HANDBOOK OF MAGMA FUNCTIONS

Volume 1

Language and Data Structures

John Cannon Wieb Bosma

Claus Fieker Allan Steel

Editors

Version 2.19 Sydney April 24, 2013

ii

MAGMA COMPUTER • ALGEBRA

HANDBOOK OF MAGMA FUNCTIONS

Editors:

John Cannon

Wieb Bosma

Claus Fieker

Allan Steel

Handbook Contributors:

Geoff Bailey, Wieb Bosma, Gavin Brown, Nils Bruin, John Cannon, Jon Carlson, Scott Contini, Bruce Cox, Brendan Creutz, Steve Donnelly, Tim Dokchitser, Willem de Graaf, Andreas-Stephan Elsenhans, Claus Fieker, Damien Fisher, Volker Gebhardt, Sergei Haller, Michael Harrison, Florian Hess, Derek Holt, David Howden, Al Kasprzyk, Markus Kirschmer, David Kohel, Axel Kohnert, Dimitri Leemans, Paulette Lieby, Graham Matthews, Scott Murray, Eamonn O'Brien, Dan Roozemond, Ben Smith, Bernd Souvignier, William Stein, Allan Steel, Damien Stehlé, Nicole Sutherland, Don Taylor, Bill Unger, Alexa van der Waall, Paul van Wamelen, Helena Verrill, John Voight, Mark Watkins, Greg White

Production Editors:

Wieb Bosma Claus Fieker Allan Steel Nicole Sutherland

HTML Production: Claus Fieker Allan Steel

The computer algebra system MAGMA is designed to provide a software environment for computing with the structures which arise in areas such as algebra, number theory, algebraic geometry and (algebraic) combinatorics. MAGMA enables users to define and to compute with structures such as groups, rings, fields, modules, algebras, schemes, curves, graphs, designs, codes and many others. The main features of MAGMA include:

- Algebraic Design Philosophy: The design principles underpinning both the user language and system architecture are based on ideas from universal algebra and category theory. The language attempts to approximate as closely as possible the usual mathematical modes of thought and notation. In particular, the principal constructs in the user language are set, (algebraic) structure and morphism.
- *Explicit Typing:* The user is required to explicitly define most of the algebraic structures in which calculations are to take place. Each object arising in the computation is then defined in terms of these structures.
- *Integration:* The facilities for each area are designed in a similar manner using generic constructors wherever possible. The uniform design makes it a simple matter to program calculations that span different classes of mathematical structures or which involve the interaction of structures.
- Relationships: MAGMA provides a mechanism that manages "relationships" between complex bodies of information. For example, when substructures and quotient structures are created by the system, the natural homomorphisms that arise are always stored. These are then used to support automatic coercion between parent and child structures.
- Mathematical Databases: MAGMA has access to a large number of databases containing information that may be used in searches for interesting examples or which form an integral part of certain algorithms. Examples of current databases include factorizations of integers of the form $p^n \pm 1$, p a prime; modular equations; strongly regular graphs; maximal subgroups of simple groups; integral lattices; K3 surfaces; best known linear codes and many others.
- *Performance:* The intention is that MAGMA provide the best possible performance both in terms of the algorithms used and their implementation. The design philosophy permits the kernel implementor to choose optimal data structures at the machine level. Most of the major algorithms currently installed in the MAGMA kernel are state-of-the-art and give performance similar to, or better than, specialized programs.

The theoretical basis for the design of MAGMA is founded on the concepts and methodology of modern algebra. The central notion is that of an *algebraic structure*. Every object created during the course of a computation is associated with a unique parent algebraic structure. The *type* of an object is then simply its parent structure.

Algebraic structures are first classified by variety: a variety being a class of structures having the same set of defining operators and satisfying a common set of axioms. Thus, the collection of all rings forms a variety. Within a variety, structures are partitioned into *categories*. Informally, a family of algebraic structures forms a category if its members all share a common *representation*. All varieties possess an *abstract* category of structures (the finitely presented structures). However, categories based on a concrete representation are as least as important as the abstract category in most varieties. For example, within the variety of algebras, the family of finitely presented algebras constitutes an abstract category, while the family of matrix algebras constitutes a concrete category.

MAGMA comprises a novel user programming language based on the principles outlined above together with program code and databases designed to support computational research in those areas of mathematics which are algebraic in nature. The major areas represented in MAGMA V2.19 include group theory, ring theory, commutative algebra, arithmetic fields and their completions, module theory and lattice theory, finite dimensional algebras, Lie theory, representation theory, homological algebra, general schemes and curve schemes, modular forms and modular curves, L-functions, finite incidence structures, linear codes and much else.

This set of volumes (known as the Handbook) constitutes the main reference work on MAGMA. It aims to provide a comprehensive description of the MAGMA language and the mathematical facilities of the system, In particular, it documents every function and operator available to the user. Our aim (not yet achieved) is to list not only the functionality of the MAGMA system but also to show how the tools may be used to solve problems in the various areas that fall within the scope of the system. This is attempted through the inclusion of tutorials and sophisticated examples. Finally, starting with the edition corresponding to release V2.8, this work aims to provide some information about the algorithms and techniques employed in performing sophisticated or time-consuming operations. It will take some time before this goal is fully realised.

We give a brief overview of the organization of the Handbook.

- Volume 1 contains a terse summary of the language together with a description of the central datatypes: sets, sequences, tuples, mappings, etc. An index of all intrinsics appears at the end of the volume.
- Volume 2 deals with basic rings and linear algebra. The rings include the integers, the rationals, finite fields, univariate and multivariate polynomial rings as well as real and complex fields. The linear algebra section covers matrices and vector spaces.
- Volume 3 covers global arithmetic fields. The major topics are number fields, their orders and function fields. More specialised topics include quadratic fields , cyclotomic fields and algebraically closed fields.
- Volume 4 is concerned with local arithmetic fields. This covers *p*-adic rings and their extension and power series rings including Laurent and Puiseux series rings,

- Volume 5 describes the facilities for finite groups and, in particular, discusses permutation groups, matrix groups and finite soluble groups defined by a power-conjugate presentation. A chapter is devoted to databases of groups.
- Volume 6 describes the machinery provided for finitely presented groups. Included are abelian groups, general finitely presented groups, polycyclic groups, braid groups and automatic groups. This volume gives a description of the machinery provided for computing with finitely presented semigroups and monoids.
- Volume 7 is devoted to aspects of Lie theory and module theory. The Lie theory includes root systems, root data, Coxeter groups, reflection groups and Lie groups.
- Volume 8 covers algebras and representation theory. Associative algebras include structure-constant algebras, matrix algebras, basic algebras and quaternion algebras. Following an account of Lie algebras there is a chapter on quantum groups and another on universal enveloping algebras. The representation theory includes group algebras, K[G]-modules, character theory, representations of the symmetric group and representations of Lie groups.
- Volume 9 covers commutative algebra and algebraic geometry. The commutative algebra material includes constructive ideal theory, affine algebras and their modules, invariant rings and differential rings. In algebraic geometry the main topics are schemes, sheaves and toric varieties. Also included are chapters describing specialised machinery for curves and surfaces.
- Volume 10 describes the machinery pertaining to arithmetic geometry. The main topics include the arithmetic properties of low genus curves such as conics, elliptic curves and hyperelliptic curves. The volume concludes with a chapter on *L*-series.
- Volume 11 is concerned with modular forms.
- Volume 12 covers various aspects of geometry and combinatorial theory. The geometry section includes finite planes, finite incidence geometry and convex polytopes. The combinatorial theory topics comprise enumeration, designs, Hadamard matrices, graphs and networks.
- Volume 13 is primarily concerned with coding theory. Linear codes over both fields and finite rings are considered at length. Further chapters discuss machinery for AG-codes, LDPC codes, additive codes and quantum error-correcting codes. The volume concludes with short chapters on pseudo-random sequences and on linear programming.

Although the Handbook has been compiled with care, it is possible that the semantics of some facilities have not been described adequately. We regret any inconvenience that this may cause, and we would be most grateful for any comments and suggestions for improvement. We would like to thank users for numerous helpful suggestions for improvement and for pointing out misprints in previous versions.

The development of MAGMA has only been possible through the dedication and enthusiasm of a group of very talented mathematicians and computer scientists. Since 1990, the principal members of the MAGMA group have included: Geoff Bailey, Mark Bofinger, Wieb Bosma, Gavin Brown, John Brownie, Herbert Brückner, Nils Bruin, Steve Collins, Scott Contini, Bruce Cox, Brendan Creutz, Steve Donnelly, Willem de Graaf, Andreas-Stephan Elsenhans, Claus Fieker, Damien Fisher, Alexandra Flynn, Volker Gebhardt, Katharina Geißler, Sergei Haller, Michael Harrison, Emanuel Herrmann, Florian Heß, David Howden, Al Kasprzyk, David Kohel, Paulette Lieby, Graham Matthews, Scott Murray, Anne O'Kane, Catherine Playoust, Richard Rannard, Colva Roney-Dougal, Dan Roozemond, Andrew Solomon, Bernd Souvignier, Ben Smith, Allan Steel, Damien Stehlé, Nicole Sutherland, Don Taylor, Bill Unger, John Voight, Alexa van der Waall, Mark Watkins and Greg White.

> John Cannon Sydney, December 2012

viii

The Magma Development Team

Current Members

Geoff Bailey, BSc (Hons) (Sydney), [1995-]: Main interests include elliptic curves (especially those defined over the rationals), virtual machines and computer language design. Has implemented part of the elliptic curve facilities especially the calculation of Mordell-Weil groups. Other main areas of contribution include combinatorics, local fields and the MAGMA system internals.

John Cannon, Ph.D. (Sydney), [1971-]: Research interests include computational methods in algebra, geometry, number theory and combinatorics; the design of mathematical programming languages and the integration of databases with Computer Algebra systems. Contributions include overall concept and planning, language design, specific design for many categories, numerous algorithms (especially in group theory) and general management.

Brendan Creutz, Ph.D. (Jacobs University Bremen) [2011-]: Primary research interests are in arithmetic geometry. Main contributions focus on descent obstructions to the existence of rational points on curves and torsors under their Jacobians. Currently developing a package for cyclic covers of the projective line.

Steve Donnelly, Ph.D. (Athens, Ga) [2005-]: Research interests are in arithmetic geometry, particularly elliptic curves and modular forms. Major contributions include descent methods for elliptic curves (including over function fields) and Cassels-Tate pairings, classical modular forms of half-integral weight, Hilbert modular forms and fast algorithms for definite quaternion algebras. Currently working on Hilbert modular forms, and elliptic curves over number fields.

Andreas-Stephan Elsenhans, Ph.D. (Göttingen) [2012-]: Main research interests are in the areas of arithmetic and algebraic geometry, particularly cubic and K3 surfaces. Main contributions focus on cubic surfaces from the arithmetic and algebraic points of view. Currently working on the computation of invariants.

Michael Harrison, Ph.D. (Cambridge) [2003-]: Research interests are in number theory, arithmetic and algebraic geometry. Implemented the *p*-adic methods for counting points on hyperelliptic curves and their Jacobians over finite fields including Kedlaya's algorithm and the modular parameter method of Mestre. Currently working on machinery for general surfaces and cohomology for projective varieties.

David Howden, Ph.D. (Warwick) [2012-]: Primary research interests are in computational group theory. Main contributions focus on computing automorphism groups and isomorphism testing for soluble groups. Allan Steel, Ph.D. (Sydney), [1989-]: Has developed many of the fundamental data structures and algorithms in MAGMA for multiprecision integers, finite fields, matrices and modules, polynomials and Gröbner bases, aggregates, memory management, environmental features, and the package system, and has also worked on the MAGMA language interpreter. In collaboration, he has developed the code for lattice theory (with Bernd Souvignier), invariant theory (with Gregor Kemper) and module theory (with Jon Carlson and Derek Holt).

Nicole Sutherland, BSc (Hons) (Macquarie), [1999-]: Works in the areas of number theory and algebraic geometry. Developed the machinery for Newton polygons and lazy power series and contributed to the code for local fields, number fields, modules over Dedekind domains, function fields, schemes and has worked on aspects of algebras.

Don Taylor, D.Phil. (Oxford), [2010-] Research interests are in reflection groups, finite group theory, and geometry. Implemented algorithms for complex reflection groups and complex root data. Contributed to the packages for Chevalley groups and groups of Lie type. Currently developing algorithms for classical groups of isometries, Clifford algebras and spin groups.

Bill Unger, Ph.D. (Sydney), [1998-]: Main area of interest is computational group theory, with particular emphasis on algorithms for permutation and matrix groups. Implemented many of the current permutation and matrix group algorithms for MAGMA, in particular BSGS verification, solvable radical and chief series algorithms. Recently discovered a new method for computing the character table of a finite group.

Mark Watkins, Ph.D. (Athens, Ga), [2003, 2004-2005, 2008-]: Works in the area of number theory, particularly analytic methods for arithmetic objects. Implemented a range of analytic tools for the study of elliptic curves including analytic rank, modular degree, Heegner points and (general) point searching methods. Also deals with conics, lattices, modular forms, and descent machinery over the rationals.

Former Members

Wieb Bosma, [1989-1996]: Responsible for the initial development of number theory in MAGMA and the coordination of work on commutative rings. Also has continuing involvement with the design of MAGMA.

Gavin Brown, [1998-2001]: Developed code in basic algebraic geometry, applications of Gröbner bases, number field and function field kernel operations; applications of Hilbert series to lists of varieties.

Herbert Brückner, [1998–1999]: Developed code for constructing the ordinary irreducible representations of a finite soluble group and the maximal finite soluble quotient of a finitely presented group.

Nils Bruin, [2002–2003]: Contributions include Selmer groups of elliptic curves and hyperelliptic Jacobians over arbitrary number fields, local solubility testing for arbitrary projective varieties and curves, Chabauty-type computations on Weil-restrictions of elliptic curves and some algorithms for, and partial design of, the differential rings module.

Bruce Cox, [1990–1998]: A member of the team that worked on the design of the MAGMA language. Responsible for implementing much of the first generation MAGMA machinery for permutation and matrix groups.

Claus Fieker, [2000-2011]: Formerly a member of the KANT project. Research interests are in constructive algebraic number theory and, especially, relative extensions and computational class field theory. Main contributions are the development of explicit algorithmic class field theory in the case of both number and function fields and the computation of Galois groups.

Damien Fisher, [2002-2006]: Implemented a package for *p*-adic rings and their extensions and undertook a number of extensions to the MAGMA language.

Alexandra Flynn, [1995–1998]: Incorporated various Pari modules into MAGMA, and developed much of the machinery for designs and finite planes.

Volker Gebhardt, [1999–2003]: Author of the MAGMA categories for infinite polycyclic groups and for braid groups. Other contributions include machinery for general finitely presented groups.

Katharina Geißler, [1999–2001]: Developed the code for computing Galois groups of number fields and function fields.

Willem de Graaf, [2004-2005]: Contributed functions for computing with finitedimensional Lie algebras, finitely-presented Lie algebras, universal enveloping algebras and quantum groups.

Sergei Haller, [2004, 2006-2007]: Developed code for many aspects of Lie Theory. Of particular note was his work on the construction of twisted groups of Lie type and the determination of conjugacy classes of elements in the classical groups (jointly with Scott Murray (MAGMA)).

Emanuel Herrmann, [1999]: Contributed code for finding S-integral points on genus 1 curves (not elliptic curves).

Florian Heß, [1999–2001]: Developed a substantial part of the algebraic function field module in MAGMA including algorithms for the computation of Riemann-Roch spaces and class groups. His most recent contribution (2005) is a package for computing all isomorphisms between a pair of function fields.

Alexander Kasprzyk, [2009-2010]: Developed the toric geometry and polyhedra packages (along with Gavin Brown and Jaroslaw Buczynski).

David Kohel, [1999–2002]: Contributions include a model for schemes (with G Brown); algorithms for curves of low genus; implementation of elliptic curves, binary quadratic forms, quaternion algebras, Brandt modules, spinor genera and genera of lattices, modular curves, conics (with P Lieby), modules of supersingular points (with W Stein), Witt rings.

Paulette Lieby, [1999–2003]: Contributed to the development of algorithms for algebraic geometry, abelian groups and incidence structures. Developed datastructures for multigraphs and implemented algorithms for planarity, triconnectivity and network flows.

Graham Matthews, [1989–1993]: Involved in the design of the MAGMA semantics, user interface, and internal organisation.

Scott Murray, [2001-2002, 2004-2010]: Implemented algorithms for element operations in split groups of Lie type, representations of split groups of Lie type, split Cartan subalgebras of modular Lie algebras, and Lang's Theorem in finite reductive groups. More recently implemented solutions to conjugacy problems in the classical groups (with S. Haller and D. Taylor).

Catherine Playoust, [1989–1996]: Wrote extensive documentation and implemented an early help system. Contributed to system-wide consistency of design and functionality. Also pioneered the use of MAGMA for teaching undergraduates.

Richard Rannard, [1997–1998]: Contributed to the code for elliptic curves over finite fields including a first version of the SEA algorithm.

Colva M. Roney-Dougal, [2001–2003]: Completed the classification of primitive permutation groups up to degree 999 (with Bill Unger). Also undertook a constructive classification of the maximal subgroups of the classical simple groups.

Dan Roozemond, [2010-2012]: Research focused on the computational aspects of Lie theory. Ported algorithms for the Weight Multisets from LiE to Magma and developed a number of algorithms for reductive Lie algebras, particularly over fields of small characteristic.

Michael Slattery, [1987–2006]: Contributed a large part of the machinery for finite soluble groups including subgroup lattice and automorphism group.

Ben Smith, [2000–2003]: Contributed to an implementation of the Number Field Sieve and a package for integer linear programming.

Bernd Souvignier, [1996–1997]: Contributed to the development of algorithms and code for lattices, local fields, finite dimensional algebras and permutation groups.

Damien Stehlé, [2006, 2008-2010]: Implemented the proveably correct floating-point LLL algorithm together with a number of fast non-rigorous variants. Also developed a fast method for enumerating short vectors.

John Voight, [2005-2006]: Implemented algorithms for quaternion algebras over number fields, associative orders (with Nicole Sutherland), and Shimura curves.

Alexa van der Waall, [2003]: Implemented the module for differential Galois theory.

Paul B. van Wamelen, [2002–2003]: Implemented analytic Jacobians of hyperelliptic curves in MAGMA.

Greg White, [2000-2006]: Contributions include fast minimum weight determination, linear codes over Z/mZ, additive codes, LDPC codes, quantum error-correcting codes, and a database of best known linear codes (with Cannon and Grassl).

External Contributors

The MAGMA system has benefited enormously from contributions made by many members of the mathematical community. We list below those persons and research groups who have given the project substantial assistance either by allowing us to adapt their software for inclusion within MAGMA or through general advice and criticism. We wish to express our gratitude both to the people listed here and to all those others who participated in some aspect of the MAGMA development.

Algebraic Geometry

A major package for algebraic surfaces providing formal desingularization, the calculation of adjoints, and rational parameterization was developed by **Tobias Beck** (RICAM, Linz). He also implemented a package for computing with algebraic power series. This work was done while he was a student of **Josef Schicho**.

A package for working with divisors on varieties has been developed by Martin Bright (American University of Beirut), Gavin Brown (Loughborough), Mike Harrison (Magma) and Andrew Wilson (Edinburgh). The functionality includes decomposition into irreducible components, Riemann-Roch spaces, canonical divisors and (surface) intersection numbers.

Machinery for working with Hilbert series of polarised varieties and the associated databases of K3 surfaces and Fano 3-folds has been constructed by **Gavin Brown** (Warwick).

Jaroslaw Buczynski (Texas A&M), along with Gavin Brown (Loughborough) and Alexander Kasprzyk (Imperial College), developed the toric geometry and polyhedra packages.

Functions for computing Shioda invariants for genus 3 hyperelliptic curves, reconstructing models for a curve from such invariants and computing geometric automorphism groups have been contributed by **Reynald Lercier** (DGA, Rennes) and **Christophe Ritzen-thaler** (Luminy).

Jana Pilnikova (Univerzita Komenskeho, Bratislava) (while a student of Josef Schicho in Linz) contributed code for the parameterization of degree 8 and 9 Del Pezzo surfaces, jointly written with Willem de Graaf (Trento).

Miles Reid (Warwick) has been heavily involved in the design and development of a database of K3 surfaces within MAGMA.

Josef Schicho (RICAM, Linz) has played a major role in the design and implementation of the algebraic surfaces package. In particular, Josef has also implemented several of the modules for rational surface parameterization.

A function that finds the intersection multiplicities for all intersection points of two plane curves was adapted into MAGMA from code provided by **Chris Smyth** (Edinburgh).

Andrew Wilson (Edinburgh) has contributed a package to compute the log canonical threshold for singular points on a curve.

Arithmetic Geometry Over Characteristic 0 Fields

The method of Chabauty for finding points on elliptic curves was originally implemented by **Nils Bruin** in 2003 while a member of the MAGMA group. In 2009 Nils improved it considerably by combining it with *Mordell-Weil sieving*.

Two-cover-descent has been implemented by **Nils Bruin** (Simon Fraser) for hyperelliptic curves. Given the Jacobian of a genus 2 curve, Nils has also provided code to compute all (2, 2)-isogenous abelian surfaces.

The MAGMA facility for determining the Mordell-Weil group of an elliptic curve over the rational field is based on the MWRANK programs of **John Cremona** (Nottingham).

John Cremona (Nottingham) has contributed his code implementing Tate's algorithm for computing local minimal models for elliptic curves defined over number fields.

The widely-used database of all elliptic curves over Q having conductor up to 300,000 constructed by **John Cremona** (Warwick) is also included.

Tim Dokchitser (Durham) wrote code for computing root numbers of elliptic curves over number fields.

Andreas-Stephan Elsenhans (Bayreuth) has provided routines for performing minimisation and reduction for Del Pezzo surfaces of degrees 3 and 4.

Code for determining isomorphism of cubic surfaces has been contributed by **Andreas-Stephan Elsenhans** (Bayreuth).

A collection of tools that calculate information about the Picard rank of a surface has been developed by **Andreas-Stephan Elsenhans** (Bayreuth).

Code for calculating the invariants, covariants and contravariants of a cubic surface has been developed by **Andreas-Stephan Elsenhans** (Bayreuth).

A package contributed by **Tom Fisher** (Cambridge) deals with curves of genus 1 given by models of a special kind (genus one normal curves) having degree 2, 3, 4 and 5.

The implementation of 3-descent on elliptic curves was mainly written by **Tom Fisher** (Cambridge). An earlier version as well as part of the current version were developed by **Michael Stoll** (Bremen).

The algorithms and implementations of 6- and 12-descent are due to **Tom Fisher** (Cambridge). The new alorithm/implementation of 8-descent is likewise by Tom Fisher; this partly incorporates and partly replaces the earlier one by **Sebastian Stamminger**.

Martine Girard (Sydney) has contributed her fast code for determining the heights of a point on an elliptic curve defined over a number field or a function field.

David Kohel (Singapore–NUS, MAGMA) has provided implementations of division polynomials and isogeny structures for elliptic curves.

Full and partial descents on cyclic covers of the projective line were implemented by **Michael Mourao** (Warwick).

A package for computing canonical heights on hyperelliptic curves has been contributed by **Steffan Müller** (Bayreuth).

David Roberts (Nottingham) contributed some descent machinery for elliptic curves over function fields.

David Roberts and **John Cremona** (Nottingham) implemented the Cremona-van Hoeij algorithm for parametrization of conics over rational function fields.

Jasper Scholten (Leuven) has developed much of the code for computing with elliptic curves over function fields.

Much of the initial development of the package for computing with hyperelliptic curves is due to **Michael Stoll** (Bayreuth). He also contributed many of the high level routines involving curves over the rationals and their Jacobians, such as Chabauty's method.

A database of 136, 924, 520 elliptic curves with conductors up to 10^8 has been provided by William Stein (Harvard) and Mark Watkins (Penn State).

For elliptic curves defined over finite fields of characteristic 2, Kedlaya's algorithm for point counting has been implemented by **Frederick Vercauteren** (Leuven).

Tom Womack (Nottingham) contributed code for performing four-descent, from which the current implementation was adapted.

Arithmetic Geometry Over Finite Fields

Various point-counting algorithms for hyperelliptic curves have been implemented by **Pierrick Gaudry** (Ecole Polytechnique, Paris). These include an implementation of the Schoof algorithm for genus 2 curves.

An implementation of GHS Weil descent for ordinary elliptic curves in characteristic 2 has been provided by **Florian Heß** (TU, Berlin).

A MAGMA package for calculating Igusa and other invariants for genus 2 hyperelliptic curves was written by **Everett Howe** (CCR, San Diego) and is based on **gp** routines developed by **Fernando Rodriguez–Villegas** (Texas) as part of the Computational Number Theory project funded by a TARP grant.

Reynard Lercier (Rennes) provided much advice and assistance to the MAGMA group concerning the implementation of the SEA point counting algorithm for elliptic curves.

Reynard Lercier (Rennes) and **Christophe Ritzenthaler** provided extensions to the machinery for genus 2 curves defined over finite fields. These include the reconstruction of a curve from invariants which applies to every characteristic p (previously p > 5), the geometric automorphism group and the calculation of all twists (not just quadratic).

Frederik Vercauteren (Leuven) has produced efficient implementations of the Tate, Eta and Ate pairings in MAGMA.

Class fields over local fields and the multiplicative structure of local fields are computed using new algorithms and implementations due to **Sebastian Pauli** (TU Berlin).

The module for Lazy Power Series is based on the ideas of **Josef Schicho** (Linz).

xvi

Associative Algebras

Fast algorithms for computing the Jacobson radical and unit group of a matrix algebra over a finite field were designed and implemented by **Peter Brooksbank** (Bucknell) and **Eamonn O'Brien** (Auckland).

A package for computing with algebras equipped with an involution (*-algebras) has been contributed by **Peter Brooksbank** (Bucknell) and **James Wilson**.

An algorithm designed and implemented by **Jon Carlson** and **Graham Matthews** (Athens, Ga.) provides an efficient means for constructing presentations for matrix algebras.

For matrix algebras defined over a finite field, **Jon Carlson** (Athens, Ga.) designed and implemented algorithms for the Jacobson radical and unit group which are faster than the Brooksbank-O'Brien algorithms for larger examples.

A substantial package for working with substructures and homomorphisms of basic algebras, developed by **Jon Carlson** (Athens, Ga.), was released as part of V2.19. Among other things, the package can compute the automorphism group of a basic algebra and test pairs of basic algebras for isomorphism.

Markus Kirschmer (Aachen) has written a number of optimized routines for definite quaternion algebras over number fields.

Markus Kirschmer has also contributed a package for quaternion algebras defined over the function fields $F_q[t]$, for q odd. The package includes calculation of the normaliser of an order and an efficient algorithm for computing the two-sided ideal classes of an order in a definite quaternion algebra (over \mathbf{Z} or $\mathbf{F}_q[t]$).

Quaternion algebras over the rational field Q were originally implemented by **David Kohel** (Singapore-NUS, MAGMA).

The vector enumeration program of **Steve Linton** (St. Andrews) provides an alternative to the use of Gröbner basis for constructing a matrix representation of a finitely presented associative algebra.

John Voight (Vermont) produced the package for quaternion algebras over number fields.

Coding Theory

A package for constructing linear codes associated with lattice points in a convex polytope has been contributed by **Gavin Brown** (Loughborough) and **Al Kasprzyk** (Imperial).

The PERM package developed by **Jeff Leon** (UIC) is used to determine automorphism groups of codes, designs and matrices.

The development of machinery for linear codes benefited greatly from the active involvement of **Markus Grassl** (Karlsruhe) over a long period. Of particular note is his contribution to the development of improved algorithms for computing the minimum weight and for the enumeration of codewords.

Routines implementing many different constructions for linear codes over finite fields were contributed by **Markus Grassl** (Karlsruhe).

Markus Grassl (Karlsruhe) played a key role in the design of MAGMA packages for Additive Codes and Quantum Error-Correcting Codes. The packages were implemented by Greg White (Magma).

The construction of a database of Best Known Linear Codes over GF(2) was a joint project with Markus Grassl (Karlsruhe, NUS). Other contributors to this project include: Andries Brouwer, Zhi Chen, Stephan Grosse, Aaron Gulliver, Ray Hill, David Jaffe, Simon Litsyn, James B. Shearer and Henk van Tilborg.

The databases of Best Known Linear Codes over GF(3), GF(4), GF(5), GF(7), GF(8) and GF(9) were constructed by **Markus Grassl** (IAKS, Karlsruhe).

A substantial collection of intrinsics for constructing and computing properties of Z_4 codes has been contributed by **Jaume Pernas**, **Jaume Pujol** and **Merc Villanueva** (Universitat Autònoma de Barcelona).

Combinatorics

Michel Berkelaar (Eindhoven) gave us permission to incorporate his LP_SOLVE package for linear programming.

The first stage of the MAGMA database of Hadamard and skew-Hadamard matrices was prepared with the assistance of **Stelios Georgiou** (Athens), **Ilias Kotsireas** (Wilfrid Laurier) and **Christos Koukouvinos** (Athens). In particular, they made available their tables of Hadamard matrices of orders 32, 36, 44, 48 and 52. Further Hadamard matrices were contributed by Dragomir Djokovic.

The MAGMA machinery for symmetric functions is based on the Symmetrica package developed by **Abalbert Kerber** (Bayreuth) and colleagues. The MAGMA version was implemented by **Axel Kohnert** of the Bayreuth group.

The PERM package developed by **Jeff Leon** (UIC) is used to determine automorphism groups of designs and also to determine isomorphism of pairs of designs.

Automorphism groups and isomorphism of Hadamard matrices are determined by converting to a similar problem for graphs and then applying **Brendan McKay's** (ANU) program NAUTY. The adaption was undertaken by **Paulette Lieby** and **Geoff Bailey**.

The calculation of the automorphism groups of graphs and the determination of graph isomorphism is performed using **Brendan McKay's** (ANU) program NAUTY (version 2.2). Databases of graphs and machinery for generating such databases have also been made available by Brendan. He has also collaborated in the design of the sparse graph machinery.

The code to perform the regular expression matching in the **regexp** intrinsic function comes from the V8 regexp package written by **Henry Spencer** (Toronto).

xviii

Commutative Algebra

Gregor Kemper (TU München) has contributed most of the major algorithms of the Invariant Theory module of MAGMA, together with many other helpful suggestions in the area of Commutative Algebra.

Alexa van der Waall (Simon Fraser) has implemented the module for differential Galois theory.

Galois Groups

Jürgen Klüners (Kassel) has made major contributions to the Galois theory machinery for function fields and number fields. In particular, he implemented functions for constructing the subfield lattice and automorphism group of a field and also the subfield lattice of the normal closure of a field. In joint work with Claus Fieker (MAGMA), Jürgen has recently developed a new method for determining the Galois group of a polynomial of arbitary high degree.

Jürgen Klüners (Kassel) and **Gunter Malle** (Kassel) made available their extensive tables of polynomials realising all Galois groups over Q up to degree 15.

Galois Representations

Jeremy Le Borgne (Rennes) contributed his package for working with mod p Galois representations.

Code for constructing Artin representations of the Galois group of the absolute extension of a number field was developed by **Tim Dokchitser** (Cambridge).

Jared Weinstein (UCLA) wrote the package on admissible representations of $GL_2(\mathbf{Q}_p)$.

Geometry

The MAGMA code for computing with incidence geometries has been developed by **Dimitri** Leemans (Brussels).

Algorithms for testing whether two convex polytopes embedded in a lattice are isomorphic or equivalent have been implemented by **Al Kasprzyk** (Imperial College). Of particular note is Al's implementation of the PALP normal form algorithm.

Global Arithmetric Fields

Jean-Francois Biasse (Calgary) implemented a quadratic sieve for computing the class group of a quadratic field. He also developed a generalisation of the sieve for number fields having degree greater than 2.

Florian $\text{He}\beta$ (TU Berlin) has contributed a major package for determining all isomorphisms between a pair of algebraic function fields.

David Kohel (Singapore–NUS, MAGMA) has contributed to the machinery for binary quadratic forms and has implemented rings of Witt vectors.

Jürgen Klüners (Düsseldorf) and **Sebastian Pauli** (UNC Greensboro) have developed algorithms for computing the Picard group of non-maximal orders and for embedding the unit group of non-maximal orders into the unit group of the field.

The facilities for general number fields and global function fields in MAGMA are based on the KANT V4 package developed by **Michael Pohst** and collaborators, first at Düsseldorf and then at TU Berlin. This package provides extensive machinery for computing with maximal orders of number fields and their ideals, Galois groups and function fields. Particularly noteworthy are functions for computing the class and unit group, and for solving Diophantine equations.

The fast algorithm of Bosma and Stevenhagen for computing the 2-part of the ideal class group of a quadratic field has been implemented by **Mark Watkins** (Bristol).

Group Theory: Finitely-Presented Groups

See also the subsection Group Theory: Soluble Groups.

A new algorithm for computing all normal subgroups of a finitely presented group up to a specified index has been designed and implemented by **David Firth** and **Derek Holt** (Warwick).

The function for determining whether a given finite permutation group is a homomorphic image of a finitely presented group has been implemented in C by Volker Gebhardt (Magma) from a Magma language prototype developed by **Derek Holt** (Warwick). A variant developed by Derek allows one to determine whether a small soluble group is a homomorphic image.

A small package for working with subgroups of free groups has been developed by **Derek Holt** (Warwick). He has also provided code for computing the automorphism group of a free group.

Versions of MAGMA from V2.8 onwards employ the Advanced Coset Enumerator designed by **George Havas** (UQ) and implemented by **Colin Ramsay** (UQ). George has also contributed to the design of the machinery for finitely presented groups.

Derek Holt (Warwick) developed a modified version of his program, KBMAG, for inclusion within MAGMA. The MAGMA facilities for groups and monoids defined by confluent rewrite systems, as well as automatic groups, are supported by this code.

Derek Holt (Warwick) has provided a MAGMA implementation of his algorithm for testing whether two finitely presented groups are isomorphic.

An improved version of the Plesken-Fabianska algorithm for finding L2-quotients of a finitely presented group has been developed and implemented by **Sebastian Jambor** (Aachen).

The low index subgroup function is implemented by code that is based on a Pascal program written by **Charlie Sims** (Rutgers).

Group Theory: Finite Groups

A variation of the Product Replacement Algorithm for generating random elements of a group due to **Henrik Bäärnhielm** and **Charles Leedham-Green** has been coded with their assistance.

A Small Groups database containing all groups having order at most 2000, excluding order 1024 has been made available by **Hans Ulrich Besche** (Aachen), **Bettina Eick** (Braunschweig), and **Eamonn O'Brien** (Auckland). This library incorporates "directly" the libraries of 2-groups of order dividing 256 and the 3-groups of order dividing 729, which were prepared and distributed at various intervals by **Mike Newman** (ANU) and **Eamonn O'Brien** and various assistants, the first release dating from 1987.

Michael Downward and Eamonn O'Brien (Auckland) provided functions to access much of the data in the on-line Atlas of Finite Simple Groups for the sporadic groups. A function to select "good" base points for sporadic groups was provided by Eamonn and Robert Wilson (QMUL).

The Small Groups database was augmented in V2.14 by code that can enumerate all groups of any square-free order. This code was developed by **Bettina Eick** (Braunschweig) and **Eamonn O'Brien** (Auckland).

The calculation of automorphism groups (for permutation and matrix groups) and determining group isomorphism is performed by code written by **Derek Holt** (Warwick).

Lifting-style algorithms have been developed by **Derek Holt** (Warwick) for computing structural information in groups given in terms of the Composition Tree data structure. The operations include centralisers, conjugacy classes, normalizers, subgroup conjugacy and maximal subgroups.

Magma includes a database of almost-simple groups defined on standard generators. The database was originally conceived by **Derek Holt** (Warwick) with a major extension by **Volker Gebhardt** (Magma) and sporadic additions by **Bill Unger** (Magma).

The routine for computing the subgroup lattice of a group (as distinct from the list of all conjugacy classes of subgroups) is based on code written by **Dimitri Leemans** (Brussels).

Csaba Schneider (Lisbon) has implemented code which allows the user to write an arbitrary element of a classical group as an SLP in terms of its standard generators.

Robert Wilson (QMUL) has made available the data contained in the on-line ATLAS of Finite Group Representations for use in a MAGMA database of permutation and matrix representations for finite simple groups. See http://brauer.maths.qmul.ac.uk/Atlas/.

Group Theory: Matrix Groups

The Composition Tree (CT) package developed by **Henrik Bäärnhielm** (Auckland), **Derek Holt** (Warwick), **Charles Leedham-Green** (QMUL) and **Eamonn O'Brien** (Auckland), working with numerous collaborators, was first released in V2.17. This package is designed for computing structural information for large matrix groups defined over a finite field.

Constructive recognition of quasi-simple groups belonging to the Suzuki and two Ree families have been implemented by **Hendrik Bäärnhielm** (QMUL). The package includes code for constructing their Sylow *p*-subgroups and maximal subgroups.

The maximal subgroups of all classical groups having degree not exceeding 12 have been constructed and implemented in MAGMA by **John Bray** (QMUL), **Derek Holt** (Warwick) and **Colva Roney-Dougal** (St Andrews).

Peter Brooksbank (Bucknell) implemented a MAGMA version of his algorithm for performing constructive black-box recognition of low-dimensional symplectic and unitary groups. He also gave the MAGMA group permission to base its implementation of the Kantor-Seress algorithm for black-box recognition of linear groups on his GAP implementation.

Code which computes the normaliser of a linear group defined over a finite field, using a theorem of Aschbacher rather than backtrack search, has been provided by **Hannah Coutts** (St Andrews).

A package, "Infinite", has been developed by **Alla Detinko** (Galway), **Dane Flannery** (Galway) and **Eamonn O'Brien** (Auckland) for computing with groups defined over number fields, or (rational) function fields in zero or positive characteristic.

An algorithm for determining the conjugacy of any pair of matrices in GL(2, Z) was developed and implemented by **D. Husert** (University of Paderborn). In particular, this allows the conjugacy of elements having infinite order to be determined.

Markus Kirschmer (RWTH, Aachen) has provided a package for computing with finite subgroups of $GL(n, \mathbf{Z})$. A MAGMA database of the maximal finite irreducible subgroups of $Sp_{2n}(\mathbf{Q})$ for $1 \le i \le 11$ has also been made available by Markus.

A much improved algorithm for computing the normaliser or centraliser of a finite subgroup of GL(n, Z) has been implemented by **Markus Kirschmer** (Aachen). Markus has also implemented an algorithm that tests finite subgroups for conjugacy.

Procedures to list irreducible (soluble) subgroups of GL(2,q) and GL(3,q) for arbitrary q have been provided by **Dane Flannery** (Galway) and **Eamonn O'Brien** (Auckland).

A Monte-Carlo algorithm to determine the defining characteristic of a quasisimple group of Lie type has been contributed by **Martin Liebeck** (Imperial) and **Eamonn O'Brien** (Auckland).

A Monte-Carlo algorithm for non-constructive recognition of simple groups has been contributed by **Gunter Malle** (Kaiserslautern) and **Eamonn O'Brien** (Auckland). This procedure includes an algorithm of Babai et al which identifies a quasisimple group of Lie type.

MAGMA incorporates a database of the maximal finite rational subgroups of $GL(n, \mathbf{Q})$ up to dimension 31. This database as constructed by **Gabriele Nebe** (Aachen) and **Wilhelm Plesken** (Aachen). A database of quaternionic matrix groups constructed by Gabriele is also included.

A function that determines whether a matrix group G (defined over a finite field) is the normaliser of an extraspecial group in the case where the degree of G is an odd prime uses the new Monte-Carlo algorithm of **Alice Niemeyer** (Perth) and has been implemented in MAGMA by **Eamonn O'Brien** (Auckland).

The package for recognizing large degree classical groups over finite fields was designed and implemented by **Alice Niemeyer** (Perth) and **Cheryl Praeger** (Perth). It has been extended to include 2-dimensional linear groups by **Eamonn O'Brien** (Auckland).

Eamonn O'Brien (Auckland) has contributed a MAGMA implementation of algorithms for determining the Aschbacher category of a subgroup of GL(n, q).

Eamonn O'Brien (Auckland) has provided implementations of constructive recognition algorithms for the matrix groups (P)SL(2, q) and (P)SL(3, q).

A fast algorithm for determining subgroup conjugacy based on Aschbacher's theorem classifying the maximal subgroups of a linear group has been designed and implemented by **Colva Roney-Dougal** (St Andrews).

A package for constructing the Sylow *p*-subgroups of the classical groups has been implemented by **Mark Stather** (Warwick).

Generators in the natural representation of a finite group of Lie type were constructed and implemented by **Don Taylor** (Sydney) with some assistance from **Leanne Rylands** (Western Sydney).

Group Theory: Soluble Groups

The soluble quotient algorithm in MAGMA was designed and implemented by **Herbert Brückner** (Aachen).

Code producing descriptions of the groups of order p^4, p^5, p^6, p^7 for p > 3 was contributed by **Boris Girnat, Robert McKibbin, Mike Newman, Eamonn O'Brien**, and **Mike Vaughan-Lee**.

A new approach to the more efficient calculation of the automorphism group of a finite soluble group has been developed and implemented **David Howden** (Warwick). A slight variation of the algorithm is used to test isomorphism.

Most of the algorithms for *p*-groups and many of the algorithms implemented in MAGMA for finite soluble groups are largely due to **Charles Leedham–Green** (QMUL, London).

The NQ program of **Werner Nickel** (Darmstadt) is used to compute nilpotent quotients of finitely presented groups. Version 2.2 of NQ was installed in MAGMA V2.14 by **Bill Unger** (Magma) and **Michael Vaughan-Lee** (Oxford).

The *p*-quotient program, developed by **Eamonn O'Brien** (Auckland) based on earlier work by **George Havas** and **Mike Newman** (ANU), provides a key facility for studying *p*-groups in MAGMA. Eamonn's extensions in MAGMA of this package for generating *p*-groups, computing automorphism groups of *p*-groups, and deciding isomorphism of *p*-groups are also included. He has contributed software to count certain classes of *p*-groups and to construct central extensions of soluble groups.

The package for classifying metacyclic *p*-groups has been developed by **Eamonn O'Brien** (Auckland) and **Mike Vaughan-Lee** (Oxford).

Group Theory: Permutation Groups

Derek Holt (Warwick) has implemented the MAGMA version of the Bratus/Pak algorithm for black-box recognition of the symmetric and alternating groups.

Alexander Hulpke (Colorado State) has made available his database of all transitive permutation groups of degree up to 30. This incorporates the earlier database of **Greg Butler** (Concordia) and **John McKay** (Concordia) containing all transitive groups of degree up to 15.

The PERM package developed by **Jeff Leon** (UIC) for efficient backtrack searching in permutation groups is used for most of the permutation group constructions that employ backtrack search.

A table containing all primitive groups having degree less than 2,500 has been provided by **Colva Roney-Dougal** (St Andrews). The groups of degree up to 1,000 were done jointly with **Bill Unger** (MAGMA).

A table containing all primitive groups having degrees in the range 2,500 to 4,095 has been provided by **Hannah Coutts**, **Martyn Quick** and **Colva Roney-Dougal** (all at St Andrews).

Colva Roney-Dougal (St Andrews) has implemented the Beals et al algorithm for performing black-box recognition on the symmetric and alternating groups.

Derek Holt (Warwick) has constructed a table of irreducible representations of quasisimple groups (up to degree 100). Some representations were contributed by **Allan Steel**, **Volker Gebhardt** and **Bill Unger** (all MAGMA).

A MAGMA database has been constructed from the permutation and matrix representations contained in the on-line Atlas of Finite Simple Groups with the assistance of its author **Robert Wilson** (QMUL).

xxiv

Homological Algebra

The packages for chain complexes and basic algebras have been developed by **Jon F. Carlson** (Athens, GA).

Sergei Haller developed MAGMA code for computing the first cohomology group of a finite group with coefficients in a finite (not necessarily abelian) group. This formed the basis of a package for computing Galois cohomology of linear algebra groups.

Machinery for computing group cohomology and for producing group extensions has been developed by **Derek Holt** (Warwick). There are two parts to this machinery. The first part comprises Derek's older C-language package for permutation groups while the second part comprises a recent MAGMA language package for group cohomology.

In 2011, **Derek Holt** (Warwick) implemented an alternative algorithm for finding the dimension of the cohomology group $H^n(G, K)$, for G a finite group, and K a finite field. In this approach the dimension is found using projective covers and dimension shifting.

The code for computing A_{∞} -structures in group cohomology was developed by **Mikael** Vejdemo Johansson (Jena).

L-Functions

Tim Dokchitser (Cambridge) has implemented efficient computation of many kinds of L-functions, including those attached to Dirichlet characters, number fields, Artin representations, elliptic curves and hyperelliptic curves. **Vladimir Dokchitser** (Cambridge) has contributed theoretical ideas.

Anton Mellit has contributed code for computing symmetric powers and tensor products of *L*-functions.

Lattices and Quadratic Forms

The construction of the sublattice of an integral lattice is performed by code developed by **Markus Kirschmer** (Aachen).

A collection of lattices derived from the on-line tables of lattices prepared by **Neil Sloane** (AT&T Research) and **Gabriele Nebe** (Aachen) is included in MAGMA.

The original functions for computing automorphism groups and isometries of integral lattices are based on the AUTO and ISOM programs of **Bernd Souvignier** (Nijmegen). In V2.16 they are replaced by much faster versions developed by **Bill Unger** (MAGMA).

Coppersmith's method (based on LLL) for finding small roots of univariate polynomials modulo an integer has been implemented by **Damien Stehlé** (ENS Lyon).

Given a quadratic form F in an arbitrary number of variables, **Mark Watkins** (Bristol) has used Denis Simon's ideas as the basis of an algorithm he has implemented in MAGMA for finding a large (totally) isotropic subspace of F.

Lie Theory

The major structural machinery for Lie algebras has been implemented for MAGMA by **Willem de Graaf** (Utrecht) and is based on his ELIAS package written in GAP. He has also implemented a separate package for finitely presented Lie rings.

A database of soluble Lie algebras of dimensions 2, 3 and 4 over all fields has been implemented by **Willem de Graaf** (Trento). Willem has also provided a database of all nilpotent Lie algebras of dimension up to 6 over all base fields (except characteristic 2 when the dimension is 6).

More recent extensions to the Lie algebra package developed by Willem de Graaf (Trento) include quantum groups, universal enveloping algebras, the semisimple subalgebras of a simple Lie algebra and nilpotent orbits for simple Lie algebras.

A fast algorithm for multiplying the elements of Coxeter groups based on their automatic structure has been designed and implemented by **Bob Howlett** (Sydney). Bob has also contributed MAGMA code for computing the growth function of a Coxeter group.

Machinery for computing the W-graphs for Lie types A_n , E_6 , E_7 and E_8 has been supplied by **Bob Howlett** (Sydney). Subsequently, Bob supplied code for working with directed W-graphs.

The original version of the code for root systems and permutation Coxeter groups was modelled, in part, on the Chevie package of GAP and implemented by **Don Taylor** (Sydney) with the assistance of **Frank Lübeck** (Aachen).

Functions that construct any finite irreducible unitary reflection group in C^n have been implemented by **Don Taylor** (Sydney). Extension to the infinite case was implemented by **Scott Murray** (Sydney).

The current version of Lie groups in MAGMA has been implemented by **Scott Murray** (Sydney) and **Sergei Haller** with some assistance from **Don Taylor** (Sydney).

An extensive package for computing the combinatorial properties of highest weight representations of a Lie algebra has been written by **Dan Roozemond** (Eindhoven). This code is based in the LiE package with permission of the authors.

Code has been contributed by **Robert Zeier** (Technical University of Munich) for determining the irreducible simple subalgebras of the Lie algebra su(k).

Linear Algebra and Module Theory

Parts of the ATLAS (Automatically Tuned Linear Algebra Software) created by **R. Clint** Whaley et al. (UTSA) are used for some fundamental matrix algorithms over finite fields GF(p), where p is about the size of a machine integer.

xxvi

Local Arithmetric Fields

Sebastian Pauli (TU Berlin) has implemented his algorithm for factoring polynomials over local fields within Magma. This algorithm may also be used for the factorization of ideals, the computation of completions of global fields, and for splitting extensions of local fields into towers of unramified and totally ramified extensions.

Modular Forms

Kevin Buzzard (Imperial College) made available his code for computing modular forms of weight one. The MAGMA implementation was developed using this as a starting point.

Lassina Dembélé (Warwick) wrote part of the code implementing his algorithm for computing Hilbert modular forms.

Enrique González-Jiménez (Madrid) contributed a package to compute curves over \mathbf{Q} , of genus at least 2, which are images of $X_1(N)$ for a given level N.

Matthew Greenberg (Calgary) and John Voight (Vermont) developed and implemented an algorithm for computing Hilbert modular forms using Shimura curves.

A new implementation (V2.19) of Brandt modules associated to definite quaternion orders, over \mathbf{Z} and over function fields $\mathbf{F}_q[t]$, has been developed by **Markus Kirschmer** (Aachen) and **Steve Donnelly** (Magma).

David Kohel (Singapore-NUS, MAGMA) has provided implementations of division polynomials and isogeny structures for Brandt modules and modular curves. Jointly with **William Stein** (Harvard), he implemented the module of supersingular points.

Allan Lauder (Oxford) has contributed code for computing the characteristic polynomial of a Hecke operator acting on spaces of overconvergent modular forms.

MAGMA routines for constructing building blocks of modular abelian varieties were contributed by **Jordi Quer** (Cataluna).

A package for computing with modular symbols (known as HECKE) has been developed by **William Stein** (Harvard). William has also provided much of the package for modular forms.

In 2003–2004, **William Stein** (Harvard) developed extensive machinery for computing with modular abelian varieties within MAGMA.

A package for computing with congruence subgroups of the group $PSL(2, \mathbf{R})$ has been developed by **Helena Verrill** (LSU).

John Voight (Vermont) produced the package for Shimura curves and arithmetic Fuchsian groups.

Dan Yasaki (UNC) provided the package for Bianchi modular forms.

Primality and Factorisation

The factorisation of integers of the form $p^n \pm 1$, for small primes p, makes use of tables compiled by **Richard Brent** that extend tables developed by the Cunningham project. In addition MAGMA uses Richard's intelligent factorization code FACTOR.

One of the main integer factorization tools available in MAGMA is due to **Arjen K. Lenstra** (EPFL) and his collaborators: a multiple polynomial quadratic sieve developed by Arjen from his "factoring by email" MPQS during visits to Sydney in 1995 and 1998.

The primality of integers is proven using the ECPP (Elliptic Curves and Primality Proving) package written by **François Morain** (Ecole Polytechnique and INRIA). The ECPP program in turn uses the BigNum package developed jointly by **INRIA** and **Digital PRL**.

MAGMA uses the **GMP-ECM** implementation of the Elliptic Curve Method (ECM) for integer factorisation. This was developed by **Pierrick Gaudry**, **Jim Fougeron**, **Laurent Fousse**, **Alexander Kruppa**, **Dave Newman**, and **Paul Zimmermann**. See http://gforge.inria.fr/projects/ecm/.

Real and Complex Arithmetic

The complex arithmetic in MAGMA uses the **MPC** package which is being developed by **Andreas Enge**, **Philippe Théveny** and **Paul Zimmermann**. (For more information see www.multiprecision.org/mpc/).

Xavier Gourdon (INRIA, Paris) made available his C implementation of A. Schönhage's splitting-circle algorithm for the fast computation of the roots of a polynomial to a specified precision. Xavier also assisted with the adaptation of his code for the MAGMA kernel.

Some portions of the **GNU GMP** multiprecision integer library (http://gmplib.org) are used for integer multiplication.

Most real arithmetic in MAGMA is based on the **MPFR** package which is developed by **Paul Zimmermann** (Nancy) and associates. (See www.mpfr.org).

Representation Theory

The algorithm of John Dixon for constructing the ordinary irreducible representation of a finite group from its character has been implemented by **Derek Holt** (Warwick).

Derek Holt (Warwick) has made a number of important contributions to the design of the module theory algorithms employed in MAGMA.

An algorithm of Sam Conlon for determining the degrees of the ordinary irreducible characters of a soluble group (without determining the full character table) has been implemented by **Derek Holt** (Warwick).

In 2011, **Derek Holt** (Warwick) and **John Cannon** (Magma) developed a package for computing the projective indecomposable KG-modules for a finite group G.

xxviii

The algorithms used in MAGMA for finding the lattice of submodules and the endomorphism ring of a KG-module (K a finite field) were developed by **Charles Leedham-Green** (QMW, London) and **Allan Steel** (MAGMA).

Topology

A basic module for defining and computing with simplicial complexes was developed by **Mikael Johansson** (Jena).

Nathan Dunfield (Cornell) and William Thurston (Cornell) made available their database of the fundamental groups of the 10,986 small-volume closed hyperbolic manifolds in the Hodgson-Weeks census.

Handbook Contributors

Introduction

The Handbook of Magma Functions is the work of many individuals. It was based on a similar Handbook written for Cayley in 1990. Up until 1997 the Handbook was mainly written by Wieb Bosma, John Cannon and Allan Steel but in more recent times, as Magma expanded into new areas of mathematics, additional people became involved. It is not uncommon for some chapters to comprise contributions from 8 to 10 people. Because of the complexity and dynamic nature of chapter authorship, rather than ascribe chapter authors, in the table below we attempt to list those people who have made *significant* contributions to chapters.

We distinguish between:

• **Principal Author**, i.e. one who primarily conceived the core element(s) of a chapter and who was also responsible for the writing of a large part of its current content, and

• **Contributing Author**, i.e. one who has written a significant amount of content but who has not had primary responsibility for chapter design and overall content.

It should be noted that attribution of a person as an author of a chapter carries no implications about the authorship of the associated computer code: for some chapters it will be true that the author(s) listed for a chapter are also the authors of the corresponding code, but in many chapters this is either not the case or only partly true. Some information about code authorship may be found in the sections Magma Development Team and External Contributors.

The attributions given below reflect the authorship of the material comprising the V2.19 edition. Since many of the authors have since moved on to other careers, we have not been able to check that all of the attributions below are completely correct. We would appreciate hearing of any omissions.

In the chapter listing that follows, for each chapter the start of the list of principal authors (if any) is denoted by \bullet while the start of the list of contributing authors is denoted by \circ .

People who have made minor contributions to one or more chapters are listed in a general acknowledgement following the chapter listing.

The Chapters

- 1 Statements and Expressions W. Bosma, A. Steel
- 2 Functions, Procedures and Packages W. Bosma, A. Steel
- 3 Input and Output W. Bosma, A. Steel
- 4 Environment and Options A. Steel W. Bosma
- 5 Magma Semantics G. Matthews
- 6 The Magma Profiler D. Fisher
- 7 Debugging Magma Code D. Fisher
- 8 Introduction to Aggregates W. Bosma
- 9 Sets W. Bosma, J. Cannon A. Steel
- 10 Sequences W. Bosma, J. Cannon
- 11 Tuples and Cartesian Products W. Bosma
- 12 Lists W. Bosma
- 13 Associative Arrays A. Steel
- 14 Coproducts \bullet A. Steel
- 15 Records \bullet *W. Bosma*
- 16 Mappings W. Bosma
- 17 Introduction to Rings W. Bosma
- 18 Ring of Integers W. Bosma, A. Steel S. Contini, B. Smith
- 19 Integer Residue Class Rings W. Bosma S. Donnelly, W. Stein
- 20 Rational Field W. Bosma
- 21 Finite Fields W. Bosma, A. Steel
- 22 Nearfields \bullet D. Taylor
- 23 Univariate Polynomial Rings A. Steel
- 24 Multivariate Polynomial Rings A. Steel
- 25 Real and Complex Fields W. Bosma
- 26 Matrices \bullet A. Steel
- 27 Sparse Matrices A. Steel
- 28 Vector Spaces J. Cannon, A. Steel
- 29 Polar Spaces D. Taylor
- 30 Lattices A. Steel, D. Stehlé
- 31 Lattices With Group Action \bullet B. Souvignier \circ M. Kirschmer
- 32 Quadratic Forms S. Donnelly
- 33 Binary Quadratic Forms D. Kohel
- 34 Number Fields C. Fieker W. Bosma, N. Sutherland
- 35 Quadratic Fields W. Bosma
- 36 Cyclotomic Fields W. Bosma, C. Fieker
- 37 Orders and Algebraic Fields C. Fieker W. Bosma, N. Sutherland
- 38 Galois Theory of Number Fields C. Fieker J. Klüners, K. Geißler

- 39 Class Field Theory C. Fieker
- 40 Algebraically Closed Fields A. Steel
- 41 Rational Function Fields A. Steel A. van der Waall
- 42 Algebraic Function Fields F. $He\beta \circ C.$ Fieker, N. Sutherland
- 43 Class Field Theory For Global Function Fields C. Fieker
- 44 Artin Representations T. Dokchitser
- 45 Valuation Rings W. Bosma
- 46 Newton Polygons G. Brown, N. Sutherland
- 47 p-adic Rings and their Extensions D. Fisher, B. Souvignier N. Sutherland
- 48 Galois Rings \bullet A. Steel
- 49 Power, Laurent and Puiseux Series A. Steel
- 50 Lazy Power Series Rings N. Sutherland
- 51 General Local Fields N. Sutherland
- 52 Algebraic Power Series Rings T. Beck, M. Harrison
- 53 Introduction to Modules J. Cannon
- 54 Free Modules J. Cannon, A. Steel
- 55 Modules over Dedekind Domains C. Fieker, N. Sutherland
- 56 Chain Complexes J. Carlson
- 57 Groups J. Cannon W. Unger
- 58 Permutation Groups J. Cannon B. Cox, W. Unger
- 59 Matrix Groups over General Rings J. Cannon B. Cox, E.A. O'Brien, A. Steel
- 60 Matrix Groups over Finite Fields E.A. O'Brien
- 61 Matrix Groups over Infinite Fields E.A. O'Brien
- 62 Matrix Groups over Q and Z M. Kirschmer, B. Souvignier
- 63 Finite Soluble Groups J. Cannon, M. Slattery E.A. O'Brien
- 64 Black-box Groups W. Unger
- 65 Almost Simple Groups o H. Bäärnhielm, J. Cannon, D. Holt, M. Stather
- 66 Databases of Groups \bullet W. Unger \circ V. Gebhardt
- 67 Automorphism Groups D. Holt W. Unger
- 68 Cohomology and Extensions D. Holt S. Haller
- 69 Abelian Groups J. Cannon \circ P. Lieby
- 70 Finitely Presented Groups J. Cannon V. Gebhardt, E.A. O'Brien, M. Vaughan-Lee
 - 71 Finitely Presented Groups: Advanced H. Brückner, V. Gebhardt E.A. O'Brien
 - 72 Polycyclic Groups V. Gebhardt
 - 73 Braid Groups V. Gebhardt
 - 74 Groups Defined by Rewrite Systems \bullet D. Holt \circ G. Matthews
 - 75 Automatic Groups D. Holt \circ G. Matthews
 - 76 Groups of Straight-line Programs J. Cannon

xxxii

- 77 Finitely Presented Semigroups J. Cannon
- 78 Monoids Given by Rewrite Systems D. Holt G. Matthews
- 79 Algebras J. Cannon, B. Souvignier
- 80 Structure Constant Algebras J. Cannon, B. Souvignier
- 81 Associative Algebras o J. Cannon, S. Donnelly, N. Sutherland, B. Souvignier, J. Voight
- 82 Finitely Presented Algebras A. Steel, S. Linton
- 83 Matrix Algebras J. Cannon, A. Steel J. Carlson
- 84 Group Algebras J. Cannon, B. Souvignier
- 85 Basic Algebras J. Carlson M. Vejdemo-Johansson
- 86 Quaternion Algebras D. Kohel, J. Voight S. Donnelly, M. Kirschmer
- 87 Algebras With Involution P. Brooksbank, J. Wilson
- 88 Clifford Algebras D. Taylor
- 89 Modules over An Algebra J. Cannon, A. Steel
- 90 K[G]-Modules and Group Representations J. Cannon, A. Steel
- 91 Characters of Finite Groups W. Bosma, J. Cannon
- 92 Representations of Symmetric Groups A. Kohnert
- 93 Mod P Galois Representations J. Le Borgne
- 94 Introduction to Lie Theory S. Murray \circ D. Taylor
- 95 Coxeter Systems S. Murray D. Taylor
- 96 Root Systems S. Murray S. Haller, D. Taylor
- 97 Root Data S. Haller, S. Murray D. Taylor
- 98 Coxeter Groups S. Murray D. Taylor
- 99 Reflection Groups S. Murray \circ D. Taylor
- 100 Lie Algebras W. de Graaf, D. Roozemond S. Haller, S. Murray
- 101 Kac-moody Lie Algebras D. Roozemond
- 102 Quantum Groups W. de Graaf
- 103 Groups of Lie Type S. Murray S. Haller, D. Taylor
- 104 Representations of Lie Groups and Algebras D. Roozemond S. Murray
- 105 Gröbner Bases A. Steel M. Harrison
- 106 Polynomial Ring Ideal Operations A. Steel M. Harrison
- 107 Local Polynomial Rings A. Steel
- 108 Affine Algebras \bullet A. Steel
- 109 Modules over Multivariate Rings A. Steel M. Harrison
- 110 Invariant Theory A. Steel
- 111 Differential Rings A. van der Waall
- 112 Schemes G. Brown J. Cannon, M. Harrison, N. Sutherland
- 113 Coherent Sheaves M. Harrison
- 114 Algebraic Curves G. Brown N. Bruin, J. Cannon, M. Harrison, A. Wilson
- 115 Resolution Graphs and Splice Diagrams G. Brown

- 116 Algebraic Surfaces T. Beck, M. Harrison
- 117 Hilbert Series of Polarised Varieties G. Brown
- 118 Toric Varieties G. Brown, A. Kasprzyk
- 119 Rational Curves and Conics D. Kohel, P. Lieby S. Donnelly, M. Watkins
- 120 Elliptic Curves G. Bailey S. Donnelly, D. Kohel
- 121 Elliptic Curves over Finite Fields M. Harrison P. Lieby

122 Elliptic Curves over \mathbf{Q} and Number Fields \circ G. Bailey, N. Bruin, B. Creutz, S. Donnelly, D. Kohel, M. Watkins

- 123 Elliptic Curves over Function Fields J. Scholten S. Donnelly
- 124 Models of Genus One Curves T. Fisher, S. Donnelly
- 125 Hyperelliptic Curves o N. Bruin, B. Creutz, S. Donnelly, M. Harrison, D. Kohel,
- P. van Wamelen
- 126 Hypergeometric Motives M. Watkins
- 127 L-functions T. Dokchitser \circ M. Watkins
- 128 Modular Curves D. Kohel M. Harrison, E. González-Jiménez
- 129 Small Modular Curves M. Harrison
- 130 Congruence Subgroups of $PSL_2(\mathbf{R}) \bullet H.$ Verrill
- 131 Arithmetic Fuchsian Groups and Shimura Curves J. Voight
- 132 Modular Forms W. Stein K. Buzzard, S. Donnelly
- 133 Modular Symbols $W. Stein \circ K. Buzzard$
- 134 Brandt Modules D. Kohel
- 135 Supersingular Divisors on Modular Curves D. Kohel, W. Stein
- 136 Modular Abelian Varieties W. Stein J. Quer
- 137 Hilbert Modular Forms S. Donnelly
- 138 Modular Forms over Imaginary Quadratic Fields D. Yasaki S. Donnelly
- 139 Admissible Representations of $\operatorname{GL}_2(\mathbf{Q}_p) \bullet J$. Weinstein $\circ S$. Donnelly
- 140 Simplicial Homology M. Vejdemo-Johansson
- 141 Finite Planes J. Cannon
- 142 Incidence Geometry D. Leemans
- 143 Convex Polytopes and Polyhedra G. Brown, A. Kasprzyk
- 144 Enumerative Combinatorics \bullet G. Bailey \circ G. White
- 145 Partitions, Words and Young Tableaux G. White
- 146 Symmetric Functions A. Kohnert
- 147 Incidence Structures and Designs J. Cannon
- 148 Hadamard Matrices G. Bailey
- 149 Graphs J. Cannon, P. Lieby G. Bailey
- 150 Multigraphs J. Cannon, P. Lieby
- 151 Networks \bullet *P. Lieby*
- 152 Linear Codes over Finite Fields J. Cannon, A. Steel G. White

xxxiv

- 153 Algebraic-geometric Codes J. Cannon, G. White
- 154 Low Density Parity Check Codes G. White
- 155 Linear Codes over Finite Rings A. Steel G. White, M. Villanueva
- 156 Additive Codes \bullet *G. White*
- 157 Quantum Codes G. White
- 158 Pseudo-random Bit Sequences S. Contini
- 159 Linear Programming B. Smith

General Acknowledgements

In addition to the contributors listed above, we gratefully acknowledge the contributions to the Handbook made by the following people:

- J. Brownie (group theory)
- K. Geißler (Galois groups)
- A. Flynn (algebras and designs)
- E. Herrmann (elliptic curves)
- *E. Howe* (Igusa invariants)
- B. McKay (graph theory)
- S. Pauli (local fields)
- C. Playoust (data structures, rings)
- C. Roney-Dougal (groups)
- T. Womack (elliptic curves)

USING THE HANDBOOK

Most sections within a chapter of this Handbook consist of a brief introduction and explanation of the notation, followed by a list of MAGMA functions, procedures and operators.

Each entry in this list consists of an expression in a box, and an indented explanation of use and effects. The **typewriter** typefont is used for commands that can be used literally; however, one should be aware that most functions operate on variables that must have values assigned to them beforehand, and return values that should be assigned to variables (or the first value should be used in an expression). Thus the entry:

Xgcd(a, b)

The extended gcd; returns integers d, l and m such that d is the greatest common divisor of the integers a and b, and d = l * a + m * b.

indicates that this function could be called in MAGMA as follows:

g, a, b := Xgcd(23, 28);

If the function has optional named *parameters*, a line like the following will be found in the description:

Proof BOOLELT Default : true

The first word will be the name of the parameter, the second word will be the type which its value should have, and the rest of the line will indicate the default for the parameter, if there is one. Parameters for a function call are specified by appending a colon to the last argument, followed by a comma-separated list of assignments (using :=) for each parameter. For example, the function call IsPrime(n: Proof := false) calls the function IsPrime with argument n but also with the value for the parameter Proof set to false.

Whenever the symbol **#** precedes a function name in a box, it indicates that the particular function is not yet available but should be in the future.

An index is provided at the end of each volume which contains all the intrinsics in the Handbook.

Running the Examples

All examples presented in this Handbook are available to MAGMA users. If your MAGMA environment has been set up correctly, you can load the source for an example by using the name of the example as printed in boldface at the top (the name has the form HmEn, where m is the Chapter number and n is the Example number). So, to run the first example in the Chapter 28, type:

load "H28E1";

xxxviii

VOLUME 1: OVERVIEW

Ι	THE MAGMA LANGUAGE	. 1
1	STATEMENTS AND EXPRESSIONS	3
2	FUNCTIONS, PROCEDURES AND PACKAGES	33
3	INPUT AND OUTPUT	63
4	ENVIRONMENT AND OPTIONS	93
5	MAGMA SEMANTICS	115
6	THE MAGMA PROFILER	135
7	DEBUGGING MAGMA CODE	145
II	SETS, SEQUENCES, AND MAPPINGS	151
8	INTRODUCTION TO AGGREGATES	153
9	SETS	163
10	SEQUENCES	191
11	TUPLES AND CARTESIAN PRODUCTS	213
12	LISTS	221
13	ASSOCIATIVE ARRAYS	227
14	COPRODUCTS	233
15	RECORDS	239
16	MAPPINGS	245

VOLUME 2: OVERVIEW

III	BASIC RINGS	255
17	INTRODUCTION TO RINGS	257
18	RING OF INTEGERS	277
19	INTEGER RESIDUE CLASS RINGS	329
20	RATIONAL FIELD	349
21	FINITE FIELDS	361
22	NEARFIELDS	389
23	UNIVARIATE POLYNOMIAL RINGS	407
24	MULTIVARIATE POLYNOMIAL RINGS	441
25	REAL AND COMPLEX FIELDS	469
\mathbf{IV}	MATRICES AND LINEAR ALGEBRA	515
26	MATRICES	517
27	SPARSE MATRICES	557
28	VECTOR SPACES	583
29	POLAR SPACES	607

VOLUME 3: OVERVIEW

\mathbf{V}	LATTICES AND QUADRATIC FORMS	. 637
30	LATTICES	639
31	LATTICES WITH GROUP ACTION	717
32	QUADRATIC FORMS	743
33	BINARY QUADRATIC FORMS	751
\mathbf{VI}	GLOBAL ARITHMETIC FIELDS	. 765
34	NUMBER FIELDS	767
35	QUADRATIC FIELDS	833
36	CYCLOTOMIC FIELDS	847
37	ORDERS AND ALGEBRAIC FIELDS	855
38	GALOIS THEORY OF NUMBER FIELDS	961
39	CLASS FIELD THEORY	997
40	ALGEBRAICALLY CLOSED FIELDS	1035
41	RATIONAL FUNCTION FIELDS	1057
42	ALGEBRAIC FUNCTION FIELDS	1079
43	CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS	1189
44	ARTIN REPRESENTATIONS	1215

VOLUME 4: OVERVIEW

VII	LOCAL ARITHMETIC FIELDS	1225
45	VALUATION RINGS	1227
46	NEWTON POLYGONS	1233
47	<i>p</i> -ADIC RINGS AND THEIR EXTENSIONS	1261
48	GALOIS RINGS	1311
49	POWER, LAURENT AND PUISEUX SERIES	1319
50	LAZY POWER SERIES RINGS	1347
51	GENERAL LOCAL FIELDS	1363
52	ALGEBRAIC POWER SERIES RINGS	1375
VIII	MODULES	1389
53	INTRODUCTION TO MODULES	1391
54	FREE MODULES	1395
55	MODULES OVER DEDEKIND DOMAINS	1419
56	CHAIN COMPLEXES	1441

VOLUME 5: OVERVIEW

IX	FINITE GROUPS	1457
57	GROUPS	1459
58	PERMUTATION GROUPS	1515
59	MATRIX GROUPS OVER GENERAL RINGS	1637
60	MATRIX GROUPS OVER FINITE FIELDS	1709
61	MATRIX GROUPS OVER INFINITE FIELDS	1759
62	MATRIX GROUPS OVER Q AND Z	1779
63	FINITE SOLUBLE GROUPS	1789
64	BLACK-BOX GROUPS	1869
65	ALMOST SIMPLE GROUPS	1875
66	DATABASES OF GROUPS	1935
67	AUTOMORPHISM GROUPS	1993
68	COHOMOLOGY AND EXTENSIONS	2011

VOLUME 6: OVERVIEW

X	FINITELY-PRESENTED GROUPS	2039
69	ABELIAN GROUPS	2041
70	FINITELY PRESENTED GROUPS	2077
71	FINITELY PRESENTED GROUPS: ADVANCED	2203
72	POLYCYCLIC GROUPS	2249
73	BRAID GROUPS	2289
74	GROUPS DEFINED BY REWRITE SYSTEMS	2339
75	AUTOMATIC GROUPS	2357
76	GROUPS OF STRAIGHT-LINE PROGRAMS	2377
77	FINITELY PRESENTED SEMIGROUPS	2387
78	MONOIDS GIVEN BY REWRITE SYSTEMS	2399

VOLUME 7: OVERVIEW

XI	ALGEBRAS	2417
79	ALGEBRAS	2419
80	STRUCTURE CONSTANT ALGEBRAS	2431
81	ASSOCIATIVE ALGEBRAS	2441
82	FINITELY PRESENTED ALGEBRAS	2467
83	MATRIX ALGEBRAS	2505
84	GROUP ALGEBRAS	2545
85	BASIC ALGEBRAS	2559
86	QUATERNION ALGEBRAS	2619
87	ALGEBRAS WITH INVOLUTION	2663
88	CLIFFORD ALGEBRAS	2679
XII	REPRESENTATION THEORY	2683
89	MODULES OVER AN ALGEBRA	2685
90	K[G]-MODULES AND GROUP REPRESENTATIONS	2721
91	CHARACTERS OF FINITE GROUPS	2757
92	REPRESENTATIONS OF SYMMETRIC GROUPS	2779
93	MOD P GALOIS REPRESENTATIONS	2787

VOLUME 8: OVERVIEW

XIII	LIE THEORY	2795
94	INTRODUCTION TO LIE THEORY	2797
95	COXETER SYSTEMS	2803
96	ROOT SYSTEMS	2827
97	ROOT DATA	2849
98	COXETER GROUPS	2901
99	REFLECTION GROUPS	2941
100	LIE ALGEBRAS	2973
101	KAC-MOODY LIE ALGEBRAS	3061
102	QUANTUM GROUPS	3071
103	GROUPS OF LIE TYPE	3097
104	REPRESENTATIONS OF LIE GROUPS AND ALGEBRAS	3137

VOLUME 9: OVERVIEW

XIV	COMMUTATIVE ALGEBRA	3177
105	GRÖBNER BASES	3179
106	POLYNOMIAL RING IDEAL OPERATIONS	3223
107	LOCAL POLYNOMIAL RINGS	3271
108	AFFINE ALGEBRAS	3285
109	MODULES OVER MULTIVARIATE RINGS	3301
110	INVARIANT THEORY	3353
111	DIFFERENTIAL RINGS	3399
$\mathbf{X}\mathbf{V}$	ALGEBRAIC GEOMETRY	9407
Λ٧	ALGEDRAIC GEOMETRY	3467
ΛV 112	SCHEMES	346 7 3469
112	SCHEMES	3469
112 113	SCHEMES COHERENT SHEAVES	3469 3601
112 113 114	SCHEMES COHERENT SHEAVES ALGEBRAIC CURVES	3469 3601 3633
112 113 114 115	SCHEMES COHERENT SHEAVES ALGEBRAIC CURVES RESOLUTION GRAPHS AND SPLICE DIAGRAMS	3469 3601 3633 3741

VOLUME 10: OVERVIEW

\mathbf{XVI}	ARITHMETIC GEOMETRY	3909
119	RATIONAL CURVES AND CONICS	3911
120	ELLIPTIC CURVES	3935
121	ELLIPTIC CURVES OVER FINITE FIELDS	3977
122	ELLIPTIC CURVES OVER ${\bf Q}$ AND NUMBER FIELDS	4001
123	ELLIPTIC CURVES OVER FUNCTION FIELDS	4083
124	MODELS OF GENUS ONE CURVES	4101
125	HYPERELLIPTIC CURVES	4119
126	HYPERGEOMETRIC MOTIVES	4223
127	L-FUNCTIONS	4243

VOLUME 11: OVERVIEW

XVII	MODULAR ARITHMETIC GEOMETRY	4289
128	MODULAR CURVES	4291
129	SMALL MODULAR CURVES	4311
130	CONGRUENCE SUBGROUPS OF $PSL_2(\mathbf{R})$	4335
131	ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES	4361
132	MODULAR FORMS	4385
133	MODULAR SYMBOLS	4427
134	BRANDT MODULES	4483
135	SUPERSINGULAR DIVISORS ON MODULAR CURVES	4497
136	MODULAR ABELIAN VARIETIES	4513
137	HILBERT MODULAR FORMS	4651
138	MODULAR FORMS OVER IMAGINARY QUADRATIC FIELDS	4669
139	ADMISSIBLE REPRESENTATIONS OF $\operatorname{GL}_2(\mathbf{Q}_p)$	4677

VOLUME 12: OVERVIEW

XVIII	TOPOLOGY	4689
140	SIMPLICIAL HOMOLOGY	4691
XIX	GEOMETRY	4711
141	FINITE PLANES	4713
142	INCIDENCE GEOMETRY	4749
143	CONVEX POLYTOPES AND POLYHEDRA	4771
XX	COMBINATORICS	4803
144	ENUMERATIVE COMBINATORICS	4805
145	PARTITIONS, WORDS AND YOUNG TABLEAUX	4811
146	SYMMETRIC FUNCTIONS	4845
147	INCIDENCE STRUCTURES AND DESIGNS	4871
148	HADAMARD MATRICES	4907
149	GRAPHS	4917
150	MULTIGRAPHS	4999
151	NETWORKS	5047

VOLUME 13: OVERVIEW

XXI	CODING THEORY	5067
152	LINEAR CODES OVER FINITE FIELDS	5069
153	ALGEBRAIC-GEOMETRIC CODES	5145
154	LOW DENSITY PARITY CHECK CODES	5155
155	LINEAR CODES OVER FINITE RINGS	5167
156	ADDITIVE CODES	5207
157	QUANTUM CODES	5233
XXII	CRYPTOGRAPHY	5271
158	PSEUDO-RANDOM BIT SEQUENCES	5273
XXIII	OPTIMIZATION	5281
159	LINEAR PROGRAMMING	5283

Ι	THE	MAGMA LANGUAGE	1
1	STAT	EMENTS AND EXPRESSIONS	3
	1.1	Introduction	5
	1.2	Starting, Interrupting and Terminating	5
	1.3	Identifiers	5
	1.4	Assignment	6
	1.4.1	Simple Assignment	6
	1.4.2	Indexed Assignment	7
	1.4.3	Generator Assignment	8
	1.4.4	Mutation Assignment	9
	1.4.5	Deletion of Values	10
	1.5	Boolean values	10
	1.5.1	Creation of Booleans	11
	1.5.2	Boolean Operators	11
	1.5.3	Equality Operators	11
	1.5.4	Iteration	12
	1.6	Coercion	13
	1.7	The where is Construction	14
	1.8	Conditional Statements and Expressions	16
	1.8.1	The Simple Conditional Statement	16
	1.8.2	The Simple Conditional Expression	17
	1.8.3	The Case Statement	18
	1.8.4	The Case Expression	18
	1.9	Error Handling Statements	19
	1.9.1	The Error Objects	19
	1.9.2	Error Checking and Assertions	19
	1.9.3	Catching Errors	20
	1.10	Iterative Statements	21
	1.10.1	Definite Iteration	21
	1.10.2	Indefinite Iteration	22
	1.10.3	Early Exit from Iterative Statements	23
	1.11	Runtime Evaluation: the eval Expression	24
	1.12	Comments and Continuation	26
	1.13	Timing	26
	1.14	Types, Category Names, and Structures	28
	1.15	Random Object Generation	30
	1.16	Miscellaneous	32
	1.17	Bibliography	32

3

2.1	Introduction	3!
2.1 2.2	Functions and Procedures	3.
2.2 2.2.1	Functions	3
2.2.1 2.2.2	Procedures	39
2.2.2 2.2.3	The forward Declaration	4
2.3	Packages	4.
2.3.1	Introduction	4
2.3.2	Intrinsics Decel in a Collector Intrinsica	4
2.3.3	Resolving Calls to Intrinsics	4
2.3.4	Attaching and Detaching Package Files	4
2.3.5	Related Files	4
2.3.6	Importing Constants	4
2.3.7	Argument Checking	4
2.3.8	Package Specification Files	4
2.3.9	User Startup Specification Files	5
2.4	Attributes	5
2.4.1	Predefined System Attributes	5
2.4.2	User-defined Attributes	5
2.4.3	Accessing Attributes	55
2.5	User-defined Verbose Flags	5
2.5.1	Examples	5
2.6	User-Defined Types	5
2.6.1	Declaring User-Defined Types	5
2.6.2	Creating an Object	5
2.6.3	Special Intrinsics Provided by the User	5'
2.6.4	Examples	58
INPU	T AND OUTPUT	63
3.1	Introduction	6
$3.1 \\ 3.2$	Introduction Character Strings	6. 6.
3.1 3.2 3.2.1	Introduction Character Strings Representation of Strings	6 6 6
3.1 3.2 3.2.1 3.2.2	Introduction Character Strings Representation of Strings Creation of Strings	64 64 64
3.1 3.2 3.2.1 3.2.2 3.2.3	Introduction Character Strings Representation of Strings Creation of Strings Integer-Valued Functions	64 64 61 61 61
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4	Introduction Character Strings Representation of Strings Creation of Strings Integer-Valued Functions Character Conversion	64 64 65 66 67 67
$\begin{array}{c} 3.1 \\ 3.2 \\ 3.2.1 \\ 3.2.2 \\ 3.2.3 \\ 3.2.4 \\ 3.2.5 \end{array}$	Introduction Character Strings Representation of Strings Creation of Strings Integer-Valued Functions Character Conversion Boolean Functions	6. 6. 61 61 61 61 61 61 61
$\begin{array}{c} 3.1 \\ 3.2 \\ 3.2.1 \\ 3.2.2 \\ 3.2.3 \\ 3.2.4 \\ 3.2.5 \\ 3.2.6 \end{array}$	Introduction Character Strings Representation of Strings Creation of Strings Integer-Valued Functions Character Conversion	6 6 6 6 6 6 6 7
$\begin{array}{c} 3.1 \\ 3.2 \\ 3.2.1 \\ 3.2.2 \\ 3.2.3 \\ 3.2.4 \\ 3.2.5 \\ 3.2.6 \end{array}$	Introduction Character Strings Representation of Strings Creation of Strings Integer-Valued Functions Character Conversion Boolean Functions Parsing Strings Printing	6 6 6 6 6 6 6 7 7
$\begin{array}{c} 3.1 \\ 3.2 \\ 3.2.1 \\ 3.2.2 \\ 3.2.3 \\ 3.2.4 \\ 3.2.5 \\ 3.2.6 \\ 3.3 \\ 3.3.1 \end{array}$	Introduction Character Strings Representation of Strings Creation of Strings Integer-Valued Functions Character Conversion Boolean Functions Parsing Strings Printing The print-Statement	6 6 6 6 6 6 7 7 7
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.3 3.3.1 3.3.2	Introduction Character Strings Representation of Strings Creation of Strings Integer-Valued Functions Character Conversion Boolean Functions Parsing Strings Printing The print-Statement The printf and fprintf Statements	6 6 6 6 6 6 7 7 7 7 7
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.3 3.3.1 3.3.2 3.3.3	Introduction Character Strings Representation of Strings Creation of Strings Integer-Valued Functions Character Conversion Boolean Functions Parsing Strings Printing The print-Statement	6 6 6 6 6 7 7 7 7 7 7 7
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.3 3.3.1 3.3.2 3.3.3 3.3.3 3.3.4	Introduction Character Strings Representation of Strings Creation of Strings Integer-Valued Functions Character Conversion Boolean Functions Parsing Strings Printing The print-Statement The printf and fprintf Statements Verbose Printing (vprint, vprintf) Automatic Printing	6 6 6 6 6 7 7 7 7 7 7 7 7
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5	Introduction Character Strings Representation of Strings Creation of Strings Integer-Valued Functions Character Conversion Boolean Functions Parsing Strings Printing The print-Statement The printf and fprintf Statements Verbose Printing (vprint, vprintf) Automatic Printing Indentation	6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6	Introduction Character Strings Representation of Strings Creation of Strings Integer-Valued Functions Character Conversion Boolean Functions Parsing Strings Printing The print-Statement The printf and fprintf Statements Verbose Printing (vprint, vprintf) Automatic Printing Indentation Printing to a File	6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7	Introduction Character Strings Representation of Strings Creation of Strings Integer-Valued Functions Character Conversion Boolean Functions Parsing Strings Printing The print-Statement The printf and fprintf Statements Verbose Printing (vprint, vprintf) Automatic Printing Indentation	6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7	Introduction Character Strings Representation of Strings Creation of Strings Integer-Valued Functions Character Conversion Boolean Functions Parsing Strings Printing The print-Statement The printf and fprintf Statements Verbose Printing (vprint, vprintf) Automatic Printing Indentation Printing to a File	6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8	Introduction Character Strings Representation of Strings Creation of Strings Integer-Valued Functions Character Conversion Boolean Functions Parsing Strings Printing The print-Statement The printf and fprintf Statements Verbose Printing (vprint, vprintf) Automatic Printing Indentation Printing to a File Printing to a String	6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.4	Introduction Character Strings Representation of Strings Creation of Strings Integer-Valued Functions Character Conversion Boolean Functions Parsing Strings Printing The print-Statement The printf and fprintf Statements Verbose Printing (vprint, vprintf) Automatic Printing Indentation Printing to a File Printing to a String Redirecting Output	6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.4 3.4 3.4 3.4 3.4	Introduction Character Strings Representation of Strings Creation of Strings Integer-Valued Functions Character Conversion Boolean Functions Parsing Strings Printing The print-Statement The printf and fprintf Statements Verbose Printing (vprint, vprintf) Automatic Printing Indentation Printing to a File Printing to a String Redirecting Output External Files	6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.4 3.4 3.4.1 3.4.2	Introduction Character Strings Representation of Strings Creation of Strings Integer-Valued Functions Character Conversion Boolean Functions Parsing Strings Printing The print-Statement The printf and fprintf Statements Verbose Printing (vprint, vprintf) Automatic Printing Indentation Printing to a File Printing to a String Redirecting Output External Files Opening Files	6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.4 3.4.1 3.4.2 3.4.3	Introduction Character Strings Representation of Strings Creation of Strings Integer-Valued Functions Character Conversion Boolean Functions Parsing Strings Printing The print-Statement The printf and fprintf Statements Verbose Printing (vprint, vprintf) Automatic Printing Indentation Printing to a File Printing to a String Redirecting Output External Files Opening Files Operations on File Objects Reading a Complete File	6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7
$\begin{array}{c} 3.1 \\ 3.2 \\ 3.2.1 \\ 3.2.2 \\ 3.2.3 \\ 3.2.4 \\ 3.2.5 \\ 3.2.6 \\ 3.3 \\ 3.3.1 \end{array}$	Introduction Character Strings Representation of Strings Creation of Strings Integer-Valued Functions Character Conversion Boolean Functions Parsing Strings Printing The print-Statement The printf and fprintf Statements Verbose Printing (vprint, vprintf) Automatic Printing Indentation Printing to a File Printing to a String Redirecting Output External Files Opening Files Operations on File Objects	6. 6. 6. 6. 6. 6. 6. 6. 6. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.4 3.4.1 3.4.2 3.4.3 3.5 3.5 3.5.1	Introduction Character Strings Representation of Strings Creation of Strings Integer-Valued Functions Character Conversion Boolean Functions Parsing Strings Printing The print-Statement The printf and fprintf Statements Verbose Printing (vprint, vprintf) Automatic Printing Indentation Printing to a File Printing to a String Redirecting Output External Files Opening Files Operations on File Objects Reading a Complete File Pipes	6. 6. 6. 6. 6. 6. 6. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.4 3.4.1 3.4.2 3.4.1 3.4.2 3.4.3 3.5 3.5.1 3.5.2	Introduction Character Strings Representation of Strings Creation of Strings Integer-Valued Functions Character Conversion Boolean Functions Parsing Strings Printing The print-Statement The printf and fprintf Statements Verbose Printing (vprint, vprintf) Automatic Printing Indentation Printing to a File Printing to a String Redirecting Output External Files Opening Files Operations on File Objects Reading a Complete File Pipes Pipe Creation	63 64 65 66 67 75 75 75 75 75 75 75 75 75 75 75 75 75
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.4 3.4.1 3.4.2 3.4.3 3.5	Introduction Character Strings Representation of Strings Creation of Strings Integer-Valued Functions Character Conversion Boolean Functions Parsing Strings Printing The print-Statement The printf and fprintf Statements Verbose Printing (vprint, vprintf) Automatic Printing Indentation Printing to a File Printing to a String Redirecting Output External Files Opening Files Operations on File Objects Reading a Complete File Pipes Pipe Creation Operations on Pipes	6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

liii

3.6.2	Socket Properties	86
3.6.3	Socket Predicates	86
3.6.4	Socket I/O	87
3.7	Interactive Input	88
3.8	Loading a Program File	89
3.9	Saving and Restoring Workspaces	89
3.10	Logging a Session	90
3.11	Memory Usage	90
3.12	System Calls	90
3.13	Creating Names	91
ENVI	RONMENT AND OPTIONS	. 93
4.1	Introduction	95
4.2	Command Line Options	95
4.3	Environment Variables	97
4.4	Set and Get	98
4.5	Verbose Levels	102
4.6	Other Information Procedures	103
4.7	History	104
4.8	The Magma Line Editor	106
4.8.1	Key Bindings (Emacs and VI mode)	106
4.8.2	Key Bindings in Emacs mode only	108
4.8.3	Key Bindings in VI mode only	109
4.9	The Magma Help System	112
4.9.1	Internal Help Browser	113
$5.1 \\ 5.2$	Introduction Terminology	$117 \\ 117$
5.2 5.3	Assignment	118
5.4	Uninitialized Identifiers	118
5.4 5.5	Evaluation in Magma	119
5.5.1	Call by Value Evaluation	119
5.5.1 5.5.2	Magma's Evaluation Process	119
5.5.3	Function Expressions	120
5.5.4	Function Values Assigned to Identifiers	122
5.5.5	Recursion and Mutual Recursion	122
5.5.6	Function Application	123
5.5.7	The Initial Context	124
5.6	Scope	124
5.6.1	Local Declarations	125
5.6.2	The 'first use' Rule	125
5.6.3	Identifier Classes	126
5.6.4	The Evaluation Process Revisited	126
5.6.5	The 'single use' Rule	127
5.7	Procedure Expressions	127
5.8	Reference Arguments	129
5.9	Dynamic Typing	130
5.10	Traps for Young Players	131
5.10.1	Trap 1	131
5.10.2	Trap 2	131
5.11	Appendix A: Precedence	133
5.12	Appendix B: Reserved Words	134

THE M	AGMA PROFILER	135
6.1	Introduction	137
6.2	Profiler Basics	137
6.3	Exploring the Call Graph	139
6.3.1	Internal Reports	139
6.3.2	HTML Reports	141
6.4	Recursion and the Profiler	141
DEBUG	GGING MAGMA CODE	145
7.1	Introduction	147
7.2	Using the Debugger	147
	6.1 6.2 6.3 6.3.1 6.3.2 6.4 DEBUG	 6.2 Profiler Basics 6.3 Exploring the Call Graph 6.3.1 Internal Reports 6.3.2 HTML Reports 6.4 Recursion and the Profiler DEBUGGING MAGMA CODE

lv

II	SETS,	SEQUENCES, AND MAPPINGS	151
8	INTRO	DUCTION TO AGGREGATES	153
	8.1	Introduction	155
	8.2	Restrictions on Sets and Sequences	155
	8.2.1	Universe of a Set or Sequence	156
	8.2.2	Modifying the Universe of a Set or Sequence	157
	8.2.3	Parents of Sets and Sequences	159
	8.3	Nested Aggregates	160
	8.3.1	Multi-indexing	160
9	SETS		163
	9.1	Introduction	165
	9.1.1	Enumerated Sets	165
	9.1.2	Formal Sets	165
	9.1.3	Indexed Sets	165
	9.1.4	Multisets	165
	9.1.5	Compatibility	166
	9.1.6	Notation	166
	9.2	Creating Sets	166
	9.2.1	The Formal Set Constructor	166
	9.2.2	The Enumerated Set Constructor	167
	9.2.3	The Indexed Set Constructor	169
	9.2.4	The Multiset Constructor	170
	9.2.5	The Arithmetic Progression Constructors	172
	9.3	Power Sets	173
	9.3.1	The Cartesian Product Constructors	175
	9.4	Sets from Structures	175
	9.5	Accessing and Modifying Sets	176
	9.5.1	Accessing Sets and their Associated Structures	176
	9.5.2	Selecting Elements of Sets	177
	9.5.3	Modifying Sets	180
	9.6	Operations on Sets	183
	9.6.1	Boolean Functions and Operators	183
	9.6.2	Binary Set Operators	184
	9.6.3	Other Set Operations	185
	9.7	Quantifiers	186
	9.8	Reduction and Iteration over Sets	189
10	SEQUE	ENCES	191
	10.1	Introduction	193
	10.1.1	Enumerated Sequences	193
	10.1.2	Formal Sequences	193
	10.1.3	Compatibility	194
	10.2	Creating Sequences	194
	10.2.1	The Formal Sequence Constructor	194
	10.2.2	The Enumerated Sequence Constructor	195
	10.2.3	The Arithmetic Progression Constructors	196
	10.2.4	Literal Sequences	197
	10.3	Power Sequences	197
	10.4	Operators on Sequences	198
	10.4.1	Access Functions	198
	10.4.2	Selection Operators on Enumerated Sequences	199

lvi

	$10.4.3 \\ 10.4.4$	Modifying Enumerated Sequences Creating New Enumerated Sequences from Existing Ones	$200 \\ 205$
	10.1.1	Predicates on Sequences	208
	10.5.1	Membership Testing	208
	10.5.2	Testing Order Relations	209
	10.6	Recursion, Reduction, and Iteration	210
	10.6.1	Recursion	210
	10.6.2	Reduction	211
	10.7	Iteration	211
	10.8	Bibliography	212
11	TUPLI	ES AND CARTESIAN PRODUCTS	213
	11.1	Introduction	215
	11.2	Cartesian Product Constructor and Functions	215
	11.3	Creating and Modifying Tuples	216
	11.4	Tuple Access Functions	218
	11.5	Equality	218
	11.6	Other operations	219
12	LISTS		221
	12.1	Introduction	223
	12.2	Construction of Lists	223
	12.3	Creation of New Lists	223
	12.4	Access Functions	224
	12.5	Assignment Operator	225
13	ASSOC	CIATIVE ARRAYS	227
	13.1	Introduction	229
	13.2	Operations	229
14	COPR	ODUCTS	233
	14.1	Introduction	235
	14.2	Creation Functions	235
	14.2.1	Creation of Coproducts	235
	14.2.2	Creation of Coproduct Elements	235
	14.3	Accessing Functions	236
	14.4	Retrieve	236
	14.5	Flattening	237
	14.6	Universal Map	237
15	RECO	RDS	239
	15.1	Introduction	241
	15.2	The Record Format Constructor	241
	15.3	Creating a Record	242
	15.4	Access and Modification Functions	243

lvii

16	MAPI	PINGS	245
	16.1	Introduction	247
	16.1.1	The Map Constructors	247
	16.1.2	The Graph of a Map	248
	16.1.3	Rules for Maps	248
	16.1.4	Homomorphisms	248
	16.1.5	Checking of Maps	248
	16.2	Creation Functions	249
	16.2.1	Creation of Maps	249
	16.2.2	Creation of Partial Maps	250
	16.2.3	Creation of Homomorphisms	250
	16.2.4	Coercion Maps	251
	16.3	Operations on Mappings	251
	16.3.1	Composition	251
	16.3.2	(Co)Domain and (Co)Kernel	252
	16.3.3	Inverse	252
	16.3.4	Function	252
	16.4	Images and Preimages	253
	16.5	Parents of Maps	254

lviii

III BASIC RINGS

17	INTRO	DUCTION TO RINGS	257
	17.1	Overview	259
	17.2	The World of Rings	260
	17.2.1	New Rings from Existing Ones	260
	17.2.2	Attributes	261
	17.3	Coercion	261
	17.3.1	Automatic Coercion	262
	17.3.2	Forced Coercion	264
	17.4	Generic Ring Functions	266
	17.4.1	Related Structures	266
	17.4.2	Numerical Invariants	266
	17.4.3	Predicates and Boolean Operations	267
	17.5	Generic Element Functions	268
	17.5.1	Parent and Category	268
	17.5.2	Creation of Elements	269
	17.5.3	Arithmetic Operations	269
	17.5.4	Equality and Membership	270
	17.5.5	Predicates on Ring Elements	271
	17.5.6	Comparison of Ring Elements	272
	17.6	Ideals and Quotient Rings	273
	17.6.1	Defining Ideals and Quotient Rings	273
	17.6.2	Arithmetic Operations on Ideals	273
	17.6.3	Boolean Operators on Ideals	274
	$17.7 \\ 17.7.1$	Other Ring Constructions	$274 \\ 274$
	17.7.1 17.7.2	Residue Class Fields Localization	$\frac{274}{274}$
	17.7.2 17.7.3	Completion	$274 \\ 275$
	17.7.3 17.7.4	Transcendental Extension	$\frac{275}{275}$
	11.1.4	Transcendental Extension	215
18	RING	OF INTEGERS	277
	18.1	Introduction	281
	18.1.1	Representation	281
	18.1.2	Coercion	281
	18.1.3	Homomorphisms	281
	18.2	Creation Functions	282
	18.2.1	Creation of Structures	282
	18.2.2	Creation of Elements	282
	18.2.3	Printing of Elements	283
	18.2.4	Element Conversions	284
	18.3	Structure Operations	285
	18.3.1	Related Structures	285
	18.3.2	Numerical Invariants Ring Predicates and Booleans	286 286
	18.3.3	0	286
	18.4 18.4 1	Element Operations	$\frac{286}{286}$
	$18.4.1 \\ 18.4.2$	Arithmetic Operations Bit Operations	286
	10.4.2	Dir Operations	287

18.4.3	Equality and Membership	287
18.4.4	Parent and Category	287
18.4.5	Predicates on Ring Elements	288
18.4.6	Comparison of Ring Elements	289
18.4.7	Conjugates, Norm and Trace	289
18.4.8	Other Elementary Functions	290
18.5	Random Numbers	291
18.6	Common Divisors and Common Multiples	292
18.7	Arithmetic Functions	293
18.8	Combinatorial Functions	296
18.9	Primes and Primality Testing	297
18.9.1	Primality	297
18.9.2	Other Functions Relating to Primes	300
18.10	Factorization	301
18.10.1	General Factorization	302
18.10.2	Storing Potential Factors	304
18.10.3	Specific Factorization Algorithms	304
18.10.4	Factorization Related Functions	308
18.11	Factorization Sequences	310
18.11.1	Creation and Conversion	310
18.11.2	Arithmetic	311
18.11.3	Divisors	311
18.11.4	Predicates	311
18.12	Modular Arithmetic	311
18.12.1	Arithmetic Operations	311
18.12.2	The Solution of Modular Equations	312
18.13	Infinities	313
18.13.1	Creation	314
18.13.2	Arithmetic	314
18.13.3	Comparison	314
18.13.4	Miscellaneous	314
18.14	Advanced Factorization Techniques: The Number Field Sieve	315
18.14.1	The MAGMA Number Field Sieve Implementation	315
18.14.2	Naive NFS	316
18.14.3	Factoring with NFS Processes	316
18.14.4	Data files	321
18.14.5	Distributing NFS Factorizations	322
18.14.6	MAGMA and CWI NFS Interoperability	323
18.14.7	Tools for Finding a Suitable Polynomial	324
18.15	Bibliography	326
INTE	GER RESIDUE CLASS RINGS	329
19.1	Introduction	331
19.2	Ideals of \mathbf{Z}	331
19.3	Z as a Number Field Order	332
19.4	Residue Class Rings	333
19.4.1	Creation	333
19.4.2	Coercion	334
19.4.3	Elementary Invariants	335
19.4.4	Structure Operations	335
19.4.5	Ring Predicates and Booleans	336
19.4.6	Homomorphisms	336
19.5	Elements of Residue Class Rings	336
19.5.1	Creation	336
19.5.2	Arithmetic Operators	337

19.5.3	Equality and Membership	337
19.5.4	Parent and Category	337
19.5.5	Predicates on Ring Elements	337
19.5.6	Solving Equations over $\mathbf{Z}/m\mathbf{Z}$	337
19.6	Ideal Operations	339
19.7	The Unit Group	340
19.8	Dirichlet Characters	341
19.8.1	Creation	342
19.8.2	Element Creation	342
19.8.3	Properties of Dirichlet Groups	343
19.8.4	Properties of Elements	344
19.8.5	Evaluation	345
19.8.6	Arithmetic	346
19.8.7	Example	346
RATIO	ONAL FIELD	349
20.1	Introduction	351
20.1.1	Representation	351
20.1.2	Coercion	351
20.1.3	Homomorphisms	352
20.2	Creation Functions	353
20.2.1	Creation of Structures	353
20.2.2	Creation of Elements	353
20.3	Structure Operations	354
20.3.1	Related Structures	354
20.3.2	Numerical Invariants	356
20.3.3	Ring Predicates and Booleans	356
20.4	Element Operations	357
20.4.1	Parent and Category	357
20.4.2	Arithmetic Operators	357
20.4.3	Numerator and Denominator	357
20.4.4	Equality and Membership	357
20.4.5	Predicates on Ring Elements	358
20.4.6	Comparison	358
20.4.7	Conjugates, Norm and Trace	358
20.4.8	Absolute Value and Sign	359
20.4.9	Rounding and Truncating	359
20.4.10	Rational Reconstruction	360
20.4.11	Valuation	360
20.4.12	Sequence Conversions	360
FINIT	E FIELDS	361
21.1	Introduction	363
21.1.1	Representation of Finite Fields	363
21.1.2	Conway Polynomials	363
21.1.3	Ground Field and Relationships	364
21.2	Creation Functions	364
21.2.1	Creation of Structures	364
21.2.2	Creating Relations	368
21.2.3	Special Options	368
21.2.4	Homomorphisms	370
21.2.5	Creation of Elements	370
21.2.6	Special Elements	371
21.2.7	Sequence Conversions	372
21.3	Structure Operations	372

21

21.3.1	Related Structures	373
21.3.2	Numerical Invariants	37!
21.3.3	Defining Polynomial	375
21.3.4	Ring Predicates and Booleans	375
21.3.5	Roots	370
21.4	Element Operations	37
21.4.1	Arithmetic Operators	$37'_{-}$
21.4.2	Equality and Membership	371
21.4.3	Parent and Category	$37'_{-}$
21.4.4	Predicates on Ring Elements	378
21.4.5	Minimal and Characteristic Polynomial	378
21.4.6	Norm, Trace and Frobenius	379
21.4.7	Order and Roots	380
21.5	Polynomials for Finite Fields	382
21.6	Discrete Logarithms	383
21.7	Permutation Polynomials	380
21.8	Bibliography	38
NEAF	RFIELDS	389
22.1	Introduction	39
22.1 22.2	Nearfield Properties	39
22.2 22.2.1	Sharply Doubly Transitive Groups	392
22.2.1 22.3		
22.3 22.3.1	Constructing Nearfields Dickson Nearfields	<i>39</i> : 39:
22.3.1 22.3.2	Zassenhaus Nearfields	396
22.3.2 22.4		
22.4 22.4.1	Operations on Elements Nearfield Arithmetic	<i>391</i> 397
22.4.1 22.4.2		397
22.4.2 22.4.3	Equality and Membership Parent and Category	39'
22.4.3 22.4.4	Predicates on Nearfield Elements	39' 39'
22.4.4 22.5		39
	Operations on Nearfields	
22.6	The Group of Units	400
22.7	Automorphisms	40
22.8	Nearfield Planes	402
22.8.1	Hughes Planes	403
22.9	Bibliography	404
UNIV	ARIATE POLYNOMIAL RINGS	407
23.1	Introduction	41
23.1.1	Representation	411
23.2	Creation Functions	411
23.2.1	Creation of Structures	411
23.2.2	Print Options	412
23.2.3	Creation of Elements	413
23.3	Structure Operations	413
23.3.1	Related Structures	415
23.3.2	Changing Rings	415
23.3.3	Numerical Invariants	416
23.3.4	Ring Predicates and Booleans	416
23.3.5	Homomorphisms	416
23.4	Element Operations	$41'_{-}$
23.4.1	Parent and Category	417
23.4.2	Arithmetic Operators	417
23.4.3	Equality and Membership	417

23.4.4	Predicates on Ring Elements	418
23.4.5	Coefficients and Terms	418
23.4.6	Degree	419
23.4.7	Roots	420
23.4.8	Derivative, Integral	422
23.4.9	Evaluation, Interpolation	422
23.4.10	Quotient and Remainder	422
23.4.11	Modular Arithmetic	424
23.4.12	Other Operations	424
23.5	Common Divisors and Common Multiples	424
23.5.1	Common Divisors and Common Multiples	425
23.5.2	Content and Primitive Part	426
23.6	Polynomials over the Integers	427
23.7	Polynomials over Finite Fields	427
23.8	Factorization	428
23.8.1	Factorization and Irreducibility	428
23.8.2	Resultant and Discriminant	432
23.8.3	Hensel Lifting	433
23.9	Ideals and Quotient Rings	434
23.9.1	Creation of Ideals and Quotients	434
23.9.2	Ideal Arithmetic	434
23.9.3	Other Functions on Ideals	435
23.9.4	Other Functions on Quotients	436
23.10	Special Families of Polynomials	436
23.10.1	Orthogonal Polynomials	436
23.10.2	Permutation Polynomials	437
23.10.3	The Bernoulli Polynomial	438
23.10.4	Swinnerton-Dyer Polynomials	438
23.11	Bibliography	438
MULT	IVABIATE POLVNOMIAL BINGS	111
	IVARIATE POLYNOMIAL RINGS	441
24.1	Introduction	443
$\begin{array}{c} 24.1 \\ 24.1.1 \end{array}$	Introduction Representation	$\begin{array}{c} 443 \\ 443 \end{array}$
$24.1 \\ 24.1.1 \\ 24.2$	Introduction Representation Polynomial Rings and Polynomials	$443 \\ 443 \\ 444$
$24.1 \\ 24.1.1 \\ 24.2 \\ 24.2.1$	Introduction Representation Polynomial Rings and Polynomials Creation of Polynomial Rings	$443 \\ 443 \\ 444 \\ 444$
$24.1 \\ 24.1.1 \\ 24.2 \\ 24.2.1 \\ 24.2.2$	Introduction Representation Polynomial Rings and Polynomials Creation of Polynomial Rings Print Names	$\begin{array}{c} 443 \\ 443 \\ 444 \\ 444 \\ 446 \end{array}$
$24.1 \\ 24.1.1 \\ 24.2 \\ 24.2.1 \\ 24.2.2 \\ 24.2.3$	Introduction Representation Polynomial Rings and Polynomials Creation of Polynomial Rings Print Names Graded Polynomial Rings	$\begin{array}{c} 443 \\ 443 \\ 444 \\ 444 \\ 446 \\ 446 \\ 446 \end{array}$
$24.1 \\ 24.1.1 \\ 24.2 \\ 24.2.1 \\ 24.2.2 \\ 24.2.3 \\ 24.2.3 \\ 24.2.4$	Introduction Representation Polynomial Rings and Polynomials Creation of Polynomial Rings Print Names Graded Polynomial Rings Creation of Polynomials	$\begin{array}{c} 443 \\ 443 \\ 444 \\ 444 \\ 446 \\ 446 \\ 447 \end{array}$
24.1 24.1.1 24.2 24.2.1 24.2.2 24.2.3 24.2.3 24.2.4 24.3	Introduction Representation Polynomial Rings and Polynomials Creation of Polynomial Rings Print Names Graded Polynomial Rings Creation of Polynomials Structure Operations	443 443 444 444 446 446 446 447 447
$24.1 \\ 24.1.1 \\ 24.2 \\ 24.2.1 \\ 24.2.2 \\ 24.2.3 \\ 24.2.3 \\ 24.2.4 \\ 24.3 \\ 24.3.1$	Introduction Representation Polynomial Rings and Polynomials Creation of Polynomial Rings Print Names Graded Polynomial Rings Creation of Polynomials Structure Operations Related Structures	$\begin{array}{c} 443 \\ 443 \\ 444 \\ 444 \\ 446 \\ 446 \\ 446 \\ 447 \\ 447 \\ 447 \end{array}$
$24.1 \\ 24.1.1 \\ 24.2 \\ 24.2.1 \\ 24.2.2 \\ 24.2.3 \\ 24.2.3 \\ 24.2.4 \\ 24.3 \\ 24.3.1 \\ 24.3.2$	Introduction Representation Polynomial Rings and Polynomials Creation of Polynomial Rings Print Names Graded Polynomial Rings Creation of Polynomials Structure Operations Related Structures Numerical Invariants	$\begin{array}{c} 443\\ 443\\ 444\\ 444\\ 446\\ 446\\ 446\\ 447\\ 447\\ 447$
$\begin{array}{c} 24.1 \\ 24.1.1 \\ 24.2 \\ 24.2.1 \\ 24.2.2 \\ 24.2.3 \\ 24.2.3 \\ 24.2.4 \\ 24.3 \\ 24.3.1 \\ 24.3.2 \\ 24.3.3 \end{array}$	Introduction Representation Polynomial Rings and Polynomials Creation of Polynomial Rings Print Names Graded Polynomial Rings Creation of Polynomials Structure Operations Related Structures Numerical Invariants Ring Predicates and Booleans	443 443 444 446 446 446 447 447 447 447 448 448
$\begin{array}{c} 24.1 \\ 24.1.1 \\ 24.2 \\ 24.2.1 \\ 24.2.2 \\ 24.2.3 \\ 24.2.3 \\ 24.2.4 \\ 24.3 \\ 24.3.1 \\ 24.3.2 \\ 24.3.3 \\ 24.3.4 \end{array}$	Introduction Representation Polynomial Rings and Polynomials Creation of Polynomial Rings Print Names Graded Polynomial Rings Creation of Polynomials Structure Operations Related Structures Numerical Invariants Ring Predicates and Booleans Changing Coefficient Ring	$\begin{array}{c} 443\\ 443\\ 444\\ 444\\ 446\\ 446\\ 446\\ 447\\ 447\\ 447$
$\begin{array}{c} 24.1\\ 24.1.1\\ 24.2\\ 24.2.1\\ 24.2.2\\ 24.2.3\\ 24.2.3\\ 24.2.4\\ 24.3\\ 24.3.1\\ 24.3.2\\ 24.3.3\\ 24.3.4\\ 24.3.5\end{array}$	Introduction Representation Polynomial Rings and Polynomials Creation of Polynomial Rings Print Names Graded Polynomial Rings Creation of Polynomials Structure Operations Related Structures Numerical Invariants Ring Predicates and Booleans Changing Coefficient Ring Homomorphisms	$\begin{array}{c} 443\\ 443\\ 444\\ 444\\ 446\\ 446\\ 446\\ 447\\ 447\\ 447$
$\begin{array}{c} 24.1 \\ 24.1.1 \\ 24.2 \\ 24.2.1 \\ 24.2.2 \\ 24.2.3 \\ 24.2.3 \\ 24.2.4 \\ 24.3 \\ 24.3.1 \\ 24.3.2 \\ 24.3.3 \\ 24.3.4 \\ 24.3.5 \\ 24.4 \end{array}$	Introduction Representation Polynomial Rings and Polynomials Creation of Polynomial Rings Print Names Graded Polynomial Rings Creation of Polynomials Structure Operations Related Structures Numerical Invariants Ring Predicates and Booleans Changing Coefficient Ring Homomorphisms Element Operations	$\begin{array}{c} 443\\ 443\\ 444\\ 444\\ 446\\ 446\\ 446\\ 447\\ 447\\ 447$
$\begin{array}{c} 24.1\\ 24.1.1\\ 24.2\\ 24.2.1\\ 24.2.2\\ 24.2.3\\ 24.2.3\\ 24.2.4\\ 24.3\\ 24.3.1\\ 24.3.2\\ 24.3.3\\ 24.3.4\\ 24.3.5\\ 24.4\\ 24.4.1\end{array}$	Introduction Representation Polynomial Rings and Polynomials Creation of Polynomial Rings Print Names Graded Polynomial Rings Creation of Polynomials Structure Operations Related Structures Numerical Invariants Ring Predicates and Booleans Changing Coefficient Ring Homomorphisms Element Operations Arithmetic Operators	$\begin{array}{c} 443\\ 443\\ 444\\ 444\\ 446\\ 446\\ 446\\ 447\\ 447\\ 447$
$\begin{array}{c} 24.1\\ 24.1.1\\ 24.2\\ 24.2.1\\ 24.2.2\\ 24.2.3\\ 24.2.4\\ 24.3\\ 24.3.1\\ 24.3.2\\ 24.3.3\\ 24.3.4\\ 24.3.5\\ 24.4\\ 24.4.1\\ 24.4.1\\ 24.4.2\end{array}$	Introduction Representation Polynomial Rings and Polynomials Creation of Polynomial Rings Print Names Graded Polynomial Rings Creation of Polynomials Structure Operations Related Structures Numerical Invariants Ring Predicates and Booleans Changing Coefficient Ring Homomorphisms Element Operations Arithmetic Operators Equality and Membership	$\begin{array}{c} 443\\ 443\\ 444\\ 444\\ 446\\ 446\\ 446\\ 447\\ 447\\ 447$
$\begin{array}{c} 24.1\\ 24.1.1\\ 24.2\\ 24.2.1\\ 24.2.2\\ 24.2.3\\ 24.2.4\\ 24.3\\ 24.3.1\\ 24.3.2\\ 24.3.3\\ 24.3.4\\ 24.3.5\\ 24.4\\ 24.4.1\\ 24.4.2\\ 24.4.3\end{array}$	Introduction Representation Polynomial Rings and Polynomials Creation of Polynomial Rings Print Names Graded Polynomial Rings Creation of Polynomials Structure Operations Related Structures Numerical Invariants Ring Predicates and Booleans Changing Coefficient Ring Homomorphisms Element Operations Arithmetic Operators Equality and Membership Predicates on Ring Elements	$\begin{array}{c} 443\\ 443\\ 444\\ 444\\ 446\\ 446\\ 446\\ 447\\ 447\\ 447$
$\begin{array}{c} 24.1\\ 24.1.1\\ 24.2\\ 24.2.1\\ 24.2.2\\ 24.2.3\\ 24.2.3\\ 24.2.4\\ 24.3\\ 24.3.1\\ 24.3.2\\ 24.3.3\\ 24.3.4\\ 24.3.5\\ 24.4\\ 24.4.1\\ 24.4.2\\ 24.4.3\\ 24.4.3\\ 24.4.4\end{array}$	Introduction Representation Polynomial Rings and Polynomials Creation of Polynomial Rings Print Names Graded Polynomial Rings Creation of Polynomials Structure Operations Related Structures Numerical Invariants Ring Predicates and Booleans Changing Coefficient Ring Homomorphisms Element Operations Arithmetic Operators Equality and Membership Predicates on Ring Elements Coefficients, Monomials and Terms	$\begin{array}{c} 443\\ 443\\ 444\\ 444\\ 446\\ 446\\ 446\\ 447\\ 447\\ 447$
$\begin{array}{c} 24.1\\ 24.1.1\\ 24.2\\ 24.2.1\\ 24.2.2\\ 24.2.3\\ 24.2.3\\ 24.2.4\\ 24.3\\ 24.3.1\\ 24.3.2\\ 24.3.3\\ 24.3.4\\ 24.3.5\\ 24.4\\ 24.4.1\\ 24.4.2\\ 24.4.3\\ 24.4.3\\ 24.4.4\\ 24.4.5\end{array}$	Introduction Representation Polynomial Rings and Polynomials Creation of Polynomial Rings Print Names Graded Polynomial Rings Creation of Polynomials Structure Operations Related Structures Numerical Invariants Ring Predicates and Booleans Changing Coefficient Ring Homomorphisms Element Operations Arithmetic Operators Equality and Membership Predicates on Ring Elements Coefficients, Monomials and Terms Degrees	$\begin{array}{c} 443\\ 443\\ 444\\ 444\\ 446\\ 446\\ 446\\ 447\\ 447\\ 447$
$\begin{array}{c} 24.1\\ 24.1.1\\ 24.2\\ 24.2.1\\ 24.2.2\\ 24.2.3\\ 24.2.3\\ 24.2.4\\ 24.3\\ 24.3.1\\ 24.3.2\\ 24.3.3\\ 24.3.4\\ 24.3.5\\ 24.4\\ 24.4.1\\ 24.4.2\\ 24.4.3\\ 24.4.3\\ 24.4.4\\ 24.4.5\\ 24.4.6\end{array}$	Introduction Representation Polynomial Rings and Polynomials Creation of Polynomial Rings Print Names Graded Polynomial Rings Creation of Polynomials Structure Operations Related Structures Numerical Invariants Ring Predicates and Booleans Changing Coefficient Ring Homomorphisms Element Operations Arithmetic Operators Equality and Membership Predicates on Ring Elements Coefficients, Monomials and Terms Degrees Univariate Polynomials	$\begin{array}{c} 443\\ 443\\ 444\\ 444\\ 446\\ 446\\ 446\\ 447\\ 447\\ 447$
$\begin{array}{c} 24.1\\ 24.1.1\\ 24.2\\ 24.2.1\\ 24.2.2\\ 24.2.3\\ 24.2.3\\ 24.2.4\\ 24.3\\ 24.3.1\\ 24.3.2\\ 24.3.3\\ 24.3.4\\ 24.3.5\\ 24.4\\ 24.4.1\\ 24.4.2\\ 24.4.3\\ 24.4.3\\ 24.4.4\\ 24.4.5\\ 24.4.6\\ 24.4.7\end{array}$	Introduction Representation Polynomial Rings and Polynomials Creation of Polynomial Rings Print Names Graded Polynomial Rings Creation of Polynomials Structure Operations Related Structures Numerical Invariants Ring Predicates and Booleans Changing Coefficient Ring Homomorphisms Element Operations Arithmetic Operators Equality and Membership Predicates on Ring Elements Coefficients, Monomials and Terms Degrees Univariate Polynomials Derivative, Integral	$\begin{array}{c} 443\\ 443\\ 444\\ 444\\ 446\\ 446\\ 446\\ 447\\ 447\\ 447$
$\begin{array}{c} 24.1\\ 24.1.1\\ 24.2\\ 24.2.1\\ 24.2.2\\ 24.2.3\\ 24.2.3\\ 24.2.4\\ 24.3\\ 24.3.1\\ 24.3.2\\ 24.3.3\\ 24.3.4\\ 24.3.5\\ 24.4\\ 24.4.1\\ 24.4.2\\ 24.4.3\\ 24.4.4\\ 24.4.5\\ 24.4.4\\ 24.4.5\\ 24.4.6\\ 24.4.7\\ 24.4.8\end{array}$	Introduction Representation Polynomial Rings and Polynomials Creation of Polynomial Rings Print Names Graded Polynomial Rings Creation of Polynomials Structure Operations Related Structures Numerical Invariants Ring Predicates and Booleans Changing Coefficient Ring Homomorphisms Element Operations Arithmetic Operators Equality and Membership Predicates on Ring Elements Coefficients, Monomials and Terms Degrees Univariate Polynomials Derivative, Integral Evaluation, Interpolation	$\begin{array}{c} 443\\ 443\\ 444\\ 444\\ 446\\ 446\\ 446\\ 447\\ 447\\ 447$
$\begin{array}{c} 24.1\\ 24.1.1\\ 24.2\\ 24.2.1\\ 24.2.2\\ 24.2.3\\ 24.2.3\\ 24.2.4\\ 24.3\\ 24.3.1\\ 24.3.2\\ 24.3.3\\ 24.3.4\\ 24.3.5\\ 24.4\\ 24.4.1\\ 24.4.2\\ 24.4.3\\ 24.4.3\\ 24.4.4\\ 24.4.5\\ 24.4.6\\ 24.4.7\end{array}$	Introduction Representation Polynomial Rings and Polynomials Creation of Polynomial Rings Print Names Graded Polynomial Rings Creation of Polynomials Structure Operations Related Structures Numerical Invariants Ring Predicates and Booleans Changing Coefficient Ring Homomorphisms Element Operations Arithmetic Operators Equality and Membership Predicates on Ring Elements Coefficients, Monomials and Terms Degrees Univariate Polynomials Derivative, Integral	$\begin{array}{c} 443\\ 443\\ 444\\ 444\\ 446\\ 446\\ 446\\ 447\\ 447\\ 447$

lxiii

24.5.1	Common Divisors and Common Multiples	461
24.5.2	Content and Primitive Part	462
24.6	Factorization and Irreducibility	463
24.7	Resultants and Discriminants	467
24.8	Polynomials over the Integers	467
24.9	Bibliography	468
REAL	AND COMPLEX FIELDS	469
25.1	Introduction	473
25.1.1	Overview of Real Numbers in MAGMA	473
25.1.2	Coercion	474
25.1.3	Homomorphisms	475
25.1.4	Special Options	475
25.1.5	Version Functions	476
25.2	Creation Functions	476
25.2.1	Creation of Structures	476
25.2.2	Creation of Elements	478
25.3	Structure Operations	479
25.3.1	Related Structures	479
25.3.2	Numerical Invariants	479
25.3.3	Ring Predicates and Booleans	480
25.3.4	Other Structure Functions	480
25.4	Element Operations	480
25.4.1	Generic Element Functions and Predicates	480
25.4.2	Comparison of and Membership	481
25.4.3 25.4.4	Other Predicates Arithmetic	481 481
25.4.4 25.4.5	Conversions	481
25.4.0 25.4.6	Rounding	481
25.4.7	Precision	482
25.4.8	Constants	483
25.4.9	Simple Element Functions	484
25.4.10	Roots	485
25.4.11	Continued Fractions	490
25.4.12	Algebraic Dependencies	491
25.5	Transcendental Functions	491
25.5.1	Exponential, Logarithmic and Polylogarithmic Functions	491
25.5.2	Trigonometric Functions	493
25.5.3	Inverse Trigonometric Functions	495
25.5.4	Hyperbolic Functions	497
25.5.5	Inverse Hyperbolic Functions	498
25.6	Elliptic and Modular Functions	499
25.6.1	Eisenstein Series	499
25.6.2	Weierstrass Series	501
25.6.3	The Jacobi θ and Dedekind η -functions	502
25.6.4	The j -invariant and the Discriminant	503
25.6.5	Weber's Functions	504
25.7	Theta Functions	505
25.8	Gamma, Bessel and Associated Functions	506
25.9	The Hypergeometric Function	508
25.10	Other Special Functions	509
25.11	Numerical Functions	511
25.11.1	Summation of Infinite Series	511
25.11.2	Integration	511
25.11.3	Numerical Derivatives	512
25.12	Bibliography	512

lxiv

MATRICES AND LINEAR ALGEBRA \mathbf{IV} 515

26	MATR	RICES	517
	26.1	Introduction	521
	26.2	Creation of Matrices	521
	26.2.1	General Matrix Construction	521
	26.2.2	Shortcuts	523
	26.2.3	Construction of Structured Matrices	525
	26.2.4	Construction of Random Matrices	528
	26.2.5	Creating Vectors	529
	26.3	Elementary Properties	529
	26.4	Accessing or Modifying Entries	530
	26.4.1	Indexing	530
	26.4.2	Extracting and Inserting Blocks	531
	26.4.3	Row and Column Operations	534
	26.5	Building Block Matrices	537
	26.6	Changing Ring	538
	26.7	Elementary Arithmetic	539
	26.8	Nullspaces and Solutions of Systems	540
	26.9	Predicates	543
	26.10	Determinant and Other Properties	544
	26.11	Minimal and Characteristic Polynomials and Eigenvalues	546
	26.12	Canonical Forms	548
	26.12.1	Canonical Forms over General Rings	548
	26.12.2	Canonical Forms over Fields	548
	26.12.3	Canonical Forms over Euclidean Domains	551
	26.13	Orders of Invertible Matrices	554
	26.14	Miscellaneous Operations on Matrices	555
	26.15	Bibliography	555
27	SPARS	SE MATRICES	557
	27.1	Introduction	559
	27.2	Creation of Sparse Matrices	559
	27.2.1	Construction of Initialized Sparse Matrices	559
	27.2.2	Construction of Trivial Sparse Matrices	560
	27.2.3	Construction of Structured Matrices	562
	27.2.4	Parents of Sparse Matrices	562
	27.3	Accessing Sparse Matrices	563
	27.3.1	Elementary Properties	563
	27.3.2	Weights	564
	27.4	Accessing or Modifying Entries	564
	27.4.1	Extracting and Inserting Blocks	566
	27.4.2	Row and Column Operations	568
	27.5	Building Block Matrices	569
	27.6	Conversion to and from Dense Matrices	570
	27.7	Changing Ring	570
	27.8	Predicates	571
	27.9	Elementary Arithmetic	572
	27.10	Multiplying Vectors or Matrices by Sparse Matrices	573
	27.11	Non-trivial Properties	573
	27.11.1	Nullspace and Rowspace	573
	27.11.2	Rank	574
	27.12	Determinant and Other Properties	574

27.12.1	Elementary Divisors (Smith Form)	575
27.12.2	Verbosity	575
27.13	Linear Systems (Structured Gaussian Elimination)	575
27.14	Bibliography	582
VECT	TOR SPACES	. 583
28.1	Introduction	585
28.1.1	Vector Space Categories	585
28.1.2	The Construction of a Vector Space	585
28.2	Creation of Vector Spaces and Arithmetic with Vectors	586
28.2.1	Construction of a Vector Space	586
28.2.2	Construction of a Vector Space with Inner Product Matrix	587
28.2.3	Construction of a Vector	587
28.2.4	Deconstruction of a Vector	589
28.2.5	Arithmetic with Vectors	589
28.2.6	Indexing Vectors and Matrices	592
28.3	Subspaces, Quotient Spaces and Homomorphisms	594
28.3.1	Construction of Subspaces	594
28.3.2	Construction of Quotient Vector Spaces	596
28.4	Changing the Coefficient Field	598
28.5	Basic Operations	599
28.5.1	Accessing Vector Space Invariants	599
28.5.2	Membership and Equality	600
28.5.3	Operations on Subspaces	601
28.6	Reducing Vectors Relative to a Subspace	601
28.7	Bases	602
28.8	Operations with Linear Transformations	604
POLA	AR SPACES	. 607
29.1	Introduction	609
29.2	Reflexive Forms	609
29.2.1	Quadratic Forms	610
29.3	Inner Products	611
29.3.1	Orthogonality	613
29.4	Isotropic and Singular Vectors and Subspaces	614
29.5	The Standard Forms	617
29.6	Constructing Polar Spaces	620
29.6.1	Symplectic Spaces	621
29.6.2	Unitary Spaces	621
29.6.3	Quadratic Spaces	622
29.7	Isometries and Similarities	625
29.7.1	Isometries	625
29.7.2	Similarities	628
29.8	Wall Forms	629
29.9	Invariant Forms	630
29.9.1	Semi-invariant Forms	633
29.10	Bibliography	635

