3584,
9-3699, 9-3705, 9-3711, 9-3889,
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12-4795, 4796, 12-4857, 12-4940–4942,
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AbelianLieAlgebra, 8-2980
AbelianNormalQuotient, 5-1599
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AbsoluteCartanMatrix, 7-2754
AbsoluteCharacteristicPolynomial, 3-798,

3-910
AbsoluteDegree, 2-356, 3-788, 3-893,

3-1018, 3-1102, 4-1275
AbsoluteDiscriminant, 2-356, 3-788,

3-894, 3-1018, 3-1103
AbsoluteField, 3-783, 3-885
AbsoluteFunctionField, 3-1098
AbsoluteGaloisGroup, 3-1022
AbsoluteInertiaDegree, 4-1274
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AbsoluteInvariants, 10-4135
AbsoluteLogarithmicHeight, 3-796, 3-908
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AbsolutePrecision, 4-1288, 4-1329, 4-1344
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AbsoluteRank, 8-2867
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12-4985
ActionMatrix, 7-2616, 7-2717
AdamsOperator, 8-3155
AddAttribute, 1-52
AddColumn, 2-535, 2-568, 7-2527
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AffineSpace, 9-3485, 3486, 9-3647
AffineSpecialLinearGroup, 5-1623, 5-1883
AFRNumber, 9-3847
AGammaL, 5-1623
AGCode, 13-5148
AGDecode, 13-5151
AGDualCode, 13-5148
Agemo, 5-1835, 6-2067
AGL, 5-1622, 5-1883
AGM, 2-509
AHom, 7-2590, 7-2711
AInfinityRecord, 7-2614
aInvariants, 10-3950, 10-4113
Alarm, 1-90
AlgComb, 4-1384
Algebra, 2-355, 3-786, 3-891, 4-1444,

7-2422, 7-2433, 2434, 7-2444, 2445,
7-2454, 7-2461, 7-2488, 7-2552,
7-2585, 7-2642, 7-2717, 8-2981,
8-3043, 9-3375

AlgebraGenerators, 7-2539



INDEX OF INTRINSICS v

AlgebraicClosure, 3-1038
AlgebraicGenerators, 8-3111
AlgebraicGeometricCode, 13-5148
AlgebraicGeometricDualCode, 13-5148
AlgebraicPowerSeries, 4-1379
AlgebraicToAnalytic, 3-1211
AlgebraMap, 9-3540
AlgebraOverCenter, 7-2445
AlgebraStructure, 7-2539
AlgorithmicFunctionField, 9-3697
AllCliques, 12-4970, 4971
AllCompactChainMaps, 7-2609
AllCones, 9-3872
AllDefiningPolynomials, 9-3540
Alldeg, 12-4953, 12-4955, 12-5031,

12-5033
AllExtensions, 4-1310
AllFaces, 4-1240
AllHomomorphisms, 6-2070
AllInformationSets, 13-5082
AllInverseDefiningPolynomials, 9-3540
AllIrreduciblePolynomials, 2-382
AllLinearRelations, 2-491
AllNilpotentLieAlgebras, 8-3050
AllPairsShortestPaths, 12-5044
AllParallelClasses, 12-4894
AllParallelisms, 12-4894
AllPartitions, 5-1578
AllPassants, 12-4735
AllRays, 9-3874
AllResolutions, 12-4893
AllRoots, 2-381
AllSecants, 12-4735
AllSlopes, 4-1243
AllSolvableLieAlgebras, 8-3050
AllSqrts, 2-338
AllSquareRoots, 2-338
AllTangents, 12-4735, 12-4737
AllVertices, 4-1240
AlmostSimpleGroupDatabase, 5-1959
Alphabet, 13-5080, 13-5175, 13-5213
AlphaBetaData, 10-4228
Alt, 5-1475, 5-1532, 6-2096
AlternantCode, 13-5110
AlternatingCharacter, 7-2784
AlternatingCharacterTable, 7-2784
AlternatingCharacterValue, 7-2784
AlternatingDominant, 8-3160, 3161
AlternatingElementToWord (G, g), 5-1613,

5-1894
AlternatingGroup, 5-1475, 5-1532, 6-2096
AlternatingPower, 8-3155
AlternatingSquarePreimage (G, g), 5-1909
AlternatingSum, 2-511
AlternatingWeylSum, 8-3162
Ambient, 9-3309, 9-3500, 9-3574, 9-3874,

12-4793
AmbientMatrix, 9-3316

AmbientModule, 11-4489
AmbientSpace, 3-657, 9-3500, 9-3574,

9-3653, 11-4405, 13-5080, 13-5175,
13-5214

AmbientVariety, 11-4631
AmbiguousForms, 3-759
AModule, 7-2584, 7-2608
AnalyticDrinfeldModule, 3-1207
AnalyticHomomorphisms, 10-4212
AnalyticInformation, 10-4094
AnalyticJacobian, 10-4208
AnalyticModule, 3-1210
AnalyticRank, 10-4052, 10-4076, 10-4094
And, 1-207
and, 1-11
Angle, 11-4349, 11-4374
AnisotropicSubdatum, 8-2867
Annihilator, 7-2577, 9-3324
AntiAutomorphismTau, 8-3088
Antipode, 8-3087
AntisymmetricForms, 3-730, 5-1781
AntisymmetricMatrix, 2-526, 527
ApparentCodimension, 9-3835, 9-3844
ApparentEquationDegrees, 9-3835, 9-3844
ApparentSyzygyDegrees, 9-3835, 9-3844
Append, 1-200, 1-216, 217, 1-223
Apply, 9-3437
ApplyContravariant, 9-3821
ApplyTransformation, 10-4113
ApproximateByTorsionGroup, 11-4625
ApproximateByTorsionPoint, 11-4624
ApproximateOrder, 11-4620
ApproximateStabiliser, 5-1683
AQInvariants, 5-1831, 6-2125, 2126, 6-2280
Arccos, 2-495, 4-1336
Arccosec, 2-496
Arccot, 2-496
Arcsec, 2-496
Arcsin, 2-495, 4-1336
Arctan, 2-496, 4-1336
Arctan2, 2-496
AreCohomologous, 5-2033
AreIdentical, 6-2316
AreInvolutionsConjugate, 5-1713
AreLinearlyEquivalent, 9-3893
AreProportional, 12-4796
ArfInvariant, 2-623
Arg, 2-482
Argcosech, 2-498
Argcosh, 2-498, 4-1337
Argcoth, 2-499
Argsech, 2-498
Argsinh, 2-498, 4-1336
Argtanh, 2-498, 4-1337
Argument, 2-482, 11-4373
ArithmeticGenus, 9-3516, 9-3671, 9-3764
ArithmeticGenusOfDesingularization, 9-3791
ArithmeticGeometricMean, 2-509
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ArithmeticTriangleGroup, 11-4380
ArithmeticVolume, 11-4368, 11-4374
Arrows, 9-3755
ArtinMap, 3-1020
ArtinRepresentation, 3-1221, 10-4231
ArtinRepresentations, 3-1217
ArtinSchreierExtension, 3-1183
ArtinSchreierImage, 3-1200
ArtinSchreierMap, 3-1200
ArtinTateFormula, 10-4284
AsExtensionOf, 3-871, 3-1095
ASigmaL, 5-1623
ASL, 5-1623, 5-1883
AssertAttribute, 2-305, 2-369, 4-1325,

5-1545, 5-1618, 5-1667, 5-1703,
5-1705, 5-2006, 7-2771

AssertEmbedding, 11-4548
AssignCapacities, 12-5012, 5013
AssignCapacity, 12-5012
assigned, 1-6, 1-52, 1-243
AssignEdgeLabels, 12-5013
AssignLabel, 12-5011, 5012
AssignLabels, 12-5011, 5012
AssignLDPCMatrix, 13-5158
AssignNamePrefix, 3-1038
AssignNames, 1-9, 2-342, 2-369, 2-413,

2-446, 2-476, 3-782, 3-837, 3-884,
3-1060, 3-1089, 3-1154, 3-1160,
4-1278, 4-1314, 4-1326, 4-1342,
4-1350, 4-1368, 7-2470, 7-2623,
8-3043, 8-3081, 9-3405, 9-3428,
9-3486, 9-3498, 9-3503, 9-3885

AssignVertexLabels, 12-5011
AssignWeight, 12-5012
AssignWeights, 12-5012, 5013
AssociatedEllipticCurve, 10-4022, 10-4028
AssociatedGradedAlgebra, 7-2579
AssociatedHyperellipticCurve, 10-4028
AssociatedNewSpace, 11-4446
AssociatedPrimitiveCharacter, 2-344, 3-812
AssociatedPrimitiveGrossencharacter, 3-821
AssociativeAlgebra, 7-2422, 7-2443, 2444
AssociativeArray, 1-229
AteqPairing, 10-3992
AteTPairing, 10-3992
AtkinLehner, 11-4454
AtkinLehnerInvolution, 11-4301, 11-4318
AtkinLehnerOperator, 11-4409, 11-4494,

11-4509, 11-4637, 4638, 11-4660
AtkinModularPolynomial, 11-4295
ATLASGroup, 5-1986
ATLASGroupNames, 5-1986
Attach, 1-47
AttachSpec, 1-49
Augmentation, 7-2556
AugmentationIdeal, 7-2553
AugmentationMap, 7-2552
AugmentCode, 13-5114, 13-5229

Aut, 1-254, 9-3555, 10-4146, 12-4900,
13-5140

AutoCorrelation, 13-5278
AutomaticGroup, 6-2360, 2361
Automorphism, 8-3127, 9-3549, 9-3552,

9-3555, 9-3676, 10-3931, 3932,
10-3961

AutomorphismGroup, 2-355, 2-375, 2-401,
3-719, 3-721, 3-727, 3-803, 3-964,
965, 3-1020, 3-1112, 3-1115, 1116,
4-1304, 4-1370, 5-1604, 5-1696,
5-1838, 5-1843, 5-1996, 5-1998,
6-2072, 7-2582, 7-2714, 8-3127,
9-3555, 9-3680, 10-3967, 10-4149,
12-4739, 12-4764, 12-4787, 12-4898,
12-4904, 12-4976, 13-5139, 13-5231,
13-5260

AutomorphismGroupMatchingIdempotents,
7-2581

AutomorphismGroupOverCyclotomicExtension,
11-4319

AutomorphismGroupOverExtension, 11-4319
AutomorphismGroupOverQ, 11-4318
AutomorphismGroupSolubleGroup, 5-1841
AutomorphismGroupStabilizer, 12-4899,

13-5140
AutomorphismOmega, 8-3088
Automorphisms, 3-964, 3-1112, 3-1115,

4-1304, 9-3681, 10-3967
AutomorphismSubgroup, 12-4899, 13-5139
AutomorphismTalpha, 8-3088
AutomorphousClasses, 3-703
AuxiliaryLevel, 11-4504
BachBound, 3-802, 3-916
BadPlaces, 10-4062, 10-4087
BadPrimes, 10-3921, 10-4005, 10-4179
BaerDerivation, 12-4746
BaerSubplane, 12-4746
Ball, 12-4964
Bang, 1-251
BarAutomorphism, 8-3088
BarycentricSubdivision, 12-4702
Base, 5-1619, 5-1705
BaseChange, 3-660, 7-2792, 9-3519, 3520,

9-3652, 10-3944, 3945, 10-4125,
10-4154, 10-4204

BaseChangeMatrix, 7-2596
BaseComponent, 9-3575
BaseCurve, 11-4300
BaseElement, 6-2327
BaseExtend, 2-342, 3-660, 8-3111,

9-3519, 3520, 10-3944, 3945, 10-4125,
10-4154, 10-4204, 11-4396, 11-4486,
11-4549, 11-4578

BaseField, 2-355, 2-367, 2-599, 3-783,
3-885, 3-1018, 3-1045, 3-1097, 1098,
3-1185, 3-1198, 1199, 4-1275, 4-1399,
7-2634, 8-2836, 9-3407, 9-3500,



INDEX OF INTRINSICS vii

9-3653, 10-3915, 10-4138, 10-4153,
10-4203, 10-4209, 11-4657, 11-4659,
11-4673

BaseImage, 5-1620
BaseImageWordStrip, 5-1621
BaseLocus, 9-3585
BaseModule, 7-2512, 8-3036, 3037
BaseMPolynomial, 2-324
BasePoint, 5-1619, 5-1705
BasePoints, 9-3546, 9-3577
BaseRing, 2-343, 344, 2-415, 2-447,

2-530, 2-563, 3-660, 3-885, 3-976,
3-1018, 3-1061, 3-1097, 1098, 3-1199,
3-1202, 3-1204, 4-1275, 4-1327,
4-1341, 4-1350, 4-1366, 4-1399,
4-1426, 5-1647, 7-2424, 7-2454,
7-2471, 7-2512, 7-2553, 2554, 7-2570,
7-2634, 7-2689, 8-2836, 8-2867,
8-2982, 8-2991, 8-3016, 8-3043,
8-3066, 8-3109, 8-3111, 9-3309,
9-3407, 9-3430, 9-3500, 9-3653,
9-3884, 10-3915, 10-3953, 10-3956,
10-4108, 10-4138, 10-4153, 10-4203,
10-4209, 11-4340, 11-4366, 11-4405,
11-4489, 11-4504, 11-4529, 11-4657,
11-4673, 12-4854