28

V LATTICES AND QUADRATIC FORMS 637

30	LATT	ICES	639
	30.1	Introduction	643
	30.2	Presentation of Lattices	644
	30.3	Creation of Lattices	645
	30.3.1	Elementary Creation of Lattices	645
	30.3.2	Lattices from Linear Codes	649
	30.3.3	Lattices from Algebraic Number Fields	650
	30.3.4	Special Lattices	652
	30.4	Lattice Elements	653
	30.4.1	Creation of Lattice Elements	653
	30.4.2	Operations on Lattice Elements	653
	30.4.3	Predicates and Boolean Operations	655
	30.4.4	Access Operations	655
	30.5	Properties of Lattices	657
	30.5.1	Associated Structures	657
	30.5.2	Attributes of Lattices	658
	30.5.3	Predicates and Booleans on Lattices	659
	30.5.4	Base Ring and Base Change	660
	30.6	Construction of New Lattices	660
	30.6.1	Sub- and Superlattices and Quotients	660
	30.6.2	Standard Constructions of New Lattices	662
	30.7	Reduction of Matrices and Lattices	665
	30.7.1	LLL Reduction	665
	30.7.2	Pair Reduction	675
	30.7.3	Seysen Reduction	676
	30.7.4	HKZ Reduction	677
	30.7.5	Recovering a Short Basis from Short Lattice Vectors	680
	30.8	Minima and Element Enumeration	680
	30.8.1	Minimum, Density and Kissing Number	681
	30.8.2	Shortest and Closest Vectors	683
	30.8.3	Short and Close Vectors	685
	30.8.4	Short and Close Vector Processes	691
	30.8.5	Successive Minima and Theta Series	692
	30.8.6	Lattice Enumeration Utilities	693
	30.9	Theta Series as Modular Forms	696
	30.10	Voronoi Cells, Holes and Covering Radius	697
	30.11	Orthogonalization	699
	30.12	Testing Matrices for Definiteness	701
	30.13	Genera and Spinor Genera	702
	30.13.1	Genus Constructions	702
	30.13.2	Invariants of Genera and Spinor Genera	702
	30.13.3	Invariants of <i>p</i> -adic Genera	704
	30.13.4	Neighbour Relations and Graphs	704
	30.14	Attributes of Lattices	708
	30.15	Database of Lattices	708
	30.15.1	Creating the Database	709
	30.15.2	Database Information	709

lxvii

	$30.15.3 \\ 30.15.4 \\ 30.16$	Accessing the Database Hermitian Lattices Bibliography	710 712 714
31	LATT	TICES WITH GROUP ACTION	717
	31.1	Introduction	719
	31.2	Automorphism Group and Isometry Testing	719
	31.2.1	Automorphism Group and Isometry Testing over $\mathbf{F}_q[t]$	726
	31.3	Lattices from Matrix Groups	728
	31.3.1	Creation of G-Lattices	728
	31.3.2	Operations on G -Lattices	729
	31.3.3	Invariant Forms	729
	31.3.4	Endomorphisms	730
	31.3.5	G-invariant Sublattices	731
	31.3.6	Lattice of Sublattices Bibliography	735
	31.4	Bibliography	741
32	QUAI	DRATIC FORMS	743
	32.1	Introduction	745
	32.2	Constructions and Conversions	745
	32.3	Local Invariants	746
	32.4	Isotropic Subspaces	747
	32.5	Bibliography	750
33	BINA	RY QUADRATIC FORMS	751
	33.1	Introduction	753
	33.2	Creation Functions	753
	33.2.1	Creation of Structures	753
	33.2.2	Creation of Forms	754
	33.3	Basic Invariants	754
	33.4	Operations on Forms	755
	33.4.1	Arithmetic	755
	$33.4.2 \\ 33.4.3$	Attribute Access	756 756
	33.4.3	Boolean Operations Related Structures	750
	33.5	Class Group	757
	33.6	Class Group Coercions	760
	33.7	Discrete Logarithms	760
	33.8	Elliptic and Modular Invariants	761
	33.9	Class Invariants	762
	33.10	Matrix Action on Forms	762
	33.11	Bibliography	763

1			٠	٠	•
	X	v	1	1	1
-			-	-	-

VOLUME 3:	CONTENTS

\mathbf{VI}	GLOI	BAL ARITHMETIC FIELDS	765
34	NUMI	BER FIELDS	767
	34.1	Introduction	771
	34.2	Creation Functions	773
	34.2.1	Creation of Number Fields	773
	34.2.2	Maximal Orders	779
	34.2.3	Creation of Elements	780
	34.2.4	Creation of Homomorphisms	781
	34.3	Structure Operations	782
	34.3.1	General Functions	782
	34.3.2	Related Structures	783 786
	$34.3.3 \\ 34.3.4$	Representing Fields as Vector Spaces Invariants	786 788
	34.3.4 34.3.5	Basis Representation	788 790
	34.3.6	Ring Predicates	790 792
	34.3.7	Field Predicates	793
	34.4	Element Operations	793
	34.4.1	Parent and Category	793
	34.4.2	Arithmetic	794
	34.4.3	Equality and Membership	794
	34.4.4	Predicates on Elements	795
	34.4.5	Finding Special Elements	795
	34.4.6	Real and Complex Valued Functions	796
	34.4.7	Norm, Trace, and Minimal Polynomial	798
	34.4.8	Other Functions	800
	34.5	Class and Unit Groups	800
	34.6	Galois Theory	803
	34.7	Solving Norm Equations	804
	34.8	Places and Divisors	807
	34.8.1	Creation of Structures	807
	34.8.2	Operations on Structures	807
	34.8.3	Creation of Elements	807
	$34.8.4 \\ 34.8.5$	Arithmetic with Places and Divisors Other Functions for Places and Divisors	808
			808
	34.9	Characters Creation Functions	811 811
	$34.9.1 \\ 34.9.2$	Functions on Groups and Group Elements	811 811
	34.9.2 34.9.3	Predicates on Group Elements	811 814
	34.9.3	Passing between Dirichlet and Hecke Characters	814 815
	34.9.5	L-functions of Hecke Characters	819
	34.9.6	Hecke Grössencharacters and their L-functions	820
	34.10	Number Field Database	827
	34.10.1	Creation	827
	34.10.2	Access	828
	34.11	Bibliography	830

lxix

35	QUAI	DRATIC FIELDS	833
	35.1	Introduction	835
	35.1.1	Representation	835
	35.2	Creation of Structures	836
	35.3	Operations on Structures	837
	35.3.1	Ideal Class Group	838
	35.3.2	Norm Equations	841
	35.4	Special Element Operations	842
	35.4.1	Greatest Common Divisors	842
	35.4.2	Modular Arithmetic	842
	35.4.3	Factorization	843
	35.4.4	Conjugates	843
	35.4.5	Other Element Functions	843
	35.5	Special Functions for Ideals	845
	35.6	Bibliography	845
36	CYCI	LOTOMIC FIELDS	847
	36.1	Introduction	849
	36.2	Creation Functions	849
	36.2.1	Creation of Cyclotomic Fields	849
	36.2.2	Creation of Elements	850
	36.3	Structure Operations	851
	36.3.1	Invariants	852
	36.4	Element Operations	852
	36.4.1	Predicates on Elements	852
	36.4.2	Conjugates	852
37	ORDI	ERS AND ALGEBRAIC FIELDS	855
	37.1	Introduction	861
	37.2	Creation Functions	863
	37.2.1	Creation of General Algebraic Fields	863
	37.2.2	Creation of Orders and Fields from Orders	867
	37.2.3	Maximal Orders	872
	37.2.4	Creation of Elements	877
	37.2.5	Creation of Homomorphisms	879
	37.3	Special Options	881
	37.4	Structure Operations	883
	37.4.1	General Functions	884
	37.4.2	Related Structures	885
	37.4.3	Representing Fields as Vector Spaces	891
	37.4.4	Invariants	893
	37.4.5	Basis Representation	897
	37.4.6	Ring Predicates	901
	37.4.7	Order Predicates	902
	37.4.8	Field Predicates	903
	37.4.9	Setting Properties of Orders	904
	37.5	Element Operations	905
	37.5.1	Parent and Category	905 005
	37.5.2	Arithmetic Equality and Mombarship	905 006
	37.5.3	Equality and Membership Predicates on Floments	906 906
	$37.5.4 \\ 37.5.5$	Predicates on Elements Finding Special Elements	906 907
	$37.5.5 \\ 37.5.6$	Finding Special Elements Real and Complex Valued Functions	907 908
	$37.5.0 \\ 37.5.7$	Norm, Trace, and Minimal Polynomial	908 910
	51.5.1	TIOTHI, TTACC, AND IVITIIIIIAT TOLYHOIIIIAI	910

lxx

37.5.8	Other Functions	912
37.6	Ideal Class Groups	913
37.6.1	Setting the Class Group Bounds Globally	921
37.7	Unit Groups	922
37.8	Solving Equations	925
37.8.1	Norm Equations	925
37.8.2	Thue Equations	929
37.8.3	Unit Equations	931
37.8.4	Index Form Equations	931
37.9	Ideals and Quotients	932
37.9.1	Creation of Ideals in Orders	933
37.9.2	Invariants	934
37.9.3	Basis Representation	937
37.9.4	Two–Element Presentations	938
37.9.5	Predicates on Ideals	939
37.9.6	Ideal Arithmetic	941
37.9.7	Roots of Ideals	944
37.9.8	Factorization and Primes	944
37.9.9	Other Ideal Operations	946
37.9.10	Quotient Rings	951
37.10	Places and Divisors	954
37.10.1	Creation of Structures	954
37.10.2	Operations on Structures	954
37.10.3	Creation of Elements	955
37.10.4	Arithmetic with Places and Divisors	956
37.10.5 37.11	Other Functions for Places and Divisors Bibliography	956 958
CALC	DIS THEORY OF NUMBER FIELDS	961
38.1	Automorphism Groups	
38.2	Galois Groups	971
38.2.1	Straight-line Polynomials	975
38.2.2	Invariants	977
38.2.3	Subfields and Subfield Towers	979
38.2.4	Solvability by Radicals	986
38.2.5	Linear Relations	987
38.2.6	Other	990
38.3	Subfields	990
38.3.1	The Subfield Lattice	991
38.4	The Subhera Battice	
38.5	Galois Cohomology	
	Galois Cohomology Bibliography	994 995
CLAS		994
39.1	Bibliography S FIELD THEORY	994 995 997 999
39.1 39.1.1	Bibliography S FIELD THEORY	994 995 997 999 999
39.1 39.1.1 39.1.2	Bibliography S FIELD THEORY	994 995 997 999 999 1000
39.1 39.1.1 39.1.2 39.2	Bibliography S FIELD THEORY	994 995 997 999 999 1000 1003
39.1 39.1.1 39.1.2 39.2 39.2.1	Bibliography S FIELD THEORY	994 995 997 999 999 1000 1003 1003
39.1 39.1.1 39.1.2 39.2 39.2.1 39.2.2	Bibliography S FIELD THEORY	994 995 997 999 1000 1003 1003 1003
39.1 39.1.1 39.1.2 39.2 39.2.1 39.2.2 39.2.2 39.2.3	Bibliography S FIELD THEORY	994 995 997 999 1000 1003 1003 1006 1008
39.1 39.1.1 39.1.2 39.2 39.2.1 39.2.2 39.2.2 39.2.3 39.2.4	Bibliography S FIELD THEORY	994 995 997 999 1000 1003 1003 1006 1008 1009
39.1 39.1.1 39.1.2 39.2 39.2.1 39.2.2 39.2.3 39.2.3 39.2.4 39.2.5	Bibliography S FIELD THEORY	994 995 997 999 1000 1003 1003 1006 1008 1009 1014
CLAS 39.1 39.1.1 39.1.2 39.2 39.2.1 39.2.2 39.2.3 39.2.4 39.2.5 39.3 39.3.1	Bibliography S FIELD THEORY	994 995 997 999 1000 1003 1003 1006 1008 1009

39

lxxi

	39.3.2	Constructions	1015
	39.4	Conversion to Number Fields	1016
	39.5	Invariants	1017
	39.6	Automorphisms	1020
	39.7	Norm Equations	1022
	39.8	Attributes	1025
	39.8.1	Orders	1025
	39.8.2	Abelian Extensions	1028
	39.9	Group Theoretic Functions	1032
	39.9.1	Generic Groups	1032
	39.10	Bibliography	1033
40	ALGI	EBRAICALLY CLOSED FIELDS	. 1035
	40.1	Introduction	1037
	40.2	Representation	1037
	40.3	Creation of Structures	1038
	40.4	Creation of Elements	1039
	40.4.1	Coercion	1039
	40.4.2	Roots	1039
	40.4.3	Variables	1040
	40.5	Related Structures	1045
	40.6	Properties	1045
	40.7	Ring Predicates and Properties	1046
	40.8	Element Operations	1046
	40.8.1	Arithmetic Operators	1047
	40.8.2	Equality and Membership	1047
	40.8.3	Parent and Category	1047
	40.8.4	Predicates on Ring Elements	1047
	40.8.5	Minimal Polynomial, Norm and Trace	1048
	40.9	Simplification	1050
	40.10	Absolute Field	1051
	40.11	Bibliography	1055
41	RATI	ONAL FUNCTION FIELDS	. 1057
	41.1	Introduction	1059
	41.2	Creation Functions	1059
	41.2.1	Creation of Structures	1059
	41.2.2	Names	1060
	41.2.3	Creation of Elements	1061
	41.3	Structure Operations	1061
	41.3.1	Related Structures	1061
	41.3.2	Invariants	1062
	41.3.3	Ring Predicates and Booleans	1062
	41.3.4	Homomorphisms	1062
	41.4	Element Operations	1063
	41.4.1	Arithmetic	1063
	41.4.2	Equality and Membership	1063
	41.4.3	Numerator, Denominator and Degree	1064
	41.4.4	Predicates on Ring Elements	1064
	41.4.5	Evaluation	1064
	41.4.6	Derivative Portial Exaction Decomposition	$\begin{array}{c} 1065 \\ 1065 \end{array}$
	41.4.7	Partial Fraction Decomposition	
	41.5	Padé-Hermite Approximants	1068

$41.5.1 \\ 41.5.2$	Introduction Ordering of Sequences	106 106
41.5.3	Approximants	107
41.6	Bibliography	107
ALGE	BRAIC FUNCTION FIELDS	107
42.1	Introduction	108
42.1.1	Representations of Fields	108
42.2	Creation of Algebraic Function Fields and their Orders	108
42.2.1	Creation of Algebraic Function Fields	108
42.2.2 42.2.3	Creation of Orders of Algebraic Function Fields Orders and Ideals	$109\\109$
42.2.3 42.3	Related Structures	
42.3 42.3.1	Parent and Category	109 109
42.3.1 42.3.2	Other Related Structures	109
42.4	General Structure Invariants	105
42.4	Galois Groups	110
42.6	Subfields	110
42.0 42.7	Automorphism Group	111
42.7 42.7.1	Automorphisms over the Base Field	111
42.7.2	General Automorphisms	111
42.7.3	Field Morphisms	111
42.8	Global Function Fields	111
42.8.1	Functions relative to the Exact Constant Field	111
42.8.2	Functions Relative to the Constant Field	112
42.8.3	Functions related to Class Group	112
42.9	Structure Predicates	112
42.10	Homomorphisms	112
42.11	Elements	112
42.11.1	Creation of Elements	112
42.11.2	Parent and Category	113
42.11.3	Sequence Conversions	113
$42.11.4 \\ 42.11.5$	Arithmetic Operators Equality and Membership	113 113
42.11.5 42.11.6	Predicates on Elements	113
42.11.0 42.11.7	Functions related to Norm and Trace	113
42.11.8	Functions related to Orders and Integrality	113
42.11.9	Functions related to Places and Divisors	113
42.11.10	Other Operations on Elements	113
42.12	Ideals	114
42.12.1	Creation of Ideals	114
42.12.2	Parent and Category	114
42.12.3	Arithmetic Operators	114
42.12.4	Roots of Ideals	114
42.12.5	Equality and Membership	114
42.12.6	Predicates on Ideals	114
42.12.7	Further Ideal Operations Places	$114 \\ 118$
42.13 42.13.1	Creation of Structures	118
42.13.1 42.13.2	Creation of Elements	118
42.13.3	Related Structures	118
42.13.4	Structure Invariants	118
42.13.5	Structure Predicates	115
42.13.6	Element Operations	115
42.13.7	Completion at Places	115

	42.14	Divisors	1159
	42.14.1	Creation of Structures	1159
	42.14.2	Creation of Elements	1159
	42.14.3	Related Structures	1160
	42.14.4	Structure Invariants	1160
	42.14.5	Structure Predicates	1160
	42.14.6	Element Operations	1160
	42.14.7	Functions related to Divisor Class Groups of Global Function Fields	1171
	42.15	Differentials	1176
	42.15.1	Creation of Structures	1176
	42.15.2	Creation of Elements	1176
	42.15.3	Related Structures	1177
	42.15.4	Subspaces	1177
	42.15.5	Structure Predicates	1178
	42.15.6	Operations on Elements	1178
	42.16	Weil Descent	1182
	42.17	Function Field Database	1184
	42.17.1	Creation	1185
	42.17.2	Access	1185
	42.18	Bibliography	1186
43	CLASS	FIELD THEORY FOR GLOBAL FUNCTION FIELDS	1189
	43.1	Ray Class Groups	1191
	43.2	Creation of Class Fields	1194
	43.3	Properties of Class Fields	1196
	43.4	The Ring of Witt Vectors of Finite Length	1199
	43.5	The Ring of Twisted Polynomials	1201
	43.5.1	Creation of Twisted Polynomial Rings	1201
	43.5.2	Operations with the Ring of Twisted Polynomials	1202
	43.5.3	Creation of Twisted Polynomials	1202
	43.5.4	Operations with Twisted Polynomials	1204
	43.6	Analytic Theory	1205
	43.7	Related Functions	1211
	43.8	Enumeration of Places	1213
	43.9	Bibliography	1214
44	ARTIN	REPRESENTATIONS	1215
	44.1	Overview	1217
	44.2	Constructing Artin Representations	1217
	44.3	Basic Invariants	1219
	44.4	Arithmetic	1222
	44.5	Implementation Notes	1224
	44.6	Bibliography	1224
	-		

lxxiv

VII	LOC	AL ARITHMETIC FIELDS	1225
45	VALU	JATION RINGS	. 1227
	45.1	Introduction	1229
	45.2	Creation Functions	1229
	45.2.1	Creation of Structures	1229
	45.2.2	Creation of Elements	1229
	45.3	Structure Operations	1230
	45.3.1	Related Structures	1230
	45.3.2	Numerical Invariants	1230
	45.4	Element Operations	1230
	45.4.1	Arithmetic Operations	1230
	45.4.2	Equality and Membership	1230
	45.4.3	Parent and Category	1230
	45.4.4	Predicates on Ring Elements	1231
	45.4.5	Other Element Functions	1231
46	NEW	TON POLYGONS	. 1233
	46.1	Introduction	1235
	46.2	Newton Polygons	1237
	46.2.1	Creation of Newton Polygons	1237
	46.2.2	Vertices and Faces of Polygons	1239
	46.2.3	Tests for Points and Faces	1243
	46.3	Polynomials Associated with Newton Polygons	1244
	46.4	Finding Valuations of Roots of Polynomials from Newton Polygons	1245
	46.5	Using Newton Polygons to Find Roots of Polynomials over Series Rings	1245
	46.5.1	Operations not associated with Duval's Algorithm	1246
	46.5.2	Operations associated with Duval's algorithm	1251
	46.5.3	Roots of Polynomials	1258
	46.6	Bibliography	1260
47	<i>p</i> -AD	IC RINGS AND THEIR EXTENSIONS	. 1261
	47.1	Introduction	1265
	47.2	Background	1265
	47.3	Overview of the p-adics in MAGMA	1266
	47.3.1	<i>p</i> -adic Rings	1266
	47.3.2	<i>p</i> -adic Fields	1266
	47.3.3	Free Precision Rings and Fields	1267
	47.3.4	Precision of Extensions	1267
	47.4	Creation of Local Rings and Fields	1267
	47.4.1	Creation Functions for the p -adics	1267
	47.4.2	Creation Functions for Unramified Extensions	1269
	47.4.3	Creation Functions for Totally Ramified Extensions	1271
	47.4.4	Creation Functions for Unbounded Precision Extensions	1272
	47.4.5	Miscellaneous Creation Functions	1273
	47.4.6	Other Elementary Constructions	1274

lxxv

47.4.7	Attributes of Local Rings and Fields	1274
47.5	Elementary Invariants	1274
47.6	Operations on Structures	1278
47.6.1	Ramification Predicates	1280
47.7	Element Constructions and Conversions	1281
47.7.1	Constructions	1281
47.7.2	Element Decomposers	1284
47.8	Operations on Elements	1285
47.8.1	Arithmetic	1285
47.8.2	Equality and Membership	1286
47.8.3	Properties	1288
47.8.4	Precision and Valuation	1288
47.8.5	Logarithms and Exponentials	1290
47.8.6	Norm and Trace Functions	1291
47.8.7	Teichmüller Lifts	1293
47.9	Linear Algebra	1293
47.10	Roots of Elements	1293
47.11	Polynomials	1294
47.11.1	Operations for Polynomials	1294
47.11.2	Roots of Polynomials	1296
47.11.3	Factorization	1300
47.12	Automorphisms of Local Rings and Fields	1304
47.13	Completions	1306
47.14	Class Field Theory	1307
47.14.1	Unit Group	1307
47.14.2	Norm Group	1308
47.14.3	Class Fields	1309
47.15	Extensions	1309
47.16	Bibliography	1310
	~	

48.1	Introduction	1313
48.2	Creation Functions	1313
48.2.1	Creation of Structures	1313
48.2.2	Names	1314
48.2.3	Creation of Elements	1315
48.2.4	Sequence Conversions	1315
48.3	Structure Operations	1316
48.3.1	Related Structures	1316
48.3.2	Numerical Invariants	1317
48.3.3	Ring Predicates and Booleans	1317
48.4	Element Operations	1317
48.4.1	Arithmetic Operators	1317
48.4.2	Euclidean Operations	1318
48.4.3	Equality and Membership	1318
48.4.4	Parent and Category	1318
48.4.5	Predicates on Ring Elements	1318

49

50

50.4.3

50.4.4

50.4.5

POW	ER, LAURENT AND PUISEUX SERIES	. 1319
49.1	Introduction	1321
49.1.1	Kinds of Series	1321
49.1.2	Puiseux Series	1321
49.1.3	Representation of Series	1322
49.1.4	Precision	1322
49.1.5	Free and Fixed Precision	1322
49.1.6	Equality	1323
49.1.7	Polynomials over Series Rings	1323
49.2	Creation Functions	1323
49.2.1	Creation of Structures	1323
49.2.2	Special Options	1325
49.2.3	Creation of Elements	1326
49.3	Structure Operations	1327
49.3.1	Related Structures	1327
49.3.2	Invariants	1328
49.3.3	Ring Predicates and Booleans	1328
49.4	Basic Element Operations	1328
49.4.1	Parent and Category	1328
49.4.2	Arithmetic Operators	1328
49.4.3	Equality and Membership	1329
49.4.4	Predicates on Ring Elements	1329
49.4.5	Precision	1329
49.4.6	Coefficients and Degree	1330
49.4.7	Evaluation and Derivative	1331
49.4.8	Square Root	1332
49.4.9	Composition and Reversion	1332
49.5	Transcendental Functions	1334
49.5.1	Exponential and Logarithmic Functions	1334
49.5.2	Trigonometric Functions and their Inverses	1336
49.5.3	Hyperbolic Functions and their Inverses	1336
49.6	The Hypergeometric Series	1337
49.7	Polynomials over Series Rings	1337
49.8	Extensions of Series Rings	1340
49.8.1	Constructions of Extensions	1340
49.8.2	Operations on Extensions	1341
49.8.3	Elements of Extensions	1344
49.8.4	Optimized Representation	1345
49.9	Bibliography	1346
LAZY	POWER SERIES RINGS	. 1347
50.1	Introduction	1349
50.2	Creation of Lazy Series Rings	1350
50.3	Functions on Lazy Series Rings	1350
50.4	Elements	1351
50.4.1	Creation of Finite Lazy Series	1351
50.4.2	Arithmetic with Lazy Series	1354

Finding Coefficients of Lazy Series

Other Functions on Lazy Series

Predicates on Lazy Series

1.

1355

1358

51	GENEI	RAL LOCAL FIELDS	1363
	51.1	Introduction	1365
	51.2	Constructions	1365
	51.3	Operations with Fields	1366
	51.3.1	Predicates on Fields	1369
	51.4	Maximal Order	1369
	51.5	Homomorphisms from Fields	1370
	51.6	Automorphisms and Galois Theory	1370
	51.7	Local Field Elements	1371
	51.7.1	Arithmetic	1371
	51.7.2	Predicates on Elements	1371
	51.7.3	Other Operations on Elements	1372
	51.8	Polynomials over General Local Fields	1373
52	ALGEI	BRAIC POWER SERIES RINGS	1375
	52.1	Introduction	1377
	52.2	Basics	1377
	52.2.1	Data Structures	1377
	52.2.2	Verbose Output	1378
	52.3	Constructors	1378
	52.3.1	Rational Puiseux Expansions	1379
	52.4	Accessors and Expansion	1383
	52.5	Arithmetic	1384
	52.6	Predicates	1385
	52.7	Modifiers	1386
	52.8	Bibliography	1387

lxxviii

VIII MODULES

4. CONTENTS

53.2 General Modules 1393 53.3 The Presentation of Submodules 1394 54 FREE MODULES 1395 54.1 Introduction 1397 54.1.1 Free Modules 1397 54.1.2 Module Categories 1397 54.1.3 Presentation of Submodules 1398 54.1.4 Notation 1398 54.2 Definition of a Module of n-tuples 1398 54.2.1 Construction of Modules of n-tuples 1399 54.2.2 Construction of Modules of n-tuples 1399 54.2.3 Construction of Modules of n-tuples 1399 54.4 Standard Constructions 1400 54.4 Standard Constructions 1400 54.4 Direct Sums 1400 54.5 Elements 1400 54.6 Deconstruction of Elements 1400 54.6 Deparations on Module Elements 1400 54.6.3 Properties of Vectors 1404 54.7 Bases 1400 54.8 Submodules 1400 <td< th=""><th>53</th><th>-</th><th>ODUCTION TO MODULES</th><th>1391</th></td<>	53	-	ODUCTION TO MODULES	1391
53.3 The Presentation of Submodules 1394 54 FREE MODULES 1395 54.1 Introduction 1397 54.1.1 Free Modules 1397 54.1.2 Module Categories 1397 54.1.3 Presentation of Submodules 1398 54.1.4 Notation 1398 54.1.2 Construction of Modules of $m \times n$ Matrices 1398 54.2.1 Construction of Modules of $m \times n$ Matrices 1399 54.2.3 Construction of Module of $m \times n$ Matrices 1399 54.3 Accessing Module Information 1399 54.4 Standard Constructions 1400 54.4 Standard Construction of Elements 1400 54.6 Construction of Elements 1400 54.6 Operations on Module Elements 1400 54.6.1 Inner Products 1400 54.6.2 Operations on Submodules 1400 54.6.3 Propetties of Vectors 1400 54.6.4 Inner Products 1400 54.7 Bases 1400 54.8.1 Construction				1393
54 FREE MODULES 1395 54.1 Introduction 1397 54.1.1 Free Modules 1397 54.1.2 Module Categories 1397 54.1.3 Presentation of Submodules 1398 54.1.4 Notation 1398 54.2 Definition of a Module 1398 54.2.1 Construction of Modules of $n \times n$ Matrices 1398 54.2.2 Construction of a Module with Specified Basis 1399 54.3 Accessing Module Information 1398 54.4 Standard Constructions 1400 54.5 Elements 1400 54.6 Operations on Module Elements 1400 54.6.3 Properties of Vectors 1404 54.6.4 Inner Products 1402 54.8 Submodules 1402 54.8.1 Construction of Submodules 1402				
54.1 Introduction 1397 54.1.1 Free Modules 1397 54.1.2 Module Categories 1397 54.1.3 Presentation of Submodules 1398 54.1.4 Notation 1398 54.1.4 Notation 1398 54.1.4 Notation 1398 54.2 Construction of Modules of $n \times n$ Matrices 1398 54.2.1 Construction of a Module sof $n \times n$ Matrices 1399 54.2.2 Construction of a Module sof $n \times n$ Matrices 1399 54.3 Accessing Module Information 1399 54.4 Standard Constructions 1400 54.4 Construction of Elements 1400 54.5 Elements 1400 54.6 Construction of Elements 1400 54.6.1 Deconstruction of Submodules 1400 54.6.2 Operations on Submodules 1400 54.6.3 Properties on Submodules 1400 54.6.4 Inner Products 1400 54.7 Bases 1400 54.8.1 Construction of Submodules 1		53.3	The Presentation of Submodules	1394
541.1Free Modules139754.1.2Module Categories139754.1.3Presentation of Submodules139854.1.4Notation139854.2Definition of a Module139854.2Construction of Modules of $n \times n$ Matrices139854.2.1Construction of Module with Specified Basis139954.2.2Construction of a Module with Specified Basis139954.3Accessing Module Information139954.4Standard Constructions140054.4Standard Constructions140054.4Construction of Elements140054.4Direct Sums140054.4Deconstruction of Elements140054.6Construction of Elements140054.6.1Deconstruction of Submodules140054.6.2Operations on Module Elements140054.6.3Properties of Vectors140454.6.4Inner Products140654.8Submodules140054.8.1Construction of Submodules140054.8.2Operations on Submodules140054.8.3Membership and Equality140654.9.1Construction of Quotient Modules140054.9.1Hommany (M, N) for R-modules140054.9.1Construction of a Matrix140054.9.1Hommany (M, N) with Given Basis141154.10.2Hommany (M, N) with Given Basis141154.10.3Modules Hommany (M, N) with Given Basis141	54	FREE	MODULES	1395
54.1.2Module Categories139754.1.3Presentation of Submodules139854.1.4Notation139854.2Definition of a Module of n -tuples139854.2.1Construction of Modules of $m \times n$ Matrices139954.2.2Construction of Module of $m \times n$ Matrices139954.2.3Construction of a Module with Specified Basis139954.3Accessing Module Information139954.4Standard Constructions140054.4.1Changing the Coefficient Ring140054.4.2Direct Sums140054.5Elements140054.6Construction of Elements140054.6.1Deconstruction of Elements140054.6.2Operations on Module Elements140054.6.3Properties of Vectors140054.6.4Inner Products140054.8.3Submodules140054.8.4Operations on Submodules140054.8.4Operations on Submodules140054.8.4Operations on Submodules140054.9.9Quotient Modules140054.9.10Homorphisms140054.10.1Homg (M, N) for Matrix Modules140054.10.2Homg (M, N) for Matrix Modules140054.10.3Modules Homg (M, N) with Given Basis140054.10.4The Endoworphism Ring141154.10.5The Reduced Form of a Matrix Module141254.10.6Construction of a Matrix1412 </td <td></td> <td></td> <td></td> <td>1397</td>				1397
541.3Presentation of Submodules139854.1.4Notation139854.2Definition of a Module n -tuples54.2.1Construction of Modules of n -tuples139954.2.2Construction of Modules of n -tuples139954.2.3Construction of A Module with Specified Basis139954.4Standard Constructions140054.4Changing the Coefficient Ring140054.4Changing the Coefficient Ring140054.4.1Changing the Coefficient Ring140054.4.2Direct Sums140054.6Construction of Elements140054.6.1Deconstruction of Elements140054.6.2Operations on Module Elements140054.6.3Properties of Vectors140054.6.4Inner Products140054.8.5Operations on Submodules140054.8.1Construction of Submodules140054.8.2Operations on Submodules140054.8.4Operations on Submodules140054.8.4Operations on Submodules140054.9.9Quotient Modules140054.9.1Construction of R-modules140054.10.1Homg(M, N) for R-modules140054.10.2Homg(M, N) for R-modules140054.10.3Modules Homg(M, N) with Given Basis141154.10.3Modules Homg(M, N) with Given Basis141154.10.5The Reduced Form of a Matrix141254.10.6Constru		-		1397
54.1.4Notation139854.2Definition of a Module139854.2.1Construction of Modules of $n \times n$ Matrices139954.2.2Construction of a Module with Specified Basis139954.2.3Constructions139954.4Standard Constructions140054.4Standard Constructions140054.4Construction of Elements140054.5Elements140054.6Construction of Elements140054.6.1Deconstruction of Elements140054.6.2Operations on Module Elements140054.6.3Properties of Vectors140454.6.4Inner Products140054.8Submodules140054.8.1Construction of Submodules140054.8.2Operations on Submodules140054.8.3Membership and Equality140054.8.4Operations on Submodules140054.9.1Construction of Quotient Modules140054.9.1Construction of Quotient Modules140054.9.2Quotient Modules140054.9.3Modules Hom $_R(M, N)$ for R-modules140054.10.1Hom_ $R(M, N)$ for R-modules140054.10.2Hom $_R(M, N)$ for R-modules140054.10.3Modules Hom $_R(M, N)$ with Given Basis141154.10.4The Endomorphism Ring141154.10.5The Reduced Form of a Matrix Module141254.10.6Construction of a Matrix1412<				
54.2Definition of a Module139854.2.1Construction of Modules of $m \times n$ Matrices139854.2.2Construction of a Module with Specified Basis139954.3Accessing Module Information139954.4Standard Constructions140054.4.1Changing the Coefficient Ring140054.4Direct Sums140054.4Direct Sums140054.5Elements140054.6Construction of Elements140054.6Construction of Elements140054.6.1Deconstruction of Elements140054.6.2Operations on Module Elements140054.6.3Properties of Vectors140454.6.4Inner Products140054.8Submodules140054.8.1Construction of Submodules140054.8.2Operations on Submodules140054.8.3Membership and Equality140054.8.4Operations on Submodules140054.9.1Construction of Quotient Modules140754.9.1Construction of Quotient Modules140754.9.1Hom $_R(M, N)$ for R-modules140854.10.1Hom $_R(M, N)$ for R-modules140854.10.2Hom $_R(M, N)$ for R-modules140854.10.3Module Hom $_R(M, N)$ with Given Basis141154.10.4The Endomorphsin Ring141154.10.5The Reduced Form of a Matrix Module141254.10.7Element Operations1412 <td></td> <td></td> <td></td> <td></td>				
54.2.1Construction of Modules of $n \times n$ Matrices139854.2.2Construction of Module sof $m \times n$ Matrices139954.2.3Construction of Module Unformation139954.4Standard Constructions140054.4Standard Constructions140054.4Standard Constructions140054.4Direct Sums140054.4.2Direct Sums140054.4.2Direct Sums140054.5Elements140054.6Construction of Elements140054.6.1Deconstruction of Elements140054.6.2Operations on Module Elements140054.6.3Properties of Vectors140454.7Bases140054.8.1Construction of Submodules140254.8.2Operations on Submodules140254.8.3Membership and Equality140054.8.4Operations on Submodules140754.9.1Construction of Quotient Modules140754.9.1Construction of Quotient Modules140754.9.1Construction of Quotient Modules140754.9.1Construction of Quotient Modules140254.10Hommorphisms140254.10Homgr(M, N) for R-modules140954.10.1Hom _R (M, N) for R-modules140954.10.2Hom _R (M, N) for Matrix Module141154.10.3Modules Hom _R (M, N) with Given Basis141154.10.4The Endomorphism Ring1411 <td< td=""><td></td><td></td><td></td><td></td></td<>				
54.2.2Construction of Modules of $m \times n$ Matrices139954.2.3Construction of a Module with Specified Basis139954.3Accessing Module Information139954.4Standard Constructions140054.4.1Changing the Coefficient Ring140054.4.2Direct Sums140054.5Elements140054.6Construction of Elements140054.6.1Deconstruction of Elements140054.6.2Operations on Module Elements140254.6.3Properties of Vectors140454.6.4Inner Products140054.6.3Properties of Vectors140054.6.4Inner Products140054.7Bases140054.8.1Construction of Submodules140054.8.2Operations on Submodules140054.8.3Membership and Equality140654.8.4Operations on Submodules140754.9.1Construction of Quotient Modules140754.9.2Operations on Submodules140754.9.1Construction of Quotient Modules140754.9.1Homomorphisms140654.10.1Hom _R (M, N) for R-modules140654.10.2Hom _R (M, N) for R-modules140854.10.3Modules Hom _R (M, N) with Given Basis141154.10.4The Endomorphism Ring141154.10.5The Reduced Form of a Matrix141254.10.7Element Operations141255.1<				
54.2.3Construction of a Module with Specified Basis139554.3Accessing Module Information139954.4Standard Constructions140054.4.1Changing the Coefficient Ring140054.4.2Direct Sums140054.4.3Direct Sums140054.4.4Direct Sums140054.5Elements140054.6Construction of Elements140054.6.1Deconstruction of Elements140254.6.2Operations on Module Elements140254.6.3Properties of Vectors140454.6.4Inner Products140254.8.5Submodules140254.8.1Construction of Submodules140254.8.2Operations on Submodules140254.8.3Membership and Equality140654.8.4Operations on Submodules140754.9.9Quotient Modules140754.9.1Construction of Quotient Modules140754.9.1Construction of Quotient Modules140654.10.1Hom $_R(M, N)$ for R -modules140854.10.2Hom $_R(M, N)$ for R -modules140854.10.3Modules Hom $_R(M, N)$ with Given Basis141154.10.4The Endomorphism Ring141154.10.5The Reduced Form of a Matrix141655MODULES OVER DEDEKIND DOMAINS141955.1Introduction142255.3Elementary Functions142255.4Predicates on Modules				
54.3 Accessing Module Information 1399 54.4 Standard Constructions 1400 54.4.1 Changing the Coefficient Ring 1400 54.4.2 Direct Sums 1400 54.5 Elements 1400 54.6 Construction of Elements 1401 54.6.1 Deconstruction of Elements 1402 54.6.2 Operations on Module Elements 1402 54.6.3 Properties of Vectors 1404 54.7 Bases 1402 54.8.1 Construction of Submodules 1402 54.8.2 Operations on Submodules 1402 54.8.3 Membership and Equality 1406 54.8.4 Operations on Submodules 1407 54.9 Quotient Modules 1407 54.9.1 Construction of Quotient Modules 1407 54.9 Quotient Modules 1407 54.9.1 Construction of Quotient Modules 1407 54.9.1 Construction of Matrix Modules 1408 54.10.1 Hom _R (M, N) for R-modules 1408 54.10.2 Hom _R (M, N)				
54.4Standard Constructions1400 $54.4.1$ Changing the Coefficient Ring1400 $54.4.2$ Direct Sums1400 54.5 Elements1400 54.6 Construction of Elements1400 $54.6.1$ Deconstruction of Elements1402 $54.6.2$ Operations on Module Elements1402 $54.6.3$ Properties of Vectors1404 $54.6.4$ Inner Products1402 $54.6.3$ Submodules1402 $54.6.4$ Construction of Submodules1402 54.8 Submodules1402 54.8 Submodules1406 $54.8.4$ Operations on Submodules1406 $54.8.3$ Membership and Equality1406 $54.8.4$ Operations on Submodules1407 54.9 Quotient Modules1407 54.9 Quotient Modules1407 54.9 Quotient Modules1407 54.9 Construction of Quotient Modules1407 54.9 Gonstruction of Quotient Modules1407 $54.0.1$ Hom _R (M, N) for R-modules1408 $54.10.2$ Hom _R (M, N) for Matrix Modules1408 $54.10.3$ Modules Hom _R (M, N) with Given Basis1411 $54.10.6$ Construction of a Matrix1412 $54.10.7$ Element Operations1422 55.1 Introduction1422 55.2 Creation of Modules1422 55.4 Predicates on Modules1422 55.6 Basis of a Module1422 <td></td> <td></td> <td></td> <td></td>				
54.4.1 Changing the Coefficient Ring 1400 54.4.2 Direct Sums 1400 54.5 Elements 1400 54.6 Construction of Elements 1400 54.6.1 Deconstruction of Elements 1400 54.6.2 Operations on Module Elements 1400 54.6.3 Properties of Vectors 1404 54.6.4 Inner Products 1404 54.7 Bases 1400 54.8.1 Construction of Submodules 1400 54.8.2 Operations on Submodules 1400 54.8.3 Membership and Equality 1406 54.8.4 Operations on Submodules 1407 54.9 Quotient Modules 1407 54.9.1 Construction of Quotient Modules 1407 54.9 Quotient Modules 1407 54.10 Hommorphisms 1406 54.10.1 Hom $_R(M, N)$ for Matrix Modules 1406 54.10.2 Hom $_R(M, N)$ for Matrix Modules 1406 54.10.3 Module Hom $_R(M, N)$ with Given Basis 1411 54.10.5 The Reduced Form o			+	
54.4.2Direct Sums140054.5Elements140054.6Construction of Elements140054.6.1Deconstruction of Elements140054.6.2Operations on Module Elements140054.6.3Properties of Vectors140454.6.4Inner Products140054.6.5Submodules140054.6.4Submodules140054.7Bases140054.8.1Construction of Submodules140054.8.2Operations on Submodules140054.8.3Membership and Equality140054.8.4Operations on Submodules140754.9.1Construction of Quotient Modules140754.10Hommorphisms140654.10.1Hom $_R(M, N)$ for R-modules140854.10.2Hom $_R(M, N)$ for R-modules140854.10.3Modules Hom $_R(M, N)$ with Given Basis141154.10.4The Endomorphism Ring141154.10.5The Reduced Form of a Matrix Module141254.10.6Construction of a Matrix141655.1Introduction142255.3Elementary Functions142255.4Predicates on Modules142255.5Arithmetic with Modules142255.6Basis of a Module142255.6Basis of a Module142255.6Basis of a Module142255.6Sas of a Module1423				
54.5Elements140054.6Construction of Elements140054.6.1Deconstruction of Elements140254.6.2Operations on Module Elements140254.6.3Properties of Vectors140454.6.4Inner Products140054.7Bases140054.8Submodules140054.8.1Construction of Submodules140054.8.2Operations on Submodules140054.8.3Membership and Equality140054.8.4Operations on Submodules140754.9Quotient Modules140754.9Quotient Modules140754.9Quotient Modules140654.10.1Hom _R (M, N) for R-modules140654.10.2Hom _R (M, N) for Matrix Modules140654.10.3Modules Hom _R (M, N) with Given Basis141154.10.4The Endomorphism Ring141154.10.5The Reduced Form of a Matrix Module141254.10.6Construction of a Matrix141554.10.7Element Operations141255.1Introduction142255.3Elementary Functions142255.4Predicates on Modules142255.5Arithmetic with Modules142255.6Basis of a Module142255.6Basis of a Module1423			0 0 0	
54.6 Construction of Elements 1400 54.6.1 Deconstruction of Elements 1402 54.6.2 Operations on Module Elements 1402 54.6.3 Properties of Vectors 1404 54.6.4 Inner Products 1404 54.6.5 Properties of Vectors 1404 54.6.4 Inner Products 1404 54.6.5 Webson 1405 54.6.4 Inner Products 1404 54.7 Bases 1405 54.8 Submodules 1405 54.8 Submodules 1405 54.8.1 Construction of Submodules 1406 54.8.2 Operations on Submodules 1406 54.8.3 Membership and Equality 1406 54.8.4 Operations on Submodules 1407 54.9 Quotient Modules 1407 54.9 Quotient Modules 1407 54.10 Homerg(M, N) for R-modules 1408 54.10.1 Hom _R (M, N) for Matrix Modules 1408 54.10.2 Hom _R (M, N) for Matrix Module 1411 <t< td=""><td></td><td></td><td></td><td></td></t<>				
54.6.1 Deconstruction of Elements 1402 54.6.2 Operations on Module Elements 1402 54.6.3 Properties of Vectors 1404 54.6.4 Inner Products 1404 54.6.4 Inner Products 1405 54.6.4 Inner Products 1406 54.7 Bases 1406 54.8 Submodules 1406 54.8 Construction of Submodules 1406 54.8.1 Construction of Submodules 1406 54.8.2 Operations on Submodules 1406 54.8.3 Membership and Equality 1406 54.8.4 Operations on Submodules 1407 54.9 Quotient Modules 1407 54.9.1 Construction of Quotient Modules 1407 54.10 Hommorphisms 1408 54.10.1 Hom _R (M, N) for R-modules 1408 54.10.2 Hom _R (M, N) for Matrix Modules 1408 54.10.3 Modules Hom _R (M, N) with Given Basis 1411 54.10.5 The Reduced Form of a Matrix Module 1412 54.10.6 Constructio				
54.6.2Operations on Module Elements140254.6.3Properties of Vectors140454.6.4Inner Products140454.7Bases140554.8Submodules140554.8Submodules140554.8.1Construction of Submodules140654.8.2Operations on Submodules140654.8.3Membership and Equality140654.8.4Operations on Submodules140754.9Quotient Modules140754.9.1Construction of Quotient Modules140754.10.1Homomorphisms140854.10.2Hom _R (M, N) for R-modules140854.10.3Modules Hom _R (M, N) with Given Basis141154.10.3Modules Hom _R (M, N) with Given Basis141154.10.4The Endomorphism Ring141154.10.5The Reduced Form of a Matrix Module141254.10.6Construction of a Matrix141254.10.7Element Operations142255.1Introduction142255.2Creation of Modules142255.3Elementary Functions142255.4Predicates on Modules142255.5Arithmetic with Modules142255.6Basis of a Module142255.6Basis of a Module142255.6Sasis of a Module142255.6Sasis of a Module142255.6Sasis of a Module142255.6Sasis of a Module1422<				
54.6.3Properties of Vectors140454.6.4Inner Products140454.7Bases140554.8Submodules140554.8Submodules140554.8.1Construction of Submodules140654.8.2Operations on Submodules140654.8.3Membership and Equality140654.8.4Operations on Submodules140754.9Quotient Modules140754.9.1Construction of Quotient Modules140754.10.1Hom.R(M, N) for R-modules140854.10.2Hom.R(M, N) for R-modules140854.10.3Modules Hom.R(M, N) with Given Basis141154.10.4The Reduced Form of a Matrix Module141254.10.5The Reduced Form of a Matrix141655MODULES OVER DEDEKIND DOMAINS142255.1Introduction142255.3Elementary Functions142655.4Predicates on Modules142255.5Arithmetic with Modules142255.6Basis of a Module142255.6Basis of a Module142255.6Sasis of a Module142255.6Sasis of a Module142255.7Arithmetic with Modules142255.6Basis of a Module142255.6Sasis of a Module142255.6Sasis of a Module142255.7Arithmetic with Modules142255.6Arithmetic with Modules1422 <td></td> <td></td> <td></td> <td></td>				
54.6.4Inner Products140454.7Bases140554.8Submodules140554.8.1Construction of Submodules140554.8.2Operations on Submodules140654.8.3Membership and Equality140654.8.4Operations on Submodules140754.9Quotient Modules140754.9Construction of Quotient Modules140754.10Homomorphisms140654.10.1Hom _R (M, N) for R-modules140854.10.2Hom _R (M, N) for Matrix Modules140854.10.3Modules Hom _R (M, N) with Given Basis141154.10.4The Endomorphism Ring141154.10.5The Reduced Form of a Matrix Module141254.10.6Construction of a Matrix141254.10.7Element Operations141055.1Introduction142255.3Elementary Functions142255.4Predicates on Modules142255.5Arithmetic with Modules142255.6Basis of a Module142255.6Basis of a Module142255.6Stasi of a Module142255.7Stasi of a Module142255.6Stasi of a Module142255.7Stasi of a Module142255.7 <td></td> <td></td> <td></td> <td></td>				
54.7Bases140254.8Submodules140254.8Submodules140254.8.1Construction of Submodules140654.8.2Operations on Submodules140654.8.3Membership and Equality140654.8.4Operations on Submodules140754.9Quotient Modules140754.9.1Construction of Quotient Modules140754.10Homomorphisms140854.10.1Hom _R (M, N) for R-modules140854.10.2Hom _R (M, N) for Matrix Modules140954.10.3Modules Hom _R (M, N) with Given Basis141154.10.4The Endomorphsim Ring141154.10.5The Reduced Form of a Matrix Module141254.10.6Construction of a Matrix141655.1Introduction142255.2Creation of Modules142255.3Element Operations142255.4Predicates on Modules142255.5Arithmetic with Modules142255.6Basis of a Module142255.6Basis of a Module142255.6Stasi of a Module142255.7Arithmetic with Modules142255.6Stasi of a Module142255.7<				
54.8 Submodules1403 $54.8.1$ Construction of Submodules1406 $54.8.2$ Operations on Submodules1406 $54.8.3$ Membership and Equality1406 $54.8.4$ Operations on Submodules1407 54.9 Quotient Modules1407 54.9 Quotient Modules1407 $54.9.1$ Construction of Quotient Modules1407 54.10 Hommorphisms1408 $54.10.1$ Hom $_R(M, N)$ for R -modules1408 $54.10.2$ Hom $_R(M, N)$ for Matrix Modules1408 $54.10.3$ Modules Hom $_R(M, N)$ with Given Basis1411 $54.10.4$ The Endomorphsim Ring1411 $54.10.5$ The Reduced Form of a Matrix Module1412 $54.10.7$ Element Operations1416 55.1 Introduction1422 55.3 Elementary Functions1426 55.4 Predicates on Modules1422 55.5 Arithmetic with Modules1422 55.6 Basis of a Module1422 55.6 Basis of a Module1422 55.6 Basis of a Module1422 55.6 State of Adoule1422 55.6 Basis of a Module1422 55.6 State of Adoule1422 55.6				
$54.8.1$ Construction of Submodules1405 $54.8.2$ Operations on Submodules1406 $54.8.3$ Membership and Equality1406 $54.8.3$ Membership and Equality1406 $54.8.4$ Operations on Submodules1407 54.9 Quotient Modules1407 54.9 Quotient Modules1407 54.10 Homomorphisms1408 $54.10.1$ Hom $_R(M, N)$ for R -modules1408 $54.10.2$ Hom $_R(M, N)$ for Matrix Modules1409 $54.10.3$ Modules Hom $_R(M, N)$ with Given Basis1411 $54.10.4$ The Endomorphsim Ring1411 $54.10.5$ The Reduced Form of a Matrix Module1412 $54.10.6$ Construction of a Matrix1416 55.1 Introduction1422 55.2 Creation of Modules1422 55.3 Elementary Functions1422 55.4 Predicates on Modules1422 55.6 Basis of a Module1422 55.6 Basis of a Module1422				
$54.8.2$ Operations on Submodules1406 $54.8.3$ Membership and Equality1406 $54.8.4$ Operations on Submodules1407 54.9 Quotient Modules1407 54.9 Quotient Modules1407 $54.9.1$ Construction of Quotient Modules1407 $54.9.1$ Construction of Quotient Modules1406 $54.10.1$ Hommorphisms1408 $54.10.2$ Hom $_R(M, N)$ for R-modules1408 $54.10.2$ Hom $_R(M, N)$ for Matrix Modules1409 $54.10.3$ Modules Hom $_R(M, N)$ with Given Basis1411 $54.10.4$ The Endomorphsim Ring1411 $54.10.5$ The Reduced Form of a Matrix Module1412 $54.10.6$ Construction of a Matrix1416 55.1 Introduction1422 55.3 Element Operations1426 55.4 Predicates on Modules1426 55.5 Arithmetic with Modules1428 55.6 Basis of a Module1428				
$54.8.3$ Membership and Equality1406 $54.8.4$ Operations on Submodules1407 54.9 Quotient Modules1407 54.9 Construction of Quotient Modules1407 $54.9.1$ Construction of Quotient Modules1406 $54.10.1$ Hommonorphisms1408 $54.10.2$ Hom $_R(M, N)$ for R-modules1408 $54.10.2$ Hom $_R(M, N)$ for Matrix Modules1409 $54.10.3$ Modules Hom $_R(M, N)$ with Given Basis1411 $54.10.4$ The Endomorphsim Ring1411 $54.10.5$ The Reduced Form of a Matrix Module1412 $54.10.6$ Construction of a Matrix1415 $54.10.7$ Element Operations1416 55.1 Introduction1422 55.3 Elementary Functions1426 55.4 Predicates on Modules1422 55.5 Arithmetic with Modules1422 55.6 Basis of a Module1429				
$54.8.4$ Operations on Submodules1407 54.9 Quotient Modules1407 $54.9.1$ Construction of Quotient Modules1407 54.10 Homomorphisms1408 $54.10.1$ Hom_ $R(M, N)$ for R -modules1408 $54.10.2$ Hom_ $R(M, N)$ for Matrix Modules1409 $54.10.3$ Modules Hom_ $R(M, N)$ with Given Basis1411 $54.10.4$ The Endomorphism Ring1411 $54.10.5$ The Reduced Form of a Matrix Module1412 $54.10.6$ Construction of a Matrix1415 $54.10.7$ Element Operations1416 55.1 Introduction1422 55.2 Creation of Modules1422 55.3 Elementary Functions1426 55.4 Predicates on Modules1422 55.5 Arithmetic with Modules1422 55.6 Basis of a Module1423				1406
54.9Quotient Modules140754.9.1Construction of Quotient Modules140754.10Homomorphisms140854.10.1Hom $_R(M, N)$ for R-modules140854.10.2Hom $_R(M, N)$ for Matrix Modules140954.10.3Modules Hom $_R(M, N)$ with Given Basis141154.10.4The Endomorphsim Ring141154.10.5The Reduced Form of a Matrix Module141254.10.6Construction of a Matrix141554.10.7Element Operations141655.1Introduction142255.2Creation of Modules142255.3Elementary Functions142655.4Predicates on Modules142255.5Arithmetic with Modules142255.6Basis of a Module1423				1407
54.9.1Construction of Quotient Modules1407 54.10 Homomorphisms1408 $54.10.1$ Hom _R (M, N) for R-modules1408 $54.10.2$ Hom _R (M, N) for Matrix Modules1409 $54.10.3$ Modules Hom _R (M, N) with Given Basis1411 $54.10.4$ The Endomorphsim Ring1411 $54.10.5$ The Reduced Form of a Matrix Module1412 $54.10.6$ Construction of a Matrix1415 $54.10.7$ Element Operations1416 55.1 Introduction1422 55.2 Creation of Modules1422 55.3 Elementary Functions1426 55.4 Predicates on Modules1422 55.5 Arithmetic with Modules1422 55.6 Basis of a Module1423				1407
54.10 Homomorphisms1408 $54.10.1$ $\operatorname{Hom}_R(M, N)$ for R -modules1408 $54.10.2$ $\operatorname{Hom}_R(M, N)$ for Matrix Modules1409 $54.10.3$ Modules $\operatorname{Hom}_R(M, N)$ with Given Basis1411 $54.10.4$ The Endomorphsim Ring1411 $54.10.5$ The Reduced Form of a Matrix Module1412 $54.10.6$ Construction of a Matrix1415 $54.10.7$ Element Operations1416 55.1 Introduction1422 55.2 Creation of Modules1422 55.3 Elementary Functions1426 55.4 Predicates on Modules1422 55.5 Arithmetic with Modules1428 55.6 Basis of a Module1429 55.6 Basis of a Module1430				1407
$54.10.1$ $\operatorname{Hom}_R(M, N)$ for R -modules1408 $54.10.2$ $\operatorname{Hom}_R(M, N)$ for Matrix Modules1409 $54.10.3$ Modules $\operatorname{Hom}_R(M, N)$ with Given Basis1411 $54.10.3$ Modules $\operatorname{Hom}_R(M, N)$ with Given Basis1411 $54.10.4$ The Endomorphsim Ring1411 $54.10.5$ The Reduced Form of a Matrix Module1412 $54.10.6$ Construction of a Matrix1415 $54.10.7$ Element Operations1416 55.1 Introduction1421 55.2 Creation of Modules1422 55.3 Elementary Functions1426 55.4 Predicates on Modules1428 55.5 Arithmetic with Modules1422 55.6 Basis of a Module1430		54.10		1408
$54.10.2$ Hom $_R(M, N)$ for Matrix Modules1409 $54.10.3$ Modules Hom $_R(M, N)$ with Given Basis1411 $54.10.3$ Modules Hom $_R(M, N)$ with Given Basis1411 $54.10.4$ The Endomorphsim Ring1411 $54.10.5$ The Reduced Form of a Matrix Module1412 $54.10.6$ Construction of a Matrix1415 $54.10.7$ Element Operations1416 55.1 Introduction1421 55.2 Creation of Modules1422 55.3 Elementary Functions1426 55.4 Predicates on Modules1428 55.5 Arithmetic with Modules1429 55.6 Basis of a Module1430				1408
54.10.4The Endomorphsim Ring141154.10.5The Reduced Form of a Matrix Module141254.10.6Construction of a Matrix141554.10.7Element Operations141655MODULES OVER DEDEKIND DOMAINS		54.10.2		1409
54.10.5The Reduced Form of a Matrix Module141254.10.6Construction of a Matrix141554.10.7Element Operations141655MODULES OVER DEDEKIND DOMAINS		54.10.3		1411
54.10.6 54.10.7Construction of a Matrix Element Operations1415 141655MODULES OVER DEDEKIND DOMAINS141955MODULES OVER DEDEKIND DOMAINS142155.1Introduction142155.2Creation of Modules142255.3Elementary Functions142655.4Predicates on Modules142855.5Arithmetic with Modules142955.6Basis of a Module1430		54.10.4	The Endomorphsim Ring	1411
54.10.7Element Operations141655MODULES OVER DEDEKIND DOMAINS				1412
55MODULES OVER DEDEKIND DOMAINS141955.1Introduction142155.2Creation of Modules142255.3Elementary Functions142655.4Predicates on Modules142855.5Arithmetic with Modules142955.6Basis of a Module1430				1415
55.1Introduction142155.2Creation of Modules142255.3Elementary Functions142655.4Predicates on Modules142855.5Arithmetic with Modules142955.6Basis of a Module1430		54.10.7	Element Operations	1416
55.2Creation of Modules142255.3Elementary Functions142655.4Predicates on Modules142855.5Arithmetic with Modules142955.6Basis of a Module1430	55	MODU	ULES OVER DEDEKIND DOMAINS	1419
55.3Elementary Functions142655.4Predicates on Modules142855.5Arithmetic with Modules142955.6Basis of a Module1430		55.1	Introduction	1421
55.4Predicates on Modules142855.5Arithmetic with Modules142955.6Basis of a Module1430		55.2	Creation of Modules	1422
55.4Predicates on Modules142855.5Arithmetic with Modules142955.6Basis of a Module1430		55.3	Elementary Functions	1426
55.5Arithmetic with Modules142955.6Basis of a Module1430		55.4		1428
55.6 Basis of a Module 1430			Arithmetic with Modules	1429
			Basis of a Module	1430
		55.7	Other Functions on Modules	1431

55.8	Homomorphisms between Modules	1433
55.9	Elements of Modules	1436
55.9.1	Creation of Elements	1436
55.9.2	Arithmetic with Elements	1437
55.9.3	Other Functions on Elements	1437
55.10	Pseudo Matrices	1438
55.10.1	Construction of a Pseudo Matrix	1438
55.10.2	Elementary Functions	1438
55.10.3	Basis of a Pseudo Matrix	1439
55.10.4	Predicates	1439
55.10.5	Operations with Pseudo Matrices	1439
56.1	Complexes of Modules	144:
56.1.1	Creation	1443
56.1.2	Subcomplexes and Quotient Complexes	1444
56.1.3	Access Functions	1444
56.1.4	Elementary Operations	1445
56.1.5	Extensions	1446
56.1.6	Predicates	1447
56.2	Chain Maps	1449
56.2.1	Creation	1450
56.2.2	Access Functions	1450
56.2.3	Elementary Operations	1451
56.2.4	Predicates	1451
F 0 0 F		1401
56.2.5	Maps on Homology	145 145

IX FINITE GROUPS

57

1457

57.1	Introduction	1_{-}
57.1.1	The Categories of Finite Groups	14
57.2	Construction of Elements	1-
57.2.1	Construction of an Element	1
57.2.2	Coercion	1
57.2.3	Homomorphisms	1
57.2.4	Arithmetic with Elements	1
57.3	Construction of a General Group	1
57.3.1	The General Group Constructors	1
57.3.2	Construction of Subgroups	1
57.3.3	Construction of Quotient Groups	1
57.4	Standard Groups and Extensions	1
57.4.1	Construction of a Standard Group	1
57.4.2	Construction of Extensions	1
57.5	Transfer Functions Between Group Categories	1
57.6	Basic Operations	1
57.6.1	Accessing Group Information	1
57.7	Operations on the Set of Elements	1
57.7.1	Order and Index Functions	1
57.7.2	Membership and Equality	1
57.7.3	Set Operations	1
57.7.4	Random Elements	1
57.7.5	Action on a Coset Space	1
57.8	Standard Subgroup Constructions	1
57.8.1	Abstract Group Predicates	1
57.9	Characteristic Subgroups and Normal Structure	1
57.9.1	Characteristic Subgroups and Subgroup Series	1
57.9.2	The Abstract Structure of a Group	1
57.10	Conjugacy Classes of Elements	1
57.11	Conjugacy Classes of Subgroups	1
57.11.1	Conjugacy Classes of Subgroups	1
57.11.2	The Poset of Subgroup Classes	1
57.12	Cohomology	1
57.13	Characters and Representations	1
57.13.1	Character Theory	1
57.13.2	Representation Theory	1
57.14	Databases of Groups	1
57.15	Bibliography	1

lxxxi

58.1	Introduction	152
58.1.1	Terminology	152
58.1.2	The Category of Permutation Groups	152
58.1.3	The Construction of a Permutation Group	152
58.2	Creation of a Permutation Group	152
58.2.1	Construction of the Symmetric Group	152
58.2.2	Construction of a Permutation	152
58.2.3	Construction of a General Permutation Group	152
58.3	Elementary Properties of a Group	152
58.3.1	Accessing Group Information	152
58.3.2	Group Order	152
58.3.3	Abstract Properties of a Group	152
58.4	Homomorphisms	152
58.5	Building Permutation Groups	153
58.5.1	Some Standard Permutation Groups	153
58.5.2	Direct Products and Wreath Products	153
58.6	Permutations	153
58.6.1	Coercion	153
58.6.2	Arithmetic with Permutations	153
58.6.3	Properties of Permutations	153
58.6.4	Predicates for Permutations	153
58.6.5	Set Operations	153
58.7	Conjugacy	154
58.8	Subgroups	154
58.8.1	Construction of a Subgroup	154
58.8.2	Membership and Equality	155
58.8.3	Elementary Properties of a Subgroup	155
58.8.4	Standard Subgroups	155
58.8.5	Maximal Subgroups	155
58.8.6	Conjugacy Classes of Subgroups	155
58.8.7	Classes of Subgroups Satisfying a Condition	156
58.9	Quotient Groups	156
58.9.1	Construction of Quotient Groups	156
58.9.2	Abelian, Nilpotent and Soluble Quotients	156
58.10	Permutation Group Actions	156
58.10.1	$G ext{-Sets}$	156
58.10.2	Creating a G -Set	156
58.10.3	Images, Orbits and Stabilizers	156
58.10.4	Action on a G -Space	157
58.10.5	Action on Orbits	157
58.10.6	Action on a G-invariant Partition	157
58.10.7	Action on a Coset Space	158
58.10.8	Reduced Permutation Actions	158
58.10.9	The Jellyfish Algorithm	158
58.11	Normal and Subnormal Subgroups	158
58.11.1	Characteristic Subgroups and Normal Series	158
58.11.2	Maximal and Minimal Normal Subgroups	158
58.11.3	Lattice of Normal Subgroups	158
58.11.4	Composition and Chief Series	158
58.11.5	The Socle	159
58.11.6	The Soluble Radical and its Quotient	159
58.11.7	Complements and Supplements	159
58.11.8	Abelian Normal Subgroups	159
58.12	Cosets and Transversals	160
58.12.1	Cosets	160

lxxxii

1	٠	٠	٠
lxxx	1	1	1

FO 10 0		1.000
58.12.2	Transversals	1602
58.13	Presentations	1602
58.13.1	Generators and Relations Permutations as Words	1603
58.13.2		1603
58.14	Automorphism Groups	1604
58.15	Cohomology	1606
58.16	Representation Theory	1608
58.17	Identification	1610
58.17.1	Identification as an Abstract Group	1610
58.17.2	Identification as a Permutation Group	1610
58.18	Base and Strong Generating Set	1615
58.18.1	Construction of a Base and Strong Generating Set	1615
58.18.2	Defining Values for Attributes	$\begin{array}{c} 1618\\ 1619\end{array}$
$58.18.3 \\ 58.18.4$	Accessing the Base and Strong Generating Set Working with a Base and Strong Generating Set	1619
58.18.4 58.18.5	Modifying a Base and Strong Generating Set	1620
58.19	Permutation Representations of Linear Groups	1622
58.20	Permutation Group Databases	1628
58.21	Ordered Partition Stacks Construction of Ordered Partition Stacks	1629
58.21.1 58.21.2		$1629 \\ 1629$
58.21.2 58.21.3	Properties of Ordered Partition Stacks Operations on Ordered Partition Stacks	1629
58.21.5 58.22	Bibliography	1632
MATE	RIX GROUPS OVER GENERAL RINGS	1637
59.1	Introduction	1641
59.1.1	Introduction to Matrix Groups	1641
59.1.2	The Support	1642
59.1.3	The Category of Matrix Groups	1642
59.1.4	The Construction of a Matrix Group	1642
59.2	Creation of a Matrix Group	1642
59.2.1	Construction of the General Linear Group	1642
59.2.2	Construction of a Matrix Group Element	1643
59.2.3	Construction of a General Matrix Group	1645
59.2.4	Changing Rings	1646
59.2.5	Coercion between Matrix Structures	1647
59.2.6	Accessing Associated Structures	1647
59.3	Homomorphisms	1648
59.3.1	Construction of Extensions	1650
59.4	Operations on Matrices	1651
$59.4.1 \\ 59.4.2$	Arithmetic with Matrices Predicates for Matrices	1652 1654
59.4.2 59.4.3	Matrix Invariants	$1654 \\ 1654$
$59.5 \\ 59.5.1$	Global Properties	1657
59.5.1 59.5.2	Group Order Momborship and Equality	$1658 \\ 1659$
59.5.2 59.5.3	Membership and Equality Set Operations	1659
	•	
59.6 50.7	Abstract Group Predicates	1662
59.7	Conjugacy Cash amaging	1664
59.8	Subgroups	1668
59.8.1	Construction of Subgroups	1668
59.8.2	Elementary Properties of Subgroups Standard Subgroups	1669 1660
$59.8.3 \\ 59.8.4$	Standard Subgroups Low Index Subgroups	$\begin{array}{c} 1669 \\ 1671 \end{array}$
59.8.5	Conjugacy Classes of Subgroups	1671
10.0.0	Conjugacy Chasses of Subgroups	1072

1	•
IVN	VIV
$1\Lambda I$	771 V

59.9	Quotient Groups	1674
59.9.1	Construction of Quotient Groups	1675
59.9.2	Abelian, Nilpotent and Soluble Quotients	1676
59.10	Matrix Group Actions	1677
59.10.1	Orbits and Stabilizers	1678
59.10.2	Orbit and Stabilizer Functions for Large Groups	1680
59.10.3	Action on Orbits	1686
59.10.4	Action on a Coset Space	1688
59.10.5	Action on the Natural G-Module	1689
59.11	Normal and Subnormal Subgroups	1690
59.11.1	Characteristic Subgroups and Subgroup Series	1690
59.11.2	The Soluble Radical and its Quotient	1692
59.11.3	Composition and Chief Factors	1693
59.12	Coset Tables and Transversals	1695
59.13	Presentations	1695
59.13.1	Presentations	1695
59.13.2	Matrices as Words	1696
59.14	Automorphism Groups	1696
59.15	Representation Theory	1699
59.16	Base and Strong Generating Set	1702
59.16.1	Introduction	1702
59.16.2	Controlling Selection of a Base	1702
59.16.3	Construction of a Base and Strong Generating Set	1703
59.16.4	Defining Values for Attributes	1705
59.16.5	Accessing the Base and Strong Generating Set	1705
59.17	Soluble Matrix Groups	1706
59.17.1	Conversion to a PC-Group	1706
59.17.2	Soluble Group Functions	1706
59.17.3	<i>p</i> -group Functions	1707
59.17.4	Abelian Group Functions	1707
59.18	Bibliography	1707
MATF	RIX GROUPS OVER FINITE FIELDS	1709
60.1	Introduction	1711
60.2	Finding Elements with Prescribed Properties	1711
60.3	Monte Carlo Algorithms for Subgroups	1712
60.4	Aschbacher Reduction	1715
60.4.1	Introduction	1715
60.4.2	Primitivity	1716
60.4.3	Semilinearity	1718
60.4.4	Tensor Products	1720
60.4.5	Tensor-induced Groups	1722
60.4.6	Normalisers of Extraspecial r -groups and Symplectic 2-groups	1724

60.4.6	Normalisers of Extraspecial r -groups and Symplectic 2-g
60.4.7	Writing Representations over Subfields
60.4.8	Decompositions with Respect to a Normal Subgroup
60.5	Constructive Recognition for Simple Groups

00.2.0		
60.5	Constructive Recognition for Simple Groups	1733
60.6	Composition Trees for Matrix Groups	1738
60.7	The LMG functions	1747
60.8	Unipotent Matrix Groups	1755
60.9	Bibliography	1757

61.1	Overview	1761
61.2	Construction of Congruence Homomorphisms	1762
61.3	Testing Finiteness	1763
61.4	Deciding Virtual Properties of Linear Groups	1765
61.5	Other Properties of Linear Groups	1768
61.6	Other Functions for Nilpotent Matrix Groups	1770
61.7	Examples	1770
61.8	Bibliography	1777
62.1 62.2	Overview Invariant Forms	1781 1781
62.1	Overview	1781
62.3	Endomorphisms	1782
62.4	New Groups From Others	1783
62.5	Perfect Forms and Normalizers	1783
62.6	Conjugacy	1784
62.7	Conjugacy Tests for Matrices	1785
62.8	Examples	1785
62.9	Bibliography	1787
FINI	TE SOLUBLE GROUPS	1789

lxxxv

62.

61

62

62.7	Conjugacy Tests for Matrices
62.8	Examples
62.9	Bibliography
FINI	TE SOLUBLE GROUPS
63.1	Introduction
63.1.1	Power-Conjugate Presentations
63.2	Creation of a Group
63.2.1	Construction Functions

63.1	Introduction	1793
63.1.1	Power-Conjugate Presentations	1793
63.2	Creation of a Group	1794
63.2.1	Construction Functions	1794
63.2.2	Definition by Presentation	1795
63.2.3	Possibly Inconsistent Presentations	1798
63.3	Basic Group Properties	1799
63.3.1	Infrastructure	1799
63.3.2	Numerical Invariants	1800
63.3.3	Predicates	1800
63.4	Homomorphisms	1801
63.5	New Groups from Existing	1804
63.6	Elements	1808
63.6.1	Definition of Elements	1808
63.6.2	Arithmetic Operations on Elements	1810
63.6.3	Properties of Elements	1811
63.6.4	Predicates for Elements	1811
63.6.5	Set Operations	1812
63.7	Conjugacy	1815
63.8	Subgroups	1817
63.8.1	Definition of Subgroups by Generators	1817
63.8.2	Membership and Coercion	1818
63.8.3	Inclusion and Equality	1820
63.8.4	Standard Subgroup Constructions	1821
63.8.5	Properties of Subgroups	1822
63.8.6	Predicates for Subgroups	1823
63.8.7	Hall π -Subgroups and Sylow Systems	1825
63.8.8	Conjugacy Classes of Subgroups	1826
63.9	Quotient Groups	1830
63.9.1	Construction of Quotient Groups	1830
63.9.2	Abelian and p -Quotients	1831

	Normal Subgroups and Subgroup Series	1832
63.10.1	Characteristic Subgroups	1832
63.10.2	Subgroup Series	1833
63.10.3	Series for p -groups	1835
63.10.4	Normal Subgroups and Complements	1835
63.11	Cosets	1837
63.11.1	Coset Tables and Transversals	1837
63.11.2	Action on a Coset Space	1837
63.12	Automorphism Group	1838
63.12.1	General Soluble Group	1838
63.12.2	<i>p</i> -group	1842
63.12.3	Isomorphism and Standard Presentations	1844
63.13	Generating p-groups	1847
63.14	Representation Theory	1851
63.15	Central Extensions	1854
63.16	Transfer Between Group Categories	1857
63.16.1	Transfer to GrpPC	1857
63.16.2	Transfer from GrpPC	1858
63.17	More About Presentations	1860
63.17.1	Conditioned Presentations	1860
63.17.2	Special Presentations	1861
63.17.3	CompactPresentation	1864
63.18	Optimizing Magma Code	1865
63.18.1	PowerGroup	1865
63.19	Bibliography	1866
64.1 64.2	Introduction Construction of an SLP-Group and its Elements	1871 1871
64.2.1	Structure Constructors	1011
		1871
64.2.2	Construction of an Element	$1871 \\ 1871$
	Construction of an Element	1871
64.3	Construction of an Element Arithmetic with Elements	1871 1871
$64.3 \\ 64.3.1$	Construction of an Element Arithmetic with Elements Accessing the Defining Generators	1871 <i>1871</i> 1872
64.3 64.3.1 64.4	Construction of an Element Arithmetic with Elements Accessing the Defining Generators Operations on Elements	1871 1871 1872 1872
$64.3 \\ 64.3.1 \\ 64.4 \\ 64.4.1$	Construction of an Element Arithmetic with Elements Accessing the Defining Generators Operations on Elements Equality and Comparison	1871 1871 1872 1872 1872
$\begin{array}{c} 64.3 \\ 64.3.1 \\ 64.4 \\ 64.4.1 \\ 64.4.2 \end{array}$	Construction of an Element Arithmetic with Elements Accessing the Defining Generators Operations on Elements Equality and Comparison Attributes of Elements	1871 1871 1872 1872 1872 1872 1872
64.3 64.3.1 64.4 64.4.1	Construction of an Element Arithmetic with Elements Accessing the Defining Generators Operations on Elements Equality and Comparison Attributes of Elements Set-Theoretic Operations	1871 1871 1872 1872 1872 1872 1872 1873
$\begin{array}{c} 64.3 \\ 64.3.1 \\ 64.4 \\ 64.4.1 \\ 64.4.2 \\ 64.5 \\ 64.5.1 \end{array}$	Construction of an Element Arithmetic with Elements Accessing the Defining Generators Operations on Elements Equality and Comparison Attributes of Elements	1871 1871 1872 1872 1872 1872 1872
$\begin{array}{c} 64.3.1 \\ 64.4 \\ 64.4.1 \\ 64.4.2 \\ 64.5 \end{array}$	Construction of an Element Arithmetic with Elements Accessing the Defining Generators Operations on Elements Equality and Comparison Attributes of Elements Set-Theoretic Operations Membership and Equality	1871 1871 1872 1872 1872 1872 1873 1873
$\begin{array}{c} 64.3\\ 64.3.1\\ 64.4\\ 64.4.1\\ 64.4.2\\ 64.5\\ 64.5.1\\ 64.5.2\\ 64.5.3\end{array}$	Construction of an Element Arithmetic with Elements Accessing the Defining Generators Operations on Elements Equality and Comparison Attributes of Elements Set-Theoretic Operations Membership and Equality Set Operations	1871 1872 1872 1872 1872 1872 1873 1873 1873 1874
$\begin{array}{c} 64.3\\ 64.3.1\\ 64.4\\ 64.4.1\\ 64.4.2\\ 64.5\\ 64.5.1\\ 64.5.2\\ 64.5.3\end{array}$	Construction of an Element Arithmetic with Elements Accessing the Defining Generators Operations on Elements Equality and Comparison Attributes of Elements Set-Theoretic Operations Membership and Equality Set Operations Coercions Between Related Groups	1871 1871 1872 1872 1872 1872 1873 1873 1873 1874
64.3 64.3.1 64.4 64.4.1 64.4.2 64.5 64.5.1 64.5.2 64.5.3 ALMC 65.1	Construction of an Element Arithmetic with Elements Accessing the Defining Generators Operations on Elements Equality and Comparison Attributes of Elements Set-Theoretic Operations Membership and Equality Set Operations Coercions Between Related Groups OST SIMPLE GROUPS	1871 1871 1872 1872 1872 1872 1873 1873 1873 1874 1874
64.3 64.3.1 64.4 64.4.1 64.4.2 64.5 64.5.1 64.5.2 64.5.3 ALMC 65.1	Construction of an Element Arithmetic with Elements Accessing the Defining Generators Operations on Elements Equality and Comparison Attributes of Elements Set-Theoretic Operations Membership and Equality Set Operations Coercions Between Related Groups OST SIMPLE GROUPS	1871 1871 1872 1872 1872 1872 1873 1873 1874 1874 . 1875 1879
64.3 64.3.1 64.4 64.4.1 64.4.2 64.5 64.5.1 64.5.2 64.5.3 ALMC 65.1 65.1.1 65.2	Construction of an Element Arithmetic with Elements Accessing the Defining Generators Operations on Elements Equality and Comparison Attributes of Elements Set-Theoretic Operations Membership and Equality Set Operations Coercions Between Related Groups OST SIMPLE GROUPS	1871 1872 1872 1872 1872 1873 1873 1873 1874 1874 . 1875 1879 1879
64.3 64.3.1 64.4 64.4.1 64.4.2 64.5 64.5.1 64.5.2 64.5.3 ALMC 65.1 65.1.1 65.2 65.2.1	Construction of an Element Arithmetic with Elements Accessing the Defining Generators Operations on Elements Equality and Comparison Attributes of Elements Set-Theoretic Operations Membership and Equality Set Operations Coercions Between Related Groups OST SIMPLE GROUPS	1871 1872 1872 1872 1872 1873 1873 1873 1874 1874 . 1875 1879 1879 1880
64.3 64.3.1 64.4 64.4.1 64.4.2 64.5 64.5.1 64.5.2 64.5.3 ALMC 65.1 65.2 65.2.1 65.2.1 65.2.2	Construction of an Element Arithmetic with Elements Accessing the Defining Generators Operations on Elements Equality and Comparison Attributes of Elements Set-Theoretic Operations Membership and Equality Set Operations Coercions Between Related Groups OST SIMPLE GROUPS	1871 1872 1872 1872 1872 1873 1873 1873 1874 1874 . 1875 1879 1879 1880 1880
64.3 64.3.1 64.4 64.4.1 64.4.2 64.5 64.5.2 64.5.3 ALMC 65.1 65.2 65.2.1 65.2.2 65.2.1 65.2.2 65.2.3	Construction of an Element Arithmetic with Elements Accessing the Defining Generators Operations on Elements Equality and Comparison Attributes of Elements Set-Theoretic Operations Membership and Equality Set Operations Coercions Between Related Groups OST SIMPLE GROUPS	1871 1872 1872 1872 1872 1873 1873 1873 1873 1874 1874 . 1875 1879 1879 1880 1880 1880
64.3 64.3.1 64.4 64.4.1 64.4.2 64.5 64.5.1 64.5.2 64.5.3 ALMC 65.1 65.2 65.2.1 65.2.1 65.2.2	Construction of an Element Arithmetic with Elements Accessing the Defining Generators Operations on Elements Equality and Comparison Attributes of Elements Set-Theoretic Operations Membership and Equality Set Operations Coercions Between Related Groups OST SIMPLE GROUPS	1871 1872 1872 1872 1872 1873 1873 1873 1874 1874 1874 . 1875 1879 1879 1880 1880 1880 1881 1882
64.3 64.3.1 64.4 64.4.1 64.4.2 64.5 64.5.1 64.5.2 64.5.3 ALMC 65.1 65.1.1 65.2 65.2.1 65.2.2 65.2.3 65.2.3 65.2.4	Construction of an Element Arithmetic with Elements Accessing the Defining Generators Operations on Elements Equality and Comparison Attributes of Elements Set-Theoretic Operations Membership and Equality Set Operations Coercions Between Related Groups OST SIMPLE GROUPS	1871 1872 1872 1872 1872 1873 1873 1873 1873 1874 1874 1874 1875 1879 1880 1880 1880 1881 1882 1889
64.3 64.3.1 64.4 64.4.1 64.4.2 64.5 64.5.1 64.5.2 64.5.3 ALMC 65.1 65.2.1 65.2.1 65.2.2 65.2.3 65.2.2 65.2.3 65.2.4 65.3 65.3.1	Construction of an Element Arithmetic with Elements Accessing the Defining Generators Operations on Elements Equality and Comparison Attributes of Elements Set-Theoretic Operations Membership and Equality Set Operations Coercions Between Related Groups OST SIMPLE GROUPS	1871 1872 1872 1872 1872 1873 1873 1873 1873 1874 1874 1874 1875 1879 1880 1880 1880 1881 1882 1889 1891
64.3 64.3.1 64.4 64.4.1 64.4.2 64.5 64.5.1 64.5.2 64.5.3 ALMC 65.1 65.2.1 65.2.1 65.2.2 65.2.3 65.2.4 65.3.1 65.3.1 65.3.2	Construction of an Element Arithmetic with Elements Accessing the Defining Generators Operations on Elements Equality and Comparison Attributes of Elements Set-Theoretic Operations Membership and Equality Set Operations Coercions Between Related Groups OST SIMPLE GROUPS	1871 1872 1872 1872 1872 1873 1873 1873 1873 1874 1874 1874 1874 1875 1879 1880 1880 1880 1881 1882 1889 1891 1892
64.3 64.3.1 64.4 64.4.1 64.4.2 64.5 64.5.1 64.5.2 64.5.3 ALMC 65.1 65.1.1 65.2 65.2.1 65.2.2 65.2.3 65.2.4 65.3	Construction of an Element Arithmetic with Elements Accessing the Defining Generators Operations on Elements Equality and Comparison Attributes of Elements Set-Theoretic Operations Membership and Equality Set Operations Coercions Between Related Groups OST SIMPLE GROUPS	1871 1872 1872 1872 1872 1873 1873 1873 1873 1874 1874 1874 1874 1875 1879 1880 1880 1880 1881 1882 1889 1891 1892 1895

lxxxvi

lxxxvii

		1004
65.3.5	Constructive Recognition of Linear Groups	1904
65.3.6	Constructive Recognition of Symplectic Groups	1908
65.3.7	Constructive Recognition of Unitary Groups	1908
65.3.8	Constructive Recognition of $SL(d, q)$ in Low Degree	1909
65.3.9	Constructive Recognition of Suzuki Groups	1910
65.3.10	Constructive Recognition of Small Ree Groups	1916
65.3.10	Constructive Recognition of Large Ree Groups	1910
65.4	Properties of Finite Groups Of Lie Type	1921
65.4.1	Maximal Subgroups of the Classical Groups	1921
65.4.2	Maximal Subgroups of the Exceptional Groups	1922
65.4.3	Sylow Subgroups of the Classical Groups	1923
65.4.4	Sylow Subgroups of Exceptional Groups	1924
65.4.5	Conjugacy of Subgroups of the Classical Groups	1927
65.4.6	Conjugacy of Elements of the Exceptional Groups	1928
65.4.7	Irreducible Subgroups of the General Linear Group	1928
65.5		
	Atlas Data for the Sporadic Groups	1929
65.6	Bibliography	1932
DATAE	BASES OF GROUPS	1935
66.1	Introduction	1939
66.2	Database of Small Groups	1940
66.2.1	Basic Small Group Functions	1941
66.2.2	Processes	1945
66.2.3	Small Group Identification	1947
66.2.4	Accessing Internal Data	1948
	_	
66.3	The <i>p</i> -groups of Order Dividing p^7	1950
66.4	Metacyclic p-groups	1951
66.5	Database of Perfect Groups	1953
66.5.1	Specifying an Entry of the Database	1954
66.5.2	Creating the Database	1954
66.5.3	Accessing the Database	1954
66.5.4	Finding Legal Keys	1956
66.6	Database of Almost-Simple Groups	1958
	The Record Fields	
66.6.1		1958
66.6.2	Creating the Database	1959
66.6.3	Accessing the Database	1960
66.7	Database of Transitive Groups	1962
66.7.1	Accessing the Databases	1962
66.7.2	Processes	1965
66.7.3	Transitive Group Identification	1966
66.8	Database of Primitive Groups	1967
66.8.1	-	1967
	Accessing the Databases	
66.8.2	Processes	1969
66.8.3	Primitive Group Identification	1971
66.9	Database of Rational Maximal Finite Matrix Groups	1971
66.10	Database of Integral Maximal Finite Matrix Groups	1973
66.11	Database of Finite Quaternionic Matrix Groups	1975
66.12	Database of Finite Symplectic Matrix Groups	1976
66.13	Database of Irreducible Matrix Groups	1978
66.13.1	Accessing the Database	1978
66.14	Database of Quasisimple Matrix Groups	1979
66.15	Database of Soluble Irreducible Groups	1980
66.15.1	Basic Functions	1980
66.15.2	Searching with Predicates	1982
66.15.3	Associated Functions	1983

6	6.15.4	Processes	1983
6	6.16	Database of ATLAS Groups	1985
	6.16.1	Accessing the Database	1986
	6.16.2	Accessing the ATLAS Groups	1986
6	6.16.3	Representations of the ATLAS Groups	1987
6	6.17	Fundamental Groups of 3-Manifolds	1988
6	6.17.1	Basic Functions	1988
6	6.17.2	Accessing the Data	1989
6	6.18	Bibliography	1990
	AUTON	MORPHISM GROUPS	1993
6	7.1	Introduction	1995
6	7.2	Creation of Automorphism Groups	1996
6	7.3	Access Functions	1998
6	7.4	Order Functions	1999
6	7.5	Representations of an Automorphism Group	2001
6	7.6	Automorphisms	2003
6	7.7	Stored Attributes of an Automorphism Group	2006
6	7.8	Holomorphs	2009
	7.9	Bibliography	2010
(СОНОМ	MOLOGY AND EXTENSIONS	2011
6	8.1	Introduction	2013
6	8.2	Creation of a Cohomology Module	2014
	8.3	Accessing Properties of the Cohomology Module	2015
6	8.4	Calculating Cohomology	2016
	8.5	Cocycles	2018
6	8.6	The Restriction to a Subgroup	2021
6	8.7	Other Operations on Cohomology Modules	2022
	8.8	Constructing Extensions	2023
6	8.9	Constructing Distinct Extensions	2026
6	8.10	Finite Group Cohomology	2030
68	8.10.1	Creation of Gamma-groups	2031
68	8.10.2	Accessing Information	2032
68	8.10.3	One Cocycles	2033
68	8.10.4	Group Cohomology	2034
6	8.11	Bibliography	2037

67

68

lxxxviii

X FINITELY-PRESENTED GROUPS

69	ABEL	IAN GROUPS	. 2041
	69.1	Introduction	2043
	69.2	Construction of a Finitely Presented Abelian Group and its Elements	2043
	69.2.1	The Free Abelian Group	2043
	69.2.2	Relations	2044
	69.2.3	Specification of a Presentation	2045
	69.2.4	Accessing the Defining Generators and Relations	2046
	69.3	Construction of a Generic Abelian Group	2047
	69.3.1	Specification of a Generic Abelian Group	2047
	69.3.2	Accessing Generators	2050
	69.3.3	Computing Abelian Group Structure	2050
	69.4	Elements	2052
	69.4.1	Construction of Elements	2052
	69.4.2	Representation of an Element	2053
	69.4.3	Arithmetic with Elements	2054
	69.5	Construction of Subgroups and Quotient Groups	2055
	69.5.1	Construction of Subgroups	2055
	69.5.2	Construction of Quotient Groups	2057
	69.6	Standard Constructions and Conversions	2057
	69.7	Operations on Elements	2059
	69.7.1	Order of an Element	2059
	69.7.2	Discrete Logarithm	2060
	69.7.3	Equality and Comparison	2061
	69.8	Invariants of an Abelian Group	2062
	69.9	Canonical Decomposition	2062
	69.10	Set-Theoretic Operations	2063
	69.10.1	Functions Relating to Group Order	2063
	69.10.2	Membership and Equality	2063
	69.10.3	Set Operations	2064
	69.11	Coset Spaces	2065
	69.11.1	Coercions Between Groups and Subgroups	2065
	69.12	Subgroup Constructions	2066
	69.13	Subgroup Chains	2067
	69.14	General Group Properties	2067
	69.14.1	Properties of Subgroups	2068
	69.14.2	Enumeration of Subgroups	2068
	69.15	Representation Theory	2070
	69.16	The Hom Functor	2070
	69.17	Automorphism Groups	2072
	69.18	Cohomology	2072
	69.19	Homomorphisms	2072
	69.20	Bibliography	2075

70.1	Introduction	2
70.1.1	Overview of Facilities	2
70.1.2	The Construction of Finitely Presented Groups	2
70.2	Free Groups and Words	2
70.2.1	Construction of a Free Group	2
70.2.2	Construction of Words	2
70.2.3	Access Functions for Words	2
70.2.4	Arithmetic Operators for Words	2
70.2.5	Comparison of Words	2
70.2.6	Relations	2
70.3	Construction of an FP-Group	4
70.3.1	The Quotient Group Constructor	6 4
70.3.2	The FP-Group Constructor	6 4
70.3.3	Construction from a Finite Permutation or Matrix Group	2
70.3.4	Construction of the Standard Presentation for a Coxeter Group	2
70.3.5	Conversion from a Special Form of FP-Group	2
70.3.6	Construction of a Standard Group	6 4
70.3.7	Construction of Extensions	2
70.3.8	Accessing the Defining Generators and Relations	2
70.4	Homomorphisms	4
70.4.1	General Remarks	- -
70.4.2	Construction of Homomorphisms	- -
70.4.3	Accessing Homomorphisms	-
70.4.4	Computing Homomorphisms to Finite Groups	- -
70.4.5	The L_2 -Quotient Algorithm	2
70.4.6	Infinite L2 quotients	
70.4.7	Searching for Isomorphisms	-
70.5	Abelian, Nilpotent and Soluble Quotient	
70.5.1	Abelian Quotient	2 6 4
70.5.2	<i>p</i> -Quotient	-
70.5.3	The Construction of a p -Quotient	
70.5.4	Nilpotent Quotient	-
70.5.5	Soluble Quotient	-
70.6	Subgroups	
70.6.1	Subgroups Specification of a Subgroup	4
70.6.2	Index of a Subgroup: The Todd-Coxeter Algorithm	2 2 2
70.6.3	Implicit Invocation of the Todd-Coxeter Algorithm	2 6 2
70.6.4	Constructing a Presentation for a Subgroup	2 2 2
70.7	Subgroups of Finite Index	2 2
70.7.1	Low Index Subgroups	4 6 4
70.7.2	Subgroup Constructions	4 6 4
70.7.3	Properties of Subgroups	4 6 4
70.8		
70.8 70.8.1	Coset Spaces and Tables Coset Tables	4 4 4 4
70.8.1	Coset Spaces: Construction	4 6 4
70.8.2 70.8.3	Coset Spaces: Elementary Operations	2
70.8.3 70.8.4	Accessing Information	2
70.8.4 70.8.5		2
70.8.5 70.8.6	Double Coset Spaces: Construction Coset Spaces: Selection of Cosets	4
	Coset Spaces: Selection of Cosets	
70.8.7	Coset Spaces: Induced Homomorphism	
70.9	Simplification	4 4 6
70.9.1	Reducing Generating Sets	6 4 6
70.9.2	Tietze Transformations	2
70.10	Representation Theory	4
70.11	Small Group Identification	4

 $\mathbf{x}\mathbf{c}$

	70.11.1 70.12	Concrete Representations of Small Groups Bibliography	$2200 \\ 2200$
71		ELY PRESENTED GROUPS: ADVANCED	2203
11	L IINI T	ELI FRESENTED GROUPS: ADVANCED	2203
	71.1	Introduction	2205
	71.2	Low Level Operations on Presentations and Words	2205
	71.2.1	Modifying Presentations	2206
	71.2.2	Low Level Operations on Words	2208
	71.3	Interactive Coset Enumeration	2210
	71.3.1	Introduction	2210
	71.3.2	Constructing and Modifying a Coset Enumeration Process	2211
	71.3.3	Starting and Restarting an Enumeration	2216
	71.3.4	Accessing Information	$2218 \\ 2227$
	71.3.5 71.3.6	Induced Permutation Representations Coset Spaces and Transversals	2227
	71.3.0	-	
	$71.4 \\71.4.1$	<i>p</i> -Quotients (Process Version) The <i>p</i> -Quotient Process	$2231 \\ 2231$
	71.4.1 71.4.2	Using p -Quotient Interactively	2231 2232
	71.4.2 71.5	Soluble Quotients	2232 2241
	71.5 71.5.1	Introduction	2241 2241
	71.5.1 71.5.2	Construction	2241 2241
	71.5.2 71.5.3	Calculating the Relevant Primes	2241
	71.5.4	The Functions	2243
	71.6	Bibliography	2247
72	POLY	CYCLIC GROUPS	2249
	72.1	Introduction	2251
	72.2	Polycyclic Groups and Polycyclic Presentations	2251
	72.2.1	Introduction	2251
	72.2.2	Specification of Elements	2252
	72.2.3	Access Functions for Elements	2252
	72.2.4	Arithmetic Operations on Elements	2253
	72.2.5	Operators for Elements	2254
	72.2.6	Comparison Operators for Elements	2254
	72.2.7 72.2.8	Specification of a Polycyclic Presentation	$2255 \\ 2259$
	72.3	Properties of a Polycyclic Presentation	2259 2259
	72.3 72.3.1	Subgroups, Quotient Groups, Homomorphisms and Extensions Construction of Subgroups	2259 2259
	72.3.1 72.3.2	Coercions Between Groups and Subgroups	2260
	72.3.3	Construction of Quotient Groups	2260 2261
	72.3.4	Homomorphisms	2261
	72.3.5	Construction of Extensions	2262
	72.3.6	Construction of Standard Groups	2262
	72.4	Conversion between Categories	2265
	72.5	Access Functions for Groups	2266
	72.6	Set-Theoretic Operations in a Group	2267
	72.6.1	Functions Relating to Group Order	2267
	72.6.2	Membership and Equality	2267
	72.6.3	Set Operations	2268
	72.7	Coset Spaces	2269
	72.8	The Subgroup Structure	2272
	72.8.1	General Subgroup Constructions	2272
	72.8.2	Subgroup Constructions Requiring a Nilpotent Covering Group	2272
	72.9	General Group Properties	2273

xci

72.9.1	General Properties of Subgroups	2274
72.9.2	Properties of Subgroups Requiring a Nilpotent Covering Group	2274
72.10	Normal Structure and Characteristic Subgroups	2276
72.10.1	Characteristic Subgroups and Subgroup Series	2276
72.10.2	The Abelian Quotient Structure of a Group	2280
72.11	Conjugacy	2280
72.12	Representation Theory	2281
72.13	Power Groups	2287
72.14	Bibliography	2288
BRAI	D GROUPS	. 2289
73.1	Introduction	2291
73.1.1	Lattice Structure and Simple Elements	2292
73.1.2	Representing Elements of a Braid Group	2293
73.1.3	Normal Form for Elements of a Braid Group	2294
73.1.4	Mixed Canonical Form and Lattice Operations	2295
73.1.5	Conjugacy Testing and Conjugacy Search	2296
73.2	Constructing and Accessing Braid Groups	2298
73.3	Creating Elements of a Braid Group	2299
73.4	Working with Elements of a Braid Group	2305
73.4.1	Accessing Information	2305
73.4.2	Computing Normal Forms of Elements	2308
73.4.3	Arithmetic Operators and Functions for Elements	2311
73.4.4	Boolean Predicates for Elements	2315
73.4.5	Lattice Operations	2319
73.4.6	Invariants of Conjugacy Classes	2323
73.5	Homomorphisms	2332
73.5.1	General Remarks	2332
73.5.2	Constructing Homomorphisms	2332
73.5.3	Accessing Homomorphisms	2333
73.5.4	Representations of Braid Groups	2336
73.6	Bibliography	2338
GROU	JPS DEFINED BY REWRITE SYSTEMS	. 2339
74.1	Introduction	2341
74.1.1	Terminology	2341
74.1.2	The Category of Rewrite Groups	2341
74.1.3	The Construction of a Rewrite Group	2341
74.2	Constructing Confluent Presentations	2342
74.2.1	The Knuth-Bendix Procedure	2342
74.2.2	Defining Orderings	2343
74.2.3	Setting Limits	2345
74.2.4	Accessing Group Information	2347
74.3	Properties of a Rewrite Group	2349
74.4	Arithmetic with Words	2350
74.4.1	Construction of a Word	2350
74.4.2	Element Operations	2351
74.5	Operations on the Set of Group Elements	2353
74.6	Homomorphisms	2355
74.6.1	General Remarks	2355
74.6.2	Construction of Homomorphisms	2355
74.7	Conversion to a Finitely Presented Group	2356
74.8	Bibliography	2356

73

75	AUTO	OMATIC GROUPS	. 2357
	75.1	Introduction	2359
	75.1.1	Terminology	2359
	75.1.2	The Category of Automatic Groups	2359
	75.1.3	The Construction of an Automatic Group	2359
	75.2	Creation of Automatic Groups	2360
	75.2.1	Construction of an Automatic Group	2360
	75.2.2	Modifying Limits	2361
	75.2.3	Accessing Group Information	2365
	75.3 75.4	Properties of an Automatic Group	2366 2368
	$75.4 \\ 75.4.1$	Arithmetic with Words Construction of a Word	2368
	75.4.1 75.4.2	Operations on Elements	2369
	75.5	Homomorphisms	2303 2371
	75.5.1	General Remarks	2371 2371
	75.5.2	Construction of Homomorphisms	2372
	75.6	Set Operations	2372
	75.7	The Growth Function	2374
	75.8	Bibliography	2375
76	GROU	UPS OF STRAIGHT-LINE PROGRAMS	. 2377
	76.1	Introduction	2379
	76.2	Construction of an SLP-Group and its Elements	2379
	76.2.1	Structure Constructors	2379
	76.2.2	Construction of an Element	2380
	76.3	Arithmetic with Elements	2380
	76.3.1	Accessing the Defining Generators and Relations	2380
	76.4	Addition of Extra Generators	2381
	76.5	Creating Homomorphisms	2381
	76.6	Operations on Elements	2383
	76.6.1	Equality and Comparison	2383
	76.7	Set-Theoretic Operations	2383
	76.7.1	Membership and Equality	2383
	76.7.2	Set Operations	2384
	76.7.3	Coercions Between Related Groups	2385
	76.8	Bibliography	2385
77	FINIT	TELY PRESENTED SEMIGROUPS	. 2387
	77.1	Introduction	2389
	77.2	The Construction of Free Semigroups and their Elements	2389
	77.2.1	Structure Constructors	2389
	77.2.2	Element Constructors	2390
	77.3	Elementary Operators for Words	2390
	77.3.1	Multiplication and Exponentiation	2390
	77.3.2	The Length of a Word	2390
	77.3.3	Equality and Comparison	2391
	77.4	Specification of a Presentation	2392
	77.4.1 77.4.2	Relations Presentations	$2392 \\ 2392$
	77.4.2 77.4.3	Accessing the Defining Generators and Relations	2392 2393
	77.5	Subsemigroups, Ideals and Quotients	2393 2394
	$77.5 \\ 77.5.1$	Subsemigroups and Ideals	$2394 \\ 2394$
	77.5.1 77.5.2	Quotients	2394 2395
		•	

xciii

Extensions	239
Elementary Tietze Transformations	2393
String Operations on Words	239°
OIDS GIVEN BY REWRITE SYSTEMS	. 2399
Introduction	2401
Terminology	2401
The Category of Rewrite Monoids	2401
The Construction of a Rewrite Monoid	2401
Construction of a Rewrite Monoid	2402
Basic Operations	2407
Accessing Monoid Information	2407
Properties of a Rewrite Monoid	2408
Construction of a Word	2410
Arithmetic with Words	2410
Homomorphisms	2412
General Remarks	2412
Construction of Homomorphisms	2412
Set Operations	2412
Conversion to a Finitely Presented Monoid	2414
	String Operations on Words DIDS GIVEN BY REWRITE SYSTEMS Introduction Terminology The Category of Rewrite Monoids The Construction of a Rewrite Monoid Construction of a Rewrite Monoid Basic Operations Accessing Monoid Information Properties of a Rewrite Monoid Construction of a Word Arithmetic with Words Homomorphisms General Remarks Construction of Homomorphisms Set Operations

xciv

XI ALGEBRAS

79	ALGE	EBRAS	2419
	79.1	Introduction	2421
	79.1.1	The Categories of Algebras	2421
	79.2	Construction of General Algebras and their Elements	2421
	79.2.1	Construction of a General Algebra	2422
	79.2.2	Construction of an Element of a General Algebra	2423
	79.3	Construction of Subalgebras, Ideals and Quotient Algebras	2423
	79.3.1	Subalgebras and Ideals	2423
	79.3.2	Quotient Algebras	2424
	79.4	Operations on Algebras and Subalgebras	2424
	79.4.1	Invariants of an Algebra	2424
	79.4.2	Changing Rings	2425
	79.4.3	Bases	2425
	79.4.4	Decomposition of an Algebra	2426
	79.4.5	Operations on Subalgebras	2428
	79.5	Operations on Elements of an Algebra	2429
	79.5.1	Operations on Elements	2429
	79.5.2	Comparisons and Membership	2430
	79.5.3	Predicates on Elements	2430
80	STRU	UCTURE CONSTANT ALGEBRAS	2431
	80.1	Introduction	2433
	80.2	Construction of Structure Constant Algebras and Elements	2433
	80.2.1	Construction of a Structure Constant Algebra	2433
	80.2.2	Construction of Elements of a Structure Constant Algebra	2434
	80.3	Operations on Structure Constant Algebras and Elements	2435
	80.3.1	Operations on Structure Constant Algebras	2435
	80.3.2	Indexing Elements	2436
	80.3.3	The Module Structure of a Structure Constant Algebra	2437
	80.3.4	Homomorphisms	2437
81	ASSO	CIATIVE ALGEBRAS	2441
	81.1	Introduction	2443
	81.2	Construction of Associative Algebras	2443
	81.2.1	Construction of an Associative Structure Constant Algebra	2443
	81.2.2	Associative Structure Constant Algebras from other Algebras	2444
	81.3	Operations on Algebras and their Elements	2445
	81.3.1	Operations on Algebras	2445
	81.3.2	Operations on Elements	2447
	81.3.3	Representations	2448
	81.3.4	Decomposition of an Algebra	2448
	81.4	Orders	2450
	81.4.1	Creation of Orders	2451
	81.4.2	Attributes	2454
	81.4.3	Bases of Orders	2455

81.4.4	Predicates	2456
81.4.5	Operations with Orders	2457
81.5	Elements of Orders	2458
81.5.1	Creation of Elements	2458
81.5.2	Arithmetic of Elements	2458
81.5.3	Predicates on Elements	2459
81.5.4	Other Operations with Elements	2459
81.6	Ideals of Orders	2460
81.6.1	Creation of Ideals	2460
81.6.2	Attributes of Ideals	2461
81.6.3	Arithmetic for Ideals	2462
81.6.4	Predicates on Ideals	2462
81.6.5	Other Operations on Ideals	2463
81.7	Quaternionic Orders	2465
81.8	Bibliography	2466
FINIT	ELY PRESENTED ALGEBRAS	2467
82.1	Introduction	2469
82.2	Representation and Monomial Orders	2469
82.3	Exterior Algebras	2470
82.4	Creation of Free Algebras and Elements	2470
82.4.1	Creation of Free Algebras	2470
82.4.2	Print Names	2470
82.4.3	Creation of Polynomials	2471
82.5	Structure Operations	2471
82.5 82.5.1	Related Structures	2471 2471
82.5.1 82.5.2	Numerical Invariants	2471
82.5.3	Homomorphisms	2472
82.6	Element Operations	2473
82.6.1	Arithmetic Operators	2473
82.6.2	Equality and Membership	2473
82.6.3	Predicates on Algebra Elements	2473
82.6.3	Coefficients, Monomials, Terms and Degree	2474
82.6.5	Evaluation	2476
	Ideals and Gröbner Bases	2470
82.7		
82.7.1	Creation of Ideals	2477
82.7.2	Gröbner Bases	2478 2479
82.7.3	Verbosity	
82.7.4	Related Functions	2480
82.8	Basic Operations on Ideals	2482
	Construction of New Ideals	
82.8.2	Ideal Predicates	2483
82.8.2 82.8.3	Ideal Predicates Operations on Elements of Ideals	2483 2484
82.8.2 82.8.3 82.9	Ideal Predicates Operations on Elements of Ideals Changing Coefficient Ring	2483 2484 2483
82.8.2 82.8.3 82.9	Ideal Predicates Operations on Elements of Ideals Changing Coefficient Ring Finitely Presented Algebras	$2483 \\ 2484 \\ 2485 \\ $
82.8.2 82.8.3 82.9 82.10	Ideal Predicates Operations on Elements of Ideals Changing Coefficient Ring	$2483 \\ 2484 \\ 2484 \\ 2485 \\ $
82.8.2 82.8.3 82.9 82.10 82.11	Ideal Predicates Operations on Elements of Ideals Changing Coefficient Ring Finitely Presented Algebras	$2483 \\ 2484 \\ 2484 \\ 2483 \\ $
82.8.2 82.8.3 82.9 82.10 82.11 82.12	Ideal Predicates Operations on Elements of Ideals Changing Coefficient Ring Finitely Presented Algebras Creation of FP-Algebras	2483 2484 2488 2488 2488 2488 2488
82.8.2 82.8.3 82.9 82.10 82.11 82.12 82.13	Ideal Predicates Operations on Elements of Ideals Changing Coefficient Ring Finitely Presented Algebras Creation of FP-Algebras Operations on FP-Algebras	248: 2484 2485 2485 2485 2485 2485 2485
82.8.2 82.8.3 82.9 82.10 82.11 82.12 82.13 82.14	Ideal Predicates Operations on Elements of Ideals Changing Coefficient Ring Finitely Presented Algebras Creation of FP-Algebras Operations on FP-Algebras Finite Dimensional FP-Algebras Vector Enumeration	2483 2484 2483 2483 2483 2483 2483 2483
82.8.2 82.8.3 82.9 82.10 82.11 82.12 82.13 82.14 82.14.1	Ideal Predicates Operations on Elements of Ideals Changing Coefficient Ring Finitely Presented Algebras Creation of FP-Algebras Operations on FP-Algebras Finite Dimensional FP-Algebras Vector Enumeration Finitely Presented Modules	2483 2484 2485 2485 2485 2485 2485 2485 2492 2492
82.8.2 82.8.3 82.9 82.10 82.11 82.12 82.13 82.14 82.14.1 82.14.2	Ideal Predicates Operations on Elements of Ideals Changing Coefficient Ring Finitely Presented Algebras Creation of FP-Algebras Operations on FP-Algebras Finite Dimensional FP-Algebras Vector Enumeration Finitely Presented Modules S-algebras	2483 2484 2485 2485 2485 2485 2485 2485 2492 2492 2492 2492
82.8.1 82.8.2 82.8.3 82.9 82.10 82.11 82.12 82.13 82.14 82.14.1 82.14.2 82.14.3 82.14.4	Ideal Predicates Operations on Elements of Ideals Changing Coefficient Ring Finitely Presented Algebras Creation of FP-Algebras Operations on FP-Algebras Finite Dimensional FP-Algebras Vector Enumeration Finitely Presented Modules S-algebras Finitely Presented Algebras	2483 2484 2485 2485 2485 2485 2485 2485 2485
82.8.2 82.8.3 82.9 82.10 82.11 82.12 82.13 82.14 82.14.1 82.14.2	Ideal Predicates Operations on Elements of Ideals Changing Coefficient Ring Finitely Presented Algebras Creation of FP-Algebras Operations on FP-Algebras Finite Dimensional FP-Algebras Vector Enumeration Finitely Presented Modules S-algebras	$\begin{array}{c} 2483\\ 2483\\ 2484\\ 2485\\ 2485\\ 2485\\ 2485\\ 2485\\ 2485\\ 2485\\ 2492\\ 2492\\ 2492\\ 2493\\ 2493\\ 2493\\ 2494\end{array}$

xcvii

82.14.7	Weights	2495
82.14.8	Setup Functions	2496
82.14.9	The Quotient Module Function	2496
82.14.10	Structuring Presentations	2496
82.14.11	Options and Controls	2497
82.14.12	Weights	2497
82.14.13	Limits	2498
82.14.14	Logging	2499
82.14.15	Miscellaneous	2500
82.15	Bibliography	2503
MATR	IX ALGEBRAS	2505
83.1	Introduction	2509
83.2	Construction of Matrix Algebras and their Elements	2509
83.2.1	Construction of the Complete Matrix Algebra	2509
83.2.2	Construction of a Matrix	2509
83.2.3	Constructing a General Matrix Algebra	2511
83.2.4	The Invariants of a Matrix Algebra	2512
83.3	Construction of Subalgebras, Ideals and Quotient Rings	2513
83.4	The Construction of Extensions and their Elements	2515
83.4.1	The Construction of Direct Sums and Tensor Products	2515
83.4.2	Construction of Direct Sums and Tensor Products of Elements	2517
83.5	Operations on Matrix Algebras	2518
83.6	Changing Rings	2518
83.7	Elementary Operations on Elements	2518
83.7.1	Arithmetic	2518
83.7.2	Predicates	2519
83.8	Elements of M_n as Homomorphisms	2523
83.9	Elementary Operations on Subalgebras and Ideals	2524
83.9.1	Bases	2524
83.9.2	Intersection of Subalgebras	2524
83.9.3	Membership and Equality	2524
83.10	Accessing and Modifying a Matrix	2525
83.10.1	Indexing	2525
83.10.2	Extracting and Inserting Blocks	2526
83.10.3	Joining Matrices	2526
83.10.4	Row and Column Operations	2527
83.11	Canonical Forms	2527
83.11.1	Canonical Forms for Matrices over Euclidean Domains	2527
83.11.2	Canonical Forms for Matrices over a Field	2529
83.12	Diagonalising Commutative Algebras over a Field	2532
83.13	Solutions of Systems of Linear Equations	2534
83.14	Presentations for Matrix Algebras	2535
83.14.1	Quotients and Idempotents	2535
83.14.2	Generators and Presentations	2538
83.14.3	Solving the Word Problem	2542
83.15	Bibliography	2544

84	GROUI	PALGEBRAS	. 2545
	84.1	Introduction	2547
	84.2	Construction of Group Algebras and their Elements	2547
	84.2.1	Construction of a Group Algebra	2547
	84.2.2	Construction of a Group Algebra Element	2549
	84.3	Construction of Subalgebras, Ideals and Quotient Algebras	2550
	84.4	Operations on Group Algebras and their Subalgebras	2552
	84.4.1	Operations on Group Algebras	2552
	84.4.2	Operations on Subalgebras of Group Algebras	2553
	84.5	Operations on Elements	2555
85	BASIC	ALGEBRAS	. 2559
	85.1	Introduction	2563
	85.2	Basic Algebras	2563
	85.2.1	Creation	2563
	85.2.2	Special Basic Algebras	2564
	85.2.3	Access Functions	2570
	85.2.4	Elementary Operations	2571
	85.2.5	Boolean Functions	2575
	85.3	Homomorphisms	2575
	85.4	Subalgebras and Quotient Algebras	2576
	85.4.1	Subalgebras and their Constructions	2576
	85.4.2	Ideals and their Construction	2577
	85.4.3	Quotient Algebras	2578
	85.5	Minimal Forms and Gradings	2579
	85.6	Automorphisms and Isomorphisms	2581
	85.7	Modules over Basic Algebras	2583
	85.7.1	Indecomposable Projective Modules	2583
	85.7.2	Creation	2584
	85.7.3	Access Functions	2585
	85.7.4	Predicates	2587
	85.7.5	Elementary Operations	2588
	85.8	Homomorphisms of Modules	2590
	85.8.1	Creation	2590
	85.8.2	Access Functions	2591
	85.8.3	Projective Covers and Resolutions	2592
	85.9	Duals and Injectives	2596
	85.9.1	Injective Modules	2597
	85.10	Cohomology	2600
	85.10.1	Ext-Algebras	2605
	85.11	Group Algebras of p-groups	2607
	85.11.1	Access Functions	2608
	85.11.2	Projective Resolutions	2608
	85.11.3	Cohomology Generators	2609
	85.11.4	Cohomology Rings	2610
	85.11.5	Restrictions and Inflations	2610
	85.12	A-infinity Algebra Structures on Group Cohomology	2614
	85.12.1	Homological Algebra Toolkit	2616
	85.13	Bibliography	2618

xcviii

86	QUAT	TERNION ALGEBRAS	. 2619
	86.1	Introduction	2621
	86.2	Creation of Quaternion Algebras	2622
	86.3	Creation of Quaternion Orders	2626
	86.3.1	Creation of Orders from Elements	2627
	86.3.2	Creation of Maximal Orders	2628
	86.3.3	Creation of Orders with given Discriminant	2630
	86.3.4	Creation of Orders with given Discriminant over the Integers	2631
	86.4	Elements of Quaternion Algebras	2632
	86.4.1	Creation of Elements	2632
	86.4.2	Arithmetic of Elements	2632
	86.5	Attributes of Quaternion Algebras	2634
	86.6	Hilbert Symbols and Embeddings	2636
	86.7	Predicates on Algebras	2639
	86.8	Recognition Functions	2640
	86.9	Attributes of Orders	2642
	86.10	Predicates of Orders	2643
	86.11	Operations with Orders	2644
	86.12	Ideal Theory of Orders	2645
	86.12.1	Creation and Access Functions	2645
	86.12.2	Enumeration of Ideal Classes	2648
	86.12.3	Operations on Ideals	2651
	86.13	Norm Spaces and Basis Reduction	2652
	$86.14 \\ 86.14.1$	Isomorphisms	$2654 \\ 2654$
	86.14.1 86.14.2	Isomorphisms of Algebras Isomorphisms of Orders	$2054 \\ 2655$
	86.14.2 86.14.3	Isomorphisms of Ideals	2055 2655
	86.14.4	Examples	2655 2657
	86.15	Units and Unit Groups	2659
	86.16	Bibliography	2661
87	ALGE	BRAS WITH INVOLUTION	. 2663
	87.1	Introduction	2665
	87.2	Algebras with Involution	2665
	87.2.1	Reflexive Forms	2666
	87.2.2	Systems of Reflexive Forms	2666
	87.2.3	Basic Attributes of *-Algebras	2667
	87.2.4	Adjoint Algebras	2668
	87.2.5	Group Algebras	2669
	87.2.6	Simple *-Algebras	2670
	87.3	Decompositions of *-Algebras	2671
	87.4	Recognition of *-Algebras	2672
	87.4.1	Recognition of Simple *-Algebras	2672
	87.4.2	Recognition of Arbitrary *-Algebras	2673
	87.5	Intersections of Classical Groups	2675
	87.6	Bibliography	2677
88	CLIFE	FORD ALGEBRAS	. 2679
	88.1	Introduction	2681
	88.2	Clifford Algebras and their Elements	2681
	88.2.1	Elements of a Clifford Algebra	2682
	88.3	Bibliography	2682

xcix

	VOL	UME	7:	CONTENTS
--	-----	-----	----	----------

XII REPRESENTATION THEORY

2683

89	MODU	ULES OVER AN ALGEBRA	2685
	89.1	Introduction	2687
	89.2	Modules over a Matrix Algebra	2688
	89.2.1	Construction of an A-Module	2688
	89.2.2	Accessing Module Information	2689
	89.2.3	Standard Constructions	2691
	89.2.4	Element Construction and Operations	2692
	89.2.5	Submodules	2694
	89.2.6	Quotient Modules	2697
	89.2.7	Structure of a Module	2698
	89.2.8	Decomposability and Complements	2704
	89.2.9	Lattice of Submodules	2706
	89.2.10	Homomorphisms	2710
	89.3	Modules over a General Algebra	2716
	89.3.1	Introduction	2716
	89.3.2	Construction of Algebra Modules	2716
	89.3.3	The Action of an Algebra Element	2717
	89.3.4	Related Structures of an Algebra Module	2717
	89.3.5	Properties of an Algebra Module	2718
	89.3.6	Creation of Algebra Modules from other Algebra Modules	2718
90	K[G]-1	MODULES AND GROUP REPRESENTATIONS	2721
	90.1	Introduction	2723
	90.2	Construction of $K[G]$ -Modules	2723
	90.2.1	General $K[G]$ -Modules	2723
	90.2.2	Natural $K[G]$ -Modules	2725
	90.2.3	Action on an Elementary Abelian Section	2726
	90.2.4	Permutation Modules	2727
	90.2.5	Action on a Polynomial Ring	2729
	90.3	The Representation Afforded by a $K[G]$ -module	2730
	90.4	Standard Constructions	2732
	90.4.1	Changing the Coefficient Ring	2732
	90.4.2	Writing a Module over a Smaller Field	2733
	90.4.3	Direct Sum	2737
	90.4.4	Tensor Products of $K[G]$ -Modules	2737
	90.4.5	Induction and Restriction	2738
	90.4.6	The Fixed-point Space of a Module	2739
	90.4.7	Changing Basis	2739
	90.5	The Construction of all Irreducible Modules	2740
	90.5.1	Generic Functions for Finding Irreducible Modules	2740
	90.5.2	The Burnside Algorithm	2743
	90.5.3	The Schur Algorithm for Soluble Groups	2744
	90.5.4	The Rational Algorithm	2747
	90.6	Extensions of Modules	2750
	90.7	The Construction of Projective Indecomposable Modules	2751

с

91	CHAR	RACTERS OF FINITE GROUPS	2757
	91.1	Creation Functions	2759
	91.1.1	Structure Creation	2759
	91.1.2	Element Creation	2759
	91.1.3	The Table of Irreducible Characters	2760
	91.2	Character Ring Operations	2764
	91.2.1	Related Structures	2764
	91.3	Element Operations	2765
	91.3.1	Arithmetic	2765
	91.3.2	Predicates and Booleans	2765
	91.3.3	Accessing Class Functions	2766
	91.3.4	Conjugation of Class Functions	2767
	91.3.5	Functions Returning a Scalar	2767
	91.3.6	The Schur Index	2768
	91.3.7	Attribute	2771
	91.3.8	Induction, Restriction and Lifting	2771
	91.3.9	Symmetrization	2772
	91.3.10	Permutation Character	2773
	91.3.11	Composition and Decomposition	2773
	91.3.12	Finding Irreducibles	2773
	91.3.13	Brauer Characters	2776
	91.4	Bibliography	2778
92	REPR	ESENTATIONS OF SYMMETRIC GROUPS	2779
	92.1	Introduction	2781
	92.2	Representations of the Symmetric Group	2781
	92.2.1	Integral Representations	2781
	92.2.2	The Seminormal and Orthogonal Representations	2782
	92.3	Characters of the Symmetric Group	2783
	92.3.1	Single Values	2783
	92.3.2	Irreducible Characters	2783
	92.3.3	Character Table	2783
	92.4	Representations of the Alternating Group	2783
	92.5	Characters of the Alternating Group	2784
	92.5.1	Single Values	2784
	92.5.2	Irreducible Characters	2784
	92.5.3	Character Table	2784
	92.6	Bibliography	2785
93	MOD	P GALOIS REPRESENTATIONS	2787
	93.1	Introduction	2789
	93.1.1	Motivation	2789
	93.1.1 93.1.2	Definitions	2789
	93.1.2 93.1.3	Classification of φ -modules	2789
	93.1.3 93.1.4	Connection with Galois Representations	2790 2790
	93.2	φ -modules and Galois Representations in Magma	2790
	93.2 93.2.1	φ -modules and Galois Representations in Magma φ -modules	$2790 \\ 2791$
	93.2.1 93.2.2	φ -modules Semisimple Galois Representations	$2791 \\ 2792$
	93.3	Examples	2793

XIII LIE THEORY

94	INTR	ODUCTION TO LIE THEORY	. 2797
	94.1	Descriptions of Coxeter Groups	2799
	94.2	Root Systems and Root Data	2800
	94.3	Coxeter and Reflection Groups	2800
	94.4	Lie Algebras and Groups of Lie Type	2801
	94.5	Highest Weight Representations	2801
	94.6	Universal Enveloping Algebras and Quantum Groups	2801
	94.7	Bibliography	2802
95	COXI	ETER SYSTEMS	. 2803
	95.1	Introduction	2805
	95.2	Coxeter Matrices	2805
	95.3	Coxeter Graphs	2807
	95.4	Cartan Matrices	2809
	95.5	Dynkin Digraphs	2812
	95.6	Finite and Affine Coxeter Groups	2814
	95.7	Hyperbolic Groups	2822
	95.8	Related Structures	2823
	95.9	Bibliography	2825
96	ROOT	Γ SYSTEMS	. 2827
	96.1	Introduction	2829
	96.1.1	Reflections	2829
	96.1.2	Definition of a Root System	2829
	96.1.3	Simple and Positive Roots	2830
	96.1.4	The Coxeter Group	2830
	96.1.5	Nonreduced Root Systems	2831
	96.2	Constructing Root Systems	2831
	96.3	Operators on Root Systems	2835
	96.4	Properties of Root Systems	2837
	96.5	Roots and Coroots	2838
	96.5.1	Accessing Roots and Coroots	2838
	96.5.2	Reflections	2841
	96.5.3	Operations and Properties for Roots and Coroot Indices	2843
	96.6	Building Root Systems	2846
	96.7	Related Structures	2848
	96.8	Bibliography	2848

ciii

97	ROOT	Γ DATA	2849
	97.1	Introduction	2853
	97.1.1	Reflections	2853
	97.1.2	Definition of a Split Root Datum	2854
	97.1.3	Simple and Positive Roots	2854
	97.1.4	The Coxeter Group	2854
	97.1.5	Nonreduced Root Data	2855
	97.1.6	Isogeny of Split Reduced Root Data	2855
	97.1.7	Extended Root Data	2856
	97.2	Constructing Root Data	2856
	97.2.1	Constructing Sparse Root Data	2862
	97.3	Operations on Root Data	2864
	97.4	Properties of Root Data	2871
	97.5	Roots, Coroots and Weights	2874
	97.5.1	Accessing Roots and Coroots	2874
	97.5.2	Reflections	2881
	97.5.3	Operations and Properties for Root and Coroot Indices	2883
	97.5.4	Weights	2886
	97.6	Building Root Data	2888
	97.7	Morphisms of Root Data	2894
	97.8	Constants Associated with Root Data	2896
	97.9	Related Structures	2899
	97.10	Bibliography	2900
98	COXI	ETER GROUPS	2901
	98.1	Introduction	2903
	98.1.1	The Normal Form for Words	2904
	98.2	Constructing Coxeter Groups	2904
	98.3	Converting Between Types of Coxeter Group	2907
	98.4	Operations on Coxeter Groups	2910
	98.5	Properties of Coxeter Groups	2910 2915
	98.5 98.6		
		Operations on Elements	2916
	98.7 08.7 1	Roots, Coroots and Reflections	$2918 \\ 2918$
	98.7.1	Accessing Roots and Coroots	
	98.7.2 08.7.2	Operations and Properties for Root and Coroot Indices Weights	$2921 \\ 2924$
	98.7.3	Weights	
	98.8	Reflections	2925
	98.9	Reflection Subgroups	2927
	98.10	Root Actions	2930
	98.11	Standard Action	2932
	98.12	Braid Groups	2932
	98.13	W-graphs	2933
	98.14	Related Structures	2938
	98.15	Bibliography	2939

99	REFL	ECTION GROUPS	2941
	99.1	Introduction	2943
	99.2	Construction of Pseudo-reflections	2943
	99.2.1	Pseudo-reflections Preserving Reflexive Forms	2946
	99.3	Construction of Reflection Groups	2948
	99.4	Construction of Real Reflection Groups	2948
	99.5	Construction of Finite Complex Reflection Groups	2951
	99.6	Operations on Reflection Groups	2959
	99.7	Properties of Reflection Groups	2963
	99.8	Roots, Coroots and Reflections	2965
	99.8.1	Accessing Roots and Coroots	2965
	99.8.2	Reflections	2968
	99.8.3	Weights	2969
	99.9	Related Structures	2971
	99.10	Bibliography	2971
100	LIE A	LGEBRAS	2973
	100.1	Introduction	2977
	100.1.1	Guide for the Reader	2977
	100.2	Constructors for Lie Algebras	2978
	100.3	Finitely Presented Lie Algebras	2981
	100.3.1	Construction of the Free Lie Algebra	2982
	100.3.2	Properties of the Free Lie Algebra	2982
	100.3.3	Operations on Elements of the Free Lie Algebra	2983
	$100.3.4 \\ 100.3.5$	Construction of a Finitely-Presented Lie Algebra	$2984 \\ 2988$
		Homomorphisms of the Free Lie Algebra	2988 2989
	$100.4 \\ 100.4.1$	Lie Algebras Generated by Extremal Elements Constructing Lie Algebras Generated by Extremal Elements	2989 2990
	100.4.1 100.4.2	Properties of Lie Algebras Generated by Extremal Elements	$2990 \\ 2991$
	100.4.2 100.4.3	Instances of Lie Algebras Generated by Extremal Elements	2995
	100.4.4	Studying the Parameter Space	2997
	100.5	Families of Lie Algebras	3000
	100.5.1	Almost Reductive Lie Algebras	3000
	100.5.2	Cartan-Type Lie Algebras	3003
	100.5.3	Melikian Lie Algebras	3008
	100.6	Construction of Elements	3009
	100.6.1	Construction of Elements of Structure Constant Algebras	3010
	100.6.2	Construction of Matrix Elements	3010
	100.7	Construction of Subalgebras, Ideals and Quotients	3011
	100.8	Operations on Lie Algebras	3013
	100.8.1	Basic Invariants	3016
	100.8.2	Changing Base Rings	3017
	100.8.3	Bases	3017
	100.8.4	Operations for Semisimple and Reductive Lie Algebras	3018
	100.9	Operations on Subalgebras and Ideals	3025
	100.9.1	Standard Ideals and Subalgebras	3026
	100.9.2 100.0.3	Cartan and Toral Subalgebras Standard Series	$3027 \\ 3029$
	$100.9.3 \\ 100.9.4$	Standard Series The Lie Algebra of Derivations	$3029 \\ 3031$
	100.9.4 100.10	Properties of Lie Algebras and Ideals	3032
	100.10 100.11	Operations on Elements	3032 3034
	100.11 100.11.1	Indexing	3034 3035
	100.11.1 100.12	The Natural Module	3035
	100.12 100.13	Operations for Matrix Lie Algebras	3037
	100.19	Operations for matrix the Algebras	<i>2037</i>

 civ

	100 1 1		
	100.14	Homomorphisms	3037
	100.15	Automorphisms of Classical-type Reductive Algebras	3038
	100.16	Restrictable Lie Algebras	3039
	$100.17 \\ 100.17.1$	Universal Enveloping Algebras Background	$3041 \\ 3041$
	100.17.1 100.17.2	Construction of Universal Enveloping Algebras	$3041 \\ 3042$
	100.17.2 100.17.3	Related Structures	3042 3043
	100.17.4	Elements of Universal Enveloping Algebras	3043
	100.18	Solvable and Nilpotent Lie Algebras Classification	3046
	100.18.1	The List of Solvable Lie Algebras	3046
	100.18.2	Comments on the Classification over Finite Fields	3047
	100.18.3	The List of Nilpotent Lie Algebras	3048
	100.18.4	Intrinsics for Working with the Classifications	3049
	100.19	Semisimple Subalgebras of Simple Lie Algebras	3053
	100.20	Nilpotent Orbits in Simple Lie Algebras	3055
	100.21	Bibliography	3059
101	KAC-I	MOODY LIE ALGEBRAS	. 3061
	101.1	Introduction	3063
	101.1 101.2	Generalized Cartan Matrices	3064
	101.2 101.3	Affine Kac-Moody Lie Algebras	3065
	101.3.1	Constructing Affine Kac-Moody Lie Algebras	3065
	101.3.2	Properties of Affine Kac-Moody Lie Algebras	3066
	101.3.3	Constructing Elements of Affine Kac-Moody Lie Algebras	3067
	101.3.4	Properties of Elements of Affine Kac-Moody Lie Algebras	3068
	101.4	Bibliography	3069
102	QUAN	TUM GROUPS	. 3071
	102.1	Introduction	3073
	102.2	Background	3073
	102.2.1	Gaussian Binomials	3073
	102.2.2	Quantized Enveloping Algebras	3074
	102.2.3	Representations of $U_q(L)$	3075
	102.2.4	PBW-type Bases	3075
	102.2.5	The Z -form of $U_q(L)$	3076
	102.2.6	The Canonical Basis	3077
	102.2.7	The Path Model	3078
	102.3	Gauss Numbers	3079
	102.4	Construction	3080
	102.5	Related Structures	3081
	102.6	Operations on Elements	3082
	102.7	Representations	3084
	102.8	Hopf Algebra Structure	3087
	102.9	Automorphisms	3088
	102.10	Kashiwara Operators	3090
	102.11	The Path Model	3090
	102.12	Elements of the Canonical Basis	3093
	102.13	Homomorphisms to the Universal Enveloping Algebra	3095
	102.14	Bibliography	3096

cv

103	GROU	PS OF LIE TYPE	3097
	103.1	Introduction	3101
	103.1.1	The Steinberg Presentation	3101
	103.1.2	Bruhat Normalisation	3101
	103.1.3	Twisted Groups of Lie type	3102
	103.2	Constructing Groups of Lie Type	3102
	103.2.1	Split Groups	3102
	103.2.2	Galois Cohomology	3105
	103.2.3	Twisted Groups	3109
	103.3	Operations on Groups of Lie Type	3110
	103.4	Properties of Groups of Lie Type	3114
	103.5	Constructing Elements	3115
	103.6	Operations on Elements	3117
	103.6.1	Basic Operations	3117
	103.6.2	Decompositions	3119
	103.6.3	Conjugacy and Cohomology	3119
	103.7	Properties of Elements	3120
	103.8	Roots, Coroots and Weights	3120
	103.8.1	Accessing Roots and Coroots	3121
	103.8.2	Reflections	3123
	103.8.3	Operations and Properties for Root and Coroot Indices	3124
	103.8.4	Weights	3125
	103.9	Building Groups of Lie Type	3125
	103.10	Automorphisms	3127
	103.10.1	Basic Functionality	3127
	$103.10.2 \\ 103.10.3$	Constructing Special Automorphisms Operations and Properties of Automorphisms	$3128 \\ 3129$
	103.10.3 103.11	Algebraic Homomorphisms	3130
	103.11 103.12	Twisted Tori	3130
	103.12 103.13		3130
		Sylow Subgroups	
	103.14	Representations Biblic man has	3133
	103.15	Bibliography	3135
104	REPR	ESENTATIONS OF LIE GROUPS AND ALGEBRAS	3137
	104.1	Introduction	3139
	104.1.1	Highest Weight Modules	3139
	104.1.2	Toral Elements	3140
	104.1.3	Other Highest Weight Representations	3140
	104.2	Constructing Weight Multisets	3141
	104.3	Constructing Representations	3142
	104.3.1	Lie Algebras	3142
	104.3.2	Groups of Lie Type	3146
	104.4	Operations on Weight Multisets	3148
	104.4.1	Basic Operations	3148
	104.4.2	Conversion Functions	3151
	104.4.3	Calculating with Representations	3152
	104.5	Operations on Representations	3162
	104.5.1	Lie Algebras	3162
	104.5.2	Groups of Lie Type	3166
	104.6	Other Functions for Representation Decompositions	3167
	104.6.1	Operations Related to the Symmetric Group	3171
	104.6.2	FusionRules	3172
	104.7	Subgroups of Small Rank	3173
	104.8	Subalgebras of $su(d)$	3174
	104.9	Bibliography	3176

 cvi

XIV COMMUTATIVE ALGEBRA

3177

105	GRÖE	BNER BASES	3179
	105.1	Introduction	3181
	105.2	Representation and Monomial Orders	3181
	105.2.1	Lexicographical: lex	3182
	105.2.2	Graded Lexicographical: glex	3182
	105.2.3	Graded Reverse Lexicographical: grevlex	3182
	105.2.4	Graded Reverse Lexicographical (Weighted): grevlexw	3183
	105.2.5	Elimination (k): elim	3183
	105.2.6	Elimination List: elim	3183
	105.2.7	Inverse Block: invblock	3184
	105.2.8	Univariate: univ	3184
	105.2.9	Weight: weight	3184
	105.3	Polynomial Rings and Ideals	3185
	105.3.1	Creation of Polynomial Rings and Accessing their Monomial Orders	3185
	105.3.2	Creation of Graded Polynomial Rings	3187
	105.3.3	Element Operations Using the Grading	3188
	105.3.4	Creation of Ideals and Accessing their Bases	3191
	105.4	Gröbner Bases	3192
	105.4.1	Gröbner Bases over Fields	3192
	105.4.2	Gröbner Bases over Euclidean Rings	3192
	105.4.3	Construction of Gröbner Bases	3194
	105.4.4	Related Functions	3199
	105.4.5	Gröbner Bases of Boolean Polynomial Rings	3201
	105.4.6	Verbosity	3202
	105.4.7	Degree- <i>d</i> Gröbner Bases	3214
	105.5	Changing Coefficient Ring	3216
	105.6	Changing Monomial Order	3216
	105.7	Hilbert-driven Gröbner Basis Construction	3218
	105.8	SAT solver	3220
	105.9	Bibliography	3221
106	POLY	NOMIAL RING IDEAL OPERATIONS	3223
	106.1	Introduction	3225
	106.2	Creation of Polynomial Rings and their Ideals	3226
	106.3	First Operations on Ideals	3226
	106.3.1	Simple Ideal Constructions	3226
	106.3.2	Basic Commutative Algebra Operations	3226
	106.3.3	Ideal Predicates	3229
	106.3.4	Element Operations with Ideals	3231
	106.4	Computation of Varieties	3233
	106.5	Multiplicities	3235
	106.6	Elimination	3236
	106.6.1	Construction of Elimination Ideals	3236
	106.6.2	Univariate Elimination Ideal Generators	3238
	106.6.3	Relation Ideals	3241

cvii

	106.7	Variable Extension of Ideals	3242
	106.8	Homogenization of Ideals	3243
	106.9	Extension and Contraction of Ideals	3243
	106.10	Dimension of Ideals	3244
	100.10 106.11	Radical and Decomposition of Ideals	3244 3245
	100.11 106.11.1	Radical	3245 3245
	106.11.2	Primary Decomposition	3246
	106.11.3	Triangular Decomposition	3252
	106.11.4	Equidimensional Decomposition	3254
	106.12	Normalisation and Noether Normalisation	3255
	106.12.1	Noether Normalisation	3255
	106.12.2	Normalisation	3256
	106.13	Hilbert Series and Hilbert Polynomial	3259
	106.14	Syzygies	3262
	106.15	Maps between Rings	3263
	106.16	Symmetric Polynomials	3264
	106.17	Functions for Polynomial Algebra and Module Generators	3265
	106.18	Bibliography	3268
107	LOCA	L POLYNOMIAL RINGS	3271
	107.1	Introduction	3273
	107.2	Elements and Local Monomial Orders	3273
	107.2.1	Local Lexicographical: 11ex	3274
	107.2.2	Local Graded Lexicographical: lglex	3274
	107.2.3	Local Graded Reverse Lexicographical: lgrevlex	3274
	107.3	Local Polynomial Rings and Ideals	3275
	107.3.1	Creation of Local Polynomial Rings and Accessing their Monomial Orde	ers 3275
	107.3.2	Creation of Ideals and Accessing their Bases	3276
	107.4	Standard Bases	3277
	107.4.1	Construction of Standard Bases	3278
	107.5	Operations on Ideals	3280
	107.5.1	Basic Operations	3280
	107.5.2	Ideal Predicates	3281
	107.5.3	Operations on Elements of Ideals	3283
	107.6	Changing Coefficient Ring	3283
	107.7	Changing Monomial Order	3284
	107.8	Dimension of Ideals	3284
	107.9	Bibliography	3284
108	AFFIN	NE ALGEBRAS	3285
	108.1	Introduction	3287
	108.2	Creation of Affine Algebras	3287
	108.3	Operations on Affine Algebras	3289
	108.4	Maps between Affine Algebras	3292
	108.5	Finite Dimensional Affine Algebras	3292
	108.6	Affine Algebras which are Fields	3294
	108.7	Rings and Fields of Fractions of Affine Algebras	3296

109	MODU	ULES OVER MULTIVARIATE RINGS	3301
	109.1	Introduction	3303
	109.2	Module Basics: Embedded and Reduced Modules	3303
	109.3	Monomial Orders	3305
	109.3.1	Term Over Position: TOP	3306
	109.3.2	Term Over Position (Weighted): TOPW	3306
	109.3.3	Position Over Term: POT	3306
	109.3.4	Position Over Term (Permutation): POTPERM	3307
	109.3.5	Block TOP-TOP: TOPTOP	3307
	109.3.6	Block TOP-POT: TOPPOT	3307
	109.4	Basic Creation and Access	3307
	109.4.1	Creation of Ambient Embedded Modules	3307
	109.4.2	Creation of Reduced Modules	3308
	$109.4.3 \\ 109.4.4$	Localization Basic Invariants	$3308 \\ 3309$
	109.4.4 109.4.5	Creation of Module Elements	3310
	109.4.5 109.4.6	Element Operations	3311
	109.4.0 109.5	The Homomorphism Type	3315
	109.5 109.6	Submodules and Quotient Modules	3318
	109.0 109.6.1	Creation	3318
	109.6.2	Module Bases	3319
	109.0.2 109.7	Basic Module Constructions	3322
	109.8	Predicates	3323
	109.8 109.9	Module Operations	3324
	109.3 109.10	Changing Ring	3324 3326
	109.10 109.11	Hilbert Series	3326
	109.11 109.12	Free Resolutions	3328
	109.12 109.12.1	Constructing Free Resolutions	3328
	109.12.1 109.12.2	Betti Numbers and Related Invariants	3332
	109.12.2 109.13	The Hom Module and Ext	3342
	109.13 109.14	Tensor Products and Tor	3345
	109.14 109.15	Cohomology Of Coherent Sheaves	3347
	109.16 109.16	Bibliography	3351
110	INVAF	RIANT THEORY	3353
	110.1	Introduction	3355
	110.2	Invariant Rings of Finite Groups	3356
	110.2.1	Creation	3356
	110.2.2	Access	3356
	110.3	Group Actions on Polynomials	3357
	110.4	Permutation Group Actions on Polynomials	3357
	110.5	Matrix Group Actions on Polynomials	3358
	110.6	Algebraic Group Actions on Polynomials	3359
	110.7	Verbosity	3359
	110.8	Construction of Invariants of Specified Degree	3359
	110.9	Construction of G-modules	3363
	110.10	Molien Series	3364
	110.11	Primary Invariants	3365
	110.12	Secondary Invariants	3366
	110.13	Fundamental Invariants	3368
	110.14	The Module of an Invariant Ring	3373
	110.15	The Algebra of an Invariant Ring and Algebraic Relations	3374
	110.16	Properties of Invariant Rings	3378
	-	- 0	•

 cix

110.17	Steenrod Operations	3379
110.18	Minimalization and Homogeneous Module Testing	3380
10.19	Attributes of Invariant Rings and Fields	3383
10.20	Invariant Rings of Linear Algebraic Groups	3385
10.20.1	Creation	3386
10.20.2	Access	3386
10.20.3	Functions	3386
10.21	Invariant Fields	3392
10.21.1	Creation	3392
110.21.2	Access	3393
10.21.3	Functions for Invariant Fields	3393
110.22	Invariants of the Symmetric Group	3396
110.23	Bibliography	3398
DIFFE	CRENTIAL RINGS	
111.1	Introduction	3403
111.2	Differential Rings and Fields	3404
11.2.1	Creation	3404
11.2.2	Creation of Differential Ring Elements	3406
111.3	Structure Operations on Differential Rings	3407
11.3.1	Category and Parent	3407
11.3.2	Related Structures	3407
11.3.3	Derivation and Differential	3409
11.3.4	Numerical Invariants	3409
11.3.5	Predicates and Booleans	3410
11.3.6	Precision	3411
11.4	Element Operations on Differential Ring Elements	3413
11.4.1	Category and Parent	3413
11.4.2	Arithmetic	3413
11.4.3	Predicates and Booleans	3414
11.4.4	Coefficients and Terms	3415
11.4.5	Conjugates, Norm and Trace	3416
11.4.6	Derivatives and Differentials	3417
111.5	Changing Related Structures	3417
11.6	Ring and Field Extensions	3421
11.7	Ideals and Quotient Rings	3426
.11.7.1	Defining Ideals and Quotient Rings	3426
11.7.2	Boolean Operations on Ideals	3427
111.8	Wronskian Matrix	3427
111.9	Differential Operator Rings	3428
111.9.1	Creation	3428
111.9.2	Creation of Differential Operators	3429
11.10	Structure Operations on Differential Operator Rings	3430
11.10.1	Category and Parent	3430
11.10.2	Related Structures	3430
11.10.3	Derivation and Differential	3430
111.10.4	Predicates and Booleans	3431
11.10.5	Precision	3432
111.11	Element Operations on Differential Operators	3433
11.11.1	Category and Parent	3433
111.11.2	Arithmetic	3433
111.11.3	Predicates and Booleans	3434
111.11.4	Coefficients and Terms	3434
111.11.5	Order and Degree Related Differential Operators	$3435 \\ 3436$
111.11.6	nerated Differential Operators	3430

111.11.7	Application of Operators	3437
111.12	Related Maps	3438
111.13	Changing Related Structures	3439
111.14	Euclidean Algorithms, GCDs and LCMs	3443
111.14.1	Euclidean Right and Left Division	3443
111.14.2	Greatest Common Right and Left Divisors	3444
111.14.3	Least Common Left Multiples	3445
111.15	Related Matrices	3446
111.16	Singular Places and Indicial Polynomials	3447
111.16.1	Singular Places	3447
111.16.2	Indicial Polynomials	3449
111.17	Rational Solutions	3450
111.18	Newton Polygons	3451
111.19	Symmetric Powers	3453
111.20	Differential Operators of Algebraic Functions	3454
111.21	Factorisation of Operators over Differential Laurent Series Rings	3454
111.21.1	Slope Valuation of an Operator	3455
111.21.2	Coprime Index 1 and LCLM Factorisation	3456
111.21.3	Right Hand Factors of Operators	3461
111.22	Bibliography	3466

XV ALGEBRAIC GEOMETRY

112	SCHEMES		
	112.1	Introduction and First Examples	3475
	112.1.1	Ambient Spaces	3476
	112.1.2	Schemes	3477
	112.1.3	Rational Points	3478
	112.1.4	Projective Closure	3480
	112.1.5	Maps	3481
	112.1.6	Linear Systems	3483
	112.1.7	Aside: Types of Schemes	3484
	112.2	Ambients	3485
	112.2.1	Affine and Projective Spaces	3485
	112.2.2	Scrolls and Products	3487
	112.2.3	Functions and Homogeneity on Ambient Spaces	3490
	112.2.4	Prelude to Points	3491
	112.3	Constructing Schemes	3494
	112.4	Different Types of Scheme	3498
	112.5	Basic Attributes of Schemes	3500
	112.5.1	Functions of the Ambient Space	3500
	112.5.2	Functions of the Equations	3501
	112.6	Function Fields and their Elements	3503
	112.7	Rational Points and Point Sets	3506
	112.8	Zero-dimensional Schemes	3510
	112.9	Local Geometry of Schemes	3512
	112.9.1	Point Conditions	3512
	112.9.2	Point Computations	3513
	112.9.3	Analytically Hypersurface Singularities	3513
	112.10	Global Geometry of Schemes	3516
	112.11	Base Change for Schemes	3519
	112.12	Affine Patches and Projective Closure	3521
	112.13	Arithmetic Properties of Schemes and Points	3524
	112.13.1	Height	3524
	112.13.2	Restriction of Scalars	3524
	112.13.3	Local Solubility	3525
	112.13.4	Searching for Points	3528
	112.14	Maps between Schemes	3529
	112.14.1	Creation of Maps	3530
	112.14.2	Basic Attributes	3540
	112.14.3	Maps and Points	3542
	112.14.4	Maps and Schemes	3544
	$112.14.5 \\ 112.14.6$	Maps and Closure	3547
		Automorphisms Scheme Creek Mana	3549 2550
	112.14.7	Scheme Graph Maps	3559
	112.15	Tangent and Secant Varieties and Isomorphic Projections	3563
	$112.15.1 \\ 112.15.2$	Tangent Varieties Secant Varieties	$3563 \\ 3564$
	112.15.2 112.15.3	Isomorphic Projection to Subspaces	$3564 \\ 3565$
	112.15.3 112.16	Linear Systems	3567
	112.16 112.16.1	Creation of Linear Systems	3568
	112.10.1 112.16.2	Basic Algebra of Linear Systems	3508 3574
	112.10.2 112.16.3	Linear Systems and Maps	$3574 \\ 3579$
	112.10.3 112.17	Divisors	3579
	112.17 112.17.1	Divisors Groups	3580
	112.17.1 112.17.2	Creation Of Divisors	3580
	114.11.4		0000

cxii

113

114

$112.17.3 \\ 112.17.4$	Ideals and Factorisations Basic Divisor Predicates	$3582 \\ 3583$
112.17.4 112.17.5	Arithmetic of Divisors	3583 3584
112.17.6 112.17.6	Further Divisor Properties	$3584 \\ 3584$
112.17.0 112.17.7	Riemann-Roch Spaces	3586
112.18	Isolated Points on Schemes	3587
112.19	Advanced Examples	3595
112.19 112.19.1	A Pair of Twisted Cubics	3595
112.19.1 112.19.2	Curves in Space	3598
112.20	Bibliography	3599
112.20	Diolography	0000
COHE	CRENT SHEAVES 3601
113.1	Introduction	3603
113.2	Creation Functions	3604
113.3	Accessor Functions	3607
113.4	Basic Constructions	3609
113.5	Sheaf Homomorphisms	3611
113.6	Divisor Maps and Riemann-Roch Spaces	3612
113.7	Predicates	3616
113.8	Miscellaneous	3619
113.9	Examples	3620
113.10	Bibliography	3631
ALGE	BRAIC CURVES	. 3633
114.1	First Examples	3639
114.1.1	Ambients	3639
114.1.2	Curves	3640
114.1.3	Projective Closure	3641
114.1.4	Points	3642
114.1.5	Choosing Coordinates	3643
114.1.6	Function Fields and Divisors	3644
114.2	Ambient Spaces	3647
114.3	Algebraic Curves	3649
114.3.1	Creation	3649
114.3.2	Base Change	3651
114.3.3	Basic Attributes	3653
114.3.4	Basic Invariants	3655
114.3.5	Random Curves	3655
114.3.6	Ordinary Plane Curves	3657
114.4	Local Geometry	3661
114.4.1	Creation of Points on Curves	3661
114.4.2	Operations at a Point	3662
114.4.3	Singularity Analysis	$3663 \\ 3664$
$114.4.4 \\ 114.4.5$	Resolution of Singularities Log Canonical Thresholds	3666
114.4.5 114.4.6	Local Intersection Theory	3669
114.5	Global Geometry	3671
114.5 114.5.1	Genus and Singularities	3671
114.5.2	Projective Closure and Affine Patches	3673
114.5.2 114.5.3	Special Forms of Curves	3674
114.6	Maps and Curves	3676
114.6.1	Elementary Maps	3676
114.6.2	Maps Induced by Morphisms	3678
114.7	Automorphism Groups of Curves	3680

cxiii

114.7.1	Group Creation Functions	3680
114.7.2	Automorphisms	3681
114.7.3	Automorphism Group Operations	3683
114.7.4	Pullbacks and Pushforwards	3684
114.7.5	Quotients of Curves	3687
114.8	Function Fields	3691
114.8.1	Function Fields	3692
114.8.2	Representations of the Function Field	3697
114.8.3	Differentials	3697
114.9	Divisors	3701
114.9.1	Places	3702
114.9.2	Divisor Group	3707
114.9.3	Creation of Divisors	3707
114.9.4	Arithmetic of Divisors	3711
114.9.5	Other Operations on Divisors	3713
114.10	Linear Equivalence of Divisors	3714
114.10.1	Linear Equivalence and Class Group	3714
114.10.2	Riemann–Roch Spaces	3716
114.10.3	Index Calculus	3719
114.11	Advanced Examples	3722
114.11.1	Trigonal Curves	3722
114.11.2	Algebraic Geometric Codes	3724
114.12	Curves over Global Fields	3726
114.12.1	Finding Rational Points	3726
114.12.2	Regular Models of Arithmetic Surfaces	3727
114.12.3	Minimization and Reduction	3728
114.13	Minimal Degree Functions and Plane Models	3730
114.13.1	General Functions and Clifford Index One	3730
114.13.2	Small Genus Functions	3732
114.13.3	Small Genus Plane Models	3736
114.14	Bibliography	3739
RESO	LUTION GRAPHS AND SPLICE DIAGRAMS	3741
115.1	Introduction	3743
115.2	Resolution Graphs	3743
115.2.1	Graphs, Vertices and Printing	3744
115.2.2	Creation from Curve Singularities	3746
115.2.3	Creation from Pencils	3748
115.2.4	Creation by Hand	3749
115.2.5	Modifying Resolution Graphs	3750
115.2.6	Numerical Data Associated to a Graph	3751
115.3	Splice Diagrams	3752
115.3.1	Creation of Splice Diagrams	3752
115.3.2	Numerical Functions of Splice Diagrams	3754
115.4	Translation Between Graphs	3755
115.4.1	Splice Diagrams from Resolution Graphs	3755
115.5	Bibliography	3756

116	ALGE	BRAIC SURFACES	3757
	116.1	Introduction	3759
	116.2	General Surfaces	3759
	116.2.1	Introduction	3760
	116.2.2	Creation Functions	3760
	116.2.3	Invariants	3763
	116.2.4	Singularity Properties	3766
	116.2.5	Kodaira-Enriques Classification	3769
	116.2.6	Minimal Models	3770
	116.2.7	Special Surfaces in Projective 4-space	3780
	116.3	Surfaces in \mathbf{P}^3	3782
	116.3.1	Introduction	3782
	116.3.2	Embedded Formal Desingularization of Curves	3782
	116.3.3	Formal Desingularization of Surfaces	3786
	116.3.4	Adjoint Systems and Birational Invariants	3790
	116.3.5	Classification and Parameterization of Rational Surfaces	3792
	116.3.6	Reduction to Special Models	3793
	116.3.7	Parametrization of Rational Surfaces	3797
	116.3.8	Parametrization of Special Surfaces	3801
	116.4	Del Pezzo Surfaces	3804
	116.4.1	Introduction Creation of Congred Del Derroe	3804
	$116.4.2 \\ 116.4.3$	Creation of General Del Pezzos Parametrization of Del Pezzo Surfaces	$3804 \\ 3805$
	116.4.3 116.4.4	Minimization and Reduction of Surfaces	3803 3814
	116.4.4 116.4.5	Cubic Surfaces over Finite Fields	3814
	116.4.6	Construction of Cubic Surfaces	3818
	116.4.7	Invariant Theory of Cubic Surfaces	3818
	116.4.8	The Pentahedron of a Cubic Surface	3822
	116.5	Bibliography	3823
117	HILBI	ERT SERIES OF POLARISED VARIETIES	3825
	117.1	Introduction	3827
	117.1.1	Key Warning and Disclaimer	3827
	117.1.2	Overview of the Chapter	3829
	117.2	Hilbert Series and Graded Rings	3830
	117.2.1	Hilbert Series and Hilbert Polynomials	3830
	117.2.2	Interpreting the Hilbert Numerator	3832
	117.3	Baskets of Singularities	3835
	117.3.1	Point Singularities	3836
	117.3.2	Curve Singularities	3838
	117.3.3	Baskets of Singularities	3840
	117.3.4	Curves and Dissident Points	3842
	117.4	Generic Polarised Varieties	3842
	117.4.1	Accessing the Data	3843
	117.4.2	Generic Creation, Checking, Changing	3844
	117.5	Subcanonical Curves	3845
	117.5.1	Creation of Subcanonical Curves	3845
	117.5.2	Catalogue of Subcanonical Curves	3846
	117.6	K3 Surfaces	3846
	117.6.1	Creating and Comparing K3 Surfaces	3846
	117.6.2	Accessing the Key Data	3847
	117.6.3	Modifying K3 Surfaces	3847
	117.7	The K3 Database	3848
	117.7.1	Searching the K3 Database	3848
	117.7.2	Working with the K3 Database	3851

cxv

	$117.8 \\ 117.8.1 \\ 117.8.2 \\ 117.9 \\ 117.10 \\ 117.10.1 \\ 117.10.2 \\ 117.11$	Fano 3-folds Creation: $f = 1, 2$ or ≥ 3 A Preliminary Fano Database Calabi-Yau 3-folds Building Databases The K3 Database Making New Databases Bibliography	3852 3853 3854 3854 3855 3855 3855 3856 3857
118	TORIC	C VARIETIES	. 3859
	118.1	Introduction and First Examples	3863
	118.1.1	The Projective Plane as a Toric Variety	3863
	118.1.2	Resolution of a Nonprojective Toric Variety	3865
	118.1.3	The Cox Ring of a Toric Variety	3866
	118.2	Fans in Toric Lattices	3869
	118.2.1	Construction of Fans	3869
	118.2.2	Components of Fans	3872
	118.2.3	Properties of Fans	3874
	118.2.4	Maps of Fans	3875
	118.3	Geometrical Properties of Cones and Polyhedra	3876
	118.4	Toric Varieties	3878
	118.4.1	Constructors for Toric Varieties	3879
	118.4.2	Toric Varieties and Their Fans	3880
	118.4.3	Properties of Toric Varieties	3881
	118.4.4	Affine Patches on Toric Varieties	3882
	118.5	Cox Rings	3882
	118.5.1	The Cox Ring of a Toric Variety	3882
	118.5.2	Cox Rings in Their Own Right	3884
	118.5.3	Recovering a Toric Variety From a Cox Ring	3885
	118.6	Invariant Divisors and Riemann-Roch Spaces	3887
	118.6.1	Divisor Group	3888
	118.6.2	Constructing Invariant Divisors	3888
	118.6.3	Properties of Divisors	3890
	118.6.4	Linear Equivalence of Divisors	3893
	118.6.5	Riemann–Roch Spaces of Invariant Divisors	3893
	118.7	Maps of Toric Varieties	3896
	118.7.1	Maps from Lattice Maps	3896
	118.7.2	Properties of Toric Maps	3897
	118.8	The Geometry of Toric Varieties	3898
	118.8.1	Resolution of Singularities and Linear Systems	3898
	118.8.2	Mori Theory of Toric Varieties	3898
	118.8.3	Decomposition of Toric Morphisms	3903
	118.9	Schemes in Toric Varieties	3905
	118.9.1	Construction of Subschemes	3906
	118.10	Bibliography	3908
	110.10	Divitography	0300

XVI ARITHMETIC GEOMETRY

119

120

RATI	ONAL CURVES AND CONICS	. 3911
119.1	Introduction	3913
119.2	Rational Curves and Conics	3914
119.2.1	Rational Curve and Conic Creation	3914
119.2.2	Access Functions	3915
119.2.3	Rational Curve and Conic Examples	3916
119.3	Conics	3919
119.3.1	Elementary Invariants	3919
119.3.2	Alternative Defining Polynomials	3919
119.3.3	Alternative Models	3920
119.3.4	Other Functions on Conics	3920
119.4	Local-Global Correspondence	3921
119.4.1	Local Conditions for Conics	3921
119.4.2	Norm Residue Symbol	3921
119.5	Rational Points on Conics	3923
119.5.1	Finding Points	3923
119.5.2	Point Reduction	3925
119.6	Isomorphisms	3927
119.6.1	Isomorphisms with Standard Models	3927
119.7	Automorphisms	3931
119.7.1	Automorphisms of Rational Curves	3931
119.7.2	Automorphisms of Conics	3932
119.8	Bibliography	3934
	PTIC CURVES	. 3935
120.1	Introduction	3939
120.2	Creation Functions	3940
120.2.1	Creation of an Elliptic Curve	3940
120.2.2	Creation Predicates	3943
120.2.3	Changing the Base Ring	3944
120.2.4	Alternative Models	3945
120.2.5	Predicates on Curve Models	3946
120.2.6	Twists of Elliptic Curves	3947
120.3	Operations on Curves	3950
120.3.1	Elementary Invariants	3950
120.3.2	Associated Structures	3953
120.3.3	Predicates on Elliptic Curves	3953
120.4	Polynomials	3954
120.5	Subgroup Schemes	3955
120.5.1	Creation of Subgroup Schemes	3955
120.5.2	Associated Structures	3956
120.5.3	Predicates on Subgroup Schemes	3956
120.5.4	Points of Subgroup Schemes	3956
120.6	The Formal Group	3957
120.7	Operations on Point Sets	3958
120.7.1	Creation of Point Sets	3958

	120.7.2	Associated Structures	3959
	120.7.3	Predicates on Point Sets	3959
	120.8	Morphisms	3960
	120.8.1	Creation Functions	3960
	120.8.2	Predicates on Isogenies	3965
	120.8.3	Structure Operations	3965
	120.8.4	Endomorphisms	3966
	120.8.5	Automorphisms	3967
	120.9	Operations on Points	3967
	120.9.1	Creation of Points	3967
	120.9.2	Creation Predicates	3968
	120.9.3	Access Operations	3969
	120.9.4	Associated Structures	3969
	120.9.5	Arithmetic	3969
	120.9.6	Division Points Point Order	$3970 \\ 3973$
	$120.9.7 \\ 120.9.8$	Productes on Points	3973 3973
	120.9.8 120.9.9	Weil Pairing	3975 3975
	120.9.9 120.10	Bibliography	3975 3976
	120.10	Bibliography	3970
121	ELLIP	TIC CURVES OVER FINITE FIELDS	. 3977
	121.1	Supersingular Curves	3979
	121.2	The Order of the Group of Points	3980
	121.2 121.2.1	Point Counting	3980
	121.2.1 121.2.2	Zeta Functions	3986
	121.2.3	Cryptographic Elliptic Curve Domains	3987
	121.3	Enumeration of Points	3988
	121.4	Abelian Group Structure	3989
	121.1 121.5	Pairings on Elliptic Curves	3990
	121.5 121.5.1	Weil Pairing	3990
	121.5.1 121.5.2	Tate Pairing	3990
	121.5.3	Eta Pairing	3991
	121.5.4	Ate Pairing	3992
	121.6	Weil Descent in Characteristic Two	3996
	121.7	Discrete Logarithms	3998
	121.8	Bibliography	3999
122	ELLIP	TIC CURVES OVER Q AND NUMBER FIELDS	. 4001
	122.1	Introduction	4005
	122.2	Curves over the Rationals	4005
	122.2.1	Local Invariants	4005
	122.2.2	Kodaira Symbols	4007
	$122.2.3 \\ 122.2.4$	Complex Multiplication	4008
	122.2.4 122.2.5	Isogenous Curves Mordell–Weil Group	$\begin{array}{c} 4008\\ 4009 \end{array}$
	122.2.3 122.2.6	Heights and Height Pairing	$4009 \\ 4015$
	122.2.0 122.2.7	Two-Descent and Two-Coverings	4013
	122.2.7 122.2.8	The Cassels-Tate Pairing	4021 4024
	122.2.0 122.2.9	Four-Descent	4024
	122.2.0 122.2.10	Eight-Descent	4030
	122.2.10 122.2.11	Three-Descent	4031
	122.2.12	Nine-Descent	4038
	122.2.13	<i>p</i> -Isogeny Descent	4039
	122.2.14	Heegner Points	4043

cxviii

	122.2.15	Analytic Information	4050
	122.2.16	Integral and S -integral Points	4055
	122.2.17 122.3	Elliptic Curve Database Curves over Number Fields	$4058 \\ 4062$
	122.3 122.3.1	Local Invariants	4062
	122.3.1 122.3.2	Complex Multiplication	4062
	122.3.2 122.3.3	Mordell–Weil Groups	4063
	122.3.4	Heights	4064
	122.3.5	Two Descent	4065
	122.3.6	Selmer Groups	4065
	122.3.7	The Cassels-Tate Pairing	4071
	122.3.8	Elliptic Curve Chabauty	4071
	122.3.9	Auxiliary Functions for Etale Algebras	4075
	122.3.10	Analytic Information	4076
	122.3.11	Elliptic Curves of Given Conductor	4077
	122.4	Curves over p-adic Fields	4078
	122.4.1	Local Invariants	4078
	122.5	Bibliography	4079
123	ELLIF	PTIC CURVES OVER FUNCTION FIELDS	4083
	123.1	An Overview of Relevant Theory	4085
	123.2	Local Computations	4087
	123.3	Elliptic Curves of Given Conductor	4088
	123.4	Heights	4089
	123.5	The Torsion Subgroup	4090
	123.6	The Mordell–Weil Group	4090
	123.7	Two Descent	4092
	123.8	The L-function and Counting Points	4093
	123.9	Action of Frobenius	4096
	123.10	Extended Examples	4096
	123.11	Bibliography	4099
124	MODE	ELS OF GENUS ONE CURVES	4101
	124.1	Introduction	4103
	124.2	Related Functionality	4104
	124.3	Creation of Genus One Models	4104
	124.4	Predicates on Genus One Models	4107
	124.5	Access Functions	4107
	124.6	Minimisation and Reduction	4108
	124.7	Genus One Models as Coverings	4110
	124.8	Families of Elliptic Curves with Prescribed n-Torsion	4112
	124.9	Transformations between Genus One Models	4112
	124.10	Invariants for Genus One Models	4113
	124.11	Covariants and Contravariants for Genus One Models	4114
	124.12	Examples	4115
	124.13	Bibliography	4117

 cxix

125	HYPE	RELLIPTIC CURVES	4119
	125.1	Introduction	4123
	125.2	Creation Functions	4123
	125.2.1	Creation of a Hyperelliptic Curve	4123
	125.2.2	Creation Predicates	4124
	125.2.3	Changing the Base Ring	4125
	125.2.4	Models	4126
	125.2.5	Predicates on Models	4128
	125.2.6	Twisting Hyperelliptic Curves	4129
	125.2.7	Type Change Predicates	4131
	125.3	Operations on Curves	4131
	$125.3.1 \\ 125.3.2$	Elementary Invariants Igusa Invariants	$4132 \\ 4132$
	125.3.2 125.3.3	Shioda Invariants	4132
	125.3.3 125.3.4	Base Ring	4130
	125.3.4 125.4	Creation from Invariants	4138
	125.4 125.5	Function Field	4138
	125.5.1	Function Field and Polynomial Ring	4141 4141
	$125.6 \\ 125.6.1$	Points Creation of Points	$\begin{array}{c} 4141 \\ 4141 \end{array}$
	125.6.2	Random Points	4141 4143
	125.6.2 125.6.3	Predicates on Points	4143
	125.6.4	Access Operations	4143
	125.6.5	Arithmetic of Points	4143
	125.6.6	Enumeration and Counting Points	4144
	125.6.7	Frobenius	4145
	125.7	Isomorphisms and Transformations	4146
	125.7.1	Creation of Isomorphisms	4146
	125.7.2	Arithmetic with Isomorphisms	4147
	125.7.3	Invariants of Isomorphisms	4148
	125.7.4	Automorphism Group and Isomorphism Testing	4148
	125.8	Jacobians	4153
	125.8.1	Creation of a Jacobian	4153
	125.8.2	Access Operations	4153
	125.8.3	Base Ring	4153
	125.8.4	Changing the Base Ring	4154
	125.9	Richelot Isogenies	4154
	125.10	Points on the Jacobian	4157
	125.10.1	Creation of Points	4158
	125.10.2	Random Points	4161
	125.10.3	Booleans and Predicates for Points	4161
	125.10.4	Access Operations	4162
	125.10.5	Arithmetic of Points	4162
	125.10.6	Order of Points on the Jacobian	4163
	125.10.7	Frobenius	4163
	125.10.8	Weil Pairing	4164
	125.11	Rational Points and Group Structure over Finite Fields	4165
	125.11.1	Enumeration of Points	4165
	$125.11.2 \\ 125.11.3$	Counting Points on the Jacobian Deformation Point Counting	$4165 \\ 4170$
	125.11.5 125.11.4	Abelian Group Structure	4170 4171
	125.11.4 125.12	-	
	125.12 125.12.1	Jacobians over Number Fields or Q Searching For Points	$4172 \\ 4172$
	125.12.1 125.12.2	Torsion	$4172 \\ 4172$
	125.12.2 125.12.3	Heights and Regulator	4172
	125.12.3 125.12.4	The 2-Selmer Group	4174
		· · · · · · · · · · · · · · · · · · ·	1110

cxx

	125.13	Two-Selmer Set of a Curve	4187
	125.14	Chabauty's Method	4190
	125.15	Cyclic Covers of \mathbf{P}^1	4195
	$125.15.1 \\ 125.15.2$	Points Descent	$4195 \\ 4196$
	125.15.2 125.15.3	Descent on the Jacobian	4190
	125.15.3 125.15.4	Partial Descent	4197
	125.16.4 125.16	Kummer Surfaces	4203
	125.10 125.16.1	Creation of a Kummer Surface	4203
	125.16.2	Structure Operations	4203
	125.16.3	Base Ring	4203
	125.16.4	Changing the Base Ring	4204
	125.17	Points on the Kummer Surface	4204
	125.17.1	Creation of Points	4204
	125.17.2	Access Operations	4205
	125.17.3	Predicates on Points	4205
	125.17.4	Arithmetic of Points	4205
	125.17.5	Rational Points on the Kummer Surface	4206
	125.17.6	Pullback to the Jacobian	4206
	125.18	Analytic Jacobians of Hyperelliptic Curves	4207
	125.18.1	Creation and Access Functions	4208
	125.18.2	Maps between Jacobians	4209
	$125.18.3 \\ 125.18.4$	From Period Matrix to Curve Voronoi Cells	$4216 \\ 4218$
	125.18.4 125.19	Bibliography	4218 4219
126		RGEOMETRIC MOTIVES	. 4223
	126.1	Introduction	4225
	$126.2 \\ 126.2.1$	Functionality Creation Functions	$4227 \\ 4227$
	120.2.1 126.2.2	Access Functions	4227 4228
	126.2.2 126.2.3	Functionality with L-series and Euler Factors	4229
	126.2.4	Associated Schemes and Curves	4232
	126.2.5	Utility Functions	4232
	126.3	Examples	4233
	126.4	Bibliography	4241
127	L-FUN	ICTIONS	. 4243
	127.1	Overview	4245
	127.2	Built-in L-series	4246
	127.3	Computing L-values	4257
	127.4	Arithmetic with L-series	4259
	127.5	General L-series	4260
	127.5.1	Terminology	4261
	127.5.2	Constructing a General L-Series	4262
	127.5.3	Setting the Coefficients	4266
	127.5.4	Specifying the Coefficients Later	4266
	127.5.5	Generating the Coefficients from Local Factors	4268
	127.6	Accessing the Invariants	4268
	127.7	Precision	4271
	127.7.1	L-series with Unusual Coefficient Growth Computing $L(a)$ when $Im(a)$ is Large (Inc. Barameter)	4272
	$127.7.2 \\ 127.7.3$	Computing $L(s)$ when $Im(s)$ is Large (ImS Parameter) Implementation of L-series Computations (Asymptotics Parameter)	$4272 \\ 4272$
	127.7.5 127.8	Verbose Printing	4272 4273
	121.0		4410

cxxi

127.9	Advanced Examples	4273
127.9.1	Handmade L-series of an Elliptic Curve	4273
127.9.2	Self-made Dedekind Zeta Function	4274
127.9.3	L-series of a Genus 2 Hyperelliptic Curve	4274
127.9.4	Experimental Mathematics for Small Conductor	4276
127.9.5	Tensor Product of L -series Coming from l -adic Representations	4277
127.9.6	Non-abelian Twist of an Elliptic Curve	4278
127.9.7	Other Tensor Products	4279
127.9.8	Symmetric Powers	4281
127.10	Weil Polynomials	4284
127.11	Bibliography	4287

XVII MODULAR ARITHMETIC GEOMETRY 4289

128	MODU	ULAR CURVES	4291
	128.1	Introduction	4293
	128.2	Creation Functions	4293
	128.2.1	Creation of a Modular Curve	4293
	128.2.2	Creation of Points	4293
	128.3	Invariants	4294
	128.4	Modular Polynomial Databases	4295
	128.5	Parametrized Structures	4297
	128.6	Associated Structures	4300
	128.7	Automorphisms	4301
	128.8	Class Polynomials	4301
	128.9	Modular Curves and Quotients (Canonical Embeddings)	4302
	128.10	Modular Curves of Given Level and Genus	4304
	128.11	Bibliography	4309
129	SMAL	L MODULAR CURVES	4311
	129.1	Introduction	4313
	129.2	Small Modular Curve Models	4313
	129.3	Projection Maps	4315
	129.4	Automorphisms	4317
	129.5	Cusps and Rational Points	4321
	129.6	Standard Functions and Forms	4323
	129.7	Parametrized Structures	4325
	129.8	Modular Generators and q-Expansions	4327
	129.9	Extended Example	4332
	129.10	Bibliography	4334
130	CONC	GRUENCE SUBGROUPS OF $\mathrm{PSL}_2(\mathbf{R})$	4335
	130.1	Introduction	4337
	130.2	Congruence Subgroups	4338
	130.2.1	Creation of Subgroups of $PSL_2(\mathbf{R})$	4339
	130.2.2	Relations	4340
	130.2.3	Basic Attributes	4340
	130.3	Structure of Congruence Subgroups	4341
	130.3.1	Cusps and Elliptic Points of Congruence Subgroups	4342
	130.4	Elements of $PSL_2(\mathbf{R})$	4344
	130.4.1	Creation March and Equality Testing	4344
	$130.4.2 \\ 130.4.3$	Membership and Equality Testing Basic Functions	$4344 \\ 4344$
	130.4.3 130.5	The Upper Half Plane	$4344 \\ 4345$
	130.5 130.5.1	Creation	4345 4345
	130.5.1 130.5.2	Basic Attributes	4346
	130.6	Action of $PSL_2(\mathbf{R})$ on the Upper Half Plane	4347
	=====	r_{r}	1011

cxxiii

	130.6.1	Arithmetic	4348
	130.6.2	Distances, Angles and Geodesics	4348
	130.7	Farey Symbols and Fundamental Domains	4349
	130.8	Points and Geodesics	4351
	130.9	Graphical Output	4351
	130.10	Bibliography	4359
131	ARIT	HMETIC FUCHSIAN GROUPS AND SHIMURA CURVES	4361
	131.1	Arithmetic Fuchsian Groups	4363
	131.1.1	Creation	4363
	131.1.2	Quaternionic Functions	4365
	131.1.3	Basic Invariants	4368
	131.1.4	Group Structure	4369
	131.2	Unit Disc	4371
	131.2.1	Creation	4371
	131.2.2	Basic Operations	4372
	131.2.3	Access Operations	4372
	131.2.4	Distance and Angles	4374
	131.2.5	Structural Operations	4375
	131.3	Fundamental Domains	4377
	131.4	Triangle Groups	4379
	$131.4.1 \\ 131.4.2$	Creation of Triangle Groups Fundamental Domain	$\begin{array}{c} 4380\\ 4380\end{array}$
	131.4.2 131.4.3	CM Points	$4380 \\ 4380$
	131.4.5 131.5	Bibliography	4383
	101.0	Dibilography	4000
132	MODU	ULAR FORMS	4385
	132.1	Introduction	4387
	132.1.1	Modular Forms	4387
	132.1.2	About the Package	4388
	132.1.3	Categories Viele and Octoord	4389
	132.1.4	Verbose Output	4389
	132.1.5	An Illustrative Overview	4390
	$132.2 \\ 132.2.1$	Creation Functions	4393
	132.2.1 132.2.2	Ambient Spaces Base Extension	$4393 \\ 4396$
	132.2.2 132.2.3	Elements	$4390 \\ 4397$
	132.3 132.3	Bases	4398
	132.3 132.4	q-Expansions	4398
	132.4 132.5	Arithmetic	4400 4402
	132.5 132.6	Predicates	4402 4403
	132.7	Properties	4405
	132.8	Subspaces	4407
	132.9	Operators Dia dai and	4409
	132.10	Eisenstein Series	4411
	132.11	Weight Half Forms	4413
	132.12	Weight One Forms	4413
	132.13	Newforms	4413
	132.13.1	Labels	4416
	132.14	Reductions and Embeddings	4418
	132.15	Congruences	4419
	132.16	Overconvergent Modular Forms	4421
	132.17	Algebraic Relations	4422

 cxxiv

	132.18	Elliptic Curves	4424
	132.19	Modular Symbols	4425
	132.20	Bibliography	4426
133	MODU	JLAR SYMBOLS	4427
	133.1	Introduction	4429
	133.1.1	Modular Symbols	4429
	133.2	Basics	4430
	133.2.1	Verbose Output	4430
	133.2.2	Categories	4430
	133.3	Creation Functions	4431
	133.3.1	Ambient Spaces	4431
	133.3.2	Labels	4435
	133.3.3	Creation of Elements	4436
	133.4	Bases	4439
	133.5	Associated Vector Space	4442
	133.6	Degeneracy Maps	4443
	133.7	Decomposition	4445
	133.8	Subspaces	4449
	133.9	Twists	4451
	133.10	Operators	4452
	133.11	The Hecke Algebra	4457
	133.12	The Intersection Pairing	4458
	133.13	q-Expansions	4459
	133.14	Special Values of L-functions	4462
	133.14.1	Winding Elements	4464
	133.15	The Associated Complex Torus	4465
	133.15.1	The Period Map	4470
	133.15.2	Projection Mappings	4470
	133.16	Modular Abelian Varieties	4472
	133.16.1	Modular Degree and Torsion	4472
	133.16.2	Tamagawa Numbers and Orders of Component Groups	4474
	133.17	Elliptic Curves	4477
	133.18	Dimension Formulas	4479
	133.19	Bibliography	4480
134	BRAN	DT MODULES	4483
	134.1	Introduction	4485
	134.2	Brandt Module Creation	4485
	134.2.1	Creation of Elements	4487
	134.2.2	Operations on Elements	4487
	134.2.3	Categories and Parent	4488
	134.2.4	Elementary Invariants	4488
	134.2.5	Associated Structures	4489
	134.2.6	Verbose Output	4490
	134.3	Subspaces and Decomposition	4491
	134.3.1	Boolean Tests on Subspaces	4492
	134.4	Hecke Operators	4493
	134.5	q-Expansions	4494
	134.6	Dimensions of Spaces	4494
	134.7	Brandt Modules Over $F_q[t]$	4495
	134.8	Bibliography	4495

cxxv

135	SUPE	RSINGULAR DIVISORS ON MODULAR CURVES .	4497
	135.1	Introduction	4499
	135.1.1	Categories	4500
	135.1.2	Verbose Output	4500
	135.2	Creation Functions	4500
	135.2.1	Ambient Spaces	4500
	135.2.2	Elements	4501
	135.2.3	Subspaces	4502
	135.3	Basis	4503
	135.4	Properties	4504
	135.5	Associated Spaces	4505
	135.6	Predicates	4506
	135.7	Arithmetic	4507
	135.8	Operators	4509
	135.9	The Monodromy Pairing	4510
	135.10	Bibliography	4511 4511
136	MODU	JLAR ABELIAN VARIETIES	4513
	136.1	Introduction	4519
	136.1.1	Categories	4520
	136.1.2	Verbose Output	4520
	136.2	Creation and Basic Functions	4521
	136.2.1	Creating the Modular Jacobian $J_0(N)$	4521
	136.2.2	Creating the Modular Jacobians $J_1(N)$ and $J_H(N)$	4522
	136.2.3	Abelian Varieties Attached to Modular Forms	4524
	136.2.4	Abelian Varieties Attached to Modular Symbols	4526
	136.2.5	Creation of Abelian Subvarieties	4527
	136.2.6	Creation Using a Label	4528
	136.2.7	Invariants	4529
	136.2.8	Conductor	4532
	136.2.9	Number of Points	4532
	136.2.10	Inner Twists and Complex Multiplication	4533
	136.2.11	Predicates	4536
	136.2.12	Equality and Inclusion Testing	4541
	136.2.13	Modular Embedding and Parameterization	4542
	136.2.14	Coercion	4543
	136.2.15	Modular Symbols to Homology	4546
	136.2.16	Embeddings	4547
	136.2.17	Base Change	4549
	136.2.18	Additional Examples	4550
	136.3	Homology	4553
	136.3.1	Creation	4553
	136.3.2	Invariants	4554
	136.3.3	Functors to Categories of Lattices and Vector Spaces	4554
	136.3.4	Modular Structure	4556
	136.3.5	Additional Examples	4557
	136.4	Homomorphisms	4558
	136.4.1	Creation	4559
	136.4.2	Restriction, Evaluation, and Other Manipulations	4560
	136.4.3	Kernels	4564
	136.4.4	Images	4565
	136.4.5	Cokernels	4567
	136.4.6	Matrix Structure	4568
	136.4.7	Arithmetic	4570
	136.4.8	Polynomials	4573

cxxvi

136.4.9	Invariants	4574
136.4.10	Predicates	4575
136.5	Endomorphism Algebras and Hom Spaces	4578
136.5.1	Creation	4578
136.5.2	Subgroups and Subrings	4579
136.5.3	Pullback and Pushforward of Hom Spaces	4582
136.5.4	Arithmetic	4582
136.5.5	Quotients	4583
136.5.6	Invariants	4584
136.5.7	Structural Invariants	4586
136.5.8	Matrix and Module Structure	4587
136.5.9	Predicates	4589
136.5.10	Elements	4591
136.6	Arithmetic of Abelian Varieties	4592
136.6.1	Direct Sum	4592
136.6.2	Sum in an Ambient Variety	4594
136.6.3	Intersections	4595
136.6.4	Quotients	4597
136.7	Decomposing and Factoring Abelian Varieties	4598
136.7.1	Decomposition	4598
136.7.2	Factorization	4599
136.7.3		4600
136.7.4	Additional Examples	4600
136.8	Building blocks	4602
136.8.1	Background and Notation	4602
136.9	Orthogonal Complements	4606
136.9.1	Complements	4606
136.9.2	Dual Abelian Variety	4607
136.9.3	Intersection Pairing	4609
136.9.4	Projections	4610
136.9.5	Left and Right Inverses	4611
136.9.6	Congruence Computations	4613
136.10	New and Old Subvarieties and Natural Maps	4614
136.10.1	Natural Maps	4614
136.10.2	New Subvarieties and Quotients	4616
136.10.3	Old Subvarieties and Quotients	4617
136.11	Elements of Modular Abelian Varieties	4618
136.11.1	Arithmetic	4619
136.11.2	Invariants	4620
136.11.3	Predicates	4621
136.11.4	Homomorphisms	4623
136.11.5	Representation of Torsion Points	4624
136.12	Subgroups of Modular Abelian Varieties	4625
136.12.1	Creation	4625
136.12.2	Elements	4627
136.12.3	Arithmetic	4628
136.12.4	Underlying Abelian Group and Lattice	4630
136.12.5	Invariants	4631
136.12.6	Predicates and Comparisons	4632
136.13	Rational Torsion Subgroups	4634
136.13.1	Cuspidal Subgroup	4634
136.13.2	Upper and Lower Bounds	4636
136.13.3	Torsion Subgroup	4637
136.14	Hecke and Atkin-Lehner Operators	4637
136.14.1	Creation	4637
136.14.2	Invariants	4639
136.15	L-series	4640

cxxviii

136.15.1	Creation	4640
136.15.2	Invariants	4641
136.15.3	Characteristic Polynomials of Frobenius Elements	4642
136.15.4	Values at Integers in the Critical Strip	4643
136.15.5	Leading Coefficient	4645
136.16	Complex Period Lattice	4646
136.16.1	Period Map	4646
136.16.2	Period Lattice	4646
136.17	Tamagawa Numbers and Component Groups of Neron Models	4646
136.17.1	Component Groups	4646
136.17.2	Tamagawa Numbers	4647
136.18	Elliptic Curves	4648
136.18.1	Creation	4648
136.18.2	Invariants	4649
136.19	Bibliography	4650

137.1.2Algorithms and the Jacquet-Langlands Correspondence465137.1.3Algorithm I (Using Definite Quaternion Orders)465137.1.4Algorithm II (Using Indefinite Quaternion Orders)465137.1.5Categories465137.1.6Verbose Output465137.2Creation of Full Cuspidal Spaces465137.4Elements465137.5Operators465137.6Creation of Subspaces465137.7Eigenspace Decomposition and Eigenforms466137.8Further Examples466	137.1	Introduction	4653
137.1.3Algorithm I (Using Definite Quaternion Orders)465137.1.4Algorithm II (Using Indefinite Quaternion Orders)465137.1.5Categories465137.1.6Verbose Output465137.2Creation of Full Cuspidal Spaces465137.3Basic Properties465137.4Elements465137.5Operators465137.6Creation of Subspaces465137.7Eigenspace Decomposition and Eigenforms466137.8Further Examples466	137.1.1	Definitions and Background	4653
137.1.4Algorithm II (Using Indefinite Quaternion Orders)465137.1.5Categories465137.1.6Verbose Output465137.2Creation of Full Cuspidal Spaces465137.3Basic Properties465137.4Elements465137.5Operators465137.6Creation of Subspaces466137.7Eigenspace Decomposition and Eigenforms466137.8Further Examples466	137.1.2	Algorithms and the Jacquet-Langlands Correspondence	4654
137.1.5Categories465137.1.6Verbose Output465137.2Creation of Full Cuspidal Spaces465137.3Basic Properties465137.4Elements465137.5Operators465137.6Creation of Subspaces466137.7Eigenspace Decomposition and Eigenforms466137.8Further Examples466	137.1.3	Algorithm I (Using Definite Quaternion Orders)	4655
137.1.6Verbose Output465137.2Creation of Full Cuspidal Spaces465137.3Basic Properties465137.4Elements465137.5Operators465137.6Creation of Subspaces466137.7Eigenspace Decomposition and Eigenforms466137.8Further Examples466	137.1.4	Algorithm II (Using Indefinite Quaternion Orders)	4655
137.2Creation of Full Cuspidal Spaces465137.3Basic Properties465137.4Elements465137.5Operators465137.6Creation of Subspaces466137.7Eigenspace Decomposition and Eigenforms466137.8Further Examples466	137.1.5	Categories	4655
137.3Basic Properties465137.4Elements465137.5Operators465137.6Creation of Subspaces466137.7Eigenspace Decomposition and Eigenforms466137.8Further Examples466	137.1.6	Verbose Output	4655
137.4Elements465137.5Operators465137.6Creation of Subspaces466137.7Eigenspace Decomposition and Eigenforms466137.8Further Examples466	137.2	Creation of Full Cuspidal Spaces	4655
137.5Operators465137.6Creation of Subspaces466137.7Eigenspace Decomposition and Eigenforms466137.8Further Examples466	137.3	Basic Properties	4657
137.6Creation of Subspaces466137.7Eigenspace Decomposition and Eigenforms466137.8Further Examples466	137.4	Elements	4659
137.7Eigenspace Decomposition and Eigenforms466137.8Further Examples466	137.5	Operators	4659
137.8 Further Examples 466	137.6	Creation of Subspaces	4661
	137.7	Eigenspace Decomposition and Eigenforms	4664
137.9 Bibliography 466	137.8	Further Examples	4666
	137.9	Bibliography	4668

138 MODULAR FORMS OVER IMAGINARY QUADRATIC FIELDS 4669

	138.1	Introduction	4671
	138.1.1	Algorithms	4671
	138.1.2	Categories	4672
	138.1.3	Verbose Output	4672
	138.2	Creation	4673
	138.3	Attributes	4673
	138.4	Hecke Operators	4674
	138.5	Newforms	4675
	138.6	Bibliography	4676
100			
139	ADMI	SSIBLE REPRESENTATIONS OF $\operatorname{GL}_2(\mathbf{Q}_p)$	4677
	139.1	Introduction	4679
	139.1.1	Motivation	4679
	139.1.2	Definitions	4679
	139.1.3	The Principal Series	4680
	139.1.4	Supercuspidal Representations	4680
	139.1.5	The Local Langlands Correspondence	4681
	139.1.6	Connection with Modular Forms	4681
	139.1.7	Category	4681

Verbose Output	4681
Creation of Admissible Representations	4682
Attributes of Admissible Representations	4682
Structure of Admissible Representations	4683
Local Galois Representations	4684
Examples	4684
Bibliography	4688
	Creation of Admissible Representations Attributes of Admissible Representations Structure of Admissible Representations Local Galois Representations Examples

XVIII TOPOLOGY

140	SIMPL	ICIAL HOMOLOGY	4691
	140.1	Introduction	4693
	140.2	Simplicial Complexes	4693
	140.2.1	Standard Topological Objects	4704
	140.3	Homology Computation	4705
	140.4	Bibliography	4709

XIX GEOMETRY

4711

141	FINIT	E PLANES	4713
	141.1	Introduction	4715
	141.1.1	Planes in Magma	4715
	141.2	Construction of a Plane	4715
	141.3	The Point-Set and Line-Set of a Plane	4718
	141.3.1	Introduction	4718
	141.3.2	Creating Point-Sets and Line-Sets	4718
	141.3.3	Using the Point-Set and Line-Set to Create Points and Lines	4718
	141.3.4	Retrieving the Plane from Points, Lines, Point-Sets and Line-Sets	4722
	141.4	The Set of Points and Set of Lines	4722
	141.5	The Defining Points of a Plane	4723
	141.6	Subplanes	4724
	141.7	Structures Associated with a Plane	4725
	141.8	Numerical Invariants of a Plane	4726
	141.9	Properties of Planes	4727
	141.10	Identity and Isomorphism	4727
	141.11	The Connection between Projective and Affine Planes	4728
	141.12	Operations on Points and Lines	4729
	141.12.1	Elementary Operations	4729
	141.12.2	Deconstruction Functions	4730
	141.12.3	Other Point and Line Functions	4733
	141.13	Arcs	4734
	141.14	Unitals	4737
	141.15	The Collineation Group of a Plane	4738
	141.15.1	The Collineation Group Function	4739
	141.15.2	General Action of Collineations	4740
	141.15.3	Central Collineations	4744
	141.15.4	Transitivity Properties	4745
	141.16	Translation Planes	4746
	141.17	Planes and Designs	4746
	141.18	Planes, Graphs and Codes	4747
142	INCID	ENCE GEOMETRY	4749
	142.1	Introduction	4751
	142.2	Construction of Incidence and Coset Geometries	4752
	142.2.1	Construction of an Incidence Geometry	4752
	142.2.2	Construction of a Coset Geometry	4756
	142.3	Elementary Invariants	4759
	142.4	Conversion Functions	4761
	142.5	Residues	4762
	142.6	Truncations	4763
	142.7	Shadows	4763
	142.8	Shadow Spaces	4763
	142.9	Automorphism Group and Correlation Group	4764
	142.10	Properties of Incidence Geometries and Coset Geometries	4764
	142.11	Intersection Properties of Coset Geometries	4765
	142.12	Primitivity Properties on Coset Geometries	4766
	142.13	Diagram of an Incidence Geometry	4767
	142.14	Bibliography	4770

cxxxi

143	CONV	YEX POLYTOPES AND POLYHEDRA	. 4771
	143.1	Introduction and First Examples	4773
	143.2	Polytopes, Cones and Polyhedra	4778
	143.2.1	Polytopes	4778
	143.2.2	Cones	4779
	143.2.3	Polyhedra	4780
	143.2.4	Arithmetic Operations on Polyhedra	4782
	143.3	Basic Combinatorics of Polytopes and Polyhedra	4783
	143.3.1	Vertices and Inequalities	4783
	143.3.2	Facets and Faces	4785
	143.4	The Combinatorics of Polytopes	4786
	143.4.1	Points in Polytopes	4786
	143.4.2	Ehrhart Theory of Polytopes	4787
	143.4.3	Automorphisms of a Polytope	4787
	143.4.4	Operations on Polytopes	4788
	143.5	Cones and Polyhedra	4788
	143.5.1	Generators of Cones	4788
	143.5.2	Properties of Polyhedra	4789
	143.5.3	Attributes of Polyhedra	4793
	143.5.4	Combinatorics of Polyhedral Complexes	4793
	143.6	Toric Lattices	4793
	143.6.1	Toric Lattices	4794
	143.6.2	Points of Toric Lattices	4795
	143.6.3	Operations on Toric Lattices	4798
	143.6.4	Maps of Toric Lattices	4800
	143.7	Bibliography	4801

cxxxii

COMBINATORICS			
ENUMERATIVE COMBINATORICS			

ENUM	IERATIVE COMBINATORICS	. 4805
144.1	Introduction	4807
144.2	Combinatorial Functions	4807
144.3	Subsets of a Finite Set	4809
PART	ITIONS, WORDS AND YOUNG TABLEAUX	. 4811
145.1	Introduction	4813
145.2	Partitions	4813
145.3	Words	4816
145.3.1	Ordered Monoids	4816
145.3.2	Plactic Monoids	4819
145.4	Tableaux	4822
145.4.1	Tableau Monoids	4822
145.4.2	Creation of Tableaux	4824
145.4.3	Enumeration of Tableaux	4827
145.4.4	Random Tableaux	4829
145.4.5	Basic Access Functions	4830
145.4.6	Properties	4833
145.4.7	Operations	4835

The Robinson-Schensted-Knuth Correspondence

Bibliography

Counting Tableaux

145.4.8

145.4.9

145.5

XX

144

145

146.1	Introduction	4847
146.2	Creation	4849
146.2.1	Creation of Symmetric Function Algebras	4849
146.2.2	Creation of Symmetric Functions	4851
146.3	Structure Operations	4854
146.3.1	Related Structures	4854
146.3.2	Ring Predicates and Booleans	4855
146.3.3	Predicates on Basis Types	4855
146.4	Element Operations	4855
146.4.1	Parent and Category	4855
146.4.2	Print Styles	4856
146.4.3	Additive Arithmetic Operators	4856
146.4.4	Multiplication	4857
146.4.5	Plethysm	4858
146.4.6	Boolean Operators	4858
146.4.7	Accessing Elements	4859
146.4.8	Multivariate Polynomials	4860
146.4.9	Frobenius Homomorphism	4861
146.4.10	Inner Product	4862
146.4.11	Combinatorial Objects	4862
146.4.12	Symmetric Group Character	4862
146.4.13	Restrictions	4863
146.5	Transition Matrices	4864
146.5.1	Transition Matrices from Schur Basis	4864
146.5.2	Transition Matrices from Monomial Basis	4866
146.5.3	Transition Matrices from Homogeneous Basis	4867
146.5.4	Transition Matrices from Power Sum Basis	4868

VOLUME 12: CONTENTS

cxxxiii

4803

4838

4842

4844

	146.5.5	Transition Matrices from Elementary Basis	4869
	146.6	Bibliography	4870
147	INCID	DENCE STRUCTURES AND DESIGNS	4871
	147.1	Introduction	4873
	147.2	Construction of Incidence Structures and Designs	4874
	147.3	The Point-Set and Block-Set of an Incidence Structure	4878
	147.3.1	Introduction	4878
	147.3.2	Creating Point-Sets and Block-Sets	4879
	147.3.3	Creating Points and Blocks	4879
	147.4	General Design Constructions	4881
	147.4.1	The Construction of Related Structures	4881
	147.4.2	The Witt Designs	4884
	147.4.3	Difference Sets and their Development	4884
	147.5	Elementary Invariants of an Incidence Structure	4886
	147.6	Elementary Invariants of a Design	4887
	147.7	Operations on Points and Blocks	4889
	147.8	Elementary Properties of Incidence Structures and Designs	4891
	147.9	Resolutions, Parallelisms and Parallel Classes	4893
	147.10	Conversion Functions	4896
	147.11	Identity and Isomorphism	4897
	147.12	The Automorphism Group of an Incidence Structure	4898
	147.12.1	Construction of Automorphism Groups	$4898 \\ 4901$
	147.12.2	Action of Automorphisms	
	147.13	Incidence Structures, Graphs and Codes	4903
	147.14	Automorphisms of Matrices	4904
	147.15	Bibliography	4905
148	HADA	MARD MATRICES	4907
	148.1	Introduction	4909
	148.2	Equivalence Testing	4909
	148.3	Associated 3–Designs	4911
	148.4	Automorphism Group	4912
	148.5	Databases	4912
	148.5.1	Updating the Databases	4913
149	GRAP	m PHS	4917
	149.1	Introduction	4921
	149.2	Construction of Graphs and Digraphs	4922
	149.2.1	Bounds on the Graph Order	4922
	149.2.2	Construction of a General Graph	4923
	149.2.3	Construction of a General Digraph	4926
	149.2.4	Operations on the Support	4928
	149.2.5	Construction of a Standard Graph	4929
	149.2.6	Construction of a Standard Digraph	4931
	149.3	Graphs with a Sparse Representation	4932
	149.4	The Vertex–Set and Edge–Set of a Graph	4934
	149.4.1	Introduction Creation Educe and Mating	4934
	149.4.2	Creating Edges and Vertices	4934
	$149.4.3 \\ 149.4.4$	Operations on Vertex-Sets and Edge-Sets Operations on Edges and Vertices	$4936 \\ 4937$
	149.4.4 149.5	Labelled, Capacitated and Weighted Graphs	4937 4938
	149.0	habened, Japachaled and Weighted Graphs	4300

cxxxiv

149.6	Standard Constructions for Graphs	4938
149.6.1	Subgraphs and Quotient Graphs	4938
149.6.2	Incremental Construction of Graphs	4940
149.6.3	Constructing Complements, Line Graphs; Contraction, Switching	4943
149.7	Unions and Products of Graphs	4945
149.8	Converting between Graphs and Digraphs	4947
149.9	Construction from Groups, Codes and Designs	4947
149.9.1	Graphs Constructed from Groups	4947
149.9.2	Graphs Constructed from Designs	4948
149.9.3	Miscellaneous Graph Constructions	4949
149.10	Elementary Invariants of a Graph	4950
149.11	Elementary Graph Predicates	4951
149.12	Adjacency and Degree	4953
149.12.1	Adjacency and Degree Functions for a Graph	4953
149.12.2	Adjacency and Degree Functions for a Digraph	4954
149.13	Connectedness	4956
149.13.1	Connectedness in a Graph	4956
149.13.2	Connectedness in a Digraph	4957
149.13.3	Graph Triconnectivity	4957
149.13.4	Maximum Matching in Bipartite Graphs	4959
149.13.5	General Vertex and Edge Connectivity in Graphs and Digraphs	4960
149.14	Distances, Paths and Circuits in a Graph	4963
149.14.1	Distances, Paths and Circuits in a Possibly Weighted Graph	4963
149.14.2	Distances, Paths and Circuits in a Non-Weighted Graph	4963
149.15	Maximum Flow, Minimum Cut, and Shortest Paths	4964
149.16	Matrices and Vector Spaces Associated with a Graph or Digraph	4965
149.17	Spanning Trees of a Graph or Digraph	4965
149.18	Directed Trees	4966
149.19	Colourings	4967
149.20	Cliques, Independent Sets	4968
149.21	Planar Graphs	4973
149.22	Automorphism Group of a Graph or Digraph	4976
149.22.1	The Automorphism Group Function	4976
149.22.2	nauty Invariants	4977
149.22.3	Graph Colouring and Automorphism Group	4979
149.22.4	Variants of Automorphism Group	4980
149.22.5	Action of Automorphisms	4984
149.23	Symmetry and Regularity Properties of Graphs	4987
149.24	Graph Databases and Graph Generation	4989
149.24.1	Strongly Regular Graphs	4989
149.24.2	Small Graphs	4991
149.24.3	Generating Graphs	4992
149.24.4	A General Facility	4995
149.25	Bibliography	4997
MULT	IGRAPHS	. 4999
150.1	Introduction	5003
150.2	Construction of Multigraphs	5004
150.2.1	Construction of a General Multigraph	5004
150.2.2	Construction of a General Multidigraph	5005
150.2.3	Printing of a Multi(di)graph	5006

100.2.2		0000
150.2.3	Printing of a Multi(di)graph	5006
150.2.4	Operations on the Support	5007
150.3	The Vertex–Set and Edge–Set of Multigraphs	5008
150.4	Vertex and Edge Decorations	5011
150.4.1	Vertex Decorations: Labels	5011

cxxxvi

151

151.4

151.5

Maximum Flow and Minimum Cut

Bibliography

150.4.2	Edge Decorations	5012
150.4.3	Unlabelled, or Uncapacitated, or Unweighted Graphs	5015
150.5	Standard Construction for Multigraphs	5018
150.5.1	Subgraphs	5018
150.5.2	Incremental Construction of Multigraphs	5020
150.5.3	Vertex Insertion, Contraction	5024
150.5.4	Unions of Multigraphs	5025
150.6	Conversion Functions	5026
150.6.1	Orientated Graphs	5027
150.6.2	Converse	5027
150.6.3	Converting between Simple Graphs and Multigraphs	5027
150.7	Elementary Invariants and Predicates for Multigraphs	5028
150.8	Adjacency and Degree	5030
150.8.1	Adjacency and Degree Functions for Multigraphs	5031
150.8.2	Adjacency and Degree Functions for Multidigraphs	5032
150.9	Connectedness	5033
150.9.1	Connectedness in a Multigraph	5034
150.9.2	Connectedness in a Multidigraph	5034
150.9.3	Triconnectivity for Multigraphs	5035
150.9.4	Maximum Matching in Bipartite Multigraphs	5035
150.9.5	General Vertex and Edge Connectivity in Multigraphs and Multidigraphs	5035
150.10	Spanning Trees	5037
150.11	Planar Graphs	5038
150.12	Distances, Shortest Paths and Minimum Weight Trees	5042
150.13	Bibliography	5046
NETW	ORKS	5047
151.1	Introduction	5049
151.2	Construction of Networks	5049
151.2.1	Magma Output: Printing of a Network	5051
151.3	Standard Construction for Networks	5053
151.3.1	Subgraphs	5053
151.3.2	Incremental Construction: Adding Edges	5057
151.3.3	Union of Networks	5058

5059

XXI CODING THEORY

152	LINEA	AR CODES OVER FINITE FIELDS	5069
	152.1	Introduction	5073
	152.2	Construction of Codes	5074
	152.2.1	Construction of General Linear Codes	5074
	152.2.2	Some Trivial Linear Codes	5076
	152.2.3	Some Basic Families of Codes	5077
	152.3	Invariants of a Code	5079
	152.3.1	Basic Numerical Invariants	5079
	152.3.2	The Ambient Space and Alphabet	5080
	152.3.3	The Code Space	5080
	152.3.4	The Dual Space	5081
	152.3.5	The Information Space and Information Sets	5082
	152.3.6	The Syndrome Space	5083
	152.3.7	The Generator Polynomial	5083
	152.4	Operations on Codewords	5084
	152.4.1	Construction of a Codeword	5084
	152.4.2	Arithmetic Operations on Codewords	5085
	152.4.3	Distance and Weight	5085
	152.4.4	Vector Space and Related Operations	5086
	152.4.5	Predicates for Codewords	5087
	152.4.6	Accessing Components of a Codeword	5087
	152.5	Coset Leaders	5088
	152.6	Subcodes	5089
	152.6.1	The Subcode Constructor	5089
	152.6.2	Sum, Intersection and Dual	5091
	152.6.3	Membership and Equality	5092
	152.7	Properties of Codes	5093
	152.8	The Weight Distribution	5095
	152.8.1	The Minimum Weight	5095
	152.8.2	The Weight Distribution	5100
	152.8.3	The Weight Enumerator	5101
	152.8.4	The MacWilliams Transform	5102
	152.8.5	Words	5103
	152.8.6	Covering Radius and Diameter	5105
	152.9	Families of Linear Codes	5106
	152.9.1	Cyclic and Quasicyclic Codes	5106
	152.9.2	BCH Codes and their Generalizations	5108
	152.9.3	Quadratic Residue Codes and their Generalizations	5111
	152.9.4	Reed–Solomon and Justesen Codes	5113
	152.9.5	Maximum Distance Separable Codes	5114
	152.10	New Codes from Existing	5114
	152.10.1	Standard Constructions	5114
	152.10.2	Changing the Alphabet of a Code	5117
	152.10.3	Combining Codes	5118
	152.11	Coding Theory and Cryptography	5122
	152.11.1	Standard Attacks	5123
	152.11.2	Generalized Attacks	5124

cxxxviii

153

154

152.12	Bounds		5125
152.12.1	Best Known Bounds for Linear Codes		5125
152.12.2	Bounds on the Cardinality of a Largest Code		5126
152.12.3	Bounds on the Minimum Distance		5128
152.12.4	Asymptotic Bounds on the Information Rate		5128
152.12.5	Other Bounds		5128
152.13	Best Known Linear Codes		5129
152.14	Decoding		5135
152.15	Transforms		5136
152.15.1	Mattson–Solomon Transforms		5136
152.15.2	Krawchouk Polynomials		5137
152.16	Automorphism Groups		5137
152.16.1	Introduction		5137
152.16.2	Group Actions		5138
152.16.3	Automorphism Group		5139
152.16.4	Equivalence and Isomorphism of Codes		5142
152.17	Bibliography		5142
ALGE	BRAIC-GEOMETRIC CODES	 	. 5145
153.1	Introduction		5147
153.2	Creation of an Algebraic Geometric Code		5148
153.3	Properties of AG–Codes		5150
153.4	Access Functions		5151
153.5	Decoding AG Codes		5151
153.6	-		5152
153.7 LOW I	Toric Codes Bibliography DENSITY PARITY CHECK CODES .	 	5153 . 5155
153.7 LOW 1 154.1 154.1.1 154.1.2 154.1.3	Toric Codes Bibliography DENSITY PARITY CHECK CODES . Introduction Constructing LDPC Codes Access Functions LDPC Decoding and Simulation	 	. 5155 5157 5157 5158 5160
153.7 LOW I 154.1 154.1.1 154.1.2 154.1.3 154.1.4	Toric Codes Bibliography DENSITY PARITY CHECK CODES . Introduction Constructing LDPC Codes Access Functions LDPC Decoding and Simulation Density Evolution	 	5153 $. 5155$ 5157 5157 5158 5160 5162
153.7 LOW I 154.1 154.1.1 154.1.2 154.1.3 154.1.4 LINEA	Toric Codes Bibliography DENSITY PARITY CHECK CODES . Introduction Constructing LDPC Codes Access Functions LDPC Decoding and Simulation Density Evolution R CODES OVER FINITE RINGS	 	5153 . 5155 . 5157 . 5157 . 5157 . 5158 . 5160 . 5167 . 5167
153.7 LOW I 154.1 154.1.1 154.1.2 154.1.3 154.1.4 LINEA 155.1	Toric Codes Bibliography DENSITY PARITY CHECK CODES . Introduction Constructing LDPC Codes Access Functions LDPC Decoding and Simulation Density Evolution R CODES OVER FINITE RINGS Introduction	 	5153 . 5155 . 5157 . 5157 . 5158 . 5160 . 5167 . 5167 . 5167
153.7 LOW I 154.1 154.1.1 154.1.2 154.1.3 154.1.4 LINEA 155.1 155.2	Toric Codes Bibliography DENSITY PARITY CHECK CODES . Introduction Constructing LDPC Codes Access Functions LDPC Decoding and Simulation Density Evolution R CODES OVER FINITE RINGS Introduction Construction of Codes	 	5153 . 5155 . 5157 . 5157 . 5158 . 5160 . 5167 . 5167 . 5169 . 5169 . 5169
153.7 LOW 1 154.1 154.1.1 154.1.2 154.1.3 154.1.4 LINEA 155.1 155.2 155.2.1	Toric Codes Bibliography DENSITY PARITY CHECK CODES . Introduction Constructing LDPC Codes Access Functions LDPC Decoding and Simulation Density Evolution R CODES OVER FINITE RINGS Introduction Construction of Codes Construction of General Linear Codes	 	5153 . 5155 . 5157 . 5157 . 5157 . 5158 . 5160 . 5162 . 5167 . 5169 . 5
153.7 LOW 1 154.1 154.1.1 154.1.2 154.1.3 154.1.4 LINEA 155.1 155.2 155.2.1 155.2.1 155.2.2	Toric Codes Bibliography DENSITY PARITY CHECK CODES . Introduction Constructing LDPC Codes Access Functions LDPC Decoding and Simulation Density Evolution AR CODES OVER FINITE RINGS Introduction Construction of Codes Construction of General Linear Codes Construction of Simple Linear Codes	 	5153 5155 5157 5157 5158 5160 5162 5167 5169 5169 5169 5169 5169 5169 5169 5169 5169 5169 5169 5169 5169 5169 5169 5169 5169 5172
153.7 LOW 1 154.1 154.1.1 154.1.2 154.1.3 154.1.4 LINEA 155.1 155.2 155.2.1 155.2.1 155.2.3	Toric Codes Bibliography DENSITY PARITY CHECK CODES . Introduction Constructing LDPC Codes Access Functions LDPC Decoding and Simulation Density Evolution AR CODES OVER FINITE RINGS Introduction Construction of Codes Construction of General Linear Codes Construction of Simple Linear Codes Construction of General Cyclic Codes	 	5153 . 5155 . 5157 . 5157 . 5158 . 5160 . 5162 . 5167 . 5167 . 5169 . 5169 . 5169 . 5169 . 5172 . 5172 . 5173
153.7 LOW I 154.1 154.1.1 154.1.2 154.1.3 154.1.4 LINEA 155.2 155.2 155.2.1 155.2.1 155.2.3 155.3	Toric Codes Bibliography DENSITY PARITY CHECK CODES . Introduction Constructing LDPC Codes Access Functions LDPC Decoding and Simulation Density Evolution R CODES OVER FINITE RINGS Introduction Construction of Codes Construction of General Linear Codes Construction of Simple Linear Codes Construction of General Cyclic Codes Invariants of Codes	 	5153 . 5155 . 5157 . 5157 . 5158 . 5160 . 5162 . 5167 . 5167 . 5169 . 5169 . 5169 . 5169 . 5172 . 5173 . 5175
153.7 LOW I 154.1 154.1.1 154.1.2 154.1.3 154.1.4 LINEA 155.2 155.2.1 155.2.1 155.2.1 155.2.3 155.3 155.3	Toric Codes Bibliography DENSITY PARITY CHECK CODES . Introduction Constructing LDPC Codes Access Functions LDPC Decoding and Simulation Density Evolution R CODES OVER FINITE RINGS Introduction Construction of Codes Construction of General Linear Codes Construction of Simple Linear Codes Construction of General Cyclic Codes Invariants of Codes Codes over Z ₄	 	5153 . 5155 . 5157 . 5157 . 5158 . 5160 . 5162 . 5167 . 5167 . 5169 . 5169 . 5169 . 5169 . 5172 . 5173 . 5175 . 5176
LOW I 153.7 LOW I 154.1 154.1.2 154.1.3 154.1.3 154.1.4 LINEA 155.2 155.2.1 155.2.1 155.2.1 155.2.3 155.3 155.4 155.4 155.4.1	Toric Codes Bibliography DENSITY PARITY CHECK CODES . Introduction Constructing LDPC Codes Access Functions LDPC Decoding and Simulation Density Evolution R CODES OVER FINITE RINGS Introduction Construction of Codes Construction of General Linear Codes Construction of Simple Linear Codes Construction of General Cyclic Codes Invariants of Codes Codes over Z ₄ The Gray Map	 	5153 . 5155 . 5157 . 5157 . 5157 . 5160 . 5162 . 5167 . 5167 . 5169 . 5169 . 5169 . 5172 . 5173 . 5175 . 5176 . 5
LOW I 153.7 LOW I 154.1 154.1.1 154.1.2 154.1.3 154.1.4 LINEA 155.2 155.2.1 155.2.1 155.2.1 155.2.3 155.3 155.4 155.4.1 155.4.1	$\begin{array}{l} \mbox{Toric Codes}\\ \mbox{Bibliography} \end{array} \\ \hline \mbox{DENSITY PARITY CHECK CODES} & . \\ \hline \mbox{Introduction} & & \\ \mbox{Constructing LDPC Codes} & & \\ \mbox{Access Functions} & & \\ \mbox{LDPC Decoding and Simulation} & & \\ \mbox{Density Evolution} & & \\ \mbox{Introduction} & & \\ \mbox{CODES OVER FINITE RINGS} & . & . \\ \hline \mbox{Introduction of Codes} & & \\ \mbox{Construction of Codes} & & \\ \mbox{Construction of General Linear Codes} & & \\ \mbox{Construction of General Cyclic Codes} & \\ \hline \mbox{Invariants of Codes} & & \\ \hline \mbox{Codes over \mathbf{Z}_4} & & \\ \mbox{The Gray Map} & & \\ \mbox{Families of Codes over \mathbf{Z}_4} & \\ \end{array}$	 	5153 5155 5157 5157 5158 5160 5162 5167 5169 5169 5169 5169 5172 5173 5175 5176 5176 5176 5178
LOW I 154.1 154.1.1 154.1.2 154.1.3 154.1.3 154.1.4 LINEA 155.2 155.2.1 155.2.1 155.2.1 155.2.3 155.3 155.4 155.4.1 155.4.2 155.4.3	$\begin{array}{l} \mbox{Toric Codes}\\ \mbox{Bibliography} \end{array} \\ \hline \mbox{DENSITY PARITY CHECK CODES} & . \\ \hline \mbox{Introduction} & & \\ \mbox{Constructing LDPC Codes} & & \\ \mbox{Access Functions} & & \\ \mbox{LDPC Decoding and Simulation} & & \\ \mbox{Density Evolution} & & \\ \mbox{Introduction} & & \\ \mbox{CODES OVER FINITE RINGS} & . & . \\ \hline \mbox{Introduction} & & \\ \mbox{Construction of Codes} & & \\ \mbox{Construction of General Linear Codes} & & \\ \mbox{Construction of General Cyclic Codes} & \\ \hline \mbox{Invariants of Codes} & & \\ \hline \mbox{Codes over \mathbf{Z}_4} & & \\ \mbox{The Gray Map} & & \\ \mbox{Families of Codes} & & \\ \hline \mbox{Decodes over \mathbf{Z}_4} & & \\ \mbox{Decodes over \mathbf{Z}_4}$	 	5153 5155 5157 5157 5158 5160 5162 5167 5169 5169 5169 5169 5169 5172 5173 5175 5176 5176 5178 5184
LOW I 154.1 154.1.1 154.1.2 154.1.3 154.1.3 154.1.4 LINEA 155.2 155.2.1 155.2.1 155.2.1 155.2.3 155.3 155.4 155.4.1 155.4.2 155.4.3 155.4.4	Toric Codes Bibliography DENSITY PARITY CHECK CODES . Introduction Constructing LDPC Codes Access Functions LDPC Decoding and Simulation Density Evolution R CODES OVER FINITE RINGS Introduction Construction of Codes Construction of General Linear Codes Construction of General Linear Codes Construction of General Cyclic Codes Invariants of Codes Codes over \mathbf{Z}_4 The Gray Map Families of Codes over \mathbf{Z}_4 Derived Binary Codes The Standard Form	 	5153 . 5155 . 5157 . 5157 . 5157 . 5158 . 5160 . 5162 . 5167 . 5167 . 5169 . 5169 . 5169 . 5172 . 5173 . 5175 . 5176 . 5176 . 5178 . 5184 . 5185
LOW I 153.7 LOW I 154.1 154.1.1 154.1.2 154.1.3 154.1.4 LINEA 155.2 155.2.1 155.2.1 155.2.1 155.2.3 155.4 155.4.1 155.4.2 155.4.3 155.4.3 155.4.3 155.4.4 155.4.5	Toric Codes Bibliography DENSITY PARITY CHECK CODES . Introduction Constructing LDPC Codes Access Functions LDPC Decoding and Simulation Density Evolution R CODES OVER FINITE RINGS Introduction Construction of Codes Construction of General Linear Codes Construction of General Linear Codes Construction of General Cyclic Codes Invariants of Codes Codes over \mathbf{Z}_4 The Gray Map Families of Codes over \mathbf{Z}_4 Derived Binary Codes The Standard Form Constructing New Codes from Old	 	5153 . 5155 . 5157 . 5157 . 5157 . 5158 . 5160 . 5162 . 5167 . 5167 . 5169 . 5169 . 5169 . 5172 . 5173 . 5175 . 5176 . 5176 . 5178 . 5184 . 5185 . 5186 . 5
LOW I 153.7 LOW I 154.1 154.1.1 154.1.2 154.1.3 154.1.4 LINEA 155.2 155.2.1 155.2.1 155.2.1 155.2.3 155.4 155.4.1 155.4.2 155.4.3 155.4.3 155.4.3 155.4.5 155.4.6	Toric Codes Bibliography DENSITY PARITY CHECK CODES . Introduction Constructing LDPC Codes Access Functions LDPC Decoding and Simulation Density Evolution R CODES OVER FINITE RINGS Introduction Construction of Codes Construction of General Linear Codes Construction of General Linear Codes Construction of General Cyclic Codes Invariants of Codes Codes over \mathbf{Z}_4 The Gray Map Families of Codes over \mathbf{Z}_4 Derived Binary Codes The Standard Form Constructing New Codes from Old Invariants of Codes over \mathbf{Z}_4	 	5153 . 5155 . 5157 . 5157 . 5157 . 5158 . 5160 . 5162 . 5167 . 5167 . 5169 . 5169 . 5169 . 5172 . 5173 . 5175 . 5176 . 5176 . 5178 . 5184 . 5184 . 5185 . 5186 . 5189 . 5189 . 5189 . 5185 . 5186 . 5189 . 5185 . 5186 . 5189 . 5185 . 5186 . 5189 . 5185 . 5186 . 5189 . 5185 . 5186 . 5189 . 5185 . 5186 . 5189 . 5185 . 5186 . 5189 . 5185 . 5186 . 5189 . 5185 . 5186 . 5189 . 5185 . 5186 . 5189 . 5185 . 5186 . 5189 . 5185 . 5186 . 5189 . 5185 . 5186 . 5189 . 5185 . 5186 . 5189 . 5185 . 5186 . 5189 . 5185 . 5186 . 5189 . 5186 . 5180 . 5186 . 5180 . 5186 . 5180 . 5
153.7 LOW 1 154.1 154.1.1 154.1.2 154.1.3 154.1.4 LINEA 155.1 155.2 155.2.1 155.2.1 155.2.1 155.2.3 155.4 155.4.1 155.4.2 155.4.3 155.4.3 155.4.5 155.4.5 155.4.6 155.4.7	Toric Codes Bibliography DENSITY PARITY CHECK CODES . Introduction Constructing LDPC Codes Access Functions LDPC Decoding and Simulation Density Evolution R CODES OVER FINITE RINGS Introduction Construction of Codes Construction of General Linear Codes Construction of General Linear Codes Construction of General Cyclic Codes Invariants of Codes Codes over \mathbf{Z}_4 The Gray Map Families of Codes over \mathbf{Z}_4 Derived Binary Codes The Standard Form Constructing New Codes from Old Invariants of Codes over \mathbf{Z}_4 Other \mathbf{Z}_4 functions	 	5153 $. 5155$ 5157 5158 5160 5162 $. 5167$ 5169 5169 5169 5172 5173 5175 5176 5176 5176 5178 5184 5185 5186 5189 5190
154.1 154.1.1 154.1.2 154.1.3 154.1.4 LINEA 155.1 155.2 155.2.1 155.2.3 155.4 155.4.1 155.4.2 155.4.3 155.4.3 155.4.5 155.4.6 155.4.7 155.5	Toric Codes Bibliography DENSITY PARITY CHECK CODES . Introduction Constructing LDPC Codes Access Functions LDPC Decoding and Simulation Density Evolution \mathbf{R} CODES OVER FINITE RINGS Introduction Construction of Codes Construction of General Linear Codes Construction of General Linear Codes Construction of General Cyclic Codes Invariants of Codes Codes over \mathbf{Z}_4 The Gray Map Families of Codes over \mathbf{Z}_4 Derived Binary Codes The Standard Form Constructing New Codes from Old Invariants of Codes over \mathbf{Z}_4 Other \mathbf{Z}_4 functions Construction of Subcodes of Linear Codes	 	5153 $. 5155$ 5157 5157 5158 5160 5162 $. 5167$ 5169 5169 5169 5169 5169 5172 5176 5176 5176 5176 5176 5178 5184 5184 5185 5186 5189 5190 5190 5190
153.7 LOW 1 154.1 154.1.1 154.1.2 154.1.3 154.1.3 154.1.4 LINEA 155.1 155.2 155.2.1 155.2.1 155.2.3 155.4 155.4.1 155.4.2 155.4.3 155.4.3 155.4.3 155.4.3 155.4.3 155.4.5 155.4.5 155.5.1	Toric Codes Bibliography DENSITY PARITY CHECK CODES . Introduction Constructing LDPC Codes Access Functions LDPC Decoding and Simulation Density Evolution \mathbf{R} CODES OVER FINITE RINGS Introduction Construction of Codes Construction of General Linear Codes Construction of General Linear Codes Construction of General Cyclic Codes Invariants of Codes Codes over \mathbf{Z}_4 The Gray Map Families of Codes over \mathbf{Z}_4 Derived Binary Codes The Standard Form Constructing New Codes from Old Invariants of Codes over \mathbf{Z}_4 Other \mathbf{Z}_4 functions Construction of Subcodes of Linear Codes The Subcode Constructor	 	5153 5155 5157 5157 5158 5160 5162 5167 5169 5169 5169 5172 5173 5175 5176 5176 5178 5184 5185 5186 5189 5190
LOW I 153.7 LOW I 154.1 154.1.1 154.1.2 154.1.3 154.1.4 LINEA 155.1 155.2 155.2.1 155.2.1 155.2.1 155.4.1 155.4.1 155.4.1 155.4.2 155.4.3 155.4.1 155.4.3 155.4.3 155.4.5 155.4.5 155.4.5 155.4.6 155.4.7 155.5	Toric Codes Bibliography DENSITY PARITY CHECK CODES . Introduction Constructing LDPC Codes Access Functions LDPC Decoding and Simulation Density Evolution \mathbf{R} CODES OVER FINITE RINGS Introduction Construction of Codes Construction of General Linear Codes Construction of General Linear Codes Construction of General Cyclic Codes Invariants of Codes Codes over \mathbf{Z}_4 The Gray Map Families of Codes over \mathbf{Z}_4 Derived Binary Codes The Standard Form Constructing New Codes from Old Invariants of Codes over \mathbf{Z}_4 Other \mathbf{Z}_4 functions Construction of Subcodes of Linear Codes	 	5153 $. 5155$ 5157 5157 5158 5160 5162 $. 5167$ 5169 5169 5169 5169 5169 5172 5176 5176 5176 5176 5176 5178 5184 5184 5185 5186 5189 5190 5190 5190

155.6.2	Lee Weight	5192
155.6.3	Euclidean Weight	5194
155.7	Weight Enumerators	5195
155.8	Constructing New Codes from Old	5198
155.8.1	Sum, Intersection and Dual	5198
155.8.2	Standard Constructions	5199
155.9	Operations on Codewords	5202
155.9.1	Construction of a Codeword	5202
155.9.2	Operations on Codewords and Vectors	5203
155.9.3	Accessing Components of a Codeword	5205
155.10	Boolean Predicates	5205
155.11	Bibliography	5206

156.1	Introduction	5209
156.2	Construction of Additive Codes	5210
156.2.1	Construction of General Additive Codes	5210
156.2.2	Some Trivial Additive Codes	5212
156.3	Invariants of an Additive Code	5213
156.3.1	The Ambient Space and Alphabet	5213
156.3.2	Basic Numerical Invariants	5214
156.3.3	The Code Space	5215
156.3.4	The Dual Space	5215
156.4	Operations on Codewords	5216
156.4.1	Construction of a Codeword	5216
156.4.2	Arithmetic Operations on Codewords	5216
156.4.3	Distance and Weight	5217
156.4.4	Vector Space and Related Operations	5217
156.4.5	Predicates for Codewords	5218
156.4.6	Accessing Components of a Codeword	5218
156.5	Subcodes	5218
156.5.1	The Subcode Constructor	5218
156.5.2	Sum, Intersection and Dual	5220
156.5.3	Membership and Equality	5221
156.6	Properties of Codes	5221
156.7	The Weight Distribution	5222
156.7.1	The Minimum Weight	5222
156.7.2	The Weight Distribution	5225
156.7.3	The Weight Enumerator	5225
156.7.4	The MacWilliams Transform	5226
156.7.5	Words	5226
156.8	Families of Linear Codes	5227
156.8.1	Cyclic Codes	5227
156.8.2	Quasicyclic Codes	5228
156.9	New Codes from Old	5229
156.9.1	Standard Constructions	5229
156.9.2	Combining Codes	5230
156.10	Automorphism Group	5231

157	QUAN	TUM CODES	5233
	157.1	Introduction	5235
	157.2	Constructing Quantum Codes	5237
	157.2.1	Construction of General Quantum Codes	5237
	157.2.2	Construction of Special Quantum Codes	5242
	157.2.3	CSS Codes	5242
	157.2.4	Cyclic Quantum Codes	5243
	157.2.5	Quasi-Cyclic Quantum Codes	5246
	157.3	Access Functions	5247
	157.3.1	Quantum Error Group	5248
	157.4	Inner Products and Duals	5250
	157.5	Weight Distribution and Minimum Weight	5252
	157.6	New Codes From Old	5255
	157.7	Best Known Quantum Codes	5256
	157.8	Best Known Bounds	5259
	157.9	Automorphism Group	5260
	157.10	Hilbert Spaces	5262
	157.10.1	Creation of Quantum States	5263
	157.10.2	Manipulation of Quantum States	5265
	157.10.3	Inner Product and Probabilities of Quantum States	5266
	157.10.4	Unitary Transformations on Quantum States	5269
	157.11	Bibliography	5270

cxl

VOLUME 1	3: COI	NTENTS
I O D O M D I	0. 001	1 1 1 1 1 1 0

XXII CRYPTOGRAPHY

158	PSEU	JDO-RANDOM BIT SEQUENCES	. 5273
	158.1	Introduction	5275
	158.2	Linear Feedback Shift Registers	5275
	158.3	Number Theoretic Bit Generators	5276
	158.4	Correlation Functions	5278
	158.5	Decimation	5279

cxli

 cxlii

VOLUME 13: CONTENTS

XXIII OPTIMIZATION

159.1 Introduction	. 5283
	5285
159.2 Explicit LP Solving Functions	5286
159.3 Creation of LP objects	5288
159.4 Operations on LP objects	5288
159.5 Bibliography	5291

PART I THE MAGMA LANGUAGE

1	STATEMENTS AND EXPRESSIONS	3
2	FUNCTIONS, PROCEDURES AND PACKAGES	33
3	INPUT AND OUTPUT	63
4	ENVIRONMENT AND OPTIONS	93
5	MAGMA SEMANTICS	115
6	THE MAGMA PROFILER	135
7	DEBUGGING MAGMA CODE	145

1 STATEMENTS AND EXPRESSIONS

1.1	Introduction	5
1.2	Starting, Interrupting and Term nating	i- 5
<ctr quit <ctr <ctr< td=""><td>1>-C ; 1>-D</td><td>5 5 5 5 5</td></ctr<></ctr </ctr 	1>-C ; 1>-D	5 5 5 5 5
1.3	Identifiers	5
1.4	Assignment	6
1.4.1	Simple Assignment	6
x := x ₁ , z _ :=	$x_2, \ldots, x_n := e;$	6 6 6
assi	gned	6
1.4.2	Indexed Assignment	7
	$[e_2][e_n] := e;$, $e_2,,e_n] := e;$	7 7 7
1.4.3	Generator Assignment	8
	, x ₂ ,x _n > := e;]> := e;	8 8
Assi	gnNames(\sim S, [s $_1$, \ldots s $_n$])	9
1.4.4	Mutation Assignment	9
x o:=	= e;	9
1.4.5	$Deletion \ of \ Values \ . \ . \ . \ . \ . \ . \ .$	10
delet	te	10
1.5	Boolean values	10
1.5.1	Creation of Booleans	11
# true false	eans() e om(B)	11 11 11 11 11
1.5.2	Boolean Operators	11
and or xor not		11 11 11 11
1.5.3	Equality Operators	11
eq ne cmpec cmpne 1.5.4	q e	11 12 12 12 12
1.0.4		14
1.6 !	Coercion	13 13

<pre>IsCoercible(S,</pre>	x)	
---------------------------	----	--

13

1.7 The where \dots is Construction .	14
e_1 where id is e_2 e_1 where id := e_2	$\begin{array}{c} 14\\ 14 \end{array}$
1.8 Conditional Statements and Expressions	16
1.8.1 The Simple Conditional Statement .	16
1.8.2 The Simple Conditional Expression .	17
bool select e_1 else e_2	17
1.8.3 The Case Statement	18
1.8.4 The Case Expression	18
1.9 Error Handling Statements	19
1.9.1 The Error Objects	19
Error(x)	19
e'Position	19
e'Traceback	19
e'Object	19
e'Type	19
1.9.2 Error Checking and Assertions	19
error e,, e;	19
error if bool, e,, e; assert bool;	$19 \\ 20$
assert2 bool;	20
assert3 bool;	$\frac{20}{20}$
1.9.3 Catching Errors	20
1.10 Iterative Statements	21
1.10.1 Definite Iteration	21
1.10.2 Indefinite Iteration $\ldots \ldots \ldots \ldots$	22
1.10.3 Early Exit from Iterative Statements.	23
continue;	23
continue <i>id</i> ;	23
break;	23
break <i>id</i> ;	23
1.11 Runtime Evaluation: the eval Expression	- 24
eval <i>expression</i>	24
1.12 Comments and Continuation	26
//	26
/* */	26
λ.	26
1.13 Timing	26
Cputime()	26
Cputime(t)	$\overline{26}$

<pre>Realtime() Realtime(t) ClockCycles() time statement; vtime flag: statement;</pre>	26 27 27 27 27 27
vtime flag, n: statement:	27
1.14 Types, Category Names, and Structures	28
Type(x)	28
Category(x)	28
ExtendedType(x)	28
ExtendedCategory(x)	28
ISA(T, U)	28
MakeType(S)	29
ElementType(S)	29

CoveringStructure(S, T) ExistsCoveringStructure(S, T)	$29 \\ 29$
1.15 Random Object Generation	30
SetSeed(s, c)	30
SetSeed(s)	30
GetSeed()	31
Random(S)	31
Random(a, b)	31
Random(b)	31
1.16 Miscellaneous	32
IsIntrinsic(S)	32
1.17 Bibliography	32

Part I

Chapter 1 STATEMENTS AND EXPRESSIONS

1.1 Introduction

This chapter contains a very terse overview of the basic elements of the MAGMA language.

1.2 Starting, Interrupting and Terminating

If MAGMA has been installed correctly, it may be activated by typing 'magma'.

<Ctrl>-C

Interrupt MAGMA while it is performing some task (that is, while the user does not have a 'prompt') to obtain a new prompt. MAGMA will try to interrupt at a convenient point (this may take some time). If <Ctrl>-C is typed twice within half a second, MAGMA will exit completely immediately.

quit;

<Ctrl>-D

Terminate the current MAGMA-session.

<Ctrl>-\

Immediately quit MAGMA (send the signal SIGQUIT to the MAGMA process on Unix machines). This is occasionally useful when <Ctrl>-C does not seem to work.

1.3 Identifiers

Identifiers (names for user variables, functions etc.) must begin with a letter, and this letter may be followed by any combination of letters or digits, provided that the name is not a *reserved word* (see the chapter on reserved words a complete list). In this definition the underscore $_{-}$ is treated as a letter; but note that a single underscore is a reserved word. Identifier names are case-sensitive; that is, they are distinguished from one another by lower and upper case.

Intrinsic MAGMA functions usually have names beginning with capital letters (current exceptions are pCore, pQuotient and the like, where the p indicates a prime). Note that these identifiers are *not* reserved words; that is, one may use names of intrinsic functions for variables.

THE MAGMA LANGUAGE

1.4 Assignment

In this section the basic forms of assignment of values to identifiers are described.

1.4.1 Simple Assignment

x := expression;

Given an identifier x and an expression expression, assign the value of expression to x.

Example H1E1_

```
> x := 13;
> y := x<sup>2</sup>-2;
> x, y;
13 167
```

Intrinsic function names are identifiers just like the x and y above. Therefore it is possible to reassign them to your own variable.

```
> f := PreviousPrime;
> f(y);
163
```

In fact, the same can also be done with the infix operators, except that it is necessary to enclose their names in quotes. Thus it is possible to define your own function Plus to be the function taking the arguments of the intrinsic + operator.

```
> Plus := '+';
> Plus(1/2, 2);
5/2
```

Note that redefining the infix operator will *not* change the corresponding mutation assignment operator (in this case +:=).

$x_1, x_2, \ldots, x_n := expression;$

Assignment of $n \ge 1$ values, returned by the expression on the right hand side. Here the \mathbf{x}_i are identifiers, and the right hand side expression must return $m \ge n$ values; the first n of these will be assigned to $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ respectively.

```
_ := expression;
```

Ignore the value(s) returned by the expression on the right hand side.

assigned x

An expression which yields the value true if the 'local' identifier x has a value currently assigned to it and false otherwise. Note that the assigned-expression will return false for intrinsic function names, since they are not 'local' variables (the identifiers can be assigned to something else, hiding the intrinsic function).

Example H1E2_

The extended greatest common divisor function Xgcd returns 3 values: the gcd d of the arguments m and n, as well as multipliers x and y such that d = xm + yn. If one is only interested in the gcd of the integers m = 12 and n = 15, say, one could use:

> d := Xgcd(12, 15);

To obtain the multipliers as well, type

> d, x, y := Xgcd(12, 15);

while the following offers ways to retrieve two of the three return values.

> d, x := Xgcd(12, 15); > d, _, y := Xgcd(12, 15); > _, x, y := Xgcd(12, 15);

1.4.2 Indexed Assignment

x[expression1][expression2]...[expressionn] := expression; x[expression1, expression2, ..., expressionn] := expression;

If the argument on the left hand side allows *indexing* at least n levels deep, and if this indexing can be used to modify the argument, this offers two equivalent ways of accessing and modifying the entry indicated by the expressions $expr_i$. The most important case is that of (nested) sequences.

Example H1E3_

Left hand side indexing can be used (as is explained in more detail in the chapter on sequences) to modify existing entries.

```
> s := [ [1], [1, 2], [1, 2, 3] ];
> s;
[
        [ 1 ],
      [ 1, 2 ],
      [ 1, 2 ],
      [ 1, 2, 3 ]
]
> s[2, 2] := -1;
> s;
[
        [ 1 ],
      [ 1, -1 ],
      [ 1, 2, 3 ]
]
```

1.4.3 Generator Assignment

Because of the importance of naming the generators in the case of finitely presented magmas, special forms of assignment allow names to be assigned at the time the magma itself is assigned.

 $E < x_1, x_2, \dots x_n > :=$ expression;

If the right hand side expression returns a structure that allows *naming* of 'generators', such as finitely generated groups or algebras, polynomial rings, this assigns the first *n* names to the variables $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$. Naming of generators usually has two aspects; firstly, the *strings* $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ are used for printing of the generators, and secondly, to the *identifiers* $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ are assigned the values of the generators. Thus, except for this side effect regarding printing, the above assignment is equivalent to the n + 1 assignments:

```
E := expression;
x_1 := E.1; x_2 := E.2; \dots x_n := E.n;
```

E<[x]> := expression;

If the right hand side expression returns a structure S that allows *naming* of 'generators', this assigns the names of S to be those formed by appending the numbers 1, 2, etc. in order enclosed in square brackets to x (considered as a string) and assigns x to the sequence of the names of S.

Example H1E4

We demonstrate the sequence method of generator naming.

```
> P<[X]> := PolynomialRing(RationalField(), 5);
> P;
Polynomial ring of rank 5 over Rational Field
Lexicographical Order
Variables: X[1], X[2], X[3], X[4], X[5]
> X;
Ε
    X[1],
    X[2],
    X[3],
    X[4],
    X[5]
]
> &+X;
X[1] + X[2] + X[3] + X[4] + X[5]
> (&+X)^2;
X[1]^2 + 2*X[1]*X[2] + 2*X[1]*X[3] + 2*X[1]*X[4] +
    2*X[1]*X[5] + X[2]<sup>2</sup> + 2*X[2]*X[3] + 2*X[2]*X[4] +
    2*X[2]*X[5] + X[3]^2 + 2*X[3]*X[4] + 2*X[3]*X[5] +
    X[4]^{2} + 2*X[4]*X[5] + X[5]^{2}
```

AssignNames(\sim S, [s_1 , ... s_n])

If S is a structure that allows *naming* of 'generators' (see the Index for a complete list), this procedure assigns the names specified by the strings to these generators. The number of generators has to match the length of the sequence. This will result in the creation of a new structure.

Example H1E5_

```
> G<a, b> := Group<a, b | a<sup>2</sup> = b<sup>3</sup> = a<sup>b*b<sup>2</sup></sup>;
> w := a * b;
> w;
a * b
> AssignNames(~G, ["c", "d"]);
> G;
Finitely presented group G on 2 generators
Relations
    c^2 = d^{-1} * c * d^3
    d^3 = d^{-1} * c * d^3
> w;
a * b
> Parent(w);
Finitely presented group on 2 generators
Relations
    a^2 = b^{-1} * a * b^3
    b^3 = b^{-1} * a * b^3
> G eq Parent(w);
true
```

1.4.4 Mutation Assignment

x o:= expression;

This is the *mutation assignment*: the expression is evaluated and the operator o is applied on the result and the current value of x, and assigned to x again. Thus the result is equivalent to (but an optimized version of): $x := x \circ$ expression;. The operator may be any of the operations join, meet, diff, sdiff, cat, *, +, -, /, ^, div, mod, and, or, xor provided that the operation is legal on its arguments of course.

Example H1E6_

The following simple program to produce a set consisting of the first 10 powers of 2 involves the use of two different mutation assignments.

```
> x := 1;
> S := { };
> for i := 1 to 10 do
> S join:= { x };
> x *:= 2;
> end for;
> S;
{ 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 }
```

1.4.5 Deletion of Values

delete x

(Statement.) Delete the current value of the identifier x. The memory occupied is freed, unless other variables still refer to it. If x is the name of an intrinsic MAGMA function that has been reassigned to, the identifier will after deletion again refer to that intrinsic function. Intrinsic functions cannot be deleted.

1.5 Boolean values

This section deals with logical values ("Booleans").

Booleans are primarily of importance as (return) values for (intrinsic) predicates. It is important to know that the truth-value of the operators and and or is always evaluated *left to right*, that is, the left-most clause is evaluated first, and if that determines the value of the operator evaluation is aborted; if not, the next clause is evaluated, etc. So, for example, if x is a boolean, it is safe (albeit silly) to type:

```
> if x eq true or x eq false or x/0 eq 1 then
> "fine";
> else
> "error";
> end if;
```

even though x/0 would cause an error ("Bad arguments", not "Division by zero"!) upon evaluation, because the truth value will have been determined before the evaluation of x/0takes place.

1.5.1 Creation of Booleans

Booleans()

The Boolean structure.

#B

Cardinality of Boolean structure (2).

true false

The Boolean elements.

Random(B)

Return a random Boolean.

1.5.2 Boolean Operators

x and y

Returns true if both x and y are true, false otherwise. If x is false, the expression for y is not evaluated.

x or y

Returns true if x or y is true (or both are true), false otherwise. If x is true, the expression for y is not evaluated.

x xor y

Returns true if either x or y is true (but not both), false otherwise.

not x

Negate the truth value of x.

1.5.3 Equality Operators

MAGMA provides two equality operators: eq for strong (comparable) equality testing, and cmpeq for weak equality testing. The operators depend on the concept of *comparability*. Objects x and y in MAGMA are said to be *comparable* if both of the following points hold:

(a) x and y are both elements of a structure S or there is a structure S such x and y will be coerced into S by automatic coercion;

(b) There is an equality test for elements of S defined within MAGMA.

The possible automatic coercions are listed in the descriptions of the various MAGMA modules. For instance, the table in the introductory chapter on rings shows that integers can be coerced automatically into the rational field so an integer and a rational are comparable.

x eq y

If x and y are comparable, return true if x equals y (which will always work by the second rule above). If x and y are not comparable, an error results.

x ne y

If x and y are comparable, return true if x does not equal y. If x and y are not comparable, an error results.

x cmpeq y

If x and y are comparable, return whether x equals y. Otherwise, return false. Thus this operator always returns a value and an error never results. It is useful when comparing two objects of completely different types where it is desired that no error can happen. However, it is strongly recommended that eq is usually used to allow MAGMA to pick up common unintentional type errors.

x cmpne y

If x and y are comparable, return whether x does not equal y. Otherwise, return true. Thus this operator always returns a value and an error never results. It is useful when comparing two objects of completely different types where it is desired that no error can happen. However, it is strongly recommended that **ne** is usually used to allow MAGMA to pick up common unintentional type errors.

Example H1E7_

We illustrate the different semantics of eq and cmpeq.

```
> 1 eq 2/2;
true
> 1 cmpeq 2/2;
true
> 1 eq "x";
Runtime error in 'eq': Bad argument types
> 1 cmpeq "x";
false
> [1] eq ["x"];
Runtime error in 'eq': Incompatible sequences
> [1] cmpeq ["x"];
false
```

1.5.4 Iteration

A Boolean structure B may be used for enumeration: for x in B do, and x in B in set and sequence constructors.

Example H1E8_

The following program checks that the functions ne and xor coincide.

```
> P := Booleans();
> for x, y in P do
> (x ne y) eq (x xor y);
> end for;
true
true
true
true
```

Similarly, we can test whether for any pair of Booleans x, y it is true that

 $x = y \quad \iff \quad (x \wedge y) \lor (\neg x \land \neg y).$

```
> equal := true;
> for x, y in P do
> if (x eq y) and not ((x and y) or (not x and not y)) then
> equal := false;
> end if;
> end for;
> equal;
true
```

1.6 Coercion

Coercion is a fundamental concept in MAGMA. Given a structures A and B, there is often a natural mathematical mapping from A to B (e.g., embedding, projection), which allows one to transfer elements of A to corresponding elements of B. This is known as coercion. Natural and obvious coercions are supported in MAGMA as much as possible; see the relevant chapters for the coercions possible between various structures.

S!x

Given a structure S and an object x, attempt to coerce x into S and return the result if successful. If the attempt fails, an error ensues.

IsCoercible(S, x)

Given a structure S and an object x, attempt to coerce x into S; if successful, return true and the result of the coercion, otherwise return false.

1.7 The where ... is Construction

By the use of the where ... is construction, one can within an expression temporarily assign an identifier to a sub-expression. This allows for compact code and efficient re-use of common sub-expressions.

$expression_1$	where	identifier	is	$expression_2$
$expression_1$	where	identifier	:=	$expression_2$

This construction is an expression that temporarily assigns the identifier to the second expression and then yields the value of the first expression. The identifier may be referred to in the first expression and it will equal the value of the second expression. The token := can be used as a synonym for is. The scope of the identifier is the where ... is construction alone except for when the construction is part of an expression list — see below.

The where operator is left-associative. This means that there can be multiple uses of where ... is constructions and each expression can refer to variables bound in the enclosing constructions.

Another important feature is found in a set or sequence constructor. If there are **where** ... is constructions in the predicate, then any variables bound in them may be referred to in the expression at the beginning of the constructor. If the whole predicate is placed in parentheses, then any variables bound in the predicate do not extend to the expression at the beginning of the constructor.

The where operator also extends left in expression lists. That is, if there is an expression E in a expression list which is a where construction (or chain of where constructions), the identifiers bound in that where construction (or chain) will be defined in all expressions in the list which are to the left of E. Expression lists commonly arise as argument lists to functions or procedures, return arguments, print statements (with or without the word 'print') etc. A where construction also overrides (hides) any where construction to the right of it in the same list. Using parentheses around a where expression ensures that the identifiers bound within it are not seen outside it.

Example H1E9_

The following examples illustrate simple uses of where ... is.

```
> x := 1;
> x where x is 10;
10
> x;
1
> Order(G) + Degree(G) where G is Sym(3);
9
```

Since where is left-associative we may have multiple uses of it. The use of parentheses, of course, can override the usual associativity.

> x := 1;

STATEMENTS AND EXPRESSIONS

```
Ch. 1
```

```
> y := 2;
> x + y where x is 5 where y is 6;
11
> (x + y where x is 5) where y is 6; // the same
11
> x + y where x is (5 where y is 6);
7
> x + y where x is y where y is 6;
12
> (x + y where x is y) where y is 6; // the same
12
> x + y where x is (y where y is 6);
8
```

We now illustrate how the left expression in a set or sequence constructor can reference the identifiers of where constructions in the predicate.

```
> { a: i in [1 .. 10] | IsPrime(a) where a is 3*i + 1 };
{ 7, 13, 19, 31 }
> [<x, y>: i in [1 .. 10] | IsPrime(x) and IsPrime(y)
> where x is y + 2 where y is 2 * i + 1];
[ <5, 3>, <7, 5>, <13, 11>, <19, 17> ]
```

We next demonstrate the semantics of where constructions inside expression lists.

```
> // A simple use:
> [a, a where a is 1];
[1,1]
> // An error: where does not extend right
> print [a where a is 1, a];
User error: Identifier 'a' has not been declared
> // Use of parentheses:
> [a, (a where a is 1)] where a is 2;
[2, 1]
> // Another use of parentheses:
> print [a, (a where a is 1)];
User error: Identifier 'a' has not been declared
> // Use of a chain of where expressions:
> [<a, b>, <b, a> where a is 1 where b is 2];
[ <1, 2>, <2, 1> ]
> // One where overriding another to the right of it:
> [a, a where a is 2, a where a is 3];
[2, 2, 3]
```

1.8 Conditional Statements and Expressions

The conditional statement has the usual form if ... then ... else ... end if;. It has several variants. Within the statement, a special prompt will appear, indicating that the statement has yet to be closed. Conditional statements may be nested.

The conditional expression, **select** ... **else**, is used for in-line conditionals.

1.8.1 The Simple Conditional Statement

```
if Boolean expression then
    statements1
else
    statements2
end if;
```

```
if Boolean expression then
    statements
end if;
```

The standard conditional statement: the value of the Boolean expression is evaluated. If the result is **true**, the first block of statements is executed, if the result is **false** the second block of statements is executed. If no action is desired in the latter case, the construction may be abbreviated to the second form above.

```
if Boolean expression1 then
    statements1
elif Boolean expression2 then
    statements2
else
    statements3
end if;
```

Since nested conditions occur frequently, elif provides a convenient abbreviation for else if, which also restricts the 'level':

if $Boolean \ expression$ then

```
statements_1
```

elif $Boolean \ expression_2$ then

```
statements_2
```

```
else
```

 $statements_3$

end if;

is equivalent to

if $Boolean expression_1$ then $statements_1$

else

if $Boolean \ expression_2$ then

```
statements<sub>2</sub>
else
statements<sub>3</sub>
end if;
end if;
```

```
Example H1E10___
```

```
> m := Random(2, 10000);
> if IsPrime(m) then
> m, "is prime";
> else
> Factorization(m);
> end if;
[ <23, 1>, <37, 1> ]
```

1.8.2 The Simple Conditional Expression

Boolean expression select expression₁ else expression₂

This is an expression, of which the value is that of $expression_1$ or $expression_2$, depending on whether Boolean expression is true or false.

Example H1E11_

Using the select \ldots else construction, we wish to assign the sign of y to the variable s.

```
> y := 11;
> s := (y gt 0) select 1 else -1;
> s;
1
```

This is not quite right (when y = 0), but fortunately we can nest select ... else constructions:

```
> y := -3;
> s := (y gt 0) select 1 else (y eq 0 select 0 else -1);
> s;
-1
> y := 0;
> s := (y gt 0) select 1 else (y eq 0 select 0 else -1);
> s;
0
```

The select ... else construction is particularly important in building sets and sequences, because it enables in-line if constructions. Here is a sequence containing the first 100 entries of the Fibonacci sequence:

> f := [i gt 2 select Self(i-1)+Self(i-2) else 1 : i in [1..100]];

1.8.3 The Case Statement

```
case expression :
   when expression, ..., expression:
        statements
        :
        when expression, ..., expression:
        statements
end case;
```

The expression following **case** is evaluated. The statements following the first expression whose value equals this value are executed, and then the **case** statement has finished. If none of the values of the expressions equal the value of the **case** expression, then the statements following **else** are executed. If no action is desired in the latter case, the construction may be abbreviated to the second form above.

Example H1E12_

```
> x := 73;
> case Sign(x):
>
     when 1:
        x, "is positive";
>
     when 0:
>
>
        x, "is zero";
     when -1:
>
        x, "is negative";
>
> end case;
73 is positive
```

1.8.4 The Case Expression

```
case< expression |
    expression<sub>left,1</sub> : expression<sub>right,1</sub>,
    :
    expression<sub>left,n</sub> : expression<sub>right,n</sub>,
    default : expression<sub>def</sub> >
```

This is the expression form of case. The expression is evaluated to the value v. Then each of the left-hand expressions $expression_{\text{left},i}$ is evaluated until one is found whose value equals v; if this happens the value of the corresponding right-hand expression $expression_{\text{right},i}$ is returned. If no left-hand expression with value v is found the value of the default expression $expression_{\text{def}}$ is returned.

The default case cannot be omitted, and must come last.

1.9 Error Handling Statements

MAGMA has facilities for both reporting and handling errors. Errors can arise in a variety of circumstances within MAGMA's internal code (due to, for instance, incorrect usage of a function, or the unexpected failure of an algorithm). MAGMA allows the user to raise errors in their own code, as well as catch many kinds of errors.

1.9.1 The Error Objects

All errors in MAGMA are of type Err. Error objects not only include a description of the error, but also information relating to the location at which the error was raised, and whether the error was a user error, or a system error.

Error(x)

Constructs an error object with user information given by x, which can be of any type. The object x is stored in the Object attributed of the constructed error object, and the Type attribute of the object is set to "ErrUser". The remaining attributes are uninitialized until the error is raised by an error statement; at that point they are initialized with the appropriate positional information.

e'Position

Stores the position at which the error object e was raised. If the error object has not yet been raised, the attribute is undefined.

e'Traceback

Stores the stack traceback giving the position at which the error object e was raised. If the error object has not yet been raised, the attribute is undefined.

e'Object

Stores the user defined error information for the error. If the error is a system error, then this will be a string giving a textual description of the error.

e'Type

Stores the type of the error. Currently, there are only two types of errors in Magma: "Err" denotes a system error, and "ErrUser" denotes an error raised by the user.

1.9.2 Error Checking and Assertions

error expression, ..., expression;

Raises an error, with the error information being the printed value of the expressions. This statement is useful, for example, when an illegal value of an argument is passed to a function.

error if Boolean expression, expression, ..., expression;

If the given boolean expression evaluates to true, then raises an error, with the error information being the printed value of the expressions. This statement is designed for checking that certain conditions must be met, etc.

assert Boolean expression; assert2 Boolean expression;

assert3 Boolean expression;

These assertion statements are useful to check that certain conditions are satisfied. There is an underlying Assertions flag, which is set to 1 by default.

For each statement, if the Assertions flag is less than the level specified by the statement (respectively 1, 2, 3 for the above statements), then nothing is done. Otherwise, the given boolean expression is evaluated and if the result is false, an error is raised, with the error information being an appropriate message.

It is recommended that when developing package code, assert is used for important tests (always to be tested in any mode), while assert2 is used for more expensive tests, only to be checked in the debug mode, while assert3 is be used for extremely stringent tests which are very expensive.

Thus the Assertions flag can be set to 0 for no checking at all, 1 for normal checks, 2 for debug checks and 3 for extremely stringent checking.

1.9.3 Catching Errors

```
try
   statements1
catch e
   statements2
end try;
```

The try/catch statement lets users handle raised errors. The semantics of a try/catch statement are as follows: the block of statements $statements_1$ is executed. If no error is raised during its execution, then the block of statements $statements_2$ is not executed; if an error is raised at any point in $statements_1$, execution *immediately* transfers to $statements_2$ (the remainder of $statements_1$ is not executed). When transfer is controlled to the catch block, the variable named e is initialized to the error that was raised by $statements_1$; this variable remains in scope until the end of the catch block, and can be both read from and written to. The catch block can, if necessary, reraise e, or any other error object, using an error statement.

Example H1E13_

The following example demonstrates the use of error objects, and try/catch statements.

```
> procedure always_fails(x)
> error Error(x);
> end procedure;
> 
> try
> always_fails(1);
```

```
> always_fails(2); // we never get here
> catch e
> print "In catch handler";
> error "Error calling procedure with parameter: ", e'Object;
> end try;
In catch handler
Error calling procedure with parameter: 1
```

1.10 Iterative Statements

Three types of iterative statement are provided in MAGMA: the for-statement providing definite iteration and the while- and repeat-statements providing indefinite iteration.

Iteration may be performed over an arithmetic progression of integers or over any finite enumerated structure. Iterative statements may be nested. If nested iterations occur over the same enumerated structure, abbreviations such as for x, y in X do may be used; the leftmost identifier will correspond to the outermost loop, etc. (For nested iteration in sequence constructors, see Chapter 10.)

Early termination of the body of loop may be specified through use of the 'jump' commands break and continue.

1.10.1 Definite Iteration

for i := expression1 to expression2 by expression3 do
 statements
end for;

The expressions in this **for** loop must return integer values, say b, e and s (for 'begin', 'end' and 'step') respectively. The loop is ignored if either s > 0 and b > e, or s < 0 and b < e. If s = 0 an error occurs. In the remaining cases, the value $b + k \cdot s$ will be assigned to **i**, and the statements executed, for k = 0, 1, 2, ... in succession, as long as $b + k \cdot s \le e$ (for e > 0) or $b + k \cdot s \ge e$ (for e < 0). If the required step size is 1, the above may be abbreviated to:

If the required step size is 1, the above may be abbreviated to:

for	i	:=	expression	$ssion_1$	to	ez	xpre	ssion	2	do
statements										
end	fc	or;								
for	х	in	S do							
5	sta	tem	ents							

end for;

Each of the elements of the finite enumerated structure S will be assigned to x in succession, and each time the statements will be executed. It is possible to nest several of these for loops compactly as follows.

```
for x_{11}, ..., x_{1n_1} in S_1, ..., x_{m1}, ..., x_{mn_m} in S_m do statements end for;
```

1.10.2 Indefinite Iteration

```
while Boolean expression do
    statements
end while;
```

Check whether or not the Boolean expression has the value true; if it has, execute the statements. Repeat this until the expression assumes the value false, in which case statements following the end while; will be executed.

Example H1E14_

The following short program implements a run of the famous 3x + 1 problem on a random integer between 1 and 100.

```
> x := Random(1, 100);
> while x gt 1 do
> x;
>
      if IsEven(x) then
>
        x div:= 2;
>
      else
>
         x := 3*x+1;
      end if;
>
> end while;
13
40
20
10
5
16
8
4
2
```

repeat					
sta	tements				
until	Boolean expression;				

Execute the statements, then check whether or not the Boolean expression has the value true. Repeat this until the expression assumes the value false, in which case the loop is exited, and statements following it will be executed.

Example H1E15_

This example is similar to the previous one, except that it only prints x and the number of steps taken before x becomes 1. We use a **repeat** loop, and show that the use of a **break** statement sometimes makes it unnecessary that the Boolean expression following the **until** ever evaluates to **true**. Similarly, a **while true** statement may be used if the user makes sure the loop will be exited using **break**.

```
> x := Random(1, 1000);
> x;
172
> i := 0;
> repeat
>
      while IsEven(x) do
>
          i +:= 1;
>
          x div:= 2;
>
      end while;
      if x eq 1 then
>
>
          break;
>
      end if;
>
      x := 3*x+1;
      i +:= 1;
>
> until false;
> i;
31
```

1.10.3 Early Exit from Iterative Statements

continue;

The continue statement can be used to jump to the end of the innermost enclosing loop: the termination condition for the loop is checked immediately.

continue *identifier*;

As in the case of break, this allows jumps out of nested for loops: the termination condition of the loop with loop variable *identifier* is checked immediately after continue *identifier* is encountered.

break;

A break inside a loop causes immediate exit from the innermost enclosing loop.

break identifier;

In nested **for** loops, this allows breaking out of several loops at once: this will cause an immediate exit from the loop with loop variable *identifier*. Example H1E16_

```
> p := 10037;
> for x in [1 .. 100] do
     for y in [1 .. 100] do
>
>
        if x^2 + y^2 eq p then
>
           х, у;
>
           break x;
>
        end if;
>
     end for;
> end for;
46 89
```

Note that **break** instead of **break x** would have broken only out of the inner loop; the output in that case would have been:

46 89 89 46

1.11 Runtime Evaluation: the eval Expression

Sometimes it is convenient to able to evaluate expressions that are dynamically constructed at runtime. For instance, consider the problem of implementing a database of mathematical objects in MAGMA. Suppose that these mathematical objects are very large, but can be constructed in only a few lines of MAGMA code (a good example of this would be MAGMA's database of best known linear codes). It would be very inefficient to store these objects in a file for later retrieval; a better solution would be to instead store a string giving the code necessary to construct each object. MAGMA's eval feature can then be used to dynamically parse and execute this code on demand.

eval *expression*

The eval expression works as follows: first, it evaluates the given *expression*, which must evaluate to a string. This string is then treated as a piece of MAGMA code which yields a result (that is, the code must be an expression, not a statement), and this result becomes the result of the eval expression.