BaseScheme, 9-3546, 9-3575
BasicAlgebra, 7-2563–2565
BasicAlgebraOfBlockAlgebra, 7-2566
BasicAlgebraOfEndomorphismAlgebra, 7-2565
BasicAlgebraOfExtAlgebra, 7-2566, 7-2606
BasicAlgebraOfGroupAlgebra, 7-2565
BasicAlgebraOfHeckeAlgebra, 7-2565
BasicAlgebraOfMatrixAlgebra, 7-2565
BasicAlgebraOfPrincipalBlock, 7-2566
BasicAlgebraOfSchurAlgebra, 7-2565
BasicCodegrees, 8-2913, 8-2961
BasicDegrees, 8-2913, 8-2961
BasicOrbit, 5-1619, 5-1705
BasicOrbitLength, 5-1619, 5-1705
BasicOrbitLengths, 5-1619, 5-1705
BasicOrbits, 5-1619
BasicRootMatrices, 8-2957
BasicStabiliser, 5-1619, 5-1706
BasicStabiliserChain, 5-1619, 5-1706
BasicStabilizer, 5-1619, 5-1706
BasicStabilizerChain, 5-1619, 5-1706
Basis, 2-355, 2-602, 3-659, 3-790,

3-897, 3-937, 3-1102, 3-1149,
3-1166, 4-1405, 4-1430, 4-1439,
7-2425, 7-2455, 7-2461, 7-2477,
7-2524, 7-2570, 7-2634, 7-2717,
7-2762, 8-2992, 8-3017, 9-3192,
9-3277, 9-3319, 9-3717, 10-4089,
11-4398, 11-4439, 11-4489, 11-4503,
11-4586, 12-4795, 4796, 13-5080,
13-5175, 13-5215

BasisChange, 8-2876

BasisDenominator, 3-659
BasisElement, 2-602, 7-2425, 7-2478,

7-2524, 7-2682, 8-3017, 9-3192,
9-3277, 9-3319

BasisMatrix, 2-602, 3-659, 3-738, 3-898,
3-937, 3-1102, 3-1149, 7-2461,
7-2554, 7-2642, 9-3319, 13-5080,
13-5215

BasisOfDifferentialsFirstKind, 3-1177,
9-3698

BasisOfHolomorphicDifferentials, 3-1177,
9-3698

BasisProduct, 7-2434, 7-2682, 8-3010
BasisProducts, 7-2435, 8-3010
BasisReduction, 3-672, 673
Basket, 9-3841, 9-3843
BBSModulus, 13-5278
BCHBound, 13-5128
BCHCode, 13-5108
BDLC, 13-5131
BDLCLowerBound, 13-5126
BDLCUpperBound, 13-5126
Bell, 2-296, 12-4808
BerlekampMassey, 13-5275
BernoulliApproximation, 2-509, 12-4808
BernoulliNumber, 2-509, 12-4808
BernoulliPolynomial, 2-438, 12-4808
BesselFunction, 2-507
BesselFunctionSecondKind, 2-508
BestApproximation, 2-490
BestDimensionLinearCode, 13-5131
BestKnownLinearCode, 13-5130
BestKnownQuantumCode, 13-5257
BestLengthLinearCode, 13-5130
BestTranslation, 2-326
BettiNumber, 9-3333, 10-4095, 12-4706
BettiNumbers, 9-3333, 9-3844
BettiTable, 9-3333
BFSTree, 12-4966, 12-5037
BianchiCuspForms, 11-4673
Bicomponents, 12-4957, 12-5034
BigO, 4-1282, 4-1327
BigPeriodMatrix, 10-4208
BinaryForms, 9-3386
BinaryQuadraticForms, 3-753
BinaryResidueCode, 13-5184
BinaryString, 1-66
BinaryTorsionCode, 13-5184
Binomial, 2-296, 12-4807
bInvariants, 10-3951, 10-4113
BipartiteGraph, 12-4929
Bipartition, 12-4954, 12-5030
BiquadraticResidueSymbol, 3-843
BitFlip, 13-5269
BitPrecision, 2-480, 2-483
BKLC, 13-5130
BKLCLowerBound, 13-5126
BKLCUpperBound, 13-5126
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BKQC, 13-5257
BLLC, 13-5130
BLLCLowerBound, 13-5126
BLLCUpperBound, 13-5126
Block, 12-4879, 12-4890
BlockDegree, 12-4887, 12-4889
BlockDegrees, 12-4887
BlockGraph, 12-4903, 12-4949
BlockGroup, 12-4899
BlockMatrix, 2-537
Blocks, 5-1716, 7-2776, 12-4886
BlocksAction, 5-1578
BlockSet, 12-4879
BlocksImage, 5-1578, 5-1716
BlockSize, 12-4887, 12-4889
BlockSizes, 12-4887
BlocksKernel, 5-1578
BlowUp, 9-3497
Blowup, 9-3664, 9-3871, 9-3896
BlumBlumShub, 13-5277
BlumBlumShubModulus, 13-5278
BogomolovNumber, 9-3853
BooleanPolynomialRing, 9-3201, 3202
Booleans, 1-11
BorderedDoublyCirculantQRCode, 13-5112
Borel, 12-4760
BorelSubgroup, 12-4760
Bottom, 3-991, 5-1506, 7-2707
Bound, 3-979
Boundary, 12-4697
BoundaryIntersection, 11-4375
BoundaryMap, 4-1445, 11-4450
BoundaryMaps, 4-1445
BoundaryMatrix, 12-4706
BoundaryPoints, 12-4786
BoundedFSubspace, 11-4603
BQPlotkinSum, 13-5187
BraidGroup, 6-2096, 6-2298, 8-2932
Branch, 8-3153
BranchVertexPath, 12-4967
BrandtModule, 11-4485, 4486, 11-4495,

11-4505
BrandtModuleDimension, 11-4494, 4495
BrandtModuleDimensionOfNewSubspace,

11-4495
BrauerCharacter, 7-2776
BrauerClass, 11-4604
BravaisGroup, 5-1783
BreadthFirstSearchTree, 12-4966, 12-5037
Bruhat, 8-3119
BruhatDescendants, 8-2914
BruhatLessOrEqual, 8-2913
BSGS, 5-1615, 5-1703
BString, 1-66
BuildHomomorphismFromGradedCap, 7-2579
BurauRepresentation, 6-2337
BurnsideMatrix, 5-1827
CalabiYau, 9-3854

CalculateCanonicalClass, 9-3750
CalculateMultiplicities, 9-3750
CalculateTransverseIntersections, 9-3751
CalderbankShorSteaneCode, 13-5242
CambridgeMatrix, 7-2510
CanChangeRing, 11-4549
CanChangeUniverse, 1-181, 1-204
CanContinueEnumeration, 6-2217
CanDetermineIsomorphism, 11-4536
CanIdentifyGroup, 5-1947
CanNormalize, 3-1210
CanonicalBasis, 8-3085
CanonicalClass, 9-3751, 9-3889
CanonicalCoordinateIdeal, 9-3777
CanonicalCurve, 10-4232
CanonicalDissidentPoints, 9-3842
CanonicalDivisor, 3-1160, 9-3581, 9-3710,

9-3889
CanonicalElements, 8-3093
CanonicalFactorRepresentation, 6-2305
CanonicalGraph, 12-4980
CanonicalHeight, 10-4015, 10-4175
CanonicalImage, 9-3718
CanonicalInvolution, 11-4301
CanonicalLength, 6-2306
CanonicalLinearSystem, 9-3659
CanonicalLinearSystemFromIdeal, 9-3658
CanonicalMap, 9-3718
CanonicalModularPolynomial, 11-4295
CanonicalScheme, 10-4232
CanonicalSheaf, 9-3604
CanonicalWeightedModel, 9-3776
CanRedoEnumeration, 6-2217
CanSignNormalize, 3-1211
CanteautChabaudsAttack, 13-5124
Capacities, 12-5014
Capacity, 12-5014
car, 1-215
Cardinality, 2-399
CarlitzModule, 3-1205
CarmichaelLambda, 2-293
CartanInteger, 8-2897
CartanMatrix, 7-2540, 7-2754, 8-2809,

2810, 8-2817, 8-2835, 8-2865,
8-2912, 8-2960, 8-3066, 8-3113,
9-3752

CartanName, 8-2820, 8-2835, 8-2865,
8-2911, 8-2960, 8-3018, 8-3066,
8-3112

CartanSubalgebra, 8-3027
CartesianPower, 1-215
CartesianProduct, 1-215, 12-4946
Cartier, 3-1181, 9-3700, 9-3890
CartierRepresentation, 3-1181, 9-3700
CasimirValue, 8-3152
CasselsMap, 10-4066
CasselsTatePairing, 10-4025
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cat, 1-66, 1-205, 1-223, 13-5118,
13-5200, 13-5230

cat:=, 1-66, 1-205, 1-223
Catalan, 2-483, 12-4807
Category, 1-28, 1-176, 2-266, 2-268,

2-285, 2-287, 2-335, 2-337, 2-354,
2-357, 2-373, 2-377, 2-397, 2-415,
2-417, 2-447, 2-479, 480, 3-657,
3-757, 3-782, 3-793, 3-884, 3-905,
3-1045, 3-1047, 3-1062, 3-1097,
3-1130, 3-1142, 3-1156, 4-1230,
4-1316, 4-1318, 4-1327, 1328, 7-2471,
7-2764, 9-3407, 9-3413, 9-3430,
9-3433, 10-3915, 10-3953, 10-3956,
10-3959, 10-3969, 11-4488, 12-4854,
4855

CayleyGraph, 12-4947
Ceiling, 2-290, 2-314, 2-359, 2-483
Cell, 5-1630
CellNumber, 5-1629
CellSize, 5-1630
Center, 2-266, 2-285, 2-335, 4-1230,

5-1493, 5-1586, 5-1690, 5-1832,
6-2058, 6-2276, 8-3026, 11-4375

CenterDensity, 3-682
CenterPolynomials, 8-3116
CentralCharacter, 3-818, 3-821, 11-4657,

11-4682
CentralCollineationGroup, 12-4744
CentralEndomorphisms, 3-731, 5-1782
CentralExtension, 5-1855
CentralExtensionProcess, 5-1855
CentralExtensions, 5-1855
CentralIdempotents, 7-2449
Centraliser, 5-1490, 1491, 5-1508, 5-1553,

5-1821, 6-2058, 6-2272, 2273, 7-2445,
7-2447, 7-2554, 7-2557, 8-3026

CentraliserOfInvolution, 5-1712, 1713
CentralisingMatrix, 5-1718
Centralizer, 5-1490, 1491, 5-1508, 5-1553,

5-1670, 5-1821, 6-2058, 6-2272, 2273,
7-2445, 7-2447, 7-2518, 7-2554,
7-2557, 7-2577, 8-3026

CentralizerGLZ, 5-1783, 5-1785
CentralizerOfNormalSubgroup, 5-1553
CentralOrder, 5-1656
CentralValue, 10-4257
Centre, 2-266, 2-373, 3-784, 3-889,

3-1045, 4-1316, 5-1493, 5-1586,
5-1690, 5-1832, 6-2058, 6-2276,
7-2445, 7-2518, 7-2577, 7-2764,
8-3026

CentredAffinePatch, 9-3523
CentreDensity, 3-682
CentreOfEndomorphismAlgebra, 5-1782
CentreOfEndomorphismRing, 3-731, 5-1782,

7-2714
CentrePolynomials, 8-3116

CFP, 6-2305
Chabauty, 10-4071, 4072, 10-4191
Chabauty0, 10-4191
ChainComplex, 12-4707
ChainMap, 4-1450
ChainmapToCohomology, 7-2616
ChangeAlgebra, 7-2585
ChangeAmbient, 12-4793
ChangeBase, 5-1622
ChangeBasis, 7-2434, 7-2444, 8-2980
ChangeDerivation, 9-3417, 9-3439
ChangeDifferential, 9-3418, 9-3439
ChangeDirectory, 1-90
ChangeField, 3-1218
ChangeIdempotents, 7-2579
ChangeModel, 3-1213
ChangeOfBasisMatrix, 5-1701
ChangeOrder, 9-3216, 3217, 9-3284
ChangePrecision, 2-483, 3-953, 4-1279,

4-1289, 4-1327, 4-1330, 4-1340,
7-2791, 9-3412

ChangeRepresentationType, 7-2553
ChangeRing, 2-415, 2-448, 2-538, 2-570,

3-660, 4-1327, 4-1350, 4-1386,
4-1400, 5-1646, 7-2425, 7-2485,
7-2518, 7-2692, 7-2732, 8-3017,
8-3043, 8-3081, 8-3111, 9-3216,
9-3283, 9-3326, 10-3944, 10-4105,
10-4125, 11-4549

ChangeSupport, 12-4928, 12-5007
ChangeUniverse, 1-181, 1-204, 4-1400
ChangGraphs, 12-4950
Character, 3-1219
CharacterDegrees, 5-1510, 5-1851, 7-2762,

2763
CharacterDegreesPGroup, 5-1851, 7-2763
Characteristic, 2-266, 2-286, 2-335,

2-356, 2-375, 2-416, 2-448, 2-479,
3-788, 3-893, 3-1046, 3-1062,
3-1101, 4-1230, 4-1278, 4-1317,
4-1328, 7-2471

CharacteristicPolynomial, 2-379, 2-546,
3-798, 3-910, 3-1133, 1134, 4-1292,
5-1656, 7-2460, 7-2522, 7-2633,
11-4573, 12-4950, 13-5275

CharacteristicPolynomialFromTraces,
10-4095

CharacteristicSeries, 5-1999
CharacteristicVector, 2-588, 4-1401
CharacterMultiset, 8-3162, 8-3166
CharacterRing, 7-2759
CharacterTable, 5-1510, 5-1608, 5-1700,

5-1851, 6-2070, 7-2761
CharacterTableConlon, 5-1851, 7-2762
CharacterTableDS, 7-2761
CharacterWithSchurIndex, 7-2771
ChebyshevFirst, 2-436
ChebyshevSecond, 2-436
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ChebyshevT, 2-436
ChebyshevU, 2-436
CheckCodimension, 9-3844
CheckFunctionalEquation, 10-4264
CheckPolynomial, 13-5083
CheckWeilPolynomial, 10-4285
ChernNumber, 9-3765
ChevalleyBasis, 8-3021, 3022
ChevalleyGroup, 5-1880
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CompactPresentation, 5-1864
CompactProjectiveResolution, 7-2593,