The string that is evaluated can be of two forms: it can be a MAGMA expression, e.g., "1+2", "Random(x)", or it can be a sequence of MAGMA statements. In the first case, the string does not have to be terminated with a semicolon, and the result of the expression given in the string will be the result of the eval expression. In the second case, the last statement given in the string should be a return statement; it is easiest to think of this case as defining the body of a function.

The string that is used in the **eval** expression can refer to any variable that is in scope during the evaluation of the **eval** expression. However, it is not possible for the expression to *modify* any of these variables.

Example H1E17____

In this example we demonstrate the basic usage of the eval keyword.

```
> x := eval "1+1"; // OK
> x;
2
> eval "1+1;"; // not OK
2
>> eval "1+1;"; // not OK
Runtime error: eval must return a value
> eval "return 1+1;"; // OK
2
> eval "x + 1"; // OK
3
> eval "x := x + 1; return x";
>> eval "x := x + 1; return x";
In eval expression, line 1, column 1:
>> x := x + 1; return x;
    Located in:
    >> eval "x := x + 1; return x";
User error: Imported environment value 'x' cannot be used as a local
```

Example H1E18_

In this example we demonstrate how **eval** can be used to construct MAGMA objects specified with code only available at runtime.

```
> M := Random(MatrixRing(GF(2), 5));
> M;
[1 1 1 1 1]
[0 0 1 0 1]
[0 0 1 0 1]
[1 0 1 1 1]
[1 1 0 1 1]
> Write("/tmp/test", M, "Magma");
> s := Read("/tmp/test");
> s;
MatrixAlgebra(GF(2), 5) ! [ GF(2) | 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1]
> M2 := eval s;
> assert M eq M2;
```

1.12 Comments and Continuation

//

One-line comment: any text following the double slash on the same line will be ignored by MAGMA.

/* */

Multi-line comment: any text between /* and */ is ignored by MAGMA.

\

Line continuation character: this symbol and the **<return>** immediately following is ignored by MAGMA. Evaluation will continue on the next line without interruption. This is useful for long input lines.

Example H1E19_

```
> // The following produces an error:
> x := 12
> 34;
User error: bad syntax
> /* but this is correct
> and reads two lines: */
> x := 12\
> 34;
> x;
1234
```

1.13 Timing

Cputime()

Return the CPU time (as a real number of default precision) used since the beginning of the MAGMA session. Note that for the MSDOS version, this is the real time used since the beginning of the session (necessarily, since process CPU time is not available).

Cputime(t)

Return the CPU time (as a real number of default precision) used since time t. Time starts at 0.0 at the beginning of a MAGMA session.

Realtime()

Return the absolute real time (as a real number of default precision), which is the number of seconds since 00:00:00 GMT, January 1, 1970. For the MSDOS version, this is the real time used since the beginning of the session.

Realtime(t)

Return the real time (as a real number of default precision) elapsed since time t.

ClockCycles()

Return the number of clock cycles of the CPU since Magma's startup. Note that this matches the real time (i.e., not process user/system time). If the operation is not supported on the current processor, zero is returned.

time statement;

Execute the statement and print the time taken when the statement is completed.

```
vtime flag: statement;
```

vtime flag, n: statement:

If the verbose flag flag (see the function SetVerbose) has a level greater than or equal to n, execute the statement and print the time taken when the statement is completed. If the flag has level 0 (i.e., is not turned on), still execute the statement, but do not print the timing. In the first form of this statement, where a specific level is not given, n is taken to be 1. This statement is useful in MAGMA code found in packages where one wants to print the timing of some sub-algorithm if and only if an appropriate verbose flag is turned on.

Example H1E20_

The time command can be used to time a single statement.

```
> n := 2^109-1;
> time Factorization(n);
[<745988807, 1>, <870035986098720987332873, 1>]
Time: 0.149
```

Alternatively, we can extract the current time t and use Cputime. This method can be used to time the execution of several statements.

```
> m := 2^111-1;
> n := 2^113-1;
> t := Cputime();
> Factorization(m);
[<7, 1>, <223, 1>, <321679, 1>, <26295457, 1>, <319020217, 1>, <616318177, 1>]
> Factorization(n);
[<3391, 1>, <23279, 1>, <65993, 1>, <1868569, 1>, <1066818132868207, 1>]
> Cputime(t);
0.121
```

We illustrate a simple use of vtime with vprint within a function.

```
> function MyFunc(G)
> vprint User1: "Computing order...";
> vtime User1: o := #G;
```

```
> return o;
> end function;
> SetVerbose("User1", 0);
> MyFunc(Sym(4));
24
> SetVerbose("User1", 1);
> MyFunc(Sym(4));
Computing order...
Time: 0.000
24
```

1.14 Types, Category Names, and Structures

The following functions deal with *types* or *category names* and general structures. MAGMA has two levels of granularity when referring to types. In most cases, the coarser grained types (of type Cat) are used. Examples of these kinds of types are "polynomial rings" (RngUPol) and "finite fields" (FldFin). However, sometimes more specific typing information is sometimes useful. For instance, the algorithm used to factorize polynomials differs significantly, depending on the coefficient ring. Hence, we might wish to implement a specialized factorization algorithm polynomials over some particular ring type. Due to this need, MAGMA also supports *extended types*.

An extended type (of type ECat) can be thought of as a type taking a parameter. Using extended types, we can talk about "polynomial rings over the integers" (RngUPol[RngInt]), or "maps from the integers to the rationals" (Map[RngInt, FldRat]). Extended types can interact with normal types in all ways, and thus generally only need to be used when the extra level of information is required.

```
Type(x)
Category(x)
```

Given any object x, return the type (or category name) of x.

```
ExtendedType(x)
```

```
ExtendedCategory(x)
```

Given any object x, return the extended type (or category name) of x.

ISA(T, U)

Given types (or extended types) T and U, return whether T ISA U, i.e., whether objects of type T inherit properties of type U. For example, ISA(RngInt, Rng) is true, because the ring of integers \mathbf{Z} is a ring.

STATEMENTS AND EXPRESSIONS

MakeType(S)

Given a string S specifying a type return the actual type corresponding to S. This is useful when some intrinsic name hides the symbol which normally refers to the actual type.

ElementType(S)

Given any structure S, return the type of the elements of S. For example, the element type of the ring of integers \mathbf{Z} is RngIntElt since that is the type of the integers which lie in \mathbf{Z} .

CoveringStructure(S, T)

Given structures S and T, return a covering structure C for S and T, so that S and T both embed into C. An error results if no such covering structure exists.

ExistsCoveringStructure(S, T)

Given structures S and T, return whether a covering structure C for S and T exists, and if so, return such a C, so that S and T both embed into C.

Example H1E21_

We demonstrate the type and structure functions.

```
> Type(3);
RngIntElt
> t := MakeType("RngIntElt");
> t;
RngIntElt
> Type(3) eq t;
true
> Z := IntegerRing();
> Type(Z);
RngInt
> ElementType(Z);
RngIntElt
> ISA(RngIntElt, RngElt);
true
> ISA(RngIntElt, GrpElt);
false
> ISA(FldRat, Fld);
true
```

The following give examples of when covering structures exist or do not exist.

```
> Q := RationalField();
> CoveringStructure(Z, Q);
Rational Field
> ExistsCoveringStructure(Z, DihedralGroup(3));
false
```

Ch. 1

```
> ExistsCoveringStructure(Z, CyclotomicField(5));
true Cyclotomic Field of order 5 and degree 4
> ExistsCoveringStructure(CyclotomicField(3), CyclotomicField(5));
true Cyclotomic Field of order 15 and degree 8
> ExistsCoveringStructure(GF(2), GF(3));
false
> ExistsCoveringStructure(GF(2^6), GF(2, 15));
true Finite field of size 2^30
```

Our last example demonstrates the use of extended types:

```
> R<x> := PolynomialRing(Integers());
> ExtendedType(R);
RngUPol[RngInt]
> ISA(RngUPol[RngInt], RngUPol);
true
> f := x + 1;
> ExtendedType(f);
RngUPolElt[RngInt]
> ISA(RngUPolElt[RngInt], RngUPolElt);
true
```

1.15 Random Object Generation

Pseudo-random quantities are used in several MAGMA algorithms, and may also be generated explicitly by some intrinsics. Throughout the Handbook, the word 'random' is used for 'pseudo-random'.

Since V2.7 (June 2000), MAGMA contains an implementation of the *Monster* random number generator of G. Marsaglia [Mar00]. The period of this generator is $2^{29430} - 2^{27382}$ (approximately 10^{8859}), and passes all of the stringent tests in Marsaglia's *Diehard* test suite [Mar95]. Since V2.13 (July 2006), this generator is combined with the MD5 hash function to produce a higher-quality result.

Because the generator uses an internal array of machine integers, one 'seed' variable does not express the whole state, so the method for setting or getting the generator state is by way of a pair of values: (1) the seed for initializing the array, and (2) the number of steps performed since the initialization.

```
SetSeed(s, c)
```

```
SetSeed(s)
```

(Procedure.) Reset the random number generator to have initial seed s ($0 \le s < 2^{32}$), and advance to step c ($0 \le c < 2^{64}$). If c is not given, it is taken to be 0. Passing -Sn to MAGMA at startup is equivalent to typing SetSeed(n); after startup.

30

GetSeed()

Return the initial seed s used to initialize the random-number generator and also the current step c. This is the complement to the SetSeed function.

Random(S)

Given a finite set or structure S, return a random element of S.

Random(a, b)

Return a random integer lying in the interval [a, b], where $a \leq b$.

Random(b)

Return a random integer lying in the interval [0, b], where b is a non-negative integer. Because of the good properties of the underlying Monster generator, calling Random(1) is a good safe way to produce a sequence of random bits.

Example H1E22_

We demonstrate how one can return to a previous random state by the use of GetSeed and SetSeed. We begin with initial seed 1 at step 0 and create a multi-set of 100,000 random integers in the range [1..4].

```
> SetSeed(1);
> GetSeed();
1 0
> time S := {* Random(1, 4): i in [1..100000] *};
Time: 0.490
> S;
{* 1^24911, 2^24893, 3^25139, 4^25057 *}
```

We note the current state by GetSeed, and then print 10 random integers in the range [1..100].

```
> GetSeed();
1 100000
> [Random(1, 100): i in [1 .. 10]];
[ 85, 41, 43, 69, 66, 61, 63, 31, 84, 11 ]
> GetSeed();
1 100014
```

We now restart with a different initial seed 23 (again at step 0), and do the same as before, noting the different random integers produced.

```
> SetSeed(23);
> GetSeed();
23 0
> time S := {* Random(1, 4): i in [1..100000] *};
Time: 0.500
> S;
{* 1^24962, 2^24923, 3^24948, 4^25167 *}
> GetSeed();
```

```
23 100000
> [Random(1, 100): i in [1 .. 10]];
[ 3, 93, 11, 62, 6, 73, 46, 52, 100, 30 ]
> GetSeed();
23 100013
```

Finally, we restore the random generator state to what it was after the creation of the multi-set for the first seed. We then print the 10 random integers in the range [1..100], and note that they are the same as before.

```
> SetSeed(1, 100000);
> [Random(1, 100): i in [1 .. 10]];
[ 85, 41, 43, 69, 66, 61, 63, 31, 84, 11 ]
> GetSeed();
1 100014
```

1.16 Miscellaneous

```
IsIntrinsic(S)
```

Given a string S, return true if and only an intrinsic with the name S exists in the current version of MAGMA. If the result is true, return also the actual intrinsic.

Example H1E23_

We demonstrate the function IsIntrinsic.

```
> IsIntrinsic("ABCD");
false
> 1, a := IsIntrinsic("Abs");
> 1;
true
> a(-3);
3
```

1.17 Bibliography

[Mar95] G. Marsaglia. DIEHARD: a battery of tests of randomness. URL:http://stat.fsu.edu/pub/diehard/, 1995.

[Mar00] G. Marsaglia. The Monster, a random number generator with period 10^{2857} times as long as the previously touted longest-period one. Preprint, 2000.

32

2 FUNCTIONS, PROCEDURES AND PACKAGES

2.1 Introduction 3	5
2.2 Functions and Procedures 3	5
2.2.1 Functions	35
	86 86
2.2.2 Procedures	39
$p := proc < x_1,, x_n,: - e>; 4$	
	11
forward 4	1
	2
2.3.1 Introduction	12
2.3.2 Intrinsics	13
intrinsic 4	3
2.3.3 Resolving Calls to Intrinsics 4	15
2.3.4 Attaching and Detaching Package Files4	16
Detach(F) 4	7 7 7
2.3.5 Related Files	17
2.3.6 Importing Constants	17
<pre>import "filename": ident_list; 4</pre>	$\overline{7}$
2.3.7 Argument Checking	18
requirerange v, L, U; 4	8 8 8
2.3.8 Package Specification Files 4	19
	9 9

2.3.9 User Startup Specification Files 50
2.4 Attributes 51
2.4.1 Predefined System Attributes 51
2.4.2 User-defined Attributes 52
AddAttribute(C, F) 52 declare attributes $C: F_1, \ldots, F_n;$ 52
2.4.3 Accessing Attributes
S'fieldname 52 S''N 52 assigned 52 assigned 52 S'fieldname := e; 53 S''N := e; 53
delete S'fieldname; 53
delete S''N; 53
GetAttributes(C) 53 ListAttributes(C) 53
2.5 User-defined Verbose Flags 53
declare verbose F , m ; 53
2.5.1 Examples 53
2.6 User-Defined Types 56
2.6.1 Declaring User-Defined Types 56
declare type T ; 56 declare type $T: P_1, \ldots, P_n$; 56
declare type $T[E]$; 56
declare type $T[E]:P_1,\ldots,P_n$; 56
2.6.2 Creating an Object
New(T) 57
2.6.3 Special Intrinsics Provided by the User 57
2.6.4 Examples

Chapter 2 FUNCTIONS, PROCEDURES AND PACKAGES

2.1 Introduction

Functions are one of the most fundamental elements of the MAGMA language. The first section describes the various ways in which a standard function may be defined while the second section describes the definition of a procedure (i.e. a function which doesn't return a value). The second half of the chapter is concerned with user-defined *intrinsic* functions and procedures.

2.2 Functions and Procedures

There are two slightly different syntactic forms provided for the definition of a user function (as opposed to an intrinsic function). For the case of a function whose definition can be expressed as a single expression, an abbreviated form is provided. The syntax for the definition of user procedures is similar. Names for functions and procedures are ordinary identifiers and so obey the rules as given in Chapter 1 for other variables.

2.2.1 Functions

```
f := function(x<sub>1</sub>, ..., x<sub>n</sub>: parameters)
    statements
end function;
function f(x<sub>1</sub>, ..., x<sub>n</sub>: parameters)
    statements
end function;
```

This creates a function taking $n \ge 0$ arguments, and assigns it to f. The statements may comprise any number of valid MAGMA statements, but at least one of them must be of the form **return** expression;. The value of that expression (possibly dependent on the values of the arguments x_1, \ldots, x_n) will be the return value for the function; failure to return a value will lead to a run-time error when the function is invoked. (In fact, a return statement is also required for every additional 'branch' of the function that has been created using an **if** ... **then** ... **else** ... construction.)

The function may return multiple values. Usually one uses the form return expression, ..., expression;. If one wishes to make the last return value(s) undefined (so that the number of return values for the function is the same in all 'branches' of

the function) the underscore symbol (_) may be used. (The undefined symbol may only be used for final values of the list.) This construct allows behaviour similar to the intrinsic function IsSquare, say, which returns true and the square root of its argument if that exists, and false and the undefined value otherwise. See also the example below.

If there are parameters given, they must consist of a comma-separated list of clauses each of the form identifier := value. The identifier gives the name of the parameter, which can then be treated as a normal value argument within the statements. The value gives a default value for the parameter, and may depend on any of the arguments or preceding parameters; if, when the function is called, the parameter is not assigned a value, this default value will be assigned to the parameter. Thus parameters are always initialized. If no parameters are desired, the colon following the last argument, together with *parameters*, may be omitted.

The only difference between the two forms of function declaration lies in recursion. Functions may invoke themselves recursively since their name is part of the syntax; if the first of the above declarations is used, the identifier f cannot be used inside the definition of f (and \$\$ will have to be used to refer to f itself instead), while the second form makes it possible to refer to f within its definition.

An invocation of the user function f takes the form $f(\mathbf{m}_1, \ldots, \mathbf{m}_n)$, where m_1, \ldots, m_n are the actual arguments.

$f := function(x_1, \ldots, x_n, \ldots)$ parameters statements	3)
end function;	
function $f(x_1, \ldots, x_n, \ldots)$ parameters) statements	
end function;	

This creates a *variadic* function, which can take n or more arguments. The semantics are identical to the standard function definition described above, with the exception of function invocation. An invocation of a variadic function f takes the form $f(y_1, \ldots, y_m)$, where y_1, \ldots, y_m are the arguments to the function, and $m \ge n$. These arguments get bound to the parameters as follows: for i < n, the argument y_i is bound to the parameter x_i . For $i \ge n$, the arguments y_i are bound to the last parameter x_n as a list $[*y_n, \ldots, y_m*]$.

 $f := func < x_1, \ldots, x_n$: parameters | expression>;

This is a short form of the function constructor designed for the situation in which the value of the function can be defined by a single expression. A function f is created which returns the value of the expression (possibly involving the function arguments x_1, \ldots, x_n). Optional parameters are permitted as in the standard function constructor.

$f := func < x_1, \ldots, x_n, \ldots$; parameters | expression>;

This is a short form of the function constructor for *variadic functions*, otherwise identical to the short form describe above.

Ch. 2 $\,$

Example H2E1_

This example illustrates recursive functions.

```
> fibonacci := function(n)
>
   if n le 2 then
>
       return 1;
>
    else
       return $$(n-1) + $$(n-2);
>
   end if;
>
> end function;
>
> fibonacci(10)+fibonacci(12);
199
> function Lucas(n)
>
   if n eq 1 then
>
       return 1;
>
    elif n eq 2 then
       return 3;
>
>
    else
       return Lucas(n-1)+Lucas(n-2);
>
    end if;
>
> end function;
>
> Lucas(11);
199
> fibo := func< n | n le 2 select 1 else $$(n-1) + $$(n-2) >;
> fibo(10)+fibo(12);
199
```

Example H2E2_

This example illustrates the use of parameters.

```
> f := function(x, y: Proof := true, Al := "Simple")
> return <x, y, Proof, Al>;
> end function;
>
> f(1, 2);
<1, 2, true, Simple>
> f(1, 2: Proof := false);
<1, 2, false, Simple>
> f(1, 2: Al := "abc", Proof := false);
<1, 2, false, abc>
```

Example H2E3_

This example illustrates the returning of undefined values.

```
> f := function(x)
   if IsOdd(x) then
>
>
        return true, x;
>
  else
>
         return false, _;
    end if;
>
> end function;
>
> f(1);
true 1
> f(2);
false
> a, b := f(1);
> a;
true
> b;
1
> a, b := f(2);
> a;
false
> // The following produces an error:
> b;
>> b;
```

User error: Identifier 'b' has not been assigned

Example H2E4___

This example illustrates the use of variadic functions.

```
> f := function(x, y, ...)
     print "x: ", x;
>
>
     print "y: ", y;
     return [x + z : z in y];
>
> end function;
>
> f(1, 2);
x: 1
y: [* 2*]
[3]
> f(1, 2, 3);
x: 1
y: [* 2, 3*]
[3,4]
> f(1, 2, 3, 4);
```

x: 1 y: [* 2, 3, 4*] [3, 4, 5]

2.2.2 Procedures

```
p := procedure(x<sub>1</sub>, ..., x<sub>n</sub>: parameters)
    statements
end procedure;
procedure p(x<sub>1</sub>, ..., x<sub>n</sub>: parameters)
    statements
end procedure;
```

The procedure, taking $n \ge 0$ arguments and defined by the statements is created and assigned to p. Each of the arguments may be either a variable (y_i) or a referenced variable $(\sim y_i)$. Inside the procedure only referenced variables (and local variables) may be (re-)assigned to. The procedure p is invoked by typing $p(x_1, \ldots, x_n)$, where the same succession of variables and referenced variables is used (see the example below). Procedures cannot return values.

If there are parameters given, they must consist of a comma-separated list of clauses each of the form identifier := value. The identifier gives the name of the parameter, which can then be treated as a normal value argument within the statements. The value gives a default value for the parameter, and may depend on any of the arguments or preceding parameters; if, when the function is called, the parameter is not assigned a value, this default value will be assigned to the parameter. Thus parameters are always initialized. If no parameters are desired, the colon following the last argument, together with *parameters*, may be omitted.

As in the case of function, the only difference between the two declarations lies in the fact that the second version allows recursive calls to the procedure within itself using the identifier (p in this case).

```
p := procedure(x<sub>1</sub>, ..., x<sub>n</sub>, ...: parameters)
    statements
end procedure;
procedure p(x<sub>1</sub>, ..., x<sub>n</sub>, ...: parameters)
    statements
end procedure;
```

Creates and assigns a new *variadic* procedure to p. The use of a variadic procedure is identical to that of a variadic function, described previously.

 $p := proc < x_1, \ldots, x_n$: parameters | expression>;

This is a short form of the procedure constructor designed for the situation in which the action of the procedure may be accomplished by a single statement. A procedure p is defined which calls the procedure given by the expression. This expression must be a simple procedure call (possibly involving the procedure arguments x_1, \ldots, x_n). Optional parameters are permitted as in the main procedure constructor.

 $p := proc < x_1, \ldots, x_n, \ldots: parameters | expression >;$

This is a short form of the procedure constructor for variadic procedures.

Example H2E5

By way of simple example, the following (rather silly) procedure assigns a Boolean to the variable holds, according to whether or not the first three arguments x, y, z satisfy $x^2 + y^2 = z^2$. Note that the fourth argument is referenced, and hence can be assigned to; the first three arguments cannot be changed inside the procedure.

```
> procedure CheckPythagoras(x, y, z, ~h)
> if x^2+y^2 eq z^2 then
> h := true;
> else
> h := false;
> end if;
> end procedure;
```

We use this to find some Pythagorean triples (in a particularly inefficient way):

```
> for x, y, z in { 1..15 } do
      CheckPythagoras(x, y, z, ~h);
>
>
      if h then
        "Yes, Pythagorean triple!", x, y, z;
>
>
      end if;
> end for;
Yes, Pythagorean triple! 3 4 5
Yes, Pythagorean triple! 4 3 5
Yes, Pythagorean triple! 5 12 13
Yes, Pythagorean triple! 6 8 10
Yes, Pythagorean triple! 8 6 10
Yes, Pythagorean triple! 9 12 15
Yes, Pythagorean triple! 12 5 13
Yes, Pythagorean triple! 12 9 15
```

2.2.3 The forward Declaration

forward f;

The forward declaration of a function or procedure f; although the assignment of a value to f is deferred, f may be called from within another function or procedure already.

The forward statement must occur on the 'main' level, that is, outside other functions or procedures. (See also Chapter 5.)

Example H2E6_

We give an example of mutual recursion using the **forward** declaration. In this example we define a primality testing function which uses the factorization of n - 1, where n is the number to be tested. To obtain the complete factorization we need to test whether or not factors found are prime. Thus the prime divisor function and the primality tester call each other.

First we define a simple function that proves primality of n by finding an integer of multiplicative order n-1 modulo n.

```
> function strongTest(primdiv, n)
> return exists{ x : x in [2..n-1] | \
> Modexp(x, n-1, n) eq 1 and
> forall{ p : p in primdiv | Modexp(x, (n-1) div p, n) ne 1 }
> };
> end function;
```

Next we define a rather crude isPrime function: for odd n > 3 it first checks for a few (3) random values of a that $a^{n-1} \equiv 1 \mod n$, and if so, it applies the above primality prover. For that we need the not yet defined function for finding the prime divisors of an integer.

```
> forward primeDivisors;
> function isPrime(n)
     if n in { 2, 3 } or
>
        IsOdd(n) and
>
>
        forall{ a : a in { Random(2, n-2): i in [1..3] } |
           Modexp(a, n-1, n) eq 1 \} and
>
           strongTest( primeDivisors(n-1), n )
>
>
     then
>
        return true;
>
     else
>
        return false;
     end if;
>
> end function;
```

Finally, we define a function that finds the prime divisors. Note that it calls the isPrime function. Note also that this function is recursive, and that it calls a function upon its definition, in the form func< ...> (...).

```
> primeDivisors := function(n)
> if isPrime(n) then
> return { n };
```

FUNCTIONS, PROCEDURES AND PACKAGES

```
> else
> return func< d | primeDivisors(d) join primeDivisors(n div d) >
> ( rep{ d : d in [2..Isqrt(n)] | n mod d eq 0 });
> end if;
> end function;
> isPrime(1087);
true;
```

2.3 Packages

2.3.1 Introduction

For brevity, in this section we shall use the term *function* to include both functions and procedures.

The term *intrinsic function* or *intrinsic* refers to a function whose signature is stored in the system table of signatures. In terms of their origin, there are two kinds of intrinsics, system *intrinsics* (or standard functions) and user *intrinsics*, but they are indistinguishable in their use. A system *intrinsic* is an intrinsic that is part of the definition of the MAGMA system, whereas a user intrinsic is an informal addition to MAGMA, created by a user of the system. While most of the standard functions in MAGMA are implemented in C, a growing number are implemented in the MAGMA language. User intrinsics are defined in the MAGMA language using a *package* mechanism (the same syntax, in fact, as that used by developers to write standard functions in the MAGMA language).

This section explains the construction of user intrinsics by means of packages. From now on, *intrinsic* will be used as an abbreviation for *user intrinsic*.

It is useful to summarize the properties possessed by an intrinsic function that are not possessed by an ordinary user-defined function. Firstly, the signature of every intrinsic function is stored in the system's table of signatures. In particular, such functions will appear when signatures are listed and printing the function's name will produce a summary of the behaviour of the function. Secondly, intrinsic functions are compiled into the MAGMA internal pseudo-code. Thus, once an intrinsic function has been debugged, it does not have to be compiled every time it is needed. If the definition of the function involves a large body of code, this can save a significant amount of time when the function definition has to be loaded.

An intrinsic function is defined in a special type of file known as a *package*. In general terms a package is a MAGMA source file that defines constants, one or more intrinsic functions, and optionally, some ordinary functions. The definition of an intrinsic function may involve MAGMA standard functions, functions imported from other packages and functions whose definition is part of the package. It should be noted that constants and functions (other than intrinsic functions) defined in a package will not be visible outside the package, unless they are explicitly imported.

The syntax for the definition of an intrinsic function is similar to that of an ordinary function except that the function header must define the function's signature together with text summarizing the semantics of the function. As noted above, an intrinsic function definition must reside in a package file. It is necessary for MAGMA to know the location of all necessary package files. A package may be attached or detached through use of the Attach or Detach procedures. More generally, a family of packages residing in a directory tree may be specified through provision of a **spec** file which specifies the locations of a collection of packages relative to the position of the spec file. Automatic attaching of the packages in a spec file may be set by means of an environment variable (MAGMA_SYSTEM_SPEC for the MAGMA system packages and MAGMA_USER_SPEC for a users personal packages).

So that the user does not have to worry about explicitly compiling packages, MAGMA has an auto-compile facility that will automatically recompile and reload any package that has been modified since the last compilation. It does this by comparing the time stamp on the source file (as specified in an Attach procedure call or spec file) with the time stamp on the compiled code. To avoid the possible inefficiency caused by MAGMA checking whether the file is up to date every time an intrinsic function is referenced, the user can indicate that the package is stable by including the freeze; directive at the top of the package containing the function definition.

A constant value or function defined in the body of a package may be accessed in a context outside of its package through use of the **import** statement. The arguments for an intrinsic function may be checked through use of the **require** statement and its variants. These statements have the effect of generating an error message at the level of the caller rather than in the called intrinsic function.

See also the section on user-defined attributes for the declare attributes directive to declare user-defined attributes used by the package and related packages.

2.3.2 Intrinsics

Besides the definition of *constants* at the top, a package file just consists of *intrinsics*. There is only one way a intrinsic can be referred to (whether from within or without the package). When a package is *attached*, its intrinsics are incorporated into MAGMA. Thus intrinsics are 'global' — they affect the global MAGMA state and there is only one set of MAGMA intrinsics at any time. There are no 'local' intrinsics.

A package may contain undefined references to identifiers. These are presumed to be intrinsics from other packages which will be attached subsequent to the loading of this package.

```
intrinsic name(arg-list [, ...]) [ -> ret-list ]
{comment-text}
statements
end intrinsic;
```

The syntax of a intrinsic declaration is as above, where *name* is the name of the intrinsic (any identifier; use single quotes for non-alphanumeric names like '+'); arg-list is the argument list (optionally including parameters preceded by a colon); optionally there is an arrow and return type list *ret-list*; the comment text is any text within the braces (use $\$ to get a right brace within the text, and use " to repeat the comment from the immediately preceding intrinsic); and *statements* is a list of

statements making up the body. arg-list is a list of comma-separated arguments of the form

```
name::type
~name::type
\simname
```

where name is the name of the argument (any identifier), and type designates the type, which can be either a simple category name, an extended type, or one of the following:

	Any type
[]	Sequence type
{ }	Set type
{[]}	Set or Sequence type
{0 0}	Iset type
{* *}	Multiset type
< >	Tuple type

or a *composite type*:

[type]	Sequences over type
$\{type\}$	Sets over type
{[<i>type</i>]}	Sets or sequences over type
$\{@type@\}$	Indexed sets over type
$\{*type^*\}$	Multisets over $type$

where type is either a simple or extended type. The reference form type \sim name requires that the input argument must be initialized to an object of that type. The reference form $\sim name$ is a plain reference argument — it need not be initialized. Parameters may also be specified—these are just as in functions and procedures (preceded by a colon). If *arg-list* is followed by "..." then the intrinsic is variadic, with semantics similar to that of a variadic function, described previously.

ret-list is a list of comma-separated simple types. If there is an arrow and the return list, the intrinsic is assumed to be functional; otherwise it is assumed to be procedural.

The body of *statements* should return the correct number and types of arguments if the intrinsic is functional, while the body should return nothing if the intrinsic is procedural.

Example H2E7_

A functional intrinsic for greatest common divisors taking two integers and returning another:

```
intrinsic myGCD(x::RngIntElt, y::RngIntElt) -> RngIntElt
{ Return the GCD of x and y}
  return ...;
```

Ch. 2

end intrinsic;

A procedural intrinsic for Append taking a reference to a sequence Q and any object then modifying Q:

```
intrinsic Append(~ Q::SeqEnum, . x)
{ Append x to Q }
...;
end intrinsic;
```

A functional intrinsic taking a sequence of sets as arguments 2 and 3:

```
intrinsic IsConjugate(G::GrpPerm, R::[ { } ], S::[ { } ]) -> BoolElt
{ True iff partitions R and S of the support of G are conjugate in G }
   return ...;
end intrinsic;
```

2.3.3 Resolving Calls to Intrinsics

It is often the case that many intrinsics share the same name. For instance, the intrinsic **Factorization** has many implementations for various object types. We will call such intrinsics *overloaded intrinsics*, or refer to each of the participating intrinsics as an *overload*. When the user calls such an overloaded intrinsic, MAGMA must choose the "best possible" overload.

MAGMA's overload resolution process is quite simple. Suppose the user is calling an intrinsic of arity r, with a list of parameters $\langle p_1, \ldots, p_r \rangle$. Let the tuple of the types of these parameters be $\langle t_1, \ldots, t_r \rangle$, and let S be the set of all relevant overloads (that is, overloads with the appropriate name and of arity r). We will represent overloads as r-tuples of types.

To pick the "best possible" overload, for each parameter $p \in \{p_1, \ldots, p_r\}$, MAGMA finds the set $S_i \subseteq S$ of participating intrinsics which are the best matches for that parameter. More specifically, an intrinsic $s = \langle u_1, \ldots, u_r \rangle$ is included in S_i if and only if t_i is a u_i , and no participating intrinsic $s' = \langle v_1, \ldots, v_r \rangle$ exists such that t_i is a v_i and v_i is a u_i . Once the sets S_i are computed, MAGMA finds their intersection. If this intersection is empty, then there is no match. If this intersection has cardinality greater than one, then the match is ambiguous. Otherwise, MAGMA calls the overload thus obtained.

An example at this point will make the above process clearer:

Example H2E8_

We demonstrate MAGMA's lookup mechanism with the following example. Suppose we have the following overloaded intrinsics:

```
intrinsic overloaded(x::RngUPolElt, y::RngUPolElt) -> RngIntElt
{ Overload 1 }
    return 1;
end intrinsic;
intrinsic overloaded(x::RngUPolElt[RngInt], y::RngUPolElt) -> RngIntElt
```

```
{ Overload 2 }
  return 2;
end intrinsic;
intrinsic overloaded(x::RngUPolElt, y::RngUPolElt[RngInt]) -> RngIntElt
{ Overload 3 }
  return 3;
end intrinsic;
intrinsic overloaded(x::RngUPolElt[RngInt], y::RngUPolElt[RngInt]) -> RngIntElt
{ Overload 4 }
  return 4;
end intrinsic;
```

The following MAGMA session illustrates how the lookup mechanism operates for the intrinsic overloaded:

```
> R1<x> := PolynomialRing(Integers());
> R2<y> := PolynomialRing(Rationals());
> f1 := x + 1;
> f2 := y + 1;
> overloaded(f2, f2);
1
> overloaded(f1, f2);
2
> overloaded(f1, f1);
3
> overloaded(f1, f1);
4
```

2.3.4 Attaching and Detaching Package Files

The procedures Attach and Detach are provided to attach or detach package files. Once a file is attached, all intrinsics within it are included in MAGMA. If the file is modified, it is automatically recompiled just after the user hits return and just before the next statement is executed. So there is no need to re-attach the file (or 're-load' it). If the recompilation of a package file fails (syntax errors, etc.), all of the intrinsics of the package file are removed from the MAGMA session and none of the intrinsics of the package file are included again until the package file is successfully recompiled. When errors occur during compilation of a package, the appropriate messages are printed with the string '[PC]' at the beginning of the line, indicating that the errors are detected by the MAGMA package compiler.

If a package file contains the single directive **freeze**; at the top then the package file becomes **frozen** — it will not be automatically recompiled after each statement is entered into MAGMA. A frozen package is recompiled if need be, however, when it is attached (thus allowing fixes to be updated) — the main point of freezing a package which is 'stable' is to stop MAGMA looking at it between every statement entered into MAGMA interactively.

46

Ch. 2

When a package file is complete and tested, it is usually installed in a spec file so it is automatically attached when the spec file is attached. Thus Attach and Detach are generally only used when one is developing a single package file containing new intrinsics.

Attach(F)

Procedure to attach the package file F.

Detach(F)

Procedure to detach the package file F.

freeze;

Freeze the package file in which this appears at the top.

2.3.5 Related Files

There are two files related to any package source file file.m:

file.sig	sig file containing signature information;
file.lck	lock file.

The lock file exists while a package file is being compiled. If someone else tries to compile the file, it will just sit there till the lock file disappears. In various circumstances (system down, MAGMA crash) .lck files may be left around; this will mean that the next time MAGMA attempts to compile the associated source file it will just sit there indefinitely waiting for the .lck file to disappear. In this case the user should search for .lck files that should be removed.

2.3.6 Importing Constants

```
import "filename": ident_list;
```

This is the general form of the import statement, where "filename" is a string and *ident_list* is a list of identifiers.

The import statement is a normal statement and can in fact be used anywhere in MAGMA, but it is recommended that it only be used to import common constants and functions/procedures shared between a collection of package files. It has the following semantics: for each identifier I in the list *ident_list*, that identifier is declared just like a normal identifier within MAGMA. Within the package file referenced by *filename*, there should be an assignment of the same identifier I to some object O. When the identifier I is then used as an expression after the import statement, the value yielded is the object O.

The file that is named in the import statement must already have been attached by the time the identifiers are needed. The best way to achieve this in practice is to place this file in the spec file, along with the package files, so that all the files can be attached together.

Thus the only way objects (whether they be normal objects, procedures or functions) assigned within packages can be referenced from outside the package is by an explicit import with the 'import' statement.

THE MAGMA LANGUAGE

Example H2E9_

Suppose we have a spec file that lists several package files. Included in the spec file is the file defs.m containing:

```
MY_LIMIT := 10000;
function fred(x)
return 1/x;
end function;
```

Then other package files (in the same directory) listed in the spec file which wish to use these definitions would have the line

```
import "defs.m": MY_LIMIT, fred;
```

at the top. These could then be used inside any intrinsics of such package files. (If the package files are not in the same directory, the pathname of defs.m will have to be given appropriately in the import statement.)

2.3.7 Argument Checking

Using 'require' etc. one can do argument checking easily within intrinsics. If a necessary condition on the argument fails to hold, then the relevant error message is printed and the error pointer refers to the caller of the intrinsic. This feature allows user-defined intrinsics to treat errors in actual arguments in exactly the same way as they are treated by the MAGMA standard functions.

require condition: print_args;

The expression *condition* may be any yielding a Boolean value. If the value is false, then *print_args* is printed and execution aborts with the error pointer pointing to the caller. The print arguments *print_args* can consist of any expressions (depending on arguments or variables already defined in the intrinsic).

requirerange v, L, U;

The argument variable v must be the name of one of the argument variables (including parameters) and must be of integer type. L and U may be any expressions each yielding an integer value. If v is not in the range $[L, \ldots, U]$, then an appropriate error message is printed and execution aborts with the error pointer pointing to the caller.

requirege v, L;

The argument variable v must be the name of one of the argument variables (including parameters) and must be of integer type. L must yield an integer value. If v is not greater than or equal to L, then an appropriate error message is printed and execution aborts with the error pointer pointing to the caller.

Example H2E10_

```
A trivial version of Binomial(n, k) which checks that n \ge 0 and 0 \le k \le n.
```

```
intrinsic Binomial(n::RngIntElt, k::RngIntElt) -> RngIntElt
{ Return n choose k }
    requirege n, 0;
    requirerange k, 0, n;
    return Factorial(n) div Factorial(n - k) div Factorial(k);
end intrinsic;
```

A simple function to find a random p-element of a group G.

```
intrinsic pElement(G::Grp, p::RngIntElt) -> GrpElt
{ Return p-element of group G }
    require IsPrime(p): "Argument 2 is not prime";
    x := random{x: x in G | Order(x) mod p eq 0};
    return x^(Order(x) div p);
end intrinsic;
```

2.3.8 Package Specification Files

A spec file (short for 'specification file') lists a complete tree of MAGMA package files. This makes it easy to collect many package files together and attach them simultaneously.

The specification file consists of a list of tokens which are just space-separated words. The tokens describe a list of package files and directories containing other packages. The list is described as follows. The files that are to be attached in the directory indicated by S are listed enclosed in $\{$ and $\}$ characters. A directory may be listed there as well, if it is followed by a list of files from that directory (enclosed in braces again); arbitrary nesting is allowed this way. A filename of the form +spec is interpreted as another specification file whose contents will be recursively attached when AttachSpec (below) is called. The files are taken relative to the directory that contains the specification file. See also the example below.

AttachSpec(S)

If S is a string indicating the name of a spec file, this command attaches all the files listed in S. The format of the spec file is given above.

DetachSpec(S)

If S is a string indicating the name of a spec file, this command detaches all the files listed in S. The format of the spec file is given above.

Example H2E11_

Suppose we have a spec file /home/user/spec consisting of the following lines:

```
{
  Group
  {
    chiefseries.m
    socle.m
  }
  Ring
  {
    funcs.m
    Field
    {
      galois.m
    }
  }
}
```

Then there should be the files

```
/home/user/spec/Group/chiefseries.m
/home/user/spec/Group/socle.m
/home/user/spec/Ring/funcs.m
/home/user/spec/Ring/Field/galois.m
```

and if one typed within MAGMA

AttachSpec("/home/user/spec");

then each of the above files would be attached. If instead of the filename galois.m we have +galspec, then the file /home/user/spec/Ring/Field/galspec would be a specification file itself whose contents would be recursively attached.

2.3.9 User Startup Specification Files

The user may specify a list of spec files to be attached automatically when MAGMA starts up. This is done by setting the environment variable MAGMA_USER_SPEC to a colon separated list of spec files.

Example $H2E12_{-}$

One could have

setenv MAGMA_USER_SPEC "\$HOME/Magma/spec:/home/friend/Magma/spec"

in one's .cshrc . Then when MAGMA starts up, it will attach all packages listed in the spec files \$HOME/Magma/spec and /home/friend/Magma/spec.

2.4 Attributes

This section is placed beside the section on packages because the use of attributes is most common within packages.

For any structure within MAGMA, it is possible to have *attributes* associated with it. These are simply values stored within the structure and are referred to by named fields in exactly the same manner as MAGMA records.

There are two kinds of structure attributes: predefined system attributes and userdefined attributes. Both kinds are discussed in the following subsections. A description of how attributes are accessed and assigned then follows.

2.4.1 Predefined System Attributes

The valid fields of predefined system attributes are automatically defined at the startup of Magma. These fields now replace the old method of using the procedure AssertAttribute and the function HasAttribute (which will still work for some time to preserve backwards compatibility). For each name which is a valid first argument for AssertAttribute and HasAttribute, that name is a valid attribute field for structures of the appropriate category. Thus the backquote method for accessing attributes described in detail below should now be used instead of the old method. For such attributes, the code:

> S'Name := x;

is completely equivalent to the code:

```
> AssertAttribute(S, "Name", x);
```

(note that the function AssertAttribute takes a string for its second argument so the name must be enclosed in double quotes). Similarly, the code:

```
> if assigned S'Name then
> x := S'Name;
> // do something with x...
> end if;
```

is completely equivalent to the code:

```
> l, x := HasAttribute(S, "Name");
> if l then
> // do something with x...
> end if;
```

(note again that the function HasAttribute takes a string for its second argument so the name must be enclosed in double quotes).

Note also that if a system attribute is not set, referring to it in an expression (using the backquote operator) will *not* trigger the calculation of it (while the corresponding intrinsic function will if it exists); rather an error will ensue. Use the **assigned** operator to test whether an attribute is actually set.

Ch. 2

2.4.2 User-defined Attributes

For any category C, the user can stipulate valid attribute fields for structures of C. After this is done, any structure of category C may have attributes assigned to it and accessed from it.

There are two ways of adding new valid attributes to a category C: by the procedure AddAttribute or by the declare attributes package declaration. The former should be used outside of packages (e.g. in interactive usage), while the latter must be used within packages to declare attribute fields used by the package and related packages.

AddAttribute(C, F)

(Procedure.) Given a category C, and a string F, append the field name F to the list of valid attribute field names for structures belonging to category C. This procedure should not be used within packages but during interactive use. Previous fields for C are still valid – this just adds another valid one.

```
declare attributes C: F_1, \ldots, F_n;
```

Given a category C, and a comma-separated list of identifiers F_1, \ldots, F_n append the field names specified by the identifiers to the list of valid attribute field names for structures belonging to category C. This declaration directive must be used within (and only within) packages to declare attribute fields used by the package and packages related to it which use the same fields. It is *not* a statement but a directive which is stored with the other information of the package when it is compiled and subsequently attached – *not* when any code is actually executed.

2.4.3 Accessing Attributes

Attributes of structures are accessed in the same way that records are: using the backquote (') operator. The double backquote operator ('') can also be used if the field name is a string.

S'fieldname

Sʻ'N

Given a structure S and a field name, return the current value for the given field in S. If the value is not assigned, an error results. The field name must be valid for the category of S. In the S''N form, N is a string giving the field name.

assigned S'fieldname

assigned S''N

Given a structure S and a field name, return whether the given field in S currently has a value. The field name must be valid for the category of S. In the S''N form, N is a string giving the field name.

S'fieldname := expression;

S''N := expression;

Given a structure S and a field name, assign the given field of S to be the value of the expression (any old value is first discarded). The field name must be valid for the category of S. In the S''N form, N is a string giving the field name.

delete S'fieldname;

delete SʻʻN;

Given a structure S and a field name, delete the given field of S. The field then becomes unassigned in S. The field name must be valid for the category of S and the field must be currently assigned in S. This statement is not allowed for predefined system attributes. In the S''N form, N is a string giving the field name.

GetAttributes(C)

Given a category C, return the valid attribute field names for structures belonging to category C as a sorted sequence of strings.

ListAttributes(C)

(Procedure.) Given a category C, list the valid attribute field names for structures belonging to category C.

2.5 User-defined Verbose Flags

Verbose flags may be defined by users within packages.

declare verbose F, m;

Given a verbose flag name F (without quotes), and a literal integer m, create the verbose flag F, with the maximal allowable level for the flag set to m. This directive may only be used within package files.

2.5.1 Examples

In this subsection we give examples which illustrate all of the above features.

Example H2E13_

We illustrate how the predefined system attributes may be used. Note that the valid arguments for AssertAttribute and HasAttribute documented elsewhere now also work as system attributes so see the documentation for these functions for details as to the valid system attribute field names.

```
> // Create group G.
> G := PSL(3, 2);
> // Check whether order known.
> assigned G'Order;
false
> // Attempt to access order -- error since not assigned.
> G'Order;
```

```
>> G'Order;
Runtime error in ': Attribute 'Order' for this structure
is valid but not assigned
> // Force computation of order by intrinsic Order.
> Order(G);
> // Check Order field again.
> assigned G'Order;
```

```
> G'Order;
168
> G''"Order"; // String form for field
168
> o := "Order";
> G''o;
168
> // Create code C and set its minimum weight.
> C := QRCode(GF(2), 31);
> C'MinimumWeight := 7;
> C;
[31, 16, 7] Quadratic Residue code over GF(2)
. . .
```

Example H2E14_

We illustrate how user attributes may be defined and used in an interactive session. This situation would arise rarely – more commonly, attributes would be used within packages.

```
> // Add attribute field MyStuff for matrix groups.
> AddAttribute(GrpMat, "MyStuff");
> // Create group G.
> G := GL(2, 3);
> // Try illegal field.
> G'silly;
>> G'silly;
Runtime error in ': Invalid attribute 'silly' for this structure
> // Try legal but unassigned field.
> G'MyStuff;
>> G'MyStuff;
Runtime error in ': Attribute 'MyStuff' for this structure is valid but not
assigned
> // Assign field and notice value.
> G'MyStuff := [1, 2];
> G'MyStuff;
```

```
Part I
```

54

168

true

```
[ 1, 2 ]
```

Example H2E15_

We illustrate how user attributes may be used in packages. This is the most common usage of such attributes. We first give some (rather naive) MAGMA code to compute and store a permutation representation of a matrix group. Suppose the following code is stored in the file permrep.m.

```
declare attributes GrpMat: PermRep, PermRepMap;
intrinsic PermutationRepresentation(G::GrpMat) -> GrpPerm
{A permutation group representation P of G, with homomorphism f: G -> P};
    // Only compute rep if not already stored.
    if not assigned G'PermRep then
        G'PermRepMap, G'PermRep := CosetAction(G, sub<G|>);
    end if;
    return G'PermRep, G'PermRepMap;
end intrinsic;
```

Note that the information stored will be reused in subsequent calls of the intrinsic. Then the package can be attached within a MAGMA session and the intrinsic **PermutationRepresentation** called like in the following code (assumed to be run in the same directory).

```
> Attach("permrep.m");
> G := GL(2, 2);
> P, f := PermutationRepresentation(G);
> P;
Permutation group P acting on a set of cardinality 6
    (1, 2)(3, 5)(4, 6)
    (1, 3)(2, 4)(5, 6)
> f;
Mapping from: GrpMat: G to GrpPerm: P
```

Suppose the following line were also in the package file:

```
declare verbose MyAlgorithm, 3;
```

Then there would be a new verbose flag MyAlgorithm for use anywhere within MAGMA, with the maximum 3 for the level.

2.6 User-Defined Types

Since MAGMA V2.19, types may be defined by users within packages. This facility allows the user to declare new type names and create objects with such types and then supply some basic primitives and intrinsic functions for such objects.

The new types are known as user-defined types. The way these are typically used is that after declaring such a type T, the user supplies package intrinsics to: (1) create objects of type T and set relevant attributes to define the objects; (2) perform some basic primitives which are common to all objects in MAGMA; (3) perform non-trivial computations on objects of type T.

2.6.1 Declaring User-Defined Types

The following declarations are used to declare user-defined types. They **may only be placed in package files**, i.e., files that are included either by using **Attach** or a spec file (see above). Declarations may appear in any package file and at any place within the file at the top level (not in a function, etc.). In particular, it is not required that the declaration of a type appears before package code which refers to the type (as long as the type is declared before running the code). Examples below will illustrate how the basic declarations are used.

declare type T;

Declare the given type name T (without quotes) to be a user-defined type.

declare type $T:P_1,\ldots,P_n$;

Declare the given type name T (without quotes) to be a user-defined type, and also declare T to inherit from the user types P_1, \ldots, P_n (which must be declared separately). As a result, ISA (T, P_i) will be true for each i and when intrinsic signatures are scanned at a function call, an object of type T will match an argument of a signature with type P_i for any i.

NB: currently one may not inherit from existing MAGMA internal types or virtual types (categories). It is hoped that this restriction will be removed in the future.

declare type T[E];

Declare the given type names T and E (both without quotes) to be user-defined types. This form also specifies that E is the *element type* corresponding to T; i.e., if an object x has an element of type T for its parent, then x must have type E. This relationship is needed for the construction of sets and sequences which have objects of type T as a universe. The type E may also be declared separately, but this is not necessary.

declare type $T[E]: P_1, \ldots, P_n$;

This is a combination of the previous kinds two declarations: T and E are declared as user-defined types while E is also declared to be the element type of T, and T is declared to inherit from user-defined types P_1, \ldots, P_n .

2.6.2 Creating an Object

New(T)

Create an empty object of type T, where T is a user-defined type. Typically, after setting X to the result of this function, the user should set attributes in X to define relevant properties of the object which are characteristic of objects of type T.

2.6.3 Special Intrinsics Provided by the User

Let T be a user-defined type. Besides the declaration of T, the following special intrinsics are mostly required to be defined for type T (the requirements are specified for each kind of intrinsic). These intrinsics allow the internal MAGMA functions to perform some fundamental operations on objects of type T. Note that the special intrinsics need not be in one file or in the same file as the declaration.

```
intrinsic Print(X::T)
{Print X}
    // Code: Print X with no new line, via printf
end intrinsic;
intrinsic Print(X::T, L::MonStgElt)
{Print X at level L}
    // Code: Print X at level L with no new line, via printf
end intrinsic;
```

Exactly one of these intrinsics must be provided by the user for type T. Each is a procedure rather than a function (i.e., nothing is returned), and should contain one or more print statements. The procedure is called automatically by MAGMA whenever the object X of type T is to be printed. A new line should *not* occur at the end of the last (or only) line of printing: one should use **printf** (see examples below).

When the second form of the intrinsic is provided, it allows X to be printed differently depending on the print level L, which is a string equal to one of "Default", "Minimal", "Maximal", "Magma".

```
intrinsic Parent(X::T) -> .
{Parent of X}
    // Code: Return the parent of X
end intrinsic;
```

This intrinsic is only needed when T is an element type, so objects of type T have parents. It should be a user-provided package function, which takes an object X of type T (user-defined), and returns the parent of X, assuming it has one. In such a case, typically the attribute **Parent** will be defined for X and so **X**'**Parent** should simply be returned.

Ch. 2

```
intrinsic 'in'(e::., X::T) -> BoolElt
{Return whether e is in X}
    // Code: Return whether e is in X
end intrinsic;
```

This intrinsic is only needed when objects of type T (user-defined) have elements, and should be a user-provided package function, which takes any object e and an object X of type T (user-defined), and returns whether e is an element of X.

```
intrinsic IsCoercible(X::T, y::.) -> BoolElt, .
{Return whether y is coercible into X and the result if so}
    // Code: do tests on the type of y to see whether coercible
    // On failure, do:
    // return false, "Illegal coercion"; // Or more particular message
    // Assumed coercible now; set x to result of coercion into X
    return true, x;
end intrinsic;
```

Assuming that objects of type T (user-defined) have elements (and so coercion into such objects makes sense), this must be a user-provided package function, which takes an object X of type T (user-defined) and an object Y of any type. If Y is coercible into X, the function should return **true** and the result of the coercion (whose parent should be X). Otherwise, the function should return **false** and a string giving the reason for failure. If this package intrinsic is provided, then the coercion operation X!y will also automatically work for an object X of type T (i.e., the internal coercion code in MAGMA will automatically call this function).

2.6.4 Examples

Some basic examples illustrating the general use of user-defined types are given here. Nontrivial examples can also be found in much of the standard MAGMA package code (one can search for "declare type" in the package .m files to see several typical uses).

Example H2E16_

In this first simple example, we create a user-defined type MyRat which is used for a primitive representation of rational numbers. Of course, a serious version would keep the numerators & denominators always reduced, but for simplicity we skip such details. We define the operations + and * here; one would typically add other operations like -, eq and IsZero, etc.

```
declare type MyRat;
declare attributes MyRat: Numer, Denom;
```

```
intrinsic MyRational(n::RngIntElt, d::RngIntElt) -> MyRat
{Create n/d}
```

```
require d ne 0: "Denominator must be non-zero";
   r := New(MyRat);
   r'Numer := n;
   r'Denom := d;
   return r;
end intrinsic;
intrinsic Print(r::MyRat)
{Print r}
   n := r'Numer;
   d := r'Denom;
   g := GCD(n, d);
   if d lt 0 then g := -g; end if;
   printf "%o/%o", n div g, d div g; // NOTE: no newline!
end intrinsic;
intrinsic '+'(r::MyRat, s::MyRat) -> MyRat
{Return r + s}
   rn := r'Numer;
   rd := r'Denom;
   sn := s'Numer;
   sd := s'Denom;
   return MyRational(rn*sd + sn*rd, rd*sd);
end intrinsic;
intrinsic '*'(r::MyRat, s::MyRat) -> MyRat
{Return r * s}
   rn := r'Numer;
   rd := r'Denom;
   sn := s'Numer;
   sd := s'Denom;
   return MyRational(rn*sn, rd*sd);
end intrinsic;
```

Assuming the above code is placed in a file MyRat.m, one could attach it in MAGMA and then do some simple operations, as follows.

```
> Attach("myrat.m");
> r := MyRational(3, -9);
> r;
-1/3
> s := MyRational(4, 7);
> s;
> r+s;
5/21
> r*s;
-4/21
```

Example H2E17_

In this example, we define a type DirProd for direct products of rings, and a corresponding element type DirProdElt for their elements. Objects of type DirProd contain a tuple Rings with the rings making up the direct product, while objects of type DirProdElt contain a tuple Element with the elements of the corresponding rings, and also a reference to the parent direct product object.

```
/* Declare types and attributes */
// Note that we declare DirProdElt as element type of DirProd:
declare type DirProd[DirProdElt];
declare attributes DirProd: Rings;
declare attributes DirProdElt: Elements, Parent;
/* Special intrinsics for DirProd */
intrinsic DirectProduct(Rings::Tup) -> DirProd
{Create the direct product of given rings (a tuple)}
    require forall{R: R in Rings | ISA(Type(R), Rng)}:
        "Tuple entries are not all rings";
   D := New(DirProd);
   D'Rings := Rings;
   return D;
end intrinsic:
intrinsic Print(D::DirProd)
{Print D}
   Rings := D'Rings;
   printf "Direct product of %o", Rings; // NOTE: no newline!
end intrinsic;
function CreateElement(D, Elements)
    // Create DirProdElt with parent D and given Elements
    x := New(DirProdElt);
   x'Elements := Elements;
   x'Parent := D;
   return x;
end function;
intrinsic IsCoercible(D::DirProd, x::.) -> BoolElt, .
{Return whether x is coercible into D and the result if so}
   Rings := D'Rings;
   n := #Rings;
    if Type(x) ne Tup then
        return false, "Coercion RHS must be a tuple";
    end if;
    if #x ne n then
        return false, "Wrong length of tuple for coercion";
    end if;
```

```
Elements := <>;
    for i := 1 to n do
        l, t := IsCoercible(Rings[i], x[i]);
        if not 1 then
            return false, Sprintf("Tuple entry % not coercible", i);
        end if;
        Append(~Elements, t);
    end for;
    y := CreateElement(D, Elements);
   return true, y;
end intrinsic;
/* Special intrinsics for DirProdElt */
intrinsic Print(x::DirProdElt)
{Print x}
   printf "%o", x'Elements; // NOTE: no newline!
end intrinsic:
intrinsic Parent(x::DirProdElt) -> DirProd
{Parent of x}
   return x'Parent;
end intrinsic;
intrinsic '+'(x::DirProdElt, y::DirProdElt) -> DirProdElt
{Return x + y}
   D := Parent(x);
   require D cmpeq Parent(y): "Incompatible arguments";
   Ex := x'Elements;
   Ey := y'Elements;
   return CreateElement(D, <Ex[i] + Ey[i]: i in [1 .. #Ex]>);
end intrinsic;
intrinsic '*'(x::DirProdElt, y::DirProdElt) -> DirProdElt
{Return x * y}
   D := Parent(x);
   require D cmpeq Parent(y): "Incompatible arguments";
   Ex := x'Elements;
   Ey := y'Elements;
   return CreateElement(D, <Ex[i] * Ey[i]: i in [1 .. #Ex]>);
end intrinsic;
```

A sample MAGMA session using the above package is as follows. We create elements x, y of a direct product D and do simple operations on x, y. One would of course add other intrinsic functions for basic operations on the elements.

> Attach("DirProd.m"); > Z := IntegerRing();

```
> Q := RationalField();
> F8<a> := GF(2<sup>3</sup>);
> F9<b> := GF(3<sup>2</sup>);
> D := DirectProduct(<Z, Q, F8, F9>);
> x := D!<1, 2/3, a, b>;
> y := D!<2, 3/4, a+1, b+1>;
> x;
<1, 2/3, a, b>
> Parent(x);
Direct product of <Integer Ring, Rational Field, Finite field of
size 2^3, Finite field of size 3^2>
> y;
<2, 3/4, a<sup>3</sup>, b<sup>2</sup>>
> x+y;
<3, 17/12, 1, b^3>
> x*y;
<2, 1/2, a<sup>4</sup>, b<sup>3</sup>>
> D!x;
<1, 2/3, a, b>
> S := [x, y]; S;
Ε
    <1, 2/3, a, b>,
    <2, 3/4, a<sup>3</sup>, b<sup>2</sup>>
]
>
> &+S;
<3, 17/12, 1, b^3>
```

Part I

3 INPUT AND OUTPUT

3.1 Introduction \ldots \ldots \ldots \ldots	65
3.2 Character Strings	65
3.2.1 Representation of Strings	65
3.2.2 Creation of Strings	66
"abc"	66
BinaryString(s)	66
BString(s)	66
cat	66 66
* cat:=	66 66
*:=	66
&cat s	66
&* s	66
^	66
s[i]	66
s[i]	67 67
ElementToSequence(s)	$\begin{array}{c} 67 \\ 67 \end{array}$
Eltseq(s) ElementToSequence(s)	67
Eltseq(s)	67
Substring(s, n, k)	67
3.2.3 Integer-Valued Functions	67
#	67
Index(s, t)	67
Position(s, t)	67
3.2.4 Character Conversion	67
StringToCode(s)	67
CodeToString(n)	67
StringToInteger(s)	68 68
StringToInteger(s, b)	$\frac{68}{68}$
<pre>StringToIntegerSequence(s) IntegerToString(n)</pre>	68
IntegerToString(n, b)	68
3.2.5 Boolean Functions	68
	68
eq ne	68
in	68
notin	69
lt	69
le	69
gt	69
ge	69
3.2.6 Parsing Strings	71
Split(S, D)	71
Split(S) Regexp(R, S)	$\frac{71}{71}$
3.3 Printing	72
3.3.1 The print-Statement	. <u>–</u> 72
print e;	72
• · ·	

print e,, e; print e: -;	72 72
3.3.2 The printf and fprintf Statements	73
<pre>printf format, e,, e; fprintf file, format, e,, e;</pre>	$73 \\ 74$
3.3.3 Verbose Printing (vprint, vprintf)	75
<pre>vprint flag: e,, e; vprint flag, n: e,, e; vprintf flag: format, e,, e; vprintf flag, n: format, e,, e;</pre>	75 75 75 75
3.3.4 Automatic Printing	76
ShowPrevious() ShowPrevious(i) ClearPrevious() SetPreviousSize(n) GetPreviousSize()	76 76 76 77 77
3.3.5 Indentation	78
IndentPush() IndentPop()	78 78
3.3.6 Printing to a File	78
<pre>PrintFile(F, x) Write(F, x) WriteBinary(F, s) PrintFile(F, x, L) Write(F, x, L) PrintFileMagma(F, x)</pre>	78 78 79 79 79 79
3.3.7 Printing to a String	79
<pre>Sprint(x) Sprint(x, L) Sprintf(F,)</pre>	79 79 79
3.3.8 Redirecting Output	80
SetOutputFile(F) UnsetOutputFile() HasOutputFile()	80 80 80
3.4 External Files	80
3.4.1 Opening Files	80
Open(S, T)	80
3.4.2 Operations on File Objects	81
<pre>Flush(F) Tell(F) Seek(F, o, p) Rewind(F) Put(F, S) Puts(F, S) Getc(F) Gets(F)</pre>	81 81 81 81 81 81 81 81
IsEof(S) Ungetc(F, c)	81 81

THE MAGMA LANGUAGE

3.4.3 Reading a Complete File	82
	$\frac{82}{82}$
3.5 Pipes	83
3.5.1 Pipe Creation	83
	83 83
3.5.2 Operations on Pipes	84
ReadBytes(P : -) Write(P, s)	84 84 85 85
3.6 Sockets 8	85
3.6.1 Socket Creation	85
Socket(:-)	85 86 86
3.6.2 Socket Properties	86
SocketInformation(S)	86
3.6.3 Socket Predicates	86
IsServerSocket(S)	86
3.6.4 Socket I/O	87
ReadBytes(S : -) Write(S, s)	87 87 87 87
3.7 Interactive Input 8	88

read id; read id, prompt; readi id; readi id, prompt;	88 88 89 89
3.8 Loading a Program File load "filename"; iload "filename";	89 89 89
3.9 Saving and Restoring Workspaces save "filename"; restore "filename";	89 89 89
3.10 Logging a Session	90 90 90 90
3.11 Memory Usage	90 90 90 90
3.12 System Calls	 90 90 90 91 91 91 91 91
3.13 Creating Names	91 91

Chapter 3 INPUT AND OUTPUT

3.1 Introduction

This chapter is concerned with the various facilities provided for communication between MAGMA and its environment. The first section describes character strings and their operations. Following this, the various forms of the **print**-statement are presented. Next the file type is introduced and its operations summarized. The chapter concludes with a section listing system calls. These include facilities that allow the user to execute an operating system command from within MAGMA or to run an external process.

3.2 Character Strings

Strings of characters play a central role in input/output so that the operations provided for strings to some extent reflect this. However, if one wishes, a more general set of operations are available if the string is first converted into a sequence. We will give some examples of this below.

MAGMA provides two kinds of strings: normal character strings, and *binary strings*. Character strings are an inappropriate choice for manipulating data that includes non-printable characters. If this is required, a better choice is the binary string type. This type is similar semantically to a sequence of integers, in which each character is represented by its ASCII value between 0 and 255. The difference between a binary string and a sequence of integers is that a binary string is stored internally as an array of bytes, which is a more space-efficient representation.

3.2.1 Representation of Strings

Character strings may consist of all ordinary characters appearing on your keyboard, including the blank (space). Two symbols have a special meaning: the double-quote " and the backslash $\$. The double-quote is used to delimit a character string, and hence cannot be used inside a string; to be able to use a double-quote in strings the backslash is designed to be an escape character and is used to indicate that the next symbol has to be taken literally; thus, by using $\$ " inside a string one indicates that the symbol " has to be taken literally and is not to be interpreted as the end-of-string delimiter. Thus:

```
> "\"Print this line in quotes\"";
"Print this line in quotes"
```

To obtain a literal backslash, one simply types two backslashes; for characters other than double-quotes and backslash it does not make a difference when a backslash precedes them

inside a string, with the exception of n, r and t. Any occurrence of $n \circ r$ inside a string is converted into a <new-line> while t is converted into a <tab>. For example:

```
> "The first line,\nthe second line, and then\ran\tindented line";
The first line,
the second line, and then
an indented line
```

Note that a backslash followed by a return allows one to conveniently continue the current construction on the next line; so **\<return>** inside a string will be ignored, except that input will continue on a new line on your screen.

Binary strings, on the hand, can consist of any character, whether printable or nonprintable. Binary strings cannot be constructed using literals, but must be constructed either from a character string, or during a read operation from a file.

3.2.2 Creation of Strings

"abc"

Create a string from a succession of keyboard characters (a, b, c) enclosed in double quotes " ".

BString(s)

Create a binary string from the character string s.

Concatenate the strings s and t.

s cat:= t s *:= t

Modification-concatenation of the string s with t: concatenate s and t and put the result in s.

```
&cat s
&* s
```

Given an enumerated sequence s of strings, return the concatenation of these strings.

s î n

Form the *n*-fold concatenation of the string s, for $n \ge 0$. If n = 0 this is the empty string, if n = 1 it equals s, etc.

s[i]

Returns the substring of s consisting of the *i*-th character.

s[i]

Returns the numeric value representing the i-th character of s.

ElementToSequence(s)

Eltseq(s)

Returns the sequence of characters of s (as length 1 strings).

ElementToSequence(s)

Eltseq(s)

Returns the sequence of numeric values representing the characters of s.

Substring(s, n, k)

Return the substring of s of length k starting at position n.

3.2.3 Integer-Valued Functions

#s

The length of the string s.

Position(s, t)

This function returns the position (an integer p with 0) in the string <math>s where the beginning of a contiguous substring t occurs. It returns 0 if t is not a substring of s. (If t is the empty string, position 1 will always be returned, even if s is empty as well.)

3.2.4 Character Conversion

To perform more sophisticated operations, one may convert the string into a sequence and use the extensive facilities for sequences described in the next part of this manual; see the examples at the end of this chapter for details.

StringToCode(s)

Returns the code number of the first character of string s. This code depends on the computer system that is used; it is ASCII on most UNIX machines.

```
CodeToString(n)
```

Returns a character (string of length 1) corresponding to the code number n, where the code is system dependent (see previous entry).

THE MAGMA LANGUAGE

StringToInteger(s)

Returns the integer corresponding to the string of decimal digits s. All non-space characters in the string s must be digits $(0, 1, \ldots, 9)$, except the first character, which is also allowed to be + or -. An error results if any other combination of characters occurs. Leading zeros are omitted.

StringToInteger(s, b)

Returns the integer corresponding to the string of digits s, all assumed to be written in base b. All non-space characters in the string s must be digits less than b (if b is greater than 10, 'A' is used for 10, 'B' for 11, etc.), except the first character, which is also allowed to be + or -. An error results if any other combination of characters occurs.

StringToIntegerSequence(s)

Returns the sequence of integers corresponding to the string s of space-separated decimal numbers. All non-space characters in the string s must be digits $(0, 1, \ldots, 9)$, except the first character after each space, which is also allowed to be + or -. An error results if any other combination of characters occurs. Leading zeros are omitted. Each number can begin with a sign (+ or -) without a space.

IntegerToString(n)

Convert the integer n into a string of decimal digits; if n is negative the first character of the string will be -. (Note that leading zeros and a + sign are ignored when MAGMA builds an integer, so the resulting string will never begin with + or 0 characters.)

IntegerToString(n, b)

Convert the integer n into a string of digits with the given base (which must be in the range $[2 \dots 36]$); if n is negative the first character of the string will be -.

3.2.5 Boolean Functions

s eq t

Returns true if and only if the strings s and t are identical. Note that blanks are significant.

s ne t

Returns true if and only if the strings s and t are distinct. Note that blanks are significant.

s in t

Returns true if and only if s appears as a contiguous substring of t. Note that the empty string is contained in every string.

INPUT AND OUTPUT

s notin t

Returns true if and only if s does not appear as a contiguous substring of t. Note that the empty string is contained in every string.

s lt t

Returns true if s is lexicographically less than t, false otherwise. Here the ordering on characters imposed by their ASCII code number is used.

s le t

Returns true if s is lexicographically less than or equal to t, false otherwise. Here the ordering on characters imposed by their ASCII code number is used.

s gt t

Returns true if s is lexicographically greater than t, false otherwise. Here the ordering on characters imposed by their ASCII code number is used.

s ge t

Returns true if s is lexicographically greater than or equal to t, false otherwise. Here the ordering on characters imposed by their ASCII code number is used.

Example H3E1_

```
> "Mag" cat "ma";
Magma
```

Omitting double-quotes usually has undesired effects:

> "Mag cat ma"; Mag cat ma

And note that there are two different equalities involved in the following!

```
> "73" * "9" * "42" eq "7" * "3942";
true
> 73 * 9 * 42 eq 7 * 3942;
true
```

The next line shows how strings can be concatenated quickly, and also that strings of blanks can be used for formatting:

Here is a way to list (in a sequence) the first occurrence of each of the ten digits in the decimal expansion of π , using IntegerToString and Position.

```
> pi := Pi(RealField(1001));
> dec1000 := Round(10<sup>1000*</sup>(pi-3));
> I := IntegerToString(dec1000);
> [ Position(I, IntegerToString(i)) : i in [0..9] ];
```

Ch. 3

```
[ 32, 1, 6, 9, 2, 4, 7, 13, 11, 5 ]
```

Using the length **#** and string indexing [] it is also easy to count the number of occurrences of each digit in the string containing the first 1000 digits.

```
> [ #[i : i in [1..#I] | I[i] eq IntegerToString(j)] : j in [0..9] ];
[ 93, 116, 103, 102, 93, 97, 94, 95, 101, 106 ]
```

We would like to test if the ASCII-encoding of the string 'Magma' appears. This could be done as follows, using StringToCode and in, or alternatively, Position. To reduce the typing, we first abbreviate IntegerToString to is and StringToCode to sc.

```
> sc := StringToCode;
> its := IntegerToString;
> M := its(sc("M")) * its(sc("a")) * its(sc("g")) * its(sc("m")) * its(sc("a"));
> M;
779710310997
> M in I;
false
> Position(I, M);
0
```

So 'Magma' does not appear this way. However, we could be satisfied if the letters appear somewhere in the right order. To do more sophisticated operations (like this) on strings, it is necessary to convert the string into a sequence, because sequences constitute a more versatile data type, allowing many more advanced operations than strings.

```
> Iseq := [ I[i] : i in [1..#I] ];
> Mseq := [ M[i] : i in [1..#M] ];
> IsSubsequence(Mseq, Iseq);
false
> IsSubsequence(Mseq, Iseq: Kind := "Sequential");
true
```

Finally, we find that the string 'magma' lies in between 'Pi' and 'pi':

```
> "Pi" le "magma";
true
> "magma" lt "pi";
true
```

3.2.6 Parsing Strings

Split(S,	D)
Split(S)	

Given a string S, together with a string D describing a list of separator characters, return the sequence of strings obtained by splitting S at any of the characters contained in D. That is, S is considered as a sequence of fields, with any character in D taken to be a delimiter separating the fields. If D is omitted, it is taken to be the string consisting of the newline character alone (so S is split into the lines found in it). If S is desired to be split into space-separated words, the argument " \t\n" should be given for D.

Example H3E2

We demonstrate elementary uses of Split.

```
> Split("a b c d", " ");
[ a, b, c, d ]
> // Note that an empty field is included if the
> // string starts with the separator:
> Split(" a b c d", " ");
[ , a, b, c, d ]
> Split("abxcdyefzab", "xyz");
[ ab, cd, ef, ab ]
> // Note that no splitting happens if the delimiter
> // is empty:
> Split("abcd", "");
[ abcd ]
```

Regexp(R, S)

Given a string R specifying a regular expression, together with a string S, return whether S matches R. If so, return also the matched substring of S, together with the sequence of matched substrings of S corresponding to the parenthesized expressions of R. This function is based on the freely distributable reimplementation of the V8 regexp package by Henry Spencer. The syntax and interpretation of the characters $|, *, +, ?, \hat{}, $, [], \ is the same as in the UNIX command egrep.$ The parenthesized expressions are numbered in left-to-right order of their openingparentheses. Note that the parentheses should not have an initial backslash beforethem as the UNIX commands grep and ed require.

Example H3E3_

We demonstrate some elementary uses of Regexp.

```
> Regexp("b.*d", "abcde");
true bcd []
> Regexp("b(.*)d", "abcde");
true bcd [ c ]
> Regexp("b.*d", "xyz");
false
> date := "Mon Jun 17 10:27:27 EST 1996";
> _, _, f := Regexp("([0-9][0-9]):([0-9][0-9])", date);
> f;
[ 10, 27, 27 ]
> h, m, s := Explode(f);
> h, m, s;
10 27 27
```

3.3 Printing

3.3.1 The print-Statement

print	expression;	
print	expression,	, expression;
print	expression:	parameters;

Print the value of the expression. Some limited ways of formatting output are described in the section on strings. Four levels of printing (that may in specific cases coincide) exist, and may be indicated after the colon: Default (which is the same as the level obtained if no level is indicated), Minimal, Maximal, and Magma. The last of these produces output representing the value of the identifier as valid MAGMA-input (when possible).

3.3.2 The printf and fprintf Statements

printf format, expression, ..., expression;

Print values of the expressions under control of *format*. The first argument, the *format string*, must be a string which contains two types of objects: plain characters, which are simply printed, and conversion specifications (indicated by the % character), each of which causes conversion and printing of zero or more of the expressions. (Use %% to get a literal percent character.) Currently, the only conversion specifications allowed are: %o and %O, which stand for "object", %m, which stands for "magma", and %h, which stands for "hexadecimal".

The hexadecimal conversion specification will print its argument in hexadecimal; currently, it only supports integer arguments. The object and magma conversion specifications each print the corresponding argument; they differ only in the printing mode used. The %o form uses the default printing mode, while the %O form uses the printing mode specified by the next argument (as a string). The "magma" conversion specification uses a printing mode of Magma. It is thus equivalent to (but shorter than) using %O and an extra argument of "Magma".

For each of these conversion specifications, the object can be printed in a field of a particular width by placing extra characters immediately after the % character: digits describing a positive integer, specifying a field with width equal to that number and with right-justification; digits describing a negative integer, specifying a field with width equal to the absolute value of the number and with left-justification; or the character * specifying a field width given by the next appropriate expression argument (with justification determined by the sign of the number). This statement is thus like the C language function printf(), except that %o (and %O and %m) covers all kinds of objects — it is not necessary to have different conversion specifications for the different types of MAGMA objects. Note also that this statement does *not* print a newline character after its arguments while the print statement does (a \n character should be placed in the format string if this is desired). A newline character will be printed just before the next prompt, though, if there is an incomplete line at that point.

Example H3E4_

The following statements demonstrate simple uses of *printf*.

```
> for i := 1 to 150 by 33 do printf "[%30]\n", i; end for;
[ 1]
[ 34]
[ 67]
[100]
[133]
> for i := 1 to 150 by 33 do printf "[%-30]\n", i; end for;
[1 ]
[34 ]
[67 ]
```

```
[100]
[133]
> for w := 1 to 5 do printf "[%*o]", w, 1; end for;
[1][ 1][ 1][ 1][ 1]
```

Example H3E5_

Some further uses of the printf statement are illustrated below.

```
> x := 3;
> y := 4;
> printf "x = %o, y = %o\n", x, y;
x = 3, y = 4
> printf "G'"; printf "day";
G'day
> p := 53.211;
> x := 123.2;
> printf "%.3o%% of %.2o is %.3o\n", p, x, p/100.0 * x;
53.211% of 123.20 is 65.556
> Zx<x> := PolynomialRing(Integers());
> printf "%0\n", x, "Magma";
Polynomial(\[0, 1])
```

fprintf file, format, expression, ..., expression;

Print values of the expressions under control of *format* into the file given by *file*. The first argument *file* must be either a string specifying a file which can be opened for appending (tilde expansion is performed on the filename), or an file object (see the section below on external files) opened for writing. The rest of the arguments are exactly as in the **printf** statement. In the string (filename) case, the file is opened for appending, the string obtained from the formatted printing of the other arguments is appended to the file, and the file is closed. In the file object case, the string obtained from the formatted printf, does *not* print a newline character after its arguments (a \n character should be placed in the format string if this is desired).

Example H3E6_

The following statements demonstrate a (rather contrived) use of *fprintf* with a file pipe.

Ch. 3

> delete F;	
37107316853453566312041115519	(2^109 mod p)
70602400912917605986812821219	(2^102 mod p)
74214633706907132624082231038	(2^110 mod p)
129638414606681695789005139447	(2 ¹⁰⁶ mod p)
141204801825835211973625642438	(2^103 mod p)
259276829213363391578010278894	(2 ¹⁰⁷ mod p)
267650600228229401496703205319	(2 ¹⁰⁰ mod p)
282409603651670423947251284876	(2^104 mod p)
518553658426726783156020557788	-
535301200456458802993406410638	(2^101 mod p)
564819207303340847894502569752	(2 ¹⁰⁵ mod p)

3.3.3 Verbose Printing (vprint, vprintf)

The following statements allow convenient printing of information conditioned by whether an appropriate verbose flag is turned on.

```
vprint flag:expression, ..., expression;vprint flag, n:expression, ..., expression;
```

If the verbose flag flag (see the function SetVerbose) has a level greater than or equal to n, print the expressions to the right of the colon exactly as in the print statement. If the flag has level 0 (i.e. is not turned on), do nothing. In the first form of this statement, where a specific level is not given, n is taken to be 1. This statement is useful in MAGMA code found in packages where one wants to print verbose information if an appropriate verbose flag is turned on.

vprintf flag:	format, expression,, expression;	
vprintf flag,	n: format, expression,, expression;	

If the verbose flag flag (see the function SetVerbose) has a level greater than or equal to n, print using the format and the expressions to the right of the colon exactly as in the **printf** statement. If the flag has level 0 (i.e. is not turned on), do nothing. In the first form of this statement, where a specific level is not given, nis taken to be 1. This statement is useful in MAGMA code found in packages where one wants to print verbose information if an appropriate verbose flag is turned on.

3.3.4 Automatic Printing

MAGMA allows *automatic printing* of expressions: basically, a statement consisting of an expression (or list of expressions) alone is taken as a shorthand for the print-statement.

Some subtleties are involved in understanding the precise behaviour of MAGMA in interpreting lone expressions as statements. The rules MAGMA follows are outlined here. In the following, a *call-form* means any expression of the form f(arguments); that is, anything which could be a procedure call or a function call.

- (a) Any single expression followed by a semicolon which is not a call-form is printed, just as if you had 'print' in front of it.
- (b) For a single call-form followed by a semicolon (which could be a function call or procedure call), the first signature which matches the input arguments is taken and if that is procedural, the whole call is taken as a procedure call, otherwise it is taken as function call and the results are printed.
- (c) A comma-separated list of any expressions is printed, just as if you had 'print' in front of it. Here any call-form is taken as a function call only so procedure calls are impossible.
- (d) A print level modifier is allowed after an expression list (whether the list has length 1 or more). Again any call-form is taken as a function call only so procedure calls are impossible.
- (e) Any list of objects printed, whether by any of the above rules or by the 'print' statement, is placed in the previous value buffer. \$1 gives the last printed list, \$2 the one before, etc. Note that multi-return values stay as a list of values in the previous value buffer. The only way to get at the individual values of such a list is by assignment to a list of identifiers, or by where (this is of course the only way to get the second result out of Quotrem, etc.). In other places, a \$1 expression is evaluated with principal value semantics.

MAGMA also provides procedures to manipulate the previous value buffer in which \$1, etc. are stored.

ShowPrevious()

Show all the previous values stored. This does *not* change the contents of the previous value buffer.

ShowPrevious(i)

Show the i-th previous value stored. This does not change the contents of the previous value buffer.

ClearPrevious()

Clear all the previous values stored. This is useful for ensuring that no more memory is used than that referred to by the current identifiers.

SetPreviousSize(n)

Set the size of the previous value buffer (this is not how many values are defined in it at the moment, but the maximum number that will be stored). The default size is 3.

GetPreviousSize()

Examples which illustrate point (a):

Return the size of the previous value buffer.

Example H3E7_

```
> 1;
1
> x := 3;
> x;
3
Examples which illustrate point (b):
> 1 + 1;
                   // really function call '+'(1, 1)
2
> Q := [ 0 ];
> Append(~Q, 1); // first (in fact only) match is procedure call
> Append(Q, 1);
                   // first (in fact only) match is function call
[0,1,1]
> // Assuming fp is assigned to a procedure or function:
> fp(x);
                     // whichever fp is at runtime
> SetVerbose("Meataxe", true); // simple procedure call
Examples which illustrate point (c):
> 1, 2;
1 2
> // Assuming f assigned:
                                       // f only can be a function
> f(x), 1;
> SetVerbose("Meataxe", true), 1;
                                       // type error in 'SetVerbose'
                                       // (since no function form)
>
```

Examples which illustrate point (d):

```
> 1: Magma;
1
> Sym(3), []: Maximal;
Symmetric group acting on a set of cardinality 3
Order = 6 = 2 * 3
[]
> SetVerbose("Meataxe", true): Magma; // type error as above
Examples which illustrate point (e):
```

> 1;

```
1
> $1;
1
> 2, 3;
2 3
> $1;
2 3
> $1;
2 3
> Quotrem(124124, 123);
1009 17
> $1;
1009 17
> $1;
1009 17
> a, b := $1;
> a;
1009
```

3.3.5 Indentation

MAGMA has an indentation level which determines how many initial spaces should be printed before each line. The level can be increased or decreased. Each time the top level of Magma is reached (i.e. a prompt is printed), the level is reset to 0. The level is usually changed in verbose output of recursive functions and procedures. The functions SetIndent and GetIndent are used to control and examine the number of spaces used for each indentation level (default 4).

IndentPush()

Increase (push) the indentation level by 1. Thus the beginning of a line will have s more spaces than before, where s is the current number of indentation spaces.

IndentPop()

Decrease (pop) the indentation level by 1. Thus the beginning of a line will have s less spaces than before, where s is the current number of indentation spaces. If the current level is already 0, an error occurs.

3.3.6 Printing to a File

PrintFile	e(F,	x)
Write(F,	x)	

Overwrite

BOOLELT

Default : false

Print x to the file specified by the string F. If this file already exists, the output will be appended, unless the optional parameter **Overwrite** is set to true, in which case the file is overwritten.

78

INPUT AND OUTPUT

WriteBinary(F, s)

Overwrite

BoolElt

Default : false

Write the binary string s to the file specified by the string F. If this file already exists, the output will be appended, unless the optional parameter **Overwrite** is set to true, in which case the file is overwritten.

PrintFile	e(F,	x,	L)	
Write(F,	x,	L)		

Overwrite

BOOLELT

Default : false

Print x in format defined by the string L to the file specified by the string F. If this file already exists, the output will be appended unless the optional parameter **Overwrite** is set to true, in which case the file is overwritten. The level L can be any of the print levels on the print command above (i.e., it must be one of the strings "Default", "Minimal", "Maximal", or "Magma").

PrintFileMagma(F, x)

Overwrite

BOOLELT

Default : false

Print x in Magma format to the file specified by the string F. If this file already exists, the output will be appended, unless the optional parameter **Overwrite** is set to true, in which case the file is overwritten.

3.3.7 Printing to a String

MAGMA allows the user to obtain the string corresponding to the output obtained when printing an object by means of the **Sprint** function. The **Sprintf** function allows formatted printing like the **printf** statement.

Sprint(x) Sprint(x, L)

Given any MAGMA object x, this function returns a string containing the output obtained when x is printed. If a print level L is given also (a string), the printing is done according to that level (see the **print** statement for the possible printing levels).

Sprintf(F, ...)

Given a format string F, together with appropriate extra arguments corresponding to F, return the string resulting from the formatted printing of F and the arguments. The format string F and arguments should be exactly as for the **printf** statement – see that statement for details.

Example H3E8_

We demonstrate elementary uses of Sprintf.

```
> Q := [Sprintf("{%4o<->%-4o}", x, x): x in [1,10,100,1000]];
> Q;
[ { 1<->1 }, { 10<->10 }, { 100<->100 }, {1000<->1000} ]
```

BOOLELT

3.3.8 Redirecting Output

SetOutputFile(F)

Overwrite

Default : false

Redirect all MAGMA output to the file specified by the string F. By using SetOutputFile(F: Overwrite := true) the file F is emptied before output is written onto it.

UnsetOutputFile()

Close the output file, so that output will be directed to standard output again.

HasOutputFile()

If MAGMA currently has an output or log file F, return true and F; otherwise return false.

3.4 External Files

MAGMA provides a special *file* type for the reading and writing of external files. Most of the standard C library functions can be applied to such files to manipulate them.

3.4.1 Opening Files

Open(S, T)

Given a filename (string) S, together with a type indicator T, open the file named by S and return a MAGMA file object associated with it. Tilde expansion is performed on S. The standard C library function fopen() is used, so the possible characters allowed in T are the same as those allowed for that function in the current operating system, and have the same interpretation. Thus one should give the value "r" for T to open the file for reading, and give the value "w" for T to open the file for writing, etc. (Note that in the PC version of MAGMA, the character "b" should also be included in T if the file is desired to be opened in binary mode.) Once a file object is created, various I/O operations can be performed on it — see below. A file is closed by deleting it (i.e. by use of the delete statement or by reassigning the variable associated with the file); there is no Fclose function. This ensures that the file is not closed while there are still multiple references to it. (The function is called Open instead of Fopen to follow Perl-style conventions. The following functions also follow such conventions where possible.)

3.4.2 Operations on File Objects

Flush(F)

Given a file F, flush the buffer of F.

Tell(F)

Given a file F, return the offset in bytes of the file pointer within F.

Seek(F, o, p)

Perform fseek(F, o, p); i.e. move the file pointer of F to offset o (relative to p: 0 means beginning, 1 means current, 2 means end).

Rewind(F)

Perform rewind(F); i.e. move the file pointer of F to the beginning.

Put(F, S)

Put (write) the characters of the string S to the file F.

Puts(F, S)

Put (write) the characters of the string S, followed by a newline character, to the file F.

Getc(F)

Given a file F, get and return one more character from file F as a string. If F is at end of file, a special EOF marker string is returned; the function **IsEof** should be applied to the character to test for end of file. (Thus the only way to loop over a file character by character is to get each character and test whether it is the EOF marker before processing it.)

Gets(F)

Given a file F, get and return one more line from file F as a string. The newline character is removed before the string is returned. If F is at end of file, a special EOF marker string is returned; the function **IsEof** should be applied to the string to test for end of file.

IsEof(S)

Given a string S, return whether S is the special EOF marker.

Ungetc(F, c)

Given a character (length one string) C, together with a file F, perform ungetc(C, F); i.e. push the character C back into the input buffer of F.

Ch. 3

Example H3E9_

We write a function to count the number of lines in a file. Note the method of looping over the characters of the file: we must get the line and then test whether it is the special EOF marker.

```
> function LineCount(F)
      FP := Open(F, "r");
>
      c := 0;
>
>
      while true do
>
          s := Gets(FP);
>
          if IsEof(s) then
>
               break;
>
          end if;
>
          c +:= 1;
>
      end while;
>
      return c;
> end function;
> LineCount("/etc/passwd");
59
```

3.4.3 Reading a Complete File

Read(F)

Function that returns the contents of the text-file with name indicated by the string F. Here F may be an expression returning a string.

ReadBinary(F)

Function that returns the contents of the text-file with name indicated by the string F as a binary string.

Example H3E10

In this example we show how **Read** can be used to import the complete output from a separate C program into a MAGMA session. We assume that a file **mystery.c** (of which the contents are shown below) is present in the current directory. We first compile it, from within MAGMA, and then use it to produce output for the MAGMA version of our **mystery** function.

```
> Read("mystery.c");
#include <stdio.h>
main(argc, argv)
int argc;
char **argv;
{
    int n, i;
    n = atoi(argv[1]);
    for (i = 1; i <= n; i++)
        printf("%d\n", i * i);</pre>
```

```
Ch. 3
```

```
return 0;
}
> System("cc mystery.c -o mystery");
> mysteryMagma := function(n)
> System("./mystery " cat IntegerToString(n) cat " >outfile");
> output := Read("outfile");
> return StringToIntegerSequence(output);
> end function;
> mysteryMagma(5);
[ 1, 4, 9, 16, 25 ]
```

3.5 Pipes

Pipes are used to communicate with newly-created processes. Currently pipes are only available on UNIX systems.

The MAGMA I/O module is currently undergoing revision, and the current pipe facilities are a mix of the old and new methods. A more uniform model will be available in future releases.

3.5.1 Pipe Creation

POpen(C, T)

Given a shell command line C, together with a type indicator T, open a pipe between the MAGMA process and the command to be executed. The standard C library function popen() is used, so the possible characters allowed in T are the same as those allowed for that function in the current operating system, and have the same interpretation. Thus one should give the value "r" for T so that MAGMA can read the output from the command, and give the value "w" for T so that MAGMA can write into the input of the command. See the Pipe intrinsic for a method for sending input to, and receiving output from, a single command.

Important: this function returns a File object, and the I/O functions for files described previously must be used rather than those described in the following.

Pipe(C, S)

Given a shell command C and an input string S, create a pipe to the command C, send S into the standard input of C, and return the output of C as a string. Note that for many commands, S should finish with a new line character if it consists of only one line.

Example H3E11_

We write a function which returns the current time as 3 values: hour, minutes, seconds. The function opens a pipe to the UNIX command "date" and applies regular expression matching to the output to extract the relevant fields.

```
> function GetTime()
>
      D := POpen("date", "r");
      date := Gets(D);
>
      _, _, f := Regexp("([0-9][0-9]):([0-9][0-9]):([0-9][0-9])", date);
>
>
      h, m, s := Explode(f);
>
      return h, m, s;
> end function;
> h, m, s := GetTime();
> h, m, s;
14 30 01
> h, m, s := GetTime();
> h, m, s;
14 30 04
```

3.5.2 Operations on Pipes

When a read request is made on a pipe, the available data is returned. If no data is currently available, then the process waits until some does becomes available, and returns that. (It will also return if the pipe has been closed and hence no more data can be transmitted.) It does not continue trying to read more data, as it cannot tell whether or not there is some "on the way".

The upshot of all this is that care must be exercised as reads may return less data than is expected.

Read(P : parameters)

Max

RNGINTELT

RNGINTELT

Default: 0

Default: 0

Waits for data to become available for reading from P and then returns it as a string. If the parameter Max is set to a positive value then at most that many characters will be read. Note that less than Max characters may be returned, depending on the amount of currently available data.

If the pipe has been closed then the special EOF marker string is returned.

ReadBytes(P : parameters)

Max

Waits for data to become available for reading from P and then returns it as a sequence of bytes (integers in the range 0..255). If the parameter Max is set to a positive value then at most that many bytes will be read. Note that less than Max bytes may be returned, depending on the amount of currently available data.

If the pipe has been closed then the empty sequence is returned.

Write(P, s)

Writes the characters of the string s to the pipe P.

WriteBytes(P, Q)

Writes the bytes in the byte sequence Q to the pipe P. Each byte must be an integer in the range 0..255.

3.6 Sockets

Sockets may be used to establish communication channels between machines on the same network. Once established, they can be read from or written to in much the same ways as more familiar I/O constructs like files. One major difference is that the data is not instantly available, so the I/O operations take much longer than with files. Currently sockets are only available on UNIX systems.

Strictly speaking, a *socket* is a communication endpoint whose defining information consists of a network address and a port number. (Even more strictly speaking, the communication protocol is also part of the socket. MAGMA only uses TCP sockets, however, so we ignore this point from now on.)

The network address selects on which of the available network interfaces communication will take place; it is a string identifying the machine on that network, in either domain name or dotted-decimal format. For example, both "localhost" and "127.0.0.1" identify the machine on the loopback interface (which is only accessible from the machine itself), whereas "foo.bar.com" or "10.0.0.3" might identify the machine in a local network, accessible from other machines on that network.

The port number is just an integer that identifies the socket on a particular network interface. It must be less than 65 536. A value of 0 will indicate that the port number should be chosen by the operating system.

There are two types of sockets, which we will call client sockets and server sockets. The purpose of a client socket is to initiate a connection to a server socket, and the purpose of a server socket is to wait for clients to initiate connections to it. (Thus the server socket needs to be created before the client can connect to it.) Once a server socket accepts a connection from a client socket, a communication channel is established and the distinction between the two becomes irrelevant, as they are merely each side of a communication channel.

In the following descriptions, the network address will often be referred to as the host. So a socket is identified by a (host, port) pair, and an established communication channel consists of two of these pairs: (local-host, local-port), (remote-host, remote-port).

3.6.1 Socket Creation

Socket(H, P :	parameters)		
LocalHost	MonSt	tgElt Defau	alt:none
LocalPort	RNGIN	NTELT Defau	alt:0

Attempts to create a (client) socket connected to port P of host H. Note: these are the remote values; usually it does not matter which local values are used for client

sockets, but for those rare occasions where it does they may be specified using the parameters LocalHost and LocalPort. If these parameters are not set then suitable values will be chosen by the operating system. Also note that port numbers below 1024 are usually reserved for system use, and may require special privileges to be used as the local port number.

Socket(: parameters)

LocalHost	MonStgElt	Default: none
LocalPort	RNGINTELT	Default: 0

Attempts to create a server socket on the current machine, that can be used to accept connections. The parameters LocalHost and LocalPort may be used to specify which network interface and port the socket will accept connections on; if either of these are not set then their values will be determined by the operating system. Note that port numbers below 1024 are usually reserved for system use, and may require special privileges to be used as the local port number.

WaitForConnection(S)

This may only be used on server sockets. It waits for a connection attempt to be made, and then creates a new socket to handle the resulting communication channel. Thus S may continue to be used to accept connection attempts, while the new socket is used for communication with whatever entity just connected. Note: this new socket is *not* a server socket.

3.6.2 Socket Properties

SocketInformation(S)

This routine returns the identifying information for the socket as a pair of tuples. Each tuple is a *<host, port>* pair — the first tuple gives the local information and the second gives the remote information. Note that this second tuple will be undefined for server sockets.

3.6.3 Socket Predicates

IsServerSocket(S)

Returns whether S is a server socket or not.

INPUT AND OUTPUT

Ch. 3

3.6.4 Socket I/O

Due to the nature of the network, it takes significant time to transmit data from one machine to another. Thus when a read request is begun it may take some time to complete, usually because the data to be read has not yet arrived. Also, data written to a socket may be broken up into smaller pieces for transmission, each of which may take different amounts of time to arrive. Thus, unlike files, there is no easy way to tell if there is still more data to be read; the current lack of data is no indicator as to whether more might arrive.

When a read request is made on a socket, the available data is returned. If no data is currently available, then the process waits until some does becomes available, and returns that. (It will also return if the socket has been closed and hence no more data can be transmitted.) It does not continue trying to read more data, as it cannot tell whether or not there is some "on the way".

The upshot of all this is that care must be exercised as reads may return less data than is expected.

Read(S : parameters)

Max

RNGINTELT

Default: 0

Waits for data to become available for reading from S and then returns it as a string. If the parameter Max is set to a positive value then at most that many characters will be read. Note that less than Max characters may be returned, depending on the amount of currently available data.

If the socket has been closed then the special EOF marker string is returned.

ReadBytes(S : parameters)

Max

RNGINTELT

Default: 0

Waits for data to become available for reading from S and then returns it as a sequence of bytes (integers in the range 0..255). If the parameter Max is set to a positive value then at most that many bytes will be read. Note that less than Max bytes may be returned, depending on the amount of currently available data.

If the socket has been closed then the empty sequence is returned.

Write(S, s)

Writes the characters of the string s to the socket S.

WriteBytes(S, Q)

Writes the bytes in the byte sequence Q to the socket S. Each byte must be an integer in the range 0..255.

THE MAGMA LANGUAGE

Example H3E12_

Here is a trivial use of sockets to send a message from one MAGMA process to another running on the same machine. The first MAGMA process sets up a server socket and waits for another MAGMA to contact it.

```
> // First Magma process
> server := Socket(: LocalHost := "localhost");
> SocketInformation(server);
<localhost, 32794>
> S1 := WaitForConnection(server);
```

The second MAGMA process establishes a client socket connection to the first, writes a greeting message to it, and closes the socket.

```
> // Second Magma process
> S2 := Socket("localhost", 32794);
> SocketInformation(S2);
<localhost, 32795> <localhost, 32794>
> Write(S2, "Hello, other world!");
> delete S2;
```

The first MAGMA process is now able to continue; it reads and displays all data sent to it until the socket is closed.

```
> // First Magma process
> SocketInformation(S1);
<localhost, 32794> <localhost, 32795>
> repeat
> msg := Read(S1);
> msg;
> until IsEof(msg);
Hello, other world!
EOF
```

3.7 Interactive Input

read identifier; read identifier, prompt;

This statement will cause MAGMA to assign to the given identifier the string of characters appearing (at run-time) on the following line. This allows the user to provide an input string at run-time. If the optional prompt is given (a string), that is printed first.

INPUT AND OUTPUT

Ch. 3

readi identifier;

readi identifier, prompt;

This statement will cause MAGMA to assign to the given identifier the literal integer appearing (at run-time) on the following line. This allows the user to specify integer input at run-time. If the optional prompt is given (a string), that is printed first.

3.8 Loading a Program File

load "filename";

Input the file with the name specified by the string. The file will be read in, and the text will be treated as MAGMA input. Tilde expansion of file names is allowed.

iload "filename";

(Interactive load.) Input the file with the name specified by the string. The file will be read in, and the text will be treated as MAGMA input. Tilde expansion of file names is allowed. In contrast to load, the user has the chance to interact as each line is read in:

As the line is read in, it is displayed and the system waits for user response. At this point, the user can skip the line (by moving "down"), edit the line (using the normal editing keys) or execute it (by pressing "enter"). If the line is edited, the new line is executed and the original line is presented again.

3.9 Saving and Restoring Workspaces

save "filename";

Copy all information present in the current MAGMA workspace onto a file specified by the string "filename". The workspace is left intact, so executing this command does not interfere with the current computation.

restore "filename";

Copy a previously stored MAGMA workspace from the file specified by the string "filename" into central memory. Information present in the current workspace prior to the execution of this command will be lost. The computation can now proceed from the point it was at when the corresponding **save**-command was executed.

3.10 Logging a Session

SetLogFile(F)

Overwrite

BOOLELT

Default : false

Set the log file to be the file specified by the string F: all input and output will be sent to this log file as well as to the terminal. If a log file is already in use, it is closed and F is used instead. By using SetLogFile(F: Overwrite := true) the file F is emptied before input and output are written onto it. See also HasOutputFile.

UnsetLogFile()

Stop logging MAGMA's output.

SetEchoInput(b)

Set to true or false according to whether or not input from external files should also be sent to standard output.

3.11 Memory Usage

GetMemoryUsage()

Return the current memory usage of Magma (in bytes as an integer). This is the process data size, which does not include the executable code.

GetMaximumMemoryUsage()

Return the maximum memory usage of Magma (in bytes as an integer) which has been attained since last reset (see ResetMaximumMemoryUsage). This is the maximum process data size, which does not include the executable code.

ResetMaximumMemoryUsage()

Reset the value of the maximum memory usage of Magma to be the current memory usage of Magma (see GetMaximumMemoryUsage).

3.12 System Calls

Alarm(s)

A procedure which when used on UNIX systems, sends the signal SIGALRM to the MAGMA process after s seconds. This allows the user to specify that a MAGMA-process should self-destruct after a certain period.

ChangeDirectory(s)

Change to the directory specified by the string s. Tilde expansion is allowed.

GetCurrentDirectory()

Returns the current directory as a string.

Getpid()

Returns Magma's process ID (value of the Unix C system call getpid()).

Getuid()

Returns the user ID (value of the Unix C system call getuid()).

System(C)

Execute the system command specified by the string C. This is done by calling the C function system().

This also returns the system command's return value as an integer. On most Unix systems, the lower 8 bits of this value give the process status while the next 8 bits give the value given by the command to the C function exit() (see the Unix manual entries for system(3) or wait(2), for example). Thus one should normally divide the result by 256 to get the exit value of the program on success.

See also the Pipe intrinsic function.

%! shell-command

Execute the given command in the Unix shell then return to Magma. Note that this type of shell escape (contrary to the one using a System call) takes place entirely outside MAGMA and does not show up in MAGMA's history.

3.13 Creating Names

Sometimes it is necessary to create names for files from within MAGMA that will not clash with the names of existing files.

Tempname(P)

Given a prefix string P, return a unique temporary name derived from P (by use of the C library function mktemp()).

Ch. 3

4 ENVIRONMENT AND OPTIONS

4.1 Introduction	95
4.2 Command Line Options	95
magma -b	95
magma -c filename	95
magma -d	96
magma -n	96
magma -q name	96
magma -r workspace	96
magma -s filename	96
magma -S integer	96
4.3 Environment Variables	97
MAGMA_STARTUP_FILE	97
MAGMA_PATH	97
MAGMA_MEMORY_LIMIT	97
MAGMA_LIBRARY_ROOT	97
MAGMA_LIBRARIES	97
MAGMA_SYSTEM_SPEC	97
MAGMA_USER_SPEC	97
MAGMA_HELP_DIR	97
MAGMA_TEMP_DIR	97
4.4 Set and Get	98
SetAssertions(b)	98
GetAssertions()	98
SetAutoColumns(b)	98
GetAutoColumns()	98
SetAutoCompact(b)	98
GetAutoCompact()	98
SetBeep(b)	98
GetBeep()	98
SetColumns(n)	98
GetColumns()	98
GetCurrentDirectory()	99
SetEchoInput(b)	99
GetEchoInput()	99
GetEnvironmentValue(s)	99
GetEnv(s)	99
	99
SetHistorySize(n) GetHistorySize()	99
SetIgnorePrompt(b)	99
	99 99
GetIgnorePrompt()	99 99
SetIgnoreSpaces(b) GetIgnoreSpaces()	99 99
•	99 99
<pre>SetIndent(n) GetIndent()</pre>	99 99
SetLibraries(s)	100
GetLibraries()	100
SetLibraryRoot(s)	100
GetLibraryRoot()	100
SetLineEditor(b)	100
GetLineEditor()	100
SetLogFile(F)	100
UnsetLogFile()	100

SetMemoryLimit(n)	100
GetMemoryLimit()	100
SetNthreads(n)	100
GetNthreads()	100
SetOutputFile(F)	101
UnsetOutputFile()	101
SetPath(s)	101
GetPath()	101
SetPrintLevel(1)	101
GetPrintLevel()	101
SetPrompt(s)	101
GetPrompt()	101
SetQuitOnError(b)	101
SetRows(n)	101
GetRows()	101
GetTempDir()	102
SetTraceback(n)	102
GetTraceback()	102
SetSeed(s, c)	102
GetSeed()	102
GetVersion()	102
SetViMode(b)	102
GetViMode()	102
4.5 Verbose Levels	102
SetVerbose(s, i)	102
SetVerbose(s, b)	102
GetVerbose(s)	102
IsVerbose(s)	103
IsVerbose(s, 1)	103
ListVerbose()	103
ClearVerbose()	103
4.6 Other Information Procedures	103
ShowMemoryUsage()	103
ShowIdentifiers()	103
ShowValues()	103
Traceback()	103
ListSignatures(C)	103
ListSignatures(F, C)	104
ListCategories()	104
ListTypes()	104
4.7 History	104
%р	104
%p %pn	104
~	104
%pn ₁ n ₂ %P	
%Р %Рn	104
	104
VPn, no	104
%Pn1 n2	$\begin{array}{c} 104 \\ 104 \end{array}$
%s	$104 \\ 104 \\ 104$
%s %sn	$104 \\ 104 \\ 104 \\ 105$
%s %sn %sn1 n2	$104 \\ 104 \\ 104 \\ 105 \\ 105 \\ 105$
%s %sn	$104 \\ 104 \\ 104 \\ 105$

$Sn_1 n_2$	105
%	105
n n	105
$n_1 n_2$	105
%е	105
%en	105
$\frac{1}{2}en_1 n_2$	105
%! shell-command	105
4.8 The Magma Line Editor	106
SetViMode	106
SetViMode	106
4.8.1 Key Bindings (Emacs and VI mode)	106
<return></return>	106
<backspace></backspace>	106
<delete></delete>	106
<tab></tab>	106
<ctrl>-A</ctrl>	106
<ctrl>-B</ctrl>	106
<ctrl>-C</ctrl>	106
<ctrl>-D</ctrl>	106
<ctrl>-E</ctrl>	107
<ctrl>-F</ctrl>	107
<ctrl>-H</ctrl>	107
<ctrl>-I</ctrl>	107
<ctrl>-J</ctrl>	107
<ctrl>-K</ctrl>	107
<ctrl>-L</ctrl>	107
<ctrl>-M</ctrl>	107
<ctrl>-N</ctrl>	107
<ctrl>-P</ctrl>	107
<ctrl>-U</ctrl>	108
<ctrl>-Vchar</ctrl>	108
<ctrl>-W</ctrl>	108
<ctrl>-X</ctrl>	108
<ctrl>-Y</ctrl>	108
<ctrl>-Z</ctrl>	108
<ctrl></ctrl>	108
<ctrl>-\</ctrl>	108
4.8.2 Key Bindings in Emacs mode only.	108
Mb	108
MB	108
Mf	108
MF	108
4.8.3 Key Bindings in VI mode only	109
0	109
\$	109
<ctrl>-space</ctrl>	109
%	109

;	109
3	109
В	109
b	109
E	109
е	109
Fchar	109
fchar	109
h	109
Н	109
1	110
L	110
Tchar	110
tchar	110
W	110
W	110
A	110
a	110
С	110
crange	110
D	110
drange	110
I	110
i	110
j	111
k	111
 P	111
p	111
r R	111
rchar	111
S	111
s	111
U	111
ŭ	111
X	111
x	111
Ŷ	111
yrange	111
yrange	111
4.9 The Magma Help System	112
SetHelpExternalBrowser(S, T)	113
SetHelpExternalBrowser(S)	113
SetHelpUseExternalBrowser(b)	113
SetHelpExternalSystem(s)	113
SetHelpUseExternalSystem(b)	113
GetHelpExternalBrowser()	113
GetHelpExternalSystem()	113
GetHelpUseExternal()	113
_	113
4.9.1 Internal Help Browser	113

Chapter 4 ENVIRONMENT AND OPTIONS

4.1 Introduction

This chapter describes the environmental features of MAGMA, together with options which can be specified at start-up on the command line, or within MAGMA by the Set- procedures. The history and line-editor features of MAGMA are also described.

4.2 Command Line Options

When starting up MAGMA, various command-line options can be supplied, and a list of files to be automatically loaded can also be specified. These files may be specified by simply listing their names as normal arguments (i.e., without a - option) following the MAGMA command. For each such file name, a search for the specified file is conducted, starting in the current directory, and in directories specified by the environment variable MAGMA_PATH after that if necessary. It is also possible to have a *startup file*, in which one would usually store personal settings of parameters and variables. The startup file is specified by the **MAGMA_STARTUP_FILE** environment variable which should be set in the user's .cshrc file or similar. This environment variable can be overridden by the -s option, or cancelled by the -n option. The files specified by the arguments to MAGMA are loaded *after* the startup file. Thus the startup file is not cancelled by giving extra file arguments, which is what is usually desired.

MAGMA also allows one to set variables from the command line — if one of the arguments is of the form *var*:=*val*, where *var* is a valid identifier (consisting of letters, underscores, or non-initial digits) and there is no space between *var* and the :=, then the variable *var* is assigned within MAGMA to the *string* value *val* at the point where that argument is processed. (Functions like StringToInteger should be used to convert the value to an object of another type once inside MAGMA.)

magma -b

If the -b argument is given to MAGMA, the opening banner and all other introductory messages are suppressed. The final "total time" message is also suppressed. This is useful when sending the whole output of a MAGMA process to a file so that extra removing of unwanted output is not needed.

magma -c filename

If the -c argument is given to MAGMA, followed by a filename, the filename is assumed to refer to a package source file and the package is compiled and MAGMA then exits straight away. This option is rarely needed since packages are automatically compiled when attached.

magma -d

If the -d option is supplied to MAGMA, the licence for the current magmapassfile is dumped. That is, the expiry date and the valid hostids are displayed. MAGMA then exits.

magma -n

If the -n option is supplied to MAGMA, any startup file specified by the environment variable MAGMA_STARTUP_FILE or by the -s option is cancelled.

magma -q name

If the -q option is supplied to MAGMA, then MAGMA operates in a special manner as a slave (with the given name) for the MPQS integer factorisation algorithm. Please see that function for more details.

magma -r workspace

If the $-\mathbf{r}$ option is supplied to MAGMA, together with a workspace file, that workspace is automatically restored by MAGMA when it starts up.

magma -s filename

If the -s option is supplied to MAGMA, the given filename is used for the startup file for MAGMA. This overrides the variable of the environment variable MAGMA_STARTUP_FILE if it has been set. This option should not be used (as it was before), for automatically loading files since that can be done by just listing them as arguments to the MAGMA process.

magma -S integer

When starting up MAGMA, it is possible to specify a seed for the generation of pseudo-random numbers. (Pseudo-random quantities are used in several MAGMA algorithms, and may also be generated explicitly by some intrinsics.) The seed should be in the range 0 to $(2^{32} - 1)$ inclusive. If -S is not followed by any number, or if the -S option is not used, MAGMA selects the seed itself.

Example H4E1_

By typing the command

magma file1 x:=abc file2

MAGMA would start up, read the user's startup file specified by MAGMA_STARTUP_FILE if existent, then read the file file1, then assign the variable x to the string value "abc", then read the file file2, then give the prompt.

ENVIRONMENT AND OPTIONS

4.3 Environment Variables

This section lists some environment variables used by MAGMA. These variables are set by an appropriate operating system command and are used to define various search paths and other run-time options.

MAGMA_STARTUP_FILE

The name of the default start-up file. It can be overridden by the magma $-\mathbf{s}$ command.

MAGMA_PATH

Search path for files that are loaded (a colon separated list of directories). It need not include directories for the libraries, just personal directories. This path is searched before the library directories.

MAGMA_MEMORY_LIMIT

Limit on the size of the memory that may be used by a MAGMA-session (in bytes).

MAGMA_LIBRARY_ROOT

The root directory for the MAGMA libraries (by supplying an absolute path name). From within MAGMA SetLibraryRoot and GetLibraryRoot can be used to change and view the value.

MAGMA_LIBRARIES

Give a list of MAGMA libraries (as a colon separated list of sub-directories of the library root directory). From within MAGMA SetLibraries and GetLibraries can be used to change and view the value.

MAGMA_SYSTEM_SPEC

The MAGMA system spec file containing the system packages automatically attached at start-up.

MAGMA_USER_SPEC

The personal user spec file containing the user packages automatically attached at start-up.

MAGMA_HELP_DIR

The root directory for the MAGMA help files.

MAGMA_TEMP_DIR

Optional variable containing the directory MAGMA is to use for temporary files. If not specified, this defaults to /tmp (on Unix-like systems) or the system-wide temporary directory (on Windows systems).

Ch. 4

THE MAGMA LANGUAGE

4.4 Set and Get

The Set- procedures allow the user to attach values to certain environment variables. The Get- functions enable one to obtain the current values of these variables.

SetAssertions(b) GetAssertions()

Controls the checking of assertions (see the assert statement and related statements in the chapter on the language). Default is SetAssertions(1). The relevant values are 0 for no checking at all, 1 for normal checks, 2 for debug checks and 3 for extremely stringent checking.

SetAutoColumns(b)

GetAutoColumns()

If enabled, the IO system will try to determine the number of columns in the window by using ioctl(); when a window change or a stop/cont occurs, the Columns variable (below) will be automatically updated. If disabled, the Columns variable will only be changed when explicitly done so by SetColumns. Default is SetAutoColumns(true).

SetAutoCompact(b)

GetAutoCompact()

Control whether automatic compaction is performed. Normally the memory manager of MAGMA will compact all of its memory between each statement at the top level. This removes fragmentation and reduces excessive memory usage. In some very rare situations, the compactions may become very slow (one symptom is that an inordinate pause occurs between prompts when only a trivial operation or nothing is done). In such cases, turning the automatic compaction off may help (at the cost of possibly more use of memory). Default is SetAutoCompact(true).

SetBeep(b)

GetBeep()

Controls 'beeps'. Default is SetBeep(true).

SetColumns(n)

GetColumns()

Controls the number of columns used by the IO system. This affects the line editor and the output system. (As explained above, if AutoColumns is on, this variable will be automatically determined.) The number of columns will determine how words are wrapped. If set to 0, word wrap is not performed. The default value is SetColumns(80) (unless SetAutoColumns(true)).

ENVIRONMENT AND OPTIONS

GetCurrentDirectory()

Returns the current directory as a string. (Use ChangeDirectory(s) to change the working directory.)

SetEchoInput(b)

GetEchoInput()

Set to true or false according to whether or not input from external files should also be sent to standard output.

GetEnvironmentValue(s)

GetEnv(s)

Returns the value of the external environment variable s as a string.

SetHistorySize(n)

GetHistorySize()

Controls the number of lines saved in the history. If the number is set to 0, no history is preserved.

SetIgnorePrompt(b)

GetIgnorePrompt()

Controls the option to ignore the prompt to allow the pasting of input lines back in. If enabled, any leading '>' characters (possibly separated by white space) are ignored by the history system when the input file is a terminal, *unless* the line consists of the '>' character alone (without a following space), which could not come from a prompt since in a prompt a space or another character follows a '>'. Default is SetIgnorePrompt(false).

SetIgnoreSpaces(b)

GetIgnoreSpaces()

Controls the option to ignore spaces when searching in the line editor. If the user moves up or down in the line editor using <Ctrl>-P or <Ctrl>-N (see the line editor key descriptions) and if the cursor is not at the beginning of the line, a search is made forwards or backwards, respectively, to the first line which starts with the same string as the string consisting of all the characters before the cursor. While doing the search, spaces are ignored if and only if this option is on (value true). Default is SetIgnoreSpaces(true).

SetIndent(n)

GetIndent()

Controls the indentation level for formatting output. The default is SetIndent(4).

Ch. 4

GetLibraries()

Controls the MAGMA library directories via environment variable MAGMA_LIBRARIES. The procedure SetLibraries takes a string, which will be taken as the (colon-separated) list of sub-directories in the library root directory for the libraries; the function GetLibraryRoot returns the current value as a string. These directories will be searched when you try to load a file; note however that first the directories indicated by the current value of your path environment variable MAGMA_PATH will be searched. See SetLibraryRoot for the root directory.

SetLibraryRoot(s)

GetLibraryRoot()

Controls the root directory for the MAGMA libraries, via the environment variable MAGMA_LIBRARY_ROOT. The procedure SetLibraryRoot takes a string, which will be the absolute pathname for the root of the libraries; the function GetLibraryRoot returns the current value as a string. See also SetLibraries

SetLineEditor(b)

GetLineEditor()

Controls the line editor. Default is SetLineEditor(true).

SetLogFile(F)

Overwrite

BoolElt

Default : false

UnsetLogFile()

Procedure. Set the log file to be the file specified by the string F: all input and output will be sent to this log file as well as to the terminal. If a log file is already in use, it is closed and F is used instead. The parameter **Overwrite** can be used to indicate that the file should be truncated before writing input and output on it; by default the file is appended.

SetMemoryLimit(n)

GetMemoryLimit()

Set the limit (in bytes) of the memory which the memory manager will allocate (no limit if 0). Default is SetMemoryLimit(0).

SetNthreads(n)

GetNthreads()

Set the number of threads to be used in multi-threaded algorithms to be n, if POSIX threads are enabled in this version of Magma. Currently, this affects the coding theory minimum weight algorithm (MinimumWeight) and the F_4 Gröbner basis algorithm for medium-sized primes (Groebner).

ENVIRONMENT AND OPTIONS

Default : false

011. 4

SetOutputFile(F)

Overwrite

UnsetOutputFile()

Start/stop redirecting all MAGMA output to a file (specified by the string F). The parameter **Overwrite** can be used to indicate that the file should be truncated before writing output on it.

BOOLELT

SetPath(s)

GetPath()

Controls the path by which the searching of files is done. The path consists of a colon separated list of directories which are searched in order ("." implicitly assumed at the front). Tilde expansion is done on each directory. (May be overridden by the environment variable MAGMA_PATH.)

SetPrintLevel(1)

GetPrintLevel()

Controls the global printing level, which is one of "Minimal", "Magma", "Maximal", "Default". Default is SetPrintLevel("Default").

SetPrompt(s)

GetPrompt()

Controls the terminal prompt (a string). Expansion of the following % escapes occurs:

- %% The character %
- %h The current history line number.
- %S The parser 'state': when a new line is about to be read while the parser has only seen incomplete statements, the state consists of a stack of words like "if", "while", indicating the incomplete statements.

% Like %S except that only the topmost word is displayed.

Default is SetPrompt("%S> ").

SetQuitOnError(b)

Set whether Magma should quit on any error to b. If b is true, MAGMA will completely quit when any error (syntax, runtime, etc.) occurs. Default is SetQuitOnError(false).

SetRows(n)

GetRows()

Controls the number of rows in a page used by the IO system. This affects the output system. If set to 0, paging is not performed. Otherwise a prompt is given after the given number of rows for a new page. The default value is SetRows(0).

Ch. 4

THE MAGMA LANGUAGE

GetTempDir()

Returns the directory MAGMA uses for storing temporary files. May be influenced on startup via the MAGMA_TEMP_DIR environment variable (see Section 4.3).

SetTraceback(n)

GetTraceback()

Controls whether MAGMA should produce a traceback of user function calls before each error message. The default value is SetTraceback(true).

SetSeed(s, c)

GetSeed()

Controls the initialization seed and step number for pseudo-random number generation. For details, see the section on random object generation in the chapter on statements and expressions.

GetVersion()

Return integers x, y and z such the current version of MAGMA is Vx.y-z.

SetViMode(b)

GetViMode()

Controls the type of line editor used: Emacs (false) or VI style. Default is SetViMode(false).

4.5 Verbose Levels

By turning verbose printing on for certain modules within MAGMA, some information on computations that are performed can be obtained. For each option, the verbosity may have different levels. The default is level 0 for each option.

There are also 5 slots available for user-defined verbose flags. The flags can be set in user programs by SetVerbose("Usern", true) where *n* should be one of 1, 2, 3, 4, 5, and the current setting is returned by GetVerbose("Usern").

SetVerbose(s, i) SetVerbose(s, b)

Set verbose level for \mathbf{s} to be level i or b. Here the argument \mathbf{s} must be a string. The verbosity may have different levels. An integer i for the second argument selects the appropriate level. A second argument i of 0 or b of **false** means no verbosity. A boolean value for b of **true** for the second argument selects level 1. (See above for the valid values for the string s).

GetVerbose(s)

Return the value of verbose flag s as an integer. (See above for the valid values for the string s).

ENVIRONMENT AND OPTIONS

IsVerbose(s)

Return the whether the value of verbose flag s is non-zero. (See above for the valid values for the string s).

IsVerbose(s, 1)

Return the whether the value of verbose flag s is greater than or equal to l. (See above for the valid values for the string s).

ListVerbose()

List all verbose flags. That is, print each verbose flag and its maximal level.

ClearVerbose()

Clear all verbose flags. That is, set the level for all verbose flags to 0.

4.6 Other Information Procedures

The following procedures print information about the current state of MAGMA.

ShowMemoryUsage()

(Procedure.) Show MAGMA's current memory usage.

ShowIdentifiers()

(Procedure.) List all identifiers that have been assigned to.

ShowValues()

(Procedure.) List all identifiers that have been assigned to with their values.

Traceback()

(Procedure.) Display a traceback of the current Magma function invocations.

ListSignatures(C)

Isa	BoolElt	Default : true
Search	MonStgElt	Default : " $Both$ "
ShowSrc	BoolElt	Default: false

List all intrinsic functions, procedures and operators having objects from category C among their arguments or return values. The parameter Isa may be set to false so that any categories which C inherit from are not considered. The parameter Search, with valid string values Both, Arguments, ReturnValues, may be used to specify whether the arguments, the return values, or both, are considered (default both). ShowSrc can be used to see where package intrinsics are defined. Use ListCategories for the names of the categories.

Ch. 4

ListSignatures(F, C)		
Isa	BoolElt	Default : true
Search	MonStgElt	Default : "Both"
ShowSrc	BoolElt	Default : false

Given an intrinsic F and category C, list all signatures of F which match the category C among their arguments or return values. The parameters are as for the previous procedure.

ListCategories()

ListTypes()

Procedure to list the (abbreviated) names for all available categories in MAGMA.

4.7 History

Magma provides a history system which allows the recall and editing of previous lines. The history system is invoked by typing commands which begin with the history character '%'. Currently, the following commands are available.

%p

List the contents of the history buffer. Each line is preceded by its history line number.

%pn

List the history line n in %p format.

 $pn_1 n_2$

List the history lines in the range n_1 to n_2 in %p format.

%P

List the contents of the history buffer. The initial numbers are *not* printed.

%₽n

List the history line n in %P format.

$\ensuremath{\sc k} {\tt P} n_1 \ n_2$

List the history lines in the range n_1 to n_2 in %P format.

%s

List the contents of the history buffer with an initial statement for each line to reset the random number seed to the value it was just before the line was executed. This is useful when one wishes to redo a computation using exactly the same seed as before but does not know what the seed was at the time. sn

Print the history line n in %s format.

 $\$ sn_1 n_2$

Print the history lines in the range n_1 to n_2 in %s format.

%S

As for %s except that the statement to set the seed is only printed if the seed has changed since the previous time it was printed. Also, it is not printed if it would appear in the middle of a statement (i.e., the last line did not end in a semicolon).

%Sn

Print the history line n in %S format.

 $Sn_1 n_2$

Print the history lines in the range n_1 to n_2 in %S format.

%

Reenter the last line into the input stream.

n

Reenter the line specified by line number n into the input stream.

$n_1 n_2$

Reenter the history lines in the range n_1 to n_2 into the input stream.

%e

Edit the last line. The editor is taken to be the value of the EDITOR environment variable if is set, otherwise "/bin/ed" is used. If after the editor has exited the file has not been changed then nothing is done. Otherwise the contents of the new file are reentered into the input stream.

%en

Edit the line specified by line number n.

 $en_1 n_2$

Edit the history lines in the range n_1 to n_2 .

%! shell-command

Execute the given command in the Unix shell then return to Magma.

4.8 The Magma Line Editor

Magma provides a line editor with both Emacs and VI style key bindings. To enable the VI style of key bindings, type

SetViMode(true)

and type

```
SetViMode(false)
```

to revert to the Emacs style of key bindings. By default ViMode is **false**; that is, the Emacs style is in effect.

Many key bindings are the same in both Emacs and VI style. This is because some VI users like to be able to use some Emacs keys (like <Ctrl>-P) as well as the VI command keys. Thus key bindings in Emacs which are not used in VI insert mode can be made common to both.

4.8.1 Key Bindings (Emacs and VI mode)

<Ctrl>-key means hold down the Control key and press key.

<Return>

Accept the line and print a new line. This works in any mode.

<Backspace>

<Delete>

Delete the previous character.

<Tab>

Complete the word which the cursor is on or just after. If the word doesn't have a unique completion, it is first expanded up to the common prefix of all the possible completions. An immediately following Tab key will list all of the possible completions. Currently completion occurs for system functions and procedures, parameters, reserved words, and user identifiers.

<Ctrl>-A

Move to the beginning of the line ("alpha" = "beginning").

<Ctrl>-B

Move back a character ("back").

<Ctrl>-C

Abort the current line and start a new line.

<Ctrl>-D

On an empty line, send a EOF character (i.e., exit at the top level of the command interpreter). If at end of line, list the completions. Otherwise, delete the character under the cursor ("delete").

<Ctrl>-E

Move to the end of the line ("end").

<Ctrl>-F

Move forward a character ("forward").

<Ctrl>-H

Same as Backspace.

<Ctrl>-I

Same as Tab.

<Ctrl>-J

Same as Return.

<Ctrl>-K

Delete all characters from the cursor to the end of the line ("kill").

<Ctrl>-L

Redraw the line on a new line (helpful if the screen gets wrecked by programs like "write", etc.).

<Ctrl>-M

Same as <Return>.

<Ctrl>-N

Go forward a line in the history buffer ("next"). If the cursor is not at the beginning of the line, go forward to the first following line which starts with the same string (ignoring spaces iff the ignore spaces option is on — see SetIgnoreSpaces) as the string consisting of all the characters before the cursor. Also, if <Ctrl>-N is typed initially at a new line and the last line entered was actually a recall of a preceding line, then the next line after that is entered into the current buffer. Thus to repeat a sequence of lines (with minor modifications perhaps to each), then one only needs to go back to the first line with <Ctrl>-P (see below), press <Return>, then successively press <Ctrl>-N followed by <Return> for each line.

<Ctrl>-P

Go back a line in the history buffer ("previous"). If the cursor is not at the beginning of the line, go back to the first preceding line which starts with the same string (ignoring spaces iff the ignore spaces option is on — see SetIgnoreSpaces) as the string consisting of all the characters before the cursor. For example, typing at a

THE MAGMA LANGUAGE

new line x:= and then <Ctrl>-P will go back to the last line which assigned x (if a line begins with, say, x :=, it will also be taken).

<Ctrl>-U

Clear the whole of the current line.

<Ctrl>-Vchar

Insert the following character literally.

<Ctrl>-W

Delete the previous word.

<Ctrl>-X

Same as <Ctrl>-U.

<Ctrl>-Y

Insert the contents of the yank-buffer before the character under the cursor.

<Ctrl>-Z

Stop Magma.

 $<Ctrl>-_$

Undo the last change.

<Ctrl>-

Immediately quit MAGMA.

On most systems the arrow keys also have the obvious meaning.

4.8.2 Key Bindings in Emacs mode only

Mkey means press the Meta key and then key. (At the moment, the Meta key is only the Esc key.)

Mb MB

Move back a word ("Back").

Mf MF

Move forward a word ("Forward").

4.8.3 Key Bindings in VI mode only

In the VI mode, the line editor can also be in two modes: the insert mode and the command mode. When in the insert mode, any non-control character is inserted at the current cursor position. The command mode is then entered by typing the Esc key. In the command mode, various commands are given a *range* giving the extent to which they are performed. The following ranges are available:

0 Move to the beginning of the line. \$ Move to the end of the line. <Ctrl>-space Move to the first non-space character of the line. % Move to the matching bracket. (Bracket characters are $(,), [,], \{, \}, <, \text{ and } >.$) ; Move to the next character. (See 'F', 'f', 'T', and 't'.) , Move to the previous character. (See 'F', 'f', 'T', and 't'.) В Move back a space-separated word ("Back"). b Move back a word ("back"). Е Move forward to the end of the space-separated word ("End"). е Move forward to the end of the word ("end"). Fchar Move back to the first occurrence of *char*. fchar Move forward to the first occurrence of *char*. h Η Move back a character (<Ctrl>-H = Backspace).

1

L

Move back a character (<Ctrl>-L = forward on some keyboards).

Tchar

Move back to just after the first occurrence of *char*.

tchar

Move forward to just before the first occurrence of *char*.

W

Move forward a space-separated word ("Word").

W

Move forward a word ("word").

Any range may be preceded by a number to multiply to indicate how many times the operation is done. The VI-mode also provides the *yank-buffer*, which contains characters which are deleted or "yanked" – see below.

The following keys are also available in command mode:

А

Move to the end of the line and change to insert mode ("Append").

a

Move forward a character (if not already at the end of the line) and change to insert mode ("append").

С

Delete all the characters to the end of line and change to insert mode ("Change").

crange

Delete all the characters to the specified range and change to insert mode ("change").

D

Delete all the characters to the end of line ("Delete").

drange

Delete all the characters to the specified range ("delete").

Ι

Move to the first non-space character in the line and change to insert mode ("Insert").

i

ENVIRONMENT AND OPTIONS

	Change to insert mode ("insert").
j	
	Go forward a line in the history buffer (same as <ctrl>-N).</ctrl>
k	
	Go back a line in the history buffer (same as <ctrl>-P).</ctrl>
Р	
	Insert the contents of the yank-buffer before the character under the cursor.
р	
	Insert the contents of the yank-buffer before the character after the cursor.
R	
	Enter over-type mode: typed characters replace the old characters under the cursor without insertion. Pressing Esc returns to the command mode.
rch	ar
	Replace the character the cursor is over with <i>char</i> .
S	
	Delete the whole line and change to insert mode ("Substitute").
S	
	Delete the current character and change to insert mode ("substitute").
U	
u	
	Undo the last change.
Х	
	Delete the character to the left of the cursor.
х	
	Delete the character under the cursor.
Y	
	"Yank" the whole line - i.e., copy the whole line into the yank-buffer ("Yank").
yra	nge
	Copy all characters from the cursor to the specified range into the yank-buffer ("yank").

Ch. 4

111

4.9 The Magma Help System

Magma provides extensive online help facilities that can be accessed in different ways. The easiest way to access the documentation is by typing:

magmahelp

Which should start some browser (usually netscape) on the main page of the MAGMA documentation.

The easiest way to get some information about any MAGMA intrinsic is by typing: (Here we assume you to be interested in FundamentalUnit)

> FundamentalUnit;

Which now will list all signatures for this intrinsic (i.e. all known ways to use this function):

```
> FundamentalUnit;
Intrinsic 'FundamentalUnit'
Signatures:
  (<FldQuad> K) -> FldQuadElt
  (<RngQuad> 0) -> RngQuadElt
    The fundamental unit of K or 0
  (<RngQuad> R) -> RngQuadElt
    Fundamental unit of the real quadratic order.
```

Next, to get more detailed information, try

> ?FundamentalUnit

But now several things could happen depending on the installation. Using the default, you get

```
PATH: /magma/ring-field-algebra/quadratic/operation/\
    class-group/FundamentalUnit
KIND: Intrinsic
FundamentalUnit(K) : FldQuad -> FldQuadElt
FundamentalUnit(0) : RngQuad -> RngQuadElt
    A generator for the unit group of the order 0 or the
maximal order
    of the quadratic field K.
```

Second, a WWW-browser could start on the part of the online help describing your function (or at least the index of the first character). Third, some arbitrary program could be called to provide you with the information.

If SetVerbose("Help", true); is set, MAGMA will show the exact command used and the return value obtained.

SetHelpExternalBrowser(S, T)

SetHelpExternalBrowser(S)

Defines the external browser to be used if SetHelpUseExternalBrowser(true) is in effect. The string has to be a valid command taking exactly one argument (%s) which will we replaced by a URL. In case two strings are provided, the second defines a fall-back system. Typical use for this is to first try to use an already running browser and if this fails, start a new one.

SetHelpUseExternalBrowser(b)

Tells MAGMA to actually use (or stop to use) the external browser. If both SetHelpUseExternalSystem and SetHelpUseExternalBrowser are set to true, the assignment made last will be effective.

SetHelpExternalSystem(s)

This will tell MAGMA to use a user defined external program to access the help. The string has to contain exactly one %s which will be replaced by the argument to ?. The resulting string must be a valid command.

SetHelpUseExternalSystem(b)

Tells MAGMA to actually use (or stop to use) the external help system. If both SetHelpUseExternalSystem and SetHelpUseExternalBrowser are set to true, the assignment made last will be effective.

GetHelpExternalBrowser()

Returns the currently used command strings.

GetHelpExternalSystem()

Returns the currently used command string.

GetHelpUseExternal()

The first value is the currently used value from SetHelpUseExternalBrowser, the second reflects SetHelpUseExternalSystem.

4.9.1 Internal Help Browser

MAGMA has a very powerful internal help-browser that can be entered with

> ??

5 MAGMA SEMANTICS

5.1	Introduction	•	117
5.2	Terminology	•	117
5.3	Assignment	•	118
5.4	Uninitialized Identifiers	•	118
5.5	Evaluation in Magma		119
5.5.1	Call by Value Evaluation		119
5.5.2	Magma's Evaluation Process		120
5.5.3	Function Expressions		121
5.5.4	Function Values Assigned to Ident.	ifier	s122
5.5.5	Recursion and Mutual Recursion		122
5.5.6	Function Application		123
5.5.7	The Initial Context		124
5.6	Scope		124
5.6.1	$Local \ Declarations . \ . \ . \ . \ . \ .$		125

5.6.2 The 'first use' Rule \ldots \ldots	125
5.6.3 Identifier Classes $\ldots \ldots \ldots$	126
5.6.4 The Evaluation Process Revisited .	126
5.6.5 The 'single use' Rule \ldots \ldots \ldots	127
5.7 Procedure Expressions	127
5.8 Reference Arguments	129
5.9 Dynamic Typing	130
5.10 Traps for Young Players	131
5.10.1 Trap 1	131
5.10.2 Trap 2	131
5.11 Appendix A: Precedence	133
5.12 Appendix B: Reserved Words .	134

Chapter 5 MAGMA SEMANTICS

5.1 Introduction

This chapter describes the semantics of MAGMA (how expressions are evaluated, how identifiers are treated, etc.) in a fairly informal way. Although some technical language is used (particularly in the opening few sections) the chapter should be easy and essential reading for the non-specialist. The chapter is descriptive in nature, describing how MAGMA works, with little attempt to justify why it works the way it does. As the chapter proceeds, it becomes more and more precise, so while early sections may gloss over or omit things for the sake of simplicity and learnability, full explanations are provided later.

It is assumed that the reader is familiar with basic notions like a function, an operator, an identifier, a type ...

And now for some buzzwords: MAGMA is an imperative, call by value, statically scoped, dynamically typed programming language, with an essentially functional subset. The remainder of the chapter explains what these terms mean, and why a user might want to know about such things.

5.2 Terminology

Some terminology will be useful. It is perhaps best to read this section only briefly, and to refer back to it when necessary.

The term *expression* will be used to refer to a textual entity. The term *value* will be used to refer to a run-time value denoted by an expression. To understand the difference between an expression and a value consider the expressions 1+2 and 3. The expressions are textually different but they denote the same value, namely the integer 3.

A function expression is any expression of the form function ... end function or of the form func< ... | ... >. The former type of function expression will be said to be in the statement form, the latter in the expression form. A function value is the run-time value denoted by a function expression. As with integers, two function expressions can be textually different while denoting the same (i.e., extensionally equal) function value. To clearly distinguish function values from function expressions, the notation FUNC(... : ...) will be used to describe function values.

The formal arguments of a function in the statement form are the identifiers that appear between the brackets just after the function keyword, while for a function in the expression form they are the identifiers that appear before the |. The arguments to a function are the expressions between the brackets when a function is applied.

The body of a function in the statement form is the statements after the formal arguments. The body of a function in the expression form is the expression after the | symbol.

An identifier is said to occur *inside* a function expression when it is occurs textually anywhere in the body of a function.

5.3 Assignment

An assignment is an association of an identifier to a *value*. The statement,

> a := 6;

establishes an association between the identifier a and the value 6 (6 is said to be the value of a, or to be assigned to a). A collection of such assignments is called a *context*.

When a value V is assigned to an identifier I one of two things happens:

- (1) if I has not been previously assigned to, it is added to the current context and associated with V. I is said to be *declared* when it is assigned to for the first time.
- (2) if I has been previously assigned to, the value associated with I is changed to V. I is said to be re-assigned.

The ability to assign and re-assign to identifiers is why MAGMA is called an *imperative* language.

One very important point about assignment is illustrated by the following example. Say we type,

After executing these two lines the context is [(a,6), (b,13)]. Now say we type,

> a := 0;

The context is now [(a,0), (b,13)]. Note that changing the value of a does not change the value of b because b's value is statically determined at the point where it is assigned. Changing a does not produce the context [(a,0), (b,7)].

5.4 Uninitialized Identifiers

Before executing a piece of code MAGMA attempts to check that it is semantically well formed (i.e., that it will execute without crashing). One of the checks MAGMA makes is to check that an identifier is declared (and thus initialized) before it is used in an expression. So, for example assuming *a* had not been previously declared, then before executing either of the following lines MAGMA will raise an error:

> a;

> b := a;

MAGMA can determine that execution of either line will cause an error since *a* has no assigned value. The user should be aware that the checks made for semantic well-formedness are necessarily not exhaustive!

Ch. 5

MAGMA SEMANTICS

There is one important rule concerning uninitialized identifiers and assignment. Consider the line,

> a := a;

Now if a had been previously declared then this is re-assignment of a. If not then it is an error since a on the right hand side of the := has no value. To catch this kind of error MAGMA checks the expression on the right hand side of the := for semantic well formedness *before* it declares the identifiers on the left hand side of the :=. Put another way the identifiers on the left hand side are not considered to be declared in the right hand side, *unless* they were declared previously.

5.5 Evaluation in Magma

Evaluation is the process of computing (or constructing) a value from an expression. For example the value 3 can be computed from the expression 1+2. Computing a value from an expression is also known as *evaluating an expression*.

There are two aspects to evaluation, namely *when* and *how* it is performed. This section discusses these two aspects.

5.5.1 Call by Value Evaluation

MAGMA employs call by value evaluation. This means that the arguments to a function are evaluated before the function is applied to those arguments. Assume f is a function value. Say we type,

> r := f(6+7, true or false);

MAGMA evaluates the two arguments to 13 and true respectively, before applying f.

While knowing the exact point at which arguments are evaluated is not usually very important, there are cases where such knowledge is crucial. Say we type,

and we apply f as follows

> r := f(4/0, false);

MAGMA treats this as an error since the 4/0 is evaluated, and an error produced, before the function f is applied.

By contrast some languages evaluate the arguments to a function only if those arguments are encountered when executing the function. This evaluation process is known as call by name evaluation. In the above example r would be set to the value 1 and the expression 4/0 would never be evaluated because b is false and hence the argument n would never be encountered.

Operators like + and * are treated as infix functions. So

> r := 6+7;

is treated as the function application,

> r := '+'(6,7);

Accordingly all arguments to an operator are evaluated before the operator is applied.

There are three operators, 'select', 'and' and 'or' that are exceptions to this rule and are thus not treated as infix functions. These operators use call by name evaluation and only evaluate arguments as need be. For example if we type,

> false and (4/0 eq 6);

MAGMA will reply with the answer false since MAGMA knows that false and X for all X is false.

5.5.2 Magma's Evaluation Process

Let us examine more closely how MAGMA evaluates an expression as it will help later in understanding more complex examples, specifically those using functions and maps. To evaluate an expression MAGMA proceeds by a process of identifier substitution, followed by simplification to a canonical form. Specifically expression evaluation proceeds as follows,

(1) replace each identifier in the expression by its value in the current context.

(2) simplify the resultant *value* to its canonical form.

The key point here is that the replacement step takes an expression and yields an unsimplified *value*! A small technical note: to avoid the problem of having objects that are part expressions, part values, all substitutions in step 1 are assumed to be done simultaneously for all identifiers in the expression. The examples in this chapter will however show the substitutions being done in sequence and will therefore be somewhat vague about what exactly these hybrid objects are!

To clarify this process assume that we type,

```
> a := 6;
```

```
> b := 7;
```

producing the context [(a,6), (b,7)]. Now say we type,

```
> c := a+b;
```

This produces the context [(a,6), (b,7), (c,13)]. By following the process outlined above we can see how this context is calculated. The steps are,

(1) replace a in the expression a+b by its value in the current context giving 6+b.

(2) replace b in 6+b by its value in the current context giving 6+7.

(3) simplify 6+7 to 13

The result value of 13 is then assigned to c giving the previously stated context.

5.5.3 Function Expressions

MAGMA's evaluation process might appear to be an overly formal way of stating the obvious about calculating expression values. This formality is useful, however when it comes to function (and map) expressions.

Functions in MAGMA are first class values, meaning that MAGMA treats function values just like it treats any other type of value (e.g., integer values). A function value may be passed as an argument to another function, may be returned as the result of a function, and may be assigned to an identifier in the same way that any other type of value is. Most importantly however function expressions are evaluated *exactly* as are all other expressions. The fact that MAGMA treats functions as first class values is why MAGMA is said to have an essentially functional subset.

Take the preceding example. It was,

```
> a := 6;
> b := 7;
> c := a+b;
```

giving the context [(a,6),(b,7),(c,13)]. Now say I type,

```
> d := func< n | a+b+c+n >;
```

MAGMA uses the same process to evaluate the function expression func< n | a+b+c+n > on the right hand side of the assignment d := ... as it does to evaluate expression a+b on the right hand side of the assignment c := So evaluation of this function expression proceeds as follows,

- (1)replace a in the expression func< n | a+b+c+n > by its value in the current context
 giving func< n | 6+b+c+n >.
- (2)replace b in func< n | 6+b+c+n > by its value in the current context giving func< n | 6+7+c+n >.
- (3) replace c in func< n | 6+7+c+n > by its value in the current context giving FUNC(n : 6+7+13+n)
- (4) simplify the resultant value FUNC(n : 6+7+13+n) to the value FUNC(n : 26+n).

Note again that the process starts with an expression and ends with a value, and that throughout the function expression is evaluated just like any other expression. A small technical point: function simplification may not in fact occur but the user is guaranteed that the simplification process will at least produce a function extensionally equal to the function in its canonical form.

The resultant function value is now assigned to d just like any other type of value would be assigned to an identifier yielding the context [(a,6),(b,7), (c,8), (d,FUNC(n : 26+n))].

As a final point note that changing the value of any of a, b, and c, does *not* change the value of d!

Ch. 5

5.5.4 Function Values Assigned to Identifiers

Say we type the following,

```
> a := 1;
> b := func< n | a >;
```

> c := func< n | b(6) >;

The first line leaves a context of the form [(a,1)]. The second line leaves a context of the form [(a,1), (b,FUNC(n : 1))].

The third line is evaluated as follows,

- (1)replace the value of b in the expression func< n | b(6) > by its value in the current context giving FUNC(n : (FUNC(n : 1))(6)).
- (2) simplify this value to FUNC(n : 1) since applying the function value FUNC(n : 1) to the argument 6 always yields 1.

The key point here is that identifiers whose assigned value is a function value (in this case b), are treated exactly like identifiers whose assigned value is any other type of value.

Now look back at the example at the end of the previous section. One step in the series of replacements was not mentioned. Remember that + is treated as a shorthand for an infix function. So a+b is equivalent to '+'(a,b). + is an identifier (assigned a function value), and so in the replacement part of the evaluation process there should have been an extra step, namely,

- (4)replace + in func< n : 6+7+13+n > by its value in the current context giving FUNC(n
 : A(A(6,7), 13), n)).
- (5) simplify the resultant value to FUNC(n : A(26, n)). where A is the (function) value that is the addition function.

5.5.5 Recursion and Mutual Recursion

How do we write recursive functions? Function expressions have no names so how can a function expression apply *itself* to do recursion?

It is tempting to say that the function expression could recurse by using the identifier that the corresponding function value is to be assigned to. But the function value may not be being assigned at all: it may simply be being passed as an actual argument to some other function value. Moreover even if the function value were being assigned to an identifier the function expression cannot use that identifier because the assignment rules say that the identifiers on the left hand side of the := in an assignment statement are not considered declared on the right hand side, unless they were previously declared.

The solution to the problem is to use the \$\$ pseudo-identifier. \$\$ is a placeholder for the function value denoted by the function expression inside which the \$\$ occurs. An example serves to illustrate the use of \$\$. A recursive factorial function can be defined as follows,

```
> factorial := function(n)
> if n eq 1 then
> return 1;
```

MAGMA SEMANTICS

```
> else
> return n * $$(n-1);
> end if;
> end function;
```

Here \$\$ is a placeholder for the function value that the function expression function(n) if n eq ... end function denotes (those worried that the denoted function value appears to be defined in terms of itself are referred to the fixed point semantics of recursive functions in any standard text on denotational semantics).

A similar problem arises with mutual recursion where a function value f applies another function value g, and g likewise applies f. For example,

```
> f := function(...) ... a := g(...); ... end function;
> g := function(...) ... b := f(...); ... end function;
```

Again MAGMA's evaluation process appears to make this impossible, since to construct f MAGMA requires a value for g, but to construct g MAGMA requires a value for f. Again there is a solution. An identifier can be declared 'forward' to inform MAGMA that a function expression for the forward identifier will be supplied later. The functions f and g above can therefore be declared as follows,

```
> forward f, g;
> f := function(...) ... a := g(...); ... end function;
> g := function(...) ... b := f(...); ... end function;
```

(strictly speaking it is only necessary to declare g forward as the value of f will be known by the time the function expression function(...) ... b := f(...); ... end function is evaluated).

5.5.6 Function Application

It was previously stated that MAGMA employs call by value evaluation, meaning that the arguments to a function are evaluated before the function is applied. This subsection discusses how functions are applied once their arguments have been evaluated.

Say we type,

> f := func< a, b | a+b >;

producing the context [(f,FUNC(a,b : a+b))]. Now say we apply f by typing,

```
> r := f( 1+2, 6+7 ).
```

How is the value to be assigned to r calculated? If we follow the evaluation process we will reach the final step which will say something like,

"simplify (FUNC(a, b : A(a,b)))(3,13) to its canonical form"

where as before A is the value that is the addition function. How is this simplification performed? How are function values applied to actual function arguments to yield result values? Not unsurprisingly the answer is via a process of substitution. The evaluation of a function application proceeds as follows,

- (1) replace each formal argument in the function body by the corresponding actual argument.
- (2) simplify the function body to its canonical form.

Exactly what it means to "simplify the function body ..." is intentionally left vague as the key point here is the process of replacing formal arguments by values in the body of the function.

5.5.7 The Initial Context

The only thing that remains to consider with the evaluation semantics, is how to get the ball rolling. Where do the initial values for things like the addition function come from? The answer is that when MAGMA starts up it does so with an initial context defined. This initial context has assignments of all the built-in MAGMA function values to the appropriate identifiers. The initial context contains for example the assignment of the addition function to the identifier +, the multiplication function to the identifier *, etc.

If, for example, we start MAGMA and immediately type,

> 1+2;

then in evaluating the expression $1\!+\!2$ MAGMA will replace + by its value in the initial context.

Users interact with this initial context by typing statements at the top level (i.e., statements not inside any function or procedure). A user can change the initial context through re-assignment or expand it through new assignments.

5.6 Scope

Say we type the following,

```
> temp := 7;
> f := function(a,b)
> temp := a * b;
> return temp<sup>2</sup>;
> end function;
```

If the evaluation process is now followed verbatim, the resultant context will look like [(temp,7), (f,FUNC(a,b : 7 := a*b; return 7^2;))], which is quite clearly not what was intended!

5.6.1 Local Declarations

What is needed in the previous example is some way of declaring that an identifier, in this case temp, is a 'new' identifier (i.e., distinct from other identifiers with the same name) whose use is confined to the enclosing function. MAGMA provides such a mechanism, called a local declaration. The previous example could be written,

```
> temp := 7;
> f := function(a,b)
> local temp;
> temp := a * b;
> return temp<sup>2</sup>;
> end function;
```

The identifier temp inside the body of f is said to be '(declared) local' to the enclosing function. Evaluation of these two assignments would result in the context being [(temp, 7), (f, FUNC(a,b : local temp := a*b; return local temp^2;))] as intended.

It is very important to remember that temp and local temp are *distinct*! Hence if we now type,

> r := f(3,4);

the resultant context would be [(temp,7), (f,FUNC(a,b : local temp := a*b; return local temp²;)), (r,144)]. The assignment to local temp inside the body of f does *not* change the value of temp outside the function. The effect of an assignment to a local identifier is thus localized to the enclosing function.

5.6.2 The 'first use' Rule

It can become tedious to have to declare all the local variables used in a function body. Hence MAGMA adopts a convention whereby an identifier can be implicitly declared according to how it is first used in a function body. The convention is that if the first use of an identifier inside a function body is on the left hand side of a :=, then the identifier is considered to be local, and the function body is considered to have an implicit local declaration for this identifier at its beginning. There is in fact no need therefore to declare temp as local in the previous example as the first use of temp is on the left hand side of a := and hence temp is implicitly declared local.

It is very important to note that the term 'first use' refers to the first *textual* use of an identifier. Consider the following example,

```
temp := 7;
>
   f := function(a,b)
>
      if false then
>
          temp := a * b;
>
          return temp;
>
>
      else
>
          temp;
>
          return 1;
```

Ch. 5

```
126
```

> end if;
> end function:

The first *textual* use of temp in this function body is in the line

```
> temp := a * b;
```

Hence temp is considered as a local inside the function body. It is not relevant that the if false ... condition will never be true and so the first time temp will be encountered when f is applied to some arguments is in the line

> temp;

'First use' means 'first textual use', modulo the rule about examining the right hand side of a := before the left!

5.6.3 Identifier Classes

It is now necessary to be more precise about the treatment of identifiers in MAGMA. Every identifier in a MAGMA program is considered to belong to one of three possible classes, these being:

(a) the class of value identifiers

(b) the class of variable identifiers

(c) the class of reference identifiers

The class an identifier belongs to indicates how the identifier is used in a program.

The class of value identifiers includes all identifiers that stand as placeholders for values, namely:

(a) all loop identifiers;

(b) the \$\$ pseudo-identifier;

(c) all identifiers whose first use in a function expression is as a value (i.e., not on the left hand side of an :=, nor as an actual reference argument to a procedure).

Because value identifiers stand as placeholders for values to be substituted during the evaluation process, they are effectively constants, and hence they cannot be assigned to. Assigning to a value identifier would be akin to writing something like 7 := 8;!

The class of variable identifiers includes all those identifiers which are declared as local, either implicitly by the first use rule, or explicitly through a local declaration. Identifiers in this class may be assigned to.

The class of reference identifiers will be discussed later.

5.6.4 The Evaluation Process Revisited

The reason it is important to know the class of an identifier is that the class of an identifier effects how it is treated during the evaluation process. Previously it was stated that the evaluation process was,

(1) replace each identifier in the expression by its value in the current context.

(2) simplify the resultant *value* to its canonical form.

Strictly speaking the first step of this process should read,

(1') replace each *free* identifier in the expression by its value in the current context, where an identifier is said to be free if it is a value identifier which is not a formal argument, a loop identifier, or the \$\$ identifier.

This definition of the replacement step ensures for example that while computing the value of a function expression F, MAGMA does not attempt to replace F's formal arguments with values from the current context!

5.6.5 The 'single use' Rule

As a final point on identifier classes it should be noted that an identifier may belong to only *one* class within an expression. Specifically therefore an identifier can only be used in one way inside a function body. Consider the following function,

```
> a := 7;
> f := function(n) a := a; return a; end function;
```

It is *not* the case that a is considered as a variable identifier on the left hand side of the :=, and as a value identifier on the right hand side of the :=. Rather a is considered to be a value identifier as its first use is as a value on the right hand side of the := (remember that MAGMA inspects the right hand side of an assignment, and hence sees a first as a value identifier, *before* it inspects the left hand side where it sees a being used as a variable identifier).

5.7 Procedure Expressions

To date we have only discussed function expressions, these being a mechanism for computing new values from the values of identifiers in the current context. Together with assignment this provides us with a means of changing the current context – to compute a new value for an identifier in the current context, we call a function and then re-assign the identifier with the result of this function. That is we do

> X := f(Y);

where Y is a list of arguments possibly including the current value of X.

At times however using re-assignment to change the value associated with an identifier can be both un-natural and inefficient. Take the problem of computing some reduced form of a matrix. We could write a function that looked something like this,

```
reduce :=
  function( m )
    local lm;
    ...
    lm := m;
    while not reduced do
```

Ch. 5

```
...
lm := some_reduction(m);
...
end while;
...
end function;
```

Note that the local 1m is necessary since we cannot assign to the function's formal argument m since it stands for a value (and values cannot be assigned to). Note also that the function is inefficient in its space usage since at any given point in the program there are at least two different copies of the matrix (if the function was recursive then there would be more than two copies!).

Finally the function is also un-natural. It is perhaps more natural to think of writing a program that takes a given matrix and *changes* that matrix into its reduced form (i.e., the original matrix is lost). To accommodate for this style of programming, Magma includes a mechanism, the *procedure expression* with its *reference arguments*, for changing an association of an identifier and a value *in place*.

Before examining procedure expressions further, it is useful to look at a simple example of a procedure expression. Say we type:

giving the context [(a,5), (b,6)]. Say we now type the following:

```
> p := procedure( x, ~y ) y := x; end procedure;
```

This gives us a context that looks like [(a,5), (b,6), (p, $PROC(x, \sim y : y := x;)$)], using a notation analogous to the FUNC notation.

Say we now type the following *statement*,

```
> p(a, ~b);
```

This is known as a *call of the procedure* p (strictly it should be known as a call to the *procedure value* associated with the identifier p, since like functions, procedures in Magma are first class values!). Its effect is to *change* the current context to [(a,5), (b,5), (p, PROC(a,~b : b := a;))]. a and x are called *actual* and *formal value arguments* respectively since they are not prefixed by a ~, while b and y are called *actual* and *formal reference arguments* respectively because they are prefixed by a ~.

This example illustrates the defining attribute of procedures, namely that rather than returning a value, a procedure changes the context in which it is called. In this case the value of b was changed by the call to p. Observe however that only b was changed by the call to p as only b in the call, and its corresponding formal argument y in the definition, are reference arguments (i.e., prefixed with a \sim). A procedure may therefore only change that part of the context associated with its reference arguments! All other parts of the context are left unchanged. In this case a and p were left unchanged!

Note that apart from reference arguments (and the corresponding fact that that procedures do not return values), procedures are exactly like functions. In particular:

- a) procedures are first class values that can be assigned to identifiers, passed as arguments, returned from functions, etc.
- b) procedure expressions are evaluated in the same way that function expressions are.
- c) procedure value arguments (both formal and actual) behave exactly like function arguments (both formal and actual). Thus procedure value arguments obey the standard substitution semantics.
- d) procedures employ the same notion of scope as functions.
- e) procedure calling behaves like function application.
- f) procedures may be declared 'forward' to allow for (mutual) recursion.
- g) a procedure may be assigned to an identifier in the initial context.

The remainder of this section will thus restrict itself to looking at reference arguments, the point of difference between procedures and functions.

5.8 Reference Arguments

If we look at a context it consists of a set of pairs, each pair being a name (an identifier) and a value (that is said to be assigned to that identifier).

When a function is applied actual arguments are substituted for formal arguments, and the body of the function is evaluated. The process of evaluating an actual argument yields a value and any associated names are ignored. Magma's evaluation semantics treats identifiers as 'indexes' into the context – when Magma wants the value of say x it searches through the context looking for a pair whose name component is x. The corresponding value component is then used as the value of x and the name part is simply ignored thereafter.

When we call a procedure with a reference argument, however, the name components of the context become important. When, for example we pass x as an actual reference argument to a formal reference argument y in some procedure, Magma remembers the name x. Then if y is changed (e.g., by assignment) in the called procedure, Magma, knowing the name x, finds the appropriate pair in the calling context and updates it by changing its corresponding value component. To see how this works take the example in the previous section. It was,

```
> a := 5; b := 6;
> p := procedure( x, ~y ) y := x; end procedure;
> p(a, ~b);
```

In the call Magma remembers the name b. Then when y is assigned to in the body of p, Magma knows that y is really b in the calling context, and hence changes b in the calling context appropriately. This example shows that an alternate way of thinking of reference arguments is as synonyms for the same part of (or pair in) the calling context.

5.9 Dynamic Typing

MAGMA is a dynamically typed language. In practice this means that:

- (a) there is no need to declare the type of identifiers (this is especially important for identifiers assigned function values!).
- (b) type violations are only checked for when the code containing the type violation is actually executed.

To make these ideas clearer consider the following two functions,

> f := func< a, b | a+b >; > g := func< a, b | a+true >;

First note that there are no declarations of the types of any of the identifiers.

Second consider the use of + in the definition of function f. Which addition function is meant by the + in a+b? Integer addition? Matrix addition? Group addition? ... Or in other words what is the type of the identifier + in function f? Is it integer addition, matrix addition, etc.? The answer to this question is that + here denotes all possible addition function values (+ is said to denote a *family* of function values), and MAGMA will automatically chose the appropriate function value to apply when it knows the type of aand b.

Say we now type,

> f(1,2);

MAGMA now knows that a and b in f are both integers and thus + in f should be taken to mean the integer addition function. Hence it will produce the desired answer of 3.

Finally consider the definition of the function g. It is clear X+true for all X is a type error, so it might be expected that MAGMA would raise an error as soon as the definition of g is typed in. MAGMA does not however raise an error at this point. Rather it is only when g is applied and the line return a + true is actually executed that an error is raised.

In general the exact point at which type checking is done is not important. Sometimes however it is. Say we had typed the following definition for g,

```
> g := function(a,b)
> if false then
> return a+true;
> else
> return a+b;
> end if;
> end function;
```

Now because the if false condition will never be true, the line return a+true will never be executed, and hence the type violation of adding a to true will never be raised!

One closing point: it should be clear now that where it was previously stated that the initial context "contains assignments of all the built-in MAGMA function values to the appropriate identifiers", in fact the initial context contains assignments of all the built-in MAGMA function *families* to the appropriate identifiers.

Ch. 5

MAGMA SEMANTICS

5.10 Traps for Young Players

This section describes the two most common sources of confusion encountered when using MAGMA's evaluation strategy.

5.10.1 Trap 1

We boot MAGMA. It begins with an initial context something like $[\ldots, ('+', A), ('-', S), \ldots]$ where A is the (function) value that is the addition function, and S is the (function) value that is the subtraction function.

Now say we type,

> '+' := '-';

> 1 + 2;

MAGMA will respond with the answer -1.

To see why this is so consider the effect of each line on the current context. After the first line the current context will be $[\ldots, ('+', S), ('-', S), \ldots]$, where S is as before. The identifier + has been re-assigned. Its new value is the value of the identifier '-' in the current context, and the value of '-' is the (function) value that is the subtraction function. Hence in the second line when MAGMA replaces the identifier + with its value in the current context, the value that is substituted is therefore S, the subtraction function!

5.10.2 Trap 2

Say we type,

> f := func< n | n + 1 >; > g := func< m | m + f(m) >;

After the first line the current context is [(f,FUNC(n : n+1))]. After the second line the current context is [(f,FUNC(n : n+1)), (g,FUNC(m : m + FUNC(n : n+1)(m)))].

If we now type,

> g(6);

MAGMA will respond with the answer 13.

Now say we decide that our definition of f is wrong. So we now type in a new definition for f as follows,

> f := func< n | n + 2 >;

If we again type,

> g(6);

MAGMA will again reply with the answer 13!

To see why this is so consider how the current context changes. After typing in the initial definitions of f and g the current context is [(f, FUNC(n : n+1)), (g, FUNC(m : m + FUNC(n : n+1)(m)))]. After typing in the second definition of f the current

131

context is [(f, FUNC(n : n+2)), (g, FUNC(m : m + FUNC(n : n+1)(m)))]. Remember that changing the *value* of one identifier, in this case f, does *not* change the value of any other identifiers, in this case g! In order to change the value of g to reflect the new value of f, g would have to be re-assigned.

5.11 Appendix A: Precedence

The table below defines the relative precedence of operators in MAGMA, with decreasing strength (so operators higher in the table bind more strongly). The column on the right indicates whether the operator is left-, right-, or non-associative.

. , , , ,	
(((left
(left
[left
assigned	right
~	non
#	non
&* &+ ∧ &cat &join &meet ∨	non-associative
\$ \$\$	non
	left
© ©©	left
! !!	right
^	right
unary-	right
cat	left
* / div mod	left
+ -	left
meet	left
sdiff	left
diff	left
join	left
adj in notadj notin notsubset subset	non
cmpeq cmpne eq ge gt le lt ne	left
not	right
and	left
or xor	left
^^	non
? else select	right
->	left
=	left
:= is where	left

Ch. 5

5.12 Appendix B: Reserved Words

The list below contains all reserved words in the MAGMA language; these cannot be used as identifier names.

_	elif	is	require
adj	else	join	requirege
and	end	le	requirerange
assert	eq	load	restore
assert2	error	local	return
assert3	eval	lt	save
assigned	exists	meet	sdiff
break	exit	mod	select
by	false	ne	subset
case	for	not	then
cat	forall	notadj	time
catch	forward	notin	to
clear	fprintf	notsubset	true
cmpeq	freeze	or	try
cmpne	function	print	until
continue	ge	printf	vprint
declare	gt	procedure	vprintf
default	if	quit	vtime
delete	iload	random	when
diff	import	read	where
div	in	readi	while
do	intrinsic	repeat	xor

6 THE MAGMA PROFILER

6.1	Introduction .	•	•	•	·	•	•	•	137
6.2	Profiler Basics	•	•	•		•	•	•	137
SetP	rofile(b)								137
Prof	ileReset()								137
Prof	ileGraph()								138
6.3	Exploring the C	all	G	ra	pł	ı	•		139
6.3.1	Internal Reports								139

ProfilePrintByTotalCount(G)	140
ProfilePrintByTotalTime(G)	140
ProfilePrintChildrenByCount(G, n)	140
ProfilePrintChildrenByTime(G, n)	140
6.3.2 HTML Reports	141
ProfileHTMLOutput(G, prefix)	141
6.4 Recursion and the Profiler	141

Chapter 6 THE MAGMA PROFILER

6.1 Introduction

One of the most important aspects of the development cycle is optimization. It is often the case that during the implementation of an algorithm, a programmer makes erroneous assumptions about its run-time behavior. These errors can lead to performance which differs in surprising ways from the expected output. The unfortunate tendency of programmers to optimize code before establishing run-time bottlenecks tends to exacerbate the problem.

Experienced programmers will thus often be heard repeating the famous mantra "Premature optimization is the root of all evil", coined by Sir Charles A. R. Hoare, the inventor of the Quick sort algorithm. Instead of optimizing during the initial implementation, it is generally better to perform an analysis of the run-time behaviour of the complete program, to determine what are the actual bottlenecks. In order to assist in this task, MAGMA provides a *profiler*, which gives the programmer a detailed breakdown of the time spent in a program. In this chapter, we provide an overview of how to use the profiler.

6.2 Profiler Basics

The MAGMA profiler records timing information for each function, procedure, map, and intrinsic call made by your program. When the profiler is switched on, upon the entry and exit to each such call the current system clock time is recorded. This information is then stored in a call graph, which can be viewed in various ways.

SetProfile(b)

Turns profiling on (if b is true) or off (if b is false). Profiling information is stored cumulatively, which means that in the middle of a profiling run, the profiler can be switched off during sections for which profiling information is not wanted. At startup, the profiler is off. Turning the profiler on will slow down the execution of your program slightly.

ProfileReset()

Clear out all information currently recorded by the profiler. It is generally a good idea to do this after the call graph has been obtained, so that future profiling runs in the same MAGMA session begin with a clean slate.

ProfileGraph()

Get the call graph based upon the information recorded up to this point by the profiler. This function will return an error if the profiler has not yet been turned on.

The call graph is a directed graph, with the nodes representing the functions that were called during the program's execution. There is an edge in the call graph from a function x to a function y if y was called during the execution of x. Thus, recursive calls will result in cycles in the call graph.

Each node in the graph has an associated label, which is a record with the following fields:

- (i) Name: the name of the function
- (ii) Time: the total time spent in the function
- (iii) Count: the number of times the function was called

Each edge $\langle x, y \rangle$ in the graph also has an associated label, which is a record with the following fields:

- (i) Time: the total time spent in function y when it was called from function x
- (ii) Count: the total number of times function y was called by function x

Example H6E1_

We illustrate the basic use of the profiler in the following example. The code we test is a simple implementation of the Fibonacci sequence; this can be replaced by any MAGMA code that needs to be profiled.

```
> function fibonacci(n)
      if n eq 1 or n eq 2 then
>
>
        return 1;
>
      else
        return fibonacci(n - 1) + fibonacci(n - 2);
>
>
      end if;
> end function;
>
> SetProfile(true);
> time assert fibonacci(27) eq Fibonacci(27);
Time: 10.940
> SetProfile(false);
> G := ProfileGraph();
> G;
Digraph
Vertex Neighbours
        2367;
1
2
        2345;
3
        ;
4
        ;
5
        ;
```

THE MAGMA PROFILER

```
6
        ;
7
> V := Vertices(G);
> Label(V!1);
rec<recformat<Name: Strings(), Time: RealField(), Count: IntegerRing()> |
    Name := <main>,
    Time := 10.93999999999999950262,
    Count := 1
    >
> Label(V!2);
rec<recformat<Name: Strings(), Time: RealField(), Count: IntegerRing()> |
    Name := fibonacci,
    Time := 10.93999999999999950262,
    Count := 392835
    >
> E := Edges(G);
> Label(E![1,2]);
rec<recformat<Time: RealField(), Count: IntegerRing()> |
    Time := 10.93999999999999950262,
    Count := 1
    >
```

6.3 Exploring the Call Graph

6.3.1 Internal Reports

The above example demonstrates that while the call graph contains some useful information, it does not afford a particularly usable interface. The MAGMA profiler contains some profile report generators which can be used to study the call graph in a more intuitive way. The reports are all tabular, and have a similar set of columns:

The reports are all tabular, and have a similar set of columns:

- (i) Index: The numeric identifier for the function in the vertex list of the call graph.
- (ii) Name: The name of the function. The function name will be followed by an asterisk if a recursive call was made through it.
- (iii) Time: The time spent in the function; depending on the report, the meaning might vary slightly.
- (iv) Count: The number of times the function was called; depending on the report, the meaning might vary slightly.

Ch. 6

ProfilePrintByTotalCount(G)

Percentage	BoolElt	Default: false
Max	RNGINTELT	Default : -1

Print the list of functions in the call graph, sorted in descending order by the total number of times they were called. The Time and Count fields of the report give the total time and total number of times the function was called. If Percentage is true, then the Time and Count fields represent their values as percentages of the total value. If Max is non-negative, then the report only displays the first Max entries.

ProfilePrintByTotalTime(G)				
Percentage	BoolElt	Default : false		
Max	RNGINTELT	Default: -1		

Print the list of functions in the call graph, sorted in descending order by the total time spent in them. Apart from the sort order, this function's behaviour is identical to that of ProfilePrintByTotalCount.

ProfilePrintChi	ldrenByCount(G, n)	
Percentage	BOOLELT	Default : false
Max	RNGINTELT	Default: -1

Given a vertex n in the call graph G, print the list of functions called by the function n, sorted in descending order by the number of times they were called by n. The Time and Count fields of the report give the time spent during calls by the function n and the number of times the function was called by the function n. If Percentage is true, then the Time and Count fields represent their values as percentages of the total value. If Max is non-negative, then the report only displays the first Max entries.

ProfilePrintChild	renByTime(G, n)	
Percentage	BOOLELT	Default : false
Max	RNGINTELT	Default: -1

Given a vertex n in the call graph G, print the list of functions in the called by the function n, sorted in descending order by the time spent during calls by the function n. Apart from the sort order, this function's behaviour is identical to that of ProfilePrintChildrenByCount.

Example H6E2

Continuing with the previous example, we examine the call graph using profile reports.

<pre>> ProfilePrintByTotalTime(G);</pre>					
Index	: Name	Time	Count		
1	<main></main>	10.940	1		
2	fibonacci	10.940	392835		
3	eq(<rngintelt> x, <rngintelt> y) -> BoolElt</rngintelt></rngintelt>	1.210	710646		

```
4
      -(<RngIntElt> x, <RngIntElt> y) -> RngIntElt
                                                                 0.630
                                                                          392834
      +(<RngIntElt> x, <RngIntElt> y) -> RngIntElt
                                                                 0.250
                                                                          196417
5
6
      Fibonacci(<RngIntElt> n) -> RngIntElt
                                                                 0.000
                                                                          1
7
      SetProfile(<BoolElt> v)
                                                                 0.000
                                                                          1
> ProfilePrintChildrenByTime(G, 2);
Function: fibonacci
Function Time: 10.940
Function Count: 392835
Index Name
                                                                 Time
                                                                          Count
2
      fibonacci (*)
                                                                 182.430 392834
      eq(<RngIntElt> x, <RngIntElt> y) -> BoolElt
3
                                                                          710645
                                                                 1.210
      -(<RngIntElt> x, <RngIntElt> y) -> RngIntElt
4
                                                                 0.630
                                                                          392834
      +(<RngIntElt> x, <RngIntElt> y) -> RngIntElt
5
                                                                 0.250
                                                                          196417
* A recursive call is made through this child
```

6.3.2 HTML Reports

While the internal reports are useful for casual inspection of a profile run, for detailed examination a text-based interface has serious limitations. MAGMA's profiler also supports the generation of HTML reports of the profile run. The HTML report can be loaded up in any web browser. If Javascript is enabled, then the tables in the report can be dynamically sorted by any field, by clicking on the column heading you wish to perform a sort with. Clicking the column heading multiple times will alternate between ascending and descending sorts.

```
ProfileHTMLOutput(G, prefix)
```

Given a call graph G, an HTML report is generated using the file prefix *prefix*. The index file of the report will be "*prefix*.html", and exactly n additional files will be generated with the given filename *prefix*, where n is the number of functions in the call graph.

6.4 Recursion and the Profiler

Recursive calls can cause some difficulty with profiler results. The profiler takes care to ensure that double-counting does not occur, but this can lead to unintuitive results, as the following example shows.

Ch. 6

Example H6E3_

In the following example, **recursive** is a recursive function which simply stays in a loop for half a second, and then recurses if not in the base case. Thus, the total running time should be approximately (n + 1)/2 seconds, where n is the parameter to the function.

```
> procedure delay(s)
>
      t := Cputime();
>
      repeat
>
        _ := 1+1;
>
      until Cputime(t) gt s;
> end procedure;
>
> procedure recursive(n)
      if n ne 0 then
>
        recursive(n - 1);
>
      end if;
>
>
      delay(0.5);
>
> end procedure;
>
> SetProfile(true);
> recursive(1);
> SetProfile(false);
> G := ProfileGraph();
```

Printing the profile results by total time yield no surprises:

```
> ProfilePrintByTotalTime(G);
Index Name
                                                                 Time
                                                                         Count
                                                                 1.020
1
      <main>
                                                                         1
2
      recursive
                                                                 1.020
                                                                         2
5
      delay
                                                                 1.020
                                                                         2
      Cputime(<FldReElt> T) -> FldReElt
8
                                                                 0.130
                                                                         14880
7
      +(<RngIntElt> x, <RngIntElt> y) -> RngIntElt
                                                                 0.020
                                                                         14880
9
      gt(<FldReElt> x, <FldReElt> y) -> BoolElt
                                                                 0.020
                                                                         14880
      ne(<RngIntElt> x, <RngIntElt> y) -> BoolElt
3
                                                                 0.000
                                                                         2
4
      -(<RngIntElt> x, <RngIntElt> y) -> RngIntElt
                                                                 0.000
                                                                         1
6
      Cputime() -> FldReElt
                                                                 0.000
                                                                         2
      SetProfile(<BoolElt> v)
10
                                                                 0.000
                                                                         1
```

However, printing the children of **recursive**, and displaying the results in percentages, does yield a surprise:

```
> ProfilePrintChildrenByTime(G, 2 : Percentage);
Function: recursive
Function Time: 1.020
Function Count: 2
Index Name Time Count
5 delay 100.00 33.33
2 recursive (*) 50.00 16.67
```

3	ne(<rngintelt> x, <rngintelt> y) -> BoolElt</rngintelt></rngintelt>	0.00	33.33
4	-(<rngintelt> x, <rngintelt> y) -> RngIntElt</rngintelt></rngintelt>	0.00	16.67
* <u>A</u>	A recursive call is made through this child		

At first glance, this doesn't appear to make sense, as the sum of the time column is 150%! The reason for this behavior is because some time is "double counted": the total time for the first call to **recursive** includes the time for the recursive call, which is also counted separately. In more detail:

```
> V := Vertices(G);
> E := Edges(G);
> Label(V!1)'Name;
<main>
> Label(V!2)'Name;
recursive
> Label(E![1,2])'Time;
1.0199999999999999795718
> Label(E![2,2])'Time;
0.51000000000000888
> Label(V!2)'Time;
1.01999999999999795718
```

As can seen in the above, the total time for **recursive** is approximately one second, as expected. The double-counting of the recursive call can be seen in the values of **Time** for the edges [1,2] and [2,2].

7 DEBUGGING MAGMA CODE

 7.1 Introduction
 147

 SetDebugOnError(f)
 147

7.2 Using the Debugger 147

Chapter 7 DEBUGGING MAGMA CODE

7.1 Introduction

In ordered to facilitate the debugging of complex pieces of MAGMA code, MAGMA includes a debugger. This debugger is very much a prototype, and can cause MAGMA to crash.

SetDebugOnError(f)

If f is true, then upon an error MAGMA will break into the debugger. The usage of the debugger is described in the next section.

7.2 Using the Debugger

When use of the debugger is enabled and an error occurs, MAGMA will break into the command-line debugger. The syntax of the debugger is modelled on the GNU GDB debugger for C programs, and supports the following commands (acceptable abbreviations for the commands are given in parentheses):

backtrace (bt) Print out the stack of function and procedure calls, from the top level to the point at which the error occurred. Each line i this trace gives a single *frame*, which consists of the function/procedure that was called, as well as all local variable definitions for that function. Each frame is numbered so that it can be referenced in other debugger commands.

frame (f) n Change the current frame to the frame numbered n (the list of frames can be obtained using the backtrace command). The current frame is used by other debugger commands, such as print, to determine the context within which expressions should be evaluated. The default current frame is the top-most frame.

- list (1) [n] Print a source code listing for the current context (the context is set by the frame command). If n is specified, then the list command will print n lines of source code; the default value is 10.
- print (p) expr Evaluate the expression expr in the current context (the context is set by the frame command). The print command has semantics identical to evaluating the expression eval "expr" at the current point in the program.
- help (h) Print brief help on usage.
- quit (q) Quit the debugger and return to the MAGMA session.

148

Example H7E1___

We now give a sample session in the debugger. In the following, we have written a function to evaluate $f(n) = \sum_{i=1}^{n} 1/n$, but have in our implementation we have accidentally included the evaluation of the term at n = 0.

```
> function f(n)
   if n ge 0 then
>
      return 1.0 / n + f(n - 1);
>
>
   else
      return 1.0 / n;
>
>
   end if;
> end function;
>
> SetDebugOnError(true);
> f(3);
f(
   n: 3
)
f(
   n: 2
)
f(
   n: 1
)
f(
   n: 0
)
       return 1.0 / n + f(n - 1);
>>
Runtime error in '/': Division by zero
debug> p n
0
debug> p 1.0 / (n + 1)
debug> bt
#0 *f(
   n: 0
) at <main>:1
#1 f(
   n: 1
) at <main>:1
#2 f(
   n: 2
) at <main>:1
#3 f(
   n: 3
) at <main>:1
debug> f 1
```

PART II

SETS, SEQUENCES, AND MAPPINGS

8	INTRODUCTION TO AGGREGATES	153
9	SETS	163
10	SEQUENCES	191
11	TUPLES AND CARTESIAN PRODUCTS	213
12	LISTS	221
13	ASSOCIATIVE ARRAYS	227
14	COPRODUCTS	233
15	RECORDS	239
16	MAPPINGS	245

8 INTRODUCTION TO AGGREGATES

8.1 Introduction 155

- 8.2 Restrictions on Sets and Sequences 155
- 8.2.1 $\,$ Universe of a Set or Sequence . . . 156 $\,$

8.2.3	Parents	of Sets	and Sequences			159
-------	---------	---------	---------------	--	--	-----

8.3 Nested Aggregates 160

Chapter 8 INTRODUCTION TO AGGREGATES

8.1 Introduction

This part of the Handbook comprises four chapters on aggregate objects in MAGMA as well as a chapter on maps.

Sets, sequences, tuples and lists are the four main types of aggregates, and each has its own specific purpose. Sets are used to collect objects that are elements of some common structure, and the most important operation is to test element membership. Sequences also contain objects of a common structure, but here the emphasis is on the ordering of the objects, and the most important operation is that of accessing (or modifying) elements at given positions. Sets will contain at most one copy of any element, whereas sequences may contain arbitrarily many copies of the same object. Enumerated sets and sequences are of arbitrary but finite length and will store all elements explicitly (with the exception of arithmetic progressions), while formal sets and sequences may be infinite, and use a Boolean function to test element membership. Indexed sets are a hybrid form of sets allowing indexing like sequences. Elements of Cartesian products of structures in MAGMA will be called tuples; they are of fixed length, and each coefficient must be in the corresponding structure of the defining Cartesian product. Lists are arbitrary finite ordered collections of objects of any type, and are mainly provided to the user to store assorted data to which access is not critical.

8.2 Restrictions on Sets and Sequences

Here we will explain the subtleties behind the mechanism dealing with sets and sequences and their universes and parents. Although the same principles apply to their formal counterparts, we will only talk about enumerated sets and sequences here, for two reasons: the enumerated versions are much more useful and common, and the very restricted number of operations on formal sets/sequences make issues of universe and overstructure of less importance for them.

In principle, every object e in MAGMA has some parent structure S such that $e \in S$; this structure can be used for type checking (are we allowed to apply function f to e?), algorithm look-up etc. To avoid storing the structure with every element of a set or sequence and having to look up the structure of every element separately, only elements of a *common structure* are allowed in sets or sequences, and that common parent will only be stored once.

8.2.1 Universe of a Set or Sequence

This common structure is called the *universe* of the set or sequence. In the general constructors it may be specified up front to make clear what the universe for the set or sequence will be; the difference between the sets i and s in

```
> i := { IntegerRing() | 1, 2, 3 };
> s := { RationalField() | 1, 2, 3 };
```

lies entirely in their universes. The specification of the universe may be omitted if there is an obvious common overstructure for the elements. Thus the following provides a shorter way to create the set containing 1, 2, 3 and having the ring of integers as universe:

> i := { 1, 2, 3 };

Only empty sets and sequences that have been obtained directly from the constructions

```
> S := { };
> T := [ ];
```

do not have their universe defined - we will call them the *null* set or sequence. (There are two other ways in which empty sets and sequences arise: it is possible to create empty sequences with a prescribed universe, using

```
> S := { U | };
> T := [ U | ];
```

and it may happen that a non-empty set/sequence becomes empty in the course of a computation. In both cases these empty objects have their universe defined and will not be *null*).

Usually (but not always: the exception will be explained below) the universe of a set or sequence is the parent for all its elements; thus the ring of integers is the parent of 2 in the set $i = \{1, 2, 3\}$, rather than that set itself. The universe is not static, and it is not necessarily the same structure as the parent of the elements before they were put in the set or sequence. To illustrate this point, suppose that we try to create a set containing integers and rational numbers, say $T = \{1, 2, 1/3\}$; then we run into trouble with the rule that the universe must be common for all elements in T; the way this problem is solved in MAGMA is by automatic coercion: the obvious universe for T is the field of rational numbers of which 1/3 is already an element and into which any integer can be coerced in an obvious way. Hence the assignment

> T := { 1, 2, 1/3 }

will result in a set with universe the field of rationals (which is also present when MAGMA is started up). Consequently, when we take the element 1 of the set T, it will have the rational field as its parent rather than the integer ring! It will now be clear that

is a shorter way to specify the set of rational numbers 1,2, 3 than the way we saw before, but in general it is preferable to declare the universe beforehand using the $\{U \mid J \}$ notation.

Ch. 8

```
Of course
```

```
> T := { Integers() | 1, 2, 1/3 }
```

would result in an error because 1/3 cannot be coerced into the ring of integers.

So, usually not every element of a given structure can be coerced into another structure, and even if it can, it will not always be done automatically. The possible (automatic) coercions are listed in the descriptions of the various MAGMA modules. For instance, the table in the introductory chapter on rings shows that integers can be coerced automatically into the rational field.

In general, every MAGMA structure is valid as a universe. This includes enumerated sets and sequences themselves, that is, it is possible to define a set or sequence whose elements are confined to be elements of a given set or sequence. So, for example,

```
> S := [ [ 1..10 ] | x<sup>2</sup>+x+1 : x in { -3 .. 2 by 1 } ];
```

produces the sequence [7, 3, 1, 1, 3, 7] of values of the polynomial $x^2 + x + 1$ for $x \in \mathbb{Z}$ with $-3 \leq x \leq 2$. However, an entry of S will in fact have the ring of integers as its parent (and not the sequence [1..10]), because the effect of the above assignment is that the values after the | are calculated and coerced into the universe, which is [1..10]; but coercing an element into a sequence or set means that it will in fact be coerced into the *universe* of that sequence/set, in this case the integers. So the main difference between the above assignment and

is that in the first case it is checked that the resulting values y satisfy $1 \le y \le 10$, and an error would occur if this is violated:

```
> S := [ [ 1..10 ] | x<sup>2</sup>+x+1 : x in { -3 .. 3 by 1} ];
```

leads to a run-time error.

In general then, the parent of an element of a set or sequence will be the universe of the set or sequence, unless that universe is itself a set or sequence, in which case the parent will be the universe of this universe, and so on, until a non-set or sequence is encountered.

8.2.2 Modifying the Universe of a Set or Sequence

Once a (non-null) set or sequence S has been created, the universe has been defined. If one attempts to modify S (that is, to add elements, change entries etc. using a procedure that will not reassign the result to a new set or sequence), the universe will not be changed, and the modification will only be successful if the new element can be coerced into the current universe. Thus,

> Z := Integers(); > T := [Z | 1, 2, 3/3];

```
> T[2] := 3/4;
```

will result in an error, because 3/4 cannot be coerced into Z.

Part II

The universe of a set or sequence S can be explicitly modified by creating a *parent* for S with the desired universe and using the ! operator for the coercion; as we will see in the next subsection, such a parent can be created using the **PowerSet** and **PowerSequence** commands. Thus, for example, the set $\{1, 2\}$ can be made into a sequence of rationals as follows:

```
> I := { 1, 2 };
> P := PowerSet( RationalField() );
> J := P ! I;
```

The coercion will be successful if every element of the sequence can be coerced into the new universe, and it is *not* necessary that the old universe could be coerced completely into the new one: the set $\{3/3\}$ of rationals can be coerced into PowerSet(Integers()). As a consequence, the empty set (or sequence) with any universe can be coerced into the power set (power sequence) of any other universe.

Binary functions on sets or sequences (like join or cat) can only applied to sets and sequences that are compatible: the operation on S with universe A and T with universe Bcan only be performed if a common universe C can be found such that the elements of Sand T are all elements of C. The compatibility conditions are dependent on the particular MAGMA module to which A and B belong (we refer to the corresponding chapters of this manual for further information) and do also apply to elements of $a \in A$ and $b \in B$ that is, the compatibility conditions for S and T are the same as the ones that determine whether binary operations on $a \in A$ and $b \in B$ are allowed. For example, we are able to join a set of integers and a set of rationals:

> T := { 1, 2 } join { 1/3 };

for the same reason that we can do

(automatic coercion for rings). The resulting set T will have the rationals as universe.

The basic rules for compatibility of two sets or sequences are then:

- (1) every set/sequence is compatible with the null set/sequence (which has no universe defined (see above));
- (2) two sets/sequences with the same universe are compatible;
- (3) a set/sequence S with universe A is compatible with set/sequence T with universe B if the elements of A can be automatically coerced into B, or vice versa;
- (4) more generally, a set/sequence S with universe A is also compatible with set/sequence T with universe B if MAGMA can automatically find an over-structure for the parents A and B (see below);
- (5) nested sets and sequences are compatible only when they are of the same 'depth' and 'type' (that is, sets and sequences appear in exactly the same recursive order in both) and the universes are compatible.

The possibility of finding an overstructure C for the universe A and B of sets or sequences S and T (such that $A \subset C \supset B$), is again module-dependent. We refer the reader for

Ch. 8

details to the Introductions of Parts III–VI, and we give some examples here; the next subsection contains the rules for parents of sets and sequences.

8.2.3 Parents of Sets and Sequences

The universe of a set or sequence S is the common parent for all its elements; but S itself is a MAGMA object as well, so it should have a parent too.

The parent of a set is a power set: the set of all subsets of the universe of S. It can be created using the PowerSet function. Similarly, PowerSequence(A) creates the parent structure for a sequence of elements from the structure A – that is, the elements of PowerSequence(A) are all sequences of elements of A.

The rules for finding a common overstructure for structures A and B, where either A or B is a set/sequence or the parent of a set/sequence, are as follows. (If neither A nor B is a set, sequence, or its parent we refer to the Part of this manual describing the operations on A and B.)

- (1) The overstructure of A and B is the same as that of B and A.
- (2) If A is the null set or sequence (empty, and no universe specified) the overstructure of A and B is B.
- (3) If A is a set or sequence with universe U, the overstructure of A and B is the overstructure of U and B; in particular, the overstructure of A and A will be the universe U of A.
- (4) If A is the parent of a set (a power set), then A and B can only have a common overstructure if B is also the parent of a set, in which case the overstructure is the power set of the overstructure of the universes U and V of A and B respectively. Likewise for sequences instead of sets.

We give two examples to illustrate rules (3) and (4). It is possible to create a set with a set as its universe:

> S := { { 1..100 } | x^3 : x in [0..3] };

If we wish to intersect this set with some set of integers, say the formal set of odd integers

> T := {! x : x in Integers() | IsOdd(x) !}; > W := S meet T;

then we can only do that if we can find a universe for W, which must be the common overstructure of the universe $U = \{1, 2, ..., 100\}$ of S and the universe 'ring of integers' of T. By rule (3) above, this overstructure of $U = \{1, 2, ..., 100\}$ will be the overstructure of the universe of U and the ring of integers; but the universe of U is the ring of integers (because it is the default for the set $\{1, 2, ..., 100\}$), and hence the overstructure we are looking for (and the universe for W) will be the ring of integers.

For the second example we look at sequences of sequences:

> a := [[1], [1, 2, 3]];

> b := [[2/3]];

so a is a sequence of sequences of integers, and b is a sequence of sequences of rationals. If we wish to concatenate a and b,

> c := a cat b;

we will only succeed if we find a universe for c. This universe must be the common overstructure of the universes of a and b, which are the 'power sequence of the integers' and the 'power sequence of the rationals' respectively. By rule (4), the overstructure of these two power sequences is the power sequence of the common overstructure of the rationals and the integers, which is the rationals themselves. Hence c will be a sequence of sequences of rationals, and the elements of a will have to be coerced.

8.3 Nested Aggregates

Enumerated sets and sequences can be arbitrarily nested (that is, one may create sets of sets, as well as sequences of sets etc.); tuples can also be nested and may be freely mixed with sets and sequences (as long as the proper Cartesian product parent can be created). Lists can be nested, and one may create lists of sets or sequences or tuples.

8.3.1 Multi-indexing

Since sequences (and lists) can be nested, assignment functions and mutation operators allow you to use *multi-indexing*, that is, one can use a multi-index i_1, i_2, \ldots, i_r rather than a single *i* to reach *r* levels deep. Thus, for example, if S = [1, 2], [2, 3], instead of

one may use the multi-index 2, 2 to obtain the same effect of changing the 3 into a 4:

All i_j in the multi-index i_1, i_2, \ldots, i_r have to be greater than 0, and an error will also be flagged if any i_j indexes beyond the length at level j, that is, if $i_j > \#S[i_1, \ldots, i_{j-1}]$, (which means $i_1 > \#S$ for j = 1). There is one exception: the last index i_r is allowed to index beyond the current length of the sequence at level r if the multi-index is used on the left-hand side of an assignment, in which case any intermediate terms will be undefined. This generalizes the possibility to assign beyond the length of a 'flat' sequence. In the above example the following assignments are allowed:

$$>$$
 S[2,5] := 7;

(and the result will be S = [[1, 2], [2, 3, undef, undef, 7]])

(and the result will be S = [[1, 2], [2, 3],undef, [7]]). But the following results in an error:

> S[4,1] := 7;

Finally we point out that multi-indexing should not be confused with the use of sequences as

161

indexes to create subsequences. For example, to create a subsequence of S = [5, 13, 17, 29] consisting of the second and third terms, one may use

> S := [5, 13, 17, 29]; > T := S[[2, 3]];

To obtain the second term of this subsequence one could have done:

> x := S[[2, 3]][2];

(so x now has the value S[3] = 17), but it would have been more efficient to index the indexing sequence, since it is rather expensive to build the subsequence [S[2], S[3]] first, so:

> x := S[[2, 3][2]];

has the same effect but is better (of course x := S[3] would be even better in this simple example.) To add to the confusion, it is possible to mix the above constructions for indexing, since one can use lists of sequences and indices for indexing; continuing our example, there is now a third way to do the same as above, using an indexing list that first takes out the subsequence consisting of the second and third terms and then extracts the second term of that:

> x := S[[2, 3], 2];

Similarly, the construction

> X := S[[2, 3], [2]];

pulls out the subsequence consisting of the second term of the subsequence of terms two and three of S, in other words, this assigns the sequence consisting of the element 17, not just the element itself!

9 SETS

9.1 I	ntroduction 	165
9.1.1	Enumerated Sets	165
9.1.2	Formal Sets	165
9.1.3	Indexed Sets	165
9.1.4	Multisets	165
9.1.5	Compatibility	166
9.1.6	Notation	166
9.2 (Creating Sets	166
9.2.1	The Formal Set Constructor	166
	in F $P(x)$!}	166
-	The Enumerated Set Constructor .	
	The Enumerated Set Constructor .	
{ } { U	l	$\begin{array}{c} 167 \\ 167 \end{array}$
		$167 \\ 167$
	$e_2, \ldots, e_n \}$ $e_1, e_2, \ldots, e_n \}$	$167 \\ 167$
$\begin{cases} \rho(\mathbf{x}) \end{cases}$	$e_1, e_2, \dots, e_n \}$ $: x \text{ in } E P(x) \}$	168
{ U	$e(x) : x in E P(x) \}$	168
{ e(v1	(x_1, \dots, x_k) : x_1 in E_1, \dots, x_k	100
	$x_k \mid P(x_1, \ldots, x_k) \}$	168
{ U	$e(x_1, \ldots, x_k)$: x_1 in $E_1, \ldots,$	100
\mathbf{x}_k i	in $E_k P(x_1,, x_k) \}$	168
	The Indexed Set Constructor \ldots	169
{0 0} {0 U	രി	$\frac{169}{169}$
		169
	$e_2, \ldots, e_n @$	169
	$e_1, e_2, \dots, e_m @$ x) : x in E P(x) @}	169
	e(x) : x in E P(x) @	169
	x_1, \ldots, x_k) : x_1 in E_1, \ldots, x_k	103
	x_1, \dots, x_k : x_1 in x_1, \dots, x_k x_k P(x_1, \dots, x_k) @}	170
{@ 11	$e(x_1, \ldots, x_k) : x_1 \text{ in } E_1, \ldots, x_k)$	110
v.	$\lim_{k \to \infty} E_k = P(x_1, \ldots, x_k)^0$	170
	The Multiset Constructor \ldots	170
	The multiset Constructor	
{* *}		170
{* U		170
{* e ₁ ,	$e_2, \ldots, e_n *$	171
{* U	$e_1, e_2, \ldots, e_m *$	171
	x : x : n E P(x) *	171
	e(x) : x in E P(x) *}	171
{* e()	x_1, \ldots, x_k) : x_1 in E_1, \ldots, x_k	171
ם חוב ו דו ייי ל	$\mathbf{E}_k \mid \mathbf{P}(\mathbf{x}_1, \ldots, \mathbf{x}_k) \ast \}$	171
ر • ∪ ا • • • •	$e(x_1, \ldots, x_k) : x_1 \text{ in } E_1, \ldots,$	171
	$\lim_{k \to \infty} E_k \mid P(\mathbf{x}_1, \ldots, \mathbf{x}_k) * \}$	
9.2.5	The Arithmetic Progression Construct	
	tors	172
{ i	;	172
{ i; { U	ij }	172
{ i	j by k }	173

9.3 Power Sets 173 PowerSet(R) 173 PowerIndexedSet(R) 173 PowerMultiset(R) 174 in 174 PowerFormalSet(R) 174 in 174 in 174 in 174 in 174 in 174 9.werFormalSet(R) 174 9.and Sets from Structures 174 9.3.1 The Cartesian Product Constructors 175 Set(M) 175 FormalSet(M) 175 9.5 Accessing and Modifying Sets 176 9.5.1 Accessing Sets and their Associated Structures 176 9.5.1 Accessing Sets and their Associated Structures 176 9.5.1 Accessing Sets and their Associated Structures (R) 176 Poiston(S) 176 Poye(S) 176 Parent(R) 176 Oniverse(R) 176 S[1] 176 S[2] Selecting Elements of Sets 177 Pandom{e(x): x in E P(x) } 178 random{e(x): x in E P(x) } 178 <th>{ U i j by k }</th> <th>173</th>	{ U i j by k }	173
PowerIndexedSet(R) 173 PowerMultiset(R) 174 in 174 PowerFormalSet(R) 174 in 174 9.a Petersian Product Constructors 9.4 Sets from Structures 175 9.5 Accessing and Modifying Sets 176 9.5 Accessing Sets and their Associated 5tructures Structures 176 7ype(S) 176 Parent(R) 176 Index(S, x) 176 S[i] 177	9.3 Power Sets	173
9.3.1 The Cartesian Product Constructors 175 9.4 Sets from Structures	<pre>PowerIndexedSet(R) PowerMultiset(R) in PowerFormalSet(R) in in ! !</pre>	173 174 174 174 174 174 174 174
Set (M) 175 FormalSet (M) 175 9.5 Accessing and Modifying Sets. 176 9.5.1 Accessing Sets and their Associated Structures 176 $g.5.1$ Accessing Sets and their Associated Structures 176 9.5.1 Accessing Sets and their Associated Structures 176 9.5.1 Accessing Sets and their Associated Structures 176 9.5.1 Accessing Sets and their Associated Structures 176 9.5.2 Selecting Elements of Sets 176 S[1] 176 9.5.2 Selecting Elements of Sets 177 Random(R) 178 random{ $e(x_1, \ldots, x_k) : x_1 \text{ in E_1}, \ldots, x_k \text{ in E_k P(x_1, \ldots, x_k)} 178 representative(R) 178 Rep(R) 178 ExtractRep(~R, ~r) 179 rep{ e(x_1, \ldots, x_k) : x_1 \text{ in E_1}, \ldots, x_k \text{ in E_k P(x_1, \ldots, x_k) } 179 Minimum(S) 180 Maximum(S) 180 Maximum(S) 180 Max(S) 180 9.5.3 Modifying Sets 180 Include(~S, x) 180 Include(~S, x) 180 Include(S, x) 180 $		
FormalSet(M) 175 9.5 Accessing and Modifying Sets. 176 $9.5.1$ Accessing Sets and their Associated Structures 176 $\#$ 176 Category(S) 176 Type(S) 176 Parent(R) 176 Universe(R) 176 Index(S, x) 176 Position(S, x) 176 S[1] 177 Random(R) 178 random{e(x1,, xk) : x1 in E_1,,, xk, } 178 Representative(R) 178	9.4 Sets from Structures	175
9.5.1 Accessing Sets and their Associated Structures 176 # 176 Category(S) 176 Type(S) 176 Parent(R) 176 Universe(R) 176 Index(S, x) 176 Position(S, x) 176 S[i] 176 9.5.2 Selecting Elements of Sets 177 Random(R) 178 random{e(x1,, xk) : x1 in E1, 178 random{e(x1,, xk) : x1 in E1, 178 Representative(R) 178 Rep(R) 179 rep{ e(x1: x in E P(x1,, xk) } 179 rep{ e(x1: x in E P(x) } 179 rep{ e(x1: x in E P(x) } 179 rep{ e(x1: x in E P(x) } 179 rep{ e(x1: x in E P(x1,, xk) } 179 Minimum(S) 180 Maxinum(S) 180 Max(S) 180 Hash(x) 180 9.5.3 Modifying Sets 180 Include(\sim S, x) 180 Include(\sim S, x) 180 Include(\sim S, x)		
Structures 176 # 176 Category(S) 176 Type(S) 176 Parent(R) 176 Universe(R) 176 Index(S, x) 176 Position(S, x) 176 S[i] 176 S[i] 176 9.5.2 Selecting Elements of Sets 177 Random(R) 178 random{ $\{ e(x_1, \ldots, x_k) : x_1 in E_1, \ldots, x_k in E_k P(x_1, \ldots, x_k) \}$ 178 Representative(R) 178 Rep(R) 178 ExtractRep(~R, ~r) 179 rep{ e(x_1,, x_k) : x_1 in E_1,, x_k in E_k P(x_1,, x_k) } 179 Minimum(S) 180 Max(S) 180 Max(S) 180 Max(S) 180 Include(~S, x) 180 Include(~S, x) 180 Include(~S, x) 180 Exclude(~S, x) 180 Exclude(~S, x) 180		
<pre># 176 Category(S) 176 Type(S) 176 Parent(R) 176 Universe(R) 176 Index(S, x) 176 Position(S, x) 176 S[i] 176 S[i] 176 S[i] 176 $9.5.2$ Selecting Elements of Sets 177 Random(R) 178 random{e(x) : x in E P(x) } 178 random{e(x1,, xk) : x1 in E1,, xk in Ek P(x1,, xk)} 178 Representative(R) 178 Rep(R) 178 ExtractRep(~R, ~r) 179 rep{ e(x1 : x in E P(x) } 179 rep{ e(x1 : x in E P(x) } 179 Minimum(S) 180 Maximum(S) 180 Max(S) 180 Include(~S, x) 180 Exclude(~S, x) 180 Exclude(~S,</pre>	-	
Type (S)176Parent (R)176Universe (R)176Index (S, x)176Position (S, x)176S[i]176S[I]1769.5.2Selecting Elements of Sets177Random (R)178random { $e(x) : x in E P(x) $ 178random { $e(x) : x in E P(x) $ 178representative (R)178Rep (R)178ExtractRep (~R, ~r)179rep { $e(x) : x in E P(x) $ 179rep { $e(x_1,, x_k) : x_1 in E_1,, x_k in E_k P(x_1,, x_k) $ 179minimum(S)180Min(S)180Max(S)180Max(S)180Hash(x)1809.5.3Modifying Sets180Include (~S, x)180Include (~S, x)180Exclude (~S, x)180Exclude (~S, x)180		
Parent(R)176Universe(R)176Index(S, x)176Position(S, x)176S[i]176S[I]1769.5.2Selecting Elements of Sets177Random(R)178random{ $\{ e(x) : x in E P(x) \}$ 178random{ $\{ e(x_1,, x_k) : x_1 in E_1,$ 178, $x_k in E_k P(x_1,, x_k) \}$ 178Representative(R)178Rep(R)178ExtractRep(~R, ~r)179rep{ $\{ e(x_1,, x_k) : x_1 in E_1,, x_k in E_k P(x_1,, x_k) \}$ 179minimum(S)180Min(S)180Max(S)180Hash(x)1809.5.3Modifying Sets180Include(~S, x)180Exclude(~S, x)180Exclude(~S, x)180		
Universe(R) 176 Index(S, x) 176 Position(S, x) 176 S[i] 176 S[I] 176 9.5.2 Selecting Elements of Sets 177 Random(R) 178 random{ $\{e(x) : x in E P(x) \}$ 178 random{ $\{e(x) : x in E P(x_1,, x_k)\}$ 178 Representative(R) 178 Rep(R) 178 ExtractRep(~R, ~r) 179 rep{ e(x1 : x in E P(x) } 179 rep{ e(x1 : x in E P(x) } 179 minimum(S) 180 Min(S) 180 Maximum(S) 180 Max(S) 180 Hash(x) 180 9.5.3 Modifying Sets 180 Include(~S, x) 180 Exclude(~S, x) 180 Exclude(~S, x) 180 Exclude(~S, x) 180		
Index(S, x)176Position(S, x)176S[i]176S[I]1769.5.2Selecting Elements of Sets177Random(R)178random{ $e(x) : x in E P(x) $ 178random{ $e(x_1,, x_k) : x_1 in E_1$,178representative(R)178Rep(R)178ExtractRep(~R, ~r)179rep{ $e(x) : x in E P(x) $ 179rep{ $e(x_1,, x_k) : x_1 in E_1,, x_k in E_k P(x_1,, x_k) $ 179minimum(S)180Min(S)180Maximum(S)180Max(S)180Hash(x)1809.5.3Modifying Sets180Include(~S, x)180Exclude(~S, x)180Exclude(~S, x)180		
Position(S, x)176S[i]176S[I]1769.5.2Selecting Elements of Sets177Random(R)178random{ $\{e(x_1,, x_k) : x_1 in E_1,, x_k in E_k P(x_1,, x_k) \}$ 178random{ $\{e(x_1,, x_k) : x_1 in E_1,, x_k in E_k P(x_1,, x_k) \}$ 178Representative(R)178Rep(R)179rep{ $\{e(x_1,, x_k) : x_1 in E_1,, x_k in E_k P(x_1,, x_k) \}$ 179rep{ $\{e(x_1,, x_k) : x_1 in E_1,, x_k in E_k P(x_1,, x_k) \}$ 179Minimum(S)180Maximum(S)180Max(S)180Hash(x)1809.5.3Modifying Sets180Include(\sim S, x)180Exclude(\sim S, x)180Exclude(\sim S, x)180Exclude(\sim S, x)180Exclude(S, x)180		
S[i] 176 S[I] 176 9.5.2 Selecting Elements of Sets 177 Random(R) 178 random{ $\{e(x_1, \ldots, x_k) : x_1 in E_1, \ldots, x_k in E_k P(x_1, \ldots, x_k) \}$ 178 representative(R) 178 Rep(R) 179 rep{ $\{e(x_1, \ldots, x_k) : x_1 in E_1, \ldots, x_k in E_k P(x_1, \ldots, x_k) \}$ 179 rep{ $\{e(x_1, \ldots, x_k) : x_1 in E_1, \ldots, x_k in E_k P(x_1, \ldots, x_k) \}$ 179 minimum(S) 180 Maximum(S) 180 Max(S) 180 Hash(x) 180 Include(\sim S, x) 180 Include(\sim S, x) 180 Exclude(\sim S, x) 180 Exclude(\sim S, x) 180		
$\begin{split} & S[I] & 176 \\ & 9.5.2 \ Selecting Elements of Sets & & 177 \\ & Random(R) & 178 \\ & random{ (e(x) : x in E P(x) } & 178 \\ & random{ (e(x_1, , x_k) : x_1 in E_1, & , x_k in E_k P(x_1, , x_k) } & 178 \\ & Representative(R) & 178 \\ & Rep(R) & 178 \\ & ExtractRep(\sim R, \sim r) & 179 \\ & rep{ (e(x) : x in E P(x) } & 179 \\ & rep{ (e(x) : x in E P(x) } & 179 \\ & rep{ (e(x_1, , x_k) : x_1 in E_1, , x_k in E_k P(x_1, , x_k) } & 179 \\ & Minimum(S) & 180 \\ & Maximum(S) & 180 \\ & Max(S) & 180 \\ & Max(S) & 180 \\ & Hash(x) & 180 \\ & Include(\sim S, x) & 180 \\ & Include(\sim S, x) & 180 \\ & Include(\sim S, x) & 180 \\ & Exclude(\sim S, x) & 180 \\ & Exclude(\sim S, x) & 180 \\ & Exclude(S, x) & 180$		
9.5.2 Selecting Elements of Sets 177 Random(R) 178 random{ $\{e(x_1) : x in E P(x) \}$ 178 random{ $\{e(x_1,, x_k) : x_1 in E_1,$ 178 random{ $\{e(x_1,, x_k) : x_1 in E_1,$ 178 representative(R) 178 Rep(R) 178 ExtractRep(~R, ~r) 179 rep{ $\{e(x_1,, x_k) : x_1 in E_1,, x_k in E_k P(x_1,, x_k) \}$ 179 rep{ $\{e(x_1,, x_k) : x_1 in E_1,, x_k in E_k P(x_1,, x_k) \}$ 179 Minimum(S) 180 Maximum(S) 180 Max(S) 180 Hash(x) 180 Include(~S, x) 180 Exclude(~S, x) 180 Exclude(~S, x) 180		
Random(R)178random{ $\{e(x) : x in E P(x) \}$ 178random{ $\{e(x_1,, x_k) : x_1 in E_1,$, $x_k in E_k P(x_1,, x_k) \}$ 178Representative(R)178Rep(R)178ExtractRep(~R, ~r)179rep{ $\{e(x) : x in E P(x) \}$ 179rep{ $\{e(x_1,, x_k) : x_1 in E_1,, x_k in E_k P(x_1,, x_k) \}$ 179Minimum(S)180Maximum(S)180Maximum(S)180Max(S)180Include(~S, x)180Include(S, x)180Exclude(~S, x)180Exclude(~S, x)180Exclude(S, x)180		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	-	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
, x_k in $E_k P(x_1,, x_k)$ 178Representative(R)178Rep(R)178ExtractRep(~R, ~r)179rep{ e(x) : x in E P(x) }179rep{ e(x_1,, x_k) : x_1 in E_1,,179Minimum(S)180Min(S)180Maximum(S)180Max(S)180Hash(x)180Jnclude(~S, x)180Include(S, x)180Exclude(~S, x)180Exclude(S, x)180		178
Representative(R)178Rep(R)178ExtractRep(\sim R, \sim r)179rep{ e(x) : x in E P(x) }179rep{ e(x1,, xk) : x1 in E1,,179minimum(S)180Min(S)180Maximum(S)180Max(S)180Hash(x)1809.5.3 Modifying Sets180Include(\sim S, x)180Include(\sim S, x)180Exclude(\sim S, x)180Exclude(S, x)180	random $\{e(x_1, \ldots, x_k) : x_1 \text{ in } E_1, \ldots, x_k\}$	170
Rep(R)178ExtractRep(\sim R, \sim r)179rep{ e(x) : x in E P(x) }179rep{ e(x1,, xk) : x1 in E1,,xk in Ek P(x1,, xk) }xk in Ek P(x1,, xk) ;179Minimum(S)180Min(S)180Maximum(S)180Max(S)180Hash(x)1809.5.3 Modifying Sets180Include(\sim S, x)180Include(\sim S, x)180Exclude(\sim S, x)180Exclude(\sim S, x)180Exclude(S, x)180		
ExtractRep(\sim R, \sim r)179rep{ e(x) : x in E P(x) }179rep{ e(x1,, xk) : x1 in E1,,179xk in Ek P(x1,, xk) }180Minimum(S)180Maximum(S)180Max(S)180Hash(x)1809.5.3 Modifying Sets180Include(\sim S, x)180Include(\sim S, x)180Exclude(\sim S, x)180Exclude(\sim S, x)180Exclude(S, x)180	-	
rep{ $e(x)$: x in E P(x) }179rep{ $e(x_1,, x_k)$: x_1 in E ₁ ,,179 x_k in E_k P($x_1,, x_k$) }179Minimum(S)180Min(S)180Maximum(S)180Max(S)180Hash(x)1809.5.3 Modifying Sets180Include(\sim S, x)180Include(S, x)180Exclude(\sim S, x)180Exclude(S, x)180	-	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
x_k in $E_k P(x_1,, x_k) $ 179Minimum(S)180Min(S)180Maximum(S)180Max(S)180Hash(x)1809.5.3 Modifying Sets180Include(\sim S, x)180Include(S, x)180Exclude(\sim S, x)180Exclude(S, x)180	$rep\{ e(x_1,, x_k) : x_1 in E_1,,$	
Minimum(S) 180 Min(S) 180 Maximum(S) 180 Max(S) 180 Hash(x) 180 9.5.3 Modifying Sets 180 Include(~S, x) 180 Include(S, x) 180 Exclude(~S, x) 180 Exclude(S, x) 180		179
Maximum(S) 180 Max(S) 180 Hash(x) 180 9.5.3 Modifying Sets 180 Include(~S, x) 180 Include(S, x) 180 Exclude(~S, x) 180 Exclude(S, x) 180 Exclude(S, x) 180	Minimum(S)	180
Max(S) 180 Hash(x) 180 9.5.3 Modifying Sets 180 Include(~S, x) 180 Include(S, x) 180 Exclude(~S, x) 180 Exclude(S, x) 180 Exclude(S, x) 180		180
Hash(x) 180 9.5.3 Modifying Sets 180 Include(~S, x) 180 Include(S, x) 180 Exclude(~S, x) 180 Exclude(S, x) 180 Exclude(S, x) 180		
9.5.3 Modifying Sets 180 Include(~S, x) 180 Include(S, x) 180 Exclude(~S, x) 180 Exclude(S, x) 180 Exclude(S, x) 180		
Include(~S, x) 180 Include(S, x) 180 Exclude(~S, x) 180 Exclude(S, x) 180		
Include(S, x) 180 Exclude(~S, x) 180 Exclude(S, x) 180	2 8 8	
Exclude(~S, x) 180 Exclude(S, x) 180		
Exclude(S, x) 180		

ChangeUniverse(S, V)	181
CanChangeUniverse(S, V)	181
SetToIndexedSet(E)	182
IndexedSetToSet(S)	182
<pre>Isetset(S)</pre>	182
IndexedSetToSequence(S)	182
Isetseq(S)	182
MultisetToSet(S)	182
SetToMultiset(E)	182
SequenceToMultiset(Q)	182
9.6 Operations on Sets	183
9.6.1 Boolean Functions and Operators .	183

9.6.1 Boolean Functions and Operators .	183
IsNull(R)	183
IsEmpty(R)	183
eq	183
ne	183
in	183
notin	183
subset	184
notsubset	184
eq	184
ne	184
IsDisjoint(R, S)	184
9.6.2 Binary Set Operators	184
join	184
meet	185
diff	185
sdiff	185

9.6.3 Other Set Operations \ldots \ldots	185
Multiplicity(S, x)	185
Multiplicities(S)	185
Subsets(S)	185
Subsets(S, k)	186
RandomSubset(S, k)	186
Multisets(S, k)	186
Subsequences(S, k)	186
Permutations(S)	186
Permutations(S, k)	186
9.7 Quantifiers	186
$exists(t) \{ e(x): x in E P(x) \}$	186
$exists(t_1,, t_r) \{ e(x) :$	
x in $E P(x) \}$	186
$\texttt{exists(t)}\{\texttt{e}(\texttt{x}_1, \ldots, \texttt{x}_k): \texttt{x}_1 \text{ in } \texttt{E}_1,$	
, x_k in $E_k P(x_1,, x_k)$	187
exists(t_1, \ldots, t_r) { $e(x_1, \ldots, x_k)$:	
x_1 in E_1 ,, x_k in $E_k \mid P$	187
forall(t) { $e(x)$: x in $\tilde{E} P(x) $ }	188
forall($t_1,, t_r$){ e(x) :	
x in $E P(x) \}$	188
forall(t){ $e(x_1,, x_k)$: x_1 in E_1 ,	
, x_k in $E_k P(x_1,, x_k) \}$	188
forall(t_1, \ldots, t_r) { $e(x_1, \ldots, x_k)$:	100
x_1 in E_1 ,, x_k in $E_k P \}$	188
9.8 Reduction and Iteration over Set	s189
x in S	189
& 111 5 &	189
α.	109

Chapter 9 SETS

9.1 Introduction

A set in MAGMA is a (usually unordered) collection of objects belonging to some common structure (called the *universe* of the set). There are four basic types of sets: *enumerated sets*, whose elements are all stored explicitly (with one exception, see below); formal sets, whose elements are stored implicitly by means of a predicate that allows for testing membership; *indexed sets*, which are restricted enumerated sets having a numbering on elements; and *multisets*, which are enumerated sets with possible repetition of elements. In particular, enumerated and indexed sets and multisets are always finite, and formal sets are allowed to be infinite.

9.1.1 Enumerated Sets

Enumerated sets are finite, and can be specified in three basic ways (see also section 2 below): by listing all elements; by an expression involving elements of some finite structure; and by an arithmetic progression. If an arithmetic progression is specified, the elements are not calculated explicitly until a modification of the set necessitates it; in all other cases all elements of the enumerated set are stored explicitly.

9.1.2 Formal Sets

A formal set consists of the subset of elements of some carrier set (structure) on which a certain predicate assumes the value 'true'.

The only set-theoretic operations that can be performed on formal sets are union, intersection, difference and symmetric difference, and element membership testing.

9.1.3 Indexed Sets

For some purposes it is useful to be able to access elements of a set through an index map, which numbers the elements of the set. For that purpose MAGMA has indexed sets, on which a very few basic set operations are allowed (element membership testing) as well as some sequence-like operations (such as accessing the *i*-th term, getting the index of an element, appending and pruning).

9.1.4 Multisets

For some purposes it is useful to construct a set with some of its members repeated. For that purpose MAGMA has multisets, which take into account the repetition of members. The number of times an object x occurs in a multiset S is called the *multiplicity* of x in S. MAGMA has the $\hat{}$ operator to specify a multiplicity: the expression x^n means the object x with multiplicity n. In the following, whenever any multiset constructor or function expects an element y, the expression x^n may usually be used.

9.1.5 Compatibility

The binary operators for sets do not allow mixing of the four types of sets (so one cannot take the intersection of an enumerated set and a formal set, for example), but it is easy to convert an enumerated set into a formal set – see the section on binary operators below – and there are functions provided for making an enumerated set out of an indexed set or a multiset (and vice versa).

By the limitation on their construction formal sets can only contain elements from one structure in MAGMA. The elements of enumerated sets are also restricted, in the sense that either some universe must be specified upon creation, or MAGMA must be able to find such universe automatically. The rules for compatibility of elements and the way MAGMA deals with these universes are the same for sequences and sets, and are described in the previous chapter. The restrictions on indexed sets are the same as those for enumerated sets.

9.1.6 Notation

Certain expressions appearing in the sections below (possibly with subscripts) have a standard interpretation:

- U the universe: any MAGMA structure;
- E the carrier set for enumerated sets: any enumerated structure (it must be possible to loop over its elements see the Introduction to this Part (Chapter 8));
- F the carrier set for formal sets: any structure for which membership testing using in is defined see the Introduction to this Part (Chapter 8));
- x a free variable which successively takes the elements of E (or F in the formal case) as its values;
- P a Boolean expression that usually involves the variable(s) x, x_1, \ldots, x_k ;
- e an expression that also usually involves the variable(s) x, x_1, \ldots, x_k .

9.2 Creating Sets

The customary braces $\{ \text{ and } \}$ are used to define enumerated sets. Formal sets are delimited by the composite braces $\{ ! \text{ and } ! \}$. For indexed sets $\{ @ \text{ and } @ \}$ are used. For multisets $\{ * \text{ and } * \}$ are used.

9.2.1 The Formal Set Constructor

The formal set constructor has the following fixed format (the expressions appearing in the construct are defined above):

 $\{! x in F | P(x) !\}$

Form the formal set consisting of the subset of elements x of F for which P(x) is true. If P(x) is true for every element of F, the set constructor may be abbreviated to $\{! \text{ x in } F !\}$. Note that the universe of a formal set will always be equal to the carrier set F.

9.2.2 The Enumerated Set Constructor

Enumerated sets can be constructed by expressions enclosed in braces, provided that the values of all expressions can be automatically coerced into some common structure, as outlined in the Introduction, (Chapter 8). All general constructors have an optional universe (U in the list below) up front, that allows the user to specify into which structure all terms of the sets should be coerced.

{ }

The null set: an empty set that does not have its universe defined.

{ U | }

The empty set with universe U.

 $\{ \mathsf{e}_1, \mathsf{e}_2, \ldots, \mathsf{e}_n \}$

Given a list of expressions e_1, \ldots, e_n , defining elements a_1, a_2, \ldots, a_n all belonging to (or automatically coercible into) a single algebraic structure U, create the set $\{a_1, a_2, \ldots, a_n\}$ of elements of U.

Example H9E1___

We create a set by listing its elements explicitly.

```
> S := { (7<sup>2</sup>+1)/5, (8<sup>2</sup>+1)/5, (9<sup>2</sup>-1)/5 };
> S;
{ 10, 13, 16 }
> Parent(S);
Set of subsets of Rational Field
```

Thus S was created as a set of rationals, because / on integers has a rational result. If one wishes to obtain a set of integers, one could specify the universe (or one could use div, or one could use ! on every element to coerce it into the ring of integers):

```
> T := { Integers() | (7<sup>2</sup>+1)/5, (8<sup>2</sup>+1)/5, (9<sup>2</sup>-1)/5 };
> T;
{ 10, 13, 16 }
> Parent(T);
Set of subsets of Integer Ring
```

 $\{ U \mid e_1, e_2, \ldots, e_n \}$

Given a list of expressions e_1, \ldots, e_n , which define elements a_1, a_2, \ldots, a_n that are all coercible into U, create the set $\{a_1, a_2, \ldots, a_n\}$ of elements of U.

$\{ e(x) : x in E | P(x) \}$

Form the set of elements e(x), all belonging to some common structure, for those $x \in E$ with the property that the predicate P(x) is true. The expressions appearing in this construct have the interpretation given in the Introduction (Chapter 8) (in particular, E must be a finite structure that can be enumerated).

If P(x) is true for every value of x in E, then the set constructor may be abbreviated to $\{ e(x) : x \text{ in } E \}$.

$$\{ U \mid e(x) : x in E \mid P(x) \}$$

Form the set of elements of U consisting of the values e(x) for those $x \in E$ for which the predicate P(x) is true (an error results if not all e(x) are coercible into U). The expressions appearing in this construct have the same interpretation as before. If P is always true, it may be omitted (including the |).

$\{ e(x_1, \ldots, x_k) : x_1 \text{ in } E_1, \ldots, x_k \text{ in } E_k \mid P(x_1, \ldots, x_k) \}$	{	$e(x_1,\ldots,x_k)$: X1	in E_1 ,	\ldots, \mathbf{x}_k	in E_k	$P(x_1,,$	\mathbf{x}_k) }
---	---	---------------------	------	------------	------------------------	----------	-----------	--------------------

The set consisting of those elements $e(x_1, \ldots, x_k)$, in some common structure, for which x_1, \ldots, x_k in E_1, \ldots, E_k have the property that $P(x_1, \ldots, x_k)$ is true. The expressions appearing in this construct have the interpretation given in the Introduction (Chapter 8).

Note that if two successive allowable structures E_i and E_{i+1} are identical, then the specification of the carrier sets for x_i and x_{i+1} may be abbreviated to \mathbf{x}_i , \mathbf{x}_{i+1} in \mathbf{E}_i .

Also, if $P(x_1, ..., x_k)$ is always true, it may be omitted (including the |).

{	U	$ e(x_1,\ldots,x_k)$: x ₁	in E_1 ,	, x_k in	$E_k \mid P(x_1,$	\ldots, \mathbf{x}_k)	}
---	---	-----------------------	------------------	------------	------------	-------------------	--------------------------	---

As in the previous entry, the set consisting of those elements $e(x_1, \ldots, x_k)$ for which $P(x_1, \ldots, x_k)$ is true, is formed, as a set of elements of U (an error occurs if not all $e(x_1, \ldots, x_k)$ are elements of or coercible into U).

Again, identical successive structures may be abbreviated, and a predicate that is always true may be omitted.

Example H9E2

Now that Fermat's last theorem may have been proven, it may be of interest to find integers that almost satisfy $x^n + y^n = z^n$. In this example we find all 2 < x, y, z < 1000 such that $x^3 + y^3 = z^3 + 1$. First we build a set of cubes, then two sets of pairs for which the sum of cubes differs from a cube by 1. Note that we build a set rather than a sequence of cubes because we only need fast membership testing. Also note that the resulting sets of pairs do not have their elements in the order in which they were found.

```
> cubes := { Integers() | x^3 : x in [1..1000] };
> plus := { <a, b> : a in [2..1000], b in [2..1000] | \
> b ge a and (a^3+b^3-1) in cubes };
> plus;
{
```

}

SETS

```
< 9, 10 >,
< 135, 235 >
< 334, 438 >,
< 73, 144 >,
< 64, 94 >,
< 244, 729 >
```

Note that we spend a lot of time cubing integers this way. For a more efficient approach, see a subsequent example.

9.2.3 The Indexed Set Constructor

The creation of indexed sets is similar to that of enumerated sets.

{0 0}

The null set: an empty indexed set that does not have its universe defined.

{@ U | @}

The empty indexed set with universe U.

 $\{ @ e_1, e_2, \ldots, e_n @ \}$

Given a list of expressions e_1, \ldots, e_n , defining elements a_1, a_2, \ldots, a_n all belonging to (or automatically coercible into) a single algebraic structure U, create the indexed set $Q = \{a_1, a_2, \ldots, a_n\}$ of elements of U.

$$\{ \texttt{Q} \ \texttt{U} \ | \ \texttt{e}_1, \ \texttt{e}_2, \ \ldots, \ \texttt{e}_m \ \texttt{Q} \}$$

Given a list of expressions e_1, \ldots, e_m , which define elements a_1, a_2, \ldots, a_n that are all coercible into U, create the indexed set $Q = \{a_1, a_2, \ldots, a_n\}$ of elements of U.

$$\{ @ e(x) : x in E | P(x) @ \}$$

Form the indexed set of elements e(x), all belonging to some common structure, for those $x \in E$ with the property that the predicate P(x) is true. The expressions appearing in this construct have the interpretation given in the Introduction (Chapter 8) (in particular, E must be a finite structure that can be enumerated).

If P is always true, it may be omitted (including the |).

$\{ @ U | e(x) : x in E | P(x) @ \}$

Form the indexed set of elements of U consisting of the values e(x) for those $x \in E$ for which the predicate P(x) is true (an error results if not all e(x) are coercible into U). The expressions appearing in this construct have the same interpretation as before.

If P is always true, it may be omitted (including the |).

The indexed set consisting of those elements $e(x_1, \ldots, x_k)$ (in some common structure), for which x_1, \ldots, x_k in $E_1 \times \ldots \times E_k$ have the property that $P(x_1, \ldots, x_k)$ is true. The expressions appearing in this construct have the interpretation given in the Introduction (Chapter 8).

Note that if two successive allowable structures E_i and E_{i+1} are identical, then the specification of the carrier sets for x_i and x_{i+1} may be abbreviated to \mathbf{x}_i , \mathbf{x}_{i+1} in \mathbf{E}_i .

Also, if $P(x_1, ..., x_k)$ is always true, it may be omitted.

 $\{ @ U | e(x_1, \ldots, x_k) : x_1 \text{ in } E_1, \ldots, x_k \text{ in } E_k | P(x_1, \ldots, x_k) @ \}$

As in the previous entry, the indexed set consisting of those elements $e(x_1, \ldots, x_k)$ for which $P(x_1, \ldots, x_k)$ is true is formed, as an indexed set of elements of U (an error occurs if not all $e(x_1, \ldots, x_k)$ are elements of or coercible into U).

Again, identical successive structures may be abbreviated, and a predicate that is always true may be omitted.

Example H9E3_

In the previous example we found pairs x, y such that $x^3 + y^3$ differs by one from some cube z^3 . Using indexed sets it is somewhat easier to retrieve the integer z as well. We give a small example. Note also that it is beneficial to know here that evaluation of expressions proceeds left to right.

```
> cubes := { @ Integers() | z<sup>3</sup> : z in [1..25] @};
> plus := { <x, y, z> : x in [-10..10], y in [-10..10], z in [1..25] |
> y ge x and Abs(x) gt 1 and Abs(y) gt 1 and (x<sup>3</sup>+y<sup>3</sup>-1) in cubes
> and (x<sup>3</sup>+y<sup>3</sup>-1) eq cubes[z] };
> plus;
{ <-6, 9, 8>, <9, 10, 12>, <-8, 9, 6> }
```

9.2.4 The Multiset Constructor

The creation of multisets is similar to that of enumerated sets. An important difference is that repetitions are significant and the operator ^^ (mentioned above) may be used to specify the multiplicity of an element.

{* *}

The null set: an empty multiset that does not have its universe defined.

{* U | *}

The empty multiset with universe U.

Ch. 9

SETS

 $\{* e_1, e_2, \ldots, e_n *\}$

Given a list of expressions e_1, \ldots, e_n , defining elements a_1, a_2, \ldots, a_n all belonging to (or automatically coercible into) a single algebraic structure U, create the multiset $Q = \{* a_1, a_2, \ldots, a_n *\}$ of elements of U.

 $\{* U \mid e_1, e_2, \ldots, e_m *\}$

Given a list of expressions e_1, \ldots, e_m , which define elements a_1, a_2, \ldots, a_n that are all coercible into U, create the multiset $Q = \{* a_1, a_2, \ldots, a_n *\}$ of elements of U.

$\{* e(x) : x in E | P(x) *\}$

Form the multiset of elements e(x), all belonging to some common structure, for those $x \in E$ with the property that the predicate P(x) is true. The expressions appearing in this construct have the interpretation given in the Introduction (Chapter 8) (in particular, E must be a finite structure that can be enumerated).

If P is always true, it may be omitted (including the |).

 $\{* U | e(x) : x in E | P(x) *\}$

Form the multiset of elements of U consisting of the values e(x) for those $x \in E$ for which the predicate P(x) is true (an error results if not all e(x) are coercible into U). The expressions appearing in this construct have the same interpretation as before.

If P is always true, it may be omitted (including the |).

 $\{* e(x_1,...,x_k) : x_1 \text{ in } E_1, ..., x_k \text{ in } E_k \mid P(x_1, ..., x_k) *\}$

The multiset consisting of those elements $e(x_1, \ldots, x_k)$ (in some common structure), for which x_1, \ldots, x_k in $E_1 \times \ldots \times E_k$ have the property that $P(x_1, \ldots, x_k)$ is true. The expressions appearing in this construct have the interpretation given in the Introduction (Chapter 8).

Note that if two successive allowable structures E_i and E_{i+1} are identical, then the specification of the carrier sets for x_i and x_{i+1} may be abbreviated to \mathbf{x}_i , \mathbf{x}_{i+1} in \mathbf{E}_i .

Also, if $P(x_1, ..., x_k)$ is always true, it may be omitted.

 $\{* U \mid e(x_1, \ldots, x_k) : x_1 \text{ in } E_1, \ldots, x_k \text{ in } E_k \mid P(x_1, \ldots, x_k)*\}$

As in the previous entry, the multiset consisting of those elements $e(x_1, \ldots, x_k)$ for which $P(x_1, \ldots, x_k)$ is true is formed, as an multiset of elements of U (an error occurs if not all $e(x_1, \ldots, x_k)$ are elements of or coercible into U).

Again, identical successive structures may be abbreviated, and a predicate that is always true may be omitted.

Example H9E4_

Here we demonstrate the use of the multiset constructors.

```
> M := {* 1, 1, 1, 3, 5 *};
> M;
\{* 1^{3}, 3, 5 *\}
> M := {* 1<sup>^4</sup>, 2<sup>^5</sup>, 1/2<sup>^3</sup> *};
> M;
> // Count frequency of digits in first 1000 digits of pi:
> pi := Pi(RealField(1001));
> dec1000 := Round(10^1000*(pi-3));
> I := IntegerToString(dec1000);
> F := {* I[i]: i in [1 .. #I] *};
> F;
{* 7<sup>^</sup>95, 3<sup>^</sup>102, 6<sup>^</sup>94, 2<sup>^</sup>103, 9<sup>^</sup>106, 5<sup>^</sup>97,
1^116, 8^101, 4^93, 0^93 *
> for i := 0 to 9 do i, Multiplicity(F, IntegerToString(i)); end for;
0 93
1 116
2 103
3 102
4 93
5 97
6 94
7 95
8 101
9 106
```

9.2.5 The Arithmetic Progression Constructors

Some special constructors exist to create and store enumerated sets of integers in arithmetic progression efficiently. This only works for arithmetic progressions of elements of the ring of integers.

The enumerated set whose elements form the arithmetic progression $i, i + 1, i + 2, \ldots, j$, where i and j are (expressions defining) integers. If j is less than i then the empty set will be created.

The only universe U that is legal here is the ring of integers.

Ch. 9

{	i	•	•	j	by	ł	κ }		
{	U	I	i	•	•	j	by	k	}

The enumerated set consisting of the integers forming the arithmetic progression $i, i + k, i + 2 * k, \ldots, j$, where i, j and k are (expressions defining) integers (but $k \neq 0$).

If k is positive then the last element in the progression will be the greatest integer of the form i + n * k that is less than or equal to j. If j is less than i, the empty set will be constructed.

If k is negative then the last element in the progression will be the least integer of the form i + n * k that is greater than or equal to j. If j is greater than i, the empty set will be constructed.

As for the previous constructor, only the ring of integers is allowed as a legal universe U.

Example H9E5_

It is possible to use the arithmetic progression constructors to save typing in the creation of 'arithmetic progressions' of elements of other structures than the ring of integers, but it should be kept in mind that the result will not be treated especially efficiently like the integer case. Here is the 'wrong' way, as well as two correct ways to create a set of 10 finite field elements.

```
> S := { FiniteField(13) | 1..10 };
Runtime error in { .. }: Invalid set universe
> S := { FiniteField(13) | x : x in { 1..10 } };
> S;
{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
> G := PowerSet(FiniteField(13));
> S := G ! { 1..10 };
> S;
{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
```

9.3 Power Sets

The PowerSet constructor returns a structure comprising the subsets of a given structure R; it is mainly useful as a parent for other set and sequence constructors. The only operations that are allowed on power sets are printing, testing element membership, and coercion into the power set (see the examples below).

PowerSet(R)

The structure comprising all enumerated subsets of structure R.

PowerIndexedSet(R)

The structure comprising all indexed subsets of structure R.

PowerMultiset(R)

The structure consisting of all submultisets of the structure R.

S in P

Returns true if enumerated set S is in the power set P, that is, if all elements of the set S are contained in or coercible into R, where P is the power set of R; false otherwise.

PowerFormalSet(R)

The structure comprising all formal subsets of structure R.

S in P

Returns true if indexed set S is in the power set P, that is, if all elements of the set S are contained in or coercible into R, where P is the power set of R; false otherwise.

S in P

Returns true if multiset S is in the power set P, that is, if all elements of the set S are contained in or coercible into R, where P is the power set of R; false otherwise.

P ! S

Return a set with universe R consisting of the elements of the set S, where P is the power set of R. An error results if not all elements of S can be coerced into R.

P ! S

Return an indexed set with universe R consisting of the elements of the set S, where P is the power set of R. An error results if not all elements of S can be coerced into R.

P ! S

Return an multiset with universe R consisting of the elements of the set S, where P is the power set of R. An error results if not all elements of S can be coerced into R.

Ch. 9

Example H9E6_

```
> S := { 1 .. 10 };
> P := PowerSet(S);
> P;
Set of subsets of { 1 .. 10 }
> F := { 6/3, 12/4 };
> F in P;
true
> G := P ! F;
> Parent(F);
Set of subsets of Rational Field
> Parent(G);
Set of subsets of { 1 .. 10 }
```

9.3.1 The Cartesian Product Constructors

Using car< > and CartesianProduct(), it is possible to create the Cartesian product of sets (or, in fact, of any combination of structures), but the result will be of type 'Cartesian product' rather than set, and the elements are tuples – we refer the reader to Chapter 11 for details.

9.4 Sets from Structures

Set(M)

Given a finite structure that allows explicit enumeration of its elements, return the set containing its elements (having M as its universe).

FormalSet(M)

Given a structure M, return the formal set consisting of its elements.

9.5 Accessing and Modifying Sets

Enumerated sets can be modified by inserting or removing elements. Indexed sets allow some sequence-like operators for modification and access.

9.5.1 Accessing Sets and their Associated Structures

#R

Cardinality of the enumerated, indexed, or multi- set R. Note that for a multiset, repetitions are significant, so the result may be greater than the underlying set.

Category(S)

Type(S)

The category of the object S. For a set this will be one of SetEnum, SetIndx, SetMulti, or SetFormal. For a power set the type is one of PowSetEnum, PowSetIndx, PowSetMulti.

Parent(R)

Returns the parent structure of R, that is, the structure consisting of all (enumerated) sequences over the universe of R.

Universe(R)

Returns the 'universe' of the (enumerated or indexed or multi- or formal) set R, that is, the common structure to which all elements of the set belong. An error is signalled when R is the null set.

Index(S, x)

Position(S, x)

Given an indexed set S, and an element x, returns the index i such that S[i] = x if such index exists, or return 0 if x is not in S. If x is not in the universe of S, an attempt will be made to coerce it; an error occurs if this fails.

S[i]

Return the *i*-th entry of indexed set S. If i < 1 or i > #S an error occurs. Note that indexing is *not* allowed on the left hand side.

S[I]

The indexed set $\{S[i_1], \ldots, S[i_r]\}$ consisting of terms selected from the indexed set S, according to the terms of the integer sequence I. If any term of I lies outside the range 1 to #S, then an error results. If I is the empty sequence, then the empty set with universe the same as that of S is returned.

176

Example H9E7_

We build an indexed set of sets to illustrate the use of the above functions.

```
> B := { @ { i : i in [1..k] } : k in [1..5] @};
> B;
{ @
   { 1 },
   \{1, 2\},\
   \{1, 2, 3\},\
   \{1, 2, 3, 4\},\
   \{1, 2, 3, 4, 5\},\
@}
> #B;
5
> Universe(B);
Set of subsets of Integer Ring
> Parent(B);
Set of indexed subsets of Set of subsets of Integer Ring
> Category(B);
\texttt{SetIndx}
> Index(B, { 2, 1});
2
> #B[2];
2
> Universe(B[2]);
Integer Ring
```

9.5.2 Selecting Elements of Sets

Most finite structures in MAGMA, including enumerated sets, allow one to obtain a random element using Random. There is an alternative (and often preferable) option for enumerated sets in the random{ } constructor. This makes it possible to choose a random element of the set without generating the whole set first.

Likewise, rep{ } is an alternative to the general Rep function returning a representative element of a structure, having the advantage of aborting the construction of the set as soon as one element has been found.

Here, E will again be an enumerable structure, that is, a structure that allows enumeration of its elements (see the Appendix for an exhaustive list).

Note that $random\{ e(x) : x \text{ in } E \mid P(x) \}$ does *not* return a random element of the set of values e(x), but rather a value of e(x) for a random x in E which satisfies P (and mutatis mutandis for rep).

See the subsection on Notation in the Introduction (Chapter 8) for conventions regarding e, x, E, P.

Random(R)

A random element chosen from the enumerated, indexed or multi- set R. Every element has an equal probability of being chosen for enumerated or indexed sets, and a weighted probability in proportion to its multiplicity for multisets. Successive invocations of the function will result in independently chosen elements being returned as the value of the function. If R is empty an error occurs.

random{ e(x) : x in E | P(x) }

Given an enumerated structure E and a Boolean expression P, return the value of the expression e(y) for a randomly chosen element y of E for which P(y) is true. P may be omitted if it is always true.

 $random\{e(x_1, ..., x_k) : x_1 in E_1, ..., x_k in E_k | P(x_1, ..., x_k)\}$

Given enumerated structures E_1, \ldots, E_k , and a Boolean expression $P(x_1, \ldots, x_k)$, return the value of the expression $e(y_1, \cdots, y_k)$ for a randomly chosen element $\langle y_1, \ldots, y_k \rangle$ of $E_1 \times \cdots \times E_k$, for which $P(y_1, \ldots, y_k)$ is true.

P may be omitted if it is always true.

If successive structures E_i and E_{i+1} are identical, then the abbreviation \mathbf{x}_i , \mathbf{x}_{i+1} in \mathbf{E}_i may be used.

Example H9E8_

Here are two ways to find a 'random' primitive element for a finite field.

```
> p := 10007;
> F := FiniteField(p);
> proots := { z : z in F | IsPrimitive(z) };
> #proots;
5002
> Random(proots);
5279
```

This way, a set of 5002 elements is built (and primitivity is checked for all elements of F), and a random choice is made. Alternatively, we use random.

```
> random{ x : x in F | IsPrimitive(x) };
4263
```

In this case random elements in F are chosen until one is found that is primitive. Since almost half of F's elements are primitive, only very few primitivity tests will be done before success occurs.

```
Representative(R)
Rep(R)
```

An arbitrary element chosen from the enumerated, indexed, or multi- set R.

ExtractRep(\sim R, \sim r)

Assigns an arbitrary element chosen from the enumerated set R to r, and removes it from R. Thus the set R is modified, as well as the element r. An error occurs if R is empty.

 $rep\{ e(x) : x in E | P(x) \}$

Given an enumerated structure E and a Boolean expression P, return the value of the expression $\mathbf{e}(\mathbf{y})$ for the first element y of E for which P(y) is true. If P(x) is false for every element of E, an error will occur.

rep{ $e(x_1, \ldots, x_k)$: x_1 in E_1, \ldots, x_k in $E_k | P(x_1, \ldots, x_k)$ }

Given enumerated structures E_1, \ldots, E_k , and a Boolean expression $P(x_1, \ldots, x_k)$, return the value of the expression $e(y_1, \cdots, y_k)$ for the first element $\langle y_1, \ldots, y_k \rangle$ of $E_1 \times \cdots \times E_k$, for which $P(y_1, \ldots, y_k)$ is true. An error occurs if no element of $E_1 \times \cdots \times E_k$ satisfies P.

P may be omitted if it is always true.

If successive structures E_i and E_{i+1} are identical, then the abbreviation \mathbf{x}_i , \mathbf{x}_{i+1} in \mathbf{E}_i may be used.

Example H9E9_

As an illustration of the use of ExtractRep, we modify an earlier example, and find cubes satisfying $x^3 + y^3 = z^3 - 1$ (with $x, y, z \le 1000$).

```
> cubes := { Integers() | x^3 : x in [1..1000] };
> cc := cubes;
> min := { };
> while not IsEmpty(cc) do
     ExtractRep(~cc, ~a);
>
     for b in cc do
>
        if a+b+1 in cubes then
>
>
           min join:= { <a, b> };
        end if;
>
>
     end for;
> end while;
> { < Iroot(x[1], 3), Iroot(x[2], 3) > : x in min };
{ <138, 135>, <823, 566>, <426, 372>, <242, 720>,
       <138, 71>, <426, 486>, <6, 8> }
```

Note that instead of taking cubes over again, we only have to take cube roots in the last line (on the small resulting set) once.

Minimum(S) Min(S)

Given a non-empty enumerated, indexed, or multi- set S, such that lt and eq are defined on the universe of S, this function returns the minimum of the elements of S. If S is an indexed set, the position of the minimum is also returned.

Maximum(S)

Max(S)

Given a non-empty enumerated, indexed, or multi- set S, such that lt and eq are defined on the universe of S, this function returns the maximum of the elements of S. If S is an indexed set, the position of the maximum is also returned.

Hash(x)

Given a Magma object x which can be placed in a set, return the hash value of x used by the set machinery. This is a fixed but arbitrary non-negative integer (whose maximum value is the maximum value of a C unsigned long on the particular machine). The crucial property is that if x and y are objects and x equals y then the hash values of x and y are equal (even if x and y have different internal structures). Thus one could implement sets manually if desired by the use of this function.

9.5.3 Modifying Sets

Include(\sim S, x)

Include(S, x)

Create the enumerated, indexed, or multi- set obtained by putting the element x in S (S is unchanged if S is not a multiset and x is already in S). If S is an indexed set, the element will be appended at the end. If S is a multiset, the multiplicity of x will be increased accordingly. If x is not in the universe of S, an attempt will be made to coerce it; an error occurs if this fails.

There are two versions of this: a procedure, where S is replaced by the new set, and a function, which returns the new set. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the set S will not be copied.

Exclude(\sim S, x)

Exclude(S, x)

Create a new set by removing the element x from S. If S is an enumerated set, nothing happens if x is not in S. If S is a multiset, the multiplicity of x will be decreased accordingly. If x is not in the universe of S, an attempt will be made to coerce it; an error occurs if this fails.

Ch. 9

SETS

There are two versions of this: a procedure, where S is replaced by the new set, and a function, which returns the new set. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the set S will not be copied.

ChangeUniverse(\sim S, V)

ChangeUniverse(S, V)

Given an enumerated, indexed, or multi- set S with universe U and a structure V which contains U, construct a new set of the same type which consists of the elements of S coerced into V.

There are two versions of this: a procedure, where S is replaced by the new set, and a function, which returns the new set. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the set S will not be copied.

CanChangeUniverse(S, V)

Given an enumerated, indexed, or multi- set S with universe U and a structure V which contains U, attempt to construct a new set T of the same type which consists of the elements of S coerced into V; if successful, return **true** and T, otherwise return **false**.

Example H9E10_

This example uses Include and Exclude to find a set (if it exists) of cubes of integers such that the elements of a given set R can be expressed as the sum of two of those.

```
> R := { 218, 271, 511 };
> x := 0;
> cubes := { 0 };
> while not IsEmpty(R) do
     x + := 1;
>
     c := x^3;
>
>
     Include(~cubes, c);
     Include(~cubes, -c);
>
>
     for z in cubes do
>
         Exclude(~R, z+c);
>
         Exclude(~R, z-c);
>
     end for;
> end while;
```

We did not record how the elements of R were obtained as sums of a pair of cubes. For that, the following suffices.

> R := { 218, 271, 511 }; // it has been emptied !
> { { x, y } : x, y in cubes | x+y in R };

```
{
    { -729, 1000 },
    { -125, 343 },
    { -1, 512 },
}
```

SetToIndexedSet(E)

Given an enumerated set E, this function returns an indexed set with the same elements (and universe) as E.

IndexedSetToSet(S)

Isetset(S)

Given an indexed set S, this function returns an enumerated set with the same elements (and universe) as E.

IndexedSetToSequence(S)

Isetseq(S)

Given an indexed set S, this function returns a sequence with the same elements (and universe) as E.

MultisetToSet(S)

Given a multiset S, this function returns an enumerated set with the same elements (and universe) as S.

SetToMultiset(E)

Given an enumerated set E, this function returns a multiset with the same elements (and universe) as E.

SequenceToMultiset(Q)

Given an enumerated sequence E, this function returns a multiset with the same elements (and universe) as E.

SETS

9.6 Operations on Sets

9.6.1 Boolean Functions and Operators

As explained in the Introduction (Chapter 8), when elements are taken out of a set their parent will be the universe of the set (or, if the universe is itself a set, the universe of the universe, etc.); in particular, the set itself is not the parent. Hence equality testing on set elements is in fact equality testing between two elements of certain algebraic structures, and the sets are irrelevant. We only list the (in)equality operator for convenience here.

Element membership testing is of critical importance for all types of sets.

Testing whether or not R is a subset of S can be done if R is an enumerated or indexed set and S is any set; hence (in)equality testing is only possible between sets that are not formal sets.

IsNull(R)

Returns true if and only if the enumerated, indexed, or multi- set R is empty and does not have its universe defined.

IsEmpty(R)

Returns true if and only if the enumerated, indexed or multi- set R is empty.

x eq y

Given an element x of a set R with universe U and an element y of a set S with universe V, where a common overstructure W can be found with $U \subset W \supset V$ (see the Introduction (Chapter 8) for details on overstructures), return **true** if and only if x and y are equal as elements of W.

x ne y

Given an element x of a set R with universe U and an element y of a set S with universe V, where a common overstructure W can be found with $U \subset W \supset V$ (see the Introduction (Chapter 8) for details on overstructures), return **true** if and only if x and y are distinct as elements of W.

x in R

Returns true if and only if the element x is a member of the set R. If x is not an element of the universe U of R, it is attempted to coerce x into U; if this fails, an error occurs.

x notin R

Returns true if and only if the element x is not a member of the set R. If x is not an element of the parent structure U of R, it is attempted to coerce x into U; if this fails, an error occurs.

R subset S

Returns true if the enumerated, indexed or multi- set R is a subset of the set S, false otherwise. For multisets, if an element x of R has multiplicity n in R, the multiplicity of x in S must be at least n. Coercion of the elements of R into S is attempted if necessary, and an error occurs if this fails.

R notsubset S

Returns true if the enumerated, indexed, or multi- set R is a not a subset of the set S, false otherwise. Coercion of the elements of R into S is attempted if necessary, and an error occurs if this fails.

R eq S

Returns true if and only if R and S are identical sets, where R and S are enumerated, indexed or multi- sets For indexed sets, the index function is irrelevant for deciding equality. For multisets, matching multiplicities must also be equal. Coercion of the elements of R into S is attempted if necessary, and an error occurs if this fails.

R ne S

Returns true if and only if R and S are distinct sets, where R and S are enumerated indexed, or multi- sets. For indexed sets, the index function is irrelevant for deciding equality. For multisets, matching multiplicities must also be equal. Coercion of the elements of R into S is attempted if necessary, and an error occurs if this fails.

IsDisjoint(R, S)

Returns true iff the enumerated, indexed or multi- sets R and S are disjoint. Coercion of the elements of R into S is attempted if necessary, and an error occurs if this fails.

9.6.2 Binary Set Operators

For each of the following operators, R and S are sets of the same type. If R and S are both formal sets, then an error will occur unless both have been constructed with the same carrier structure F in the definition. If R and S are both enumerated, indexed, or multisets, then an error occurs unless the universes of R and S are compatible, as defined in the Introduction to this Part (Chapter 8).

Note that

```
Q := \{ ! x in R ! \}
```

converts an enumerated set R into a formal set Q.

R join S

Union of the sets R and S (see above for the restrictions on R and S). For multisets, matching multiplicities are added in the union.

Ch. 9

SETS

R meet S

Intersection of the sets R and S (see above for the restrictions on R and S). For multisets, the minimum of matching multiplicities is stored in the intersection.

R diff S

Difference of the sets R and S. i.e., the set consisting of those elements of R which are not members of S (see above for the restrictions on R and S). For multisets, the difference contains any elements of R remaining after removing the corresponding elements of S the appropriate number of times.

R sdiff S

Symmetric difference of the sets R and S. i.e., the set consisting of those elements which are members of either R or S but not both (see above for the restrictions on R and S). Alternatively, it is the union of the difference of R with S and the difference of S with R.

Example H9E11_

```
> R := { 1, 2, 3 };
> S := { 1, 1/2, 1/3 };
> R join S;
{ 1/3, 1/2, 1, 2, 3 }
> R meet S;
{ 1 }
> R diff S;
{ 2, 3 }
> S diff R;
{ 1/3, 1/2 }
> R sdiff S;
{ 1/3, 1/2 }
```

9.6.3 Other Set Operations

Multiplicity(S, x)

Return the multiplicity in multiset S of element x. If x is not in S, zero is returned.

Multiplicities(S)

Returns the sequence of multiplicities of distinct elements in the multiset S. The order is the same as the internal enumeration order of the elements.

Subsets(S)

The set of all subsets of S.

Subsets(S, k)

The set of subsets of S of size k. If k is larger than the cardinality of S then the result will be empty.

RandomSubset(S, k)

A random subset of S of size k. It is an error if k is larger than the size of S.

Multisets(S, k)

The set of multisets consisting of k not necessarily distinct elements of S.

Subsequences(S, k)

The set of sequences of length k with elements from S.

Permutations(S)

The set of permutations (stored as sequences) of the elements of S.

Permutations(S, k)

The set of permutations (stored as sequences) of each of the subsets of S of cardinality k.

9.7 Quantifiers

To test whether some enumerated set is empty or not, one may use the IsEmpty function. However, to use IsEmpty, the set has to be created in full first. The existential quantifier exists enables one to do the test and abort the construction of the set as soon as an element is found; moreover, the element found will be assigned to a variable.

Likewise, forall enables one to abort the construction of the set as soon as an element not satisfying a certain property is encountered.

Note that $exists(t) \{ e(x) : x \text{ in } E \mid P(x) \}$ is *not* designed to return true if an element of the set of values e(x) satisfies P, but rather if there is an $x \in E$ satisfying P(x) (in which case e(x) is assigned to t).

For the notation used here, see the beginning of this chapter.

$exists(t) \{ e(x):$	x in E F	P(x) }	
exists(t $_1$,, t	$_{r})\{ e(x) :$	x in E	P(x) }

Given an enumerated structure E and a Boolean expression P(x), the Boolean value true is returned if E contains at least one element x for which P(x) is true. If P(x) is not true for any element x of E, then the Boolean value false is returned.

Moreover, if P(x) is found to be true for the element y, say, of E, then in the first form of the exists expression, variable t will be assigned the value of the expression e(y). If P(x) is never true for an element of E, t will be left unassigned. In the second form, where r variables t_1, \ldots, t_r are given, the result e(y) should be a tuple of length r; each variable will then be assigned to the corresponding component of

SETS

the tuple. Similarly, all the variables will be left unassigned if P(x) is never true. The clause (t) may be omitted entirely.

P may be omitted if it is always true.

$\texttt{exists(t)}\{\texttt{e(x}_1, \ \ldots, \ \texttt{x}_k):$	$x_1 \text{ in } E_1, \dots, x_k \text{ in } E_k \mid P(x_1, \dots, x_k) \}$
$\texttt{exists}(\texttt{t}_1, \ \dots, \ \texttt{t}_r) \big\{ \ \texttt{e}(\texttt{x}_1,$, x_k) : x_1 in E_1 ,, x_k in $E_k \mid P$ }

Given enumerated structures E_1, \ldots, E_k , and a Boolean expression $P(x_1, \ldots, x_k)$, the Boolean value true is returned if there is an element $\langle y_1, \ldots, y_k \rangle$ in the Cartesian product $E_1 \times \cdots \times E_k$, such that $P(y_1, \ldots, y_k)$ is true. If $P(x_1, \ldots, x_k)$ is not true for any element (y_1, \ldots, y_k) of $E_1 \times \cdots \times E_k$, then the Boolean value false is returned.

Moreover, if $P(x_1, \ldots, x_k)$ is found to be true for the element $\langle y_1, \ldots, y_k \rangle$ of $E_1 \times \cdots \times E_k$, then in the first form of the exists expression, the variable t will be assigned the value of the expression $e(y_1, \cdots, y_k)$. If $P(x_1, \ldots, x_k)$ is never true for an element of $E_1 \times \cdots \times E_k$, then the variable t will be left unassigned. In the second form, where r variables t_1, \ldots, t_r are given, the result $e(y_1, \cdots, y_k)$ should be a tuple of length r; each variable will then be assigned to the corresponding component of the tuple. Similarly, all the variables will be left unassigned if $P(x_1, \ldots, x_k)$ is never true. The clause (t) may be omitted entirely.

P may be omitted if it is always true.

If successive structures E_i and E_{i+1} are identical, then the abbreviation \mathbf{x}_i , \mathbf{x}_{i+1} in \mathbf{E}_i may be used.

Example H9E12_

As a variation on an earlier example, we check whether or not some integers can be written as sums of cubes (less than 10^3 in absolute value):

```
> exists(t){ <x, y> : x, y in [ t^3 : t in [-10..10] ] | x + y eq 218 };
true
> t;
<-125, 343>
> exists(t){ <x, y> : x, y in [ t^3 : t in [1..10] ] | x + y eq 218 };
false
> t;
>> t;
```

User error: Identifier 't' has not been declared

$forall(t){$	e(x)	: x	in E	Ι	P(x)	}	
forall(t_1 ,	,	$t_r){}$	e(x)	:	x in	E	P(x) }

Given an enumerated structure E and a Boolean expression P(x), the Boolean value true is returned if P(x) is true for every element x of E.

If P(x) is not true for at least one element x of E, then the Boolean value false is returned.

Moreover, if P(x) is found to be false for the element y, say, of E, then in the first form of the exists expression, variable t will be assigned the value of the expression e(y). If P(x) is true for every element of E, t will be left unassigned. In the second form, where r variables t_1, \ldots, t_r are given, the result e(y) should be a tuple of length r; each variable will then be assigned to the corresponding component of the tuple. Similarly, all the variables will be left unassigned if P(x) is always true. The clause (t) may be omitted entirely.

P may be omitted if it is always true.

forall(t) $\{e(x_1, \ldots, x_k):$	\mathtt{x}_1 in \mathtt{E}_1 ,, \mathtt{x}_k in \mathtt{E}_k	$ P(x_1,, x_k) \}$
forall(t_1 ,, t_r){ e(x_1 ,	\ldots , x _k) : x ₁ in E ₁ , \ldots	, x_k in E_k P }

Given sets E_1, \ldots, E_k , and a Boolean expression $P(x_1, \ldots, x_k)$, the Boolean value true is returned if $P(x_1, \ldots, x_k)$ is true for every element (x_1, \ldots, x_k) in the Cartesian product $E_1 \times \cdots \times E_k$.

If $P(x_1, \ldots, x_k)$ fails to be true for some element (y_1, \ldots, y_k) of $E_1 \times \cdots \times E_k$, then the Boolean value false is returned.