7-2608
CompactProjectiveResolutionPGroup, 7-2608
CompactProjectiveResolutionsOfSimpleModules,

7-2593
CompanionMatrix, 2-433, 7-2510, 9-3446
Complement, 2-601, 9-3577, 11-4450,
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ComplementaryDivisor, 3-1170, 9-3713
ComplementaryErrorFunction, 2-510
ComplementBasis, 5-1825
ComplementOfImage, 11-4606
Complements, 5-1597, 5-1836, 7-2704
Complete, 6-2107, 6-2328
CompleteClassGroup, 3-920
CompleteDigraph, 12-4931
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Comultiplication, 8-3087
ConcatenatedCode, 13-5118
CondensationMatrices, 7-2540
CondensedAlgebra, 7-2536
ConditionalClassGroup, 3-802, 3-915
ConditionedGroup, 5-1860
Conductor, 2-344, 2-356, 3-755, 3-812,

3-821, 3-838, 3-852, 3-896, 3-1018,
3-1196, 1197, 3-1219, 7-2643, 10-4005,
10-4062, 10-4078, 10-4087, 10-4269,
11-4489, 11-4495, 11-4532, 11-4682

ConductorRange, 10-4059
Cone, 9-3872, 12-4703, 12-4779
ConeIndices, 9-3873
ConeInSublattice, 12-4780

ConeIntersection, 9-3873
ConeQuotientByLinearSubspace, 12-4780
Cones, 9-3872
ConesOfCodimension, 9-3872
ConesOfMaximalDimension, 9-3873
ConeToPolyhedron, 12-4781
ConeWithInequalities, 12-4779
ConformalHamiltonianLieAlgebra, 8-3006
ConformalOrthogonalGroup, 5-1885
ConformalOrthogonalGroupMinus, 5-1887
ConformalOrthogonalGroupPlus, 5-1886
ConformalSpecialLieAlgebra, 8-3005
ConformalSymplecticGroup, 5-1884
ConformalUnitaryGroup, 5-1883
CongruenceGroup, 11-4419, 11-4467
CongruenceGroupAnemic, 11-4420
CongruenceImage, 5-1762
CongruenceModulus, 11-4472, 11-4613
CongruenceSubgroup, 11-4339
Conic, 9-3651, 10-3914, 10-3928, 12-4734
ConjecturalRegulator, 10-4053, 10-4077
ConjecturalSha, 10-4077
ConjugacyClasses, 5-1497, 5-1541, 5-1664,

5-1815, 7-2649, 8-2912
Conjugate, 2-289, 2-358, 2-484, 3-755,

3-797, 3-843, 3-845, 3-853, 3-908,
5-1490, 5-1552, 5-1669, 5-1821,
6-2161, 6-2272, 7-2465, 7-2633,
7-2651, 12-4835

ConjugateIntoBorel, 8-3119
ConjugateIntoTorus, 8-3119
ConjugatePartition, 12-4830
Conjugates, 3-796, 3-908, 3-1049, 5-1496,

5-1502, 5-1541, 5-1664, 5-1815
ConjugatesToPowerSums, 3-990
ConjugateTranspose, 2-622
ConjugationClassLength, 8-3171
Connect, 9-3750
ConnectedKernel, 11-4564
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Coordinate, 9-3493, 9-3662
CoordinateLattice, 3-647
CoordinateMatrix, 9-3200
CoordinateRing, 3-660, 9-3490, 9-3501,

9-3648, 9-3653
Coordinates, 2-602, 3-655, 656, 4-1405,

7-2437, 7-2524, 7-2554, 7-2633,
8-3036, 9-3200, 9-3312, 9-3493,
9-3648, 9-3662, 12-4731, 13-5086,
13-5203, 13-5217

CoordinateSpace, 3-657
CoordinatesToElement, 3-653
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CryptographicCurve, 10-3987
CrystalGraph, 8-3092
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11-4574, 11-4620, 12-4859, 12-4953,
12-4955, 12-5031, 5032

Degree6DelPezzoType2 1, 9-3809
Degree6DelPezzoType2 2, 9-3809
Degree6DelPezzoType2 3, 9-3809
Degree6DelPezzoType3, 9-3809
Degree6DelPezzoType4, 9-3809
Degree6DelPezzoType6, 9-3809
DegreeMap, 11-4604
DegreeOfExactConstantField, 3-1103, 3-1197
DegreeOfFieldExtension, 5-1718
DegreeOnePrimeIdeals, 3-914
DegreeRange, 12-4912
DegreeReduction, 5-1583
Degrees, 4-1444, 12-4912
DegreeSequence, 12-4954, 12-4956, 12-5031,

12-5033
DegreesOfCohomologyGenerators, 7-2601
Delaunay, 10-4218
delete, 1-10, 1-243, 5-1941
DeleteCapacities, 12-5015
DeleteCapacity, 12-5015
DeleteData, 5-1601
DeleteEdgeLabels, 12-5015
DeleteGenerator, 6-2206, 6-2396
DeleteHeckePrecomputation, 11-4661

DeleteLabel, 12-5011, 12-5015
DeleteLabels, 12-5012, 12-5015
DeleteRelation, 6-2206, 2207, 6-2396
DeleteVertexLabels, 12-5012
DeleteWeight, 12-5015
DeleteWeights, 12-5015
DelPezzoSurface, 9-3804, 3805
DelsarteGoethalsCode, 13-5179
Delta, 2-503, 504
DeltaPreimage (G, g), 5-1910
Demazure, 8-3157
Denominator, 2-285, 2-357, 3-794, 3-906,

3-934, 3-1064, 3-1135, 3-1148,
3-1165, 7-2462, 9-3296, 9-3504,
9-3711, 11-4574

Density, 2-530, 2-563, 3-682
DensityEvolutionBinarySymmetric, 13-5163
DensityEvolutionGaussian, 13-5165
Depth, 2-589, 4-1404, 5-1861, 6-2253,

9-3378
DepthFirstSearchTree, 12-4966, 12-5038
Derivation, 9-3409, 9-3430
Derivative, 2-422, 2-457, 458, 3-976,

3-1065, 4-1295, 4-1331, 4-1359,
9-3417

DerivedGroup, 5-1493, 5-1585, 5-1690,
5-1832, 6-2141, 6-2277

DerivedGroupMonteCarlo, 5-1714
DerivedLength, 5-1493, 5-1585, 5-1690,

5-1833, 6-2276
DerivedSeries, 5-1493, 5-1585, 5-1690,

5-1833, 6-2277, 8-3030
DerivedSubgroup, 5-1493, 5-1585, 5-1690,

5-1832, 6-2058, 6-2141, 6-2277
DerksenIdeal, 9-3387, 9-3393
Descendants, 5-1848
DescentInformation, 10-4010, 10-4063
DescentMaps, 10-4066
Design, 12-4746, 12-4876, 12-4897
Detach, 1-47
DetachSpec, 1-49
Determinant, 2-544, 2-574, 3-658, 3-702,

3-704, 3-1218, 4-1427, 5-1656,
7-2521, 9-3752

Development, 12-4885
DFSTree, 12-4966, 12-5038
DiagonalAutomorphism, 8-3038, 8-3128
DiagonalForm, 2-460
Diagonalisation, 7-2533
Diagonalization, 3-699, 7-2533
DiagonalJoin, 2-538, 2-570, 7-2526, 2527
DiagonalMatrix, 2-525, 7-2510, 8-3010
DiagonalModel, 10-4105
DiagonalSparseMatrix, 2-562
DiagonalSum, 12-4835
Diagram, 12-4767
DiagramAutomorphism, 8-3038, 8-3089,

8-3128
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Diameter, 2-485, 12-4963, 13-5105
DiameterPath, 12-4963
DickmanRho, 2-293
DicksonFirst, 2-386, 2-437
DicksonInvariant, 2-624
DicksonNearfield, 2-395
DicksonPairs, 2-393
DicksonSecond, 2-386, 2-437
DicksonTriples, 2-393
DicyclicGroup, 5-1475
diff, 1-185
Difference, 9-3496
DifferenceSet, 12-4884
Different, 3-896, 3-913, 3-947, 3-1106,

3-1140, 3-1149
DifferentDivisor, 3-1160
Differential, 3-1176, 9-3409, 9-3417,

9-3430, 9-3698
DifferentialBasis, 3-1170, 3-1177,

9-3698, 9-3717
DifferentialFieldExtension, 9-3421
DifferentialIdeal, 9-3426
DifferentialLaurentSeriesRing, 9-3405
DifferentialOperator, 9-3454
DifferentialOperatorRing, 9-3428
DifferentialRing, 9-3404
DifferentialRingExtension, 9-3421
DifferentialSpace, 3-1099, 3-1171, 3-1176,

1177, 9-3698, 9-3717
Differentiation, 3-1139
DifferentiationSequence, 3-1139
Digraph, 12-4926
DihedralForms, 11-4413
DihedralGroup, 5-1475, 5-1532, 5-1794,

6-2097, 6-2263
DihedralSubspace, 11-4407
Dilog, 2-492
Dimension, 2-599, 2-602, 3-658, 3-704,

3-1165, 4-1427, 4-1438, 5-2015,
7-2424, 7-2454, 7-2488, 7-2524,
7-2570, 7-2585, 7-2708, 7-2718,
7-2791, 8-2836, 8-2867, 8-2912,
8-2992, 8-3016, 8-3066, 8-3112,
9-3244, 9-3284, 9-3292, 9-3516,
9-3575, 9-3717, 9-3837, 9-3840,
9-3843, 10-4153, 10-4209, 11-4405,
11-4489, 11-4504, 11-4529, 11-4554,
11-4586, 11-4657, 11-4673, 12-4694,
12-4793, 12-4795, 13-5079, 13-5214,
13-5262

DimensionByFormula, 11-4405
DimensionCuspForms, 11-4479
DimensionCuspFormsGamma0, 11-4479
DimensionCuspFormsGamma1, 11-4479
DimensionNewCuspFormsGamma0, 11-4479
DimensionNewCuspFormsGamma1, 11-4479
DimensionOfCentreOfEndomorphismRing,

3-731, 5-1782

DimensionOfEndomorphismRing, 3-731, 5-1782
DimensionOfExactConstantField, 3-1103
DimensionOfFieldOfGeometricIrreducibility,

9-3695
DimensionOfGlobalSections, 9-3619
DimensionOfHomology, 4-1445
DimensionOfKernelZ2, 13-5189
DimensionOfSpanZ2, 13-5189
DimensionsEstimate, 8-2998
DimensionsOfHomology, 4-1445
DimensionsOfInjectiveModules, 7-2571
DimensionsOfProjectiveModules, 7-2571
DimensionsOfTerms, 4-1445
DirectProduct, 5-1477, 5-1534, 5-1650,

5-1804, 6-2098, 6-2262, 6-2395,
8-2929, 8-3126, 9-3488, 9-3647,
11-4592, 13-5114, 13-5200, 13-5229

DirectSum, 3-664, 4-1400, 4-1445, 6-2058,
7-2435, 7-2515, 7-2517, 7-2692,
7-2718, 7-2737, 7-2791, 8-2846,
8-2889, 8-3025, 8-3163, 8-3166,
9-3323, 9-3609, 11-4592, 12-4795,
13-5114, 13-5199, 13-5229, 13-5255

DirectSumDecomposition, 7-2449, 7-2704,
8-2847, 8-2890, 8-3025, 8-3163,
8-3166

DirichletCharacter, 3-816, 3-1221,
11-4406, 11-4529, 11-4657

DirichletCharacterOverNF, 3-818
DirichletCharacterOverQ, 3-818
DirichletCharacters, 11-4405, 11-4530
DirichletGroup, 2-342, 3-811
DirichletRestriction, 3-815
Disconnect, 9-3750
Discriminant, 2-356, 2-432, 2-467, 2-623,

3-754, 3-788, 3-838, 3-845, 3-894,
3-1017, 3-1103, 4-1276, 4-1368,
7-2454, 7-2635, 7-2642, 10-3919,
10-3951, 10-4114, 10-4132, 11-4489,
11-4495, 11-4585

DiscriminantDivisor, 3-1197
DiscriminantFromShiodaInvariants, 10-4137
DiscriminantOfHeckeAlgebra, 11-4457
DiscriminantRange, 3-828
DiscToPlane, 11-4375
Display, 6-2234
DisplayBurnsideMatrix, 5-1827
DisplayCompTreeNodes, 5-1740
DisplayFareySymbolDomain, 11-4353
DisplayPolygons, 11-4351
Distance, 2-485, 4-1302, 11-4348,

11-4374, 12-4963, 12-5042, 13-5085,
13-5203, 13-5217

DistanceMatrix, 12-4965
DistancePartition, 12-4964
Distances, 12-5042
DistinctDegreeFactorization, 2-432
DistinctExtensions, 5-2026
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DistinguishedOrbitsOnSimples, 8-2867
div, 2-287, 2-337, 2-417, 2-423, 2-449,

2-459, 3-654, 3-808, 3-905, 3-942,
3-956, 3-1132, 3-1156, 3-1161,
4-1230, 4-1285, 4-1295, 4-1318,
4-1328, 4-1344, 7-2459, 7-2473,
9-3311, 9-3414, 9-3705, 9-3711

div:=, 2-287, 2-449, 4-1286, 7-2473
DivideOutIntegers, 11-4560
DivisionPoints, 10-3970
DivisionPolynomial, 10-3954
Divisor, 3-808, 3-955, 956, 3-1136,

3-1149, 3-1159, 3-1179, 9-3580,
9-3699, 9-3707–3709, 9-3888, 13-5151

DivisorClassGroup, 9-3887
DivisorClassLattice, 9-3880, 9-3887
DivisorGroup, 3-807, 3-954, 3-1099,

3-1155, 3-1159, 9-3580, 9-3707,
9-3888

DivisorIdeal, 7-2487, 9-3289
DivisorMap, 9-3612, 9-3718
DivisorOfDegreeOne, 3-1160, 9-3696
Divisors, 2-309, 2-311, 3-913, 3-944
DivisorSigma, 2-293
DivisorToSheaf, 9-3613
Dodecacode, 13-5242
Domain, 1-252, 1-254, 2-604, 3-812,

4-1383, 4-1416, 5-1530, 5-1648,
6-2102, 6-2333, 7-2591, 8-3128,
9-3315, 9-3540, 9-3611, 10-4148,
11-4574, 11-4585

DominantCharacter, 8-3152
DominantDiagonalForm, 3-726
DominantLSPath, 8-3090
DominantWeight, 8-2887, 8-2924, 8-2970,

8-3125
DotProduct, 2-611
DotProductMatrix, 2-611
Double, 10-4205
DoubleCoset, 5-1600, 6-2178
DoubleCosetRepresentatives, 5-1600
DoubleCosets, 6-2178
DoubleGenusOneModel, 10-4111
DoublePlotkinSum, 13-5188
DoublyCirculantQRCode, 13-5111
DoublyCirculantQRCodeGF4, 13-5112
Dual, 3-662, 4-1431, 4-1444, 6-2072,

7-2596, 7-2738, 8-2847, 8-2891,
8-2929, 8-2964, 8-3126, 9-3609,
11-4607, 12-4725, 12-4780, 12-4794,
12-4881, 13-5081, 13-5091, 13-5198,
13-5215, 13-5220

DualAtkinLehner, 11-4454
DualBasisLattice, 3-663
DualCoxeterForm, 8-2841, 8-2881, 8-2921
DualEuclideanWeightDistribution, 13-5194
DualFaceInDualFan, 9-3874
DualFan, 9-3870

DualHeckeOperator, 11-4453
DualIsogeny, 10-3964
DualityAutomorphism, 8-3129
DualKroneckerZ4, 13-5188
DualLeeWeightDistribution, 13-5193
DualMorphism, 8-2895
DualQuotient, 3-663
DualStarInvolution, 11-4454
DualVectorSpace, 11-4442
DualWeightDistribution, 13-5100, 13-5192,

13-5225
DuvalPuiseuxExpansion, 4-1251
DynkinDiagram, 8-2821, 8-2835, 8-2865,

8-2911, 8-2960, 8-3112
DynkinDigraph, 8-2813, 8-2817, 8-2835,

8-2865, 8-2912, 8-2960, 8-3113
E, 2-478
e, 2-478
E . i, 12-5009
E2NForm, 11-4324
E4Form, 11-4324
E6Form, 11-4324
Ealpha, 8-3090, 3091
EARNS, 5-1592
EasyBasis, 9-3199
EasyIdeal, 9-3199
EchelonForm, 2-548, 7-2527
EcheloniseWord, 6-2235
ECM, 2-307
ECMFactoredOrder, 2-308
ECMOrder, 2-308
ECMSteps, 2-308
EdgeCapacities, 12-5015
EdgeConnectivity, 12-4961, 12-5036
EdgeDeterminant, 9-3754
EdgeGroup, 12-4980
EdgeIndices, 12-4786, 12-5008
EdgeLabels, 9-3754, 12-5015
EdgeMultiplicity, 12-5008
Edges, 12-4785, 12-4934, 12-5008
EdgeSeparator, 12-4961, 12-5036
EdgeSet, 12-4934
EdgeUnion, 12-4946, 12-5026
EdgeWeights, 12-5015
EFAModuleMaps, 6-2281
EFAModules, 6-2282
EFASeries, 6-2277
EffectiveSubcanonicalCurves, 9-3846
EhrhartCoefficient, 12-4787
EhrhartCoefficients, 12-4787
EhrhartPolynomial, 12-4787
EhrhartSeries, 12-4787
EichlerInvariant, 7-2644
Eigenform, 11-4424, 11-4459, 11-4664
Eigenforms, 11-4664
Eigenspace, 2-547, 7-2523, 9-3837
Eigenvalues, 2-547, 7-2523
EightDescent, 10-4030
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Eisenstein, 2-499, 500, 3-761
EisensteinData, 11-4411
EisensteinProjection, 11-4407
EisensteinSeries, 11-4411
EisensteinSubspace, 11-4407, 11-4449,

11-4491, 11-4502
EisensteinTwo, 10-4020
Element, 2-397, 11-4624
ElementaryAbelianGroup, 6-2263
ElementaryAbelianNormalSubgroup, 5-1599
ElementaryAbelianQuotient, 5-1564, 5-1676,

5-1831, 6-2062, 6-2125, 6-2280
ElementaryAbelianSeries, 5-1596, 5-1692,

5-1833
ElementaryAbelianSeriesCanonical, 5-1596,

5-1692, 5-1834
ElementaryAbelianSubgroups, 5-1501,

5-1562, 5-1826
ElementaryDivisors, 2-552, 2-575, 4-1431,

7-2528
ElementaryPhiModule, 7-2791
ElementarySymmetricPolynomial, 9-3264,

9-3396
ElementaryToHomogeneousMatrix, 12-4870
ElementaryToMonomialMatrix, 12-4869
ElementaryToPowerSumMatrix, 12-4870
ElementaryToSchurMatrix, 12-4869
Elements, 2-342, 6-2327, 11-4627,

12-4759
ElementSequence, 5-1855
ElementSet, 5-1539
ElementToSequence, 1-67, 2-310, 2-344,

2-360, 2-372, 2-397, 2-418, 2-530,
2-563, 2-589, 3-655, 3-756, 3-800,
3-912, 3-952, 3-1131, 4-1284,
4-1315, 4-1330, 4-1344, 4-1402,
4-1437, 5-1524, 5-1644, 5-1808,
6-2053, 6-2083, 6-2252, 6-2305,
6-2352, 6-2370, 6-2397, 6-2411,
7-2437, 7-2459, 7-2525, 7-2556,
7-2633, 7-2693, 8-3036, 10-3950,
10-3969, 10-4143, 10-4162, 10-4205,
12-4731, 12-4817

ElementType, 1-29
EliasAsymptoticBound, 13-5128
EliasBound, 13-5126
Eliminate, 6-2186, 6-2208, 6-2397
EliminateGenerators, 6-2186
EliminateRedundancy, 6-2234
Elimination, 9-3534
EliminationIdeal, 9-3236
EllipticCurve, 9-3675, 10-3940–3942,

10-4059, 10-4231, 11-4424, 11-4477,
11-4648

EllipticCurveDatabase, 10-4058
EllipticCurveFromjInvariant, 10-3940
EllipticCurveFromPeriods, 10-4050
EllipticCurves, 10-4061

EllipticCurveSearch, 10-4077, 10-4088
EllipticCurveWithGoodReductionSearch,

10-4077
EllipticCurveWithjInvariant, 10-3940
EllipticExponential, 10-4051
EllipticInvariants, 11-4369, 11-4649
EllipticLogarithm, 10-4051
EllipticPeriods, 11-4649
EllipticPoints, 11-4342
elt, 1-216, 2-282, 283, 2-336, 2-354,

2-370, 371, 2-413, 2-447, 2-478,
2-587, 3-653, 3-754, 3-780, 3-877,
878, 3-1061, 3-1129, 1130, 4-1281,
1282, 4-1326, 4-1352, 4-1401,
5-1464, 5-1523, 5-1643, 7-2434,
7-2471, 7-2509, 7-2549, 7-2682,
7-2692, 7-2759, 8-3010, 8-3067,
8-3115, 10-4141, 10-4158, 13-5084,
13-5202, 13-5216

elt< >, 10-3967
Eltlist, 8-3116
Eltseq, 1-67, 1-200, 2-285, 2-310,

2-360, 2-372, 2-418, 2-530, 2-563,
2-589, 3-655, 3-756, 3-800, 3-912,
3-952, 3-1131, 3-1199, 3-1205,
4-1284, 4-1315, 4-1330, 4-1344,
4-1372, 4-1402, 4-1437, 5-1524,
5-1644, 5-1808, 6-2053, 6-2083,
6-2252, 6-2305, 6-2352, 6-2370,
6-2397, 6-2411, 7-2437, 7-2459,
7-2525, 7-2556, 7-2633, 7-2693,
8-3036, 9-3311, 9-3415, 9-3434,
10-3950, 10-3969, 10-4108, 10-4143,
10-4162, 10-4205, 11-4344, 11-4406,
11-4488, 11-4504, 11-4568, 11-4624,
12-4731, 12-4817

EltTup, 8-3068
Embed, 2-368, 3-784, 3-889, 3-1099,

7-2465, 7-2638, 2639
Embedding, 12-4974, 12-5039
EmbeddingMap, 3-784, 3-889, 3-992
EmbeddingMatrix, 7-2642
Embeddings, 11-4547
EmbeddingSpace, 4-1427
EmbedPlaneCurveInP3, 9-3566
EModule, 9-3307, 3308
EmptyBasket, 9-3841
EmptyDigraph, 12-4931
EmptyGraph, 12-4930
EmptyPolyhedron, 12-4781
EmptyScheme, 9-3496
EmptySubscheme, 9-3496
End, 11-4578
EndomorphismAlgebra, 4-1411, 5-1782,

7-2714
EndomorphismRing, 3-730, 5-1782, 7-2714,

10-4213
Endomorphisms, 3-730, 5-1782
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EndpointWeight, 8-3091
EndVertices, 4-1241, 12-4937, 12-5009
Enumerate, 7-2465, 7-2654
EnumerationCost, 3-694
EnumerationCostArray, 3-694
eq, 1-11, 1-68, 1-183, 184, 1-209, 1-218,

2-268, 2-270, 2-274, 2-286, 287,
2-314, 2-336, 337, 2-339, 2-344,
2-356, 357, 2-376, 377, 2-397, 2-399,
2-416, 417, 2-435, 2-448, 449, 2-480,
481, 2-571, 2-600, 3-655, 3-659,
3-703, 704, 3-737, 3-756, 3-792,
3-794, 3-807, 3-901, 3-906, 3-939,
3-942, 3-952, 3-954, 3-992, 3-1014,
3-1046, 3-1048, 3-1062, 1063, 3-1126,
3-1132, 3-1145, 3-1156, 1157, 3-1160,
1161, 3-1178, 1179, 3-1198, 1199,
3-1202, 3-1204, 3-1222, 4-1230,
4-1279, 4-1286, 4-1317, 1318, 4-1328,
1329, 4-1342, 4-1344, 4-1350,
4-1358, 4-1371, 4-1385, 4-1406,
4-1428, 4-1437, 4-1439, 5-1466,
5-1485, 5-1508, 5-1538, 5-1551,
5-1601, 5-1654, 5-1659, 5-1811,
5-1820, 5-1872, 5-2004, 6-2061,
6-2064, 6-2086, 6-2166, 6-2174,
6-2254, 6-2268, 6-2316, 6-2352,
6-2370, 6-2383, 6-2391, 6-2411,
7-2428, 7-2430, 7-2456, 7-2459,
7-2462, 7-2473, 7-2483, 7-2488,
7-2520, 7-2525, 7-2633, 7-2696,
7-2708, 7-2765, 8-2835, 8-2864,
8-3013, 8-3068, 8-3091, 8-3110,
8-3148, 9-3229, 9-3281, 9-3289,
9-3313, 9-3323, 9-3410, 9-3414,
9-3431, 9-3434, 9-3487, 9-3502,
9-3504, 9-3507, 9-3541, 9-3574,
9-3580, 9-3584, 9-3662, 9-3672,
9-3682, 9-3699, 9-3702, 9-3705,
9-3707, 9-3712, 9-3745, 9-3753,
9-3837, 9-3840, 9-3844, 9-3871,
9-3884, 9-3888, 10-3953, 10-3956,
10-3959, 10-3965, 10-3974, 10-4007,
10-4143, 10-4147, 10-4161, 10-4205,
10-4229, 11-4340, 11-4344, 11-4347,
11-4372, 11-4487, 11-4506, 11-4541,
11-4577, 11-4590, 11-4621, 11-4633,
12-4698, 12-4727, 12-4729, 4730,
12-4782, 12-4796, 12-4798, 12-4817,
12-4820, 12-4835, 12-4855, 12-4858,
12-4897, 12-4936, 12-4952, 12-5009,
12-5029, 13-5087, 13-5092, 13-5205,
13-5218, 13-5221, 13-5262, 13-5265

EqualDegreeFactorization, 2-432
Equality, 3-1116
EqualizeDegrees, 4-1447
EquationOrder, 3-836, 3-868, 3-1016,

3-1092

EquationOrderFinite, 3-1091
EquationOrderInfinite, 3-1092
Equations, 10-4107
EquidimensionalDecomposition, 9-3254
EquidimensionalPart, 9-3254
EquitablePartition, 12-4964
EquivalentPoint, 11-4347
Erf, 2-509
Erfc, 2-510
Error, 1-19
ErrorFunction, 2-509
EstimateOrbit, 5-1682
Eta, 7-2549
EtaqPairing, 10-3991
EtaTPairing, 10-3991
EuclideanDistance, 13-5194
EuclideanLeftDivision, 9-3443
EuclideanNorm, 2-289, 2-423, 4-1231
EuclideanRightDivision, 9-3443
EuclideanWeight, 13-5194
EuclideanWeightDistribution, 13-5194
EuclideanWeightEnumerator, 13-5196
EulerCharacteristic, 9-3755, 12-4706
EulerFactor, 3-1221, 10-4169, 4170,