Moreover, if $P(x_1, \ldots, x_k)$ is false for the element $\langle y_1, \ldots, y_k \rangle$ of $E_1 \times \cdots \times E_k$, then in the first form of the exists expression, the variable t will be assigned the value of the expression $e(y_1, \cdots, y_k)$. If $P(x_1, \ldots, x_k)$ is true for every element of $E_1 \times \cdots \times E_k$, then the variable t will be left unassigned. In the second form, where r variables t_1, \ldots, t_r are given, the result $e(y_1, \cdots, y_k)$ should be a tuple of length r; each variable will then be assigned to the corresponding component of the tuple. Similarly, all the variables will be left unassigned if $P(x_1, \ldots, x_k)$ is never true. The clause (t) may be omitted entirely.

P may be omitted if it is always true.

If successive structures E_i and E_{i+1} are identical, then the abbreviation \mathbf{x}_i , \mathbf{x}_{i+1} in \mathbf{E}_i may be used.

Example H9E13.

This example shows that forall and exists may be nested.

It is well known that every prime that is 1 modulo 4 can be written as the sum of two squares, but not every integer m congruent to 1 modulo 4 can. In this example we explore for small m whether perhaps $m \pm \epsilon$ (with $|\epsilon| \le 1$) is always a sum of squares.

```
> forall(u){ m : m in [5..1000 by 4] |
> exists{ <x, y, z> : x, y in [0..30], z in [-1, 0, 1] |
> x<sup>2</sup>+y<sup>2</sup>+z eq m } };
```

false > u; 77

9.8 Reduction and Iteration over Sets

Both enumerated and indexed sets allow enumeration of their elements; formal sets do not. For indexed sets the enumeration will occur according to the order given by the indexing.

Instead of using a loop to apply the same binary associative operator to all elements of an enumerated or indexed set, it is in certain cases possible to use the *reduction operator* &.

x in S

Enumerate the elements of an enumerated or indexed set S. This can be used in *loops*, as well as in the set and sequence *constructors*.

&o S

Given an enumerated or indexed set $S = \{a_1, a_2, \ldots, a_n\}$ of elements belonging to an algebraic structure U, and an (associative) operator $\circ : U \times U \to U$, form the element $a_{i_1} \circ a_{i_2} \circ a_{i_3} \circ \ldots \circ a_{i_n}$, for some permutation i_1, \ldots, i_n of $1, \ldots, n$.

Currently, the following operators may be used to reduce enumerated sets: +, *, and, or, join, meet and +, *, and, or to reduce indexed sets. An error will occur if the operator is not defined on U.

If S contains a single element a, then the value returned is a. If S is the null set (empty and no universe specified) or S is empty with universe U (and the operation is defined in U), then the result (or error) depends on the operation and upon U. The following table defines the return value:

	empty	null
&+	$U \ ! \ 0$	error
&*	$U \ ! \ 1$	error
∧	true	true
∨	false	false
&join	empty	null
&meet	error	error

Warning: since the reduction may take place in an arbitrary order on the arguments a_1, \ldots, a_n , the result is not unambiguously defined if the operation is not commutative on the arguments!

Example H9E14_____

The function **choose** defined below takes a set S and an integer k as input, and produces a set of all subsets of S with cardinality k.

```
> function choose(S, k)
     if k eq 0 then
>
        return { { } };
>
>
     else
        return & join { s join { x } : s in choose(S diff { x}, k-1) } : x in S};
>
     end if;
>
> end function;
So, for example:
> S := { 1, 2, 3, 4 };
> choose(S, 2);
{
       \{1, 3\},\
       \{1, 4\},\
       \{2, 4\},\
       \{2, 3\},\
       \{1, 2\},\
       { 3, 4 }
}
Try to guess what happens if k < 0.
```

10 SEQUENCES

10.1 Introduction	193
10.1.1 Enumerated Sequences	193
10.1.2 Formal Sequences	193
10.1.3 Compatibility	194
10.2 Creating Sequences	194
10.2.1 The Formal Sequence Constructor .	194
[! x in F P(x) !] 10.2.2 The Enumerated Sequence Construct	194
10.2.2 The Enumerated Sequence Construction	
[]	195
[0]	$195 \\ 195$
$[e_1, e_2, \ldots, e_n]$	$195 \\ 195$
$[U e_1, e_2, \dots, e_m]$	195
[e(x) : x in E P(x)]	195
[U e(x) : x in E P(x)]	195
$[e(x_1,,x_k) : x_1 in E_1,, x_k]$	
in $E_k P(x_1,, x_k)]$	195
$[U e(x_1, \ldots, x_k) : x_1 \text{ in } E_1, \ldots,$	
\mathtt{x}_k in \mathtt{E}_k P(\mathtt{x}_1 ,, \mathtt{x}_k)]	196
10.2.3 The Arithmetic Progression Construct	<i>c</i> -
tors	196
[ij]	196
[U ij]	196
[i jbyk]	196
[U i jbyk]	196
10.2.4 Literal Sequences	197
$[m_1, \ldots, m_n]$	197
10.3 Power Sequences	197
PowerSequence(R)	197
in	197
!	197
10.4 Operators on Sequences	198
$10.4.1 Access Functions \dots \dots \dots \dots$	198
#	198
Parent(S)	198
Universe(S)	198
S[i]	198
10.4.2 Selection Operators on Enumerate Sequences	d 199
S[I]	199
Minimum(S)	199
Min(S)	199
Maximum(S)	199
Max(S)	199
<pre>Index(S, x)</pre>	199
<pre>Index(S, x, f)</pre>	199
Position(S, x)	199

Position(S, x, f)	199
Representative(R)	199
Rep(R)	199
Random(R)	200
Explode(R)	200
-	200
Eltseq(R)	200
10.4.3 Modifying Enumerated Sequences .	200
Append(\sim S, x)	200
Append(S, x)	200
Exclude(\sim S, x)	200
Exclude(S, x)	200
Include(\sim S, x)	201
Include(S, x)	201
Insert(\sim S, i, x)	201
Insert(S, i, x)	201
Insert(\sim S, k, m, T)	201
Insert(S, k, m, T)	201
$Prune(\sim S)$	201
Prune(S)	202
Remove(~S, i)	202
Remove(S, i)	202
Reverse(\sim S)	202
Reverse(S)	202
Rotate(\sim S, p)	202
Rotate(S, p)	202
$Sort(\sim S)$	203
Sort(S)	203
Sort(\sim S, C)	203
Sort(\sim S, C, \sim p)	203
Sort(S, C)	203
ParallelSort(\sim S, \sim T)	203
Undefine(\sim S, i)	203
Undefine(S, i)	203
ChangeUniverse(S, V)	204
ChangeUniverse(S, V)	204
CanChangeUniverse(S, V)	204
10.4.4 Creating New Enumerated Sequence	es
from Existing Ones	205
-	205
cat	$205 \\ 205$
cat:=	
Partition(S, p)	205
Partition(S, P)	206
Setseq(S)	206
SetToSequence(S)	206
Seqset(S)	206
SequenceToSet(S)	206
And(S, T)	207
And $(\sim S, T)$	207
Or(S, T)	207
$Or(\sim S, T)$	207
Xor(S, T)	207
$Xor(\sim S, T)$	207
Not(S)	207
$Not(\sim S)$	207

10.5 Predicates on Sequences	208
IsComplete(S)	208
<pre>IsDefined(S, i)</pre>	208
IsEmpty(S)	208
IsNull(S)	208
10.5.1~Membership~Testing	208
in	208
notin	208
IsSubsequence(S, T)	209
<pre>IsSubsequence(S, T: Kind := o)</pre>	209
eq	209
ne	209
10.5.2~Testing~Order~Relations	209
lt	209
le	209

ge gt	$\begin{array}{c} 210 \\ 210 \end{array}$
10.6 Recursion, Reduction, and Iteration	- 210
10.6.1 Recursion	
Self(n) Self()	$\begin{array}{c} 210\\ 210 \end{array}$
10.6.2 Reduction	211
&	211
10.7 Iteration	211
for x in S do st ; end for;	211
10.8 Bibliography	212

Chapter 10 SEQUENCES

10.1 Introduction

A sequence in MAGMA is a linearly ordered collection of objects belonging to some common structure (called the *universe* of the sequence).

There are two types of sequence: enumerated sequences, of which the elements are all stored explicitly (with one exception, see below); and formal sequences, of which elements are stored implicitly by means of a predicate that allows for testing membership. In particular, enumerated sequences are always finite, and formal sequences are allowed to be infinite. In this chapter a sequence will be either a formal or an enumerated sequence.

10.1.1 Enumerated Sequences

An enumerated sequence of length l is an array of indefinite length of which only finitely many terms – including the l-th term, but no term of bigger index — have been defined to be elements of some common structure. Such sequence is called *complete* if all of the terms (from index 1 up to the length l) are defined.

In practice the length of an enumerated sequence must be less than 2^{30} .

Incomplete enumerated sequences are allowed as a convenience for the programmer in building complete enumerated sequences. Some sequence functions require their arguments to be complete; if that is the case, it is mentioned explicitly in the description below. However, all functions using sequences in *other* MAGMA modules always assume that a sequence that is passed in as an argument is complete. Note that the following line converts a possibly incomplete sequence S into a complete sequence T:

T := [s : s in S];

because the enumeration using the in operator simply ignores undefined terms.

Enumerated sequences of Booleans are highly optimized (stored as bit-vectors).

10.1.2 Formal Sequences

A formal sequence consists of elements of some range set on which a certain predicate assumes the value 'true'.

There is only a very limited number of operations that can be performed on them.

10.1.3 Compatibility

The binary operators for sequences do not allow mixing of the formal and enumerated sequence types (so one cannot take the concatenation of an enumerated sequence and a formal sequence, for example); but it is easy to convert an enumerated sequence into a formal sequence – see the section on binary operators below.

By the limitation on their construction formal sequences can only contain elements from one structure in MAGMA. The elements of enumerated sequences are also restricted, in the sense that either some common structure must be specified upon creation, or MAGMA must be able to find such universe automatically. The rules for compatibility of elements and the way MAGMA deals with these parents is the same for sequences and sets, and is outlined in Chapter 8.

10.2 Creating Sequences

Square brackets are used for the definition of enumerated sequences; formal sequences are delimited by the composite brackets [! and !].

Certain expressions appearing below (possibly with subscripts) have the standard interpretation:

- U the universe: any MAGMA structure;
- E the range set for enumerated sequences: any enumerated structure (it must be possible to loop over its elements see the Introduction to this Part);
- F the range set for formal sequences: any structure for which membership testing using in is defined see the Introduction to this Part);
- x a free variable which successively takes the elements of E (or F in the formal case) as its values;
- P a Boolean expression that usually involves the variable(s) x, x_1, \ldots, x_k ;
- e an expression that also usually involves the variable(s) x, x_1, \ldots, x_k .

10.2.1 The Formal Sequence Constructor

The formal sequence constructor has the following fixed format (the expressions appearing in the construct are defined above):

[! x in F | P(x) !]

Create the formal sequence consisting of the subsequence of elements x of F for which P(x) is true. If P(x) is true for every element of F, the sequence constructor may be abbreviated to [! x in F !]

Ch. 10

10.2.2 The Enumerated Sequence Constructor

Sequences can be constructed by expressions enclosed in square brackets, provided that the values of all expressions can be automatically coerced into some common structure, as outlined in the Introduction. All general constructors have the universe U optionally up front, which allows the user to specify into which structure all terms of the sequences should be coerced.

[]

The null sequence (empty, and no universe specified).

[U]]

The empty sequence with universe U.

[
$$e_1$$
, e_2 , ..., e_n]

Given a list of expressions e_1, \ldots, e_n , defining elements a_1, a_2, \ldots, a_n all belonging to (or automatically coercible into) a single algebraic structure U, create the sequence $Q = [a_1, a_2, \ldots, a_n]$ of elements of U.

As for multisets, one may use the expression x^n to specify the object x with multiplicity n: this is simply interpreted to mean x repeated n times (i.e., no internal compaction of the repetition is done).

[U | e_1 , e_2 , ..., e_m]

Given a list of expressions e_1, \ldots, e_m , which define elements a_1, a_2, \ldots, a_n that are all coercible into U, create the sequence $Q = [a_1, a_2, \ldots, a_n]$ of elements of U.

[e(x) : x in E | P(x)]

Form the sequence of elements e(x), all belonging to some common structure, for those $x \in E$ with the property that the predicate P(x) is true. The expressions appearing in this construct have the interpretation given at the beginning of this section.

If P(x) is true for every element of E, the sequence constructor may be abbreviated to [e(x) : x in E].

Form the sequence of elements of U consisting of the values e(x) for those $x \in E$ for which the predicate P(x) is true (an error results if not all e(x) are coercible into U). The expressions appearing in this construct have the same interpretation as above.

$$[e(x_1,...,x_k) : x_1 \text{ in } E_1, ..., x_k \text{ in } E_k | P(x_1, ..., x_k)]$$

The sequence consisting of those elements $e(x_1, \ldots, x_k)$, in some common structure, for which x_1, \ldots, x_k in E_1, \ldots, E_k have the property that $P(x_1, \ldots, x_k)$ is true.

The expressions appearing in this construct have the interpretation given at the beginning of this section.

Note that if two successive ranges E_i and E_{i+1} are identical, then the specification of the ranges for x_i and x_{i+1} may be abbreviated to \mathbf{x}_i , \mathbf{x}_{i+1} in \mathbf{E}_i .

Also, if $P(x_1, ..., x_k)$ is always true, it may be omitted.

[U | $e(x_1, \ldots, x_k)$: x_1 in E_1 , ..., x_k in E_k | $P(x_1, \ldots, x_k)$]

As in the previous entry, the sequence consisting of those elements $e(x_1, \ldots, x_k)$ for which $P(x_1, \ldots, x_k)$ is true is formed, as a sequence of elements of U (an error occurs if not all $e(x_1, \ldots, x_k)$ are coercible into U).

10.2.3 The Arithmetic Progression Constructors

Since enumerated sequences of integers arise so often, there are a few special constructors to create and handle them efficiently in case the entries are in arithmetic progression. The universe must be the ring of integers. Some effort is made to preserve the special way of storing arithmetic progressions under sequence operations.

The enumerated sequence of integers whose elements form the arithmetic progression i, i + 1, i + 2, ..., j, where i and j are (expressions defining) arbitrary integers. If j is less than i then the empty sequence of integers will be created.

The universe U, if it is specified, has to be the ring of integers; any other universe will lead to an error.

The enumerated sequence consisting of the integers forming the arithmetic progression i, i + k, i + 2 * k, ..., j, where i, j and k are (expressions defining) arbitrary integers (but $k \neq 0$).

If k is positive then the last element in the progression will be the greatest integer of the form i + n * k that is less than or equal to j; if j is less than i, the empty sequence of integers will be constructed.

If k is negative then the last element in the progression will be the least integer of the form i + n * k that is greater than or equal to j; if j is greater than i, the empty sequence of integers will be constructed.

The universe U, if it is specified, has to be the ring of integers; any other universe will lead to an error.

Example H10E1_

As in the case of sets, it is possible to use the arithmetic progression constructors to save some typing in the creation of sequences of elements of rings other than the ring of integers, but the result will not be treated especially efficiently.

> s := [IntegerRing(200) | x : x in [25..125]];

Ch. 10

SEQUENCES

10.2.4 Literal Sequences

A literal sequence is an enumerated sequence all of whose terms are from the same structure and all of these are 'typed in' literally. The sole purpose of literal sequences is to load certain enumerated sequences very fast and very space-efficiently; this is only useful when reading in very large sequences (all of whose elements must have been specified literally, that is, not as some expression other than a literal), but then it may save a lot of time. The result will be an enumerated sequence, that is, not distinguished in any way from other such sequences.

At present, only literal sequences of integers are supported.

\[m_1 , ..., m_n]

Given a succession of literal integers m_1, \ldots, m_n , build the enumerated sequence $[m_1, \ldots, m_n]$, in a time and space efficient way.

10.3 Power Sequences

The PowerSequence constructor returns a structure comprising the enumerated sequences of a given structure R; it is mainly useful as a parent for other set and sequence constructors. The only operations that are allowed on power sequences are printing, testing element membership, and coercion into the power sequence (see the examples below).

PowerSequence(R)

The structure comprising all enumerated sequences of elements of structure R. If R itself is a sequence (or set) then the power structure of its universe is returned.

S in P

Returns true if enumerated sequence S is in the power sequence P, that is, if all elements of the sequence S are contained in or coercible into R, where P is the power sequence of R; false otherwise.

P ! S

Return a sequence with universe R consisting of the entries of the enumerated sequence S, where P is the power sequence of R. An error results if not all elements of S can be coerced into R.

Example H10E2_

```
> S := [ 1 .. 10 ];
> P := PowerSequence(S);
> P;
Set of sequences over [ 1 .. 10 ]
> F := [ 6/3, 12/4 ];
> F in P;
true
> G := P ! F;
```

197

> Parent(F); Set of sequences over Rational Field > Parent(G); Set of sequences over [1 .. 10]

10.4 Operators on Sequences

This section lists functions for obtaining information about existing sequences, for modifying sequences and for creating sequences from others. Most of these operators only apply to enumerated sequences.

10.4.1 Access Functions

#S

Returns the length of the enumerated sequence S, which is the index of the last term of S whose value is defined. The length of the empty sequence is zero.

Parent(S)

Returns the parent structure for a sequence S, that is, the structure consisting of all (enumerated) sequences over the universe of S.

Universe(S)

Returns the 'universe' of the sequence S, that is, the common structure to which all elements of the sequence belong. This universe may itself be a set or sequence. An error is signalled when S is the null sequence.

S[i]

The *i*-th term s_i of the sequence S. If $i \leq 0$, or i > #S + 1, or S[i] is not defined, then an error results. Here *i* is allowed to be a multi-index (see Introduction for the interpretation). This can be used as the left hand side of an assignment: S[i]:= x redefines the *i*-th term of the sequence S to be x. If $i \leq 0$, then an error results. If i > n, then the sequence $[s_1, \ldots, s_n, s_{n+1}, \ldots, s_{i-1}, x]$ replaces S, where s_{n+1}, \ldots, s_{i-1} are all undefined. Here *i* is allowed to be a multi-index.

An error occurs if x cannot be coerced into the universe of S.

Ch. 10

SEQUENCES

10.4.2 Selection Operators on Enumerated Sequences

Here, S denotes an enumerated sequence $[s_1, \ldots, s_n]$. Further, i and j are integers or multi-indices (see Introduction).

S[I]

The sequence $[s_{i_1}, \ldots, s_{i_r}]$ consisting of terms selected from the sequence S, according to the terms of the integer sequence I. If any term of I lies outside the range 1 to #S, then an error results. If I is the empty sequence, then the empty set with universe the same as that of S is returned.

The effect of T := S[I] differs from that of T := [S[i] : i in I]: if in the first case an undefined entry occurs for $i \in I$ between 1 and #S it will be copied over; in the second such undefined entries will lead to an error.

|--|

Min(S)

Given a non-empty, complete enumerated sequence S such that lt and eq are defined on the universe of S, this function returns two values: a minimal element s in S, as well as the first position i such that s = S[i].

Maximum(S)

Max(S)

Given a non-empty, complete enumerated sequence S such that gt and eq are defined on the universe of S, this function returns two values: a maximal element s in S, as well as the first position i such that s = S[i].

<pre>Index(S, x)</pre>		
<pre>Index(S, x,</pre>	f)	
Position(S,	x)	
Position(S,	x,	f)

Returns either the position of the first occurrence of x in the sequence S, or zero if S does not contain x. The second variants of each function starts the search at position f. This can save time in second (and subsequent) searches for the same entry further on. If no occurrence of x in S from position f onwards is found, then zero is returned.

Representative(R)

Rep(R)

An (arbitrary) element chosen from the enumerated sequence R

199

A random element chosen from the enumerated sequence R. Every element has an equal probability of being chosen. Successive invocations of the function will result in independently chosen elements being returned as the value of the function. If R is empty an error occurs.

Explode(R)

Given an enumerated sequence R of length r this function returns the r entries of the sequence (in order).

Eltseq(R)

The enumerated sequence R itself. This function is just included for completeness.

10.4.3 Modifying Enumerated Sequences

The operations given here are available as both procedures and functions. In the procedure version, the given sequence is destructively modified 'in place'. This is very efficient, since it is not necessary to make a copy of the sequence. In the function version, the given sequence is not changed, but a modified version of it is returned. This is more suitable if the old sequence is still required. Some of the functions also return useful but non-obvious values.

Here, S denotes an enumerated sequence, and x an element of some structure V. The modifications involving S and x will only be successful if x can be coerced into the universe of S; an error occurs if this fails. (See the Introduction to this Part).

Append(\sim S, x)

Append(S, x)

Create an enumerated sequence by adding the object x to the end of S, i.e., the enumerated sequence $[s_1, \ldots s_n, x]$.

There are two versions of this: a procedure, where S is replaced by the appended sequence, and a function, which returns the new sequence. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the sequence S will not be copied.

Exclude(\sim S, x) Exclude(S, x)

Create an enumerated sequence obtained by removing the first occurrence of the object x from S, i.e., the sequence $[s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n]$, where s_i is the first term of S that is equal to x. If x is not in S then this is just S.

There are two versions of this: a procedure, where S is replaced by the new sequence, and a function, which returns the new sequence. The procedural version takes a reference $\sim S$ to S as an argument.

Ch. 10

SEQUENCES

Note that the procedural version is much more efficient since the sequence S will not be copied.

Include(~S, x)
Include(S, x)

Create a sequence by adding the object x to the end of S, provided that no term of S is equal to x. Thus, if x does not occur in S, the enumerated sequence $[s_1, \ldots, s_n, x]$ is created.

There are two versions of this: a procedure, where S is replaced by the new sequence, and a function, which returns the new sequence. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the sequence S will not be copied.

Insert(~S, i, x)

Insert(S, i, x)

Create the sequence formed by inserting the object x at position i in S and moving the terms $S[i], \ldots, S[n]$ down one place, i.e., the enumerated sequence $[s_1, \ldots, s_{i-1}, x, s_i, \ldots, s_n]$. Note that i may be bigger than the length n of S, in which case the new length of S will be i, and the entries $S[n+1], \ldots, S[i-1]$ will be undefined.

There are two versions of this: a procedure, where S is replaced by the new sequence, and a function, which returns the new sequence. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the sequence S will not be copied.

Insert(\sim S, k, m, T)

Insert(S, k, m, T)

Create the sequence $[s_1, \ldots, s_{k-1}, t_1, \ldots, t_l, s_{m+1}, \ldots, s_n]$. If $k \leq 0$ or k > m + 1, then an error results. If k = m + 1 then the terms of T will be inserted into S immediately before the term s_k . If k > n, then the sequence $[s_1, \ldots, s_n, s_{n+1}, \ldots, s_{k-1}, t_1, \ldots, t_l]$ is created, where s_{n+1}, \ldots, s_{k-1} are all undefined. In the case where T is the empty sequence, terms s_k, \ldots, s_m are deleted from S.

There are two versions of this: a procedure, where S is replaced by the new sequence, and a function, which returns the new sequence. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the sequence S will not be copied.

201

Create the enumerated sequence formed by removing the last term of the sequence S, i.e., the sequence $[s_1, \ldots, s_{n-1}]$. An error occurs if S is empty.

There are two versions of this: a procedure, where S is replaced by the new sequence, and a function, which returns the new sequence. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the sequence S will not be copied.

Remove(\sim S, i)	
Remove(S, i)	

Create the enumerated sequence formed by removing the *i*-th term from S, i.e., the sequence $[s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n]$. An error occurs if i < 1 or i > n.

There are two versions of this: a procedure, where S is replaced by the new sequence, and a function, which returns the new sequence. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the sequence S will not be copied.

$\texttt{Reverse}(\sim\texttt{S})$

Reverse(S)

Create the enumerated sequence formed by reversing the order of the terms in the complete enumerated sequence S, i.e., the sequence $[s_n, \ldots, s_1]$.

There are two versions of this: a procedure, where S is replaced by the new sequence, and a function, which returns the new sequence. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the sequence S will not be copied.

Rotate(\sim S, p)

Rotate(S, p)

Given a complete sequence S and an integer p, create the enumerated sequence formed by cyclically rotating the terms of the sequence p terms: if p is positive, rotation will be to the right; if p is negative, S is cyclically rotated -p terms to the left; if p is zero nothing happens.

There are two versions of this: a procedure, where S is replaced by the new sequence, and a function, which returns the new sequence. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the sequence S will not be copied.

$Sort(\sim S)$ Sort(S)

Given a complete enumerated sequence S whose terms belong to a structure on which lt and eq are defined, create the enumerated sequence formed by (quick-)sorting the terms of S into increasing order.

There are two versions of this: a procedure, where S is replaced by the new sequence, and a function, which returns the new sequence. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the sequence S will not be copied.

Sort(\sim S, C)
Sort(\sim S, C, \sim p)
Sort(S, C)

Given a complete enumerated sequence S and a comparison function C which compares elements of S, create the enumerated sequence formed by sorting the terms of S into increasing order with respect to C. The comparison function C must take two arguments and return an integer less than, equal to, or greater than 0 according to whether the first argument is less than, equal to, or greater than the second argument (e.g.: func<x, y | x - y>).

There are three versions of this: a procedure, where S is replaced by the new sequence, a procedure, where S is replaced by the new sequence and the corresponding permutation p is set, and a function, which returns the new sequence and the corresponding permutation. The procedural version takes a reference $\sim S$ to S as an argument. Note that the procedural version is much more efficient since the sequence S will not be copied.

ParallelSort(\sim S, \sim T)

Given a complete enumerated sequence S, sorts it in place and simultaneously sorts T in the same order. That is, whenever the sorting process would swap the two elements S[i] and S[j] then the two elements T[i] and T[j] are also swapped.

Undefine(\sim S, i)

Undefine(S, i)

Create the sequence which is the same as the enumerated sequence S but with the *i*-th term of S undefined; *i* may be bigger than #S, but $i \leq 0$ produces an error.

There are two versions of this: a procedure, where S is replaced by the new sequence, and a function, which returns the new sequence. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the sequence S will not be copied.

ChangeUniverse(S, V)

ChangeUniverse(S, V)

Given a sequence S with universe U and a structure V which contains U, construct a sequence which consists of the elements of S coerced into V.

There are two versions of this: a procedure, where S is replaced by the new sequence, and a function, which returns the new sequence. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the sequence S will not be copied.

CanChangeUniverse(S, V)

Given a sequence S with universe U and a structure V which contains U, attempt to construct a sequence T which consists of the elements of S coerced into V; if successful, return true and T, otherwise return false.

Example H10E3

We present three ways to obtain the Farey series F_n of degree n.

The Farey series F_n of degree *n* consists of all rational numbers with denominator less than or equal to *n*, in order of magnitude. Since we will need numerator and denominator often, we first abbreviate those functions.

> D := Denominator; > N := Numerator;

The first method calculates the entries in order. It uses the fact that for any three consecutive Farey fractions $\frac{p}{q}$, $\frac{p'}{q'}$, $\frac{p''}{q''}$ of degree *n*:

$$p^{\prime\prime} = \lfloor \frac{q+n}{q^{\prime}} \rfloor p^{\prime} - p, \quad q^{\prime\prime} = \lfloor \frac{q+n}{q^{\prime}} \rfloor q^{\prime} - q.$$

```
> farey := function(n)
     f := [ RationalField() | 0, 1/n ];
>
>
     p := 0;
>
     q := 1;
>
     while p/q lt 1 do
        p := ( D(f[#f-1]) + n) div D(f[#f]) * N(f[#f]) - N(f[#f-1]);
>
        q := ( D(f[#f-1]) + n) div D(f[#f]) * D(f[#f]) - D(f[#f-1]);
>
        Append(~f, p/q);
>
>
     end while;
     return f;
>
> end function;
```

The second method calculates the Farey series recursively. It uses the property that F_n may be obtained from F_{n-1} by inserting a new fraction (namely $\frac{p+p'}{q+q'}$) between any two consecutive rationals $\frac{p}{q}$ and $\frac{p'}{q'}$ in F_{n-1} for which q + q' equals n.

```
> function farey(n)
```

SEQUENCES

```
if n eq 1 then
>
>
        return [RationalField() | 0, 1 ];
>
     else
>
        f := farey(n-1);
        i := 0;
>
>
        while i lt #f-1 do
>
           i +:= 1;
           if D(f[i]) + D(f[i+1]) eq n then
>
              Insert( ~f, i+1, (N(f[i]) + N(f[i+1]))/(D(f[i]) + D(f[i+1])));
>
>
           end if;
>
        end while;
>
        return f;
>
     end if;
> end function;
```

The third method is very straightforward, and uses Sort and Setseq (defined above).

```
> farey := func< n |
> Sort(Setseq({ a/b : a in { 0..n}, b in { 1..n} | a le b }))>;
> farey(6);
[ 0, 1/6, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 1 ]
```

10.4.4 Creating New Enumerated Sequences from Existing Ones

S cat T

The enumerated sequence formed by concatenating the terms of S with the terms of T, i.e. the sequence $[s_1, \ldots, s_n, t_1, \ldots, t_m]$.

If the universes of S and T are different, an attempt to find a common overstructure is made; if this fails an error results (see the Introduction).

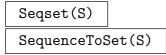
S cat:= T

Mutation assignment: change S to be the concatenation of S and T. Functionally equivalent to S := S cat T.

If the universes of S and T are different, an attempt to find a common overstructure is made; if this fails an error results (see the Introduction).

Partition(S, p)

Given a complete non-empty sequence S as well as an integer p that divides the length n of S, construct the sequence whose terms are the sequences formed by taking p terms of S at a time.


Partition(S, P)

Given a complete non-empty sequence S as well as a complete sequence of positive integers P, such that the sum of the entries of P equals the length of S, construct the sequence whose terms are the sequences formed by taking P[i] terms of S, for $i = 1, \ldots, \#P$.

Setseq(S)

SetToSequence(S)

Given a set S, construct a sequence whose terms are the elements of S taken in some arbitrary order.

Given a sequence S, create a set whose elements are the distinct terms of S.

Example H10E4_

The following example illustrates several of the access, creation and modification operations on sequences.

Given a rational number r, this function returns a sequence of different integers d_i such that $r = \sum 1/d_i$ [Bee93].

```
> egyptian := function(r)
>
        n := Numerator(r);
        d := Denominator(r);
>
>
        s := [d : i in [1..n]];
        t := { d};
>
>
        i := 2;
>
        while i le #s do
>
                c := s[i];
                if c in t then
>
                       Remove(~s, i);
>
                       s cat:= [c+1, c*(c+1)];
>
>
                else
>
                       t join:= { c};
                        i := i+1;
>
>
                end if;
>
        end while;
        return s;
>
> end function;
```

Note that the result may be rather larger than necessary:

```
> e := egyptian(11/13);
> // Check the result!
> &+[1/d : d in e];
11/13
```

SEQUENCES

> #e; 2047 > #IntegerToString(Maximum(e)); 1158

while instead of this sequence of 2047 integers, the biggest of the entries having 1158 decimal digits, the following equation also holds:

$$\frac{1}{3} + \frac{1}{4} + \frac{1}{6} + \frac{1}{12} + \frac{1}{78} = \frac{11}{13}.$$

10.4.4.1 Operations on Sequences of Booleans

The following operation work pointwise on sequences of booleans of equal length.

And(S, T) And(\sim S, T)

The sequence whose *i*th entry is the logical and of the *i*th entries of S and T. The result is placed in S if it is given by reference (\sim) .

Or(S, T)	
Or(\sim S, T)	

The sequence whose *i*th entry is the logical or of the *i*th entries of S and T. The result is placed in S if it is given by reference.

Xor(S, T)]
Xor(\sim S, T)	

The sequence whose ith entry is the logical xor of the ith entries of S and T. The result is placed in S if it is given by reference.

Not(S)	
$Not(\sim S)$	

The sequence whose ith entry is the logical not of the ith entry of S. The result is placed in S if it is given by reference.

10.5 Predicates on Sequences

Boolean valued operators and functions on enumerated sequences exist to test whether entries are defined (see previous section), to test for membership and containment, and to compare sequences with respect to an ordering on its entries. On formal sequences, only element membership can be tested.

IsComplete(S)

Boolean valued function, returning true if and only if each of the terms S[i] for $1 \le i \le \#S$ is defined, for an enumerated sequence S.

IsDefined(S, i)

Given an enumerated sequence S and an index i, this returns **true** if and only if S[i] is defined. (Hence the result is **false** if i > #S, but an error results if i < 1.) Note that the index i is allowed to be a multi-index; if $i = [i_1, \ldots, i_r]$ is a multi-index and $i_j > \#S[i_1, \ldots, i_{j-1}]$ the function returns false, but if S is s levels deep and r > s while $i_j \leq \#S[i_1, \ldots, i_{j-1}]$ for $1 \leq j \leq s$, then an error occurs.

IsEmpty(S)

Boolean valued function, returning true if and only if the enumerated sequence S is empty.

IsNull(S)

Boolean valued function, returning true if and only if the enumerated sequence S is empty and its universe is undefined, false otherwise.

10.5.1 Membership Testing

Here, S and T denote sequences. The element x is always assumed to be compatible with S.

x in S

Returns true if the object x occurs as a term of the enumerated or formal sequence S, false otherwise. If x is not in the universe of S, coercion is attempted. If that fails, an error results.

x notin S

Returns true if the object x does not occur as a term of the enumerated or formal sequence S, false otherwise. If x is not in the universe of S, coercion is attempted. If that fails, an error results.

208

SEQUENCES

Ch. 10

IsSubsequence(S, T)

IsSubsequence(S, T: Kind := option)

Kind

Default : "Consecutive"

Returns true if the enumerated sequence S appears as a subsequence of consecutive elements of the enumerated sequence T, false otherwise.

By changing the default value "Consecutive" of the parameter Kind to "Sequential" or to "Setwise", this returns true if and only if the elements of S appear in order (but not necessarily consecutively) in T, or if and only if all elements of S appear as elements of T; so in the latter case the test is merely whether the set of elements of S is contained in the set of elements of T.

If the universes of S and T are not the same, coercion is attempted.

MonStgElt

S eq T

Returns true if the enumerated sequences S and T are equal, false otherwise. If the universes of S and T are not the same, coercion is attempted.

S ne T

Returns true if the enumerated sequences S and T are not equal, false otherwise. If the universes of S and T are not the same, coercion is attempted.

10.5.2 Testing Order Relations

Here, S and T denote complete enumerated sequences with universe U and V respectively, such that a common overstructure W for U and V can be found (as outlined in the Introduction), and such that on W an ordering on the elements is defined allowing the MAGMA operators eq (=), le (\leq), lt (<), gt (>), and ge (\geq) to be invoked on its elements.

With these comparison operators the *lexicographical* ordering is used to order complete enumerated sequences. Sequences S and T are equal (S eq T) if and only if they have the same length and all terms are the same. A sequence S precedes T (S lt T) in the ordering imposed by that of the terms if at the first index i where S and T differ then S[i] < T[i]. If the length of T exceeds that of S and S and T agree in all places where S until after the length of S, then S lt T is true also. In all other cases where $S \neq T$ one has S gt T.

S lt T

Returns true if the sequence S precedes the sequence T under the ordering induced from S, false otherwise. Thus, true is returned if and only if either S[k] < T[k] and S[i] = T[i] (for $1 \le i < k$) for some k, or S[i] = T[i] for $1 \le i \le \#S$ and #S < #T.

S le T

Returns true if the sequence S either precedes the sequence T, under the ordering induced from S, or is equal to T, false otherwise. Thus, true is returned if and only if either S[k] < T[k] and S[i] = T[i] (for $1 \le i < k$) for some k, or S[i] = T[i] for $1 \le i \le \#S$ and $\#S \le \#T$.

S ge T

Returns true if the sequence S either comes after the sequence T, under the ordering induced from S, or is equal to T, false otherwise. Thus, true is returned if and only if either S[k] > T[k] and S[i] = T[i] (for $1 \le i < k$) for some k, or S[i] = T[i] for $1 \le i \le \#T$ and $\#S \ge \#T$.

S gt T

Returns true if the sequence S comes after the sequence T under the ordering induced from S, false otherwise. Thus, true is returned if and only if either S[k] > T[k] and S[i] = T[i] (for $1 \le i < k$) for some k, or S[i] = T[i] for $1 \le i \le \#T$ and #S > #T.

10.6 Recursion, Reduction, and Iteration

10.6.1 Recursion

It is often very useful to be able to refer to a sequence currently under construction, for example to define the sequence recursively. For this purpose the **Self** operator is available.

Self(n)
Self()

This operator enables the user to refer to an already defined previous entry s[n] of the enumerated sequence s inside the sequence constructor, or the sequence s itself.

Example H10E5_

The example below shows how the sequence of the first 100 Fibonacci numbers can be created recursively, using Self. Next it is shown how to use reduction on these 100 integers.

```
> s := [ i gt 2 select Self(i-2)+Self(i-1) else 1 : i in [1..100] ];
> &+s;
927372692193078999175
```

SEQUENCES

Ch. 10

10.6.2 Reduction

Instead of using a loop to apply the same binary associative operator to all elements of a complete enumerated sequence, it is possible to use the *reduction operator* &.

&° S

Given a complete enumerated sequence $S = [a_1, a_2, \ldots, a_n]$ of elements belonging to an algebraic structure U, and an (associative) operator $\circ : U \times U \to U$, form the element $a_1 \circ a_2 \circ a_3 \circ \ldots \circ a_n$.

Currently, the following operators may be used to reduce sequences: +, *, and, or, join, meet, cat. An error will occur if the operator is not defined on U.

If S contains a single element a, then the value returned is a. If S is the null sequence (empty and no universe specified), then reduction over S leads to an error; if S is empty with universe U in which the operation is defined, then the result (or error) depends on the operation and upon U. The following table defines the return value:

	empty	null
&+	$U \ ! \ 0$	error
&*	$U \ ! \ 1$	error
∧	true	true
∨	false	false
&join	empty	null
&meet	error	error
&cat	empty	null

10.7 Iteration

Enumerated sequences allow iteration over their elements. In particular, they can be used as the range set in the sequence and set constructors, and as domains in **for** loops.

When multiple range sequences are used, it is important to know in which order the range are iterated over; the rule is that the repeated iteration takes place as nested loops where the first range forms the innermost loop, etc. See the examples below.

```
for x in S do statements; end for;
```

An enumerated sequence S may be the range for the for-statement. The iteration only enumerates the defined terms of the sequence.

Example H10E6_

The first example shows how repeated iteration inside a sequence constructor corresponds to nesting of loops.

```
> [<number, letter> : number in [1..5], letter in ["a", "b", "c"]];
```

211

```
[ <1, a>, <2, a>, <3, a>, <4, a>, <5, a>, <1, b>, <2, b>, <3, b>, <4, b>, <5,
b>, <1, c>, <2, c>, <3, c>, <4, c>, <5, c> ]
> r := [];
> for letter in ["a", "b", "c"] do
> for number in [1..5] do
> Append(~r, <number, letter>);
> end for;
> end for;
> r;
[ <1, a>, <2, a>, <3, a>, <4, a>, <5, a>, <1, b>, <2, b>, <3, b>, <4, b>, <5,
b>, <1, c>, <2, c>, <3, c>, <4, c>, <5, c> ]
```

This explains why the first construction below leads to an error, whereas the second leads to the desired sequence.

```
> // The following produces an error:
> [ <x, y> : x in [0..5], y in [0..x] | x<sup>2</sup>+y<sup>2</sup> lt 16 ];
User error: Identifier 'x' has not been declared
> [ <x, y> : x in [0..y], y in [0..5] | x<sup>2</sup>+y<sup>2</sup> lt 16 ];
[ <0, 0>, <0, 1>, <1, 1>, <0, 2>, <1, 2>, <2, 2>, <0, 3>, <1, 3>, <2, 3> ]
Note the following! In the last line below there are two different things with the name x. One is
the (inner) loop variable, the other just an identifier with value 1000 that is used in the bound for
the other (outer) loop variable y: the limited scope of the inner loop variable x makes it invisible
to y, whence the error in the first case.
> // The following produces an error:
> #[ <x, y> : x in [0..5], y in [0..x] | x<sup>2</sup>+y<sup>2</sup> lt 100 ];
```

User error: Identifier 'x' has not been declared

> x := 1000; > #[<x, y> : x in [0..5], y in [0..x] | x²+y² lt 100]; 59

10.8 Bibliography

[Bee93] L. Beeckmans. The splitting algorithm for Egyptian fractions. J. Number Th., 43:173–185, 1993.

Part II

11 TUPLES AND CARTESIAN PRODUCTS

11.1 Introduction	215		
	210		
11.2 Cartesian Product Constructor			
and Functions	215		
car< >	215		
CartesianProduct(R, S)	215		
CartesianProduct(L)	215		
CartesianPower(R, k)	215		
Flat(C)	215		
NumberOfComponents(C)	216		
Component(C, i)	216		
C[i]	216		
#	216		
Rep(C)	216		
Random(C)	216		
11.3 Creating and Modifying Tuples	216		
elt< >	216		
!	216		
< a_1, a_2, \ldots, a_k >	216		

Append(T, x) Append(~T, x) Prune(T) Prune(~T) Flat(T)	216 217 217 217 217 217
11.4 Tuple Access Functions	218
<pre>Parent(T) # T[i] Explode(T) TupleToList(T) Tuplist(T)</pre>	218 218 218 218 218 218 218
11.5 Equality	218
eq ne	$\begin{array}{c} 218\\ 218\end{array}$
11.6 Other operations	219 219

Chapter 11 TUPLES AND CARTESIAN PRODUCTS

11.1 Introduction

A cartesian product may be constructed from a finite number of factors, each of which may be a set or algebraic structure. The term *tuple* will refer to an element of a cartesian product.

Note that the rules for tuples are quite different to those for sequences. Sequences are elements of a cartesian product of n copies of a fixed set (or algebraic structure) while tuples are elements of cartesian products where the factors may be different sets (structures). The semantics for tuples are quite different to those for sequences. In particular, the parent cartesian product of a tuple is fixed once and for all. This is in contrast to a sequence, which may grow and shrink during its life (thus implying a varying parent cartesian product).

11.2 Cartesian Product Constructor and Functions

The special constructor $car < \ldots >$ is used for the creation of cartesian products of structures.

car< R_1 , ..., R_k >

Given a list of sets or algebraic structures R_1, \ldots, R_k , construct the cartesian product set $R_1 \times \cdots \times R_k$.

CartesianProduct(R, S)

Given structures R and S, construct the cartesian product set $R \times S$. This is the same as calling the **car** constructor with the two arguments R and S.

CartesianProduct(L)

Given a sequence or tuple L of structures, construct the cartesian product of the elements of L.

CartesianPower(R, k)

Given a structure R and an integer k, construct the cartesian power set R^k .

Flat(C)

Given a cartesian product C of structures which may themselves be cartesian products, return the cartesian product of the base structures, considered in depth-first order (see Flat for the element version). NumberOfComponents(C)

Given a cartesian product C, return the number of components of C.

Component(C, i)

C[i]

The *i*-th component of C.

#C

Given a cartesian product C, return the cardinality of C.

Rep(C)

Given a cartesian product C, return a representative of C.

Random(C)

Given a cartesian product C, return a random element of C.

Example H11E1_

We create the product of \mathbf{Q} and \mathbf{Z} .

```
> C := car< RationalField(), Integers() >;
> C;
```

Cartesian Product<Rational Field, Ring of Integers>

11.3 Creating and Modifying Tuples

elt< C | a₁, a₂, ..., a_k > C ! < a₁, a₂, ..., a_k >

Given a cartesian product $C = R_1 \times \cdots \times R_k$ and a sequence of elements a_1, a_2, \ldots, a_k , such that a_i belongs to the set R_i $(i = 1, \ldots, k)$, create the tuple $T = \langle a_1, a_2, \ldots, a_k \rangle$ of C.

< a $_1$, a $_2$, ..., a $_k$ >

Given a cartesian product $C = R_1 \times \cdots \times R_k$ and a list of elements a_1, a_2, \ldots, a_k , such that a_i belongs to the set R_i , $(i = 1, \ldots, k)$, create the tuple $T = \langle a_1, a_2, \ldots, a_k \rangle$ of C. Note that if C does not already exist, it will be created at the time this expression is evaluated.

Append(T, x)

Return the tuple formed by adding the object x to the end of the tuple T. Note that the result lies in a new cartesian product of course.

Ch. 11

Append(\sim T, x)

(Procedure.) Destructively add the object x to the end of the tuple T. Note that the new T lies in a new cartesian product of course.

Prune(T)

Return the tuple formed by removing the last term of the tuple T. The length of T must be greater than 1. Note that the result lies in a new cartesian product of course.

$Prune(\sim T)$

(Procedure.) Destructively remove the last term of the tuple T. The length of T must be greater than 1. Note that the new T lies in a new cartesian product of course.

Flat(T)

Construct the flattened version of the tuple T. The flattening is done in the same way as Flat, namely depth-first.

Example H11E2_

We build a set of pairs consisting of primes and their reciprocals.

```
> C := car< Integers(), RationalField() >;
> C ! < 26/13, 13/26 >;
<2, 1/2>
> S := { C | <p, 1/p> : p in [1..25] | IsPrime(p) };
> S;
{ <5, 1/5>, <7, 1/7>, <2, 1/2>, <19, 1/19>, <17, 1/17>, <23, 1/23>, <11, 1/11>,
<13, 1/13>, <3, 1/3> }
```

11.4 Tuple Access Functions

Parent(T)

The cartesian product to which the tuple T belongs.

#T

Number of components of the tuple T.

T[i]

Return the *i*-th component of tuple T. Note that this indexing can also be used on the left hand side for modification of T.

Explode(T)

Given a tuple T of length n, this function returns the n entries of T (in order).

TupleToList(T)
Tuplist(T)

Given a tuple T return a list containing the entries of T.

Example H11E3_

```
> f := < 11/2, 13/3, RootOfUnity(3, CyclotomicField(3)) >;
> f;
<11/2, 13/3, (zeta_3)>
> #f;
3
> Parent(f);
Cartesian Product<Rational Field, Rational Field, Cyclotomic field Q(zeta_3)>
> f[1]+f[2]+f[3];
(1/6) * (59 + 6*zeta_3)
> f[3] := 7;
> f;
<11/2, 13/3, 7>
```

11.5 Equality

T eq U

Return true if and only if the tuples T and U are equal.

T ne U

Return true if and only if the tuples T and U are distinct.

218

11.6 Other operations

&*T

For a tuple T where each component lies in a structure that supports multiplication and such there exists a common over structure, return the product of the entries.

12 LISTS

12.1 Introduction	•	•	•	•	223
12.2 Construction of Lists	•				223
[* *]					223
[* e_1 , e_2 ,, e_n *]					223
12.3 Creation of New Lists	•	•	•		223
cat					223
cat:=					223
Append(S, x)					223
Append(\sim S, x)					223
Insert(\sim S, i, x)					224
Insert(S, i, x)					224
Prune(S)					224
$Prune(\sim S)$					224

224
224
224
224
224
224
224
224
224
225
225
225
225

Chapter 12 LISTS

12.1 Introduction

A *list* in MAGMA is an ordered finite collection of objects. Unlike sequences, lists are not required to consist of objects that have some common parent. Lists are not stored compactly and the operations provided for them are not extensive. They are mainly provided to enable the user to gather assorted objects temporarily together.

12.2 Construction of Lists

Lists can be constructed by expressions enclosed in special brackets [* and *].

[* *]

The empty list.

 $[* e_1, e_2, \ldots, e_n *]$

Given a list of expressions e_1, \ldots, e_n , defining elements a_1, a_2, \ldots, a_n , create the list containing a_1, a_2, \ldots, a_n .

12.3 Creation of New Lists

Here, S denotes the list $[* s_1, \ldots, s_n *]$, while T denotes the list $[* t_1, \ldots, t_m *]$.

S cat T

The list formed by concatenating the terms of the list S with the terms of the list T, i.e. the list $[* s_1, \ldots, s_n, t_1, \ldots, t_m *]$.

S cat:= T

(Procedure.) Destructively concatenate the terms of the list T to S; i.e. so S becomes the list $[* s_1, \ldots, s_n, t_1, \ldots, t_m *]$.

Append(S, x)

The list formed by adding the object x to the end of the list S, i.e. the list $[* s_1, \ldots s_n, x *]$.

Append(\sim S, x)

(Procedure.) Destructively add the object x to the end of the list S; i.e. so S becomes the list $[* s_1, \ldots s_n, x *]$.

Insert(\sim S, i, x) Insert(S, i, x)

Create the list formed by inserting the object x at position i in S and moving the terms $S[i], \ldots, S[n]$ down one place, i.e., the list $[* s_1, \ldots, s_{i-1}, x, s_i, \ldots, s_n *]$. Note that i must not be bigger than n + 1 where n is the length of S.

There are two versions of this: a procedure, where S is replaced by the new list, and a function, which returns the new list. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the list S will not be copied.

Prune(S)

The list formed by removing the last term of the list S, i.e. the list $[* s_1, \ldots, s_{n-1} *]$.

$Prune(\sim S)$

(Procedure.) Destructively remove the last term of the list S; i.e. so S becomes the list $[* s_1, \ldots, s_{n-1} *]$.

SequenceToList(Q)

Seqlist(Q)

Given a sequence Q, construct a list whose terms are the elements of Q taken in the same order.

TupleToList(T)

Tuplist(T)

Given a tuple T, construct a list whose terms are the elements of T taken in the same order.

Reverse(L)

Given a list L return the same list, but in reverse order.

12.4 Access Functions

#S

The length of the list S.

IsEmpty(S)

Return whether S is empty (has zero length).

S[i]

Return the *i*-th term of the list S. If either $i \leq 0$ or i > #S+1, then an error results. Here *i* is allowed to be a multi-index (see Section 8.3.1 for the interpretation).

S[I]

Return the sublist of S given by the indices in the sequence I. Each index in I must be in the range [1..l], where l is the length of S.

IsDefined(L, i)

Checks whether the *i*th item in L is defined or not, that is it returns **true** if *i* is at most the length of L and **false** otherwise.

12.5 Assignment Operator

S[i] := x

Redefine the *i*-th term of the list S to be x. If $i \leq 0$, then an error results. If i = #S + 1, then x is appended to S. Otherwise, if i > #S + 1, an error results. Here i is allowed to be a multi-index.

13 ASSOCIATIVE ARRAYS

13.1 Introduction	•	•	•	•	•	•	•	•	229
13.2 Operations .		•	•	•	•	•		•	229
AssociativeArray() AssociativeArray(I) A[x] := y									229 229 229

A[x]	229
<pre>IsDefined(A, x)</pre>	229
Remove(\sim A, x)	229
Universe(A)	229
Keys(A)	230

Chapter 13 ASSOCIATIVE ARRAYS

13.1 Introduction

An associative array in MAGMA is an array which may be indexed by arbitrary elements of an index structure I. The indexing may thus be by objects which are not integers. These objects are known as the keys. For each current key there is an associated value. The values associated with the keys need not lie in a fixed universe but may be of any type.

13.2 Operations

AssociativeArray()

Create the null associative array with no index universe. The first assignment to the array will determine its index universe.

AssociativeArray(I)

Create the empty associative array with index universe I.

A[x] := y

Set the value in A associated with index x to be y. If x is not coercible into the current index universe I of A, then an attempt is first made to lift the index universe of A to contain both I and x.

A[x]

Given an index x coercible into the index universe I of A, return the value associated with x. If x is not in the keys of A, then an error is raised.

IsDefined(A, x)

Given an index x coercible into the index universe I of A, return whether x is currently in the keys of A and if so, return also the value A[x].

Remove(\sim A, x)

(Procedure.) Destructively remove the value indexed by x from the array A. If x is not present as an index, then nothing happens (i.e., an error is not raised).

Universe(A)

Given an associative array A, return the index universe I of A, in which the keys of A currently lie.

Keys(A)

Given an associative array A, return the current keys of A as a set. Warning: this constructs a new copy of the set of keys, so should only be called when that is needed. It is not meant to be used as a quick access function.

Example H13E1_

This example shows simple use of associative arrays. First we create an array indexed by rationals.

```
> A := AssociativeArray();
> A[1/2] := 7;
> A[3/8] := "abc";
> A[3] := 3/8;
> A[1/2];
7
> IsDefined(A, 3);
true 3/8
> IsDefined(A, 4);
false
> IsDefined(A, 3/8);
true abc
> Keys(A);
\{3/8, 1/2, 3\}
> for x in Keys(A) do x, A[x]; end for;
1/2~7
3/8 abc
3 3/8
> Remove(~A, 3/8);
> IsDefined(A, 3/8);
false
> Keys(A);
\{1/2, 3\}
> Universe(A);
Rational Field
```

We repeat that an associative array can be indexed by elements of any structure. We now index an array by elements of the symmetric group S_3 .

```
> G := Sym(3);
> A := AssociativeArray(G);
> v := 1; for x in G do A[x] := v; v +:= 1; end for;
> A;
Associative Array with index universe GrpPerm: G, Degree 3, Order 2 * 3
> Keys(A);
{
    (1, 3, 2),
    (2, 3),
    (1, 3),
    (1, 2, 3),
```

(1, 2), Id(G)
}
> A[G!(1,3,2)];
3

14 COPRODUCTS

14.1 Introduction	# Cor
14.2 Creation Functions 235	Inc
14.2.1 Creation of Coproducts	14
cop< > 235	Ret
cop< > 235	110 0
14.2.2 Creation of Coproduct Elements . 235	14
m(e) 235	Fla
! 235	14
14.3 Accessing Functions 236	Uni
Injections(C) 236	

<pre># Constituent(C, i) Index(x)</pre>	$236 \\ 236 \\ 236 \\ 236 \\$
14.4 Retrieve	236 236
14.5 Flattening	237 237
14.6 Universal Map	237
UniversalMap(C, S, [n_1 ,, n_m])	237

Chapter 14 COPRODUCTS

14.1 Introduction

Coproducts can be useful in various situations, as they may contain objects of entirely different types. Although the coproduct structure will serve as a single parent for such diverse objects, the proper parents of the elements are recorded internally and restored whenever the element is retrieved from the coproduct.

14.2 Creation Functions

There are two versions of the coproduct constructor. Ordinarily, coproducts will be constructed from a list of structures. These structures are called the **constituents** of the coproduct. A single sequence argument is allowed as well to be able to create coproducts of parameterized families of structures conveniently.

14.2.1 Creation of Coproducts

$$cop < S_1, S_2, ..., S_k >$$

 $cop < [S_1, S_2, ..., S_k] >$

Given a list or a sequence of two or more structures S_1, S_2, \ldots, S_k , this function creates and returns their coproduct C as well as a sequence of maps $[m_1, m_2, \ldots, m_k]$ that provide the injections $m_i : S_i \to C$.

14.2.2 Creation of Coproduct Elements

Coproduct elements are usually created by the injections returned as the second return value from the cop<> constructor. The bang (!) operator may also be used but only if the type of the relevant constituent is unique for the particular coproduct.

m(e)

Given a coproduct injection map m and an element of one of the constituents of the coproduct C, create the coproduct element version of e.

С ! е

Given a coproduct C and an element e of one of the constituents of C such that the type of that constituent is unique within that coproduct, create the coproduct element version of e.

14.3 Accessing Functions

Injections(C)

Given a coproduct C, return the sequence of injection maps returned as the second argument from the cop<> constructor.

#C

Given a coproduct C, return the length (number of constituents) of C.

Constituent(C, i)

Given a coproduct C and an integer i between 1 and the length of C, return the i-th constituent of C.

Index(x)

Given an element x from a coproduct C, return the constituent number of C to which x belongs.

14.4 Retrieve

The function described here restores an element of a coproduct to its original state.

Retrieve(x)

Given an element x of some coproduct C, return the element as an element of the structure that formed its parent before it was mapped into C.

Example H14E1_

We illustrate basic uses of the coproduct constructors and functions.

```
> C := cop<IntegerRing(), Strings()>;
> x := C ! 5;
> y := C ! "abc";
> x;
5
> y;
abc
> Parent(x);
Coproduct<Integer Ring, String structure>
> x eq 5;
true
> x eq y;
false
> Retrieve(x);
5
> Parent(Retrieve(x));
Integer Ring
```

COPRODUCTS

14.5 Flattening

The function described here enables the 'concatenation' of coproducts into a single one.

Flat(C)

Given a coproduct C of structures which may themselves be coproducts, return the coproduct of the base structures, considered in depth-first order.

14.6 Universal Map

UniversalMap(C, S, [n_1 , ..., n_m])

Given maps n_1, \ldots, n_m from structures S_1, \ldots, S_m that compose the coproduct C, to some structure S, this function returns the universal map $C \to S$.

Ch. 14

15 RECORDS

15.1 Introduction	241
15.2 The Record Format Constructor	241
recformat< >	241
15.3 Creating a Record	242
rec< >	242
15.4 Access and Modification Functions	243

Format(r)	243
Names(F)	243
Names(r)	243
r'fieldname	243
r'fieldname:= e;	243
delete	243
assigned	243
r''s	243

Chapter 15 RECORDS

15.1 Introduction

In a *record* several objects can be collected. The objects in a record are stored in *record* fields, and are accessed by using fieldnames. Records are like tuples (and unlike sets or sequences) in that the objects need not all be of the same kind. Though records and tuples are somewhat similar, there are several differences too. The components of tuples are indexed by integers, and every component must be defined. The fields of records are indexed by fieldnames, and it is possible for some (or all) of the fields of a record not to be assigned; in fact, a field of a record may be assigned or deleted at any time. A record must be constructed according to a pre-defined *record format*, whereas a tuple may be constructed without first giving the Cartesian product that is its parent, since MAGMA can deduce the parent from the tuple.

In the definition of a record format, each field is given a fieldname. If the field is also given a parent magma or a category, then in any record created according to this format, that field must conform to this requirement. However, if the field is not given a parent magma or category, there is no restriction on the kinds of values stored in that field; different records in the format may contain disparate values in that field. By contrast, every component of a Cartesian product is a magma, and the components of all tuples in this product must be elements of the corresponding magma.

Because of the flexibility of records, with respect to whether a field is assigned and what kind of value is stored in it, Boolean operators are not available for comparing records.

15.2 The Record Format Constructor

The special constructor $recformat < \ldots >$ is used for the creation of record formats. A record format must be created before records in that format are created.

recformat< L >

Construct the record format corresponding to the non-empty fieldname list L. Each term of L must be one of the following:

- (a) *fieldname* in which case there is no restriction on values that may be stored in this field of records having this format;
- (b) *fieldname:expression* where the expression evaluates to a magma which will be the parent of values stored in this field of records having this format; or
- (c) fieldname:expression where the expression evaluates to a category which will be the category of values stored in this field of records having this format;

where *fieldname* consists of characters that would form a valid identifier name. Note that it is not a string.

Example H15E1_

We create a record format with these fields: n, an integer; misc, which has no restrictions; and seq, a sequence (with any universe possible).

```
> RF := recformat< n : Integers(), misc, seq : SeqEnum >;
> RF;
recformat<n: IntegerRing(), misc, seq: SeqEnum>
> Names(RF);
[ n, misc, seq ]
```

15.3 Creating a Record

Before a record is created, its record format must be defined. A record may be created by assigning as few or as many of the record fields as desired.

rec< F | L >

Given a record format F, construct the record format corresponding to the field assignment list L. Each term of L must be of the form fieldname := expression where fieldname is in F and the value of the expression conforms (directly or by coercion) to any restriction on it. The list L may be empty, and there is no fixed order for the fieldnames.

Example H15E2.

We build some records having the record format RF.

```
> RF := recformat< n : Integers(), misc, seq : SeqEnum >;
> r := rec< RF | >;
> r;
rec<RF | >
> s := rec< RF | misc := "adsifaj", n := 42, seq := [ GF(13) | 4, 8, 1 ]>;
> s;
rec<RF | n := 42, misc := adsifaj, seq := [ 4, 8, 1 ]>
> t := rec< RF | seq := [ 4.7, 1.9 ], n := 51/3 >;
> t;
rec<RF | n := 17, seq := [ 4.7, 1.9 ]>
> u := rec< RF | misc := RModule(PolynomialRing(Integers(7)), 4) >;
> u;
rec<RF | misc := RModule of dimension 4 with base ring Univariate Polynomial
Algebra over Integers(7)>
```

Ch. 15

RECORDS

15.4 Access and Modification Functions

Fields of records may be inspected, assigned and deleted at any time.

Format(r)

The format of record r.

Names(F)

The fieldnames of the record format F returned as a sequence of strings.

Names(r)

The fieldnames of record r returned as a sequence of strings.

r'fieldname

Return the field of record r with this fieldname. The format of r must include this fieldname, and the field must be assigned in r.

r'fieldname:= expression;

Reassign the given field of r to be the value of the expression. The format of r must include this fieldname, and the expression's value must satisfy (directly or by coercion) any restriction on the field.

delete r'fieldname

(Statement.) Delete the current value of the given field of record r.

assigned r'fieldname

Returns true if and only if the given field of record r currently contains a value.

r''s

Given an expression s that evaluates to a string, return the field of record r with the fieldname corresponding to this string. The format of r must include this fieldname, and the field must be assigned in r.

This syntax may be used anywhere that r fieldname may be used, including in left hand side assignment, assigned and delete.

243

Example H15E3____

```
> RF := recformat< n : Integers(), misc, seq : SeqEnum >;
> r := rec< RF | >;
> s := rec< RF | misc := "adsifaj", n := 42, seq := [ GF(13) | 4, 8, 1 ]>;
> t := rec< RF | seq := [ 4.7, 1.9 ], n := 51/3 >;
> u := rec< RF | misc := RModule(PolynomialRing(Integers(7)), 4) >;
> V4 := u'misc;
> assigned r'seq;
false
> r'seq := Append(t'seq, t'n); assigned r'seq;
true
> r;
rec<RF | seq := [ 4.7, 1.9, 17 ]>
> // The following produces an error:
> t''(s'misc);
>> t''(s'misc);
Runtime error in ': Field 'adsifaj' does not exist in this record
> delete u''("m" cat "isc"); u;
rec<RF | >
```

16 MAPPINGS

16.1 Introduction	•	•		247
16.1.1 The Map Constructors	•		•	247
16.1.2 The Graph of a Map				248
16.1.3 Rules for Maps \ldots \ldots \ldots				248
$16.1.4$ Homomorphisms \ldots \ldots				248
16.1.5 Checking of Maps	•		•	248
16.2 Creation Functions				2 49
16.2.1 Creation of Maps \ldots \ldots				249
map< > map< > map< >				249 249 249
$16.2.2\ Creation$ of Partial Maps				250
pmap< > pmap< > pmap< >				$250 \\ 250 \\ 250 \\ 250$
16.2.3 Creation of Homomorphisms				250
hom< > hom< > hom< > hom< > hom< >				250 250 250 251 251
16.2.4 Coercion Maps				251
Coercion(D, C) Bang(D, C)				$251 \\ 251$
16.3 Operations on Mappings .	•	•		251
16.3.1 Composition				251

* Components(f)	$251 \\ 251$
16.3.2 (Co)Domain and (Co)Kernel	252
Domain(f) Codomain(f) Image(f) Kernel(f)	$252 \\ 252 \\ 252 \\ 252 \\ 252 \end{cases}$
16.3.3 Inverse	252
Inverse(m)	252
16.3.4 Function	252
Function(f)	252
16.4 Images and Preimages	253
<pre>@ f(a) @ f(S) @ f(C) @0 @0 @0 G0 WasPreimage(x, f)</pre>	253 253 253 253 253 253 253 253 253 253
16.5 Parents of Maps	254
Parent(m) Domain(P) Codomain(P) Maps(D, C) Iso(D, C) Aut(S)	$254 \\ 255 \\ 255 $

Chapter 16 MAPPINGS

16.1 Introduction

Mappings play a fundamental role in algebra and, indeed, throughout mathematics. Reflecting this importance, mappings are one of the fundamental datatypes in our language. The most general way to define a mapping $f : A \to B$ in a programming language is to write a *function* which, given any element of A, will return its image under f in B. While this approach to the definition of mappings is completely general, it is desirable to have mappings as an independent datatype. It is then possible to provide a very compact notation for specifying important classes of mappings such as homomorphisms. Further, a range of operations peculiar to the mapping type can be provided.

Mappings are created either through use of *mapping constructors* as described in this Chapter, or through use of certain standard functions that return mappings as either primary or secondary values.

All mappings are objects in the MAGMA category Map.

16.1.1 The Map Constructors

There are three main mapping constructors: the general map constructor map < >, the homomorphism constructor hom < >, and the partial map constructor pmap < >. The general form of all constructors is the same: inside the angle brackets there are two components separated by a pipe |. To the left the user specifies a *domain* A and a *codomain* B, separated by ->; to the right of the pipe the user specifies how images are obtained for elements of the domain. The latter can be done in one of several ways: one specifies either the *graph* of the map, or a *rule* describing how images are to be formed, or for homomorphisms, one specifies generator images. We will describe each in the next subsections. The result is something like map< A -> B | expression>.

The domain and codomain of the map can be arbitrary magmas. When a full map (as opposed to a partial map) is constructed by use of a graph, the domain is necessarily finite.

The main difference between maps and partial maps is that a partial map need not be defined for every element of the domain. The main difference between these two types of map and homomorphisms is that the latter are supposed to provide *structure-preserving* maps between algebraic structures. On the one hand this makes it possible to allow the specification of images for homomorphisms in a different fashion: homomorphisms can be given via *images* for *generators* of the domain. On the other hand homomorphisms are restricted to cases where domain and (image in the) codomain have a similar structure. The generator image form only makes sense for domains that are *finitely presented*. Homomorphisms are described in more detail below.

16.1.2 The Graph of a Map

Let A and B be structures. A subgraph of the cartesian product $C = A \times B$ is a subset G of C such that each element of A appears at most once among the first components of the pairs $\langle a, b \rangle$ of G. A subgraph having the additional property that every element of A appears as the first component of some pair $\langle a, b \rangle$ of G is called a graph of $A \times B$.

A mapping between A and B can be identified with a graph G of $A \times B$, a partial map can be identified with a subgraph. We now describe how a graph may be represented in the context of the map constructor. An element of the graph of $A \times B$ can be given either as a *tuple* <a, b>, or as an *arrow pair* a -> b. The specification of a (sub)graph in a map constructor should then consist of either a (comma separated) list, a sequence, or a set of such tuples or arrow pairs (a mixture is permitted).

16.1.3 Rules for Maps

The specification of a rule in the map constructor involves a free variable and an expression, usually involving the free variable, separated by :->, for example x :-> 3*x - 1. The scope of the free variable is restricted to the map constructor (so the use of x does not interfere with values of x outside the constructor). A general expression is allowed in the rule, which may involve intrinsic or user functions, and even in-line definitions of such functions.

16.1.4 Homomorphisms

Probably the most useful form of the map-constructor is the version for homomorphisms. Most interesting mappings in algebra are homomorphisms, and if an algebraic structure A belongs to a family of algebraic structures which form a variety we have the fundamental result that a homomorphism is uniquely determined by the images of any generating set. This provides us with a particularly compact way of defining and representing homomorphisms. While the syntax of the homomorphism constructor is similar to that of the general mapping constructor, the semantics are sometimes different.

The kind of homomorphism built by the hom-constructor is determined entirely by the domain: thus, a group homomorphism results from applying hom to a domain A that is one of the types of group in MAGMA, a ring homomorphism results when A is a ring, etc. As a consequence, the requirements on the specification of homomorphisms are dependent on the category to which A belongs. Often, the codomain of a homomorphism is required to belong to the same variety. But even within a category the specification may depend on the type of structure; for details we refer the reader to the specific chapters.

A homomorphism can be specified using either a rule map or by generator images. In the latter case the processor will seek to express an element as a word in the generators of A when asked to compute its image. Thus A needs to be finitely presented.

16.1.5 Checking of Maps

It should be pointed out that checking the 'correctness' of mappings can be done to a limited extent only. If the mapping is given by means of a graph, MAGMA will check that no multiple images are specified, and that an image is given for every element of the

MAPPINGS

domain (unless a partial map is defined). If a rule is given, it cannot be checked that it is defined on all of the domain. Also, it is in general the responsibility of the user to ensure that the images provided for a hom constructor do indeed define a homomorphism.

16.2 Creation Functions

In this section we describe the creation of maps, partial maps, and homomorphisms via the various forms of the constructors, as well as maps that define coercions between algebraic structures.

16.2.1 Creation of Maps

Maps between structures A and B may be specified either by providing the full graph (as defined in the previous section) or by supplying an expression rule for finding images.

map< A -> B | G >

Given a finite structure A, a structure B and a graph G of $A \times B$, construct the mapping $f : A \to B$, as defined by G. The graph G may be given by either a set, sequence, or list of tuples or arrow-pairs as described in the Introduction to this Chapter. Note that G must be a full graph, i.e., every element of A must occur exactly once as a first component.

map< A \rightarrow B | x :-> e(x) >

Given a set or structure A, a set or structure B, a variable x and an expression e(x), usually involving x, construct the mapping $f : A \to B$, as defined by e(x). It is the user's responsibility to ensure that a value is defined for every $x \in A$. The scope of the variable x is restricted to the map-constructor.

map< A \rightarrow B | x :-> e(x), y :-> i(y) >

Given a set or structure A, a set or structure B, a variable x, an expression e(x), usually involving x, a variable y, and an expression i(y), usually involving y, construct the mapping $f : A \to B$, as defined by $x \mapsto e(x)$, with corresponding inverse $f^{-1} : B \to A$, as defined by $y \mapsto i(y)$. It is the user's responsibility to ensure that a value e(x) is defined for every $x \in A$, a value i(y) is defined for every $y \in B$, and that i(y) is the true inverse of e(x). The scope of the variables x and y is restricted to the map-constructor.

16.2.2 Creation of Partial Maps

Partial mappings are quite different to both general mappings and homomorphisms, in that images need not be defined for every element of the domain.

pmap< A \rightarrow B | G >

Given a finite structure A of cardinality n, a structure B and a subgraph G of $A \times B$, construct the partial map $f : A \to B$, as defined by G. The subgraph G may be given by either a set, sequence, or list of tuples or arrow-pairs as described in the Introduction to this Chapter.

pmap< A \rightarrow B | x :-> e(x) >

Given a set A, a set B, a variable x and an expression e(x), construct the partial map $f: A \to B$, as defined by e(x). This form of the map constructor is a special case of the previous one whereby the image of x can be defined using a single expression. Again the scope of x is restricted to the map-constructor.

pmap< A \rightarrow B | x :-> e(x), y :-> i(y) >

This constructor is the same as the map constructor above which allows the inverse map i(y) to be specified, except that the result is marked to be a partial map.

16.2.3 Creation of Homomorphisms

The principal construction for homomorphisms consists of the generator image form, where the images of the generators of the domain are listed. Note that the kind of homomorphism and the kind and number of generators for which images are expected, depend entirely on the type of the domain. Moreover, some features of the created homomorphism, e.g. whether checking of the homomorphism is done during creation or whether computing preimages is possible, depend on the types of the domain and the codomain. We refer to the appropriate handbook chapters for further information.

hom< A \rightarrow B | G >

Given a finitely generated algebraic structure A and a structure B, as well as a graph G of $A \times B$, construct the homomorphism $f : A \to B$ defined by extending the map of the generators of A to all of A. The graph G may be given by either a set, sequence, or list of tuples or arrow-pairs as described in the Introduction to this Chapter.

The detailed requirements on the specification are module-dependent, and can be found in the chapter describing the domain A.

hom<	A -> B y_1 ,, y_n >	
hom<	A -> B x_1 -> y_1 ,, x_n -> y_n	>

This is a module-dependent constructor for homomorphisms between structures A and B; see the chapter describing the functions for A. In general after the bar the images for all generators of the structure A must be specified.

Ch. 16

MAPPINGS

hom< A -> B | x := e(x) >

Given a structure A, a structure B, a variable x and an expression e(x), construct the homomorphism $f: A \to B$, as defined by e(x). This form of the map constructor is a special case of the previous one whereby the image of x can be defined using a single expression. Again the scope of x is restricted to the map-constructor.

hom< A \rightarrow B | x :-> e(x), y :-> i(y) >

This constructor is the same as the map constructor above which allows the inverse map i(y) to be specified, except that the result is marked to be a homomorphism.

16.2.4 Coercion Maps

MAGMA has a sophisticated machinery for coercion of elements into structures other than the parent. Non-automatic coercion is usually performed via the ! operator. To obtain the coercion map corresponding to ! in a particular instance the **Coercion** function can be used.

Coercion(D, C) Bang(D, C)

> Given structures D and C such that elements from D can be coerced into C, return the map m that performs this coercion. Thus the domain of m will be D and the codomain will be C.

16.3 Operations on Mappings

16.3.1 Composition

Although compatible maps can be composed by repeated application, say g(f(x)), it is also possible to create a composite map.

f*g

Given a mapping $f : A \to B$, and a mapping $g : B \to C$, construct the composition h of the mappings f and g as the mapping $h = g \circ f : A \to C$.

Components(f)

Returns the maps which were composed to form f.

16.3.2 (Co)Domain and (Co)Kernel

The domain and codomain of any map can simply be accessed. Only for some intrinsic maps and for maps with certain domains and codomains, also the formation of image, kernel and cokernel is available.

Domain(f)

The domain of the mapping f.

Codomain(f)

The codomain of the mapping f.

Image(f)

Given a mapping f with domain A and codomain B, return the image of A in B as a substructure of B. This function is currently supported only for some intrinsic maps and for maps with certain domains and codomains.

Kernel(f)

Given the homomorphism f with domain A and codomain B, return the kernel of f as a substructure of A. This function is currently supported only for some intrinsic maps and for maps with certain domains and codomains.

16.3.3 Inverse

Inverse(m)

The inverse map of the map m.

16.3.4 Function

For a map given by a rule, it is possible to get access to the rule as a user defined function.

Function(f)

The function underlying the mapping f. Only available if f has been defined by the user by means of a rule map (i.e., an expression for the image under f of an arbitrary element of the domain).

Ch. 16

MAPPINGS

16.4 Images and Preimages

The standard mathematical notation is used to denote the calculation of a map image. Some mappings defined by certain system intrinsics and constructors permit the taking of preimages. However, preimages are not available for any mapping defined by means of the mapping constructor.

a	0	f	
f	(a))	

Given a mapping f with domain A and codomain B, and an element a belonging to A, return the image of a under f as an element of B.

3	0	f	
f ((S))	

Given a mapping f with domain A and codomain B, and a finite enumerated set, indexed set, or sequence S of elements belonging to A, return the image of S under f as an enumerated set, indexed set, or sequence of elements of B.

С	0	f	
f	(C))]

Given a homomorphism f with domain A and codomain B, and a substructure C of A, return the image of C under f as a substructure of B.

y @@ f

Given a mapping f with domain A and codomain B, where f supports preimages, and an element y belonging to B, return the preimage of y under f as an element of A.

If the mapping f is a homomorphism, then a single element is returned as the preimage of y. In order to obtain the full preimage of y, it is necessary to form the coset K * y@@f, where K is the kernel of f.

R @@ f

Given a mapping f with domain A and codomain B, where f supports preimages, and a finite enumerated set, indexed set, or sequence of elements R belonging to B, return the preimage of R under f as an enumerated set, indexed set, or sequence of elements of A.

D @@ f

Given a mapping f with domain A and codomain B, where f supports preimages and the kernel of f is known or can be computed, and a substructure D of B, return the preimage of D under f as a substructure of A.

HasPreimage(x, f)

Return whether the preimage of x under f can be taken and the preimage as a second argument if it can.

16.5Parents of Maps

Parents of maps are structures knowing a domain and a codomain. They are often used in automorphism group calculations where a map is returned from an automorphism group into the set of all automorphisms of some structure. Parents of maps all inherit from the type PowMap. The type PowMapAut which inherits from PowMap is type which the parents of automorphisms inherit from.

There is also a power structure of maps (of type PowStr, similar to that of other structures) which is used as a common overstructure of the different parents.

Parent(m)

The parent of m.

Domain(P)	
Codomain(P)	

The domain and codomain of the maps for which P is the parent.

Maps(D, C)	
Iso(D, C)	

The parent of maps (or isomorphisms) from D to C. Iso will only return a different structure to Maps if it has been specifically implemented for such maps.

Aut(S)

The parent of automorphisms of S.

!, 1-13, 1-174, 1-197, 1-216, 1-235, **2**-269, **2**-283, **2**-336, **2**-342, **2**-353, 354, **2**-370, **2**-397, **2**-413, **2**-447, **2**-478, **2**-588, **3**-653, **3**-737, **3**-754, **3**-760, **3**-780, **3**-877, 878, **3**-952, **3**-700, **3**-780, **3**-877, 878, **5**-932, **3**-992, **3**-1039, **3**-1061, **3**-1129-1131, **3**-1154, **3**-1159, **3**-1199, **4**-1229, **4**-1281, **4**-1315, **4**-1326, **4**-1351, **4**-1371, **4**-1401, **4**-1415, **4**-1436, **5**-1464, **5**-1506, **5**-1508, **5**-1523, 1524, **5**-1536, **5**-1643, 1644, **5**-1647 1524, **5**-1536, **5**-1643, 1644, **5**-1647, **5**-1808, 1809, **5**-1819, **5**-1871, **5**-1874, **5**-2003, 2004, **6**-2052, **6**-2065, **6**-2083, **6**-2252, **6**-2260, **6**-2299-2301, **6**-2350, **6**-2368, **6**-2380, **6**-2385, **6**-2390, **6**-2410, **7**-2423, **7**-2434, **7**-2458, **7**-2471, **7**-2509, 2510, **7**-2549, **7**-2553, **7**-2632, **7**-2682, **7**-2693, **7**-2707, 2708, **7**-2711, **7**-2759, 2760, **8**-2983, **8**-3009, 3010, **8**-3044, **8**-3082, **8**-3115, **9**-3310, **9**-3406, **9**-3429, **9**-3492, **9**-3504, **9**-3507, **9**-3648, **9**-3661, **9**-3681, 3682, **9**-3692, **9**-3707, **9**-3745, **5**-5081, 5082, **5**-5092, **5**-5707, **5**-5745, **10**-3967, **10**-4141, **10**-4158, 4159, **10**-4204, **11**-4344, 4345, **11**-4372, **11**-4397, **11**-4437, **11**-4487, **11**-4501, **11**-4543, **11**-4591, **12**-4718, 4719, **12**-4795, **12**-4816, 4817, **12**-4819, 4820, 12-4824, 4825, 12-4852, 4853, 12-4860, **12-**4879, 4880, **12-**4934, 4935, **12-**5008, 5009, 13-5084, 13-5202, 13-5216, **13-**5263 !!, **3**-933, **3**-1142, **3**-1218, **5**-1536, **11-**4444 ~, **12-**4858 (,), **2**-590, **4**-1404, **5**-1466, **5**-1537, **5**-1652, **5**-1871, **6**-2085, **6**-2352, **6**-2370, **7**-2447, **13**-5086, **13**-5203, 13-5217 (,,), **5**-1466, **5**-1537, **5**-1652, **5**-1810, **5**-2004, **6**-2085, **6**-2254, **6**-2352, 6-2370 (,), 8-3118 (), **1**-235, **1**-253, **2**-604, **4**-1416, **6**-2088, **6**-2101, **6**-2174, **6**-2333, **7**-2766, **9**-3316, **10**-3958 *, 1-66, 1-251, 2-269, 2-273, 2-287, **2**-311, **2**-314, **2**-337, **2**-339, **2**-346, **2**-357, **2**-377, **2**-397, **2**-417, **2**-434, **2**-449, **2**-481, **2**-539, **2**-572, 573, **2**-589, **2**-604, **3**-654, **3**-661, **3**-755, **3**-763, **3**-794, **3**-808, **3**-905, **3**-933,

-941, **3**-952, **3**-956, **3**-976, **3**-992, -1014, **3**-1047, **3**-1063, **3**-1132, -1142, 1143, **3**-1156, **3**-1159, **3**-1161, -1178, **3**-1198, 1199, **3**-1204, **3**-1222, -1178, **3**-1198, 1199, **3**-1204, **3**- **4**-1230, **4**-1285, **4**-1317, **4**-1328, **4**-1344, **4**-1354, **4**-1371, **4**-1384, **4**-1402, **4**-1416, **4**-1429, **4**-1437, **4**-1439, **4**-1451, **5**-1466, **5**-1536, **5**-1539, **5**-1600, **5**-1652, **5**-1678, **5**-1810, **5**-1871, **5**-2004, **6**-2054, **6**-2066, **6**-2085, **6**-2173, **6**-2253, **6**-2312, **6**-2351, **6**-2369, **6**-2380, **6**-2390, **6**-2411, **7**-2428, 2429, **7**--2390, **6**-2411, **7**-2428, 2429, **7**-2458, 7-2460, 7-2462, 7-2473, 7-2483, 7-2488, 7-2519, 7-2551, 7-2556, -2571, **7**-2576, **7**-2588, **7**-2632, -2651, **7**-2693, **7**-2765, **8**-2983, -3014, **8**-3034, **8**-3045, **8**-3068, 8-3082, 8-3117, 8-3127, 8-3149, -3226, **9**-3280, **9**-3290, **9**-3311, -3316, **9**-3322, **9**-3413, **9**-3433, -3504, **9**-3536, **9**-3584, **9**-3682, **9**-3699, **9**-3705, **9**-3711, **9**-3871, -3889, **10**-3970, **10**-4113, **10**-4147, $\begin{array}{c} \mathbf{10} - 4162, \ \mathbf{10} - 4205, \ \mathbf{10} - 4259, \ \mathbf{11} - 4344, \\ \mathbf{11} - 4347, \ 4348, \ \mathbf{11} - 4372, \ \mathbf{11} - 4375, \\ \mathbf{11} - 4402, \ \mathbf{11} - 4487, \ \mathbf{11} - 4507, \ \mathbf{11} - 4570, \\ \mathbf{11} - 4592, \ \mathbf{11} - 4619, \ \mathbf{12} - 4700, \ \mathbf{12} - 4782, \\ \end{array}$ 4783, 12-4796, 12-4817, 12-4820, -4835, **12**-4857, **13**-5085, **13**-5203, **13-**5216, **13-**5265 *:=, 1-66, 2-270, 2-287, 2-337, 2-357, **2-**377, **2-**397, **2-**417, **2-**449, **2-**481, -654, **3**-1047, **4**-1230, **4**-1317, -1810, **6**-2253, **6**-2312, **7**-2473, -3149, **10**-3970, **10**-4162, **12**-4857 +, 2-269, 2-273, 2-287, 2-311, 2-314, -269, **2**-273, **2**-287, **2**-311, **2**-314, **2**-337, **2**-339, **2**-357, **2**-377, **2**-397, **2**-417, **2**-434, **2**-449, **2**-481, **2**-539, **2**-572, **2**-589, **2**-601, **3**-653, **3**-664, **3**-737, **3**-794, **3**-808, **3**-871, **3**-905, **3**-942, **3**-952, **3**-956, **3**-976, **3**-1047, **3**-1063, **3**-1095, **3**-1132, **3**-1143, **3**-1156, **3**-1161, **3**-1178, **3**-1199, **3**-1204, **3**-1222, **4**-1230, **4**-1285, **4**-1317, **4**-1328, **4**-1344, **4**-1354 4-1317, 4-1328, 4-1344, 4-1354, 4-1371, 4-1384, 4-1402, 4-1407, -1429, **4**-1437, **4**-1451, **6**-2054, -2066, **7**-2429, **7**-2457, 2458, **7**-2462, -2473, **7**-2483, **7**-2488, **7**-2518, -2555, **7**-2571, **7**-2632, **7**-2693, -2696, **7**-2708, **7**-2765, **8**-2846,

8-2889, **8**-2983, **8**-3034, **8**-3045, **8**-3068, **8**-3082, **8**-3148, 3149, **9**-3226, **9**-3280, **9**-3290, **9**-3311, **9**-3322, **9**-3413, **9**-3433, **9**-3504, **9**-3584, **9**-3699, **9**-3705, **9**-3711, **9**-3889, **10-**3969, **10-**4111, **10-**4162, **11-**4348, 11-4372, 11-4402, 11-4487, 11-4507, **11**-4570, 4571, **11**-4582, **11**-4594, 11-4619, 11-4628, 12-4698, 12-4782, **12-**4795, 4796, **12-**4857, **12-**4940–4942, **12**-5020-5022, **12**-5057, 5058, **13**-5085, **13**-5091, **13**-5198, **13**-5203, **13**-5216, **13**-5220, **13**-5265 +:=, 2-270, 2-287, 2-337, 2-357, 2-377, 2-397, 2-417, 2-449, 2-481, 3-654, 3-1047, 4-1230, 4-1317, 7-2473, 8-3148, 3149, 10-3970, 10-4162, **12-**4857, **12-**4941, 4942, **12-**5021, 5022, **12-**5058 -, **2**-269, **2**-287, **2**-311, **2**-314, **2**-337, **2**-357, **2**-377, **2**-397, **2**-417, **2**-449, **2**-481, **2**-539, **2**-572, **2**-589, **3**-653, **3**-794, **3**-808, **3**-905, **3**-952, **3**-956, **3**-976, **3**-1047, **3**-1063, **3**-1132, **3-**1156, **3-**1161, **3-**1178, **3-**1199, **3**-1204, **3**-1222, **4**-1230, **4**-1285, **4-**1317, **4-**1328, **4-**1344, **4-**1354, **4**-1371, **4**-1384, **4**-1402, **4**-1437, **6**-2054, **7**-2429, **7**-2458, **7**-2473, **7**-2518, 2519, **7**-2555, 2556, **7**-2632, **7**-2693, **7**-2765, **8**-2983, **8**-3034, **8**-3045, **8**-3068, **8**-3082, **9**-3311, **9**-3413, **9**-3433, **9**-3504, **9**-3584, **9**-3699, **9**-3705, **9**-3711, **9**-3889, **10**-3969, 3970, **10**-4143, **10**-4158, 10-4162, 10-4205, 11-4348, 11-4372, 11-4402, 11-4487, 11-4507, 11-4571, 11-4619, 12-4783, 12-4796, 12-4857, **12**-4941, **12**-4943, **12**-5021, **12**-5023, 5024, **13**-5085, **13**-5203, **13**-5216, **13-**5265 -:=, 2-270, 2-287, 2-337, 2-357, 2-377, 2-397, 2-417, 2-449, 2-481, 3-654, **3-**1047, **4-**1230, **4-**1317, **7-**2473, **10-**3970, **10-**4162, **12-**4857, **12-**4941, **12-**4943, **12-**5021, **12-**5024 -A, **2**-572 -x, 8-3068 ., **2**-342, 343, **2**-370, 371, **2**-413, **2**-435, **2**-447, **2**-478, **2**-599, **3**-653, **3**-782, **3**-795, **3**-884, **3**-907, **3**-976, **3**-1040, **3-**1061, **3-**1129, **3-**1199, **3-**1202, 4-1276, 4-1315, 4-1326, 4-1342, **4-**1350, **4-**1371, **4-**1399, **4-**1427, **5**-1482, **5**-1526, **5**-1647, **5**-1799, **5**-1872, **5**-2003, **6**-2046, **6**-2050, **6**-2100, **6**-2266, **6**-2299, 2300, **6**-2348, **6**-2365, **6**-2380, **6**-2393, **6**-2407,

7-2425, **7**-2458, **7**-2471, **7**-2487, **7**-2512, **7**-2570, **7**-2632, **7**-2689, **8**-3017, **8**-3044, **8**-3067, **8**-3082, **9**-3289, **9**-3406, **9**-3429, **9**-3486, **9**-3498, **9**-3504, **9**-3681, **9**-3885, 11-4397, 11-4487, 11-4501, 11-4586, **11-**4627, **12-**4718, 4719, **12-**4795, **12**-4816, **12**-4819, **12**-4851, **12**-4879, **12**-4934, 4935, **13**-5080, **13**-5175, **13-**5215 /, **2**-270, **2**-273, **2**-287, **2**-311, **2**-314, **2**-270, **2**-273, **2**-287, **2**-311, **2**-314, **2**-337, **2**-346, **2**-353, **2**-357, **2**-377, **2**-397, **2**-417, **2**-449, **2**-481, **2**-589, **2**-596, **3**-654, **3**-661, **3**-794, **3**-905, **3**-942, **3**-952, **3**-1047, **3**-1063, **3**-1132, **3**-1143, **3**-1178, **4**-1230, **4**-1286, **4**-1328, **4**-1344, **4**-1371, **4**-1402, **4**-1437, **5**-1466, **5**-1474, **5**-1536, **5**-1563, **5**-1652, **5**-1675, **5**-1810, **5**-1830, **6**-2057, **6**-2000 **5**-1810, **5**-1830, **6**-2057, **6**-2090, **6**-2254, **6**-2261, **6**-2312, **6**-2351, **6**-2369, **7**-2424, **7**-2429, **7**-2459, **7**-2473, **7**-2483, **7**-2486, **7**-2551, 7-2632, 7-2694, 8-3011, 8-3149, **9**-3226, **9**-3287, **9**-3322, **9**-3414, 9-3504, 9-3699, 10-3970, 10-4259, **11**-4348, **11**-4372, **11**-4402, **11**-4583, **11**-4597, **11**-4628, **12**-4796 /:=, 2-270, 2-287, 2-337, 2-357, 2-481, 5-1810, 6-2254, 6-2312, 8-3149, **10-**3970 <>, 1-216 **=, 6**-2044, **6**-2087, **6**-2392 **0**, **1**-253, **6**-2101, **6**-2174, **6**-2333, 7-2766, 9-3437, 9-3493, 9-3684, **9**-3693, **9**-3875, **10**-4147, **11**-4566, **11-**4623 @@, 1-253, 6-2102, 6-2333, 9-3542, **9-**3544, **9-**3684, **10-**4147, **11-**4566, **11-**4623 [...], 1-66, 67, 1-176, 1-195, 196, 1-198, 199, 1-216, 1-218, 1-224, 225, 1-229, **2**-531, **2**-564, **2**-593, **3**-800, **3**-912, **3**-992, **4**-1402, **6**-2088, **7**-2436, **7**-2475, **7**-2525, **7**-2694, **7**-2766, 8-3035, 3036, 9-3493, 9-3648, 9-3662, **10-**3969, **10-**4143, **10-**4162, **10-**4205, **12-**4730, 4731, **13-**5087, **13-**5218 [* *], 1-223 [], **2**-530, **2**-564, **2**-592, **3**-756, **4**-1402, **6**-2044, **6**-2087, 2088, **7**-2436, **7**-2525, 7-2556, 7-2694, 8-3035, 3036, 9-3311, **9-**3316, **12-**4817, **13-**5205 " "**, 1-**66 **#**, **1**-11, **1**-67, **1**-176, **1**-198, **1**-216, **1-**218, **1-**224, **1-**236, **2-**266, **2-**335, **2**-375, **2**-416, **2**-448, **3**-703, **3**-709, **3**-737, **3**-828, **3**-991, **3**-1185, **4**-1278,

4-1317, **5**-1483, **5**-1506, **5**-1528, **5**-1601, **5**-1658, **5**-1756, **5**-1800, **5**-1956, **5**-1960, **5**-1972, 1973, **5**-1975, **5**-1977, **5**-1986, **5**-1999, **6**-2063, **6**-2083, **6**-2107, **6**-2174, **6**-2267, **6**-2305, **6**-2327, **6**-2349, **6**-2352, **6**-2366, **6**-2370, **6**-2380, **6**-2390, **6**-2409, **6**-2411, **7**-2424, **7**-2471, 7-2707, 7-2766, 2767, 8-2916, 8-3016, 8-3112, 10-3956, 10-3980, 10-4059, **10**-4144, **10**-4165, **11**-4631, **12**-4726, **12**-4817, **12**-4820, **12**-4886, **12**-4889, 12-4936, 12-4992, 13-5079, 13-5175, **13-**5215 #A, 11-4532 #N, 2-399 **&, 1-**189, **1-**211, **9-**3496 &*, 1-66, 1-219, 3-941 &cat, 1-66 &meet, **3**-943, **3**-992 &meet S, 2-601, 9-3228, 9-3281 \[...], **1-**197 [^], 1-66, 2-270, 2-287, 2-311, 2-314, **2**-337, **2**-346, **2**-357, **2**-377, **2**-397, **2**-417, **2**-424, **2**-449, **2**-481, **2**-539, **2-**572, **3-**755, **3-**794, **3-**905, **3-**942, **3-**952, **3-**1047, **3-**1063, **3-**1132, **3-**1143, **3-**1199, **3-**1204, **4-**1230, **4**-1285, **4**-1317, **4**-1328, **4**-1344, **4**-1354, **4**-1371, **4**-1416, **5**-1466, **5**-1490, 1491, **5**-1494, **5**-1536, 1537, **5**-1552, 1553, **5**-1569, **5**-1652, **5**-1669, 1670, 5-1678, 5-1690, 5-1810, **5**-1815, **5**-1821, **5**-1871, **5**-2004, **6**-2085, **6**-2161, 2162, **6**-2253, 2254, 6-2272, 6-2312, 6-2351, 2352, 6-2370, **6**-2380, **6**-2390, **6**-2411, **7**-2428, 2429, 7-2457, 7-2459, 7-2473, 7-2519, 7-2571, 7-2644, 7-2692, 7-2717, 7-2739, 7-2765, 7-2767, 8-3014, 8-3045, 8-3082, 3083, 8-3118, 8-3127, **9**-3226, **9**-3280, **9**-3290, **9**-3357, 3358, 9-3414, 9-3433, 9-3504, 9-3682, **9**-3871, **11**-4344, **11**-4402, **11**-4570, 11-4592, 12-4740, 12-4795, 12-4857, **12**-4904, **12**-4946, **13**-5138 ^-1, **2-**572 ^:=, 2-270, 2-287, 2-337, 2-357, 2-481, **5**-1810, **6**-2253, 2254, **6**-2312 ', **1-**52, **1-**243 ʻʻ, 1-52 ʻʻ, 1-243 { }, 1-167, 1-172, 173 {* *}, **1-**170, 171 $\{0, 0\}, 1-169$ A, 11-4598 AbelianBasis, 5-1496, 5-1833

AbelianExtension, 3-1009, 1010, 3-1012, **3-**1194 AbelianGroup, 2-343, 5-1469, 5-1475, **5**-1532, **5**-1794, **5**-1858, **6**-2045, 2046, 6-2051, 6-2057, 6-2096, 6-2262, 6-2265, 10-3989, 10-4012, 10-4171, **11-**4630 AbelianInvariants, 5-1496, 5-1707, 5-1833 AbelianLieAlgebra, 8-2980 AbelianNormalQuotient, 5-1599 AbelianNormalSubgroup, 5-1599 AbelianpExtension, 3-1010 AbelianQuotient, 5-1564, 5-1676, 5-1831, **6**-2057, **6**-2125, **6**-2280 AbelianQuotientInvariants, 5-1831, 6-2125, 2126, 6-2280 AbelianSubfield, 3-1016 AbelianSubgroups, 5-1501, 5-1562, 5-1826 Abs, 2-290, 2-314, 2-359, 2-427, 2-467, 2-484, 11-4373 AbsoluteAffineAlgebra, 3-1051 AbsoluteAlgebra, 10-4075AbsoluteBasis, 2-355, 3-791, 3-898 AbsoluteCartanMatrix, 7-2754 AbsoluteCharacteristicPolynomial, 3-798, 3-910 AbsoluteDegree, 2-356, 3-788, 3-893, **3-**1018, **3-**1102, **4-**1275 AbsoluteDiscriminant, 2-356, 3-788, **3**-894, **3**-1018, **3**-1103 AbsoluteField, 3-783, 3-885 AbsoluteFunctionField, 3-1098AbsoluteGaloisGroup, 3-1022AbsoluteInertiaDegree, 4-1274 AbsoluteInertiaIndex, 4-1274 AbsoluteInvariants, 10-4135 AbsoluteLogarithmicHeight, 3-796, 3-908 AbsolutelyIrreducibleConstituents, 7-2743 AbsolutelyIrreducibleModule, 7-2698AbsolutelyIrreducibleModules, 7-2740 AbsolutelyIrreducibleModulesBurnside, 7-2743 AbsolutelyIrreducibleModulesInit, 7-2746 AbsolutelyIrreducibleModulesSchur, 5-1852, **7**-2744 AbsolutelyIrreducibleRepresentationProcessDelete, **7**-2746 AbsolutelyIrreducibleRepresentationsInit, 7-2746 AbsolutelyIrreducibleRepresentationsSchur, 5-1852 AbsoluteMinimalPolynomial, 3-799, 3-911, 3-1134 AbsoluteModuleOverMinimalField, 7-2733 AbsoluteModulesOverMinimalField, 7-2734 AbsoluteNorm, 2-379, 3-798, 3-910, 3-935 AbsoluteOrder, 3-885, 3-1098 AbsolutePolynomial, 3-1051

AbsolutePrecision, 4-1288, 4-1329, 4-1344 AbsoluteQuotientRing, 3-1051 AbsoluteRamificationDegree, 4-1275 AbsoluteRamificationIndex, 4-1275 AbsoluteRank, 8-2867 AbsoluteRationalScroll, 9-3489 AbsoluteRepresentation, 5-1689AbsoluteRepresentationMatrix, 3-799, 3-911 AbsoluteTotallyRamifiedExtension, 4-1273 AbsoluteTrace, 2-379, 3-798, 3-910 AbsoluteValue, 2-290, 2-314, 2-359, **2**-427, **2**-467, **2**-484, **11**-4373 AbsoluteValues, 3-796, 3-908 Absolutize, 3-1051 ActingGroup, 5-2032, 8-3106 ActingWord, 5-1604Action, 5-1567, 5-1574, 6-2174, 7-2585, **7**-2690, **12**-4741, **12**-4901, **12**-4984 ActionGenerator, 3-729, 7-2584, 7-2690, **7-**2731 ActionGenerators, 7-2731 ActionGroup, 7-2731 ActionImage, 5-1574, 12-4741, 12-4901, **12-**4985 ActionKernel, 5-1574, 12-4741, 12-4902, **12-**4985 ActionMatrix, 7-2616, 7-2717 AdamsOperator, 8-3155AddAttribute, 1-52AddColumn, 2-535, 2-568, 7-2527 AddConstraints, $\mathbf{13}$ -5288 AddCubics, 10-4036, 10-4111 AddEdge, 12-4942, 12-5022, 5023, 12-5058 AddEdges, 12-4942, 4943, 12-5023, 12-5058 AddGenerator, 3-1033, 6-2206, 6-2396 AdditiveCode, 13-5210, 5211 AdditiveCyclicCode, $\mathbf{13}$ -5227, 5228 AdditiveGroup, 2-285, 2-335, 2-373, 4 - 1276AdditiveHilbert90, 2-380 AdditiveOrder, 8-2845, 8-2885, 8-2921, 8-3124 AdditivePolynomialFromRoots, 3-1202 AdditiveQuasiCyclicCode, 13-5228 AdditiveRepetitionCode, 13-5212 AdditiveUniverseCode, $\mathbf{13}$ -5213 AdditiveZeroCode, ${f 13}{\black}{\b$ AdditiveZeroSumCode, 13-5213AddNormalizingGenerator, $\mathbf{5}\text{-}1622$ AddRedundantGenerators, 6-2381AddRelation, 3-920, 6-2206, 6-2395 AddRelator, 6-2214AddRepresentation, 8-3149 AddRow, 2-534, 2-568, 7-2527 AddScaledMatrix, 2-539, 540 AddSimplex, 12-4701Addsimplex, 12-4701AddSubgroupGenerator, 6-2215

AddVectorToLattice, $\mathbf{12}$ -4798 AddVertex, 12-4941, 12-5021 AddVertices, 12-4941, 12-5021 adj, 12-4951, 12-5029 AdjacencyMatrix, 3-705, 12-4965 Adjoin, 7-2457 Adjoint, 2-548, 7-2522, 9-3436 AdjointAlgebra, 7-2668 AdjointIdeal, 9-3658AdjointIdealForNodalCurve, 9-3658 AdjointLinearSystem, 9-3659 AdjointLinearSystemForNodalCurve, 9-3658 AdjointLinearSystemFromIdeal, 9-3658 AdjointMatrix, 8-3035 AdjointPreimage (G, g), 5-1909 AdjointRepresentation, 8-3134, 8-3142, 8-3147 AdjointRepresentationDecomposition, 8-3141 Adjoints, 9-3659 AdjointVersion, 8-2891 AdmissableTriangleGroups, 11-4380AdmissiblePair, $\mathbf{11}$ -4684 Advance, 5-1631, 5-1946, 5-1965, 5-1970, 5-1984 AffineAction, 5-1593AffineAlgebra, 3-1046, 9-3288 AffineAlgebraMapKernel, 9-3292 AffineDecomposition, 9-3523, 9-3552 AffineGammaLinearGroup, 5-1623 AffineGeneralLinearGroup, 5-1622, 5-1883 AffineGroup, 2-401, 5-1628 AffineImage, 5-1593AffineKernel, 5-1593 AffineLieAlgebra, 8-3065 AffinePatch, 9-3521, 3522, 9-3674 AffinePlane, 9-3647AffineSigmaLinearGroup, 5-1623 AffineSpace, 9-3485, 3486, 9-3647 AffineSpecialLinearGroup, 5-1623, 5-1883 AFRNumber, 9-3847AGammaL, 5-1623 AGCode, 13-5148 AGDecode, 13-5151 AGDualCode, 13-5148Agemo, 5-1835, 6-2067 AGL, 5-1622, 5-1883 AGM, 2-509 AHom, 7-2590, 7-2711 AInfinityRecord, 7-2614 aInvariants, 10-3950, 10-4113 Alarm, 1-90 AlgComb, 4-1384 Algebra, 2-355, 3-786, 3-891, 4-1444, 7-2422, 7-2433, 2434, 7-2444, 2445, 7-2454, 7-2461, 7-2488, 7-2552, **7**-2585, **7**-2642, **7**-2717, **8**-2981, 8-3043, 9-3375 AlgebraGenerators, 7-2539

AlgebraicClosure, 3-1038 AlgebraicGenerators, 8-3111 AlgebraicGeometricCode, ${f 13}{\black}{\bla$ AlgebraicGeometricDualCode, 13-5148 AlgebraicPowerSeries, 4-1379 AlgebraicToAnalytic, 3-1211 AlgebraMap, 9-3540AlgebraOverCenter, 7-2445AlgebraStructure, 7-2539 AlgorithmicFunctionField, 9-3697 AllCliques, 12-4970, 4971 AllCompactChainMaps, 7-2609 AllCones, 9-3872 AllDefiningPolynomials, 9-3540Alldeg, 12-4953, 12-4955, 12-5031, 12-5033 AllExtensions, 4-1310AllFaces, 4-1240AllHomomorphisms, 6-2070 AllInformationSets, 13-5082 AllInverseDefiningPolynomials, 9-3540AllIrreduciblePolynomials, 2-382AllLinearRelations, 2-491AllNilpotentLieAlgebras, 8-3050 AllPairsShortestPaths, 12-5044AllParallelClasses, 12-4894AllParallelisms, 12-4894AllPartitions, 5-1578 AllPassants, 12-4735AllRays, 9-3874 AllResolutions, 12-4893AllRoots, 2-381AllSecants, 12-4735AllSlopes, 4-1243AllSolvableLieAlgebras, 8-3050AllSqrts, 2-338 AllSquareRoots, 2-338 AllTangents, 12-4735, 12-4737 AllVertices, 4-1240AlmostSimpleGroupDatabase, 5-1959Alphabet, 13-5080, 13-5175, 13-5213 AlphaBetaData, 10-4228 Alt, 5-1475, 5-1532, 6-2096 AlternantCode, 13-5110 AlternatingCharacter, 7-2784 AlternatingCharacterTable, 7-2784 AlternatingCharacterValue, 7-2784 AlternatingDominant, 8-3160, 3161 AlternatingElementToWord (G, g), 5-1613, 5-1894 AlternatingGroup, 5-1475, 5-1532, 6-2096 AlternatingPower, 8-3155AlternatingSquarePreimage (G, g), 5-1909 AlternatingSum, 2-511AlternatingWeylSum, 8-3162 Ambient, 9-3309, 9-3500, 9-3574, 9-3874, 12-4793 AmbientMatrix, 9-3316

AmbientModule, 11-4489AmbientSpace, 3-657, 9-3500, 9-3574, **9**-3653, **11**-4405, **13**-5080, **13**-5175, **13-**5214 AmbientVariety, 11-4631 AmbiguousForms, 3-759AModule, 7-2584, 7-2608 AnalyticDrinfeldModule, 3-1207AnalyticHomomorphisms, 10-4212AnalyticInformation, 10-4094AnalyticJacobian, 10-4208 AnalyticModule, 3-1210 AnalyticRank, 10-4052, 10-4076, 10-4094 And, 1-207 and, 1-11 Angle, 11-4349, 11-4374 AnisotropicSubdatum, 8-2867Annihilator, 7-2577, 9-3324 AntiAutomorphismTau, 8-3088 Antipode, 8-3087 AntisymmetricForms, 3-730, 5-1781 AntisymmetricMatrix, $\mathbf{2}$ -526, 527 ApparentCodimension, 9-3835, 9-3844ApparentEquationDegrees, 9-3835, 9-3844 ApparentSyzygyDegrees, 9-3835, 9-3844 Append, 1-200, 1-216, 217, 1-223 Apply, 9-3437 ApplyContravariant, 9-3821 ApplyTransformation, 10-4113ApproximateByTorsionGroup, 11-4625ApproximateByTorsionPoint, 11-4624ApproximateOrder, 11-4620ApproximateStabiliser, 5-1683 AQInvariants, 5-1831, 6-2125, 2126, 6-2280 Arccos, 2-495, 4-1336 Arccosec, 2-496 Arccot, $\mathbf{2}\text{-}496$ Arcsec, 2-496 Arcsin, 2-495, 4-1336 Arctan, 2-496, 4-1336 Arctan2, 2-496 AreCohomologous, 5-2033AreIdentical, 6-2316 AreInvolutionsConjugate, 5-1713 AreLinearlyEquivalent, 9-3893 AreProportional, 12-4796ArfInvariant, 2-623 Arg, 2-482 Argcosech, 2-498Argcosh, 2-498, 4-1337 Argcoth, 2-499 Argsech, 2-498 Argsinh, 2-498, 4-1336 Argtanh, 2-498, 4-1337 Argument, 2-482, 11-4373 ArithmeticGenus, 9-3516, 9-3671, 9-3764 ArithmeticGenusOfDesingularization, 9-3791 ArithmeticGeometricMean, 2-509

ArithmeticTriangleGroup, 11-4380ArithmeticVolume, 11-4368, 11-4374 Arrows, 9-3755 ArtinMap, 3-1020 ArtinRepresentation, 3-1221, 10-4231 ArtinRepresentations, 3-1217 ArtinSchreierExtension, 3-1183 ArtinSchreierImage, 3-1200 ArtinSchreierMap, 3-1200 ArtinTateFormula, 10-4284 AsExtensionOf, 3-871, 3-1095 ASigmaL, 5-1623 ASL, 5-1623, 5-1883 AssertAttribute, 2-305, 2-369, 4-1325, **5**-1545, **5**-1618, **5**-1667, **5**-1703, **5**-1705, **5**-2006, **7**-2771 AssertEmbedding, 11-4548AssignCapacities, 12-5012, 5013 AssignCapacity, **12**-5012 assigned, **1**-6, **1**-52, **1**-243 AssignEdgeLabels, 12-5013AssignLabel, 12-5011, 5012 AssignLabels, 12-5011, 5012 AssignLDPCMatrix, 13-5158 AssignNamePrefix, 3-1038 AssignNames, 1-9, 2-342, 2-369, 2-413, **2**-446, **2**-476, **3**-782, **3**-837, **3**-884, **3**-1060, **3**-1089, **3**-1154, **3**-1160, 4-1278, 4-1314, 4-1326, 4-1342, **4**-1350, **4**-1368, **7**-2470, **7**-2623, **8**-3043, **8**-3081, **9**-3405, **9**-3428, **9**-3486, **9**-3498, **9**-3503, **9**-3885 AssignVertexLabels, 12-5011 AssignWeight, 12-5012 AssignWeights, 12-5012, 5013 AssociatedEllipticCurve, 10-4022, 10-4028 AssociatedGradedAlgebra, 7-2579 AssociatedHyperellipticCurve, 10-4028AssociatedNewSpace, $\mathbf{11}$ -4446 AssociatedPrimitiveCharacter, 2-344, 3-812 AssociatedPrimitiveGrossencharacter, $\mathbf{3}$ -821 AssociativeAlgebra, 7-2422, 7-2443, 2444 AssociativeArray, 1-229AteqPairing, 10-3992 AteTPairing, 10-3992 AtkinLehner, 11-4454AtkinLehnerInvolution, 11-4301, 11-4318AtkinLehnerOperator, 11-4409, 11-4494, **11-**4509, **11-**4637, 4638, **11-**4660 AtkinModularPolynomial, 11-4295 ATLASGroup, 5-1986 ATLASGroupNames, 5-1986 Attach, 1-47AttachSpec, 1-49Augmentation, 7-2556 AugmentationIdeal, 7-2553 AugmentationMap, 7-2552 AugmentCode, 13-5114, 13-5229

Aut, 1-254, 9-3555, 10-4146, 12-4900, 13-5140 AutoCorrelation, 13-5278 AutomaticGroup, 6-2360, 2361 Automorphism, 8-3127, 9-3549, 9-3552, 9-3555, 9-3676, 10-3931, 3932, 10-3961 AutomorphismGroup, 2-355, 2-375, 2-401, **3**-719, **3**-721, **3**-727, **3**-803, **3**-964, 965, **3-**1020, **3-**1112, **3-**1115, 1116, **4-**1304, **4-**1370, **5-**1604, **5-**1696, **5**-1838, **5**-1843, **5**-1996, **5**-1998, **6**-2072, **7**-2582, **7**-2714, **8**-3127, 9-3555, 9-3680, 10-3967, 10-4149, **12-**4739, **12-**4764, **12-**4787, **12-**4898, **12-**4904, **12-**4976, **13-**5139, **13-**5231, **13-**5260 AutomorphismGroupMatchingIdempotents, **7**-2581 AutomorphismGroupOverCyclotomicExtension, **11-**4319 AutomorphismGroupOverExtension, 11-4319AutomorphismGroupOverQ, 11-4318AutomorphismGroupSolubleGroup, 5-1841AutomorphismGroupStabilizer, 12-4899, **13-**5140 AutomorphismOmega, 8-3088 Automorphisms, 3-964, 3-1112, 3-1115, **4-**1304, **9-**3681, **10-**3967 AutomorphismSubgroup, 12-4899, 13-5139 AutomorphismTalpha, 8-3088 AutomorphousClasses, 3-703AuxiliaryLevel, 11-4504BachBound, 3-802, 3-916 BadPlaces, 10-4062, 10-4087 BadPrimes, 10-3921, 10-4005, 10-4179 BaerDerivation, $\mathbf{12}$ -4746 BaerSubplane, 12-4746Ball, 12-4964 Bang, 1-251 BarAutomorphism, 8-3088 BarycentricSubdivision, 12-4702Base, 5-1619, 5-1705 BaseChange, 3-660, 7-2792, 9-3519, 3520, **9-**3652, **10-**3944, 3945, **10-**4125, **10-**4154, **10-**4204 BaseChangeMatrix, 7-2596 BaseComponent, 9-3575 BaseCurve, 11-4300 BaseElement, 6-2327 BaseExtend, 2-342, 3-660, 8-3111, **9**-3519, 3520, **10**-3944, 3945, **10**-4125, **10**-4154, **10**-4204, **11**-4396, **11**-4486, 11-4549, 11-4578 BaseField, 2-355, 2-367, 2-599, 3-783, **3**-885, **3**-1018, **3**-1045, **3**-1097, 1098, **3-**1185, **3-**1198, 1199, **4-**1275, **4-**1399, **7**-2634, **8**-2836, **9**-3407, **9**-3500,

9-3653, **10**-3915, **10**-4138, **10**-4153, 10-4203, 10-4209, 11-4657, 11-4659, **11-**4673 BaseImage, 5-1620 BaseImageWordStrip, 5-1621 BaseLocus, 9-3585BaseModule, 7-2512, 8-3036, 3037 BaseMPolynomial, 2-324BasePoint, 5-1619, 5-1705 BasePoints, 9-3546, 9-3577 BaseRing, 2-343, 344, 2-415, 2-447, **2**-530, **2**-563, **3**-660, **3**-885, **3**-976, **3**-1018, **3**-1061, **3**-1097, 1098, **3**-1199, **3**-1202, **3**-1204, **4**-1275, **4**-1327, 4-1341, 4-1350, 4-1366, 4-1399, **4**-1426, **5**-1647, **7**-2424, **7**-2454, **7**-2471, **7**-2512, **7**-2553, 2554, **7**-2570, **7**-2634, **7**-2689, **8**-2836, **8**-2867, **8**-2982, **8**-2991, **8**-3016, **8**-3043, **8**-3066, **8**-3109, **8**-3111, **9**-3309, **9**-3407, **9**-3430, **9**-3500, **9**-3653, **9**-3884, **10**-3915, **10**-3953, **10**-3956, **10**-4108, **10**-4138, **10**-4153, **10**-4203, 10-4209, 11-4340, 11-4366, 11-4405, 11-4489, 11-4504, 11-4529, 11-4657, **11-**4673, **12-**4854 BaseScheme, 9-3546, 9-3575 BasicAlgebra, 7-2563-2565 BasicAlgebraOfBlockAlgebra, 7-2566 BasicAlgebraOfEndomorphismAlgebra, 7-2565 BasicAlgebraOfExtAlgebra, 7-2566, 7-2606 BasicAlgebraOfGroupAlgebra, 7-2565BasicAlgebraOfHeckeAlgebra, 7-2565BasicAlgebraOfMatrixAlgebra, 7-2565 BasicAlgebraOfPrincipalBlock, 7-2566 BasicAlgebraOfSchurAlgebra, 7-2565 BasicCodegrees, 8-2913, 8-2961 BasicDegrees, 8-2913, 8-2961 BasicOrbit, 5-1619, 5-1705 BasicOrbitLength, 5-1619, 5-1705 BasicOrbitLengths, 5-1619, 5-1705 BasicOrbits, 5-1619 BasicRootMatrices, 8-2957 BasicStabiliser, 5-1619, 5-1706 BasicStabiliserChain, 5-1619, 5-1706 BasicStabilizer, 5-1619, 5-1706 BasicStabilizerChain, 5-1619, 5-1706 Basis, 2-355, 2-602, 3-659, 3-790, **3**-897, **3**-937, **3**-1102, **3**-1149, **3**-1166, **4**-1405, **4**-1430, **4**-1439, **7**-2425, **7**-2455, **7**-2461, **7**-2477, **7**-2524, **7**-2570, **7**-2634, **7**-2717, **7**-2762, **8**-2992, **8**-3017, **9**-3192 9-3277, 9-3319, 9-3717, 10-4089, 11-4398, 11-4439, 11-4489, 11-4503, 11-4586, 12-4795, 4796, 13-5080, **13-**5175, **13-**5215 BasisChange, 8-2876

BasisDenominator, $\mathbf{3}$ -659 BasisElement, 2-602, 7-2425, 7-2478, **7**-2524, **7**-2682, **8**-3017, **9**-3192, **9**-3277, **9**-3319 BasisMatrix, 2-602, 3-659, 3-738, 3-898, **3**-937, **3**-1102, **3**-1149, **7**-2461, **7**-2554, **7**-2642, **9**-3319, **13**-5080, **13-**5215 BasisOfDifferentialsFirstKind, 3-1177, **9-**3698 BasisOfHolomorphicDifferentials, 3-1177, **9-**3698 BasisProduct, 7-2434, 7-2682, 8-3010 BasisProducts, 7-2435, 8-3010 BasisReduction, 3-672, 673Basket, 9-3841, 9-3843 BBSModulus, 13-5278 BCHBound, 13-5128 BCHCode, 13-5108 BDLC, **13-**5131 BDLCLowerBound, 13-5126BDLCUpperBound, 13-5126 Bell, 2-296, 12-4808 BerlekampMassey, 13-5275 BernoulliApproximation, 2-509, 12-4808 BernoulliNumber, 2-509, 12-4808 BernoulliPolynomial, 2-438, 12-4808 BesselFunction, 2-507BesselFunctionSecondKind, 2-508 BestApproximation, 2-490 BestDimensionLinearCode, 13-5131BestKnownLinearCode, 13-5130BestKnownQuantumCode, $\mathbf{13}$ -5257 BestLengthLinearCode, 13-5130 BestTranslation, 2-326BettiNumber, 9-3333, 10-4095, 12-4706 BettiNumbers, 9-3333, 9-3844 BettiTable, 9-3333 BFSTree, 12-4966, 12-5037 BianchiCuspForms, 11-4673 Bicomponents, 12-4957, 12-5034 BigO, 4-1282, 4-1327 BigPeriodMatrix, 10-4208 BinaryForms, 9-3386 BinaryQuadraticForms, 3-753 BinaryResidueCode, 13-5184 BinaryString, 1-66 BinaryTorsionCode, ${f 13}{\black}{\$ Binomial, 2-296, 12-4807 bInvariants, 10-3951, 10-4113 BipartiteGraph, 12-4929 Bipartition, 12-4954, 12-5030 BiquadraticResidueSymbol, 3-843 BitFlip, 13-5269 BitPrecision, 2-480, 2-483 BKLC, 13-5130 BKLCLowerBound, 13-5126 BKLCUpperBound, 13-5126

BKQC, 13-5257 BLLC, **13-**5130 BLLCLowerBound, 13-5126 BLLCUpperBound, 13-5126 Block, 12-4879, 12-4890 BlockDegree, **12**-4887, **12**-4889 BlockDegrees, 12-4887BlockGraph, 12-4903, 12-4949 BlockGroup, 12-4899BlockMatrix, 2-537Blocks, 5-1716, 7-2776, 12-4886 BlocksAction, 5-1578 BlockSet, 12-4879 BlocksImage, 5-1578, 5-1716 BlockSize, 12-4887, 12-4889 BlockSizes, 12-4887BlocksKernel, 5-1578BlowUp, 9-3497 Blowup, 9-3664, 9-3871, 9-3896 BlumBlumShub, 13-5277 BlumBlumShubModulus, 13-5278 BogomolovNumber, 9-3853 BooleanPolynomialRing, 9-3201, 3202 Booleans, 1-11 BorderedDoublyCirculantQRCode, 13-5112 Borel, 12-4760 BorelSubgroup, 12-4760 Bottom, 3-991, 5-1506, 7-2707 Bound, 3-979 Boundary, 12-4697BoundaryIntersection, 11-4375BoundaryMap, 4-1445, 11-4450 BoundaryMaps, 4-1445 BoundaryMatrix, 12-4706 BoundaryPoints, 12-4786 BoundedFSubspace, 11-4603BQPlotkinSum, 13-5187 BraidGroup, 6-2096, 6-2298, 8-2932 Branch, 8-3153 BranchVertexPath, 12-4967 BrandtModule, 11-4485, 4486, 11-4495, **11-**4505 BrandtModuleDimension, 11-4494, 4495 BrandtModuleDimensionOfNewSubspace, **11-**4495 BrauerCharacter, 7-2776 BrauerClass, 11-4604BravaisGroup, 5-1783 BreadthFirstSearchTree, 12-4966, 12-5037 Bruhat, 8-3119 BruhatDescendants, 8-2914 BruhatLessOrEqual, 8-2913 BSGS, 5-1615, 5-1703 BString, 1-66 BuildHomomorphismFromGradedCap, 7-2579BurauRepresentation, 6-2337 BurnsideMatrix, 5-1827 CalabiYau, 9-3854

CalculateCanonicalClass, 9-3750 CalculateMultiplicities, 9-3750 CalculateTransverseIntersections, 9-3751 CalderbankShorSteaneCode, ${f 13}{\black}{\b$ CambridgeMatrix, 7-2510 CanChangeRing, 11-4549CanChangeUniverse, 1-181, 1-204 CanContinueEnumeration, 6-2217 CanDetermineIsomorphism, 11-4536CanIdentifyGroup, 5-1947 CanNormalize, 3-1210 CanonicalBasis, 8-3085 CanonicalClass, 9-3751, 9-3889 CanonicalCoordinateIdeal, 9-3777CanonicalCurve, 10-4232CanonicalDissidentPoints, 9-3842 CanonicalDivisor, 3-1160, 9-3581, 9-3710, 9-3889 CanonicalElements, 8-3093 CanonicalFactorRepresentation, 6-2305CanonicalGraph, 12-4980 CanonicalHeight, 10-4015, 10-4175 CanonicalImage, 9-3718 CanonicalInvolution, 11-4301 CanonicalLength, 6-2306 CanonicalLinearSystem, 9-3659 CanonicalLinearSystemFromIdeal, 9-3658 CanonicalMap, 9-3718 CanonicalModularPolynomial, 11-4295 CanonicalScheme, 10-4232CanonicalSheaf, 9-3604CanonicalWeightedModel, 9-3776 CanRedoEnumeration, 6-2217 CanSignNormalize, 3-1211 CanteautChabaudsAttack, 13-5124Capacities, $\mathbf{12}\text{-}5014$ Capacity, 12-5014 car, 1-215 Cardinality, 2-399 CarlitzModule, 3-1205 CarmichaelLambda, 2-293 CartanInteger, 8-2897 CartanMatrix, 7-2540, 7-2754, 8-2809, 2810, 8-2817, 8-2835, 8-2865, 8-2912, 8-2960, 8-3066, 8-3113, 9-3752 CartanName, 8-2820, 8-2835, 8-2865, 8-2911, 8-2960, 8-3018, 8-3066, 8-3112 CartanSubalgebra, 8-3027 CartesianPower, 1-215CartesianProduct, 1-215, 12-4946 Cartier, 3-1181, 9-3700, 9-3890 CartierRepresentation, 3-1181, 9-3700 CasimirValue, 8-3152 CasselsMap, **10-**4066 CasselsTatePairing, 10-4025

viii

cat, 1-66, 1-205, 1-223, 13-5118, **13-**5200, **13-**5230 cat:=, 1-66, 1-205, 1-223 Catalan, 2-483, 12-4807 Category, 1-28, 1-176, 2-266, 2-268, **2**-285, **2**-287, **2**-335, **2**-337, **2**-354, **2-**357, **2-**373, **2-**377, **2-**397, **2-**415, **2-**417, **2-**447, **2-**479, 480, **3-**657, **3**-757, **3**-782, **3**-793, **3**-884, **3**-905, **3-**1045, **3-**1047, **3-**1062, **3-**1097, **3**-1130, **3**-1142, **3**-1156, **4**-1230, 4-1316, 4-1318, 4-1327, 1328, 7-2471, **7**-2764, **9**-3407, **9**-3413, **9**-3430, **9-**3433, **10-**3915, **10-**3953, **10-**3956, **10**-3959, **10**-3969, **11**-4488, **12**-4854, 4855CayleyGraph, 12-4947Ceiling, 2-290, 2-314, 2-359, 2-483 Cell, 5-1630 CellNumber, 5-1629CellSize, 5-1630 Center, 2-266, 2-285, 2-335, 4-1230, **5**-1493, **5**-1586, **5**-1690, **5**-1832, 6-2058, 6-2276, 8-3026, 11-4375 CenterDensity, 3-682 CenterPolynomials, 8-3116 CentralCharacter, 3-818, 3-821, 11-4657, **11-**4682 CentralCollineationGroup, 12-4744CentralEndomorphisms, 3-731, 5-1782 CentralExtension, 5-1855 CentralExtensionProcess, 5-1855CentralExtensions, 5-1855CentralIdempotents, 7-2449 Centraliser, 5-1490, 1491, 5-1508, 5-1553, **5**-1821, **6**-2058, **6**-2272, 2273, **7**-2445, **7**-2447, **7**-2554, **7**-2557, **8**-3026 CentraliserOfInvolution, 5-1712, 1713 CentralisingMatrix, 5-1718Centralizer, 5-1490, 1491, 5-1508, 5-1553, **5**-1670, **5**-1821, **6**-2058, **6**-2272, 2273, **7**-2445, **7**-2447, **7**-2518, **7**-2554, **7**-2557, **7**-2577, **8**-3026 CentralizerGLZ, 5-1783, 5-1785 CentralizerOfNormalSubgroup, 5-1553 CentralOrder, 5-1656CentralValue, 10-4257Centre, 2-266, 2-373, 3-784, 3-889, **3**-1045, **4**-1316, **5**-1493, **5**-1586, **5**-1690, **5**-1832, **6**-2058, **6**-2276, **7**-2445, **7**-2518, **7**-2577, **7**-2764, 8-3026 CentredAffinePatch, 9-3523 CentreDensity, 3-682CentreOfEndomorphismAlgebra, 5-1782CentreOfEndomorphismRing, 3-731, 5-1782, **7-**2714 CentrePolynomials, 8-3116

CFP, **6**-2305 Chabauty, 10-4071, 4072, 10-4191 Chabauty0, 10-4191 ChainComplex, 12-4707ChainMap, 4-1450 ChainmapToCohomology, 7-2616 ChangeAlgebra, 7-2585ChangeAmbient, 12-4793ChangeBase, 5-1622 ChangeBasis, 7-2434, 7-2444, 8-2980 ChangeDerivation, 9-3417, 9-3439 ChangeDifferential, 9-3418, 9-3439 ChangeDirectory, 1-90 ChangeField, 3-1218 ChangeIdempotents, 7-2579 ChangeModel, 3-1213ChangeOfBasisMatrix, 5-1701ChangeOrder, 9-3216, 3217, 9-3284 ChangePrecision, 2-483, 3-953, 4-1279, **4**-1289, **4**-1327, **4**-1330, **4**-1340, **7**-2791, **9**-3412 ChangeRepresentationType, 7-2553ChangeRing, 2-415, 2-448, 2-538, 2-570, **3**-660, **4**-1327, **4**-1350, **4**-1386, **4**-1400, **5**-1646, **7**-2425, **7**-2485, 7-2518, 7-2692, 7-2732, 8-3017, 8-3043, 8-3081, 8-3111, 9-3216, **9**-3283, **9**-3326, **10**-3944, **10**-4105, **10-**4125, **11-**4549 ChangeSupport, 12-4928, 12-5007 ChangeUniverse, 1-181, 1-204, 4-1400 ChangGraphs, $\mathbf{12}$ -4950 Character, 3-1219CharacterDegrees, 5-1510, 5-1851, 7-2762, 2763CharacterDegreesPGroup, 5-1851, 7-2763 Characteristic, 2-266, 2-286, 2-335, **2**-356, **2**-375, **2**-416, **2**-448, **2**-479, **3**-788, **3**-893, **3**-1046, **3**-1062, **3**-1101, **4**-1230, **4**-1278, **4**-1317, 4-1328, 7-2471 CharacteristicPolynomial, 2-379, 2-546, **3**-798, **3**-910, **3**-1133, 1134, **4**-1292, **5**-1656, **7**-2460, **7**-2522, **7**-2633, 11-4573, 12-4950, 13-5275 CharacteristicPolynomialFromTraces, 10-4095 CharacteristicSeries, $\mathbf{5}$ -1999 CharacteristicVector, 2-588, 4-1401CharacterMultiset, 8-3162, 8-3166 CharacterRing, 7-2759 CharacterTable, 5-1510, 5-1608, 5-1700, **5**-1851, **6**-2070, **7**-2761 CharacterTableConlon, 5-1851, 7-2762 CharacterTableDS, 7-2761 CharacterWithSchurIndex, 7-2771 ChebyshevFirst, 2-436ChebyshevSecond, 2-436