10-4229, 10-4269
EulerFactorModChar, 10-4169
EulerFactorsByDeformation, 10-4170
EulerGamma, 2-484
EulerianGraphDatabase, 12-4991
EulerianNumber, 12-4808
EulerPhi, 2-294
EulerPhiInverse, 2-294
EulerProduct, 3-919
Evaluate, 2-345, 2-422, 2-458, 3-809,

3-930, 3-956, 3-1064, 3-1136,
3-1157, 4-1295, 4-1332, 4-1359,
6-2381, 7-2476, 9-3493, 9-3693,
9-3706, 10-4147, 10-4257, 11-4560,
11-4643

EvaluateAt, 13-5288
EvaluateByPowerSeries, 9-3677
EvaluateClassGroup, 3-920
EvaluatePolynomial, 10-4141
EvaluationPowerSeries, 4-1379
EvenSublattice, 3-663
EvenWeightCode, 13-5076
EvenWeightSubcode, 13-5076
ExactConstantField, 3-1097, 9-3408
ExactExtension, 4-1447
ExactQuotient, 2-287, 2-423, 2-459
ExactValue, 11-4347, 11-4372
ExceptionalUnitOrbit, 3-924
ExceptionalUnits, 3-924
Exclude, 1-180, 1-200
ExcludedConjugate, 6-2220
ExcludedConjugates, 6-2175, 6-2220
ExistsConwayPolynomial, 2-382
ExistsCosetSatisfying, 6-2220



xx INDEX OF INTRINSICS

ExistsCoveringStructure, 1-29
ExistsExcludedConjugate, 6-2220
ExistsGroupData, 5-1960
ExistsModularCurveDatabase, 11-4296
ExistsNormalisingCoset, 6-2221
ExistsNormalizingCoset, 6-2221
Exp, 2-491, 492, 3-1209, 4-1290, 4-1334
Expand, 3-1136, 4-1289, 4-1383, 9-3537,

9-3612, 9-3693
ExpandBasis, 3-712
ExpandToPrecision, 4-1247
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LogIntegral, 2-510
Logs, 3-797, 3-909
LongestElement, 8-2916, 8-2962
LongExactSequenceOnHomology, 4-1454
LowerCentralSeries, 5-1494, 5-1585,

5-1690, 5-1834, 6-2277, 8-3030
LowerFaces, 4-1239
LowerSlopes, 4-1243
LowerTriangularMatrix, 2-525, 526
LowerVertices, 4-1240
LowIndexNormalSubgroups, 6-2160
LowIndexProcess, 6-2156
LowIndexSubgroups, 5-1559, 5-1671, 6-2152
LPolynomial, 3-1120, 9-3696
LPProcess, 13-5288
LRatio, 11-4463, 11-4643
LRatioOddPart, 11-4463
LSeries, 10-4230, 10-4246, 10-4249–4255,

10-4262, 11-4462, 11-4640
LSeriesData, 10-4269
LSeriesLeadingCoefficient, 11-4463
LSetCoefficients, 10-4266
LSetPrecision, 10-4271
LStar, 10-4257
lt, 1-69, 1-209, 2-272, 2-289, 2-314,

2-358, 2-416, 2-481, 3-1161, 5-1508,
6-2086, 6-2391, 9-3313, 9-3712,
11-4446, 11-4492

LTaylor, 10-4257
Lucas, 2-297, 12-4807
MacWilliamsTransform, 13-5102, 5103,

13-5226
MaedaInvariants, 10-4138
MagicNumber, 9-3840
MakeBasket, 9-3841
MakeCoprime, 3-947
MakeDirected, 8-2937
MakePCMap, 9-3548
MakeProjectiveClosureMap, 9-3548
MakeResolutionGraph, 9-3749
MakeSpliceDiagram, 9-3753
MakeType, 1-29
Manifold, 5-1989
ManifoldDatabase, 5-1989
ManinConstant, 10-4046
ManinSymbol, 11-4438
MantissaExponent, 2-481
map, 1-249, 9-3530, 9-3533
Mapping, 8-3127
Maps, 1-254

MargulisCode, 13-5157
MarkGroebner, 7-2480, 9-3199
Mass, 7-2648
MasseyProduct, 7-2615
Match, 6-2209, 6-2397
MatRep, 5-1987
MatRepCharacteristics, 5-1986
MatRepDegrees, 5-1986
MatRepFieldSizes, 5-1986
MatRepKeys, 5-1986
Matrices, 10-4108, 12-4912
Matrix, 2-521, 2-523–525, 2-538, 2-570,

4-1438, 9-3316, 9-3555, 10-4107,
11-4375, 11-4568, 12-4912

MatrixAlgebra, 2-374, 7-2422, 7-2448,
7-2488, 7-2509, 7-2511, 7-2640,
9-3293, 11-4587

MatrixGroup, 5-1468, 5-1645, 5-1987,
7-2690

MatrixLieAlgebra, 8-2825, 8-2848, 8-2980,
2981, 8-3000

MatrixOfElement, 5-2016
MatrixOfIsomorphism, 8-3051
MatrixRepresentation, 7-2642, 9-3683
MatrixRing, 7-2509, 7-2511, 7-2640
MatrixUnit, 7-2510
MattsonSolomonTransform, 13-5136
Max, 1-180, 1-199
Maxdeg, 12-4953, 12-4955, 12-5031, 5032
MaximalAbelianSubfield, 3-1012, 3-1194
MaximalCommutativeSubalgebra, 7-2577
MaximalExtension, 7-2750
MaximalIdeals, 7-2426, 8-3030
MaximalIdempotent, 7-2577
MaximalIncreasingSequence, 12-4817
MaximalIncreasingSequences, 12-4818
MaximalIntegerSolution, 13-5286
MaximalLeftIdeals, 7-2426, 7-2646
MaximalNormalSubgroup, 5-1588
MaximalNumberOfCosets, 6-2221
MaximalOrder, 2-353, 3-780, 3-836, 3-873,

3-1017, 3-1092, 7-2453, 7-2465,
7-2628, 2629

MaximalOrderFinite, 3-1091, 3-1195
MaximalOrderInfinite, 3-1092, 3-1195
MaximalOvergroup, 6-2162
MaximalParabolics, 12-4760
MaximalPartition, 5-1577
MaximalRightIdeals, 7-2426, 7-2646
MaximalSolution, 13-5286
MaximalSubfields, 3-992
MaximalSubgroups, 5-1509, 5-1556, 5-1674,

5-1826, 5-1930, 6-2068, 8-3173
MaximalSubgroupsData (str : -), 5-1931
MaximalSublattices, 3-738
MaximalSubmodules, 7-2702, 7-2708
MaximalTotallyIsotropicSubspace, 2-616
MaximalTotallySingularSubspace, 2-616
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MaximalZeroOneSolution, 13-5286
Maximum, 1-180, 1-199, 2-272, 2-289,

2-314, 2-358, 2-481
MaximumBettiDegree, 9-3333
MaximumClique, 12-4970
MaximumDegree, 3-1068, 12-4953, 12-4955,

12-5031, 5032
MaximumFlow, 12-5062
MaximumInDegree, 12-4955, 12-5032
MaximumIndependentSet, 12-4971
MaximumMatching, 12-4959, 12-5035
MaximumOutDegree, 12-4955, 12-5032
Maxindeg, 12-4955, 12-5032
MaxNorm, 2-427, 2-467
Maxoutdeg, 12-4955, 12-5032
MaxParabolics, 12-4760
McElieceEtAlAsymptoticBound, 13-5128
McEliecesAttack, 13-5123
MCPolynomials, 2-546
MDSCode, 13-5114
MEANS, 5-1600
Meataxe, 7-2698
meet, 1-185, 2-273, 2-339, 2-367, 2-434,

2-601, 3-664, 3-737, 3-871, 3-943,
3-992, 3-1014, 3-1095, 3-1147, 1148,
3-1198, 4-1407, 4-1431, 4-1439,
5-1490, 5-1552, 5-1669, 5-1821,
6-2066, 6-2161, 6-2272, 7-2428,
7-2457, 7-2524, 7-2644, 7-2651,
7-2696, 7-2708, 8-3013, 9-3228,
9-3281, 9-3290, 9-3322, 9-3496,
9-3578, 11-4339, 11-4491, 11-4507,
11-4582, 11-4595, 11-4628, 12-4730,
12-4782, 13-5091, 13-5198, 13-5220

meet:=, 2-601, 5-1821, 6-2066, 6-2272
MelikianLieAlgebra, 8-3008
MergeFields, 3-778, 3-866
MergeFiles, 2-321
MergeUnits, 3-923
MetacyclicPGroups, 5-1951
Mij2EltRootTable, 8-2934
MilnorNumber, 9-3235
Min, 1-180, 1-199, 3-681, 3-934, 3-1135
Mindeg, 12-4954, 4955, 12-5031, 12-5033
MinimalAlgebraGenerators, 9-3265, 9-3380
MinimalAndCharacteristicPolynomials, 2-546
MinimalBaseRingCharacter, 2-345
MinimalBasis, 9-3324, 9-3501
MinimalChernNumber, 9-3765
MinimalCyclotomicField, 3-850
MinimalDecomposition, 9-3247
MinimalDegreeModel, 10-4088
MinimalElementConjugatingToPositive,

6-2330
MinimalElementConjugatingToSuperSummit,

6-2330
MinimalElementConjugatingToUltraSummit,

6-2330

MinimalField, 2-354, 355, 3-850, 5-1689,
7-2699

MinimalFreeResolution, 9-3378
MinimalGeneratorForm, 7-2579
MinimalGeneratorFormAlgebra, 7-2579
MinimalHeckePolynomial, 11-4640
MinimalIdeals, 7-2426, 8-3029
MinimalIdentity, 7-2577
MinimalInequalities, 12-4784
MinimalInteger, 3-934
MinimalIntegerSolution, 13-5286
MinimalLeftIdeals, 7-2426
MinimalModel, 10-3920, 10-3946, 10-4088
MinimalModelGeneralType, 9-3776
MinimalModelKodairaDimensionOne, 9-3776
MinimalModelKodairaDimensionZero, 9-3773
MinimalModelRationalSurface, 9-3771
MinimalModelRuledSurface, 9-3773
MinimalNormalSubgroup, 5-1835
MinimalNormalSubgroups, 5-1588, 5-1832
MinimalOverfields, 3-992
MinimalOvergroup, 6-2162
MinimalOvergroups, 5-1509
MinimalParabolics, 12-4760
MinimalPartition, 5-1577
MinimalPartitions, 5-1577
MinimalPolynomial, 2-289, 2-358, 2-378,

2-546, 3-798, 3-910, 3-1048, 3-1133,
1134, 4-1291, 5-1657, 7-2429,
7-2460, 7-2489, 7-2522, 7-2633,
9-3293, 9-3416, 11-4573

MinimalQuadraticTwist, 10-3950
MinimalRelations, 7-2610
MinimalRGenerators, 12-4788
MinimalRightIdeals, 7-2426
MinimalSolution, 13-5286
MinimalSubmodule, 7-2702
MinimalSubmodules, 7-2702
MinimalSuperlattices, 3-738
MinimalSupermodules, 7-2708
MinimalSyzygyModule, 9-3325
MinimalVectorSequence, 3-1070
MinimalWeierstrassModel, 10-4127
MinimalZeroOneSolution, 13-5286
Minimise, 3-851, 10-4109
MinimiseWeights, 9-3845
Minimize, 3-851, 3-1220, 7-2734
MinimizeCubicSurface, 9-3814
MinimizeDeg4delPezzo, 9-3815
MinimizeGenerators, 9-3394
MinimizePlaneQuartic, 9-3729
MinimizeReduce, 9-3815
MinimizeReduceCubicSurface, 9-3814
MinimizeReduceDeg4delPezzo, 9-3815
MinimizeReducePlaneQuartic, 9-3729
Minimum, 1-180, 1-199, 2-272, 2-289,

2-314, 2-358, 2-481, 3-681, 3-934,
3-1135, 3-1148, 3-1157
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MinimumCut, 12-5061
MinimumDegree, 12-4954, 4955, 12-5031,

12-5033
MinimumDistance, 13-5095, 13-5192,

13-5222
MinimumDominatingSet, 12-4954
MinimumEuclideanDistance, 13-5194
MinimumEuclideanWeight, 13-5194
MinimumInDegree, 12-4955, 12-5032
MinimumLeeDistance, 13-5193
MinimumLeeWeight, 13-5193
MinimumOutDegree, 12-4955, 12-5032
MinimumWeight, 13-5095, 13-5192, 13-5222,

13-5253
MinimumWeightBounds, 13-5097
MinimumWeightTree, 12-5044
MinimumWord, 13-5098
MinimumWords, 13-5098
Minindeg, 12-4955, 12-5032
MinkowskiBound, 3-802, 3-916
MinkowskiLattice, 3-650, 3-891, 3-947
MinkowskiSpace, 3-651, 3-785, 3-891
Minor, 2-545
MinorBoundary, 5-1862
MinorLength, 5-1862
Minors, 2-545
Minoutdeg, 12-4955, 12-5032
MinParabolics, 12-4760
MinusInfinity, 2-314
MinusTamagawaNumber, 11-4475
MinusVolume, 11-4463
MixedCanonicalForm, 6-2309
MMP, 9-3901
mod, 2-287, 2-311, 2-417, 2-423, 3-842,

3-943, 3-952, 3-1132, 3-1156,
3-1161, 4-1295, 4-1318, 9-3705,
9-3711

mod:=, 2-287
ModByPowerOf2, 2-287
ModelToString, 10-4108
ModelType, 11-4294
Modexp, 2-311, 2-424, 3-842, 3-905,

3-1132
ModifySelfintersection, 9-3751
ModifyTransverseIntersection, 9-3751
Modinv, 2-312, 3-943, 3-1132
Modorder, 2-312
Modsqrt, 2-312
ModularAbelianVariety, 11-4524, 11-4526,

11-4529, 11-4641, 11-4648
ModularCurve, 11-4293
ModularCurveDatabase, 11-4296
ModularCurveQuotient, 11-4302
ModularDegree, 10-4054, 11-4472, 11-4613
ModularEmbedding, 11-4542
ModularEquation, 11-4504
ModularForm, 11-4397, 11-4424
ModularForms, 11-4393

ModularHyperellipticCurve, 11-4305, 4306
ModularKernel, 11-4467
ModularNonHyperellipticCurveGenus3,

11-4307
ModularParameterization, 11-4542
ModularParametrisation, 10-4045
ModularParametrization, 10-4045
ModularPolarization, 11-4607
ModularSolution, 2-575
ModularSymbols, 11-4425, 11-4432, 11-4435,

11-4444, 11-4477, 11-4505, 11-4526,
11-4557

ModularSymbolToIntegralHomology, 11-4546
ModularSymbolToRationalHomology, 11-4546
Module, 3-938, 3-1138, 3-1180, 4-1422,

4-1439, 5-2015, 7-2437, 7-2454,
7-2553, 7-2708, 7-2716, 8-3036,
9-3373, 9-3607, 9-3694, 9-3699

ModuleHomomorphism, 9-3611
ModuleMap, 4-1450
ModuleOverSmallerField, 7-2734
ModulesOverCommonField, 7-2735
ModulesOverSmallerField, 7-2734
ModuleWithBasis, 7-2718
Moduli, 4-1400, 8-3016
ModuliPoints, 11-4293
Modulus, 2-335, 2-343, 344, 2-436, 2-482,

3-811, 3-821, 3-951
MoebiusMu, 2-295, 2-311
MoebiusStrip, 12-4704
MolienSeries, 9-3364
MolienSeriesApproximation, 9-3364
MonicDifferentialOperator, 9-3436
MonodromyPairing, 11-4510
MonodromyWeights, 11-4510
Monoid, 6-2393
Monomial, 2-454
MonomialBasis, 9-3293
MonomialCoefficient, 2-418, 2-452, 7-2474
MonomialGroup, 13-5139
MonomialGroupStabilizer, 13-5140
MonomialLattice, 9-3880, 9-3887
MonomialOrder, 9-3186, 9-3275
MonomialOrderWeightVectors, 9-3186, 9-3275
Monomials, 2-419, 2-452, 7-2474, 8-3045,

8-3082, 9-3312
MonomialsOfDegree, 9-3189
MonomialsOfWeightedDegree, 9-3189, 9-3569
MonomialSubgroup, 13-5139
MonomialToElementaryMatrix, 12-4866
MonomialToHomogeneousMatrix, 12-4866
MonomialToPowerSumMatrix, 12-4866
MonomialToSchurMatrix, 12-4866
MooreDeterminant, 3-712
MordellWeilGroup, 10-4012, 10-4091
MordellWeilLattice, 10-4091
MordellWeilRank, 10-4012
MordellWeilRankBounds, 10-4012
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MordellWeilShaInformation, 10-4010,
10-4063

MoriCone, 9-3898
Morphism, 2-594, 3-738, 4-1417, 4-1434,

6-2065, 7-2428, 7-2695, 7-2697,
7-2708, 8-2894, 2895, 8-3014, 9-3319

MovablePart, 9-3891
MPQS, 2-308
Multidegree, 9-3491
MultiDigraph, 12-5005
MultiGraph, 12-5004
Multinomial, 2-296, 12-4807
MultipartiteGraph, 12-4930
MultiplicationByMMap, 10-3966
MultiplicationTable, 3-900, 7-2454,

8-2993, 2994
MultiplicativeGroup, 2-285, 2-335, 2-373,

3-802, 3-922, 3-951, 7-2465, 7-2660
MultiplicativeJordanDecomposition, 8-3119
MultiplicativeOrder, 11-4368
MultiplicatorRing, 3-875, 3-1096, 3-1147,

7-2462
Multiplicities, 1-185, 9-3751
Multiplicity, 1-185, 8-3148, 9-3513,

9-3577, 9-3583, 9-3663, 12-5008
Multiplier, 5-1986
MultiplyByTranspose, 2-573
MultiplyColumn, 2-535, 2-569, 7-2527
MultiplyDivisor, 9-3720
MultiplyFrobenius, 3-1183
MultiplyRow, 2-535, 2-568, 7-2527
Multiset, 8-3148
Multisets, 1-186, 12-4809
MultisetToSet, 1-182
MultivariatePolynomial, 2-447
MurphyAlphaApproximation, 2-324
MValue, 10-4229
NagataAutomorphism, 9-3553
Nagens, 3-729, 7-2731
NaiveHeight, 10-4015, 10-4064, 10-4089,

10-4175
Nalggens, 8-3111
Name, 2-370, 2-413, 2-446, 2-476, 3-782,

3-838, 3-884, 3-976, 3-1060, 3-1129,
4-1278, 4-1314, 4-1326, 4-1368,
7-2471, 7-2632, 9-3406, 9-3429,
9-3486, 9-3498, 9-3885, 13-5175

Name2Mij, 8-2934
Names, 1-243
NameSimple, 5-1610
NaturalActionGenerator, 3-729
NaturalBlackBoxGroup, 5-1871
NaturalFreeAlgebraCover, 7-2535, 2536
NaturalGroup, 3-729
NaturalMap, 11-4615
NaturalMaps, 11-4615
ncl, 5-1472, 5-1549, 5-1668, 5-1818,

6-2140, 2141, 6-2259, 6-2272

Nclasses, 5-1498, 5-1545, 5-1666, 5-1815
Ncols, 2-529, 2-563, 2-589, 7-2519,

11-4568
nCovering, 10-4111
ne, 1-12, 1-68, 1-183, 184, 1-209, 1-218,

2-268, 2-270, 2-274, 2-286, 287,
2-314, 2-336, 337, 2-339, 2-356, 357,
2-376, 377, 2-397, 2-399, 2-416, 417,
2-435, 2-448, 449, 2-480, 481, 2-600,
3-655, 3-659, 3-792, 3-794, 3-902,
3-906, 3-939, 3-952, 3-1046, 3-1048,
3-1062, 1063, 3-1126, 3-1132, 3-1145,
3-1156, 1157, 3-1160, 1161, 3-1222,
4-1230, 4-1279, 4-1287, 4-1317, 1318,
4-1328, 1329, 4-1407, 5-1467, 5-1485,
5-1538, 5-1551, 5-1601, 5-1654,
5-1659, 5-1811, 5-1820, 5-1872,
5-2004, 6-2061, 6-2064, 6-2086,
6-2166, 6-2174, 6-2254, 6-2268,
6-2317, 6-2352, 6-2370, 6-2383,
6-2391, 6-2411, 7-2428, 7-2430,
7-2459, 7-2473, 7-2483, 7-2520,
7-2525, 7-2633, 7-2765, 8-3013,
9-3229, 9-3281, 9-3682, 9-3702,
9-3705, 9-3707, 9-3712, 10-3953,
10-3956, 10-3959, 10-3974, 10-4007,
10-4143, 10-4161, 10-4205, 10-4229,
12-4727, 12-4729, 4730, 12-4855,
12-4858, 12-4897, 12-4936, 13-5087,
13-5092, 13-5205, 13-5218, 13-5221,
13-5262, 13-5265

NearLinearSpace, 12-4874, 12-4896
NefCone, 9-3898
NegationMap, 10-3966
Negative, 8-2843, 8-2883, 8-2922
NegativeGammaOrbitsOnRoots, 8-2867
NegativePrimeDivisors, 9-3586
NegativeRelativeRoots, 8-2878
Neighbor, 3-704
NeighborClosure, 3-704
Neighbors, 3-704, 12-4954, 12-5031
Neighbour, 3-704
NeighbourClosure, 3-704
Neighbours, 3-704, 12-4954, 12-5031
Network, 12-5050
New, 1-57
Newform, 11-4414, 11-4424, 11-4524
NewformDecomposition, 11-4446, 11-4664
Newforms, 11-4414, 11-4416
NewformsOfDegree1, 11-4664
NewLevel, 11-4657
NewModularHyperellipticCurve, 11-4305
NewModularHyperellipticCurves, 11-4304
NewModularNonHyperellipticCurveGenus3,

11-4306
NewModularNonHyperellipticCurvesGenus3,

11-4306
NewQuotient, 11-4616
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NewSubspace, 11-4407, 11-4449, 11-4661
NewSubvariety, 11-4616
NewtonPolygon, 4-1237, 1238, 4-1296,

9-3451
NewtonPolynomial, 9-3451
NewtonPolynomials, 9-3451
NextClass, 6-2232
NextElement, 6-2106, 6-2328
NextExtension, 5-1856
NextGraph, 12-4993
NextModule, 7-2746
NextPrime, 2-300
NextRepresentation, 7-2746
NextSimpleQuotient, 6-2110
NextSubgroup, 6-2157
NextVector, 3-691
NFaces, 12-4974, 12-5039
NFS, 2-316
NFSProcess, 2-316
Ngens, 2-600, 4-1426, 5-1482, 5-1526,

5-1647, 5-1799, 5-1872, 5-1998,
6-2046, 6-2050, 6-2100, 6-2187,
6-2266, 6-2299, 6-2348, 6-2365,
6-2380, 6-2393, 6-2407, 7-2512,
7-2571, 7-2690, 8-2991, 8-3111,
9-3409, 9-3683, 10-3989, 10-4013,
11-4586, 11-4627, 13-5176, 13-5215

NGrad, 9-3491
NilpotencyClass, 5-1494, 5-1585, 5-1690,

5-1834, 6-2277
NilpotentBoundary, 5-1862
NilpotentLength, 5-1862
NilpotentLieAlgebra, 8-3050
NilpotentOrbit, 8-3056
NilpotentOrbits, 8-3057
NilpotentPresentation, 6-2278
NilpotentQuotient, 5-1564, 5-1676,

6-2132, 8-2987
NilpotentSubgroups, 5-1501, 5-1562,

5-1826
Nilradical, 8-3026
NineDescent, 10-4038
NineSelmerSet, 10-4039
nIsogeny, 11-4559
NNZEntries, 2-529, 2-563
NoetherNormalisation, 9-3255, 9-3843
NoetherNormalization, 9-3255
NoetherNumerator, 9-3843
NoetherWeights, 9-3843
NonCuspidalQRationalPoints, 11-4322
NonIdempotentActionGenerators, 7-2584
NonIdempotentGenerators, 7-2571
NonNilpotentElement, 8-3034
NonPrimitiveAlternantCode, 13-5110
NonsolvableSubgroups, 5-1502, 5-1562
NonSpecialDivisor, 3-1212
Norm, 2-289, 2-358, 2-379, 2-484, 2-590,

3-654, 3-798, 3-910, 3-934, 3-1048,

3-1133, 1134, 3-1148, 3-1158, 3-1165,
4-1291, 4-1309, 4-1404, 7-2459,
7-2463, 7-2633, 7-2651, 7-2768,
11-4488

NormAbs, 2-379, 3-798, 3-910, 3-935
NormalClosure, 5-1491, 5-1494, 5-1553,

5-1670, 5-1690, 5-1821, 6-2162,
6-2272

NormalClosureMonteCarlo, 5-1713
NormalComplements, 5-1836
NormalElement, 2-372
NormalFan, 9-3870
NormalForm, 6-2309, 7-2484, 9-3200,

9-3283, 9-3312
Normalisation, 9-3256, 9-3537, 13-5265
NormalisationCoefficient, 13-5265
Normalise, 2-340, 2-590, 4-1403, 8-3118
NormalisedCone, 12-4780
Normaliser, 5-1491, 5-1508, 5-1554,

5-1821, 6-2162, 6-2273, 8-3026
NormaliserCode, 13-5247
NormaliserMatrix, 13-5247
Normalization, 9-3256, 9-3537, 12-4696,

13-5265
NormalizationCoefficient, 13-5265
Normalize, 2-340, 2-426, 2-462, 2-590,

4-1403, 8-3118, 9-3311, 13-5085,
13-5203, 13-5216

Normalizer, 5-1491, 5-1508, 5-1554,
5-1670, 5-1821, 6-2162, 6-2273,
7-2643, 8-3026

NormalizerCode, 13-5247
NormalizerGLZ, 5-1783
NormalizerMatrix, 13-5247
NormalLattice, 5-1494, 5-1588, 5-1835
NormalNumber, 9-3840
NormalSubfields, 3-1015
NormalSubgroups, 5-1494, 5-1562, 5-1588,

5-1835
NormEquation, 2-313, 2-380, 3-804, 805,

3-841, 3-925–927, 3-1023, 4-1308,
1309

NormGroup, 3-1018, 3-1212, 4-1308, 7-2674
NormGroupDiscriminant, 4-1309
NormInduction, 3-815
NormKernel, 4-1309
NormModule, 7-2652
NormOneGroup, 7-2659
NormResidueSymbol, 10-3921
NormSpace, 7-2652
Not, 1-207
not, 1-11
notadj, 12-4951, 12-5029
notin, 1-69, 1-183, 1-208, 2-270, 2-274,

2-287, 2-337, 2-339, 2-357, 2-377,
2-397, 2-417, 2-435, 2-449, 2-481,
2-600, 3-939, 3-1048, 3-1063,
3-1132, 3-1145, 3-1157, 3-1161,
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4-1230, 4-1287, 4-1318, 4-1329,
4-1406, 5-1484, 5-1550, 5-1601,
5-1659, 5-1819, 6-2063, 6-2166,
6-2173, 6-2267, 6-2316, 6-2328,
6-2383, 7-2430, 7-2456, 7-2462,
7-2473, 7-2484, 7-2525, 7-2633,
7-2765, 9-3232, 9-3283, 9-3705,
9-3712, 12-4730, 12-4889, 12-4936,
12-4952, 12-5029, 13-5092, 13-5205,
13-5221

notsubset, 1-184, 2-274, 2-339, 2-435,
2-600, 4-1406, 5-1484, 1485, 5-1551,
5-1659, 5-1820, 6-2063, 2064, 6-2167,
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ProductRepresentation, 3-800, 3-912,
3-1139, 8-3149, 3150