ChebyshevT, $\mathbf{2}\text{-}436$ ChebyshevU, 2-436CheckCodimension, 9-3844CheckFunctionalEquation, 10-4264CheckPolynomial, 13-5083 CheckWeilPolynomial, ${f 10}{-}4285$ ChernNumber, 9-3765ChevalleyBasis, 8-3021, 3022 ChevalleyGroup, 5-1880 ChevalleyGroupOrder, 5-1882ChevalleyOrderPolynomial, 5-1881 chi, 2-345 ChiefFactors, 5-1589, 5-1693 ChiefSeries, 5-1589, 5-1693, 5-1833 ChienChoyCode, 13-5110ChineseRemainderTheorem, 2-312, 2-332, **2-**424, **3-**946, **3-**1143 Cholesky, 3-700 ChromaticIndex, 12-4967ChromaticNumber, 12-4967ChromaticPolynomial, 12-4967 cInvariants, **10-**3951, **10-**4113 Class, 5-1496, 5-1502, 5-1541, 5-1664, **5-**1815 ClassCentraliser, 5-1544, 5-1665 Classes, 5-1497, 5-1541, 5-1664, 5-1815, **12-**4989 ClassField, 4-1309ClassFunctionSpace, 7-2759 ClassGroup, 2-285, 2-355, 3-758, 3-801, 3-838, 3-914, 3-1123, 3-1172, 9-3714 ClassGroupAbelianInvariants, 3-1123, **3-**1172, **9-**3716 ${\tt ClassGroupCyclicFactorGenerators, {\bf 3-}916}$ ClassGroupExactSequence, 3-1123, 3-1174 ClassGroupGenerationBound, 3-1171 ClassGroupGetUseMemory, $\mathbf{3}$ -920 ClassGroupPRank, 3-1125, 3-1175, 9-3716 ClassGroupPrimeRepresentatives, 3-915ClassGroupSetUseMemory, $\mathbf{3}$ -920 ClassGroupStructure, 3-758ClassicalChangeOfBasis, 5-1734ClassicalConstructiveRecognition, 5-1733 ClassicalCovariantsOfCubicSurface, 9-3820 ClassicalForms, 5-1899 ClassicalIntersection, 7-2676 ClassicalMaximals, 5-1921 ClassicalModularPolynomial, 11-4295ClassicalPeriod, 11-4470ClassicalRewrite, 5-1734ClassicalRewriteNatural, 5-1735 ClassicalStandardGenerators, 5-1733ClassicalStandardPresentation (type, d, q : -), **5**-1735 ClassicalSylow, 5-1923ClassicalSylowConjugation, 5-1923ClassicalSylowNormaliser, 5-1923ClassicalSylowToPC, 5-1923

ClassicalType, 5-1904ClassifyRationalSurface, 9-3794ClassInvariants, 5-1666 ClassMap, 5-1496, 5-1544, 5-1664, 5-1815 ClassNumber, 3-757, 3-802, 3-839, 3-915, 3-1124, 3-1173, 9-3715 ClassNumberApproximation, 3-1171ClassNumberApproximationBound, 3-1172 ClassPowerCharacter, 7-2767ClassRepresentative, 2-332, 3-947, **5**-1498, **5**-1543, **5**-1665, **5**-1815 ClassRepresentativeFromInvariants, 5-1666 ClassTwo, 5-1850 CleanCompositionTree, 5-1742ClearDenominator, 11-4574ClearDenominators, 2-462ClearPrevious, 1-76ClearVerbose, 1-103ClebschGraph, 12-4950ClebschInvariants, 10-4133, 4134 ClebschSalmonInvariants, 9-3819 ClebschToIgusaClebsch, 10-4135CliffordAlgebra, 7-2681, 2682 CliffordIndexOne, 9-3731 CliqueComplex, 12-4694CliqueNumber, $\mathbf{12}$ -4970 ClockCycles, 1-27 ClosestVectors, 3-684ClosestVectorsMatrix, 3-684CloseVectors, 3-686CloseVectorsMatrix, 3-687CloseVectorsProcess, 3-691 Closure, 8-3167 ClosureGraph, $\mathbf{12}$ -4948 Cluster, 9-3495, 9-3510cmpeq, 1-12 cmpne, 1-12 CMPoints, 11-4382CMTwists, 11-4533 CO, 5-1885 CoblesRadicand, 9-3818 CoboundaryMapImage, 5-2022CocycleMap, 5-2034 CodeComplement, 13-5114, 13-5229 CodeToString, 1-67Codifferent, 3-947, 3-1149 Codimension, 9-3516, 9-3843 Codomain, 1-252, 1-254, 2-604, 4-1416, 5-1530, 5-1649, 6-2102, 6-2333, 7-2591, 8-3128, 9-3315, 9-3540, 9-3611, 10-4148, 11-4574, 11-4585 Coefficient, 2-418, 2-451, 4-1284, **4**-1295, **4**-1330, **4**-1355, **7**-2556, **9**-3434, **11**-4400, **12**-4859 CoefficientField, 2-599, 3-783, 3-885, **3**-1018, **3**-1097, 1098, **3**-1185, **4**-1275, 4-1399, 7-2764, 9-3356, 9-3500, **11-**4657, **11-**4673, **13-**5213

Х

CoefficientHeight, 3-797, 3-909, 3-935, **3-**1140 CoefficientIdeals, 3-898, 3-937, 3-1102, **3-**1149, **4-**1438 CoefficientLength, 3-797, 3-909, 3-935, **3-**1140 CoefficientMap, 9-3577CoefficientRing, 2-415, 2-447, 2-530, **2**-563, **3**-660, **3**-783, **3**-885, **3**-976, **3-**1018, **3-**1061, **3-**1097, 1098, **4-**1275, 4-1327, 4-1341, 4-1350, 4-1366, **4-**1399, **4-**1426, **5-**1647, **7-**2424, **7**-2454, **7**-2471, **7**-2487, **7**-2512, **7**-2553, 2554, **7**-2570, **7**-2689, **7**-2717, **7**-2791, **7**-2793, **8**-2982, **8**-2991, **8**-3016, **8**-3043, **8**-3066, **8**-3081, **8**-3109, **8**-3111, **9**-3289, **9**-3309, **9**-3356, **9**-3430, **9**-3500, **9**-3653, **9**-3884, **10**-3953, **10**-3956, **10**-4138, **10**-4153, **10**-4203, **10**-4209, **11**-4405, **11-**4657, **11-**4673, **12-**4854 Coefficients, 2-418, 2-450, 4-1284, **4-**1330, **4-**1344, **4-**1355, **7-**2474, **7**-2556, **8**-3045, **8**-3083, **9**-3312, **9-**3434, **10-**3950 CoefficientsAndMonomials, 2-452, 9-3312 CoefficientsNonSpiral, 4-1357CoefficientSpace, 9-3577 Coercion, 1-251Cofactor, $\mathbf{2}\text{-}545$ Cofactors, 2-545CohenCoxeterName, 8-2957 CohomologicalDimension, 5-1509, 5-1606, **5**-2016, 2017, **7**-2755 CohomologicalDimensions, 5-2016, 7-2755 Cohomology, 5-2034CohomologyClass, 5-2033 CohomologyDimension, 9-3347, 9-3619 CohomologyElementToChainMap, 7-2609 CohomologyElementToCompactChainMap, 7-2609 CohomologyGeneratorToChainMap, 7-2601 CohomologyGroup, 5-2016 CohomologyLeftModuleGenerators, 7-2601 CohomologyModule, 3-1016, 5-2014, 2015 CohomologyRightModuleGenerators, 7-2600 CohomologyRing, 7-2610 CohomologyRingGenerators, 7-2600 CohomologyRingQuotient, 7-2616 CohomologyToChainmap, 7-2616 CoisogenyGroup, 8-2870, 8-2913, 8-2961, 8-3114 Cokernel, 2-605, 4-1416, 4-1450, 7-2591, 9-3316, 9-3612, 11-4567, 11-4597 Collect, 6-2235, 8-3153 CollectRelations, 6-2233CollineationGroup, 12-4739 CollineationGroupStabilizer, $\mathbf{12}$ -4739 CollineationSubgroup, 12-4739

Colon, **7-**2462 ColonIdeal, 3-943, 3-1143, 9-3227, 9-3324 ColonIdealEquivalent, 9-3227 ColonModule, 9-3324Column, 9-3312, 12-4831 ColumnLength, $\mathbf{12}$ -4832 Columns, 12-4831 ColumnSkewLength, 12-4831ColumnSubmatrix, 2-532, 533, 2-567 ColumnSubmatrixRange, 2-533, 2-567 ColumnWeight, 2-564ColumnWeights, 2-564, 9-3309 ColumnWord, 12-4833CombineIdealFactorisation, 9-3582CombineInvariants, 3-978 COMinus, 5-1887 CommonComplement, $\mathbf{2}$ -627 CommonEigenspaces, 7-2532 CommonModularStructure, 11-4542CommonOverfield, 2-367 CommonZeros, 3-1137, 9-3704 Commutator, 8-3118 CommutatorGraph, 8-2991 CommutatorIdeal, **7**-2446, **7**-2646 CommutatorModule, 7-2445 CommutatorSubgroup, 5-1490, 5-1552, **5**-1585, **5**-1670, **5**-1690, **5**-1821, **5**-1832, **6**-2058, **6**-2141, **6**-2272 comp, 2-275, 3-786, 3-891 CompactInjectiveResolution, 7-2597 CompactPart, 12-4789 CompactPresentation, $\mathbf{5}\text{-}1864$ CompactProjectiveResolution, 7-2593, 7-2608 CompactProjectiveResolutionPGroup, 7-2608 CompactProjectiveResolutionsOfSimpleModules, **7**-2593 CompanionMatrix, 2-433, 7-2510, 9-3446 Complement, 2-601, 9-3577, 11-4450, **11-**4606, **12-**4881, **12-**4943 ComplementaryDivisor, 3-1170, 9-3713 ComplementaryErrorFunction, 2-510ComplementBasis, 5-1825 ComplementOfImage, 11-4606Complements, 5-1597, 5-1836, 7-2704 Complete, 6-2107, 6-2328 CompleteClassGroup, 3-920CompleteDigraph, 12-4931 CompleteGraph, 12-4930 CompleteKArc, 12-4734CompleteTheSquare, 10-4105CompleteUnion, 12-4946CompleteWeightEnumerator, 13-5101, **13-**5195, **13-**5225, 5226 Completion, 2-275, 2-353, 3-786, 3-891, **3-**1159, **4-**1306, **9-**3420, **9-**3441, 9-3693 Complex, 4-1443

ComplexCartanMatrix, 8-2957ComplexConjugate, 2-289, 2-358, 2-484, 3-792, 3-843, 3-852, 3-902 ComplexEmbeddings, 11-4418ComplexField, 2-477ComplexReflectionGroup, 8-2953, 2954 ComplexRootDatum, 8-2959 ComplexRootMatrices, 8-2956ComplexToPolar, 2-482ComplexValue, 11-4347, 11-4372 Component, 1-216, 9-3750, 12-4956, 4957, 12-5034 ComponentGroup, 9-3728ComponentGroupOfIntersection, 11-4595ComponentGroupOfKernel, 11-4564ComponentGroupOrder, 11-4474, 11-4646Components, 1-251, 3-1017, 9-3536, 12-4956, 12-5034 ComposeTransformations, 10-4113Composite, 4-1274CompositeFields, 3-778, 3-866 Composition, 3-755, 3-1117, 4-1332, **7**-2773 CompositionFactors, 5-1495, 5-1590, 5-1693, 5-1833, 7-2426, 7-2699, 8-3029 CompositionSeries, 5-1585, 5-1833, **6**-2067, **7**-2426, **7**-2699, **8**-3029 CompositionTree, 5-1739 CompositionTreeCBM, 5-1741 CompositionTreeElementToWord, 5-1741CompositionTreeFactorNumber, 5-1741 CompositionTreeFastVerification, 5-1740CompositionTreeNiceGroup, 5-1740CompositionTreeNiceToUser, 5-1740 CompositionTreeOrder, 5-1741 CompositionTreeReductionInfo, 5-1741 CompositionTreeSeries, 5-1741 CompositionTreeSLPGroup, 5-1740 CompositionTreeVerify, $\mathbf{5}$ -1740 Compositum, 3-778, 3-866 ComputePrimeFactorisation, 9-3583ComputeReducedFactorisation, 9-3582 Comultiplication, 8-3087 ConcatenatedCode, 13-5118 CondensationMatrices, 7-2540 CondensedAlgebra, 7-2536ConditionalClassGroup, 3-802, 3-915 ConditionedGroup, $\mathbf{5}\text{-}1860$ Conductor, 2-344, 2-356, 3-755, 3-812, **3**-821, **3**-838, **3**-852, **3**-896, **3**-1018, **3**-1196, 1197, **3**-1219, **7**-2643, **10**-4005, **10-**4062, **10-**4078, **10-**4087, **10-**4269, **11-**4489, **11-**4495, **11-**4532, **11-**4682 ConductorRange, 10-4059Cone, 9-3872, 12-4703, 12-4779 ConeIndices, 9-3873ConeInSublattice, 12-4780

ConeIntersection, 9-3873 ConeQuotientByLinearSubspace, 12-4780 Cones, 9-3872 ConesOfCodimension, 9-3872ConesOfMaximalDimension, 9-3873ConeToPolyhedron, 12-4781 ConeWithInequalities, 12-4779ConformalHamiltonianLieAlgebra, 8-3006 ConformalOrthogonalGroup, 5-1885ConformalOrthogonalGroupMinus, 5-1887 ConformalOrthogonalGroupPlus, 5-1886ConformalSpecialLieAlgebra, 8-3005 ConformalSymplecticGroup, 5-1884 ConformalUnitaryGroup, 5-1883 CongruenceGroup, 11-4419, 11-4467 CongruenceGroupAnemic, 11-4420CongruenceImage, 5-1762 CongruenceModulus, 11-4472, 11-4613 CongruenceSubgroup, 11-4339Conic, 9-3651, 10-3914, 10-3928, 12-4734 ConjecturalRegulator, 10-4053, 10-4077 ConjecturalSha, 10-4077 ConjugacyClasses, 5-1497, 5-1541, 5-1664, **5**-1815, **7**-2649, **8**-2912 Conjugate, 2-289, 2-358, 2-484, 3-755, **3**-797, **3**-843, **3**-845, **3**-853, **3**-908, **5**-1490, **5**-1552, **5**-1669, **5**-1821, **6**-2161, **6**-2272, **7**-2465, **7**-2633, **7-**2651, **12-**4835 ConjugateIntoBorel, 8-3119 ConjugateIntoTorus, 8-3119 ConjugatePartition, $\mathbf{12}$ -4830 Conjugates, 3-796, 3-908, 3-1049, 5-1496, 5-1502, 5-1541, 5-1664, 5-1815 ConjugatesToPowerSums, 3-990 ConjugateTranspose, 2-622 ConjugationClassLength, 8-3171 Connect, 9-3750 ConnectedKernel, 11-4564ConnectingHomomorphism, 4-1454ConnectionNumber, $\mathbf{12}$ -4890 ConnectionPolynomial, 13-5275 Consistency, 6-2233ConstaCyclicCode, 13-5107ConstantCoefficient, 2-418, 3-1204 ConstantField, 3-1097, 9-3407 ConstantFieldExtension, 3-1101, 9-3419, 9-3440 ConstantMap, 9-3533 ConstantRing, 9-3407, 9-3430 ConstantWords, 13-5104Constituent, 1-236Constituents, 3-737, 7-2700 ConstituentsWithMultiplicities, 7-2700 Constraint, 13-5289 Construction, 5-1974-1977 ConstructionX, 13-5119 ConstructionX3, 13-5119

ConstructionX3u, **13**-5119 ConstructionXChain, 13-5119 ConstructionXX, 13-5120 ConstructionY1, 13-5122 ConstructTable, 7-2553ContactLieAlgebra, 8-3007 ContainsQuadrangle, 12-4733Content, 2-426, 2-462, 3-658, 3-845, **3**-936, **3**-943, **12**-4817, **12**-4820, **12-**4833 ContentAndPrimitivePart, 2-426, 2-462 Contents, 4-1427Continuations, 4-1305ContinuedFraction, 2-490ContinueEnumeration, 6-2217 Contpp, 2-426, 2-462 Contract, 12-4944, 12-5025 Contraction, 12-4881Contravariants, 10-4114 ContravariantsOfCubicSurface, 9-3820 ControlledNot, 13-5269 Convergents, 2-490Converse, 12-4949, 12-5027 ConvertFromManinSymbol, 11-4437 ConvertToCWIFormat, 2-323 Convolution, 4-1332ConwayPolynomial, 2-382 Coordelt, 3-653Coordinate, 9-3493, 9-3662 CoordinateLattice, 3-647 CoordinateMatrix, 9-3200 CoordinateRing, 3-660, 9-3490, 9-3501, **9-**3648, **9-**3653 Coordinates, 2-602, 3-655, 656, 4-1405, 7-2437, 7-2524, 7-2554, 7-2633, 8-3036, 9-3200, 9-3312, 9-3493, 9-3648, 9-3662, 12-4731, 13-5086, 13-5203, 13-5217 CoordinateSpace, 3-657CoordinatesToElement, $\mathbf{3}$ -653 CoordinateVector, 3-656cop, 1-235 COPlus, 5-1886 CoprimeBasis, 2-309, 3-945 CoprimeBasisInsert, 3-946CoprimeRepresentative, 3-947CordaroWagnerCode, 13-5076Core, 5-1491, 5-1553, 5-1670, 5-1821, **6**-2058, **6**-2161, **6**-2273 CoreflectionGroup, 8-2931 CoreflectionMatrices, 8-2841, 8-2881, 8-2926, 8-2968 CoreflectionMatrix, 8-2841, 8-2881, 8-2926, 8-2968 CorestrictCocycle, 5-2022 CorestrictionMapImage, 5-2022 Coroot, 8-2839, 8-2876, 8-2919, 8-2966, 8-3121

CorootAction, 8-2931 CorootGSet, 8-2930 CorootHeight, 8-2843, 8-2884, 8-2923, 8-3124 CorootLattice, 8-2874 CorootNorm, 8-2844, 8-2884, 8-2923, 8-3124 CorootNorms, 8-2843, 8-2884, 8-2923, 8-3124 CorootPosition, 8-2839, 8-2876, 8-2919, 8-2966, 8-3121 Coroots, 8-2839, 8-2876, 8-2919, 8-2965, 8-3121 CorootSpace, 8-2838, 8-2874, 8-2918, 8-2965, 8-3121 Correlation, 13-5190CorrelationGroup, 12-4764 Cos, 2-494, 4-1336 Cosec, 2-494, 495 Cosech, 2-497 CosetAction, 5-1479, 5-1490, 5-1582, **5**-1688, **5**-1837, **6**-2180, **6**-2228, 6-2270 CosetDistanceDistribution, 13-5105CosetEnumerationProcess, 6-2211 CosetGeometry, 12-4756, 12-4761 CosetImage, 5-1479, 5-1490, 5-1582, **5**-1688, **5**-1837, **6**-2180, 2181, **6**-2228, **6-**2271 CosetKernel, 5-1479, 5-1490, 5-1582, **5**-1688, **5**-1837, **6**-2181, **6**-2228, 6-2271 CosetLeaders, 13-5088CosetRepresentatives, 11-4341, 11-4350 CosetSatisfying, 6-2179, 6-2218 CosetSpace, 6-2173, 6-2229 CosetsSatisfying, 6-2179, 6-2218 CosetTable, 5-1489, 5-1601, 5-1695, **5**-1837, **6**-2170, **6**-2219, **6**-2269 CosetTableToPermutationGroup, 6-2171 CosetTableToRepresentation, 6-2171 Cosh, 2-497, 4-1336 Cot, 2-494 Coth, 2-497 Counit, 8-3087 CountPGroups, 5-1950 Covalence, 12-4887 CoverAlgebra, 7-2578CoveringCovariants, 10-4114 CoveringRadius, 3-697, 13-5105 CoveringStructure, 1-29 CoweightLattice, 8-2886, 8-2924, 8-2969, 8-3125 CoxeterDiagram, 8-2821, 8-2835, 8-2865, 8-2911, 8-2960, 8-3113 CoxeterElement, 8-2917, 8-2962, 8-3116 CoxeterForm, 8-2841, 8-2881, 8-2921

CoxeterGraph, 8-2807, 8-2816, 8-2835, 8-2865, 8-2912, 8-2960, 8-3113 CoxeterGroup, 6-2094, 6-2096, 8-2824, **8**-2848, **8**-2899, **8**-2904–2909, **8**-2938, 8-2971 CoxeterGroupFactoredOrder, 8-2806, 2807, **8**-2811, **8**-2813, **8**-2819 CoxeterGroupOrder, 8-2806, 2807, 8-2811, 8-2813, 8-2819, 8-2836, 8-2869 CoxeterLength, 8-2916, 8-2969 CoxeterMatrix, 8-2806, 8-2816, 8-2835, **8**-2865, **8**-2912, **8**-2960, **8**-3113 CoxeterNumber, 8-2917, 8-2962, 8-3113 CoxMonomialLattice, 9-3880, 9-3886 CoxRing, 9-3882, 9-3884 Cputime, 1-26CreateCharacterFile, 2-320 CreateCycleFile, 2-320 CreateK3Data, 9-3855 CremonaDatabase, 10-4058CremonaReference, 10-4060CriticalStrip, 11-4641 CrossCorrelation, 13-5279CrossPolytope, 12-4778CRT, 2-312, 2-424, 3-946, 3-1143 CryptographicCurve, 10-3987 CrystalGraph, 8-3092 CSp, 5-1884 CSSCode, 13-5242CU, 5-1883 CubicFromPoint, 10-4105CubicSurfaceByHexahedralCoefficients, 9-3818 CubicSurfaceFromClebschSalmon, 9-3819 Cunningham, 2-305Current, 5-1946, 5-1965, 5-1970, 5-1984 CurrentLabel, 5-1946, 5-1965, 5-1970, 5-1984 Curve, 9-3501, 9-3507, 9-3649, 3650, **9**-3661, 3662, **9**-3683, **9**-3692, **9**-3698, 3699, 9-3702, 9-3705, 9-3707, **9**-3839, **10**-3956, **10**-3959, **10**-3969, **10**-4108, **10**-4153, **13**-5151 CurveDifferential, 9-3697CurveDivisor, 9-3697 CurvePlace, 9-3697 CurveQuotient, 9-3687Curves, 9-3841 Cusp, 11-4322 CuspForms, 11-4393CuspidalInducingDatum, 11-4683 CuspidalProjection, 11-4407CuspidalSubgroup, 11-4634CuspidalSubspace, 11-4407, 11-4449, **11-**4491, **11-**4502 CuspIsSingular, 11-4322CuspPlaces, 11-4322Cusps, 11-4342, 11-4350

CuspWidth, 11-4342CutVertices, 12-4957, 12-5034 Cycle, 5-1569, 6-2313 CycleCount, 2-320 CycleDecomposition, 5-1569CycleStructure, 5-1537CyclicCode, 13-5077, 13-5106, 13-5173 CyclicGroup, 5-1475, 5-1532, 5-1794, **6**-2097, **6**-2263 CyclicPolytope, 12-4779CyclicSubgroups, 5-1501, 5-1562, 5-1826 CyclicToRadical, 3-987CyclotomicAutomorphismGroup, 3-852CyclotomicData, 10-4228CyclotomicFactors, 13-5173 CyclotomicField, $\mathbf{3}\text{-}849$ CyclotomicOrder, 3-852CyclotomicPolynomial, 3-850CyclotomicRelativeField, 3-852CyclotomicUnramifiedExtension, 4-1270 Cylinder, 12-4704D), 10-4159 Darstellungsgruppe, 6-2098Data, 5-1948 DawsonIntegral, 2-509 Decimation, 13-5279Decode, 13-5135 DecodingAttack, 13-5124 DecomposeAutomorphism, 8-3129 DecomposeCharacter, 8-3151 DecomposeUsing, 11-4600DecomposeVector, 2-601 Decomposition, 2-332, 2-345, 2-355, 3-807, 808, 3-812, 3-913, 3-944, **3-**955, **3-**1147, **3-**1153, **3-**1220, **7**-2704, **7**-2773, **9**-3709, **11**-4445, 11-4491, 11-4502, 11-4598 DecompositionField, **3**-966, **3**-1018 DecompositionGroup, 3-810, 3-958, 3-965, **3-**1018, 1019, **4-**1370 DecompositionMatrix, 7-2754DecompositionMultiset, 8-3162, 8-3166 DecompositionType, 3-944, 3-1019, 3-1147, **3-**1153, **3-**1198 DecompositionTypeFrequency, 3-1019 Decycle, 6-2314 DedekindEta, 2-502DedekindTest, 2-427DeepHoles, 3-697 DefinesAbelianSubvariety, 11-4527DefinesHomomorphism, 6-2107 DefiningConstantField, 3-1097 DefiningEquations, 9-3540, 10-4107DefiningIdeal, 9-3501, 9-3653, 10-3915 DefiningMap, 4-1275 DefiningMatrix, 12-4800 DefiningModularSymbolsSpace, 11-4682DefiningMonomial, 9-3893

DefiningPoints, 4-1238 DefiningPolynomial, 2-356, 2-375, 3-789, **3**-895, **3**-1102, **3**-1220, **4**-1275, **4**-1342, **4**-1366, **4**-1383, **9**-3501, **9-**3653, **10-**3915, **10-**3954, **10-**4141, **10-**4203 DefiningPolynomials, 3-1102, 9-3501, **9-**3540, **10-**4228 DefiningSubschemePolynomial, 10-3956DefiniteGramMatrix, 11-4366DefiniteNorm, 11-4366DefRing, 8-3109 DegeneracyMap, 11-4443DegeneracyMatrix, 11-4444DegeneracyOperator, 11-4660Degree, 2-332, 2-356, 2-375, 2-419, **2**-455, **2**-599, **3**-658, **3**-788, **3**-810, **3**-828, **3**-893, **3**-935, **3**-957, **3**-992, **3**-1018, **3**-1045, **3**-1064, **3**-1101, **3**-1136, **3**-1152, **3**-1157, **3**-1164, **3**-1185, **3**-1198, **3**-1204, **3**-1219, 4-1275, 4-1317, 4-1331, 4-1366, **4-**1426, **4-**1450, **5-**1526, **5-**1537, **5**-1567, **5**-1629, **5**-1647, **5**-1654, 7-2437, 7-2454, 7-2512, 7-2767, 8-3036, 8-3045, 8-3083, 9-3188, **9**-3309, **9**-3312, **9**-3317, **9**-3435, **9**-3511, **9**-3516, **9**-3575, **9**-3585, **9**-3611, **9**-3653, **9**-3678, **9**-3694, **9**-3706, **9**-3711, **9**-3754, **9**-3839, **9-**3843, **10-**3965, **10-**4107, **10-**4132, **10**-4228, **11**-4405, **11**-4489, **11**-4504, **11**-4574, **11**-4620, **12**-4859, **12**-4953, **12**-4955, **12**-5031, 5032 Degree6DelPezzoType2_1, 9-3809 Degree6DelPezzoType2_2, 9-3809 Degree6DelPezzoType2_3, 9-3809 Degree6DelPezzoType3, 9-3809 Degree6DelPezzoType4, 9-3809 Degree6DelPezzoType6, 9-3809 DegreeMap, **11**-4604 DegreeOfExactConstantField, 3-1103, 3-1197 DegreeOfFieldExtension, 5-1718 DegreeOnePrimeIdeals, 3-914 DegreeRange, 12-4912 DegreeReduction, 5-1583Degrees, 4-1444, 12-4912 DegreeSequence, 12-4954, 12-4956, 12-5031, 12-5033 DegreesOfCohomologyGenerators, 7-2601 Delaunay, 10-4218 delete, 1-10, 1-243, 5-1941 DeleteCapacities, 12-5015 DeleteCapacity, 12-5015 DeleteData, 5-1601 DeleteEdgeLabels, 12-5015 DeleteGenerator, 6-2206, 6-2396 DeleteHeckePrecomputation, 11-4661

DeleteLabel, 12-5011, 12-5015 DeleteLabels, 12-5012, 12-5015 DeleteRelation, 6-2206, 2207, 6-2396 DeleteVertexLabels, 12-5012 DeleteWeight, 12-5015 DeleteWeights, 12-5015 DelPezzoSurface, 9-3804, 3805 DelsarteGoethalsCode, 13-5179Delta, 2-503, 504 DeltaPreimage (G, g), $\mathbf{5}\text{-}1910$ Demazure, 8-3157 Denominator, 2-285, 2-357, 3-794, 3-906, **3**-934, **3**-1064, **3**-1135, **3**-1148, **3**-1165, **7**-2462, **9**-3296, **9**-3504, **9-**3711, **11-**4574 Density, 2-530, 2-563, 3-682 DensityEvolutionBinarySymmetric, 13-5163 DensityEvolutionGaussian, 13-5165Depth, 2-589, 4-1404, 5-1861, 6-2253, 9-3378 DepthFirstSearchTree, 12-4966, 12-5038 Derivation, 9-3409, 9-3430 Derivative, 2-422, 2-457, 458, 3-976, **3-**1065, **4-**1295, **4-**1331, **4-**1359, 9-3417 DerivedGroup, 5-1493, 5-1585, 5-1690, **5**-1832, **6**-2141, **6**-2277 DerivedGroupMonteCarlo, 5-1714 DerivedLength, 5-1493, 5-1585, 5-1690, **5-**1833, **6-**2276 DerivedSeries, 5-1493, 5-1585, 5-1690, **5**-1833, **6**-2277, **8**-3030 DerivedSubgroup, 5-1493, 5-1585, 5-1690, **5-**1832, **6-**2058, **6-**2141, **6-**2277 DerksenIdeal, **9-**3387, **9-**3393 Descendants, 5-1848DescentInformation, 10-4010, 10-4063 DescentMaps, 10-4066Design, 12-4746, 12-4876, 12-4897 Detach, 1-47DetachSpec, 1-49Determinant, 2-544, 2-574, 3-658, 3-702, **3**-704, **3**-1218, **4**-1427, **5**-1656, **7-**2521, **9-**3752 Development, 12-4885DFSTree, 12-4966, 12-5038 DiagonalAutomorphism, 8-3038, 8-3128 DiagonalForm, 2-460Diagonalisation, 7-2533Diagonalization, 3-699, 7-2533 DiagonalJoin, 2-538, 2-570, 7-2526, 2527 DiagonalMatrix, 2-525, 7-2510, 8-3010 DiagonalModel, 10-4105 DiagonalSparseMatrix, 2-562 DiagonalSum, 12-4835Diagram, 12-4767 DiagramAutomorphism, 8-3038, 8-3089, 8-3128

Diameter, 2-485, 12-4963, 13-5105 DiameterPath, 12-4963 DickmanRho, **2**-293 DicksonFirst, **2**-386, **2**-437 DicksonInvariant, 2-624 DicksonNearfield, 2-395 DicksonPairs, 2-393 DicksonSecond, 2-386, 2-437 DicksonTriples, 2-393DicyclicGroup, 5-1475 diff, 1-185 Difference, 9-3496DifferenceSet, 12-4884 Different, 3-896, 3-913, 3-947, 3-1106, **3-**1140, **3-**1149 DifferentDivisor, 3-1160 Differential, 3-1176, 9-3409, 9-3417, **9-**3430, **9-**3698 DifferentialBasis, 3-1170, 3-1177, 9-3698, 9-3717 DifferentialFieldExtension, 9-3421 DifferentialIdeal, 9-3426 DifferentialLaurentSeriesRing, 9-3405DifferentialOperator, 9-3454DifferentialOperatorRing, 9-3428DifferentialRing, 9-3404DifferentialRingExtension, 9-3421 DifferentialSpace, 3-1099, 3-1171, 3-1176, 1177, 9-3698, 9-3717 Differentiation, 3-1139 DifferentiationSequence, 3-1139Digraph, **12**-4926 DihedralForms, 11-4413DihedralGroup, 5-1475, 5-1532, 5-1794, **6-**2097, **6-**2263 DihedralSubspace, 11-4407Dilog, 2-492 Dimension, 2-599, 2-602, 3-658, 3-704, **3-**1165, **4-**1427, **4-**1438, **5-**2015, 7-2424, 7-2454, 7-2488, 7-2524, **7**-2570, **7**-2585, **7**-2708, **7**-2718, **7**-2791, **8**-2836, **8**-2867, **8**-2912, 8-2992, 8-3016, 8-3066, 8-3112, **9**-3244, **9**-3284, **9**-3292, **9**-3516, **9**-3575, **9**-3717, **9**-3837, **9**-3840, **9-**3843, **10-**4153, **10-**4209, **11-**4405, **11**-4489, **11**-4504, **11**-4529, **11**-4554, **11**-4586, **11**-4657, **11**-4673, **12**-4694, **12**-4793, **12**-4795, **13**-5079, **13**-5214, 13-5262 DimensionByFormula, 11-4405DimensionCuspForms, 11-4479DimensionCuspFormsGamma0, $\mathbf{11}$ -4479 DimensionCuspFormsGamma1, 11-4479DimensionNewCuspFormsGamma0, 11-4479DimensionNewCuspFormsGamma1, 11-4479DimensionOfCentreOfEndomorphismRing, 3-731, 5-1782

DimensionOfEndomorphismRing, 3-731, 5-1782 DimensionOfExactConstantField, 3-1103 DimensionOfFieldOfGeometricIrreducibility, 9-3695 DimensionOfGlobalSections, 9-3619 DimensionOfHomology, 4-1445DimensionOfKernelZ2, 13-5189 DimensionOfSpanZ2, ${f 13}{\black}{\$ DimensionsEstimate, 8-2998 DimensionsOfHomology, 4-1445DimensionsOfInjectiveModules, 7-2571 DimensionsOfProjectiveModules, 7-2571 DimensionsOfTerms, 4-1445 DirectProduct, 5-1477, 5-1534, 5-1650, **5**-1804, **6**-2098, **6**-2262, **6**-2395, **8**-2929, **8**-3126, **9**-3488, **9**-3647, **11-**4592, **13-**5114, **13-**5200, **13-**5229 DirectSum, 3-664, 4-1400, 4-1445, 6-2058, **7**-2435, **7**-2515, **7**-2517, **7**-2692, **7**-2718, **7**-2737, **7**-2791, **8**-2846, **8**-2889, **8**-3025, **8**-3163, **8**-3166, 9-3323, 9-3609, 11-4592, 12-4795, **13**-5114, **13**-5199, **13**-5229, **13**-5255 DirectSumDecomposition, 7-2449, 7-2704, 8-2847, 8-2890, 8-3025, 8-3163, 8-3166 DirichletCharacter, 3-816, 3-1221, **11-**4406, **11-**4529, **11-**4657 DirichletCharacterOverNF, 3-818 DirichletCharacterOverQ, 3-818 DirichletCharacters, 11-4405, 11-4530DirichletGroup, 2-342, 3-811 DirichletRestriction, 3-815 Disconnect, 9-3750 Discriminant, 2-356, 2-432, 2-467, 2-623, **3**-754, **3**-788, **3**-838, **3**-845, **3**-894, **3**-1017, **3**-1103, **4**-1276, **4**-1368, **7**-2454, **7**-2635, **7**-2642, **10**-3919, **10**-3951, **10**-4114, **10**-4132, **11**-4489, 11-4495, 11-4585 DiscriminantDivisor, 3-1197 DiscriminantFromShiodaInvariants, 10-4137 DiscriminantOfHeckeAlgebra, 11-4457DiscriminantRange, 3-828 DiscToPlane, 11-4375Display, 6-2234 DisplayBurnsideMatrix, 5-1827 DisplayCompTreeNodes, 5-1740DisplayFareySymbolDomain, 11-4353DisplayPolygons, 11-4351 Distance, 2-485, 4-1302, 11-4348, **11-**4374, **12-**4963, **12-**5042, **13-**5085, **13-**5203, **13-**5217 DistanceMatrix, $\mathbf{12}$ -4965 DistancePartition, 12-4964 Distances, 12-5042 DistinctDegreeFactorization, 2-432 DistinctExtensions, 5-2026

xvi

DistinguishedOrbitsOnSimples, 8-2867 div, 2-287, 2-337, 2-417, 2-423, 2-449, 2-459, 3-654, 3-808, 3-905, 3-942, 3-956, 3-1132, 3-1156, 3-1161, 4-1230, 4-1285, 4-1295, 4-1318, **4**-1328, **4**-1344, **7**-2459, **7**-2473, **9**-3311, **9**-3414, **9**-3705, **9**-3711 div:=, 2-287, 2-449, 4-1286, 7-2473 DivideOutIntegers, 11-4560 DivisionPoints, 10-3970 DivisionPolynomial, 10-3954 Divisor, 3-808, 3-955, 956, 3-1136, **3**-1149, **3**-1159, **3**-1179, **9**-3580, **9**-3699, **9**-3707-3709, **9**-3888, **13**-5151 DivisorClassGroup, 9-3887 DivisorClassLattice, 9-3880, 9-3887DivisorGroup, 3-807, 3-954, 3-1099, 3-1155, 3-1159, 9-3580, 9-3707, 9-3888 DivisorIdeal, **7**-2487, **9**-3289 DivisorMap, 9-3612, 9-3718 DivisorOfDegreeOne, 3-1160, 9-3696 Divisors, 2-309, 2-311, 3-913, 3-944 DivisorSigma, 2-293 DivisorToSheaf, 9-3613 Dodecacode, 13-5242Domain, 1-252, 1-254, 2-604, 3-812, **4**-1383, **4**-1416, **5**-1530, **5**-1648, **6**-2102, **6**-2333, **7**-2591, **8**-3128, **9**-3315, **9**-3540, **9**-3611, **10**-4148, **11-**4574, **11-**4585 DominantCharacter, 8-3152DominantDiagonalForm, 3-726 DominantLSPath, 8-3090 DominantWeight, 8-2887, 8-2924, 8-2970, 8-3125 DotProduct, 2-611DotProductMatrix, 2-611 Double, 10-4205 DoubleCoset, 5-1600, 6-2178 DoubleCosetRepresentatives, 5-1600 DoubleCosets, 6-2178 DoubleGenusOneModel, 10-4111 DoublePlotkinSum, 13-5188 DoublyCirculantQRCode, 13-5111 DoublyCirculantQRCodeGF4, 13-5112 Dual, 3-662, 4-1431, 4-1444, 6-2072, 7-2596, 7-2738, 8-2847, 8-2891, 8-2929, 8-2964, 8-3126, 9-3609, **11**-4607, **12**-4725, **12**-4780, **12**-4794, **12**-4881, **13**-5081, **13**-5091, **13**-5198, **13**-5215, **13**-5220 DualAtkinLehner, 11-4454DualBasisLattice, 3-663 DualCoxeterForm, 8-2841, 8-2881, 8-2921 DualEuclideanWeightDistribution, 13-5194 DualFaceInDualFan, 9-3874 DualFan, 9-3870

DualHeckeOperator, 11-4453DualIsogeny, 10-3964 DualityAutomorphism, 8-3129 DualKroneckerZ4, 13-5188 DualLeeWeightDistribution, 13-5193 DualMorphism, 8-2895 DualQuotient, 3-663 DualStarInvolution, 11-4454DualVectorSpace, 11-4442DualWeightDistribution, 13-5100, 13-5192, **13-**5225 DuvalPuiseuxExpansion, 4-1251 DynkinDiagram, 8-2821, 8-2835, 8-2865, **8**-2911, **8**-2960, **8**-3112 DynkinDigraph, 8-2813, 8-2817, 8-2835, **8**-2865, **8**-2912, **8**-2960, **8**-3113 E, **2-**478 e, **2-**478 E.i, 12-5009 E2NForm, 11-4324 E4Form, 11-4324E6Form, 11-4324 Ealpha, 8-3090, 3091 EARNS, 5-1592 EasyBasis, 9-3199 EasyIdeal, 9-3199 EchelonForm, 2-548, 7-2527 EcheloniseWord, 6-2235 ECM, 2-307 ECMFactoredOrder, $\mathbf{2}\text{-}308$ ECMOrder, $\mathbf{2}\text{-}308$ ECMSteps, 2-308EdgeCapacities, 12-5015EdgeConnectivity, 12-4961, 12-5036 EdgeDeterminant, 9-3754EdgeGroup, 12-4980 EdgeIndices, 12-4786, 12-5008 EdgeLabels, 9-3754, 12-5015 EdgeMultiplicity, 12-5008 Edges, 12-4785, 12-4934, 12-5008 EdgeSeparator, 12-4961, 12-5036 EdgeSet, 12-4934 EdgeUnion, 12-4946, 12-5026 EdgeWeights, 12-5015EFAModuleMaps, 6-2281 EFAModules, 6-2282 EFASeries, 6-2277 EffectiveSubcanonicalCurves, 9-3846 EhrhartCoefficient, 12-4787EhrhartCoefficients, 12-4787 EhrhartPolynomial, 12-4787 EhrhartSeries, 12-4787EichlerInvariant, 7-2644Eigenform, 11-4424, 11-4459, 11-4664 Eigenforms, 11-4664Eigenspace, 2-547, 7-2523, 9-3837 Eigenvalues, 2-547, 7-2523 EightDescent, 10-4030

Eisenstein, 2-499, 500, 3-761 EisensteinData, 11-4411 EisensteinProjection, 11-4407EisensteinSeries, 11-4411 EisensteinSubspace, 11-4407, 11-4449, **11-**4491, **11-**4502 EisensteinTwo, 10-4020Element, 2-397, 11-4624 ElementaryAbelianGroup, 6-2263 ElementaryAbelianNormalSubgroup, 5-1599 ElementaryAbelianQuotient, 5-1564, 5-1676, **5**-1831, **6**-2062, **6**-2125, **6**-2280 ElementaryAbelianSeries, 5-1596, 5-1692, **5**-1833 ElementaryAbelianSeriesCanonical, 5-1596, **5-**1692, **5-**1834 ElementaryAbelianSubgroups, 5-1501, 5-1562, 5-1826 ElementaryDivisors, 2-552, 2-575, 4-1431, **7**-2528 ElementaryPhiModule, 7-2791 ElementarySymmetricPolynomial, 9-3264, 9-3396 ElementaryToHomogeneousMatrix, 12-4870ElementaryToMonomialMatrix, 12-4869 ElementaryToPowerSumMatrix, 12-4870 ElementaryToSchurMatrix, 12-4869 Elements, 2-342, 6-2327, 11-4627, **12-**4759 ElementSequence, 5-1855 ElementSet, 5-1539ElementToSequence, 1-67, 2-310, 2-344, 2-360, 2-372, 2-397, 2-418, 2-530, 2-563, 2-589, 3-655, 3-756, 3-800, 3-912, 3-952, 3-1131, 4-1284, 4-1315, 4-1330, 4-1344, 4-1402, 4-1437, 5-1524, 5-1644, 5-1808, **6**-2053, **6**-2083, **6**-2252, **6**-2305, **6**-2352, **6**-2370, **6**-2397, **6**-2411, 7-2437, 7-2459, 7-2525, 7-2556, 7-2633, 7-2693, 8-3036, 10-3950, **10**-3969, **10**-4143, **10**-4162, **10**-4205, **12-**4731, **12-**4817 ElementType, 1-29EliasAsymptoticBound, 13-5128 EliasBound, 13-5126Eliminate, 6-2186, 6-2208, 6-2397 EliminateGenerators, 6-2186 EliminateRedundancy, 6-2234 Elimination, 9-3534EliminationIdeal, 9-3236 EllipticCurve, 9-3675, 10-3940-3942, **10**-4059, **10**-4231, **11**-4424, **11**-4477, **11-**4648 EllipticCurveDatabase, 10-4058EllipticCurveFromjInvariant, 10-3940 EllipticCurveFromPeriods, ${f 10}{-}4050$ EllipticCurves, 10-4061

EllipticCurveSearch, 10-4077, 10-4088 EllipticCurveWithGoodReductionSearch, **10-**4077 EllipticCurveWithjInvariant, 10-3940 EllipticExponential, 10-4051 EllipticInvariants, 11-4369, 11-4649 EllipticLogarithm, 10-4051EllipticPeriods, 11-4649EllipticPoints, 11-4342elt, 1-216, 2-282, 283, 2-336, 2-354, **2**-370, 371, **2**-413, **2**-447, **2**-478, **2**-587, **3**-653, **3**-754, **3**-780, **3**-877, 878, **3**-1061, **3**-1129, 1130, **4**-1281, 1282, 4-1326, 4-1352, 4-1401, **5**-1464, **5**-1523, **5**-1643, **7**-2434, **7**-2471, **7**-2509, **7**-2549, **7**-2682, **7**-2692, **7**-2759, **8**-3010, **8**-3067, 8-3115, 10-4141, 10-4158, 13-5084, **13-**5202, **13-**5216 elt< >, 10-3967 Eltlist, 8-3116 Eltseq, 1-67, 1-200, 2-285, 2-310, **2**-360, **2**-372, **2**-418, **2**-530, **2**-563, **2-**589, **3-**655, **3-**756, **3-**800, **3-**912, **3**-952, **3**-1131, **3**-1199, **3**-1205, **4-**1284, **4-**1315, **4-**1330, **4-**1344, **4-**1372, **4-**1402, **4-**1437, **5-**1524, **5**-1644, **5**-1808, **6**-2053, **6**-2083, **6**-2252, **6**-2305, **6**-2352, **6**-2370, **6**-2397, **6**-2411, **7**-2437, **7**-2459, **7**-2525, **7**-2556, **7**-2633, **7**-2693, **8**-3036, **9**-3311, **9**-3415, **9**-3434, **10**-3950, **10**-3969, **10**-4108, **10**-4143, **10**-4162, **10**-4205, **11**-4344, **11**-4406, **11**-4488, **11**-4504, **11**-4568, **11**-4624, **12**-4731, **12**-4817 EltTup, 8-3068 Embed, 2-368, 3-784, 3-889, 3-1099, 7-2465, 7-2638, 2639 Embedding, 12-4974, 12-5039 EmbeddingMap, 3-784, 3-889, 3-992 EmbeddingMatrix, 7-2642 Embeddings, 11-4547EmbeddingSpace, 4-1427EmbedPlaneCurveInP3, 9-3566 EModule, 9-3307, 3308 EmptyBasket, 9-3841 EmptyDigraph, 12-4931 EmptyGraph, 12-4930EmptyPolyhedron, 12-4781EmptyScheme, 9-3496 EmptySubscheme, 9-3496End, 11-4578 EndomorphismAlgebra, 4-1411, 5-1782, 7-2714 EndomorphismRing, 3-730, 5-1782, 7-2714, **10-**4213 Endomorphisms, 3-730, 5-1782

xviii

EndpointWeight, 8-3091 EndVertices, 4-1241, 12-4937, 12-5009 Enumerate, 7-2465, 7-2654 EnumerationCost, 3-694 EnumerationCostArray, 3-694 eq, 1-11, 1-68, 1-183, 184, 1-209, 1-218, **2-**268, **2-**270, **2-**274, **2-**286, 287, **2**-314, **2**-336, 337, **2**-339, **2**-344, **2**-356, 357, **2**-376, 377, **2**-397, **2**-399, **2-**416, 417, **2-**435, **2-**448, 449, **2-**480, 481, **2**-571, **2**-600, **3**-655, **3**-659, **3**-703, 704, **3**-737, **3**-756, **3**-792, **3**-794, **3**-807, **3**-901, **3**-906, **3**-939, **3**-942, **3**-952, **3**-954, **3**-992, **3**-1014, **3-**1046, **3-**1048, **3-**1062, 1063, **3-**1126, **3-**1132, **3-**1145, **3-**1156, 1157, **3-**1160, 1161, **3-**1178, 1179, **3-**1198, 1199, **3**-1202, **3**-1204, **3**-1222, **4**-1230, **4**-1279, **4**-1286, **4**-1317, 1318, **4**-1328, 1329, 4-1342, 4-1344, 4-1350, 4-1358, 4-1371, 4-1385, 4-1406, 4-1428, 4-1437, 4-1439, 5-1466, **5**-1485, **5**-1508, **5**-1538, **5**-1551, **5**-1601, **5**-1654, **5**-1659, **5**-1811, **5**-1820, **5**-1872, **5**-2004, **6**-2061, **6**-2064, **6**-2086, **6**-2166, **6**-2174, **6**-2254, **6**-2268, **6**-2316, **6**-2352, **6**-2370, **6**-2383, **6**-2391, **6**-2411, 7-2428, 7-2430, 7-2456, 7-2459, **7**-2462, **7**-2473, **7**-2483, **7**-2488, **7**-2520, **7**-2525, **7**-2633, **7**-2696, **7**-2708, **7**-2765, **8**-2835, **8**-2864, **8**-3013, **8**-3068, **8**-3091, **8**-3110, **8**-3148, **9**-3229, **9**-3281, **9**-3289, **9**-3313, **9**-3323, **9**-3410, **9**-3414, **9**-3431, **9**-3434, **9**-3487, **9**-3502, **9**-3504, **9**-3507, **9**-3541, **9**-3574, **9**-3580, **9**-3584, **9**-3662, **9**-3672, **9**-3682, **9**-3699, **9**-3702, **9**-3705, **9**-3707, **9**-3712, **9**-3745, **9**-3753, **9**-3837, **9**-3840, **9**-3844, **9**-3871, **9**-3884, **9**-3888, **10**-3953, **10**-3956, 10-3959, 10-3965, 10-3974, 10-4007, **10**-4143, **10**-4147, **10**-4161, **10**-4205, **10**-4229, **11**-4340, **11**-4344, **11**-4347, 10-4229, 11-4340, 11-4344, 11-4347, 11-4372, 11-4487, 11-4506, 11-4541, 11-4577, 11-4590, 11-4621, 11-4633, 12-4698, 12-4727, 12-4729, 4730, 12-4782, 12-4796, 12-4798, 12-4817, 12-4820, 12-4835, 12-4855, 12-4858, 12-4897, 12-4936, 12-4952, 12-5009, 12-5029, 13-5087, 13-5092, 13-5205, 13-5218, 13-5265, 13-5265, 13-5265, 13-5218, 13-5265, 13-52 13-5218, 13-5221, 13-5262, 13-5265 EqualDegreeFactorization, 2-432 Equality, 3-1116 EqualizeDegrees, 4-1447 EquationOrder, 3-836, 3-868, 3-1016, **3-**1092

EquationOrderFinite, 3-1091 EquationOrderInfinite, 3-1092 Equations, 10-4107EquidimensionalDecomposition, 9-3254EquidimensionalPart, 9-3254EquitablePartition, 12-4964EquivalentPoint, 11-4347Erf, 2-509 Erfc, 2-510 Error, 1-19 ErrorFunction, 2-509EstimateOrbit, 5-1682 Eta, 7-2549 EtaqPairing, 10-3991 EtaTPairing, 10-3991 EuclideanDistance, 13-5194EuclideanLeftDivision, **9**-3443 EuclideanNorm, **2**-289, **2**-423, **4**-1231 EuclideanRightDivision, 9-3443EuclideanWeight, 13-5194 EuclideanWeightDistribution, 13-5194 EuclideanWeightEnumerator, 13-5196EulerCharacteristic, 9-3755, 12-4706 EulerFactor, 3-1221, 10-4169, 4170, 10-4229, 10-4269 EulerFactorModChar, 10-4169 EulerFactorsByDeformation, 10-4170 EulerGamma, 2-484 EulerianGraphDatabase, 12-4991EulerianNumber, 12-4808EulerPhi, 2-294 EulerPhiInverse, 2-294 EulerProduct, 3-919 Evaluate, 2-345, 2-422, 2-458, 3-809, 3-930, 3-956, 3-1064, 3-1136, **3**-1157, **4**-1295, **4**-1332, **4**-1359, **6**-2381, **7**-2476, **9**-3493, **9**-3693, **9-**3706, **10-**4147, **10-**4257, **11-**4560, **11-**4643 EvaluateAt, 13-5288 EvaluateByPowerSeries, 9-3677 EvaluateClassGroup, 3-920EvaluatePolynomial, 10-4141 EvaluationPowerSeries, 4-1379 EvenSublattice, 3-663 EvenWeightCode, 13-5076EvenWeightSubcode, 13-5076 ExactConstantField, 3-1097, 9-3408 ExactExtension, 4-1447 ExactQuotient, 2-287, 2-423, 2-459 ExactValue, 11-4347, 11-4372 ExceptionalUnitOrbit, $\mathbf{3}$ -924 ExceptionalUnits, 3-924 Exclude, 1-180, 1-200 ExcludedConjugate, 6-2220 ExcludedConjugates, 6-2175, 6-2220 ExistsConwayPolynomial, 2-382 ExistsCosetSatisfying, 6-2220

ExistsCoveringStructure, 1-29ExistsExcludedConjugate, 6-2220 ExistsGroupData, 5-1960 ExistsModularCurveDatabase, 11-4296 ExistsNormalisingCoset, 6-2221 ExistsNormalizingCoset, 6-2221 Exp, 2-491, 492, 3-1209, 4-1290, 4-1334 Expand, 3-1136, 4-1289, 4-1383, 9-3537, 9-3612, 9-3693 ExpandBasis, 3-712 ExpandToPrecision, 4-1247ExplicitCoset, 6-2174 Explode, 1-200, 1-218 Exponent, 2-343, 5-1498, 5-1545, 5-1666, **5**-1800, **6**-2063, **11**-4631 ExponentDenominator, 4-1331ExponentialFieldExtension, 9-3423ExponentialIntegral, 2-510 ExponentialIntegralE1, 2-510 ExponentLattice, 4-1383ExponentLaw, 6-2233 Exponents, 2-454, 8-3170, 9-3415 ExponentSum, 6-2083ExpurgateCode, 13-5115ExpurgateWeightCode, 13-5115Ext, 7-2750, 9-3343 ext, 2-275, 2-365, 366, 3-661, 3-775, **3**-864, **3**-869, **3**-1088, **3**-1093, **4-**1269, **4-**1271, 1272, **9-**3422 ExtAlgebra, 7-2605 Extend, 3-813, 814, 3-821, 3-1207, 9-3537 ExtendBasis, 2-602, 7-2425, 8-3017 ExtendCode, 13-5115, 13-5200, 13-5229, 13-5255 ExtendedCategory, 1-28ExtendedCohomologyClass, 5-2034ExtendedGreatestCommonDivisor, 2-292, 293, **2-**425, **4-**1231 ${\tt ExtendedGreatestCommonLeftDivisor, 9-3444}$ ExtendedGreatestCommonRightDivisor, 9-3444ExtendedLeastCommonLeftMultiple, 9-3445 ExtendedOneCocycle, 5-2033 ExtendedPerfectCodeZ4, 13-5180 ExtendedType, 1-28, 3-782, 3-793 ExtendedUnitGroup, 2-401 ExtendField, 2-598, 5-1646, 13-5117 ExtendGaloisCocycle, 8-3106ExtendGeodesic, $\mathbf{11}$ -4349 ExtendIsometry, **2**-627 Extends, **3**-809, **3**-957 Extension, 5-1510, 5-1606, 5-1804, 1805, **5**-2023, **7**-2750, **9**-3243, **9**-3263 ExtensionClasses, 5-1957ExtensionExponents, 5-1956 ExtensionField, 2-366ExtensionNumbers, 5-1956 ExtensionPrimes, 5-1956 ExtensionProcess, 5-1509, 5-1606

ExtensionsOfElementaryAbelianGroup, 5-2027 ExtensionsOfSolubleGroup, 5-2027Exterior, **12-**4735 ExteriorAlgebra, 7-2470ExteriorPower, **7**-2517, **8**-3144, **8**-3164 ExteriorSquare, **3**-664, **7**-2517, **7**-2737 ExternalLines, 12-4735ExtGenerators, 5-1855ExtraAutomorphism, 11-4318 ExtractBlock, 2-531, 2-566, 7-2526 ExtractBlockRange, 2-532, 2-566 ExtractGenerators, 6-2157 ExtractGroup, 6-2157, 6-2235 ExtractRep, 1-179 ExtraSpecialAction, 5-1724 ExtraSpecialBasis, 5-1725 ExtraSpecialGroup, 5-1476, 5-1533, **5**-1724, **5**-1794, **6**-2097, **6**-2263 ExtraSpecialNormaliser, 5-1724ExtraspecialPair, 8-2896 ExtraspecialPairs, 8-2896 ExtraSpecialParameters, 5-1724 ExtraspecialSigns, 8-2896ExtremalLieAlgebra, 8-2990 ExtremalRayContraction, 9-3898 ExtremalRayContractionDivisor, 9-3898 ExtremalRayContractions, 9-3898 ExtremalRays, 9-3898 f, 9-3493, 9-3542, 9-3544, 9-3684, **9-**3693 Face, 9-3873, 12-4974, 12-5039 FaceFunction, 4-1244FaceIndices, $\mathbf{12}\text{-}4785$ Faces, 4-1239, 12-4695, 12-4785, 12-4974, 12-5038 FacesContaining, 4-1242FaceSupportedBy, 12-4786FacetIndices, 12-4785Facets, 12-4695, 12-4785Facint, 2-284, 2-310 Facpol, 2-429 Factor, 2-320 FactorBasis, 3-916 FactorBasisCreate, 3-919 FactorBasisVerify, 3-920 FactoredCarmichaelLambda, 2-293 FactoredCharacteristicPolynomial, 2-547, 11-4573 FactoredChevalleyGroupOrder, 5-1881 FactoredDefiningPolynomials, 9-3540 FactoredDiscriminant, 7-2454, 7-2635, 7-2643 FactoredEulerPhi, 2-294 FactoredEulerPhiInverse, $\mathbf{2}$ -294 FactoredHeckePolynomial, $\mathbf{11}$ -4640 FactoredIndex, 5-1484, 5-1551, 5-1669, **5**-1822, **6**-2068, **6**-2143, **6**-2267 FactoredInverseDefiningPolynomials, 9-3540

FactoredMCPolynomials, 2-547FactoredMinimalAndCharacteristicPolynomials, 2-547 FactoredMinimalPolynomial, 2-547 FactoredModulus, 2-335FactoredOrder, 2-380, 2-554, 5-1483, **5**-1528, **5**-1655, **5**-1658, **5**-1756, **5**-1800, **5**-1999, **6**-2063, **6**-2144, **6**-2235, **6**-2267, **7**-2522, **8**-3112, 9-3683, 10-3956, 10-3973, 10-3980, **10-**4169 FactoredProjectiveOrder, 2-555, 5-1656, **7**-2522 Factorial, 2-296, 12-4807 Factorisation, 2-303, 2-428, 3-843, **3**-944, **3**-1147, **9**-3456, **10**-4270, **11-**4599 FactorisationOverSplittingField, 2-376FactorisationToInteger, 2-284 FactorisationToPolynomial, $\mathbf{2}$ -429 Factorization, 2-303, 2-428, 2-463, **3-**843, **3-**944, **3-**1147, **4-**1301, **4**-1337, **4**-1373, **7**-2651, **9**-3456, **10-**4270, **11-**4599 FactorizationOverSplittingField, 2-376 FactorizationToInteger, 2-284, 2-310 FakeIsogenySelmerSet, 10-4040 FakeProjectiveSpace, 9-3880 Falpha, 8-3090, 3091 FaltingsHeight, 10-4008Fan, 9-3869, 9-3871, 9-3880, 9-3886 Fano, 9-3853, 3854 FanoBaseGenus, 9-3853FanoDatabase, 9-3854FanOfAffineSpace, 9-3870 FanOfFakeProjectiveSpace, 9-3870 FanOfWPS, 9-3870FanoGenus, 9-3853FanoIndex, 9-3853FareySymbol, 11-4350FewGenerators, 5-1526Fibonacci, 2-297, 12-4807 Field, 3-1219, 12-4725, 13-5080, 13-5213, **13-**5262 FieldAutomorphism, 8-3128 FieldMorphism, 3-1116 FieldOfDefinition, 11-4530, 11-4574, **11-**4585, **11-**4620, **11-**4631 FieldOfFractions, 2-285, 2-353, 2-373, **3**-869, **3**-1045, **3**-1060, **3**-1098, **4**-1230, **4**-1273, **4**-1316, **4**-1327, **4-**1340, **9-**3296, **9-**3405 FieldOfGeometricIrreducibility, 9-3694 FindCommonEmbeddings, 11-4594FindDependencies, 2-320FindFirstGenerators, 9-3834 FindGenerators, 3-1033 FindN, 9-3854

FindRelations, 2-319FindRelationsInCWIFormat, 2-323 FindWord, 11-4341FineEquidimensionalDecomposition, 9-3254FiniteAffinePlane, 12-4716, 4717, 12-4728, **12-**4746 FiniteDivisor, $\mathbf{3}$ -1165 FiniteField, 2-364, 365 FiniteLieAlgebra, 8-3066 FiniteProjectivePlane, 12-4715, 4716, **12-**4746 FiniteSplit, 3-1165 FireCode, 13-5111 FirstIndexOfColumn, $\mathbf{12}$ -4832FirstIndexOfRow, 12-4831 FirstWeights, 9-3844FittingGroup, 5-1832, 6-2277 FittingIdeal, 9-3325FittingIdeals, 9-3325FittingLength, 6-2277 FittingSeries, 6-2277 FittingSubgroup, 5-1493, 5-1586, 5-1832, 6-2277 Fix, 5-1569, 7-2739, 13-5138 FixedArc, 11-4348FixedField, 3-966, 3-1016, 4-1370, 7-2793 FixedGroup, 3-966FixedPoints, 11-4347, 11-4375 FixedSubspaceToPolyhedron, 12-4781FlagComplex, 12-4694Flat, 1-215, 1-217, 1-237, 3-800, 3-912, **3-**1131 Flexes, 9-3672 Flip, 9-3899 FlipCoordinates, 9-3676 Floor, 2-290, 2-314, 2-359, 2-483 Flow, 12-5062 Flush, 1-81 Form, 12-4796 FormalGroupHomomorphism, 10-3958FormalGroupLaw, 10-3957 FormalLog, 10-3958FormalPoint, 9-3662 FormalSet, 1-175Format, 1-243 FormType, 5-1900 forward, 1-41FourCoverPullback, 10-4029FourDescent, 10-4026FourToTwoCovering, **10**-4111 FPAlgebra, 7-2486FPGroup, 5-1480, 5-1603, 5-1695, 5-1859, **5**-2001, **5**-2015, **6**-2058, **6**-2092, **6**-2095, **6**-2265, **6**-2366 FPGroupStrong, 5-1603, 5-1695, 6-2093 FPQuotient, 5-1603FractionalPart, 9-3582

FrattiniSubgroup, 5-1493, 5-1586, 5-1707, 5-1832, 6-2066 FreeAbelianGroup, 6-2043, 6-2263 FreeAbelianQuotient, 6-2062, 6-2280 FreeAlgebra, 7-2470, 7-2496 FreefValues, 8-2997 FreeGroup, 6-2082FreeLieAlgebra, 8-2982FreeMonoid, 6-2389 FreeNilpotentGroup, 6-2263 FreeProduct, 6-2098, 6-2395 FreeResolution, 9-3328, 9-3378 FreeSemigroup, 6-2389 Frobenius, 2-379, 380, 10-4096, 10-4145, **10-**4163, **12-**4861 FrobeniusActionOnPoints, 10-4096FrobeniusActionOnReducibleFiber, 10-4096FrobeniusActionOnTrivialLattice, 10-4096FrobeniusAutomorphism, 3-1020, 4-1370 FrobeniusAutomorphisms, 5-1718 FrobeniusElement, 3-970FrobeniusFormAlternating, 2-549 FrobeniusImage, 2-555, 3-1200 FrobeniusMap, 3-1200, 8-3129, 10-3966 FrobeniusMatrix, 7-2791 FrobeniusPolynomial, 11-4642FrobeniusTraceDirect, 10-4006 FrobeniusTracesToWeilPolynomials, 10-4284FromAnalyticJacobian, 10-4209 FromLiE, 8-3170 FuchsianGroup, 11-4363, 4364 FuchsianMatrixRepresentation, 11-4366FullCone, 12-4779 FullCorootLattice, 8-2874 FullDirichletGroup, 2-342FullModule, 9-3607 FullRootLattice, 8-2874 Function, 1-252FunctionDegree, 9-3541 FunctionField, 3-1059, 1060, 3-1088, 1089, **3**-1098, **3**-1155, **3**-1157, **3**-1160, **3-**1164, **3-**1177, **3-**1195, **3-**1201, **9**-3393, **9**-3490, **9**-3648, **9**-3692, **10-**4141, **11-**4300 FunctionFieldDatabase, 3-1185 FunctionFieldDifferential, 9-3697 FunctionFieldDivisor, 9-3697FunctionFieldPlace, 9-3697 FunctionFields, 3-1185FundamentalClosure, 8-3167 FundamentalCoweights, 8-2886, 8-2924, 8-2969, 8-3125 FundamentalDiscriminant, 3-755FundamentalDomain, 11-4341, 11-4350, 11-4378 FundamentalElement, 6-2299 FundamentalGroup, 8-2811, 8-2813, 8-2820, 8-2870, 8-2912, 8-2961, 8-3114

FundamentalInvariants, 9-3368, 9-3387, 9-3393 FundamentalQuotient, 3-760 FundamentalUnit, 3-838 FundamentalUnits, 3-1125 FundamentalWeights, 8-2886, 8-2924, 8-2969, 8-3125 fValue, 8-2997 fValueProof, 8-2997 fVector, 12-4785 G2Invariants, 10-4135 G2ToIgusaInvariants, 10-4136 GabidulinCode, 13-5111 GallagerCode, 13-5157GaloisCohomology, 8-3106 GaloisConjugacyRepresentatives, 2-345GaloisConjugate, 7-2767 GaloisField, 2-364, 365 GaloisGroup, 2-374, 3-803, 3-971, 972, **3-**1107 GaloisGroupInvariant, 3-977 GaloisImage, 4-1292 GaloisOrbit, **7**-2767 GaloisProof, 3-972GaloisQuotient, 3-979GaloisRepresentation, 11-4684GaloisRing, 4-1313, 1314 GaloisRoot, 3-973 GaloisSplittingField, 3-981 GaloisSubfieldTower, **3**-980 GaloisSubgroup, 3-979 Gamma, **2-**506 Gamma0, 11-4339 Gamma1, 11-4339 GammaAction, 5-2032, 8-2866 GammaActionOnSimples, 8-2867 GammaArray, 10-4229 GammaCorootSpace, 8-2866 GammaD, 2-507 GammaFactors, 10-4269GammaGroup, 5-2031, 5-2034, 8-3105, 3106 GammaList, 10-4229 GammaOrbitOnRoots, 8-2866 GammaOrbitsOnRoots, 8-2867 GammaOrbitsRepresentatives, 8-2879 GammaRootSpace, 8-2866 GammaUpper0, 11-4339GammaUpper1, 11-4339GapNumbers, 3-1105, 3-1167, 9-3695, 9-3706, 9-3717 GaussianBinomial, 8-3079 GaussianFactorial, 8-3079 GaussNumber, 8-3079 GaussReduce, 3-679GaussReduceGram, 3-679GCD, 2-292, 2-339, 2-425, 2-461, 3-842, **3-**942, **3-**1161, **3-**1204, **4-**1231, **4-**1295, **4-**1318, **6-**2320, **9-**3712

xxii

Gcd, 2-292, 2-311, 2-339, 2-425, 2-461, 3-842, 3-942, 3-1147, 3-1161, 4-1231, 4-1295, 6-2320, 9-3712 GCLD, 9-3444 GCRD, 9-3444 ge, 1-69, 1-210, 2-272, 2-289, 2-314, **2**-358, **2**-416, **2**-481, **3**-1161, **5**-1508, **6**-2086, **6**-2317, **6**-2391, **9**-3712 GegenbauerPolynomial, 2-437 GeneralisedRowReduction, 8-3135, 8-3166 GeneralizedFibonacciNumber, 2-297, **12-**4807 GeneralizedSrivastavaCode, 13-5111GeneralLinearGroup, 5-1642, 5-1882 GeneralOrthogonalGroup, 5-1885 GeneralOrthogonalGroupMinus, 5-1887 GeneralOrthogonalGroupPlus, 5-1886GeneralUnitaryGroup, 5-1884 GenerateGraphs, 12-4992 GeneratepGroups (p, d, c : -), 5-1847 GeneratingWords, 6-2161 Generator, 2-332, 2-371, 4-1315 GeneratorMatrix, 13-5080, 13-5175, **13-**5215 GeneratorNumber, 6-2084GeneratorOrder, 6-2366GeneratorPolynomial, 13-5083 Generators, 2-343, 2-599, 3-795, 796, **3**-907, **3**-938, **3**-1017, **3**-1149, **4**-1399, **5**-1482, **5**-1526, **5**-1647, **5**-1799, **5**-1872, **5**-1998, **6**-2046, **6**-2050, **6**-2100, **6**-2266, **6**-2299, **6**-2348, **6**-2365, **6**-2380, **6**-2393, **6**-2407, **7**-2455, **7**-2461, **7**-2512, **7**-2570, **7**-2689, **8**-3111, **9**-3408, **9**-3683, **10**-3989, **10**-4013, **10**-4091, 11-4341, 11-4350, 11-4586, 11-4627, **13-**5080, **13-**5175, **13-**5215 GeneratorsOverBaseRing, 3-796GeneratorsSequence, 3-796, 5-1526GeneratorsSequenceOverBaseRing, 3-796GeneratorStructure, 6-2234 Generic, 2-600, 4-1400, 5-1482, 5-1526, **5**-1648, **7**-2483, **7**-2512, **8**-3037, 9-3227, 9-3281, 9-3309, 10-3956, **13-**5080, **13-**5175, **13-**5214 GenericAbelianGroup, 6-2047GenericGroup, 3-1032GenericModel, $\mathbf{10}$ -4105 GenericPoint, 9-3505 Genus, 3-702, 3-1103, 3-1197, 9-3671, **9**-3694, **9**-3847, **10**-4132, **10**-4209, **11-**4294, **11-**4341 Genus2GonalMap, 9-3732Genus3GonalMap, 9-3732 Genus4GonalMap, 9-3733 Genus5GonalMap, 9-3733 Genus5PlaneCurveModel, 9-3736

Genus6GonalMap, 9-3734Genus6PlaneCurveModel, 9-3736 GenusAndCanonicalMap, 9-3730 GenusContribution, 9-3752 GenusField, 3-1015 GenusOneModel, 10-4104, 4105 GenusRepresentatives, 3-705Geodesic, 11-4374, 12-4963, 12-5043 GeodesicExists, 12-5043Geodesics, 12-5043GeodesicsIntersection, 11-4349, 11-4351, **11-**4375 GeometricAutomorphismGroup, 10-4150 GeometricAutomorphismGroupFromShiodaInvariants, **10-**4151 GeometricAutomorphismGroupGenus2Classification, **10-**4152 GeometricAutomorphismGroupGenus3Classification, **10-**4152 GeometricGenus, 9-3671, 9-3764 GeometricGenusOfDesingularization, 9-3791 GeometricMordellWeilLattice, ${f 10}$ -4091 GeometricSupport, 13-5151 GeometricTorsionBound, 10-4090 GetAssertions, 1-98GetAttributes, 1-53GetAutoColumns, 1-98GetAutoCompact, 1-98GetBeep, 1-98Getc, 1-81 GetCells, 8-2936 GetColumns, 1-98GetCurrentDirectory, 1-90, 1-99 GetDefaultRealField, 2-475 GetEchoInput, 1-99GetElementPrintFormat, 6-2298 GetEnv, 1-99 GetEnvironmentValue, 1-99GetEvaluationComparison, 3-976GetForceCFP, 6-2298 GetGMPVersion, 2-476GetHelpExternalBrowser, 1-113 GetHelpExternalSystem, 1-113 GetHelpUseExternal, 1-113 GetHistorySize, 1-99GetIgnorePrompt, 1-99GetIgnoreSpaces, 1-99GetIndent, 1-99GetLibraries, 1-100GetLibraryRoot, 1-100 GetLineEditor, 1-100 GetMaximumMemoryUsage, 1-90GetMemoryLimit, 1-100 GetMemoryUsage, 1-90GetMPCVersion, 2-476GetMPFRVersion, 2-476GetNthreads, 1-100GetPath, 1-101

xxiii

Getpid, 1-91 GetPrecision, 4-1328, 4-1341 GetPresentation, 6-2298 GetPreviousSize, 1-77 GetPrintLevel, 1-101 GetPrompt, 1-101 GetRep, 5-1600 GetRows, 1-101 Gets, 1-81GetSeed, 1-31, 1-102 GetStoredFactors, 2-304GetTempDir, 1-102 GetTraceback, 1-102Getuid, 1-91 Getvecs, 5-1983 GetVerbose, 1-102GetVersion, 1-102GetViMode, 1-102GewirtzGraph, $\mathbf{12}$ -4950 GF, 2-364, 365 GHomOverCentralizingField, 7-2711 GilbertVarshamovAsymptoticBound, 13-5128 GilbertVarshamovBound, 13-5127 GilbertVarshamovLinearBound, 13-5127 Girth, 12-4964 GirthCycle, 12-4964 GL, 5-1642, 5-1882 GlobalSectionSubmodule, 9-3608GlobalUnitGroup, 3-1124, 3-1174, 9-3715 Glue, 12-4701 GModule, 5-1511, 5-1609, 5-1648, 5-1689, **5**-1700, **5**-1852, **6**-2195, **6**-2282, **7**-2608, **7**-2689, **7**-2723, **7**-2725, 2726, **7**-2729, **9**-3363 GModuleAction, 7-2730 GModulePrimes, 6-2194, 2195, 6-2283 GO, 5-1885 GoethalsCode, 13-5178GoethalsDelsarteCode, ${f 13}{-}5179$ GolayCode, 13-5111 GolayCodeZ4, 13-5179 GOMinus, 5-1887 GoodBasePoints, 5-1702, 5-1931 GoodLDPCEnsemble, $\mathbf{13}$ -5165 GOPlus, 5-1886 GoppaCode, 13-5109 GoppaDesignedDistance, 13-5151 GorensteinClosure, 7-2630 GorensteinIndex, 9-3877GPCGroup, 5-1479, 5-1859, 6-2265 GR, 4-1313, 1314 GradedAutomorphismGroup, 7-2581 GradedAutomorphismGroupMatchingIdempotents, 7-2581 GradedCapHomomorphism, 7-2579GradedCone, 9-3893GradedCoverAlgebra, 7-2578 GradedModule, 9-3308, 9-3319

GradientVector, 4-1242GradientVectors, 4-1242Grading, 9-3188, 9-3309 Gradings, 9-3491, 9-3884 GramMatrix, 2-611, 3-658, 3-745, 3-761, 7-2652, 11-4489 Graph, 12-4761, 12-4786, 12-4923, **12-**4990, **12-**4992 GraphAutomorphism, 8-3038, 8-3089, 8-3128 Graphs, 12-4989 GraphSizeInBytes, 12-4922 GrayMap, 13-5176 GrayMapImage, 13-5177GreatestCommonDivisor, 2-292, 2-339, **2**-425, **2**-461, **3**-842, **3**-942, **3**-1161, **4**-1231, **4**-1295, **6**-2320, **9**-3712 GreatestCommonLeftDivisor, 9-3444GreatestCommonRightDivisor, 9-3444 GriesmerBound, 13-5126 GriesmerLengthBound, 13-5128 GriesmerMinimumWeightBound, 13-5128 Groebner, 7-2478, 9-3194, 9-3319 GroebnerBasis, 7-2479, 9-3198, 9-3214, 9-3501 GroebnerBasisUnreduced, 9-3198 Grossencharacter, 3-820, 821 GrossenTwist, 3-821 GroundField, 2-367, 3-783, 3-885 Group, 3-729, 3-1219, 5-1469, 5-1508, **5**-1567, **5**-1942, **5**-1955, **5**-1972-1975, **5**-1977, **5**-1980, **5**-1998, **5**-2015, **5**-2032, **6**-2091, **6**-2174, **6**-2187, **6**-2221, **7**-2553, **7**-2608, **7**-2690, **7**-2764, **9**-3356, **9**-3393, **11**-4350, **11-**4369, **12-**4760 GroupAlgebra, 7-2422, 7-2547, 7-2553 GroupAlgebraAsStarAlgebra, 7-2669 GroupData, 5-1960 GroupIdeal, 9-3386, 9-3393 GroupOfLieType, 8-2825, 8-2899, 8-2938, 8-2971, 8-3103-3105 GroupOfLieTypeFactoredOrder, 8-2869 GroupOfLieTypeHomomorphism, 8-2899, 8-3130 GroupOfLieTypeOrder, 8-2869 GrowthFunction, 6-2374GRSCode, 13-5113 GSet, 5-1526, 5-1567 GSetFromIndexed, 5-1566 gt, 1-69, 1-210, 2-272, 2-289, 2-314, 2-358, 2-416, 2-481, 3-1161, 6-2086, 6-2391, 9-3712, 11-4493 GU, 5-1884 GuessAltsymDegree, 5-1613, 5-1894 H2_G_A, 3-1015 H2_G_QmodZ, 6-2072HadamardAutomorphismGroup, 12-4912 HadamardCanonicalForm, 12-4909 HadamardCodeZ4, 13-5180

xxiv

HadamardColumnDesign, 12-4911HadamardDatabase, 12-4912 HadamardDatabaseInformation, 12-4914HadamardDatabaseInformationEmpty, 12-4914 HadamardGraph, 12-4949HadamardInvariant, 12-4909 HadamardMatrixFromInteger, 12-4910 HadamardMatrixToInteger, 12-4910 HadamardNormalize, 12-4909HadamardRowDesign, 12-4911 HadamardTrasformation, 13-5269HalfIntegralWeightForms, 11-4395HalfspaceToPolyhedron, 12-4780HallSubgroup, 5-1825 HamiltonianLieAlgebra, 8-3006 HammingAsymptoticBound, 13-5128 HammingCode, 13-5078HammingWeightEnumerator, 13-5196 HarmonicNumber, 12-4808HasAdditionAlgorithm, 10-4171 HasAffinePatch, 9-3522 HasAllPQuotientsMetacyclic (G), 5-1952 HasAllPQuotientsMetacyclic (G, p), 5-1952 HasAllRootsOnUnitCircle, 10-4284 HasAttribute, 2-369, 4-1325, 5-1703, **5**-1705, **5**-1838, 1839, **5**-2006, **8**-3067 HasClique, 12-4969 HasClosedCosetTable, 6-2219 HasCM, 11-4603 HasComplement, 5-1598, 6-2069, 7-2704 HasCompleteCosetTable, 6-2219 HasComplexConjugate, 3-792, 3-902 HasComplexMultiplication, 10-4008, 10-4063 HasCompositionTree, 5-1742HasComputableAbelianQuotient, 6-2126 HasComputableLCS, 6-2277 HasDefinedModuleMap, 4-1451 HasDefiningMap, 4-1275 HasDenseAndSparseRep, 12-4933 HasDenseRep, 12-4933HasDenseRepOnly, 12-4933 HasElementaryBasis, $\mathbf{12}$ -4855 HasEmbedding, 7-2638HasFiniteDimension, 9-3292 HasFiniteKernel, 11-4576 HasFiniteOrder, 2-554, 5-1655 HasFiniteOrder (g : -), 5-1769HasFunctionField, 9-3490, 9-3692 HasGCD, 2-268 HasGNB, 4-1270 HasGrevlexOrder, 9-3230 HasGroebnerBasis, 9-3199 Hash, 1-180 HasHomogeneousBasis, 12-4855 HasIndexOne, 10-4180HasIndexOneEverywhereLocally, 10-4180

HasInfiniteComputableAbelianQuotient, 6-2127 HasInfinitePSL2Quotient:, 6-2120 HasIntersectionProperty, 12-4766 HasIntersectionPropertyN, 12-4766 HasInverse, 3-1117 HasIrregularFibres, 9-3754HasIsotropicVector, 2-614 HasKnownInverse, 9-3535 HasLeviSubalgebra, 8-3033 HasLinearGrayMapImage, 13-5177 HasMonomialBasis, 12-4855HasMultiplicityOne, 11-4536 HasNegativeWeightCycle, 12-5043, 5044 HasNonsingularPoint, 9-3509 HasOddDegreeModel, 10-4126HasOnlyOrdinarySingularities, 9-3658 HasOnlyOrdinarySingularitiesMonteCarlo, 9-3658 HasOnlySimpleSingularities, 9-3767 HasOrder, 10-4163 HasOutputFile, 1-80 HasParallelClass, 12-4894 HasParallelism, 12-4893 HasPlace, 3-1121, 3-1154, 9-3703 HasPoint, 10-4195 HasPointsEverywhereLocally, 10-4196 HasPointsOverExtension, 9-3511 HasPolynomial, 4-1244 HasPolynomialFactorization, 2-429HasPowerSumBasis, $\mathbf{12}$ -4855 HasPreimage, 1-253HasProjectiveDerivation, 9-3411, 9-3431 HasPRoot, 4-1276 HasRandomPlace, 3-1121, 3-1154 HasRationalPoint, 10-3924 HasRationalSolutions, $\mathbf{9}\text{-}3450$ HasResolution, 12-4893HasRoot, 2-420, 4-1259, 4-1299 HasRootOfUnity, 4-1276 HasSchurBasis, 12-4855 HasseMinkowskiInvariant, 3-746 HasseMinkowskiInvariants, 3-747 HasseWittInvariant, 3-1125, 3-1175, 9-3716 HasSingularPointsOverExtension, 9-3672HasSingularVector, 2-614 HasSparseRep, 12-4933HasSparseRepOnly, 12-4933 HasSquareSha, 10-4179 HasSupplement, 5-1598 HasTwistedHopfStructure, 8-3087 HasValidCosetTable, 6-2219 HasValidIndex, 6-2221 HasWeakIntersectionProperty, 12-4766 HasZeroDerivation, 9-3411, 9-3431 HBinomial, 8-3044HeckeAlgebra, 11-4457, 11-4579

HeckeBound, 11-4457HeckeCharacter, 3-816HeckeCharacterGroup, 3-811 HeckeEigenvalue, 11-4495, 11-4664 HeckeEigenvalueBound, 11-4664 HeckeEigenvalueField, 11-4457, 11-4664 HeckeEigenvalueRing, 11-4457HeckeEigenvectors, 11-4495HeckeLift, 3-815 HeckeOperator, 11-4409, 11-4453, 11-4493, 11-4495, 11-4509, 11-4638, 11-4659, **11-**4675 HeckePolynomial, 11-4409, 11-4453, **11-**4639 HeegnerDiscriminants, 10-4045HeegnerForms, 10-4045, 4046 HeegnerPoint, 10-4043, 4044 HeegnerPoints, 10-4046HeegnerTorsionElement, 10-4046Height, 2-359, 5-1629, 10-4015, 10-4064, **10-**4089, **10-**4175 HeightConstant, 10-4175HeightOnAmbient, 9-3524 HeightPairing, 10-4016, 10-4089, 10-4175 HeightPairingLattice, 10-4089 HeightPairingMatrix, 10-4016, 10-4064, **10-**4089, **10-**4176 HenselLift, 2-433, 2-490, 4-1297, 4-1300, 4-1337 HermiteConstant, 3-681 HermiteForm, 2-551, 4-1439, 7-2528 HermiteNumber, $\mathbf{3}$ -682HermitePolynomial, 2-437HermitianAutomorphismGroup, 3-712HermitianCode, 13-5148 HermitianFunctionField, 3-1089 HermitianTranspose, 3-712 HesseCovariants, 10-4114HesseModel, 10-4105 HessenbergForm, 2-549, 7-2522HessePolynomials, 10-4115Hessian, **10-**4114 HessianMatrix, 9-3502, 9-3654 Hexacode, 13-5242HighestCoroot, 8-2840, 8-2878 HighestLongCoroot, 8-2840, 8-2878 HighestLongRoot, 8-2840, 8-2878, 8-2920, 8-3122 HighestRoot, 8-2840, 8-2878, 8-2920, 8-3122 HighestShortCoroot, 8-2840, 8-2878 HighestShortRoot, 8-2840, 8-2878, 8-2921, 8-3123 HighestWeightModule, 8-3084, 8-3144 HighestWeightRepresentation, 8-3084, 8-3134, 8-3143, 8-3147 HighestWeights, 8-3166 HighestWeightsAndVectors, 8-3085, 8-3163

HighestWeightVectors, 8-3166 HighMap, 7-2615 HighProduct, 7-2615 Hilbert90, 2-380, 3-994 HilbertClassField, 3-1012, 3-1194 HilbertClassPolynomial, 3-762, 11-4301 HilbertCoefficient, 9-3895HilbertCoefficients, 9-3895 HilbertCuspForms, $\mathbf{11}$ -4655 HilbertDenominator, 9-3260, 9-3327 HilbertFunction, 9-3832 HilbertGroebnerBasis, 9-3218 HilbertIdeal, 9-3387 HilbertNumerator, 9-3260, 9-3327, 9-3833, 9-3843 HilbertPolynomial, 9-3260, 9-3327, 9-3894 HilbertPolynomialOfCurve, 9-3845HilbertSeries, 9-3260, 9-3326, 9-3378, **9**-3832, **9**-3844, **9**-3894 HilbertSeriesApproximation, 9-3378 HilbertSeriesMultipliedByMinimalDenominator, 9-3833 HilbertSpace, 13-5262HilbertSymbol, 7-2636, 10-3922 HirschNumber, 6-2267 HKZ, 3-678, 679 HKZGram, 3-678HodgeNumber, 9-3765 Holes, **3-**697 Holomorph, **5**-2009 Hom, 2-586, 4-1408, 1409, 4-1434, 6-2070, **7-**2711, **9-**3342, **11-**4578 hom, 1-250, 251, 2-281, 2-336, 2-370, **2**-416, **2**-448, **3**-781, **3**-879, **3**-881, **3**-1063, **3**-1127, 1128, **4**-1370, **4**-1434, **5**-1464, 1465, **5**-1530, **5**-1648, **5**-1801, **6**-2072, **6**-2101, **6**-2262, **6**-2332, **6**-2355, **6**-2372, **6**-2381, **6**-2412, **7**-2437, **7**-2472, **7**-2518, **7**-2575, **7**-2711, **8**-2894, **8**-2988, **8**-3037, **12-**4800 hom<>, 2-352, 2-475 HomAdjoints, 9-3790 HomGenerators, 5-1855, 6-2070 HomogeneousComponent, 9-3189 HomogeneousComponents, 9-3189 HomogeneousModuleTest, 9-3266, 9-3380 HomogeneousModuleTestBasis, 9-3267 HomogeneousToElementaryMatrix, 12-4867HomogeneousToMonomialMatrix, $\mathbf{12}$ -4867 HomogeneousToPowerSumMatrix, 12-4867HomogeneousToSchurMatrix, 12-4867Homogenization, 9-3243 HomologicalDimension, 9-3333, 9-3378 Homology, 4-1445, 11-4553, 12-4705 HomologyBasis, 10-4208 HomologyGenerators, 12-4707HomologyGroup, 12-4706

xxvi

HomologyOfChainComplex, 4-1445 Homomorphism, 6-2073, 6-2107, 9-3315 Homomorphisms, 5-1802, 6-2070, 6-2104, 2105, 6-2107 HomomorphismsProcess, 6-2106HookLength, 12-4833HorizontalJoin, 2-537, 2-569, 7-2526 HorrocksMumfordBundle, 9-3606 HughesPlane, 2-403Hull, 13-5081 HyperbolicBasis, 2-624HyperbolicCoxeterGraph, 8-2822 HyperbolicCoxeterMatrix, 8-2822 HyperbolicPair, 2-614HyperbolicSplitting, 2-615 Hypercenter, 5-1493, 5-1586, 5-1832Hypercentre, 5-1493, 5-1586, 5-1832 HyperellipticCurve, 10-4108, 10-4123, 4124, **10-**4231 HyperellipticCurveFromG2Invariants, **10-**4139 HyperellipticCurveFromIgusaClebsch, **10-**4139 HyperellipticCurveFromShiodaInvariants, **10-**4139 HyperellipticCurveOfGenus, ${f 10}$ -4124 HyperellipticPolynomial, 10-4208HyperellipticPolynomialFromShiodaInvariants, **10-**4139 HyperellipticPolynomials, 10-3951, **10-**4132 HyperellipticPolynomialsFromShiodaInvariants, **10-**4130 HypergeometricData, 10-4227HypergeometricMotiveClearTable, 10-4232 HypergeometricMotiveSaveLimit, 10-4232 HypergeometricSeries, 2-508, 4-1337HypergeometricSeries2F1, 11-4380HypergeometricU, 2-508 HyperplaneAtInfinity, 9-3523 HyperplaneSectionDivisor, 9-3581 HyperplaneToPolyhedron, 12-4780HypersurfaceSingularityExpandFunction, **9-**3514 HypersurfaceSingularityExpandFurther, **9-**3514 Id, 2-269, 3-1159, 3-1176, 5-1464, **5**-1524, **5**-1644, **5**-1809, **5**-1871, **5**-2003, **6**-2052, **6**-2083, **6**-2252, **6**-2299, **6**-2350, **6**-2368, **6**-2380, **6**-2390, **6**-2410, **7**-2760, **8**-3115, **8**-3127, **9**-3681, **9**-3707, **10**-3967, **10-**4158, **12-**4816, **12-**4819 IdDataNLAC, 8-3051 IdDataSLAC, 8-3050 Ideal, 3-757, 3-809, 3-845, 3-956, **3-**1046, **3-**1142, **3-**1158, **9-**3191, **9**-3277, **9**-3582, **9**-3703, **9**-3713

ideal, 2-273, 2-331, 2-339, 2-434, **3**-933, **3**-1142, **6**-2394, **7**-2424, **7**-2460, **7**-2477, **7**-2514, **7**-2551, **7**-2577, **7**-2645, **8**-3011, **9**-3191, 9-3277 IdealFactorisation, 9-3582 Idealiser, 7-2445, 7-2554 Idealizer, 7-2445, 7-2554 IdealOfSupport, 9-3582 IdealQuotient, 3-943, 3-1143, 9-3227 Ideals, 3-1142, 3-1165, 11-4490, 11-4495 IdealWithFixedBasis, 9-3191 Idempotent, **13**-5083 IdempotentActionGenerators, 7-2584 IdempotentGenerators, 7-2570IdempotentPositions, 7-2571Idempotents, $\mathbf{3}\text{-}946$ IdentificationNumber, 5-1955 Identify, 10-4231 IdentifyAlmostSimpleGroup, 5-1960 IdentifyGroup, 5-1947, 6-2198 IdentifyOneCocycle, 5-2019 IdentifyTwoCocycle, 5-2019 IdentifyZeroCocycle, 5-2018 Identity, 2-283, 2-336, 2-354, 2-371, **2**-399, **2**-414, **2**-447, **2**-479, **3**-754, **3**-781, **3**-878, **3**-1039, **3**-1061, **3**-1130, **3**-1159, **3**-1176, **4**-1315, **4**-1327, **5**-1464, **5**-1524, **5**-1644, **5**-1809, **5**-1871, **5**-2003, **6**-2052, **6**-2083, **6**-2252, **6**-2299, **6**-2350, **6**-2368, **6**-2380, **6**-2410, **7**-2471, **7**-2760, **8**-3115, **9**-3406, **9**-3681, **9**-3698, **9**-3707, **10**-3967, **10**-4158, **11-**4340 IdentityAutomorphism, 8-2895, 8-3038, 8-3127, 9-3549, 9-3676 IdentityFieldMorphism, 3-1116IdentityHomomorphism, 5-1465, 5-1802IdentityIsogeny, 10-3966 IdentityMap, 8-2895, 9-3533, 9-3549, **9**-3896, **10**-3966, **11**-4559, **12**-4800 IdentitySparseMatrix, 2-562 IgusaClebschInvariants, 10-4134IgusaClebschToIgusa, 10-4135IgusaInvariants, 10-4134, 4135IgusaToG2Invariants, 10-4136 IharaBound, 3-1120, 9-3696 Ilog, **2-**290 Ilog2, 2-290 Im, 2-482, 11-4372 Image, 1-252, 2-604, 4-1416, 4-1450, **5**-1530, **5**-1569, **5**-1649, **6**-2102, 6-2333, 7-2523, 7-2576, 9-3316, 9-3544, 9-3612, 11-4566, 12-4740, **12-**4800, **12-**4901, **12-**4984 ImageBasis, 12-4801 ImageFan, 9-3892

ImageSystem, 9-3569 ImageWithBasis, 7-2695 Imaginary, 2-482, 11-4346, 11-4372 ImplicitFunction, 4-1247, 4-1379 Implicitization, 9-3263 ImprimitiveAction, 5-1716 ImprimitiveBasis, $\mathbf{5}$ -1716 ImprimitiveReflectionGroup, 8-2955ImproveAutomorphismGroup, 3-1021 in, 1-68, 1-174, 1-183, 1-197, 1-208, **2**-270, **2**-274, **2**-287, **2**-337, **2**-339, **2**-357, **2**-377, **2**-397, **2**-417, **2**-435, **2**-449, **2**-481, **2**-600, **3**-655, **3**-756, **3**-794, **3**-906, **3**-939, **3**-942, **3**-1048, 3-1063, 3-1132, 3-1145, 3-1157, 3-1161, 3-1179, 3-1199, 4-1230, 4-1287, 4-1318, 4-1329, 4-1406, 4-1428, 5-1484, 5-1550, 5-1601, 5-1659, 5-1756, 5-1818, 5-1873, 6-2063, 6-2166, 6-2173, 6-2267, 6-2215, 6-2267, 6-2215, 6-2267, 7-2420, 7-24**6**-2315, **6**-2328, **6**-2383, **7**-2430, 7-2456, 7-2462, 7-2473, 7-2484, 7-2524, 7-2633, 7-2696, 7-2765, **9**-3231, **9**-3283, **9**-3313, **9**-3357, **9**-3507, 3508, **9**-3578, **9**-3662, **9**-3683, **9**-3699, **9**-3705, **9**-3712, **9**-3872, **10**-3974, **10**-4147, **11**-4296, **11**-4344, **11**-4488, **11**-4577, **11**-4621, **12**-4730, **12**-4797, **12**-4889, **12**-4936, **12**-4952, **12**-5029, **13**-5092, **13**-5205, **13**-5221 IncidenceDigraph, 12-4927 IncidenceGeometry, 12-4752, 12-4761 IncidenceGraph, 12-4747, 12-4760, 12-4903, 12-4924, 12-4948, 4949 IncidenceMatrix, 12-4725, 12-4887, **12-**4965 IncidenceStructure, 12-4874, 12-4896, **12-**4903 IncidentEdges, 12-4937, 12-4954, 12-4956, **12-**5008, **12-**5031, **12-**5033 Include, 1-180, 1-201 IncludeAutomorphism, 13-5100 IncludeWeight, 9-3845, 9-3847 InclusionMap, 5-1820, 6-2260 IndecomposableSummands, 7-2449, 7-2704, **8**-2847, **8**-2890, **8**-3025, **8**-3163, 8-3166 InDegree, **12-**4954, **12-**5032 IndentPop, 1-78 IndentPush, 1-78 IndependenceNumber, 12-4971IndependentGenerators, 10-4089IndependentUnits, 3-923, 3-1125 IndeterminacyLocus, 9-3897Index, 1-67, 1-176, 1-199, 1-236, 3-661, 3-895, 3-913, 3-934, 3-1106, 4-1357, **5**-1484, **5**-1551, **5**-1669, **5**-1822, **6**-2068, **6**-2143, **6**-2221, **6**-2267,

9-3745, **9**-3753, **9**-3837, **9**-3840, **9**-3850, **11**-4340, **11**-4350, **11**-4583, **12**-4730, **12**-4793, **12**-4935, **12**-5009 IndexCalculus, 9-3720 IndexCalculusMatrix, 9-3720 IndexedCoset, 6-2174IndexedSetToSequence, 1-182IndexedSetToSet, 1-182IndexFormEquation, 3-931 IndexOfPartition, 12-4814 IndexOfSpeciality, 3-1165, 9-3717 Indicator, **7**-2768 Indices, 11-4294, 12-5008 IndicialPolynomial, 9-3449 IndivisibleSubdatum, 8-2891 IndivisibleSubsystem, 8-2847InducedAutomorphism, 3-1008InducedGammaGroup, 5-2031 InducedMap, 3-1008 InducedMapOnHomology, 4-1454 InducedOneCocycle, 5-2033 InducedPermutation, 6-2306 InduceWG, 8-2937 InduceWGtable, 8-2937 Induction, 7-2738, 7-2771 IneffectiveSubcanonicalCurves, 9-3846 Inequalities, 12-4784InertiaDegree, 3-810, 3-935, 3-957, **3-**1152, **3-**1157, **4-**1274, **4-**1342, 4-1367 InertiaField, $\mathbf{3}$ -966 InertiaGroup, 3-965, 4-1370 InertialElement, 4-1371 Infimum, 6-2306 InfiniteDivisor, 3-1165 InfinitePart, 12-4790InfinitePlaces, 3-808, 3-955, 3-1154 InfiniteSum, 2-511Infinity, 2-314InflationMap, 7-2611 InflationMapImage, 5-2022 InflectionPoints, 9-3672 InformationRate, 13-5079, 13-5176, **13-**5215 InformationSet, 13-5082InformationSpace, 13-5082 InitialCoefficients, 9-3844InitialiseProspector, 5-1488 InitialVertex, 12-4937, 12-5009 Injection, **7**-2584 Injections, 1-236InjectiveHull, 7-2597 InjectiveModule, 7-2597InjectiveResolution, 7-2597InjectiveSyzygyModule, 7-2598 InNeighbors, 12-4956, 12-5033 InNeighbours, 12-4956, 12-5033 InnerAutomorphism, 8-3038, 8-3128

xxviii

InnerAutomorphismGroup, 8-3038 InnerFaces, 4-1239 InnerGenerators, 5-1998 InnerProduct, 2-590, 3-654, 4-1404, **7**-2437, **7**-2767, **8**-3036, **11**-4488, **12**-4862, **13**-5086, **13**-5203, **13**-5217, 13 - 5266InnerProductMatrix, 2-612, 3-658, 11-4489, **11-**4495 InnerShape, 12-4830InnerSlopes, 4-1243 InnerTwists, 11-4533, 11-4603 InnerVertices, 4-1240 Insert, 1-201, 1-224 InsertBlock, 2-532, 2-567, 7-2526 InsertVertex, 12-4944, 12-5025 Instance, 8-2995 InstancesForDimensions, 8-2999 IntegerRing, 2-282, 2-333, 2-353, 3-780, 3-836, 3-868, 3-873, 3-1061, 4-1273, 4-1327, 4-1342, 9-3503 Integers, 2-282, 2-333, 2-353, 3-780, **3**-868, **3**-873, **4**-1273, **4**-1327, **4-**1342, **9-**3503 IntegerSolutionVariables, 13-5289 IntegerToSequence, 2-284 IntegerToString, 1-68, 2-284, 285 Integral, 2-422, 2-458, 4-1331, 4-1359 IntegralBasis, 2-354, 3-790, 3-897, **4-**1369, **11-**4439 IntegralBasisLattice, 3-665 IntegralClosure, 3-1092 IntegralGroup, 5-1783 IntegralHeckeOperator, 11-4453IntegralHomology, 11-4554 IntegralMapping, 11-4470IntegralMatrix, 11-4568 IntegralMatrixGroupDatabase, 5-1973 IntegralMatrixOverQ, 11-4568IntegralModel, 10-3945, 10-4127 IntegralMultiple, 9-3582 IntegralNormEquation, 3-928 IntegralPart, 12-4789 IntegralPoints, 10-4055 IntegralQuarticPoints, 10-4057IntegralSplit, 3-943, 3-1135, 3-1148, 9-3504 IntegralUEA, 8-3042 IntegralUEAlgebra, 8-3042 IntegralUniversalEnvelopingAlgebra, 8-3042 Interior, 12-4735 InteriorPoints, 12-4786InternalEdges, 11-4350Interpolation, 2-422, 2-459, 2-511 Intersection, 9-3496, 9-3578, 11-4339, 11-4595 IntersectionArray, 12-4988 IntersectionForm, 9-3892

IntersectionGroup, 11-4467, 4468 IntersectionMatrix, 9-3727, 12-4965 IntersectionNumber, 9-3585, 9-3669, **12-**4887 IntersectionNumbers, 9-3669 IntersectionOfImages, 11-4595IntersectionPairing, 9-3619, 11-4458, **11-**4609 IntersectionPairingIntegral, 11-4609 IntersectionWithNormalSubgroup, 5-1552 intrinsic, 1-43Intseq, 2-284 InvariantBilinearForms, 2-630 InvariantFactors, 2-549, 7-2530 InvariantField, 9-3392 InvariantFormBases, 2-633InvariantForms, 3-712, 3-729, 5-1781 InvariantQuadraticForms, 2-631 InvariantRing, 9-3356, 9-3386 Invariants, 5-1496, 5-1707, 5-1833, **5**-2015, **6**-2062, **10**-4114, **11**-4631 InvariantSesquilinearForms, 2-632 InvariantsMetacyclicPGroup (P), 5-1952 InvariantsOfDegree, 9-3360, 9-3386 Inverse, 1-252, 2-397, 6-2312, 6-2352, 6-2370, 8-3118, 8-3135, 9-3535, **9-**3682, **10-**4147, **11-**4570 InverseDefiningPolynomials, 9-3540 InverseJeuDeTaquin, 12-4835 InverseKrawchouk, 13-5137 InverseMattsonSolomonTransform, 13-5136InverseMod, 2-312, 3-943 InverseRoot, 4-1294InverseRowInsert, 12-4836InverseRSKCorrespondenceDoubleWord, **12-**4839 InverseRSKCorrespondenceMatrix, 12-4840 InverseRSKCorrespondenceSingleWord, 12-4839 InverseSqrt, 4-1293, 1294 InverseSquareRoot, 4-1293, 1294 InverseWordMap, 5-1604, 5-1696 Involution, 7-2556, 10-4143 InvolutionClassicalGroupEven, 5-1712 Iroot, **2-**290 IrreducibleCartanMatrix, 8-2818IrreducibleCoxeterGraph, 8-2818 IrreducibleCoxeterGroup, 8-2904 IrreducibleCoxeterMatrix, 8-2818 IrreducibleDynkinDigraph, 8-2818 IrreducibleLowTermGF2Polynomial, 2-382 IrreducibleMatrixGroup, 5-1978 IrreducibleModule, 7-2584 IrreducibleModules, **7**-2740, **7**-2744, 7-2747 IrreducibleModulesBurnside, 7-2743 IrreducibleModulesInit, 7-2746 IrreducibleModulesSchur, 5-1853, 7-2745 IrreduciblePolynomial, 2-382 IrreducibleReflectionGroup, 8-2949IrreducibleRepresentationsInit, 7-2746 IrreducibleRepresentationsSchur, 5-1853 IrreducibleRootDatum, 8-2861 IrreducibleRootSystem, 8-2834 IrreducibleSecondaryInvariants, 9-3367 IrreducibleSimpleSubalgebrasOfSU, 8-3174IrreducibleSimpleSubalgebraTreeSU, 8-3174 IrreducibleSolubleSubgroups, 5-1928 IrreducibleSparseGF2Polynomial, 2-382 IrreducibleSubgroups, 5-1928 Irregularity, 9-3764 IrregularLDPCEnsemble, 13-5157IrrelevantComponents, 9-3884 IrrelevantGenerators, 9-3884 IrrelevantIdeal, 9-3880, 9-3884 Is2T1, **12-**4767 ISA, 1-28 ISABaseField, 3-1097 IsAbelian, 3-793, 3-903, 3-1015, 4-1305, **5**-1491, **5**-1528, **5**-1662, **5**-1800, **6**-2273, **8**-3033, **8**-3114 IsAbelianByFinite, 5-1767 IsAbelianVariety, 11-4536IsAbsoluteField, 3-793, 3-903 IsAbsolutelyIrreducible, 5-1689, 7-2698, 8-2871, 9-3694 IsAbsoluteOrder, 3-902, 3-1126 IsAdditiveOrder, 8-2845, 8-2885 IsAdditiveProjective, 13-5222 IsAdjoint, 8-2872, 8-3114 IsAffine, 5-1592, 8-2915, 9-3498, 9-3500 IsAffineLinear, 9-3541, 12-4792 IsAlgebraHomomorphism, 7-2576 IsAlgebraic, 8-3129 IsAlgebraicallyDependent, 2-450IsAlgebraicallyIsomorphic, 8-3111 IsAlgebraicDifferentialField, 9-3410 IsAlgebraicField, 3-792, 3-901 IsAlgebraicGeometric, 13-5150 IsAlternating, 5-1610 IsAltsym, 5-1611 IsAmbient, 9-3309, 9-3499, 11-4489 IsAmbientSpace, 11-4403, 11-4506 IsAmple, 9-3891 IsAnalyticallyIrreducible, 9-3663 IsAnisotropic, 8-2873 IsAnticanonical, 9-3584 IsArc, **12-**4734 IsArithmeticallyCohenMacaulay, 9-3517, 9-3618 IsArithmeticallyGorenstein, 9-3517 IsAssociative, 7-2435 IsAttachedToModularSymbols, 11-4536, **11-**4556 IsAttachedToNewform, 11-4536IsAutomaticGroup, 6-2360, 2361

IsAutomorphism, 9-3549 IsBalanced, 12-4892IsBasePointFree, 9-3574, 9-3585 IsBiconnected, 12-4956, 12-5034 IsBig, 9-3891 IsBijective, 4-1417, 9-3317 IsBipartite, 12-4952, 12-5029 IsBlock, 5-1577, 12-4890 IsBlockTransitive, 12-4902IsBogomolovUnstable, 9-3853 IsBoundary, 4-1244IsBravaisEquivalent, $\mathbf{5}\text{-}1784$ IsCanonical, 3-1161, 3-1176, 9-3584, **9**-3712, **9**-3838, **9**-3840, 3841, **9**-3875, **9**-3877, **9**-3881 IsCanonicalWithTwist, 9-3584 IsCapacitated, $\mathbf{12}\text{-}5013$ IsCartanEquivalent, 8-2811, 8-2819, **8**-2835, **8**-2864, **8**-2910, **8**-2959, 8-3111 IsCartanMatrix, 8-2809 IsCartanSubalgebra, 8-3027 IsCartier, 9-3891 IsCentral, 3-1015, 5-1491, 5-1551, **5**-1669, **5**-1823, **6**-2274, **7**-2575, 8-3033, 3034, 8-3120 IsCentralByFinite, 5-1767 IsCentralCollineation, 12-4744IsChainMap, 4-1451 IsCharacter, 7-2765IsChevalleyBasis, 8-3022 IsClassicalType, 8-3033 IsCluster, 9-3499IsCM, 11-4603 IsCoercible, 1-13, 9-3508, 12-4852 IsCohenMacaulay, 9-3378, 9-3517 IsCokernelTorsionFree, 12-4801IsCollinear, 12-4733IsCommutative, 2-267, 2-286, 2-336, **2**-356, **2**-375, **2**-416, **2**-448, **2**-480, **3**-792, **3**-901, **3**-1046, **3**-1062, **4**-1317, **4**-1328, **7**-2435, **7**-2487, **7**-2575, **11**-4589, **12**-4855 IsCompactHyperbolic, 8-2915 IsComplete, 1-208, 6-2174, 9-3574, **9**-3874, **9**-3881, **12**-4734, **12**-4892, **12-**4952, **12-**5030 IsCompletelyReducible, $\mathbf{5}\text{-}1768$ IsComplex, 3-809, 3-957 IsConcurrent, 12-4733IsConditioned, 5-1860 IsConfluent, 6-2349, 6-2408 IsCongruence, 11-4340IsConic, 9-3499, 10-3914 IsConjugate, 5-1492, 5-1498, 5-1544, **5**-1570, **5**-1666, **5**-1811, **5**-1815, **5**-1823, **6**-2167, **6**-2274, **6**-2280, **6-**2317, **7-**2655

IsConnected, 12-4956, 12-5034 IsConsistent, 2-540, 541, 5-1798, 6-2259, 7-2534 IsConstant, 3-1133, 10-3965 IsConstantCurve, 10-4088 IsConway, 2-375IsCorootSpace, 8-2875 IsCoxeterAffine, 8-2816IsCoxeterCompactHyperbolic, 8-2822 IsCoxeterFinite, 8-2816 IsCoxeterGraph, 8-2807 IsCoxeterHyperbolic, 8-2822 IsCoxeterIrreducible, 8-2806, 8-2812 IsCoxeterIsomorphic, 8-2806, 8-2810, 8-2819, 8-2910, 8-2959 IsCoxeterMatrix, 8-2805 IsCrystallographic, 8-2812, 8-2837, **8**-2871, **8**-2915, **8**-2963 IsCurve, 9-3499, 9-3650 IsCusp, 9-3663, 11-4346 IsCuspidal, 11-4403, 11-4449, 11-4492, **11-**4657 IsCyclic, 3-793, 3-903, 5-1491, 5-1528, **5**-1662, **5**-1800, **6**-2067, **6**-2273, **13-**5093, **13-**5205 IsDecomposable, 7-2704 IsDefault, 2-375 IsDeficient, 10-4180IsDefined, 1-208, 1-225, 1-229 IsDefinite, 7-2639, 11-4658 IsDegenerate, 4-1245IsDelPezzo, 9-3805 IsDenselyRepresented, 13-5262 IsDesarguesian, 12-4727IsDesign, **12**-4892 IsDiagonal, 2-543, 2-571, 7-2520 IsDifferenceSet, 12-4885IsDifferentialField, 9-3410 IsDifferentialIdeal, 9-3427 IsDifferentialLaurentSeriesRing, 9-3410IsDifferentialOperatorRing, 9-3431 IsDifferentialSeriesRing, 9-3410 IsDimensionCompatible, 7-2575 IsDirected, 12-5030 IsDirectSum, **12**-4798 IsDirectSummand, 7-2704 IsDiscriminant, 3-754 IsDisjoint, 1-184 IsDistanceRegular, 12-4987 IsDistanceTransitive, 12-4987IsDivisible, 9-3583 IsDivisibleBy, 2-288, 2-423, 2-450, **3-**1132, **10-**3970 IsDivisionRing, 2-267, 2-286, 2-336, **2**-356, **2**-376, **2**-416, **2**-448, **2**-480, **3-**1046, **3-**1062, **3-**1126, **4-**1317, **4-**1328, **12-**4855 IsDivisiorialContraction, 9-3899

IsDomain, 2-268, 2-286, 2-336, 2-356, **2**-376, **2**-416, **2**-448, **2**-480, **3**-792, **3**-902, **3**-1046, **3**-1062, **3**-1126, **4**-1317, **4**-1328, **9**-3410, **12**-4855 IsDominant, 8-2887, 8-2924, 8-2970, 9-3541 IsDoublePoint, 9-3663 IsDoublyEven, 13-5093 IsDualComputable, 11-4607IsDynkinDigraph, 8-2813 IsEdgeCapacitated, 12-5013 IsEdgeLabelled, 12-5013 IsEdgeTransitive, 12-4987 IsEdgeWeighted, $\mathbf{12}\text{-}5014$ IsEffective, 3-1161, 9-3583, 9-3711, 9-3845 IsEichler, 7-2643IsEisenstein, 4-1271, 11-4403, 11-4449, 11-4492 IsEisensteinSeries, 11-4403, 11-4411 IsElementaryAbelian, 5-1491, 5-1528, **5**-1662, **5**-1800, **6**-2067, **6**-2273 IsEllipticCurve, 10-3943, 3944, 10-4131 IsEllipticWeierstrass, 9-3674 IsEmbedded, 9-3309IsEmpty, 1-183, 1-208, 1-224, 3-692, **5**-1856, **5**-1946, **5**-1965, **5**-1970, **5**-1984, **6**-2107, **6**-2157, **6**-2327, **9**-3516, **9**-3525, **12**-4790, **12**-4953, **12-**5030 IsEmptySimpleQuotientProcess, 6-2110 IsEmptyWord, 6-2316 IsEndomorphism, 9-3549, 11-4576 IsEof, 1-81IsEquationOrder, 3-902, 3-1126 IsEquidistant, 13-5093 IsEquitable, 12-4964IsEquivalent, 3-757, 10-4024, 10-4107, **11-**4344, **11-**4347, **13-**5142 IsEtale, 7-2791 Isetseq, 1-182Isetset, 1-182 IsEuclideanDomain, 2-267, 2-286, 2-336, **2**-356, **2**-375, **2**-416, **2**-448, **2**-480, **3**-792, **3**-901, **3**-1046, **3**-1062, **3-**1126, **4-**1317, **4-**1328, **12-**4855 IsEuclideanRing, 2-267, 2-286, 2-336, **2**-356, **2**-376, **2**-416, **2**-448, **2**-480, **3**-1046, **3**-1062, **3**-1126, **4**-1317, **4**-1328, **12**-4855 IsEulerian, 12-4952IsEven, 2-288, 2-311, 2-344, 3-659, **3-**814, **5-**1537, **5-**1611, **10-**4179, 13-5093 IsExact, 3-659, 3-1179, 4-1447, 1448, **9**-3699, **11**-4347, **11**-4372, **11**-4621 IsExactlyDivisible, 4-1286 IsExceptionalUnit, 3-924

xxxi

IsExtension, 5-1805 IsExtensionOf, 5-2029, 2030 IsExtraSpecial, 5-1492, 5-1528, 5-1707, 5-1801 IsExtraSpecialNormaliser, 5-1724 IsFace, 4-1243 IsFactorial, 2-296 IsFactorisationPrime, 9-3583 IsFaithful, 5-1574, 7-2766 IsFakeWeightedProjectiveSpace, 9-3881 IsFanMap, 9-3876 IsFano, 9-3877, 9-3881 IsField, 2-267, 2-286, 2-336, 2-356, **2**-375, **2**-416, **2**-448, **2**-480, **3**-792, **3**-901, **3**-1046, **3**-1062, **3**-1126, **4-**1317, **4-**1328, **9-**3410, **11-**4589, **12-**4855 IsFinite, 2-267, 2-286, 2-314, 2-336, 2-356, 2-375, 2-416, 2-448, 2-480, **3**-792, **3**-809, **3**-901, **3**-957, **3**-1046, **3-**1062, **3-**1157, **4-**1317, **4-**1328, **5**-1658, **5**-1763, **6**-2063, **6**-2273, **6**-2349, **6**-2366, **6**-2408, **8**-2871, 8-2915, 8-3114, 11-4632, 12-4855 IsFiniteOrder, 3-1126 IsFirm, 12-4764 IsFlex, 9-3662 IsFlipping, 9-3899 IsForest, 12-4953IsFree, 6-2067, 9-3323, 9-3574 IsFrobenius, 5-1572IsFTGeometry, 12-4764IsFuchsianOperator, 9-3448IsFundamental, 3-755IsFundamentalDiscriminant, 3-755 IsGamma0, 11-4340, 11-4403 IsGamma1, 11-4340, 11-4403 IsGE, 6-2317 IsGe, 6-2317 IsGeneralizedCartanMatrix, 8-3064 IsGeneralizedCharacter, 7-2766 IsGenuineWeightedDynkinDiagram, 8-3056 IsGenus, 3-702 IsGenusOneModel, 10-4107 IsGeometricallyHyperelliptic, 9-3675 IsGL2Equivalent, 10-4148IsGLattice, 3-729IsGLConjugate, 5-1666, 5-1927 IsGlobal, 3-1126IsGloballySplit, 3-994 IsGlobalUnit, 3-1133, 3-1174 IsGlobalUnitWithPreimage, 3-1133, 3-1174 IsGLQConjugate, 5-1785IsGLZConjugate, 5-1784, 1785 IsGorenstein, 7-2644, 9-3517, 9-3875, 3876, 9-3881 IsGorensteinSurface, 9-3838, 9-3841 IsGraded, 9-3310, 9-3317

IsGradedIsomorphic, 7-2581 IsGraph, 12-4765 IsGroebner, 9-3199IsHadamard, 12-4909IsHadamardEquivalent, 12-4909IsHeckeAlgebra, 11-4589IsHeckeOperator, 11-4576IsHereditary, 7-2644IsHomeomorphic, 12-4974, 12-5038 IsHomogeneous, 9-3189, 9-3229, 9-3310, **9**-3312, **9**-3317, **9**-3491, **12**-4858 IsHomomorphism, 5-1530, 5-1649, 5-1802 IsHyperbolic, 8-2915 IsHyperelliptic, 9-3675 IsHyperellipticCurve, 9-3499, 10-4124 IsHyperellipticCurveOfGenus, 10-4124IsHyperellipticWeierstrass, 9-3675 IsHypersurface, 9-3501IsHypersurfaceDivisor, 9-3714 IsHypersurfaceSingularity, 9-3513 IsId, 5-1467, 5-1538, 5-1654, 5-1811, **6**-2061, **6**-2255, **6**-2316, **6**-2352, **6-**2370, **6-**2411, **10-**3973 IsIdeal, **7**-2554, **7**-2577 IsIdempotent, 2-271, 2-289, 2-337, 2-358, **2**-378, **2**-418, **2**-450, **2**-480, **3**-795, **3**-907, **3**-1048, **3**-1064, **3**-1132, 4-1231, 4-1318, 4-1329, 7-2430, **7**-2473 IsIdentical, 4-1329, 9-3410, 9-3431 IsIdenticalPresentation, 5-1844, 6-2259 IsIdentity, 2-397, 3-756, 3-1116, 5-1467, 5-1538, 5-1654, 5-1811, 6-2061, 6-2255, 6-2316, 6-2352, 6-2370, 6-2411, 10-3973, 10-4161 IsInArtinSchreierRepresentation, 3-1127 IsInCorootSpace, 8-2878 IsIndecomposable, 11-4492IsIndefinite, 7-2639 IsIndependent, 2-602, 603, 7-2425, 8-3017 IsIndivisibleRoot, 8-2844, 8-2884 IsInduced, 5-2032 IsInert, 3-941, 3-1145 IsInertial, 4-1269 IsInfinite, 3-809, 3-957, 6-2063, **11-**4346 IsInflectionPoint, 9-3662IsInImage, 9-3263 IsInjective, 4-1417, 4-1451, 7-2588, 9-3317, 11-4576 IsInKummerRepresentation, 3-1127 IsInner, 5-2004, 8-2873 IsInRadical, 9-3232 IsInRootSpace, 8-2875, 8-2878 IsInSecantVariety, 9-3565 IsInSmallGroupDatabase, 5-1941 IsInSmallModularCurveDatabase, 11-4315IsInSupport, 9-3871

xxxii

IsInt, **3-**974 IsInTangentVariety, 9-3563 IsInteger, 11-4576IsIntegral, 2-289, 2-358, 2-481, 3-659, **3**-795, **3**-906, **3**-939, **3**-1145, **4**-1288, **4-**1369, **9-**3583, **10-**3974, **10-**4128, **12-**4797 IsIntegralDomain, 2-268 IsIntegralModel, 10-3946, 3947 IsInterior, 4-1244IsIntersection, 9-3669 IsIntrinsic, 1-32 IsInTwistedForm, 8-3106 IsInvariant, 3-978, 9-3357 IsInvertible, 9-3535, 9-3561 IsIrreducible, 2-271, 2-289, 2-337, **2**-358, **2**-378, **2**-418, **2**-432, **2**-450, **2**-464, **2**-480, **3**-795, **3**-907, **3**-1048, **3**-1133, **3**-1220, **4**-1300, **4**-1329, **5**-1689, **7**-2473, **7**-2698, **7**-2766, **8**-2837, **8**-2871, **8**-2915, **9**-3517, 9-3655, 11-4446 IsIrreducibleFiniteNilpotent, 5-1770 IsIrregularSingularPlace, 9-3448 IsIsogenous, 8-2864, 8-3111, 10-3953, **10-**4212, **11-**4536 IsIsogenousPeriodMatrices, 10-4212 IsIsogeny, 8-2895, 11-4576 IsIsolated, 9-3838, 9-3841 IsIsometric, 2-625, 3-724, 725, 3-727 IsIsometry, 2-625IsIsomorphic, 2-401, 3-724, 725, 3-793, **3**-903, **3**-1115, **4**-1302, **4**-1305, **5**-1604, **5**-1698, **5**-1844, **7**-2465, 7-2582, 7-2654-2656, 7-2714, 8-2835, 8-2864, 8-2910, 8-3014, 9-3618, **9-**3681, **10-**3953, **10-**4148, **10-**4212, **11**-4537, **12**-4727, **12**-4898, **12**-4904, **12-**4980, **13-**5142 IsIsomorphicBigPeriodMatrices, 10-4212 IsIsomorphicCubicSurface, 9-3817 IsIsomorphicOverQt, 3-1113 IsIsomorphicSmallPeriodMatrices, 10-4212 IsIsomorphicSolubleGroup, 5-1842 IsIsomorphicWithTwist, 9-3618 IsIsomorphism, 4-1451, 8-3014, 9-3541, **10-**3962, **11-**4576 IsKEdgeConnected, 12-4961, 12-5036 IsKnownIsomorphic, 8-3014 IsKnuthEquivalent, 12-4817 IsKVertexConnected, 12-4961, 12-5036 IsLabelled, **12**-5011, **12**-5013 IsLargeReeGroup, 5-1920 IsLDPC, 13-5158 IsLE, 6-2317 IsLe, 6-2317 IsLeaf, 8-2983 IsLeftIdeal, 7-2462, 7-2554, 7-2578

IsLeftIsomorphic, 7-2465, 7-2656 IsLeftModule, 7-2718 IsLexicographicallyOrdered, 12-4838 IsLie, **7-**2435 IsLinear, 7-2766, 9-3502, 9-3541 IsLinearGroup, 5-1903 IsLinearlyDependent, 10-4089 IsLinearlyEquivalent, 9-3585, 9-3714, 9-3893 IsLinearlyEquivalentToCartier, 9-3893 IsLinearlyIndependent, 10-3975, 10-4018, **10-**4089 IsLinearSpace, 12-4892 IsLinearSystemNonEmpty, 9-3587 IsLineRegular, 12-4892IsLineTransitive, 12-4745IsLittlewoodRichardson, 12-4833IsLocallyFree, 9-3616 IsLocallySolvable, 9-3527 IsLocallyTwoTransitive, 12-4767IsLocalNorm, 3-1023 IsLongRoot, 8-2844, 8-2884, 8-2923, 8-3124 IsLowerTriangular, 2-543, 2-571IsMagmaEuclideanRing, 2-267 IsMatrixRing, 7-2640 IsMaximal, 3-902, 3-1126, 5-1492, 5-1555, **5**-1669, **5**-1823, **6**-2068, **6**-2167, **7**-2465, **7**-2643, **9**-3230 IsMaximalDimension, 12-4792 IsMaximisingFunction, 13-5289 IsMaximumDistanceSeparable, 13-5093 IsMDS, 13-5093 IsMemberBasicOrbit, 5-1619 IsMetacyclicPGroup (P), 5-1952 IsMinimal, 11-4682 IsMinimalModel, 10-3946 IsMinimalTwist, $\mathbf{11}$ -4451 IsMinusOne, 2-271, 2-289, 2-337, 2-358, **2**-378, **2**-418, **2**-450, **2**-480, **2**-543, **2-**571, **3-**795, **3-**907, **3-**952, **3-**1047, **3-**1064, **3-**1132, **4-**1231, **4-**1288, 4-1318, 4-1329, 4-1344, 4-1358, **4**-1371, **7**-2430, **7**-2473, **7**-2520, **7**-2766, **9**-3504, **12**-4858 IsMixed, 6-2067 IsMobile, 9-3585 IsModularCurve, 9-3499 IsModuleHomomorphism, 7-2591, 7-2711 IsMonic, 2-418, 9-3434 IsMoriFibreSpace, 9-3898 IsMorphism, 3-1116, 11-4575 IsNearLinearSpace, 12-4892 IsNearlyPerfect, 13-5093 IsNeat, 6-2068IsNef, 9-3585, 9-3891 IsNefAndBig, 9-3586IsNegative, 8-2843, 8-2883, 8-2921

xxxiii

xxxiv

INDEX OF INTRINSICS

IsNegativeDefinite, 3-701 IsNegativeSemiDefinite, 3-701 IsNew, 11-4403, 11-4449, 11-4657 IsNewform, 11-4403IsNewtonPolygonOf, 4-1244IsNilpotent, 2-271, 2-289, 2-337, 2-358, **2**-378, **2**-418, **2**-450, **2**-480, **3**-795, **3**-907, **3**-1048, **3**-1064, **3**-1132, **4-**1231, **4-**1318, **4-**1329, **5-**1492, **5**-1528, **5**-1662, **5**-1769, **5**-1800, **6**-2273, **7**-2430, **7**-2473, **7**-2489, **7**-2520, **8**-3033, **9**-3293 IsNilpotentByFinite, 5-1766 IsNodalCurve, 9-3655IsNode, 9-3663 IsNondegenerate, 2-613IsNonsingular, 2-613, 9-3512, 9-3516, **9**-3655, **9**-3662, **9**-3874, **9**-3876, 9-3881 IsNorm, 3-1023 IsNormal, 2-378, 3-793, 3-903, 3-1015, **4**-1304, 1305, **5**-1492, **5**-1551, **5**-1669, **5**-1823, **6**-2167, **6**-2274, **9**-3767 IsNormalised, 5-2032 IsNormalising, 8-3105 IsNull, 1-183, 1-208, 12-4953, 12-5030 IsNullHomotopy, 7-2616 IsNumberField, 3-792, 3-901 Iso, 1-254, 10-4146 iso, 6-2073, 9-3531 IsOdd, 2-288, 2-311, 2-344, 3-814 IsogenousCurves, 10-4008Isogeny, 11-4297, 11-4326 IsogenyFromKernel, 10-3963, 3964 IsogenyFromKernelFactored, 10-3963, 3964 IsogenyGroup, 8-2870, 8-2913, 8-2961, 8-3114 IsogenyMapOmega, 10-3965 IsogenyMapPhi, 10-3965 IsogenyMapPhiMulti, 10-3965 IsogenyMapPsi, 10-3965 IsogenyMapPsiMulti, 10-3965 IsogenyMapPsiSquared, 10-3965 IsolatedPointsFinder, 9-3588IsolatedPointsLifter, 9-3588 IsolatedPointsLiftToMinimalPolynomials, 9-3589 IsolGroup, 5-1980 IsolGroupDatabase, 5-1980 IsolGroupOfDegreeFieldSatisfying, 5-1982 IsolGroupOfDegreeSatisfying, 5-1982 IsolGroupSatisfying, 5-1982 $\verb"IsolGroupsOfDegreeFieldSatisfying, 5-1982"$ IsolGroupsOfDegreeSatisfying, 5-1982 IsolGroupsSatisfying, 5-1982 IsolGuardian, 5-1981 IsolInfo, 5-1981 IsolIsPrimitive, 5-1981