ProfileGraph, 1-138
ProfileHTMLOutput, 1-141
ProfilePrintByTotalCount, 1-140
ProfilePrintByTotalTime, 1-140
ProfilePrintChildrenByCount, 1-140
ProfilePrintChildrenByTime, 1-140
ProfileReset, 1-137
Proj, 9-3486, 9-3496, 9-3892
Projection, 9-3533
ProjectionFromNonsingularPoint, 9-3533
ProjectionMap, 11-4315
ProjectionOnto, 11-4610
ProjectionOntoImage, 11-4610
ProjectiveClosure, 9-3521, 9-3547, 9-3673
ProjectiveClosureMap, 9-3523
ProjectiveCover, 7-2592, 7-2755
ProjectiveEmbedding, 12-4728
ProjectiveFunction, 9-3504, 9-3693
ProjectiveGammaLinearGroup, 5-1624
ProjectiveGammaUnitaryGroup, 5-1625
ProjectiveGeneralLinearGroup, 5-1623
ProjectiveGeneralOrthogonalGroup, 5-1626
ProjectiveGeneralOrthogonalGroupMinus,

5-1626
ProjectiveGeneralOrthogonalGroupPlus,

5-1626
ProjectiveGeneralUnitaryGroup, 5-1624
ProjectiveIndecomposableDimensions, 7-2752
ProjectiveIndecomposableModule, 7-2752
ProjectiveIndecomposableModules, 7-2752
ProjectiveMap, 9-3533, 3534
ProjectiveModule, 7-2583, 2584
ProjectiveOmega, 5-1627
ProjectiveOmegaMinus, 5-1628
ProjectiveOmegaPlus, 5-1627
ProjectiveOrder, 2-554, 5-1656, 7-2522
ProjectivePlane, 2-402, 9-3647
ProjectiveRationalFunction, 9-3504
ProjectiveResolution, 7-2592, 7-2609
ProjectiveResolutionPGroup, 7-2609
ProjectiveSigmaLinearGroup, 5-1624
ProjectiveSigmaSymplecticGroup, 5-1626
ProjectiveSigmaUnitaryGroup, 5-1625
ProjectiveSpace, 9-3486, 9-3647, 9-3880
ProjectiveSpecialLinearGroup, 5-1624
ProjectiveSpecialOrthogonalGroup, 5-1626
ProjectiveSpecialOrthogonalGroupMinus,

5-1627
ProjectiveSpecialOrthogonalGroupPlus,

5-1627
ProjectiveSpecialUnitaryGroup, 5-1625
ProjectiveSuzukiGroup, 5-1628
ProjectiveSymplecticGroup, 5-1625
Projectivity, 9-3554
Prospector, 5-1488
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Prune, 1-202, 1-217, 1-224, 3-1050,
4-1445, 9-3537, 12-4701

pSelmerGroup, 3-1006, 4-1308, 10-4075
PseudoAdd, 10-4205
PseudoAddMultiple, 10-4205
PseudoBasis, 4-1431, 7-2455, 7-2461
PseudoDimension, 13-5176
PSeudoGenerators, 4-1431
PseudoMatrix, 4-1438, 7-2455, 7-2461
PseudoRandom, 5-1874
PseudoReflection, 8-2944
PseudoReflectionGroup, 8-2948
PseudoRemainder, 2-423
Psi, 2-507
PSigmaL, 5-1624
PSigmaSp, 5-1626
PSigmaU, 5-1625
pSignature, 3-746
PSL, 5-1624
PSL2, 11-4339
PSO, 5-1626
PSOMinus, 5-1627
PSOPlus, 5-1627
PSp, 5-1625
PSU, 5-1625
pSubalgebra, 8-3039
PSz, 5-1628
PuiseuxExpansion, 4-1246
PuiseuxExponents, 4-1250
PuiseuxExponentsCommon, 4-1250
PuiseuxSeriesRing, 4-1324
PuiseuxToParametrization, 4-1252
Pullback, 6-2195, 6-2331, 7-2591, 9-3542,

9-3544, 9-3579, 9-3678, 10-4147,
11-4582

PunctureCode, 13-5115, 5116, 13-5200,
13-5230, 13-5255

PureBraidGroup, 8-2932
PureLattice, 3-665
PurelyRamifiedExtension, 9-3423, 9-3440
PureRayIndices, 9-3874
PureRays, 9-3874
Pushforward, 9-3678
Pushout, 7-2591
PushThroughIsogeny, 10-3964
Put, 1-81
Puts, 1-81
qCoverDescent, 10-4196
qCoverPartialDescent, 10-4200
QECC, 13-5257
QECCLowerBound, 13-5259
QECCUpperBound, 13-5259
qEigenform, 11-4424, 11-4459
qExpansion, 11-4400
qExpansionBasis, 11-4398, 11-4460,

11-4494
qExpansionExpressions, 11-4329
qExpansionsOfGenerators, 11-4330

qIntegralBasis, 11-4460
QMatrix, 2-432
QNF, 3-774, 3-864
QRCode, 13-5111
QRCodeZ4, 13-5179
Qround, 2-359, 3-794, 3-906
QuadeIdeal, 9-3394
QuadraticClassGroupTwoPart, 3-840
QuadraticField, 3-836
QuadraticForm, 3-659, 3-745, 3-845,

5-1900, 12-4735
QuadraticFormMatrix, 2-622
QuadraticFormPolynomial, 2-623
QuadraticForms, 3-753
QuadraticNorm, 2-622
QuadraticOrder, 3-757
QuadraticSpace, 2-622
QuadraticTransformation, 9-3558
QuadraticTwist, 10-3947, 10-4129
QuadraticTwists, 10-3948, 10-4129
QuadricIntersection, 10-4028, 10-4108
QuantizedUEA, 8-3080
QuantizedUEAlgebra, 8-3080
QuantizedUniversalEnvelopingAlgebra,

8-3080
QuantumBasisElement, 13-5247
QuantumBinaryErrorGroup, 13-5248
QuantumCode, 13-5237, 13-5240, 5241
QuantumCyclicCode, 13-5243–5245
QuantumDimension, 8-3152
QuantumErrorGroup, 13-5248, 5249
QuantumQuasiCyclicCode, 13-5246
QuantumState, 13-5263
QuarticG4Covariant, 10-4023
QuarticG6Covariant, 10-4023
QuarticHSeminvariant, 10-4023
QuarticIInvariant, 10-4023
QuarticJInvariant, 10-4023
QuarticMinimise, 10-4024
QuarticMinimize, 10-4092
QuarticNumberOfRealRoots, 10-4024
QuarticPSeminvariant, 10-4023
QuarticQSeminvariant, 10-4023
QuarticReduce, 10-4024
QuarticRSeminvariant, 10-4023
QuasiCyclicCode, 13-5107
QuasisimpleMatrixGroup, 5-1979
QuasisimpleMatrixGroups, 5-1980
QuasiTwistedCyclicCode, 13-5107
QuaternaryPlotkinSum, 13-5187
Quaternion, 11-4368
QuaternionAlgebra, 7-2422, 7-2622–2625,

7-2642, 10-3932, 11-4366
QuaternionicAutomorphismGroup, 3-712
QuaternionicGModule, 3-712
QuaternionicMatrixGroupDatabase, 5-1975
QuaternionOrder, 7-2627, 7-2631, 11-4366,

11-4495, 11-4658
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QUAToIntegralUEAMap, 8-3095
quo, 2-273, 2-333, 2-434, 2-596, 3-661,

3-778, 3-951, 4-1268, 4-1407,
4-1424, 4-1444, 5-1473, 5-1563,
5-1675, 5-1797, 5-1830, 6-2057,
6-2089, 6-2255, 6-2261, 6-2395,
7-2424, 7-2485, 7-2551, 7-2578,
7-2697, 7-2719, 8-2987, 8-3011,
9-3287, 9-3318, 12-4939

Quotient, 11-4583, 11-4628, 12-4760,
12-4798

QuotientDimension, 9-3226, 9-3281
QuotientGradings, 9-3880, 9-3885
QuotientMap, 3-760
QuotientModule, 7-2496–2500, 9-3319
QuotientModuleAction, 5-1689
QuotientModuleImage, 5-1689
QuotientRepresentation, 4-1367
QuotientRing, 3-1046, 9-3426
QuotientWithPullback, 8-3012
Quotrem, 2-290, 2-422, 3-1156, 3-1161,

3-1204, 4-1231, 4-1318, 9-3705,
9-3711

Radical, 2-613, 5-1494, 5-1595, 5-1692,
8-2891, 9-3245

RadicalDecomposition, 9-3246, 9-3290
RadicalExtension, 3-777, 3-865
RadicalQuotient, 5-1596, 5-1692
RamificationDegree, 3-935, 3-1152,

3-1157, 4-1274, 4-1342, 4-1367
RamificationDivisor, 3-1105, 3-1169,

9-3678, 9-3710, 9-3717
RamificationField, 3-966
RamificationGroup, 3-965, 4-1370
RamificationIndex, 2-332, 3-810, 3-935,

3-958, 3-1152, 3-1157, 4-1274,
4-1342, 4-1367

RamifiedPlaces, 7-2635
RamifiedPrimes, 7-2635
RamifiedRepresentation, 4-1367
Random, 1-11, 1-31, 1-178, 1-200, 1-216,

2-269, 2-291, 2-336, 2-342, 2-354,
2-371, 2-399, 2-588, 3-780, 3-812,
3-878, 3-992, 3-1130, 3-1200,
3-1203, 4-1281, 4-1315, 4-1401,
5-1486, 5-1488, 5-1506, 5-1539, 1540,
5-1630, 5-1660, 5-1812, 1813, 6-2052,
6-2064, 2065, 6-2083, 6-2269, 6-2301,
6-2353, 6-2372, 6-2384, 6-2397,
6-2412, 7-2423, 7-2458, 7-2510,
7-2571, 7-2693, 7-2707, 8-3009,
8-3116, 8-3128, 9-3509, 9-3575,
10-3924, 10-3988, 10-4060, 10-4143,
10-4161, 11-4344, 12-4719, 12-4730,
12-4879, 4880, 12-4937, 12-4992,
13-5084, 13-5176, 13-5216

RandomAbelianSurface d10g6, 9-3781
RandomAdditiveCode, 13-5213

RandomAutomorphism, 8-3128
RandomBaseChange, 7-2792
RandomBits, 2-291
RandomCFP, 6-2301
RandomCompleteIntersection, 9-3761
RandomConsecutiveBits, 2-292
RandomCurveByGenus, 9-3656
RandomDigraph, 12-4931
RandomElementOfNormalClosure, 5-1712
RandomElementOfOrder, 5-1711
RandomEllipticFibration d10g10, 9-3782
RandomEllipticFibration d7g6, 9-3781
RandomEllipticFibration d8g7, 9-3781
RandomEllipticFibration d9g7, 9-3781
RandomEnriquesSurface d9g6, 9-3780
RandomExtension, 2-366
RandomGenusOneModel, 10-4105
RandomGLnZ, 2-528
RandomGraph, 12-4930, 12-4990
RandomHookWalk, 12-4829
RandomIdealGeneratedBy, 7-2578
RandomIrreduciblePolynomial, 2-382
RandomLinearCode, 13-5076, 13-5172
RandomMatrix, 2-528
RandomModel, 10-4105
RandomNodalCurve, 9-3655
RandomOrdinaryPlaneCurve, 9-3656
RandomPartition, 12-4814
RandomPlace, 3-1121, 3-1154, 9-3703
RandomPolytope, 12-4778
RandomPrime, 2-291, 2-301
RandomPrimePolynomial, 2-427
RandomProcess, 5-1487, 5-1539, 5-1660,

5-1812, 6-2064, 6-2268, 6-2384
RandomProcessWithValues, 5-1487
RandomProcessWithWords, 5-1487
RandomProcessWithWordsAndValues, 5-1487
RandomQuantumCode, 13-5241
RandomRationalSurface d10g9, 9-3780
RandomRightIdeal, 7-2460
RandomSchreier, 5-1616, 5-1704
RandomSequenceBlumBlumShub, 13-5277
RandomSequenceRSA, 13-5276, 5277
RandomSLnZ, 2-528
RandomSubcomplex, 4-1444
RandomSubset, 1-186
RandomSymplecticMatrix, 2-528
RandomTableau, 12-4829
RandomTransformation, 10-4113
RandomTree, 12-4930
RandomUnimodularMatrix, 2-528
RandomWord, 6-2301
Rank, 2-416, 2-448, 2-545, 2-574, 2-604,

3-658, 3-976, 3-1045, 3-1062,
4-1350, 4-1405, 4-1417, 7-2471,
7-2487, 7-2521, 8-2836, 8-2867,
8-2912, 8-2960, 8-2982, 8-3113,
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9-3289, 9-3324, 10-4012, 11-4489,
11-4575, 11-4586, 12-4759

RankBound, 10-4064, 10-4090, 10-4181,
10-4198

RankBounds, 10-4012, 10-4090, 10-4181,
10-4198

RanksOfPrimitiveIdempotents, 7-2536
RankZ2, 13-5189
RationalCharacterTable, 7-2748, 7-2763
RationalCurve, 10-3914
RationalCuspidalSubgroup, 11-4635
RationalDifferentialField, 9-3404
RationalExtensionRepresentation, 3-1098
RationalField, 2-353
RationalForm, 2-549, 7-2530
RationalFunction, 3-1139
RationalFunctionField, 3-1059, 1060
RationalHomology, 11-4554
RationalMap, 10-3963
RationalMapping, 11-4470
RationalMatrixGroupDatabase, 5-1971
RationalPoint, 10-3924
RationalPoints, 9-3508, 9-3510, 10-3924,

10-3956, 10-3968, 10-3988, 10-4142,
10-4144, 10-4159, 10-4165, 10-4172,
10-4195, 10-4206

RationalPointsByFibration, 9-3508
RationalPuiseux, 4-1380
RationalReconstruction, 2-360, 3-1140
RationalRuledSurface, 9-3761
Rationals, 2-353
RationalsAsNumberField, 3-774, 3-864
RationalSequence, 8-3091
RationalSolutions, 9-3450
RawBasket, 9-3843
RawEval, 3-820
Ray, 9-3874, 12-4783
RayClassField, 3-1009, 1010
RayClassGroup, 3-1003, 3-1191
RayClassGroupDiscLog, 3-1192
RayLattice, 9-3887
RayLatticeMap, 9-3887
RayResidueRing, 3-1005, 3-1191
Rays, 9-3874, 9-3880, 12-4783
Re, 2-482, 11-4372
Reachable, 12-4963, 12-5042
Read, 1-82, 1-84, 1-87
ReadBinary, 1-82
ReadBytes, 1-84, 1-87
Real, 2-482, 11-4346, 11-4372
RealEmbeddings, 3-809, 3-956
RealField, 2-476
RealHomology, 11-4554
RealInjection, 8-2836
RealMatrix, 11-4568
RealPeriod, 10-4050
RealPlaces, 3-808, 3-956
RealSigns, 3-809, 3-957

RealTamagawaNumber, 11-4475
Realtime, 1-26, 27
RealVectorSpace, 11-4554
RealVolume, 11-4463
rec, 1-242
recformat, 1-241
ReciprocalPolynomial, 2-424
RecogniseAdjoint (G), 5-1909
RecogniseAlternating, 5-1613, 5-1893
RecogniseAlternatingOrSymmetric, 5-1611,

5-1892
RecogniseAlternatingSquare (G), 5-1909
RecogniseClassicalSSA, 7-2672
RecogniseDelta (G), 5-1910
RecogniseExchangeSSA, 7-2672
RecogniseLargeRee, 5-1920
RecogniseRee, 5-1917
RecogniseSL, 5-1908
RecogniseSL3, 5-1906
RecogniseSp4Even, 5-1908
RecogniseSpOdd, 5-1908
RecogniseStarAlgebra, 7-2673
RecogniseSU3, 5-1908
RecogniseSU4, 5-1909
RecogniseSymmetric, 5-1612, 5-1893
RecogniseSymmetricSquare (G), 5-1909
RecogniseSz, 5-1911
RecognizeClassical, 5-1902
RecognizeLargeRee, 5-1920
RecognizeRee, 5-1917
RecognizeSL, 5-1908
RecognizeSL2, 5-1904
RecognizeSp4Even, 5-1908
RecognizeSpOdd, 5-1908
RecognizeSU3, 5-1908
RecognizeSU4, 5-1909
RecognizeSz, 5-1911
Reconstruct, 3-953
ReconstructionEnvironment, 3-953
ReconstructLatticeBasis, 3-680
Rectify, 12-4835
RedoEnumeration, 6-2217
Reduce, 3-1101, 4-1412, 7-2480, 9-3200,

10-4110
ReduceCharacters, 7-2774
ReduceCluster, 9-3728
ReduceCubicSurface, 9-3814
ReducedAteTPairing, 10-3992
ReducedBasis, 7-2465, 7-2652, 2653,

10-4018, 10-4176
ReducedDiscriminant, 3-894
ReducedEtaTPairing, 10-3991
ReducedFactorisation, 9-3582
ReducedForm, 3-756
ReducedForms, 3-757
ReducedGramMatrix, 7-2652, 2653
ReducedLegendreModel, 10-3920
ReducedLegendrePolynomial, 10-3919
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ReducedMinimalWeierstrassModel, 10-4128
ReducedModel, 10-4128
ReducedOrbits, 3-757
ReducedSubscheme, 9-3517
ReducedTatePairing, 10-3990
ReduceGenerators, 5-1622, 6-2183
ReduceGroebnerBasis, 9-3201
ReducePlaneCurve, 9-3728
ReduceQuadrics, 10-4110
ReduceToTriangleVertices, 11-4380
ReduceVector, 2-601
Reduction, 3-756, 3-845, 3-1166, 9-3575,

9-3716, 10-3925, 10-4063
ReductionOrbit, 3-756
Reductions, 11-4418
ReductionStep, 3-756
ReductionType, 10-4006
ReductiveRank, 8-3113
ReductiveType, 8-3018
Reductum, 2-423, 2-459, 460
ReeConjugacyClasses, 5-1928
ReedMullerCode, 13-5078
ReedMullerCodeQRMZ4, 13-5181
ReedMullerCodeRMZ4, 13-5182
ReedMullerCodesLRMZ4, 13-5182
ReedMullerCodesRMZ4, 13-5183
ReedMullerCodeZ4, 13-5178, 13-5181
ReedSolomonCode, 13-5113
ReeElementToWord, 5-1917
ReeGroup, 5-1891
ReeIrreducibleRepresentation, 5-1918
ReeMaximalSubgroups, 5-1922
ReeMaximalSubgroupsConjugacy, 5-1922
ReesIdeal, 9-3228
ReeSylow, 5-1926
ReeSylowConjugacy, 5-1926
RefineSection, 5-1594
Reflection, 8-2925, 8-2944, 8-3123
ReflectionFactors, 2-624
ReflectionGroup, 8-2824, 8-2848, 8-2899,

8-2908, 8-2931, 8-2938, 8-2949, 2950
ReflectionMatrices, 8-2841, 8-2881,

8-2926, 8-2968
ReflectionMatrix, 8-2841, 8-2881, 8-2926,

8-2968
ReflectionPermutation, 8-2842, 8-2882,

8-2925, 8-2968
ReflectionPermutations, 8-2842, 8-2882,

8-2968
Reflections, 8-2925, 8-3123
ReflectionSubgroup, 8-2927
ReflectionWord, 8-2842, 8-2882, 8-2926,

8-2968
ReflectionWords, 8-2842, 8-2882, 8-2926,

8-2968
Regexp, 1-71
Regularity, 9-3333
RegularLDPCEnsemble, 13-5157

RegularModel, 9-3727
RegularRepresentation, 7-2448, 7-2585
RegularSequence, 9-3228
RegularSpliceDiagram, 9-3752
RegularSubgroups, 5-1502
Regulator, 3-788, 3-894, 3-1122, 10-4016,

10-4176
RegulatorLowerBound, 3-788, 3-895
RelationIdeal, 9-3241, 9-3375
RelationMatrix, 3-916, 6-2046, 9-3310
RelationModule, 9-3309
Relations, 3-916, 3-1138, 3-1180, 6-2046,

6-2100, 6-2348, 6-2394, 6-2407,
9-3310, 9-3375, 9-3694, 9-3700,
11-4422

RelativeField, 3-783, 3-885, 4-1368
RelativeInvariant, 3-977
RelativePrecision, 4-1288, 4-1330,

4-1344, 4-1372, 9-3411
RelativePrecisionOfDerivation, 9-3411,

9-3432
RelativeProj, 9-3892
RelativeRank, 8-2867
RelativeRootDatum, 8-2879
RelativeRootElement, 8-3110
RelativeRoots, 8-2878
RelativeRootSpace, 8-2875
Remove, 1-202, 1-229
RemoveColumn, 2-535, 2-569
RemoveConstraint, 13-5289
RemoveEdge, 12-4943, 12-5024
RemoveEdges, 12-4943, 12-5024
RemoveFiles, 2-321
RemoveIrreducibles, 7-2774
RemoveLinearRelations, 9-3497
RemoveRow, 2-535, 2-569
RemoveRowColumn, 2-535, 2-569
RemoveVertex, 12-4941, 12-5021
RemoveVertices, 12-4941, 12-5021
RemoveWeight, 9-3845, 9-3847
RemoveZeroRows, 2-535, 2-569
Rep, 1-178, 1-199, 1-216, 2-269, 3-991,

5-1485, 5-1540, 5-1630, 5-1813,
5-1874, 6-2065, 6-2268, 6-2299,
6-2327, 6-2353, 6-2372, 6-2384,
6-2412, 12-4719, 12-4730, 12-4879,
4880, 12-4937

RepetitionCode, 13-5076, 13-5172
ReplaceRelation, 6-2207, 6-2396
ReplicationNumber, 12-4887
Representation, 6-2053, 7-2730, 9-3386,

9-3393
RepresentationDimension, 8-3152
RepresentationMatrix, 3-799, 3-911,

3-1133, 1134, 4-1372, 7-2448, 7-2460,
7-2489, 9-3293

RepresentationNumber, 3-761
RepresentationType, 7-2553
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Representative, 1-178, 1-199, 2-269,
2-283, 2-336, 2-354, 2-371, 2-414,
2-447, 2-479, 3-702–704, 3-781,
3-878, 3-991, 3-1039, 3-1061,
3-1130, 4-1281, 4-1315, 4-1327,
5-1485, 5-1540, 5-1630, 5-1813,
6-2268, 6-2299, 6-2327, 6-2353,
6-2372, 6-2412, 7-2471, 8-3058,
9-3889, 12-4719, 12-4730, 12-4879,
4880, 12-4937

RepresentativeCocycles, 5-1855
RepresentativePoint, 9-3705
Representatives, 3-705
Res H2 G QmodZ, 6-2072
ResetMaximumMemoryUsage, 1-90
ResetMinimumWeightBounds, 13-5097
Residual, 12-4882
Residue, 3-1179, 9-3699, 9-3706, 12-4762
ResidueClassDegree, 3-1152, 3-1157
ResidueClassField, 2-274, 3-810, 3-935,

3-958, 3-1152, 3-1157, 4-1276,
4-1327, 4-1342, 4-1368, 9-3706

ResidueClassRing, 2-333
ResidueField, 4-1317
ResidueSystem, 4-1276
Resolution, 9-3898
ResolutionData, 7-2608
ResolutionGraph, 9-3745, 3746, 9-3748
ResolutionGraphVertex, 9-3745
ResolveAffineCurve, 9-3783
ResolveAffineMonicSurface, 9-3786
ResolveFanMap, 9-3876
ResolveLinearSystem, 9-3898
ResolveProjectiveCurve, 9-3785
ResolveProjectiveSurface, 9-3788
Restrict, 3-813, 3-821
RestrictDegree, 12-4863
RestrictedPartitions, 2-296, 12-4813
RestrictedSubalgebra, 8-3039
RestrictEndomorphism, 11-4560
RestrictField, 2-598, 5-1646, 13-5117
Restriction, 5-2021, 7-2585, 7-2738,

7-2772, 9-3505, 9-3537, 9-3609,
11-4560, 12-4882

RestrictionChainMap, 7-2610
RestrictionData, 7-2610
RestrictionMap, 8-3039
RestrictionMatrix, 8-3054, 8-3167, 8-3173
RestrictionOfGenerators, 7-2611
RestrictionOfScalars, 9-3524
RestrictionToImage, 11-4560
RestrictionToPatch, 9-3504, 9-3548
RestrictPartitionLength, 12-4863
RestrictParts, 12-4863
RestrictResolution, 7-2610
Resultant, 2-432, 2-467
ResumeEnumeration, 6-2218
Retrieve, 1-236

Reverse, 1-202, 1-224, 4-1332
ReverseColumns, 2-534, 2-568
ReverseRows, 2-534, 2-568
Reversion, 4-1332
RevertClass, 6-2234
Rewind, 1-81
Rewrite, 6-2149, 2150
ReynoldsOperator, 9-3360
RGenerators, 12-4788
RHS, 6-2044, 6-2088, 6-2392
RichelotIsogenousSurface, 10-4155
RichelotIsogenousSurfaces, 10-4155
rideal, 6-2394, 7-2424, 7-2460, 7-2477,

7-2514, 7-2551, 7-2645
RiemannRochBasis, 9-3586, 9-3613, 9-3893
RiemannRochCoordinates, 9-3587
RiemannRochDimension, 9-3893
RiemannRochPolytope, 9-3893
RiemannRochSpace, 3-1166, 9-3586, 9-3716
RiemannZeta, 10-4246
RightAction, 7-2690
RightActionGenerator, 7-2731
RightAdjointMatrix, 8-3035
RightAnnihilator, 7-2446, 7-2554, 7-2577
RightCosetSpace, 6-2173, 6-2229
RightDescentSet, 8-2917, 8-2962
RightExactExtension, 4-1446
RightGCD, 6-2320
RightGcd, 6-2320
RightGreatestCommonDivisor, 6-2320
RightHandFactors, 9-3462
RightIdeal, 7-2645
RightIdealClasses, 7-2465, 7-2648
RightInverse, 11-4612
RightInverseMorphism, 11-4612
RightIsomorphism, 7-2656
RightLCM, 6-2321, 2322
RightLcm, 6-2321, 2322
RightLeastCommonMultiple, 6-2321, 2322
RightMixedCanonicalForm, 6-2310
RightNormalForm, 6-2309
RightOrder, 7-2461, 7-2647
RightRegularModule, 7-2584
RightRepresentationMatrix, 7-2459
RightString, 8-2844, 8-2883, 8-2922
RightStringLength, 8-2844, 8-2883, 8-2922
RightTransversal, 5-1489, 5-1602, 5-1695,

5-1837, 6-2065, 6-2175, 6-2229,
6-2269

RightZeroExtension, 4-1447
Ring, 5-2015, 9-3507, 10-3959
RingClassGroup, 3-915
RingGeneratedBy, 11-4580
RingMap, 9-3507
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