IsolMinBlockSize, 5-1981 IsolNumberOfDegreeField, 5-1980 IsolOrder, 5-1981 IsolProcess, 5-1983IsolProcessOfDegree, 5-1983 IsolProcessOfDegreeField, 5-1984IsolProcessOfField, 5-1983 IsometricCircle, 11-4375IsometryGroup, 2-627, 7-2666, 7-2676 IsomorphicCopy, $\mathbf{5}\text{-}1764$ IsomorphicProjectionToSubspace, 9-3566 Isomorphism, 6-2073, 7-2655, 10-3961 IsomorphismData, 10-3961 Isomorphisms, 3-1114, 1115, 9-3681 IsomorphismToIsogeny, 10-3962 IsomorphismToStandardCopy, 5-1930 IsomorphismTypesOfBasicAlgebraSequence, **7-**2585 IsomorphismTypesOfRadicalLayers, 7-2585 IsomorphismTypesOfSocleLayers, 7-2585 IsOne, 2-271, 2-289, 2-311, 2-337, 2-358, 2-378, 2-418, 2-450, 2-480, **2**-543, **2**-571, **3**-795, **3**-907, **3**-939, **3-**952, **3-**1047, **3-**1064, **3-**1132, **3-**1145, **4-**1231, **4-**1288, **4-**1318, 4-1329, 4-1344, 4-1358, 4-1371, **6**-2391, **7**-2430, **7**-2473, **7**-2520, **7**-2766, **9**-3414, **9**-3434, **9**-3504, 12 - 4858IsOneCoboundary, 5-2019 IsOneCocycle, 5-2033 IsOnlyMotivic, 11-4537IsOptimal, 11-4576IsOrbit, 5-1575 IsOrder, 10-3974 IsOrdered, 2-267, 2-286, 2-336, 2-356, **2**-375, **2**-416, **2**-448, **2**-480, **3**-792, **3-**901, **3-**1046, **3-**1062, **4-**1317, **4-**1328, **12-**4855 IsOrderTerm, 9-3414 IsOrdinary, 10-3980 IsOrdinaryProjective, 9-3500 IsOrdinaryProjectiveSpace, 9-3498 IsOrdinarySingularity, 9-3512, 9-3663 IsOrthogonalGroup, 5-1903 IsotropicSubspace, 3-747 IsOuter, 8-2873IsOverQ, 11-4590 IsOverSmallerField, 5-1726 IsParabolicSubgroup, 8-2927 IsParallel, 12-4733 IsParallelClass, 12-4894IsParallelism, 12-4894IsPartialRoot, 4-1249 IsPartition, **12**-4813 IsPartitionRefined, 12-4979 IsPath, 12-4953 IsPathTree, 7-2575

IsPerfect, 3-1101, 5-1492, 5-1528, **5**-1662, **5**-1800, **6**-2127, **6**-2273, **13-**5093, **13-**5221 IsPermutationModule, 7-2699 IspGroup, 6-2067 IsPID, 2-267, 2-286, 2-336, 2-356, **2-**375, **2-**416, **2-**448, **2-**480, **3-**792, **3**-902, **3**-1046, **3**-1062, **3**-1126, **4-**1317, **4-**1328, **12-**4855 IspIntegral, 10-4128 IsPIR, 2-268 IsPlanar, 9-3500, 12-4973, 12-5038 IsPlaneCurve, 9-3499 IspLieAlgebra, 8-3039 IspMaximal, 7-2465, 7-2643 IspMinimal, 10-4129IspNormal, 10-4128IsPoint, 4-1244, 10-3968, 3969, 10-4142, **10-**4204 IsPointRegular, 12-4892 IsPointTransitive, 12-4745, 12-4902 IsPolarSpace, 2-620 IsPolycyclic, 5-1769 IsPolycyclicByFinite, 5-1766 IsPolygon, 12-4953 IsPolynomial, 4-1385, 9-3541 IsPositive, 3-1161, 8-2843, 8-2883, **8-**2921, **9-**3711 IsPositiveDefinite, 3-701 IsPositiveSemiDefinite, 3-701 IsPower, 2-288, 2-381, 3-794, 3-905, 906, **3**-944, **3**-1040, **3**-1143, **4**-1294 IsPRI, 12-4766 IsPrimary, 9-3229, 9-3290 IsPrime, 2-271, 2-288, 289, 2-298, 2-311, 2-337, 2-358, 2-378, 2-418, 2-450, 2-480, 3-795, 3-907, 3-939, 3-1048, **3**-1133, **3**-1145, **4**-1329, **7**-2473, **9**-3230, **9**-3290, **9**-3583 IsPrimeCertificate, 2-298 IsPrimeField, 2-367 IsPrimePower, 2-299, 2-311 IsPrimitive, 2-312, 2-340, 2-344, 2-378, **3**-795, **3**-814, **3**-821, **3**-906, **5**-1571, **5**-1577, **5**-1716, **10**-4229, **12**-4766, **12-**4797, **12-**4987 IsPrimitiveFiniteNilpotent, 5-1770 IsPrincipal, 3-939, 3-1145, 3-1161, **7**-2465, **7**-2656, **9**-3229, **9**-3585, **9**-3714, **9**-3893 IsPrincipalIdealDomain, 2-267 IsPrincipalIdealRing, 2-268, 2-286, **2**-336, **2**-356, **2**-376, **2**-416, **2**-448, **2**-480, **3**-792, **3**-902, **3**-1046, **3**-1062, **3-**1126, **4-**1317, **4-**1328, **12-**4855 IsPrincipalSeries, 11-4683 IsProbablePrime, 2-299 IsProbablyMaximal, 5-1556

IsProbablyPerfect, 5-1714 IsProbablyPermutationPolynomial, 2-386 IsProbablyPrime, 2-299IsProbablySupersingular, 10-3980 IsProductOfParallelDescendingCycles, **6-**2301 IsProjective, 7-2588, 9-3498, 9-3500, **9**-3881, **13**-5093, **13**-5206, **13**-5221 IsProjectivelyIrreducible, 8-2837, 8-2871 IsProper, 7-2488, 9-3229, 9-3282, 9-3290 IsProperChainMap, 4-1451 IsProportional, 5-1720 IsPseudoReflection, 8-2944IsPseudoSymplecticSpace, 2-621 IspSubalgebra, 8-3040 IsPure, 6-2068, 13-5254 IsQCartier, 9-3890 IsQFactorial, 9-3875, 9-3877, 9-3881 IsQGorenstein, 9-3875, 9-3877, 9-3881 IsQPrincipal, 9-3893 Isqrt, 2-291 IsQuadratic, 3-836, 3-904 IsQuadraticTwist, 10-3948, 10-4129 IsQuadricIntersection, 10-4028IsQuasisplit, 8-2873 IsQuaternionAlgebra, 7-2640 IsQuaternionic, 11-4537IsQuotient, 12-4799IsRadical, 9-3230, 9-3290 IsRamified, 3-940, 3-1145, 3-1220, **4-**1280, **4-**1369, **7-**2636 IsRational, 9-3793 IsRationalCurve, 9-3499, 10-3914 IsRationalFunctionField, 3-1126IsRC, 12-4765 IsReal, 2-481, 3-809, 3-852, 3-957, 7-2766, 11-4346 IsRealisableOverSmallerField, 7-2733 IsRealisableOverSubfield, 7-2733 IsRealReflectionGroup, 8-2963 IsReduced, 3-756, 8-2837, 8-2871, 8-2873, **9**-3309, **9**-3517, **9**-3655, **9**-3754, **10-**3925 IsReductive, 8-3033 IsReeGroup, 5-1917 IsReflection, 8-2925, 8-2944 IsReflectionGroup, 8-2944, 8-2963 IsReflectionSubgroup, 8-2927 IsReflexive, 9-3876IsRegular, 2-289, 2-337, 2-358, 2-378, 2-418, 2-450, 3-795, 3-907, 3-1048, **3**-1064, **3**-1133, **4**-1231, **4**-1329, **5**-1571, **7**-2430, **7**-2473, **9**-3541, **9**-3754, **9**-3897, **12**-4953, **12**-5030 IsRegularLDPC, 13-5159 IsRegularPlace, 9-3448 IsRegularSingularOperator, 9-3448 IsRegularSingularPlace, 9-3448

XXXV

xxxvi

IsResiduallyConnected, 12-4765 IsResiduallyPrimitive, 12-4766IsResiduallyWeaklyPrimitive, $\mathbf{12}$ -4766 IsResiduallyWealyPrimitive, 12-4766IsResolution, 12-4893IsRestrictable, 8-3039 IsRestricted, 8-3039 IsRestrictedSubalgebra, 8-3040 IsReverseLatticeWord, 12-4817 IsRightIdeal, 7-2462, 7-2554, 7-2578 IsRightIsomorphic, 7-2465, 7-2656 IsRightModule, 7-2718 IsRing, 11-4589 IsRingHomomorphism, 3-881, 3-1127 IsRingOfAllModularForms, 11-4403 IsRoot, 9-3309, 12-4966 IsRootedTree, 12-4966IsRootSpace, 8-2875 IsRPRI, **12-**4766 IsRWP, 12-4766 IsRWPRI, 12-4766 IsSatisfied, 6-2101 IsSaturated, 9-3500, 11-4590 IsScalar, 2-543, 2-571, 5-1654, 7-2447, **7-**2459, **7-**2520 IsSelfDual, 11-4537, 12-4727, 12-4891, **13-**5093, **13-**5205, **13-**5221 IsSelfNormalising, 5-1492, 5-1552, 6-2274 IsSelfNormalizing, 5-1492, 5-1552, **5**-1823, **6**-2167, **6**-2274 IsSelfOrthogonal, 13-5093, 13-5205, **13-**5221 IsSemiLinear, 5-1718 IsSemiregular, 5-1572 IsSemisimple, 7-2427, 7-2587, 7-2702, **8**-2837, **8**-2871, **8**-2915, **8**-3033, 8-3114, 8-3120 IsSeparable, 2-432, 12-4956, 12-5034 IsSeparating, 3-1133 IsServerSocket, 1-86IsSharplyTransitive, 5-1571 IsShellable, 12-4793IsShortExactSequence, 4-1448, 4-1451 IsShortRoot, 8-2844, 8-2884, 8-2923, 8-3124 IsSimilar, 2-549, 7-2530 IsSimilarity, 2-628, 629 IsSimple, 3-792, 3-902, 5-1492, 5-1529, **5**-1662, **5**-1800, **6**-2273, **6**-2316, 7-2427, 8-3033, 8-3114, 11-4537, 12-4792, 12-4891, 12-5030 IsSimpleStarAlgebra, 7-2673 IsSimpleSurfaceSingularity, 9-3767 IsSimplex, 12-4792 IsSimplicial, 9-3877, 12-4792 IsSimplifiedModel, 10-3946, 10-4128 IsSimplyConnected, 8-2872, 8-3115

IsSimplyLaced, 8-2806, 8-2808, 8-2812, 2813, 8-2819, 8-2837, 8-2872, 8-2915, 8-2964, 8-3114 IsSinglePrecision, 2-289 IsSingular, 2-544, 9-3512, 9-3516, **9**-3655, **9**-3662, **9**-3874, **9**-3876, 9-3881 IsSIntegral, 10-3974IsSkew, 12-4833IsSLZConjugate, 5-1785 IsSmooth, 9-3876 IsSoluble, 5-1492, 5-1528, 5-1662, 5-1769, 5-1800, 5-1942, 5-1999, **6-**2274, **8-**3033 IsSolubleAutomorphismGroupPGroup, 5-1999 IsSolubleByFinite, 5-1765IsSolvable, 5-1492, 5-1528, 5-1662, **5**-1800, **5**-1942, **5**-1999, **6**-2274, 8-3033 IsSolvableAutomorphismGroupPGroup, 5-1999 IsSpecial, 3-1161, 5-1493, 5-1528, **5**-1707, **5**-1801, **9**-3717 IsSpinorGenus, 3-702IsSpinorNorm, 3-703 IsSplit, 3-941, 3-1145, 8-2873, 8-3115 IsSplitAsIdealAt, 3-995 IsSplittingCartanSubalgebra, 8-3028 IsSplittingField, 7-2638 IsSplitToralSubalgebra, 8-3028 IsSPrincipal, 3-1175 IsSquare, 2-288, 2-311, 2-337, 2-378, **3**-794, **3**-905, **3**-944, **3**-1040, **3**-1143, 4-1293, 4-1361 IsSquarefree, 2-288, 2-311 IsStandard, 12-4833IsStandardAffinePatch, 9-3522 IsStandardParabolicSubgroup, 8-2927 IsStarAlgebra, 7-2667 IsSteiner, 12-4892IsStrictlyConvex, 12-4792IsStronglyAG, 13-5151 IsStronglyConnected, 12-4957, 12-5034 IsSubcanonicalCurve, 9-3845 IsSubfield, 3-793, 3-903, 3-1113 IsSubgraph, 12-4952, 12-5029 IsSublattice, 12-4798IsSubmodule, 4-1434IsSubnormal, 5-1493, 5-1552, 5-1669, 5-1823 IsSubscheme, 9-3502, 9-3672 IsSubsequence, 1-209IsSubsystem, 9-3578IsSUnit, 3-1174 IsSUnitWithPreimage, 3-1174 IsSupercuspidal, 11-4683IsSuperlattice, 12-4798IsSupersingular, 10-3979 IsSuperSummitRepresentative, 6-2316

IsSupportingHyperplane, 12-4786IsSurjective, 4-1417, 4-1451, 9-3263, 9-3317, 11-4576 IsSuzukiGroup, 5-1911 IsSymmetric, 2-543, 2-571, 5-1610, 7-2520, 9-3264, 9-3396, 12-4892, **12-**4987 IsSymplecticGroup, 5-1903 IsSymplecticMatrix, 2-544IsSymplecticSelfDual, 13-5251 IsSymplecticSelfOrthogonal, 13-5251 IsSymplecticSpace, 2-621 IsTamelyRamified, **3**-903, 904, **3**-940, **3-**1126, **3-**1146, **4-**1280, **4-**1369 IsTangent, 9-3663 IsTensor, 5-1720IsTensorInduced, 5-1722 IsTerminal, 9-3875, 9-3877, 9-3881 IsTerminalThreefold, 9-3838, 9-3841 IsThick, 12-4765 IsThin, 12-4765 IsTorsionUnit, 3-906 IsTotallyEven, 2-345, 3-814 IsTotallyIsotropic, 2-616 IsTotallyPositive, 3-795, 3-907 IsTotallyRamified, 3-940, 3-1126, 3-1146, 4-1280, 4-1369 IsTotallyReal, 3-904 IsTotallySingular, 2-616 IsTotallySplit, 3-941, 3-1146 IsTransformation, 10-4112IsTransitive, 5-1571, 12-4745, 12-4987 IsTransvection, 8-2944IsTransverse, 9-3669 IsTree, 12-4953 IsTriangleGroup, 11-4380 IsTriconnected, 12-4958, 12-5035 IsTrivial, 2-344, 3-814, 5-1493, 5-1800, **12-**4891 IsTrivialOnUnits, $\mathbf{3}\text{-}814$ IsTwist, 10-3948, 11-4451 IsTwisted, 8-2873, 8-3115 IsTwoCoboundary, 5-2019 IsTwoSidedIdeal, 7-2462 IsUFD, 2-268, 2-286, 2-336, 2-356, **2**-375, **2**-416, **2**-448, **2**-480, **3**-792, **3**-902, **3**-1046, **3**-1062, **3**-1126, **4-**1317, **4-**1328, **12-**4855 IsUltraSummitRepresentative, 6-2316 IsUndirected, 12-5030IsUniform, 12-4891 IsUnipotent, 5-1684, 5-1768, 7-2521, 8-3120 IsUniqueFactorizationDomain, 2-268 IsUniquePartialRoot, 4-1249

IsUnit, 2-271, 2-289, 2-311, 2-337, 2-358, 2-378, 2-397, 2-418, 2-450, 2-480, 2-543, 3-795, 3-907, 3-952,

3-1048, **3**-1064, **3**-1133, **4**-1231, **4**-1288, **4**-1318, **4**-1329, **4**-1344, **4**-1358, **7**-2430, **7**-2459, **7**-2473, **7**-2489, **7**-2520, **9**-3293, **9**-3504 IsUnital, 12-4737 IsUnitary, 2-267, 2-286, 2-336, 2-356, **2**-375, **2**-416, **2**-448, **2**-480, **3**-792, **3**-901, **3**-1046, **3**-1062, **4**-1317, **4-**1328, **12-**4855 IsUnitaryGroup, 5-1903 IsUnitarySpace, 2-621 IsUnitWithPreimage, 3-1133 IsUnivariate, 2-456IsUnramified, 3-903, 904, 3-940, 941, **3-**1127, **3-**1146, **4-**1280, **4-**1369, 7-2636 IsUpperTriangular, 2-543, 2-571IsValid, 6-2107, 6-2157 IsVerbose, 1-103IsVertex, 4-1244, 9-3745 IsVertexLabelled, 12-5011 IsVertexTransitive, $\mathbf{12}$ -4987 IsWeaklyAdjoint, 8-2872, 8-3114 IsWeaklyAG, 13-5150IsWeaklyAGDual, 13-5150IsWeaklyConnected, 12-4957, 12-5034 IsWeaklyEqual, 4-1329, 4-1359, 9-3414, 9-3434 IsWeaklyMonic, 9-3434 IsWeaklyPrimitive, 12-4766IsWeaklySimplyConnected, 8-2872, 8-3115 IsWeaklyZero, 4-1329, 4-1359, 4-1371, **9-**3414, **9-**3434 IsWeierstrassModel, ${f 10}{\black}{$ IsWeierstrassPlace, 3-1157, 3-1170, 9-3706 IsWeighted, 12-5014 IsWeightedProjectiveSpace, 9-3881 IsWeil, 9-3891 IsWGsymmetric, 8-2937 IsWildlyRamified, **3**-903, 904, **3**-940, **3-**1127, **3-**1146, **3-**1221, **4-**1280, 4-1369 IsWPRI, 12-4766 IsWreathProduct, 5-1529 IsZero, 2-271, 2-289, 2-337, 2-358, **2**-378, **2**-397, **2**-418, **2**-450, **2**-480, **2**-543, **2**-571, **2**-590, **3**-655, **3**-795, **3**-907, **3**-939, **3**-952, **3**-1047, **3**-1064, **3**-1132, **3**-1145, **3**-1161, **3**-1179, **3**-1204, **4**-1231, **4**-1288, **4**-1318, **4**-1329, **4**-1344, **4**-1358, **4**-1371, **4**-1325, **4**-1404, **4**-1451, **7**-9498 **4**-1385, **4**-1404, **4**-1451, **7**-2428, 7-2430, 7-2459, 7-2473, 7-2483, 7-2488, 7-2520, 7-2694, 7-2766, 8-3068, 8-3091, 9-3229, 9-3281, **9**-3290, **9**-3313, **9**-3316, **9**-3323, **9**-3414, **9**-3434, **9**-3504, **9**-3699,

xxxviii

9-3712, **10-**3965, **10-**3973, **10-**4161, **11**-4576, **11**-4622, **12**-4792, **12**-4797, **12**-4858, **13**-5087, **13**-5206, **13**-5218 IsZeroAt, 11-4643 IsZeroComplex, 4-1448 IsZeroDimensional, 9-3230, 9-3282 IsZeroDivisor, 2-271, 2-289, 2-337, **2**-358, **2**-378, **2**-418, **2**-450, **2**-480, **3**-795, **3**-907, **3**-1048, **3**-1064, **3**-1133, **4**-1231, **4**-1318, **4**-1329, **7**-2430, **7**-2473, **9**-3583 IsZeroMap, 4-1448 IsZeroTerm, 4-1448 Jacobi, 6-2235 Jacobian, 10-4036, 10-4111, 10-4153 JacobianIdeal, 9-3232, 9-3501, 9-3654 JacobianMatrix, 2-458, 9-3502, 9-3654 JacobianOrdersByDeformation, 10-4170 JacobiSymbol, 2-295, 2-427 JacobiTheta, 2-502JacobiThetaNullK, 2-502 JacobsonRadical, 7-2426, 7-2448, 7-2585, **7**-2702, **7**-2708 JBessel, 2-508 JellyfishConstruction, 5-1584JellyfishImage, 5-1584 JellyfishPreimage, 5-1584 JenningsLieAlgebra, 8-3040 JenningsSeries, 5-1494, 5-1586, 5-1707, 5-1835 JeuDeTaquin, 12-4835jFunction, 11-4300, 11-4324 JH, 11-4522, 4523 jInvariant, 2-503, 3-761, 10-3951, **11-**4324 JInvariants, 10-4134, 4135 jNInvariant, 11-4324JohnsonBound, $\mathbf{13}$ -5126 Join, 12-4700 join, 1-184, 8-2846, 8-2889, 9-3496, **12-**4945, **12-**5025, 5026 JOne, 11-4522 JordanForm, 2-548, 7-2529 jParameter, 11-4381Js, 11-4522 JustesenCode, $\mathbf{13}\text{-}5113$ Juxtaposition, 13-5118, 13-5230 JZero, 11-4521 K3Copy, 9-3846 K3Database, 9-3850 K3Surface, 9-3846, 9-3851, 3852, 9-3855, 3856K3SurfaceRaw, 9-3856K3SurfaceToRecord, 9-3855KacMoodyClass, 8-3064 KacMoodyClasses, 8-3064 kArc, 12-4734 KBessel, 2-508

KBessel2, 2-508 KBinomial, 8-3082 KCubeGraph, 12-4930KDegree, 8-3083 KerdockCode, 13-5178Kernel, 1-252, 2-399, 2-540, 2-573, **2-**605, **3-**1220, **4-**1417, **4-**1450, **5**-1530, **5**-1649, **5**-1802, **6**-2102, **7**-2523, **7**-2576, **7**-2591, **7**-2765, 8-3037, 9-3316, 9-3611, 10-3965, **11-**4450, **11-**4502, **11-**4564, **12-**4760 KernelBasis, 12-4801KernelEmbedding, 12-4801 KernelMatrix, 2-540, 2-574 Kernels, 12-4760 KernelZ2CodeZ4, 13-5189 Keys, 1-230 KillingMatrix, 8-3032 KissingNumber, 3-682 KleinBottle, 12-4704KLPolynomial, 8-3168 KMatrixSpace, 2-586, 2-599 KMatrixSpaceWithBasis, 4-1411 KModule, 2-586, 2-599 KModuleWithBasis, 2-602 Knot, 3-1023, 12-4735 KnownAutomorphismSubgroup, 13-5100KnownIrreducibles, 7-2761 KodairaEnriquesDimension, 9-3770KodairaEnriquesType, 9-3769 KodairaSymbol, 10-4007KodairaSymbols, 10-4007, 10-4087 KostkaNumber, 12-4843KrawchoukPolynomial, 13-5137 KrawchoukTransform, 13-5137 KroneckerCharacter, $\mathbf{2}$ -343 KroneckerProduct, 2-538KroneckerSymbol, 2-295KSpace, 2-586, 587, 2-599, 3-786, 3-892, 7-2570 KSpaceWithBasis, 2-602 KummerSurface, 10-4203KummerSurfaceScheme, 9-3762 L, 9-3437, 11-4643 L2Generators, 6-2112 L2Ideals, 6-2112 L2Quotients, $\mathbf{6}\text{-}2112$ L2Type, 6-2112 Label, 12-5011, 12-5014 Labelling, 5-1567Labels, 11-4350, 12-5011, 12-5014 LaguerrePolynomial, 2-436, 437 Lang, 8-3120 Laplace, 4-1332 LargeReeElementToWord, 5-1920 LargeReeGroup, 5-1891 LargeReeSylow, 5-1926 LargestConductor, 10-4059

LargestDimension, 3-709, 5-1971, 5-1973, 5-1975, 5-1977 LastIndexOfColumn, 12-4832LastIndexOfRow, 12-4831Lattice, 3-645, 3-649, 650, 3-652, 3-710, **3**-728, **3**-738, **3**-761, **3**-891, **3**-947, **5**-1972–1977, **11**-4442, **11**-4554, 11-4587, 11-4630 LatticeCoordinates, 11-4624LatticeData, 3-710 LatticeDatabase, 3-709LatticeElementToMonomial, 9-3893 LatticeMap, 12-4800 LatticeName, 3-709 LatticeVector, 12-4795LatticeWithBasis, 3-646, 3-728LatticeWithGram, 3-647, 3-728 LaurentSeriesRing, 4-1324, 8-3066 LayerBoundary, 5-1862 LayerLength, 5-1862 LazyPowerSeriesRing, 4-1350 LazySeries, 4-1352LCfRequired, 10-4268LCLM, 9-3445 LCM, 2-293, 2-339, 2-426, 2-462, 3-842, **3**-942, **3**-1161, **4**-1318, **6**-2321, **9-**3712 Lcm, 2-293, 2-311, 2-339, 2-426, 2-462, **3**-842, **3**-942, **3**-1147, **3**-1161, **6-**2321, **9-**3712 LCT, 9-3666 LDPCBinarySymmetricThreshold, 13-5163 LDPCCode, 13-5157LDPCDecode, 13-5160LDPCDensity, 13-5159LDPCEnsembleRate, 13-5159 LDPCGaussianThreshold, 13-5164LDPCGirth, 13-5159 LDPCMatrix, 13-5159 LDPCSimulate, 13-5162 le, 1-69, 1-209, 2-272, 2-289, 2-314, **2**-358, **2**-416, **2**-481, **3**-1161, **5**-1508, **6**-2086, **6**-2317, **6**-2391, **9**-3712 LeadingCoefficient, 2-418, 2-451, 3-1204, 4-1295, 4-1330, 4-1356, 7-2474, **9**-3312, **9**-3434, **11**-4645 LeadingExponent, 5-1861, 6-2253 LeadingGenerator, 5-1861, 6-2084, 6-2253 LeadingMonomial, 2-452, 7-2474, 9-3312 LeadingMonomialIdeal, 9-3227, 9-3281 LeadingTerm, 2-419, 2-453, 4-1330, 4-1356, 5-1860, 6-2253, 7-2475, **9**-3312, **9**-3435 LeadingTotalDegree, 2-456, 7-2475 LeadingWeightedDegree, 9-3188 LeastCommonLeftMultiple, 9-3445

LeastCommonMultiple, 2-293, 2-339, 2-426, **2**-462, **3**-842, **3**-942, **3**-1161, **4**-1295, 6-2321, 9-3712 LeeBrickellsAttack, 13-5123 LeeDistance, 13-5193LeeWeight, 13-5085, 13-5192, 5193 LeeWeightDistribution, 13-5193 LeeWeightEnumerator, 13-5196LeftAnnihilator, 7-2446, 7-2554, 7-2577 LeftConjugate, 6-2313LeftCosetSpace, 6-2173, 6-2229 LeftDescentSet, 8-2917, 8-2962 LeftDiv, 6-2313 LeftExactExtension, 4-1446 LeftGCD, 6-2320 LeftGcd, 6-2320 LeftGreatestCommonDivisor, 6-2320 LeftIdeal, **7**-2645 LeftIdealClasses, **7**-2465, **7**-2648 LeftInverse, 11-4611 LeftInverseMorphism, 11-4611 LeftIsomorphism, 7-2656 LeftLCM, 6-2321 LeftLcm, 6-2321 LeftLeastCommonMultiple, 6-2321 LeftMixedCanonicalForm, 6-2309 LeftNormalForm, 6-2309 LeftOrder, 7-2461, 7-2647 LeftRepresentationMatrix, 7-2459 LeftString, 8-2844, 8-2883, 8-2922 LeftStringLength, 8-2844, 8-2883, 8-2922 LeftZeroExtension, 4-1447LegendreModel, 10-3920LegendrePolynomial, 2-436, 10-3919 LegendreSymbol, 2-294 Length, 2-451, 3-655, 3-797, 3-908, **3**-1199, **4**-1438, **5**-1509, **7**-2475, 8-2916, 8-2969, 9-3491, 9-3884, **12**-4817, **12**-4820, **12**-4859, **13**-5079, **13-**5175, **13-**5214 LengthenCode, 13-5115Lengths, 9-3491LensSpace, 12-4704 LeonsAttack, **13**-5123 Level, 3-658, 3-737, 7-2643, 11-4294, 11-4340, 11-4406, 11-4488, 11-4495, **11**-4504, **11**-4530, **11**-4657, **11**-4673 Levels, 3-737 LevenshteinBound, 13-5126 LexicographicalOrdering, 12-4838 LexProduct, 12-4946LFSRSequence, 13-5275LFSRStep, 13-5275 LFunction, 10-4093, 4094 LGetCoefficients, 10-4268 LHS, 6-2044, 6-2087, 6-2392 lideal, 6-2394, 7-2423, 7-2460, 7-2477, 7-2514, 7-2550, 7-2645

LieAlgebra, 7-2422, 7-2445, 8-2825, 8-2848, 8-2899, 8-2938, 8-2971, 8-2978, 2979, 8-2981, 8-2984, 8-3000, 8-3002, 8-3134, 8-3147 LieAlgebraHomorphism, 8-2899 LieAlgebraOfDerivations, 8-3031 LieBracket, 7-2447 LieCharacteristic, 5-1895 LieConstant_C, 8-2897 LieConstant_epsilon, 8-2897 LieConstant_eta, 8-2897 LieConstant_M, 8-2897 LieConstant_N, 8-2897 LieConstant_p, 8-2897 LieConstant_q, 8-2897 LiEMaximalSubgroups, 8-3173LieRepresentationDecomposition, 8-3141 LieType, **5**-1896 Lift, 3-1136, 3-1158, 9-3706 LiftCharacter, 7-2771 LiftCharacters, 7-2772LiftCocycle, 5-2022 LiftDescendant, 10-4023LiftHomomorphism, 7-2590, 2591 LiftMap, 9-3438 LiftPoint, 9-3527 LiftToChainmap, 7-2616 Line, 9-3651, 12-4890 LinearCharacters, 5-1699, 7-2762 LinearCode, 12-4748, 12-4903, 13-5074, 5075, **13-**5117, **13-**5169, 5170 LinearCovariants, 9-3820 LinearElimination, 9-3588 LinearRelation, 2-491 LinearRelations, 3-988LinearSpace, 12-4875, 12-4897 LinearSpanEquations, 12-4783LinearSpanGenerators, 12-4783LinearSubspaceGenerators, 12-4783LinearSystem, 9-3569, 9-3571, 3572, 9-3574 LinearSystemTrace, 9-3573 LineAtInfinity, 9-3673 LineGraph, 12-4747, 12-4944, 12-4949 LineGroup, 12-4739 LineOrbits, 5-1678 Lines, 12-4722 LineSet, **12-**4718 Linking, 9-3754 LinkingNumbers, 9-3754ListAttributes, 1-53ListCategories, 1-104 ListSignatures, 1-103, 104 ListTypes, 1-104ListVerbose, 1-103LittlewoodRichardsonTensor, 8-3158LLL, 3-668, 3-673, 3-886 LLLBasisMatrix, 3-672 LLLGram, 3-672

LLLGramMatrix, 3-673 LMGCenter, 5-1750LMGCentraliser, 5-1754LMGCentralizer, 5-1754LMGCentre, 5-1750LMGChiefFactors, 5-1750 LMGChiefSeries, $\mathbf{5}\text{-}1750$ LMGClasses, 5-1754LMGCommutatorSubgroup, 5-1749LMGCompositionFactors, 5-1749 LMGCompositionSeries, 5-1749LMGConjugacyClasses, 5-1754 LMGDerivedGroup, $\mathbf{5}\text{-}1749$ LMGEqual, 5-1749 LMGFactoredOrder, $\mathbf{5}\text{-}1748$ LMGFittingSubgroup, 5-1750LMGIndex, 5-1749LMGInitialise, 5-1748 LMGInitialize, 5-1748 LMGIsConjugate, 5-1754 LMGIsIn, 5-1748 LMGIsNilpotent, 5-1749 LMGIsNormal, 5-1749 LMGIsSoluble, 5-1749 LMGIsSolvable, 5-1749 LMGIsSubgroup, 5-1748 LMGMaximalSubgroups, 5-1754 LMGNormalClosure, 5-1749 LMGNormaliser, 5-1754LMGNormalizer, 5-1754 LMGOrder, 5-1748LMGRadicalQuotient, 5-1754LMGSocleStar, 5-1750LMGSocleStarAction, 5-1751 LMGSocleStarActionKernel, 5-1751 LMGSocleStarFactors, 5-1750 LMGSocleStarQuotient, 5-1751 LMGSolubleRadical, 5-1750 LMGSolvableRadical, 5-1750 LMGSylow, 5-1750 LMGUnipotentRadical, 5-1750 loc, 2-274 LocalComponent, 11-4682LocalCoxeterGroup, 8-2928 LocalDegree, **3**-810, **3**-958 LocalFactorization, 4-1301 LocalField, 4-1365LocalGenera, 3-703LocalHeight, 10-4015, 10-4064, 10-4089 LocalInformation, 10-4006, 10-4062, **10-**4079, **10-**4087 Localization, 2-274, 9-3275, 9-3308, 9-3441 LocalPolynomialAlgebra, 9-3275 LocalPolynomialRing, 9-3275 LocalRing, 3-891, 3-1200, 4-1306 LocalTwoSelmerMap, 10-4075LocalUniformizer, 3-1158

Log, 2-384, 2-492, 3-760, 4-1290, **4-**1334, **6-**2060, **10-**3998 LogarithmicFieldExtension, 9-3423LogCanonicalThreshold, 9-3666 LogCanonicalThresholdAtOrigin, 9-3666LogCanonicalThresholdOverExtension, 9-3666 LogDerivative, 2-507LogGamma, 2-507LogIntegral, 2-510 Logs, 3-797, 3-909 LongestElement, 8-2916, 8-2962 LongExactSequenceOnHomology, 4-1454 LowerCentralSeries, 5-1494, 5-1585, **5**-1690, **5**-1834, **6**-2277, **8**-3030 LowerFaces, 4-1239LowerSlopes, 4-1243LowerTriangularMatrix, 2-525, 526 LowerVertices, 4-1240LowIndexNormalSubgroups, 6-2160 LowIndexProcess, 6-2156LowIndexSubgroups, 5-1559, 5-1671, 6-2152 LPolynomial, 3-1120, 9-3696 LPProcess, 13-5288LRatio, 11-4463, 11-4643 LRatioOddPart, 11-4463 LSeries, 10-4230, 10-4246, 10-4249-4255, 10-4262, 11-4462, 11-4640 LSeriesData, 10-4269 LSeriesLeadingCoefficient, 11-4463LSetCoefficients, 10-4266LSetPrecision, 10-4271LStar, 10-4257 lt, 1-69, 1-209, 2-272, 2-289, 2-314, 2-358, 2-416, 2-481, 3-1161, 5-1508, 6-2086, 6-2391, 9-3313, 9-3712, **11-**4446, **11-**4492 LTaylor, 10-4257 Lucas, 2-297, 12-4807 MacWilliamsTransform, 13-5102, 5103, 13-5226 MaedaInvariants, 10-4138 MagicNumber, 9-3840 MakeBasket, 9-3841 MakeCoprime, 3-947MakeDirected, 8-2937 MakePCMap, 9-3548MakeProjectiveClosureMap, 9-3548MakeResolutionGraph, 9-3749 MakeSpliceDiagram, 9-3753 MakeType, 1-29 Manifold, 5-1989 ManifoldDatabase, 5-1989ManinConstant, 10-4046ManinSymbol, 11-4438MantissaExponent, 2-481 map, 1-249, 9-3530, 9-3533 Mapping, 8-3127 Maps, 1-254

MargulisCode, 13-5157MarkGroebner, 7-2480, 9-3199 Mass, 7-2648 MasseyProduct, 7-2615 Match, 6-2209, 6-2397 MatRep, 5-1987 MatRepCharacteristics, 5-1986 MatRepDegrees, 5-1986 MatRepFieldSizes, 5-1986 MatRepKeys, 5-1986 Matrices, 10-4108, 12-4912 Matrix, 2-521, 2-523-525, 2-538, 2-570, **4-**1438, **9-**3316, **9-**3555, **10-**4107, **11-**4375, **11-**4568, **12-**4912 MatrixAlgebra, 2-374, 7-2422, 7-2448, **7**-2488, **7**-2509, **7**-2511, **7**-2640, **9-**3293, **11-**4587 MatrixGroup, 5-1468, 5-1645, 5-1987, **7**-2690 MatrixLieAlgebra, 8-2825, 8-2848, 8-2980, 2981, 8-3000 MatrixOfElement, 5-2016 MatrixOfIsomorphism, 8-3051 MatrixRepresentation, 7-2642, 9-3683 MatrixRing, 7-2509, 7-2511, 7-2640 MatrixUnit, **7**-2510 MattsonSolomonTransform, 13-5136Max, 1-180, 1-199 Maxdeg, 12-4953, 12-4955, 12-5031, 5032 MaximalAbelianSubfield, 3-1012, 3-1194 MaximalCommutativeSubalgebra, 7-2577 MaximalExtension, 7-2750MaximalIdeals, 7-2426, 8-3030 MaximalIdempotent, 7-2577 MaximalIncreasingSequence, 12-4817 MaximalIncreasingSequences, 12-4818MaximalIntegerSolution, 13-5286 MaximalLeftIdeals, 7-2426, 7-2646 MaximalNormalSubgroup, 5-1588 MaximalNumberOfCosets, 6-2221 MaximalOrder, 2-353, 3-780, 3-836, 3-873, **3**-1017, **3**-1092, **7**-2453, **7**-2465, 7-2628, 2629 MaximalOrderFinite, 3-1091, 3-1195 MaximalOrderInfinite, 3-1092, 3-1195 MaximalOvergroup, 6-2162 MaximalParabolics, 12-4760MaximalPartition, 5-1577MaximalRightIdeals, 7-2426, 7-2646 MaximalSolution, 13-5286 MaximalSubfields, 3-992 MaximalSubgroups, 5-1509, 5-1556, 5-1674, **5**-1826, **5**-1930, **6**-2068, **8**-3173 MaximalSubgroupsData (str : -), 5-1931 MaximalSublattices, 3-738 MaximalSubmodules, 7-2702, 7-2708 MaximalTotallyIsotropicSubspace, 2-616 MaximalTotallySingularSubspace, 2-616

MaximalZeroOneSolution, ${f 13}{\black}{\bla$ Maximum, 1-180, 1-199, 2-272, 2-289, **2**-314, **2**-358, **2**-481 MaximumBettiDegree, 9-3333 MaximumClique, 12-4970 MaximumDegree, 3-1068, 12-4953, 12-4955, 12-5031, 5032 MaximumFlow, $\mathbf{12}\text{-}5062$ MaximumInDegree, 12-4955, 12-5032 MaximumIndependentSet, 12-4971 MaximumMatching, 12-4959, 12-5035 MaximumOutDegree, 12-4955, 12-5032 Maxindeg, 12-4955, 12-5032 MaxNorm, 2-427, 2-467 Maxoutdeg, 12-4955, 12-5032 MaxParabolics, 12-4760McElieceEtAlAsymptoticBound, 13-5128 McEliecesAttack, $\mathbf{13}\text{-}5123$ MCPolynomials, 2-546MDSCode, 13-5114MEANS, 5-1600 Meataxe, 7-2698 meet, 1-185, 2-273, 2-339, 2-367, 2-434, **2**-601, **3**-664, **3**-737, **3**-871, **3**-943, **3**-992, **3**-1014, **3**-1095, **3**-1147, 1148, **3-**1198, **4-**1407, **4-**1431, **4-**1439, **5**-1490, **5**-1552, **5**-1669, **5**-1821, **6**-2066, **6**-2161, **6**-2272, **7**-2428, **7**-2457, **7**-2524, **7**-2644, **7**-2651, **7**-2696, **7**-2708, **8**-3013, **9**-3228, **9**-3281, **9**-3290, **9**-3322, **9**-3496, **9**-3578, **11**-4339, **11**-4491, **11**-4507, 11-4582, 11-4595, 11-4628, 12-4730, 12-4782, 13-5091, 13-5198, 13-5220 meet:=, 2-601, 5-1821, 6-2066, 6-2272 MelikianLieAlgebra, 8-3008 MergeFields, 3-778, 3-866 MergeFiles, 2-321 MergeUnits, 3-923 MetacyclicPGroups, 5-1951 Mij2EltRootTable, 8-2934 MilnorNumber, 9-3235 Min, 1-180, 1-199, 3-681, 3-934, 3-1135 Mindeg, 12-4954, 4955, 12-5031, 12-5033 MinimalAlgebraGenerators, 9-3265, 9-3380 MinimalAndCharacteristicPolynomials, 2-546MinimalBaseRingCharacter, 2-345MinimalBasis, 9-3324, 9-3501 MinimalChernNumber, 9-3765MinimalCyclotomicField, 3-850MinimalDecomposition, 9-3247MinimalDegreeModel, 10-4088 MinimalElementConjugatingToPositive, 6-2330 MinimalElementConjugatingToSuperSummit, 6-2330 MinimalElementConjugatingToUltraSummit, 6-2330

MinimalField, 2-354, 355, 3-850, 5-1689, 7-2699 MinimalFreeResolution, 9-3378MinimalGeneratorForm, 7-2579 MinimalGeneratorFormAlgebra, 7-2579MinimalHeckePolynomial, 11-4640MinimalIdeals, **7**-2426, **8**-3029 MinimalIdentity, 7-2577MinimalInequalities, 12-4784MinimalInteger, 3-934 MinimalIntegerSolution, 13-5286MinimalLeftIdeals, 7-2426 MinimalModel, 10-3920, 10-3946, 10-4088 MinimalModelGeneralType, 9-3776 MinimalModelKodairaDimensionOne, 9-3776MinimalModelKodairaDimensionZero, 9-3773 MinimalModelRationalSurface, 9-3771 MinimalModelRuledSurface, 9-3773 MinimalNormalSubgroup, 5-1835 MinimalNormalSubgroups, 5-1588, 5-1832 MinimalOverfields, 3-992MinimalOvergroup, 6-2162MinimalOvergroups, 5-1509 MinimalParabolics, 12-4760MinimalPartition, 5-1577 MinimalPartitions, 5-1577 MinimalPolynomial, 2-289, 2-358, 2-378, **2**-546, **3**-798, **3**-910, **3**-1048, **3**-1133, 1134, 4-1291, 5-1657, 7-2429, **7**-2460, **7**-2489, **7**-2522, **7**-2633, **9**-3293, **9**-3416, **11**-4573 MinimalQuadraticTwist, 10-3950 MinimalRelations, 7-2610 $\begin{array}{l} \texttt{MinimalRGenerators, 12-} 4788\\ \texttt{MinimalRightIdeals, 7-} 2426 \end{array}$ MinimalSolution, 13-5286MinimalSubmodule, 7-2702 MinimalSubmodules, 7-2702 MinimalSuperlattices, 3-738MinimalSupermodules, 7-2708 MinimalSyzygyModule, 9-3325 MinimalVectorSequence, 3-1070MinimalWeierstrassModel, $\mathbf{10}$ -4127 MinimalZeroOneSolution, ${f 13}{\black}{\bla$ Minimise, 3-851, 10-4109MinimiseWeights, 9-3845Minimize, 3-851, 3-1220, 7-2734 MinimizeCubicSurface, 9-3814 MinimizeDeg4delPezzo, 9-3815MinimizeGenerators, 9-3394 MinimizePlaneQuartic, 9-3729MinimizeReduce, 9-3815 MinimizeReduceCubicSurface, 9- 3814MinimizeReduceDeg4delPezzo, 9-3815 MinimizeReducePlaneQuartic, 9-3729 Minimum, 1-180, 1-199, 2-272, 2-289, **2-**314, **2-**358, **2-**481, **3-**681, **3-**934, **3-**1135, **3-**1148, **3-**1157

MinimumCut, 12-5061 MinimumDegree, 12-4954, 4955, 12-5031, 12-5033 MinimumDistance, 13-5095, 13-5192, **13-**5222 MinimumDominatingSet, 12-4954 MinimumEuclideanDistance, 13- 5194MinimumEuclideanWeight, 13-5194MinimumInDegree, 12-4955, 12-5032 MinimumLeeDistance, 13-5193 MinimumLeeWeight, 13-5193 MinimumOutDegree, 12-4955, 12-5032 MinimumWeight, 13-5095, 13-5192, 13-5222, 13-5253 MinimumWeightBounds, $\mathbf{13}$ -5097 MinimumWeightTree, 12-5044MinimumWord, 13-5098MinimumWords, 13-5098Minindeg, 12-4955, 12-5032 MinkowskiBound, 3-802, 3-916 MinkowskiLattice, 3-650, 3-891, 3-947 MinkowskiSpace, 3-651, 3-785, 3-891 Minor, 2-545 MinorBoundary, 5-1862 MinorLength, 5-1862 Minors, 2-545 Minoutdeg, 12-4955, 12-5032 MinParabolics, 12-4760 MinusInfinity, 2-314 MinusTamagawaNumber, 11-4475MinusVolume, $\mathbf{11}$ -4463 MixedCanonicalForm, 6-2309MMP, 9-3901 mod, 2-287, 2-311, 2-417, 2-423, 3-842, 3-943, 3-952, 3-1132, 3-1156, **3**-1161, **4**-1295, **4**-1318, **9**-3705, 9-3711 mod:=, 2-287 ModByPowerOf2, 2-287ModelToString, 10-4108 ModelType, 11-4294Modexp, 2-311, 2-424, 3-842, 3-905, **3-**1132 ModifySelfintersection, 9-3751ModifyTransverseIntersection, 9-3751 Modinv, 2-312, 3-943, 3-1132 Modorder, $\mathbf{2}\text{-}312$ Modsqrt, 2-312ModularAbelianVariety, 11-4524, 11-4526, 11-4529, 11-4641, 11-4648 ModularCurve, 11-4293ModularCurveDatabase, 11-4296 ModularCurveQuotient, 11-4302ModularDegree, 10-4054, 11-4472, 11-4613 ModularEmbedding, 11-4542ModularEquation, 11-4504ModularForm, 11-4397, 11-4424 ModularForms, 11-4393

ModularHyperellipticCurve, 11-4305, 4306 ModularKernel, 11-4467ModularNonHyperellipticCurveGenus3, **11-**4307 ModularParameterization, 11-4542ModularParametrisation, 10-4045ModularParametrization, 10-4045ModularPolarization, $\mathbf{11}$ -4607 ModularSolution, 2-575ModularSymbols, 11-4425, 11-4432, 11-4435, 11-4444, 11-4477, 11-4505, 11-4526, **11-**4557 ModularSymbolToIntegralHomology, 11-4546ModularSymbolToRationalHomology, 11-4546Module, 3-938, 3-1138, 3-1180, 4-1422, **4**-1439, **5**-2015, **7**-2437, **7**-2454, **7**-2553, **7**-2708, **7**-2716, **8**-3036, **9**-3373, **9**-3607, **9**-3694, **9**-3699 ModuleHomomorphism, 9-3611 ModuleMap, 4-1450 ModuleOverSmallerField, 7-2734 ModulesOverCommonField, 7-2735 ModulesOverSmallerField, 7-2734ModuleWithBasis, 7-2718 Moduli, 4-1400, 8-3016 ModuliPoints, 11-4293 Modulus, 2-335, 2-343, 344, 2-436, 2-482, **3-**811, **3-**821, **3-**951 MoebiusMu, 2-295, 2-311 MoebiusStrip, 12-4704MolienSeries, 9-3364MolienSeriesApproximation, 9-3364 MonicDifferentialOperator, 9-3436MonodromyPairing, 11-4510MonodromyWeights, 11-4510 Monoid, 6-2393 Monomial, 2-454MonomialBasis, 9-3293 MonomialCoefficient, 2-418, 2-452, 7-2474 MonomialGroup, 13-5139 MonomialGroupStabilizer, 13-5140 MonomialLattice, 9-3880, 9-3887 MonomialOrder, 9-3186, 9-3275 MonomialOrderWeightVectors, 9-3186, 9-3275 Monomials, 2-419, 2-452, 7-2474, 8-3045, **8-**3082, **9-**3312 MonomialsOfDegree, 9-3189 MonomialsOfWeightedDegree, 9-3189, 9-3569 MonomialSubgroup, 13-5139 MonomialToElementaryMatrix, 12-4866 MonomialToHomogeneousMatrix, 12-4866 MonomialToPowerSumMatrix, 12-4866 MonomialToSchurMatrix, 12-4866 MooreDeterminant, $\mathbf{3}$ -712 MordellWeilGroup, **10**-4012, **10**-4091 MordellWeilLattice, 10-4091 MordellWeilRank, 10-4012 MordellWeilRankBounds, 10-4012

MordellWeilShaInformation, 10-4010, **10-**4063 MoriCone, 9-3898 Morphism, 2-594, 3-738, 4-1417, 4-1434, **6**-2065, **7**-2428, **7**-2695, **7**-2697, 7-2708, 8-2894, 2895, 8-3014, 9-3319 MovablePart, 9-3891 MPQS, 2-308 Multidegree, 9-3491 MultiDigraph, 12-5005 MultiGraph, 12-5004 Multinomial, 2-296, 12-4807 MultipartiteGraph, 12-4930 MultiplicationByMMap, 10-3966 MultiplicationTable, 3-900, 7-2454, 8-2993, 2994 MultiplicativeGroup, 2-285, 2-335, 2-373, 3-802, 3-922, 3-951, 7-2465, 7-2660 MultiplicativeJordanDecomposition, 8-3119 MultiplicativeOrder, 11-4368MultiplicatorRing, 3-875, 3-1096, 3-1147, **7-**2462 Multiplicities, 1-185, 9-3751 Multiplicity, 1-185, 8-3148, 9-3513, 9-3577, 9-3583, 9-3663, 12-5008 Multiplier, 5-1986MultiplyByTranspose, 2-573 MultiplyColumn, 2-535, 2-569, 7-2527 MultiplyDivisor, 9-3720MultiplyFrobenius, 3-1183 MultiplyRow, 2-535, 2-568, 7-2527 Multiset, 8-3148Multisets, 1-186, 12-4809 MultisetToSet, 1-182 MultivariatePolynomial, 2-447 MurphyAlphaApproximation, 2-324 MValue, 10-4229 NagataAutomorphism, 9-3553 Nagens, 3-729, 7-2731 NaiveHeight, 10-4015, 10-4064, 10-4089, 10-4175 Nalggens, 8-3111 Name, 2-370, 2-413, 2-446, 2-476, 3-782, **3**-838, **3**-884, **3**-976, **3**-1060, **3**-1129, 4-1278, 4-1314, 4-1326, 4-1368, **7**-2471, **7**-2632, **9**-3406, **9**-3429, **9**-3486, **9**-3498, **9**-3885, **13**-5175 Name2Mij, 8-2934 Names, 1-243 NameSimple, 5-1610 NaturalActionGenerator, 3-729NaturalBlackBoxGroup, 5-1871 NaturalFreeAlgebraCover, 7-2535, 2536 NaturalGroup, 3-729 NaturalMap, 11-4615 NaturalMaps, 11-4615ncl, 5-1472, 5-1549, 5-1668, 5-1818, **6**-2140, 2141, **6**-2259, **6**-2272

Nclasses, 5-1498, 5-1545, 5-1666, 5-1815 Ncols, 2-529, 2-563, 2-589, 7-2519, **11-**4568 nCovering, 10-4111ne, 1-12, 1-68, 1-183, 184, 1-209, 1-218, **2**-268, **2**-270, **2**-274, **2**-286, 287, **2**-314, **2**-336, 337, **2**-339, **2**-356, 357, **2**-376, 377, **2**-397, **2**-399, **2**-416, 417, **2**-435, **2**-448, 449, **2**-480, 481, **2**-600, **3**-655, **3**-659, **3**-792, **3**-794, **3**-902, **3**-906, **3**-939, **3**-952, **3**-1046, **3**-1048, **3-**1062, 1063, **3-**1126, **3-**1132, **3-**1145, **3-**1156, 1157, **3-**1160, 1161, **3-**1222, **4-**1230, **4-**1279, **4-**1287, **4-**1317, 1318, **4**-1328, 1329, **4**-1407, **5**-1467, **5**-1485, **5**-1538, **5**-1551, **5**-1601, **5**-1654, **5**-1659, **5**-1811, **5**-1820, **5**-1872, **5**-2004, **6**-2061, **6**-2064, **6**-2086, **6**-2166, **6**-2174, **6**-2254, **6**-2268, **6**-2317, **6**-2352, **6**-2370, **6**-2383, **6**-2391, **6**-2411, **7**-2428, **7**-2430, 7-2459, 7-2473, 7-2483, 7-2520, 7-2525, 7-2633, 7-2765, 8-3013, **9**-3229, **9**-3281, **9**-3682, **9**-3702, 9-3705, 9-3707, 9-3712, 10-3953, **10**-3956, **10**-3959, **10**-3974, **10**-4007, **10-**4143, **10-**4161, **10-**4205, **10-**4229, **12**-4727, **12**-4729, 4730, **12**-4855, **12**-4858, **12**-4897, **12**-4936, **13**-5087, **13**-5092, **13**-5205, **13**-5218, **13**-5221, **13**-5262, **13**-5265 NearLinearSpace, 12-4874, 12-4896 NefCone, 9-3898 NegationMap, **10**-3966 Negative, 8-2843, 8-2883, 8-2922 NegativeGammaOrbitsOnRoots, 8-2867 NegativePrimeDivisors, 9-3586 NegativeRelativeRoots, 8-2878 Neighbor, 3-704NeighborClosure, 3-704Neighbors, 3-704, 12-4954, 12-5031 Neighbour, 3-704NeighbourClosure, 3-704Neighbours, 3-704, 12-4954, 12-5031 Network, 12-5050 New, 1-57 Newform, 11-4414, 11-4424, 11-4524 NewformDecomposition, 11-4446, 11-4664Newforms, 11-4414, 11-4416NewformsOfDegree1, 11-4664NewLevel, 11-4657NewModularHyperellipticCurve, 11-4305NewModularHyperellipticCurves, 11-4304 NewModularNonHyperellipticCurveGenus3, **11-**4306 NewModularNonHyperellipticCurvesGenus3, **11-**4306 NewQuotient, 11-4616

NewSubspace, 11-4407, 11-4449, 11-4661 NewSubvariety, 11-4616 NewtonPolygon, 4-1237, 1238, 4-1296, **9-**3451 NewtonPolynomial, 9-3451 NewtonPolynomials, 9-3451 NextClass, 6-2232 NextElement, 6-2106, 6-2328 NextExtension, 5-1856 NextGraph, 12-4993 NextModule, 7-2746NextPrime, 2-300 NextRepresentation, 7-2746 NextSimpleQuotient, 6-2110 NextSubgroup, 6-2157 NextVector, $\mathbf{3}$ -691 NFaces, 12-4974, 12-5039 NFS, 2-316 NFSProcess, 2-316 Ngens, 2-600, 4-1426, 5-1482, 5-1526, **5**-1647, **5**-1799, **5**-1872, **5**-1998, **6**-2046, **6**-2050, **6**-2100, **6**-2187, **6**-2266, **6**-2299, **6**-2348, **6**-2365, **6**-2380, **6**-2393, **6**-2407, **7**-2512, **7**-2571, **7**-2690, **8**-2991, **8**-3111, **9**-3409, **9**-3683, **10**-3989, **10**-4013, **11**-4586, **11**-4627, **13**-5176, **13**-5215 NGrad, 9-3491 NilpotencyClass, 5-1494, 5-1585, 5-1690, **5-**1834, **6-**2277 NilpotentBoundary, 5-1862 NilpotentLength, 5-1862 NilpotentLieAlgebra, 8-3050 NilpotentOrbit, 8-3056 NilpotentOrbits, 8-3057 NilpotentPresentation, 6-2278 NilpotentQuotient, 5-1564, 5-1676, **6-**2132, **8-**2987 NilpotentSubgroups, 5-1501, 5-1562, 5-1826 Nilradical, 8-3026 NineDescent, 10-4038NineSelmerSet, 10-4039 nIsogeny, 11-4559NNZEntries, 2-529, 2-563 NoetherNormalisation, 9-3255, 9-3843 NoetherNormalization, 9-3255NoetherNumerator, 9-3843NoetherWeights, 9-3843 NonCuspidalQRationalPoints, 11-4322 NonIdempotentActionGenerators, 7-2584 NonIdempotentGenerators, 7-2571 NonNilpotentElement, 8-3034 NonPrimitiveAlternantCode, 13-5110 NonsolvableSubgroups, 5-1502, 5-1562 NonSpecialDivisor, 3-1212 Norm, 2-289, 2-358, 2-379, 2-484, 2-590, **3**-654, **3**-798, **3**-910, **3**-934, **3**-1048,

3-1133, 1134, **3**-1148, **3**-1158, **3**-1165, **4**-1291, **4**-1309, **4**-1404, **7**-2459, **7**-2463, **7**-2633, **7**-2651, **7**-2768, **11-**4488 NormAbs, 2-379, 3-798, 3-910, 3-935 NormalClosure, 5-1491, 5-1494, 5-1553, **5**-1670, **5**-1690, **5**-1821, **6**-2162, 6-2272 NormalClosureMonteCarlo, 5-1713 NormalComplements, 5-1836 NormalElement, 2-372 NormalFan, 9-3870 NormalForm, 6-2309, 7-2484, 9-3200, **9-**3283, **9-**3312 Normalisation, 9-3256, 9-3537, 13-5265 NormalisationCoefficient, ${f 13}{-}5265$ Normalise, 2-340, 2-590, 4-1403, 8-3118 NormalisedCone, 12-4780Normaliser, 5-1491, 5-1508, 5-1554, **5**-1821, **6**-2162, **6**-2273, **8**-3026 NormaliserCode, 13-5247NormaliserMatrix, 13-5247Normalization, 9-3256, 9-3537, 12-4696, 13-5265 NormalizationCoefficient, 13-5265Normalize, 2-340, 2-426, 2-462, 2-590, 4-1403, 8-3118, 9-3311, 13-5085, **13-**5203, **13-**5216 Normalizer, 5-1491, 5-1508, 5-1554, **5**-1670, **5**-1821, **6**-2162, **6**-2273, 7-2643, 8-3026 NormalizerCode, 13-5247 NormalizerGLZ, 5-1783 NormalizerMatrix, 13-5247 NormalLattice, 5-1494, 5-1588, 5-1835 NormalNumber, 9-3840NormalSubfields, 3-1015 NormalSubgroups, 5-1494, 5-1562, 5-1588, 5 - 1835NormEquation, 2-313, 2-380, 3-804, 805, **3-**841, **3-**925–927, **3-**1023, **4-**1308, 1309NormGroup, 3-1018, 3-1212, 4-1308, 7-2674 NormGroupDiscriminant, 4-1309 NormInduction, 3-815 NormKernel, 4-1309NormModule, 7-2652NormOneGroup, 7-2659 NormResidueSymbol, 10-3921 NormSpace, 7-2652 Not, 1-207 not, 1-11 notadj, 12-4951, 12-5029 notin, 1-69, 1-183, 1-208, 2-270, 2-274, **2**-287, **2**-337, **2**-339, **2**-357, **2**-377, **2**-397, **2**-417, **2**-435, **2**-449, **2**-481, **2**-600, **3**-939, **3**-1048, **3**-1063, **3**-1132, **3**-1145, **3**-1157, **3**-1161,

4-1230, 4-1287, 4-1318, 4-1329, **4**-1406, **5**-1484, **5**-1550, **5**-1601, **5**-1659, **5**-1819, **6**-2063, **6**-2166, **6**-2173, **6**-2267, **6**-2316, **6**-2328, **6**-2383, **7**-2430, **7**-2456, **7**-2462, **7**-2473, **7**-2484, **7**-2525, **7**-2633, **7**-2765, **9**-3232, **9**-3283, **9**-3705, **9**-3712, **12**-4730, **12**-4889, **12**-4936, 12-4952, 12-5029, 13-5092, 13-5205, **13-**5221 notsubset, 1-184, 2-274, 2-339, 2-435, **2-**600, **4-**1406, **5-**1484, 1485, **5-**1551, **5**-1659, **5**-1820, **6**-2063, 2064, **6**-2167, **6**-2268, **6**-2383, **7**-2428, **7**-2483, **7**-2525, **8**-3013, **9**-3229, **9**-3281, **12**-4730, **12**-4889, **12**-4936, **13**-5092, **13**-5205, **13**-5221 NPCGenerators, 5-1799, 5-1998 NPCgens, 5-1799, 5-1998, 6-2266 Nqubits, 13-5262 Nrels, 6-2187, 6-2348, 6-2407 Nrows, 2-529, 2-563, 2-590, 7-2519, 11-4568 Nsgens, 5-1620, 5-1706 NthPrime, 2-300 nTorsionSubgroup, 11-4625 NuclearRank, 6-2236 NullGraph, 12-4930 NullHomotopy, 7-2616 Nullity, **11-**4574 NullSpace, 2-605, 4-1417, 7-2523 Nullspace, 2-540, 2-573, 8-3037 NullspaceMatrix, 2-540, 2-574 NullspaceOfTranspose, 2-540, 2-574, **7**-2523, **8**-3037 Number, 9-3850 NumberField, 3-773, 774, 3-807, 3-810, **3**-836, **3**-863, 864, **3**-869, **3**-954, **3-**957, **3-**992, **3-**1016 NumberFieldDatabase, 3-827 NumberFields, 3-828, 829 NumberFieldSieve, 2-316 NumberingMap, 5-1485, 5-1539, 5-1660, **5-**1812, **6-**2064 NumberOfActionGenerators, 3-729, 7-2690, 7-2731 NumberOfAffinePatches, 9-3522NumberOfAlgebraicGenerators, 8-3111 NumberOfAntisymmetricForms, 3-730, 5-1782 NumberOfBlocks, 12-4886NumberOfCells, 5-1629 NumberOfClasses, 5-1498, 5-1545, 5-1666, **5-**1815, **12-**4989 NumberOfColumns, 2-529, 2-563, 2-589, 7-2519 NumberOfComponents, 1-216, 10-4088 NumberOfConstantWords, 13-5104NumberOfConstraints, 13-5288

NumberOfCoordinates, 9-3491 NumberOfCurves, 10-4059NumberOfDivisors, 2-294, 2-311 NumberOfEdges, 12-4950, 12-5029 NumberOfExtensions, 4-1310NumberOfFaces, 12-4974, 12-5039 NumberOfFacets, 12-4785NumberOfFields, 3-828, 3-1185 NumberOfFixedSpaces, 5-1680 NumberOfGenerators, 2-343, 2-600, 4-1426, 5-1482, 5-1526, 5-1647, 5-1799, **5**-1872, **5**-1998, **6**-2046, **6**-2050, 6-2100, 6-2187, 6-2266, 6-2299, **6**-2348, **6**-2365, **6**-2380, **6**-2393, **6**-2407, **7**-2512, **7**-2571, **8**-2912, **8**-2960, **8**-2991, **8**-3111, **9**-3683, **10**-3989, **10**-4013, **13**-5079, **13**-5176, **13-**5215 NumberOfGradings, 9-3491, 9-3885 NumberOfGraphs, 12-4989NumberOfGroups, 5-1956, 5-1960, 5-1972, 1973, 5-1975, 5-1977 NumberOfInclusions, 5-1509NumberOfInvariantForms, 3-730, 5-1782 NumberOfIrreducibleMatrixGroups, 5-1978 NumberOfIsogenyClasses, 10-4059NumberOfLattices, 3-709, 5-1972, 1973, **5-**1975, **5-**1977 NumberOfLevels, 3-737NumberOfLines, 12-4726NumberOfMatrices, 12-4912 NumberOfMetacyclicPGroups (p, n), 5-1952 NumberOfNewformClasses, $\mathbf{11}$ -4413 NumberOfNonZeroEntries, 2-529, 2-563 NumberOfPartitions, 2-296, 12-4813 NumberOfPCGenerators, 5-1799, 5-1998, **6-**2235, **6-**2266 NumberOfPermutations, 12-4807NumberOfPlacesDegECF, 3-1119, 3-1156, 9-3695 NumberOfPlacesOfDegreeOne, 3-1198 NumberOfPlacesOfDegreeOneECF, 3-1119, **3-**1156, **9-**3696 NumberOfPlacesOfDegreeOneECFBound, 3-1120, **3-**1156, **9-**3696 NumberOfPlacesOfDegreeOneOverExact-ConstantField, 3-1119, 3-1156, 9-3696 NumberOfPlacesOfDegreeOneOverExact-ConstantFieldBound, 3-1120, 3-1156, 9-3696 NumberOfPlacesOfDegreeOverExactConstant-Field, 3-1119, 3-1156, 9-3695 NumberOfPoints, 12-4726, 12-4786, 12-4886 NumberOfPointsAtInfinity, 10-4144 NumberOfPointsOnCubicSurface, 9-3816 NumberOfPointsOnSurface, 10-4095

NumberOfPositiveRoots, 8-2811, 8-2820, 8-2839, 8-2876, 8-2912, 8-2919, 8-2965, 8-3121 NumberOfPrimePolynomials, 2-427 NumberOfPrimitiveAffineGroups, 5-1967 NumberOfPrimitiveAlmostSimpleGroups, 5-1967 NumberOfPrimitiveDiagonalGroups, 5-1967 NumberOfPrimitiveGroups, 5-1967 NumberOfPrimitiveProductGroups, 5-1967 NumberOfPrimitiveSolubleGroups, 5-1967 NumberOfProjectives, 7-2571 NumberOfPunctures, 9-3672 NumberOfQubits, 13-5262 NumberOfQuotientGradings, 9-3880, 9-3885 NumberOfRationalPoints, $\mathbf{11}$ -4532NumberOfRelations, 6-2187, 6-2348, 6-2407 NumberOfRelationsRequired, 2-319NumberOfRepresentations, 5-1955 NumberOfRows, 2-529, 2-563, 2-590, 7-2519, 12-4831 NumberOfSkewRows, 12-4831 NumberOfSmallGroups, 5-1941 NumberOfSmoothDivisors, 3-1160 NumberOfSolubleIrreducibleMatrixGroups, 5 - 1978NumberOfStandardTableaux, 12-4842NumberOfStandardTableauxOnWeight, 12-4842NumberOfStrings, 6-2299 NumberOfStrongGenerators, 5-1620, 5-1706 NumberOfSubgroupsAbelianPGroup (A), 6-2069NumberOfSymmetricForms, 3-730, 5-1782 NumberOfTableauxOnAlphabet, 12-4843NumberOfTransitiveGroups, 5-1962 NumberOfVariables, 13-5288 NumberOfVariants, 2-394 NumberOfVertices, 12-4783, 12-4950, **12-**5029 NumberOfWords, 13-5104, 13-5226 NumbersOfPointsOnSurface, 10-4095Numerator, 2-357, 3-794, 3-906, 3-1064, **3**-1135, **3**-1164, **9**-3296, **9**-3504, **9-**3711, **9-**3843 NumericalDerivative, 2-512NumericalEigenvectors, 2-555NumericClebschTransfer, 9-3820NumExtraspecialPairs, 8-2896NumPosRoots, 8-2811, 8-2820, 8-2839, 8-2876, 8-2912, 8-2919, 8-2965, 8-3121 0, 4-1282, 4-1327, 9-3415 ObjectiveFunction, 13-5289Obstruction, 12-4974, 12-5038 ObstructionDescentBuildingBlock, 11-4604OddGraph, 12-4949 Oddity, 3-746 OldQuotient, 11-4617OldSubvariety, 11-4617

Omega, 5-1835, 5-1887, 1888, 6-2067 OmegaMinus, 5-1888 OmegaPlus, **5**-1888 One, 2-269, 2-283, 2-336, 2-354, 2-371, **2**-414, **2**-447, **2**-479, **3**-781, **3**-878, **3**-1039, **3**-1061, **3**-1130, **4**-1281, **4**-1315, **4**-1327, **7**-2423, **7**-2458, **7**-2471, **7**-2632, **7**-2760, **8**-3044, **9 8**-3082, **8**-3127, **9**-3406, **9**-3429 OneCocycle, 5-2019, 5-2033 OneCohomology, 5-2034OneParameterSubgroupsLattice, 9-3880, 9-3887 OnlyUpToIsogeny, 11-4576Open, 1-80 OpenGraphFile, 12-4995 OpenSmallGroupDatabase, 5-1941 OppositeAlgebra, 7-2566 OptimalEdgeColouring, 12-4967 OptimalSkewness, 2-324 OptimalVertexColouring, 12-4967 OptimisedRepresentation, 3-779, 3-866, **3**-871, **4**-1345, **7**-2465, **7**-2654 OptimizedRepresentation, 3-779, 3-866, **3-**871, **4-**1345, **7-**2465, **7-**2654 Or, 1-207 or, 1-11 Orbit, 5-1483, 5-1570, 5-1678, 12-4740, **12-**4901, **12-**4984 OrbitAction, 5-1575, 5-1686 OrbitActionBounded, 5-1686 OrbitalGraph, 12-4948 OrbitBounded, 5-1678 OrbitClosure, 5-1483, 5-1570, 5-1679 OrbitImage, 5-1575, 5-1686 OrbitImageBounded, 5-1686 OrbitKernel, 5-1575, 5-1686 OrbitKernelBounded, 5-1687 OrbitRepresentatives, 5-1570Orbits, 5-1570, 5-1678, 12-4740, 12-4901, **12-**4984 OrbitsOfSpaces, 5-1680 OrbitsOnSimples, 8-2867 OrbitsPartition, 12-4987Order, 2-340, 2-343, 344, 2-380, 2-401, **2-**554, **3-**756, **3-**812, **3-**869, **3-**871, 872, **3-**934, **3-**1094, **3-**1098, **3-**1148, **4**-1383, **4**-1438, **5**-1467, **5**-1483, **5**-1509, **5**-1528, **5**-1537, **5**-1655, 5-1658, 5-1756, 5-1765, 5-1800, **5**-1811, **5**-1872, **5**-1986, **5**-1999, **5**-2004, **6**-2059, 2060, **6**-2063, **6**-2144, **6**-2235, **6**-2254, **6**-2267, **6**-2349, **6**-2366, **6**-2409, **7**-2451, **7**-2461, 7-2522, 7-2627, 7-2630, 7-2767, 8-3112, 9-3435, 9-3682, 3683, 10-3956, **10**-3973, **10**-3980, **10**-3984, **10**-4163,

10-4165, **11-**4620, **11-**4631, **12-**4726, 12-4887, 12-4950, 12-5029 OrderAutomorphismGroupAbelianPGroup (A), **5-**1843 OrderedIntegerMonoid, 12-4816OrderedMonoid, 12-4816, 12-4819, 12-4823 OrderedPartitionStack, 5-1629 OrderedPartitionStackZero, 5-1629 Ordering, 6-2348, 6-2407 OrderOfRootOfUnity, 2-345 OreConditions, 4-1310 OrientatedGraph, 12-4947, 12-5027 Origin, 9-3492, 9-3648 OriginalRing, 7-2487, 9-3289 OrthogonalComplement, 2-613, 11-4491, 11-4502 OrthogonalComponent, 7-2772 OrthogonalComponents, 7-2772 OrthogonalDecomposition, 3-664Orthogonalize, 3-699OrthogonalizeGram, 3-699OrthogonalReflection, 2-624, 8-2946 OrthogonalSum, 2-623, 3-664 Orthonormalize, 3-700OutDegree, 12-4954, 12-5032 OuterFaces, 4-1240OuterFPGroup, 5-2001 OuterOrder, 5-1999OuterShape, 12-4830 OuterVertices, 4-1240OutNeighbors, 12-4956, 12-5033 OutNeighbours, 12-4956, 12-5033 OvalDerivation, 12-4746OverconvergentHeckeSeries, 11-4421 OverconvergentHeckeSeriesDegreeBound, **11-**4421 Overdatum, 8-2928, 8-2964 OverDimension, 2-600, 4-1399, 1400 Overgroup, 8-2927, 8-2964 P, 2-478 p, **2-**478 PackingRadius, 3-681 PadCode, 13-5115, 13-5200, 13-5229 PadeHermiteApproximant, 3-1072, 3-1075 pAdicEllipticLogarithm, 10-4051 pAdicEmbeddings, 11-4418pAdicField, 4-1267, 1268, 4-1275 pAdicHeight, 10-4019pAdicLSeries, 11-4477 pAdicQuotientRing, 4-1268 pAdicRegulator, 10-4020pAdicRing, 4-1267, 1268, 4-1275 PairReduce, 3-675PairReduceGram, 3-675 PaleyGraph, 12-4948PaleyTournament, 12-4948ParallelClass, 12-4733 ParallelClasses, 12-4733

ParallelSort, 1-203 Parameters, 12-4887 Parametrization, 3-1171, 9-3706, 10-3929 ParametrizationMatrix, 10-3928 ParametrizationToPuiseux, 4-1252ParametrizeDegree5DelPezzo, 9-3812 ParametrizeDegree6DelPezzo, 9-3808 ParametrizeDegree7DelPezzo, 9-3808 ParametrizeDegree8DelPezzo, 9-3806 ParametrizeDegree9DelPezzo, 9-3806 ParametrizeDelPezzo, 9-3803 ParametrizeDelPezzoDeg6, 9-3810 ParametrizeOrdinaryCurve, 10-3930 ParametrizePencil, 9-3803 ParametrizeProjectiveHypersurface, 9-3797 ParametrizeProjectiveSurface, 9-3797 ParametrizeQuadric, 9-3801 ParametrizeRationalNormalCurve, 10-3930 ParametrizeSingularDegree3DelPezzo, 9-3812 ParametrizeSingularDegree4DelPezzo, 9-3812 Parent, 1-176, 1-198, 1-218, 1-254, **2**-266, **2**-268, **2**-285, **2**-287, **2**-335, **2**-337, **2**-354, **2**-357, **2**-373, **2**-377, **2**-397, **2**-415, **2**-417, **2**-447, **2**-479, 480, 2-600, 3-757, 3-782, 3-793, **3**-884, **3**-905, **3**-1045, **3**-1047, **3-**1062, **3-**1097, **3-**1130, **3-**1142, 3-1156, 4-1230, 4-1288, 4-1316, **4-**1318, **4-**1327, 1328, **4-**1400, **5-**1482, **5**-1526, **5**-1648, **5**-1811, **5**-1872, **6**-2044, **6**-2046, **6**-2084, **6**-2088, **6**-2254, **6**-2287, **6**-2305, **6**-2351, **6**-2368, **6**-2380, **6**-2393, **6**-2407, **7**-2429, **7**-2471, **7**-2512, **7**-2689, **7**-2764, **9**-3407, **9**-3413, **9**-3430, **9**-3433, **9**-3890, **10**-3969, **10**-4148, **11-**4488, **11-**4659, **12-**4854, 4855, **13-**5086, **13-**5204, **13-**5217 ParentCell, 5-1630 ParentGraph, 12-4936 ParentPlane, 12-4722ParentRing, 4-1244 ParityCheckMatrix, 13-5081, 13-5176, **13-**5215 PartialDual, 3-663 PartialFactorization, 2-309 PartialFractionDecomposition, 3-1065 PartialWeightDistribution, 13-5101 Partition, 1-205, 206, 8-3057 Partition2WGtable, 8-2935 PartitionCovers, 12-4830 Partitions, 2-296, 12-4813 PartitionToWeight, 8-3171 PascalTriangle, 12-4888 Path, 12-5043 PathExists, 12-5043 PathGraph, 12-4930 Paths, 12-5043

xlviii

PathTree, 7-2583PCClass, 5-1861 pCentralSeries, 5-1494, 5-1586, 5-1706, 5-1834 PCExponents, 6-2267 PCGenerators, 5-1799, 5-1998, 6-2266 PCGroup, 5-1479, 5-1677, 5-1706, 5-1857, **5**-1865, **6**-2058, **6**-2200, **6**-2265, 7-2608 PCGroupAutomorphismGroupPGroup, 5-2001 pClass, 5-1835, 6-2236 pClosure, 8-3040 PCMap, 7-2608, 9-3523 pCore, 5-1491, 5-1586, 5-1670, 5-1825, 5-1832 pCoreQuotient, $\mathbf{5}$ -1586 pCover, 5-1509, 5-1606, 5-2023 pCoveringGroup, 6-2234 PCPresentation, 5-1756PCPrimes, 5-1799pElementaryAbelianNormalSubgroup, 5-1600 Pencil, 12-4733 PentahedronIdeal, 9-3822 PerfectForms, 5-1783PerfectGroupDatabase, 5-1954 PerfectSubgroups, 5-1502, 5-1562 PeriodMapping, 11-4470, 11-4646 Periods, 10-4050, 11-4470, 11-4646 PermRep, 5-1987 PermRepDegrees, 5-1987 PermRepKeys, 5-1987 Permutation, 5-1620PermutationAutomorphism, 9-3552PermutationCharacter, 3-1218, 5-1510, 1511, **5**-1609, **5**-1700, **7**-2773 PermutationCode, 13-5075, 13-5170 PermutationGroup, 5-1468, 5-1525, 5-1956, **5**-1987, **5**-2001, **6**-2058, **6**-2200, 9-3683, 13-5139, 13-5231, 13-5260 PermutationMatrix, 2-527 PermutationModule, 5-1511, 5-1609, **5**-1701, **7**-2689, **7**-2727 PermutationRepresentation, 5-1955, 5-2001, 9-3683 Permutations, 1-186, 12-4809 PermutationSupport, 5-2001 PermuteWeights, 8-3150 pExcess, 3-746Pfaffian, 2-545Pfaffians, 2-545 pFundamentalUnits, 3-923 PGammaL, 5-1624 PGammaU, 5-1625 PGL, 5-1623 PGO, 5-1626 PGOMinus, 5-1626 PGOPlus, 5-1626 PGroupStrong, 6-2093

PGroupToForms, 7-2667 PGU, 5-1624 PhaseFlip, 13-5269 Phi, 7-2792 phi, **11-**4566, **11-**4623 PhiModule, 7-2791PhiModuleElement, 7-2791 PhiSelmerGroup, 10-4198 PHom, 7-2590 Pi, 2-484 PicardClass, 9-3891 PicardGroup, 3-839, 3-915 PicardNumber, 3-839 pIntegralModel, 10-4127 Pipe, 1-83 pIsogenyDescent, 10-4039, 4040 pIsogneyDescent, 10-4040Place, 3-807, 3-955, 3-1152, 3-1154, 9-3703 PlaceEnumCopy, 3-1213 PlaceEnumCurrent, 3-1214 PlaceEnumInit, 3-1213 PlaceEnumNext, 3-1214 PlaceEnumPosition, 3-1214 Places, 3-807, 3-954, 3-1099, 3-1121, **3-**1153, 1154, **3-**1160, **9-**3702, 3703 PlacticIntegerMonoid, 12-4819 PlacticMonoid, 12-4819 PlanarDual, **12**-4974 PlanarGraphDatabase, 12-4991 PlaneToDisc, 11-4375Plethysm, 8-3156 PlotkinAsymptoticBound, 13-5128 PlotkinBound, 13-5127 PlotkinSum, 13-5115, 13-5186, 13-5200, 13-5229, 5230 Plurigenus, 9-3764 PlurigenusOfDesingularization, 9-3791 pMap, 8-3039 pmap, 1-250 pMatrixRing, 7-2465, 7-2638 pMaximalOrder, 3-875, 3-1096, 3-1147, **7**-2465, **7**-2630 pMinimalWeierstrassModel, 10-4127 pMinimise, 10-4109pMinus1, 2-306 pMultiplicator, 5-1509, 5-1606, 5-2023 pMultiplicatorRank, 6-2236 pNormalModel, 10-4127Point, 9-3837, 12-4879 PointDegree, 12-4889 PointDegrees, 12-4886 PointGraph, 12-4903, 12-4949 PointGroup, 12-4739, 12-4899 PointOnRegularModel, 9-3728Points, 9-3508, 9-3841, 10-3924, 10-3956, **10**-3968, **10**-3988, **10**-4093, **10**-4142, **10**-4144, **10**-4159, **10**-4165, **10**-4172,

10-4204, **10**-4206, **12**-4722, **12**-4759, 12-4786, 12-4788, 12-4886 PointsAtInfinity, 9-3673, 10-3968, **10-**4142, **10-**4144 PointsCubicModel, 9-3726 PointSearch, 9-3528 PointSet, 9-3506, 10-3958, 12-4718, **12-**4879 PointsKnown, 10-4144PointsOverSplittingField, 9-3511 PointsQI, 10-4028, 10-4093 Polar, 12-4778 Polarisation, 9-3837 PolarisedVariety, $\mathbf{9}\text{-}3842$ PolarSpaceType, 2-620PolarToComplex, 2-482 PoleDivisor, $\mathbf{3}\text{-}1165$ Poles, 3-1136, 3-1154, 9-3704 PollardRho, $\mathbf{2}\text{-}306$ PolycyclicGenerators, 5-1706 PolycyclicGroup, 5-1469, 5-1796, 6-2256 PolygonGraph, 12-4930 Polyhedron, 9-3893, 12-4780, 4781 PolyhedronInSublattice, 12-4781Polylog, 2-492, 493 PolylogD, 2-493 PolylogDold, 2-493PolylogP, 2-493 PolyMapKernel, 9-3263 Polynomial, 2-414, 2-454, 3-1204, 4-1244 PolynomialAlgebra, 2-411, 2-444, 9-3185, 3186, 9-3188 PolynomialCoefficient, 4-1361 PolynomialMap, 9-3577 PolynomialRing, 2-411, 2-444, 9-3185, 3186, 9-3188, 9-3357, 10-4108 PolynomialSieve, 2-326 Polytope, 12-4778 PolyToSeries, 4-1378 POmega, 5-1627 POmegaMinus, 5-1628 POmegaPlus, 5-1627 Pop, 5-1631 POpen, 1-83 Position, 1-67, 1-176, 1-199 PositiveConjugates, 6-2324 PositiveConjugatesProcess, 6-2327 PositiveCoroots, 8-2839, 8-2876, 8-2919, 8-2966, 8-3121 PositiveDefiniteForm, 3-730, 5-1781 PositiveGammaOrbitsOnRoots, 8-2867 PositiveQuadrant, 12-4779 PositiveRelativeRoots, 8-2878 PositiveRoots, 8-2839, 8-2876, 8-2919, 8-2966, 8-3121 PositiveRootsPerm, 8-3081 PositiveSum, 2-511 PossibleCanonicalDissidentPoints, 9-3842

PossibleHypergeometricData, 10-4228 PossibleSimpleCanonicalDissidentPoints, 9-3842 Power, 3-755 PowerFormalSet, 1-174PowerGroup, 6-2287 PowerIdeal, 2-273PowerIndexedSet, 1-173PowerMap, 5-1498, 5-1545, 5-1666, 5-1815 PowerMultiset, 1-174 PowerPolynomial, 2-424PowerProduct, 3-800, 3-912, 3-946, 3-1139 PowerRelation, 2-491 PowerResidueCode, 13-5112 PowerSequence, 1-197PowerSeries, 11-4400, 11-4459 PowerSeriesRing, 4-1323PowerSet, 1-173 PowerSumToElementaryMatrix, 12-4869 PowerSumToElementarySymmetric, 3-990 PowerSumToHomogeneousMatrix, 12-4869PowerSumToMonomialMatrix, 12-4869 PowerSumToSchurMatrix, 12-4868 pPlus1, 2-306 pPowerTorsion, 10-4063pPrimaryComponent, 6-2062 pPrimaryInvariants, 6-2062 pQuotient, 5-1478, 5-1564, 5-1676, **5**-1831, **5**-1858, **6**-2129, **8**-3040 pQuotientProcess, 6-2231 pRadical, 3-875, 3-1096, 3-1148 pRank, 12-4726, 12-4887 pRanks, 5-1835 Precision, 2-480, 2-483, 4-1276, 4-1288, 4-1328, 4-1341, 4-1367, 11-4400 PrecisionBound, 11-4398Preimage, 12-4800 PreimageIdeal, 7-2487, 9-3289 PreimageRing, 2-436, 7-2487, 9-3289 PreparataCode, 13-5178 Preprune, 4-1446Presentation, 7-2540, 8-2938, 9-3310 PresentationIsSmall, 6-2259 PresentationLength, 6-2100, 6-2187 PresentationMatrix, 9-3316 PreviousPrime, 2-300PrimalityCertificate, $\mathbf{2}$ -298 Primary, $\mathbf{3}\text{-}843$ PrimaryAlgebra, 9-3375 PrimaryComponents, 9-3517 PrimaryDecomposition, 9-3246, 9-3290 PrimaryIdeal, 9-3375 PrimaryInvariantFactors, 2-549, 7-2530 PrimaryInvariants, 6-2062, 9-3365 PrimaryRationalForm, 2-548, 7-2529 Prime, 3-704, 4-1274, 4-1367, 11-4504 PrimeBasis, 2-301, 2-308 PrimeComponents, 9-3517

PrimeDivisors, 2-301, 2-308, 2-311 PrimeFactorisation, 9-3583PrimeField, 2-266, 2-354, 2-367, 2-373, 2-399, 2-479, 3-784, 3-889, 3-1045, 3-1097, 4-1275, 4-1316 PrimeForm, 3-754PrimeIdeal, 7-2646 PrimePolynomials, 2-427PrimePowerRepresentation, 3-1140PrimeRing, 2-266, 2-285, 2-335, 2-373, **2**-415, **2**-447, **3**-784, **3**-889, **3**-1045, **3-**1062, **3-**1097, **4-**1230, **4-**1275, **4**-1316, **7**-2471, **12**-4854 Primes, 3-737 PrimesInInterval, 2-300 PrimesUpTo, **2**-300 PrimitiveData, 10-4228PrimitiveElement, 2-340, 2-371, 3-795, **3**-907, **3**-934, **3**-1103 PrimitiveGroup, 5-1967, 1968 PrimitiveGroupDatabaseLimit, 5-1967 PrimitiveGroupDescription, 5-1967 PrimitiveGroupIdentification, 5-1971 PrimitiveGroupProcess, 5-1969, 1970 PrimitiveGroups, 5-1968 PrimitiveIdempotentData, 7-2536 PrimitiveIdempotents, 7-2536 PrimitiveLatticeVector, 12-4797PrimitivePart, 2-426, 2-462 PrimitivePolynomial, 2-382PrimitiveQuotient, 5-1583PrimitiveRoot, 2-312, 2-340 PrimitiveWreathProduct, 5-1534PrincipalCharacter, 7-2760 PrincipalDivisor, 3-1136, 9-3709 PrincipalDivisorMap, 3-1174PrincipalIdealMap, 3-1122 PrincipalSeriesParameters, 11-4683PrincipalUnitGroup, 4-1307 PrincipalUnitGroupGenerators, 4-1307 PrintFile, 1-78, 79 PrintFileMagma, 1-79PrintProbabilityDistribution, 13-5266 PrintSortedProbabilityDistribution, 13-5267 PrintSylowSubgroupStructure, 8-3132 PrintTermsOfDegree, 4-1355 PrintToPrecision, 4-1355PrintTreesSU, 8-3174 Probability, 13-5266 ProbabilityDistribution, 13-5266 ProbableAutomorphismGroup, 3-1020ProbableRadicalDecomposition, 9-3247 ProcessLadder, 5-1600Product, 12-4699 **ProductCode**, **13**-5114 ProductProjectiveSpace, 9-3489

ProductRepresentation, 3-800, 3-912, **3-**1139, **8-**3149, 3150 ProfileGraph, 1-138ProfileHTMLOutput, 1-141 ProfilePrintByTotalCount, 1-140 ProfilePrintByTotalTime, 1-140 ProfilePrintChildrenByCount, 1-140 ProfilePrintChildrenByTime, 1-140 ProfileReset, 1-137Proj, 9-3486, 9-3496, 9-3892 Projection, 9-3533 ${\tt ProjectionFromNonsingularPoint, 9-3533}$ ProjectionMap, 11-4315ProjectionOnto, 11-4610ProjectionOntoImage, 11-4610ProjectiveClosure, 9-3521, 9-3547, 9-3673 ProjectiveClosureMap, 9-3523 ProjectiveCover, 7-2592, 7-2755 ProjectiveEmbedding, $\mathbf{12}$ -4728 ProjectiveFunction, 9-3504, 9-3693 ProjectiveGammaLinearGroup, 5-1624 ProjectiveGammaUnitaryGroup, 5-1625 ProjectiveGeneralLinearGroup, 5-1623 ProjectiveGeneralOrthogonalGroup, 5-1626 ProjectiveGeneralOrthogonalGroupMinus, 5-1626 ProjectiveGeneralOrthogonalGroupPlus, **5-**1626 ProjectiveGeneralUnitaryGroup, 5-1624 ProjectiveIndecomposableDimensions, 7-2752 ProjectiveIndecomposableModule, 7-2752 ProjectiveIndecomposableModules, 7-2752 ProjectiveMap, 9-3533, 3534 ProjectiveModule, 7-2583, 2584 ProjectiveOmega, 5-1627 ProjectiveOmegaMinus, 5-1628 ProjectiveOmegaPlus, 5-1627 ProjectiveOrder, 2-554, 5-1656, 7-2522 ProjectivePlane, 2-402, 9-3647 ProjectiveRationalFunction, 9-3504 ProjectiveResolution, 7-2592, 7-2609 ProjectiveResolutionPGroup, 7-2609 ProjectiveSigmaLinearGroup, 5-1624 ProjectiveSigmaSymplecticGroup, 5-1626 ProjectiveSigmaUnitaryGroup, 5-1625 ProjectiveSpace, 9-3486, 9-3647, 9-3880 ProjectiveSpecialLinearGroup, 5-1624 ${\tt ProjectiveSpecialOrthogonalGroup, 5-1626}$ ProjectiveSpecialOrthogonalGroupMinus, 5-1627 ProjectiveSpecialOrthogonalGroupPlus, 5-1627 ProjectiveSpecialUnitaryGroup, 5-1625 ProjectiveSuzukiGroup, 5-1628 ProjectiveSymplecticGroup, 5-1625 Projectivity, 9-3554 Prospector, 5-1488

Prune, 1-202, 1-217, 1-224, 3-1050, 4-1445, 9-3537, 12-4701 pSelmerGroup, 3-1006, 4-1308, 10-4075 PseudoAdd, 10-4205PseudoAddMultiple, 10-4205PseudoBasis, 4-1431, 7-2455, 7-2461 PseudoDimension, 13-5176PSeudoGenerators, 4-1431PseudoMatrix, 4-1438, 7-2455, 7-2461 PseudoRandom, 5-1874PseudoReflection, 8-2944PseudoReflectionGroup, 8-2948 PseudoRemainder, 2-423Psi, 2-507 PSigmaL, 5-1624 PSigmaSp, 5-1626PSigmaU, 5-1625 pSignature, 3-746PSL, 5-1624 PSL2, 11-4339 PSO, 5-1626 PSOMinus, 5-1627 PSOPlus, 5-1627 PSp, 5-1625 PSU, 5-1625 pSubalgebra, 8-3039 PSz, 5-1628 PuiseuxExpansion, 4-1246 PuiseuxExponents, 4-1250PuiseuxExponentsCommon, 4-1250 PuiseuxSeriesRing, 4-1324 PuiseuxToParametrization, 4-1252Pullback, 6-2195, 6-2331, 7-2591, 9-3542, **9**-3544, **9**-3579, **9**-3678, **10**-4147, 11-4582 PunctureCode, 13-5115, 5116, 13-5200, **13-**5230, **13-**5255 PureBraidGroup, 8-2932 PureLattice, 3-665PurelyRamifiedExtension, 9-3423, 9-3440 PureRayIndices, 9-3874 PureRays, 9-3874Pushforward, 9-3678Pushout, 7-2591 PushThroughIsogeny, 10-3964 Put, 1-81 Puts, 1-81 qCoverDescent, 10-4196gCoverPartialDescent, 10-4200 QECC, 13-5257 QECCLowerBound, 13-5259QECCUpperBound, 13-5259qEigenform, 11-4424, 11-4459 qExpansion, 11-4400qExpansionBasis, 11-4398, 11-4460, **11-**4494 qExpansionExpressions, 11-4329qExpansionsOfGenerators, 11-4330

qIntegralBasis, 11-4460QMatrix, **2-**432 QNF, 3-774, 3-864 QRCode, 13-5111 QRCodeZ4, 13-5179Qround, 2-359, 3-794, 3-906 QuadeIdeal, 9-3394QuadraticClassGroupTwoPart, 3-840 QuadraticField, 3-836 QuadraticForm, 3-659, 3-745, 3-845, **5**-1900, **12**-4735 QuadraticFormMatrix, 2-622 QuadraticFormPolynomial, 2-623 QuadraticForms, 3-753QuadraticNorm, 2-622 QuadraticOrder, 3-757 QuadraticSpace, 2-622 QuadraticTransformation, 9-3558QuadraticTwist, 10-3947, 10-4129 QuadraticTwists, 10-3948, 10-4129 QuadricIntersection, 10-4028, 10-4108 QuantizedUEA, 8-3080 QuantizedUEAlgebra, 8-3080 QuantizedUniversalEnvelopingAlgebra, 8-3080 QuantumBasisElement, 13-5247QuantumBinaryErrorGroup, 13-5248QuantumCode, 13-5237, 13-5240, 5241 QuantumCyclicCode, 13-5243-5245QuantumDimension, 8-3152QuantumErrorGroup, 13-5248, 5249 QuantumQuasiCyclicCode, 13-5246QuantumState, 13-5263QuarticG4Covariant, ${f 10} extsf{-}4023$ QuarticG6Covariant, 10-4023 QuarticHSeminvariant, 10-4023QuarticIInvariant, 10-4023 QuarticJInvariant, 10-4023QuarticMinimise, 10-4024QuarticMinimize, 10-4092 QuarticNumberOfRealRoots, 10-4024QuarticPSeminvariant, 10-4023QuarticQSeminvariant, 10-4023QuarticReduce, 10-4024QuarticRSeminvariant, 10-4023 QuasiCyclicCode, 13-5107 QuasisimpleMatrixGroup, 5-1979 QuasisimpleMatrixGroups, 5-1980 QuasiTwistedCyclicCode, 13-5107 QuaternaryPlotkinSum, 13-5187 Quaternion, 11-4368QuaternionAlgebra, 7-2422, 7-2622-2625, 7-2642, 10-3932, 11-4366 QuaternionicAutomorphismGroup, 3-712QuaternionicGModule, 3-712QuaternionicMatrixGroupDatabase, 5-1975 QuaternionOrder, 7-2627, 7-2631, 11-4366, **11-**4495, **11-**4658

QUAToIntegralUEAMap, 8-3095 quo, 2-273, 2-333, 2-434, 2-596, 3-661, 3-778, 3-951, 4-1268, 4-1407, 4-1424, 4-1444, 5-1473, 5-1563, **5**-1675, **5**-1797, **5**-1830, **6**-2057, **6**-2089, **6**-2255, **6**-2261, **6**-2395, 7-2424, 7-2485, 7-2551, 7-2578, **7**-2697, **7**-2719, **8**-2987, **8**-3011, **9**-3287, **9**-3318, **12**-4939 Quotient, 11-4583, 11-4628, 12-4760, **12-**4798 QuotientDimension, 9-3226, 9-3281 QuotientGradings, 9-3880, 9-3885 QuotientMap, 3-760QuotientModule, 7-2496-2500, 9-3319 QuotientModuleAction, 5-1689 QuotientModuleImage, 5-1689 QuotientRepresentation, 4-1367 QuotientRing, 3-1046, 9-3426 QuotientWithPullback, 8-3012 Quotrem, 2-290, 2-422, 3-1156, 3-1161, **3**-1204, **4**-1231, **4**-1318, **9**-3705, 9-3711 Radical, 2-613, 5-1494, 5-1595, 5-1692, 8-2891, 9-3245 RadicalDecomposition, 9-3246, 9-3290 RadicalExtension, 3-777, 3-865 RadicalQuotient, 5-1596, 5-1692 RamificationDegree, 3-935, 3-1152, **3-**1157, **4-**1274, **4-**1342, **4-**1367 RamificationDivisor, 3-1105, 3-1169, **9**-3678, **9**-3710, **9**-3717 RamificationField, 3-966RamificationGroup, 3-965, 4-1370 RamificationIndex, 2-332, 3-810, 3-935, **3-**958, **3-**1152, **3-**1157, **4-**1274, **4-**1342, **4-**1367 RamifiedPlaces, 7-2635RamifiedPrimes, 7-2635 RamifiedRepresentation, 4-1367Random, 1-11, 1-31, 1-178, 1-200, 1-216, **2**-269, **2**-291, **2**-336, **2**-342, **2**-354, **2**-371, **2**-399, **2**-588, **3**-780, **3**-812, **3**-878, **3**-992, **3**-1130, **3**-1200, **3**-1203, **4**-1281, **4**-1315, **4**-1401, **5**-1486, **5**-1488, **5**-1506, **5**-1539, 1540, **5**-1630, **5**-1660, **5**-1812, 1813, **6**-2052, **6**-2064, 2065, **6**-2083, **6**-2269, **6**-2301, **6**-2353, **6**-2372, **6**-2384, **6**-2397, **6**-2412, **7**-2423, **7**-2458, **7**-2510, **7**-2571, **7**-2693, **7**-2707, **8**-3009, **8**-3116, **8**-3128, **9**-3509, **9**-3575, **10**-3924, **10**-3988, **10**-4060, **10**-4143, **10**-4161, **11**-4344, **12**-4719, **12**-4730, **12-**4879, 4880, **12-**4937, **12-**4992, **13**-5084, **13**-5176, **13**-5216 RandomAbelianSurface_d10g6, 9-3781 RandomAdditiveCode, 13-5213

RandomAutomorphism, 8-3128RandomBaseChange, 7-2792 RandomBits, 2-291 RandomCFP, 6-2301 RandomCompleteIntersection, 9-3761 RandomConsecutiveBits, 2-292 RandomCurveByGenus, 9-3656 RandomDigraph, 12-4931 RandomElementOfNormalClosure, 5-1712 RandomElementOfOrder, 5-1711RandomEllipticFibration_d10g10, 9-3782 RandomEllipticFibration_d7g6, 9-3781 RandomEllipticFibration_d8g7, 9-3781 RandomEllipticFibration_d9g7, 9-3781 RandomEnriquesSurface_d9g6, 9-3780RandomExtension, 2-366RandomGenusOneModel, 10-4105RandomGLnZ, 2-528RandomGraph, 12-4930, 12-4990 RandomHookWalk, 12-4829 RandomIdealGeneratedBy, 7-2578 RandomIrreduciblePolynomial, 2-382 RandomLinearCode, 13-5076, 13-5172 RandomMatrix, 2-528 RandomModel, 10-4105RandomNodalCurve, 9-3655 RandomOrdinaryPlaneCurve, 9-3656 RandomPartition, 12-4814 RandomPlace, 3-1121, 3-1154, 9-3703 RandomPolytope, 12-4778 RandomPrime, 2-291, 2-301 RandomPrimePolynomial, 2-427RandomProcess, 5-1487, 5-1539, 5-1660, **5**-1812, **6**-2064, **6**-2268, **6**-2384 RandomProcessWithValues, 5-1487RandomProcessWithWords, 5-1487RandomProcessWithWordsAndValues, 5-1487RandomQuantumCode, 13-5241 RandomRationalSurface_d10g9, 9-3780 RandomRightIdeal, 7-2460RandomSchreier, 5-1616, 5-1704 RandomSequenceBlumBlumShub, 13-5277RandomSequenceRSA, 13-5276, 5277 RandomSLnZ, 2-528RandomSubcomplex, 4-1444RandomSubset, 1-186RandomSymplecticMatrix, 2-528RandomTableau, 12-4829RandomTransformation, 10-4113 RandomTree, 12-4930 RandomUnimodularMatrix, $\mathbf{2}$ -528 RandomWord, 6-2301Rank, 2-416, 2-448, 2-545, 2-574, 2-604, **3**-658, **3**-976, **3**-1045, **3**-1062. **4-**1350, **4-**1405, **4-**1417, **7-**2471, **7**-2487, **7**-2521, **8**-2836, **8**-2867, 8-2912, 8-2960, 8-2982, 8-3113,

9-3289, **9**-3324, **10**-4012, **11**-4489, **11-**4575, **11-**4586, **12-**4759 RankBound, 10-4064, 10-4090, 10-4181, **10-**4198 RankBounds, 10-4012, 10-4090, 10-4181, **10-**4198 RanksOfPrimitiveIdempotents, 7-2536 RankZ2, 13-5189 RationalCharacterTable, 7-2748, 7-2763 RationalCurve, 10-3914 RationalCuspidalSubgroup, 11-4635 RationalDifferentialField, 9-3404 RationalExtensionRepresentation, 3-1098 RationalField, 2-353RationalForm, 2-549, 7-2530 RationalFunction, 3-1139RationalFunctionField, 3-1059, 1060 RationalHomology, 11-4554RationalMap, 10-3963 RationalMapping, 11-4470 RationalMatrixGroupDatabase, 5-1971 RationalPoint, 10-3924 RationalPoints, 9-3508, 9-3510, 10-3924, **10**-3956, **10**-3968, **10**-3988, **10**-4142, **10**-4144, **10**-4159, **10**-4165, **10**-4172, **10-**4195, **10-**4206 RationalPointsByFibration, 9-3508 RationalPuiseux, 4-1380 RationalReconstruction, 2-360, 3-1140 RationalRuledSurface, 9-3761 Rationals, 2-353 RationalsAsNumberField, 3-774, 3-864 RationalSequence, 8-3091 RationalSolutions, 9-3450 RawBasket, 9-3843RawEval, 3-820 Ray, 9-3874, 12-4783 RayClassField, 3-1009, 1010 RayClassGroup, 3-1003, 3-1191 RayClassGroupDiscLog, 3-1192 RayLattice, 9-3887 RayLatticeMap, 9-3887 RayResidueRing, 3-1005, 3-1191 Rays, 9-3874, 9-3880, 12-4783 Re, 2-482, 11-4372 Reachable, 12-4963, 12-5042 Read, 1-82, 1-84, 1-87 ReadBinary, 1-82ReadBytes, 1-84, 1-87 Real, 2-482, 11-4346, 11-4372 RealEmbeddings, 3-809, 3-956 RealField, 2-476 RealHomology, 11-4554RealInjection, 8-2836 RealMatrix, 11-4568RealPeriod, 10-4050RealPlaces, 3-808, 3-956 RealSigns, 3-809, 3-957

RealTamagawaNumber, 11-4475Realtime, 1-26, 27 RealVectorSpace, 11-4554RealVolume, 11-4463rec, 1-242 recformat, 1-241ReciprocalPolynomial, 2-424RecogniseAdjoint (G), 5-1909 RecogniseAlternating, 5-1613, 5-1893 RecogniseAlternatingOrSymmetric, 5-1611, 5-1892 RecogniseAlternatingSquare (G), 5-1909 RecogniseClassicalSSA, 7-2672 RecogniseDelta (G), 5-1910 RecogniseExchangeSSA, 7-2672 RecogniseLargeRee, 5-1920 RecogniseRee, 5-1917 RecogniseSL, 5-1908 RecogniseSL3, 5-1906 RecogniseSp4Even, 5-1908 RecogniseSpOdd, 5-1908 RecogniseStarAlgebra, 7-2673 RecogniseSU3, 5-1908 RecogniseSU4, 5-1909 RecogniseSymmetric, 5-1612, 5-1893 RecogniseSymmetricSquare (G), 5-1909 RecogniseSz, 5-1911 RecognizeClassical, 5-1902 RecognizeLargeRee, 5-1920 RecognizeRee, 5-1917 RecognizeSL, 5-1908 RecognizeSL2, 5-1904 RecognizeSp4Even, 5-1908 RecognizeSpOdd, 5-1908 RecognizeSU3, 5-1908 RecognizeSU4, 5-1909 RecognizeSz, 5-1911 Reconstruct, 3-953ReconstructionEnvironment, 3-953ReconstructLatticeBasis, 3-680 Rectify, 12-4835 RedoEnumeration, 6-2217Reduce, 3-1101, 4-1412, 7-2480, 9-3200, **10-**4110 ReduceCharacters, 7-2774 ReduceCluster, 9-3728ReduceCubicSurface, 9-3814ReducedAteTPairing, 10-3992 ReducedBasis, 7-2465, 7-2652, 2653, 10-4018, 10-4176 ReducedDiscriminant, 3-894 ReducedEtaTPairing, 10-3991 ReducedFactorisation, 9-3582 ReducedForm, 3-756ReducedForms, 3-757ReducedGramMatrix, 7-2652, 2653 ReducedLegendreModel, 10-3920 ReducedLegendrePolynomial, 10-3919

ReducedMinimalWeierstrassModel, 10-4128 ReducedModel, 10-4128ReducedOrbits, 3-757 ReducedSubscheme, 9-3517 ReducedTatePairing, 10-3990 ReduceGenerators, 5-1622, 6-2183 ReduceGroebnerBasis, 9-3201ReducePlaneCurve, 9-3728 ReduceQuadrics, 10-4110 ReduceToTriangleVertices, 11-4380 ReduceVector, 2-601 Reduction, 3-756, 3-845, 3-1166, 9-3575, **9-**3716, **10-**3925, **10-**4063 ReductionOrbit, 3-756Reductions, 11-4418ReductionStep, 3-756ReductionType, 10-4006ReductiveRank, 8-3113ReductiveType, 8-3018 Reductum, 2-423, 2-459, 460 ReeConjugacyClasses, 5-1928 ReedMullerCode, 13-5078 ReedMullerCodeQRMZ4, 13-5181ReedMullerCodeRMZ4, 13-5182ReedMullerCodesLRMZ4, 13-5182 ReedMullerCodesRMZ4, 13-5183 ReedMullerCodeZ4, 13-5178, 13-5181 ReedSolomonCode, 13-5113 ReeElementToWord, 5-1917 ReeGroup, 5-1891 ReeIrreducibleRepresentation, 5-1918ReeMaximalSubgroups, 5-1922 ReeMaximalSubgroupsConjugacy, 5-1922 ReesIdeal, 9-3228ReeSylow, 5-1926 ReeSylowConjugacy, 5-1926 RefineSection, 5-1594Reflection, 8-2925, 8-2944, 8-3123 ReflectionFactors, $\mathbf{2}$ -624ReflectionGroup, 8-2824, 8-2848, 8-2899, 8-2908, 8-2931, 8-2938, 8-2949, 2950 ReflectionMatrices, 8-2841, 8-2881, 8-2926, 8-2968 ReflectionMatrix, 8-2841, 8-2881, 8-2926, 8-2968 ReflectionPermutation, 8-2842, 8-2882, 8-2925, 8-2968 ReflectionPermutations, 8-2842, 8-2882, 8-2968 Reflections, 8-2925, 8-3123 ReflectionSubgroup, 8-2927 ReflectionWord, 8-2842, 8-2882, 8-2926, 8-2968 ReflectionWords, 8-2842, 8-2882, 8-2926, 8-2968 Regexp, 1-71Regularity, 9-3333 RegularLDPCEnsemble, 13-5157

RegularModel, 9-3727 RegularRepresentation, 7-2448, 7-2585 RegularSequence, 9-3228 RegularSpliceDiagram, 9-3752 RegularSubgroups, 5-1502 Regulator, 3-788, 3-894, 3-1122, 10-4016, **10-**4176 RegulatorLowerBound, 3-788, 3-895 RelationIdeal, 9-3241, 9-3375 RelationMatrix, 3-916, 6-2046, 9-3310 RelationModule, 9-3309 Relations, 3-916, 3-1138, 3-1180, 6-2046, **6**-2100, **6**-2348, **6**-2394, **6**-2407, **9**-3310, **9**-3375, **9**-3694, **9**-3700, **11-**4422 RelativeField, 3-783, 3-885, 4-1368 RelativeInvariant, 3-977 RelativePrecision, 4-1288, 4-1330, **4-**1344, **4-**1372, **9-**3411 RelativePrecisionOfDerivation, 9-3411, 9-3432 RelativeProj, 9-3892 RelativeRank, 8-2867 RelativeRootDatum, 8-2879 RelativeRootElement, 8-3110 RelativeRoots, 8-2878 RelativeRootSpace, 8-2875 Remove, 1-202, 1-229 RemoveColumn, 2-535, 2-569 RemoveConstraint, 13-5289 RemoveEdge, 12-4943, 12-5024 RemoveEdges, 12-4943, 12-5024 RemoveFiles, 2-321 RemoveIrreducibles, 7-2774 RemoveLinearRelations, 9-3497RemoveRow, 2-535, 2-569 RemoveRowColumn, 2-535, 2-569 RemoveVertex, 12-4941, 12-5021 RemoveVertices, 12-4941, 12-5021 RemoveWeight, 9-3845, 9-3847 RemoveZeroRows, 2-535, 2-569 Rep, 1-178, 1-199, 1-216, 2-269, 3-991, **5**-1485, **5**-1540, **5**-1630, **5**-1813, **5**-1874, **6**-2065, **6**-2268, **6**-2299, **6**-2327, **6**-2353, **6**-2372, **6**-2384, 6-2412, 12-4719, 12-4730, 12-4879, 4880, 12-4937 RepetitionCode, 13-5076, 13-5172 ReplaceRelation, 6-2207, 6-2396 ReplicationNumber, 12-4887 Representation, 6-2053, 7-2730, 9-3386, 9-3393 RepresentationDimension, 8-3152 RepresentationMatrix, 3-799, 3-911, **3**-1133, 1134, **4**-1372, **7**-2448, **7**-2460, 7-2489, 9-3293 RepresentationNumber, 3-761 RepresentationType, 7-2553

Representative, 1-178, 1-199, 2-269, **2**-283, **2**-336, **2**-354, **2**-371, **2**-414, **2**-447, **2**-479, **3**-702-704, **3**-781, **3**-878, **3**-991, **3**-1039, **3**-1061, **3**-1130, **4**-1281, **4**-1315, **4**-1327, **5**-1485, **5**-1540, **5**-1630, **5**-1813, **6**-2268, **6**-2299, **6**-2327, **6**-2353, **6**-2372, **6**-2412, **7**-2471, **8**-3058, **9**-3889, **12**-4719, **12**-4730, **12**-4879, 4880, 12-4937 RepresentativeCocycles, 5-1855 RepresentativePoint, 9-3705 Representatives, 3-705 Res_H2_G_QmodZ, 6-2072ResetMaximumMemoryUsage, 1-90ResetMinimumWeightBounds, 13-5097Residual, 12-4882Residue, 3-1179, 9-3699, 9-3706, 12-4762 ResidueClassDegree, 3-1152, 3-1157 ResidueClassField, 2-274, 3-810, 3-935, **3-**958, **3-**1152, **3-**1157, **4-**1276, **4-**1327, **4-**1342, **4-**1368, **9-**3706 ResidueClassRing, 2-333ResidueField, 4-1317 ResidueSystem, 4-1276 Resolution, 9-3898 ResolutionData, 7-2608 ResolutionGraph, 9-3745, 3746, 9-3748 ResolutionGraphVertex, 9-3745ResolveAffineCurve, 9-3783 ResolveAffineMonicSurface, 9-3786 ResolveFanMap, 9-3876 ResolveLinearSystem, 9-3898 ResolveProjectiveCurve, 9-3785 ResolveProjectiveSurface, 9-3788 Restrict, 3-813, 3-821 RestrictDegree, $\mathbf{12}$ -4863 RestrictedPartitions, 2-296, 12-4813 RestrictedSubalgebra, 8-3039RestrictEndomorphism, 11-4560RestrictField, 2-598, 5-1646, 13-5117 Restriction, 5-2021, 7-2585, 7-2738, **7**-2772, **9**-3505, **9**-3537, **9**-3609, **11-**4560, **12-**4882 RestrictionChainMap, 7-2610 RestrictionData, 7-2610 RestrictionMap, 8-3039 RestrictionMatrix, 8-3054, 8-3167, 8-3173 RestrictionOfGenerators, 7-2611 RestrictionOfScalars, 9-3524 RestrictionToImage, 11-4560 RestrictionToPatch, 9-3504, 9-3548 RestrictPartitionLength, 12-4863 RestrictParts, 12-4863 RestrictResolution, 7-2610 Resultant, 2-432, 2-467 ResumeEnumeration, 6-2218 Retrieve, 1-236

Reverse, 1-202, 1-224, 4-1332 ReverseColumns, 2-534, 2-568 ReverseRows, 2-534, 2-568 Reversion, 4-1332RevertClass, 6-2234 Rewind, 1-81Rewrite, 6-2149, 2150 ReynoldsOperator, 9-3360RGenerators, 12-4788RHS, 6-2044, 6-2088, 6-2392 RichelotIsogenousSurface, 10-4155RichelotIsogenousSurfaces, 10-4155rideal, 6-2394, 7-2424, 7-2460, 7-2477, **7**-2514, **7**-2551, **7**-2645 RiemannRochBasis, 9-3586, 9-3613, 9-3893 RiemannRochCoordinates, 9-3587RiemannRochDimension, 9-3893RiemannRochPolytope, 9-3893 RiemannRochSpace, 3-1166, 9-3586, 9-3716 RiemannZeta, 10-4246RightAction, 7-2690 RightActionGenerator, 7-2731 RightAdjointMatrix, 8-3035 RightAnnihilator, 7-2446, 7-2554, 7-2577 RightCosetSpace, 6-2173, 6-2229 RightDescentSet, 8-2917, 8-2962 RightExactExtension, 4-1446 RightGCD, 6-2320 RightGcd, 6-2320 RightGreatestCommonDivisor, 6-2320 RightHandFactors, 9-3462 **RightIdeal**, **7**-2645 RightIdealClasses, 7-2465, 7-2648 RightInverse, 11-4612RightInverseMorphism, 11-4612RightIsomorphism, 7-2656 RightLCM, 6-2321, 2322 RightLcm, 6-2321, 2322 RightLeastCommonMultiple, 6-2321, 2322 RightMixedCanonicalForm, 6-2310 RightNormalForm, 6-2309 RightOrder, 7-2461, 7-2647 RightRegularModule, 7-2584 RightRepresentationMatrix, 7-2459 RightString, 8-2844, 8-2883, 8-2922 RightStringLength, 8-2844, 8-2883, 8-2922 RightTransversal, 5-1489, 5-1602, 5-1695, **5**-1837, **6**-2065, **6**-2175, **6**-2229, 6-2269 RightZeroExtension, 4-1447 Ring, 5-2015, 9-3507, 10-3959 RingClassGroup, 3-915 RingGeneratedBy, 11-4580RingMap, 9-3507 RingOfFractions, 9-3296, 9-3405 RingOfIntegers, 2-282, 2-333, 2-353, **3**-780, **3**-836, **3**-868, **3**-873, **3**-1061, 4-1273, 4-1327, 4-1342

RMatrixSpace, 4-1399, 4-1408, 11-4587 RMatrixSpaceWithBasis, 4-1399, 4-1411 RModule, 4-1398, 7-2688, 8-3036, 9-3308, 11-4399 RModuleWithAction, 11-4588RModuleWithBasis, 4-1399 RombergQuadrature, 2-511Root, 2-380, 2-484, 3-794, 3-905, 3-944, **3-**1040, **3-**1143, **4-**1294, **8-**2839, 8-2876, 8-2919, 8-2966, 8-3121, **12-**4966 RootAction, 8-2931 RootClosure, 8-2885 RootDatum, 8-2823, 8-2848, 8-2858, **8**-2860, **8**-2863, **8**-2875, **8**-2911, 8-2960, 8-3021, 8-3081, 8-3112, 8-3148 RootGSet, 8-2930 RootHeight, 8-2843, 8-2884, 8-2923, 8-3124 RootImages, 8-2895 RootLattice, 8-2874RootNorm, 8-2844, 8-2884, 8-2923, 8-3124 RootNorms, 8-2843, 8-2884, 8-2923, 8-3124 RootNumber, 10-4052, 10-4076, 10-4079 RootOfUnity, 2-354, 2-376, 3-850, 851, **3-**1039 RootPermutation, 8-2895 RootPosition, 8-2839, 8-2876, 8-2919, **8-**2966, **8-**3121 Roots, 2-376, 2-420, 2-487, 3-1039, **3**-1138, **4**-1258, **4**-1298, **4**-1373, **8**-2839, **8**-2876, **8**-2919, **8**-2965, 8-3121 RootsAndCoroots, 8-2963 RootSequence, 2-624 RootSide, 12-4966RootsInSplittingField, 2-376 RootsNonExact, $\mathbf{2}\text{-}489$ RootSpace, 8-2838, 8-2874, 8-2918, 8-2965, 8-3121 RootSystem, 8-2823, 8-2832, 2833, 8-2899, 8-2911, 8-2960, 8-3020 RootVertex, 9-3753RosenhainInvariants, 10-4216 Rotate, 1-202, 2-590, 4-1403, 13-5086, 13-5204, 13-5217 RotateWord, 6-2209, 6-2397 Round, 2-290, 2-314, 2-359, 2-419, 2-482 RoundDownDivisor, 9-3581 RoundUpDivisor, 9-3581 Row, 12-4831 RowInsert, 12-4836 RowLength, 12-4831RowNullSpace, 7-2523, 8-3037 RowReductionHomomorphism, 8-3135 Rows, 11-4568, 12-4831 RowSequence, 2-530

RowSkewLength, 12-4831 RowSpace, 7-2523 Rowspace, 2-574RowSubmatrix, 2-532, 2-567 RowSubmatrixRange, 2-532, 2-567 RowWeight, 2-564RowWeights, 2-564 RowWord, 12-4833RPolynomial, 8-3168 RSAModulus, 13-5277 RSKCorrespondence, 12-4839RSpace, 4-1398, 5-1648, 11-4399, 11-4505, **13-**5080, **13-**5176 RSpaceWithBasis, 4-1399RubinSilverbergPolynomials, 10-4112 RuledSurface, 9-3488, 3489, 9-3647 RWSGroup, 6-2342, 2343 RWSMonoid, 6-2346, 6-2402 SafeUniformizer, 3-1152, 3-1158 SAT, 9-3220 SatisfiesSzPresentation, 5-1912 Saturate, 9-3498 SaturateSheaf, 9-3608Saturation, 2-552, 9-3227, 10-4013, 11-4580 ScalarLattice, 12-4794ScalarMatrix, 2-525, 7-2510, 8-3010 ScalarSparseMatrix, 2-562 ScaledIgusaInvariants, 10-4135 ScaledLattice, 3-647ScaleGenerators, 4-1386ScalingFactor, 10-4113Scheme, 9-3494, 3495, 9-3503, 9-3507, 9-3607, 9-3906, 10-3959, 10-3969 SchemeGraphMap, 9-3560 SchemeGraphMapToSchemeMap, 9-3561 SchemeMap, 9-3682SchreierGenerators, 6-2162SchreierGraph, 12-4948SchreierSystem, 6-2162 SchreierVector, 5-1620SchreierVectors, 5-1620 Schur, 7-2768 SchurIndex, 7-2768SchurIndexGroup, 7-2771 SchurIndices, 7-2768SchurToElementaryMatrix, 12-4865 SchurToHomogeneousMatrix, $\mathbf{12}$ -4865 SchurToMonomialMatrix, $\mathbf{12}$ -4864 SchurToPowerSumMatrix, 12-4865 SClassGroup, 3-1175 SClassGroupAbelianInvariants, 3-1175 SClassGroupExactSequence, 3-1175 SClassNumber, 3-1175sdiff, 1-185 SEA, 10-3980 Search, 6-2187 SearchEqual, 6-2187

SearchForDecomposition, 5-1729SearchForIsomorphism, 6-2123 SearchPGroups, 5-1950 Sec, 2-494 SecantVariety, 9-3564 Sech, 2-497 SecondaryInvariants, 9-3366 SectionCentraliser, 5-1553SectionCentralizer, 5-1553 Sections, 9-3575Sections (G), 7-2731 Seek, 1-81 SegreEmbedding, 9-3489SegreProduct, 9-3489Self, 1-210 SelfComplementaryGraphDatabase, 12-4991 SelfIntersection, 9-3585SelfIntersections, 9-3751 SelmerGroup, 10-4067Semidir, 5-1983 SemidirectProduct, 5-1477 Semigroup, 6-2392 SemiInvariantBilinearForms, 2-634 SemiInvariantQuadraticForms, 2-634SemiInvariantSesquilinearForms, 2-634 SemilinearDual, 2-632 SemiLinearGroup, 5-1650 SemiOrthogonalBasis, 2-629 SemisimpleDecomposition, 7-2792SemisimpleEFAModuleMaps, 6-2283SemisimpleEFAModules, 6-2283SemisimpleEFASeries, 6-2278 SemisimpleGeneratorData, 7-2538 SemisimpleRank, 8-3113 SemisimpleType, 8-3018 SeparatingElement, 3-1105, 9-3406 SeparationVertices, 12-4958, 12-5035 Seq, 6-2354, 6-2373, 6-2413 Seqelt, 2-372SeqFact, 2-310 Seqint, 2-284 Seglist, 1-224 Seqset, 1-206 SequenceOfRadicalGenerators, 7-2540SequenceToElement, 2-372SequenceToFactorization, 2-310 SequenceToInteger, 2-284SequenceToList, 1-224 SequenceToMultiset, 1-182 SequenceToSet, 1-206 SerreBound, 3-1119, 9-3696 Set, 1-175, 2-335, 2-373, 6-2354, 6-2372, 2373, 6-2413, 12-4731, 12-4890 SetAllInvariantsOfDegree, 9-3362 SetAssertions, 1-98SetAutoColumns, 1-98 SetAutoCompact, 1-98SetBeep, 1-98

SetBufferSize, 10-4059 SetClassGroupBoundMaps, 3-921 SetClassGroupBounds, 3-921 SetColumns, 1-98SetDebugOnError, 1-147SetDefaultRealField, 2-475SetDisplayLevel, 6-2235 SetEchoInput, 1-90, 1-99 SetElementPrintFormat, 6-2298 SetEntry, 2-565SetEvaluationComparison, 3-976SetForceCFP, 6-2298 SetGlobalTCParameters, 6-2147SetHeckeBound, 11-4457SetHelpExternalBrowser, 1-113 SetHelpExternalSystem, 1-113 SetHelpUseExternalBrowser, 1-113 SetHelpUseExternalSystem, 1-113 SetHistorySize, 1-99 SetIgnorePrompt, 1-99SetIgnoreSpaces, 1-99SetIndent, 1-99SetIntegerSolutionVariables, 13-5289 SetKantPrecision, 3-883 SetKantPrinting, 3-883 SetLibraries, 1-100 SetLibraryRoot, 1-100 SetLineEditor, 1-100 SetLMGSchreierBound, 5-1748SetLogFile, 1-90, 1-100 SetLowerBound, 13-5289SetMaximiseFunction, 13-5289SetMemoryLimit, 1-100 SetNthreads, 1-100SetObjectiveFunction, 13-5289SetOptions, 6-2186SetOrderMaximal, 3-904, 3-1093 SetOrderTorsionUnit, 3-904SetOrderUnitsAreFundamental, $\mathbf{3}$ -904 SetOutputFile, 1-80, 1-101 SetPath, 1-101 SetPowerPrinting, 2-369 SetPrecision, 11-4400SetPresentation, $\mathbf{6}$ -2298 SetPreviousSize, 1-77SetPrimitiveElement, 2-371 SetPrintKetsInteger, 13-5263 SetPrintLevel, 1-101 SetProcessParameters, 6-2216 SetProfile, 1-137 SetPrompt, 1-101SetQuitOnError, 1-101 SetRationalBasis, 11-4662SetRows, 1-101SetSeed, 1-30, 1-102 Setseq, 1-206 SetsOfSingularPlaces, 9-3448SetTargetRing, 3-813

lviii

SetToIndexedSet, 1-182SetToMultiset, 1-182 SetToSequence, 1-206SetTraceback, 1-102SetUpperBound, 13-5289SetVerbose, 1-102, 2-298, 2-302, 2-305, **2-**315, **2-**384, **2-**422, **2-**429, **2-**464, **2-**575, **3-**673, **3-**679, **3-**693, **3-**881, **4-**1245, **5-**1502, **6-**2136, **6-**2347, **6**-2362, **6**-2404, **7**-2479, 2480, **7**-2706, 8-2934, 9-3202, 3203, 9-3219, 9-3247, **9**-3329, **9**-3359, **9**-3806, **10**-3984, **10-**3987, **10-**4128, **10-**4165, **10-**4284, **11-**4304, **12-**4915 SetViMode, 1-102, 1-106 Seysen, 3-676SeysenGram, 3-676 SFA, 12-4850 SFAElementary, 12-4850SFAHomogeneous, 12-4850SFAMonomial, 12-4850 SFAPower, 12-4850SFASchur, 12-4850 Shadow, 12-4763 ShadowSpace, 12-4763Shape, 8-3091, 12-4830 Sheaf, 9-3586, 9-3604 SheafHomomorphism, 9-3611SheafHoms, 9-3609SheafOfDifferentials, 9-3606SheafToDivisor, 9-3581ShephardTodd, 8-2952, 8-2955 ShephardToddNumber, 8-2958 Shift, 4-1446, 12-4696 ShiftLeft, 2-287 ShiftRight, 2-287 ShiftToDegreeZero, 4-1446 ShiftValuation, 4-1295ShimuraConjugates, 11-4381ShimuraReduceUnit, 11-4379 ShiodaAlgebraicInvariants, 10-4137 ShiodaInvariants, 10-4136 ShiodaInvariantsEqual, 10-4136 ShortBasis, 3-1165, 9-3717 ShortCosets, 5-1602, 5-1837 ShortenCode, 13-5116, 13-5200, 13-5230, 13-5255 ShortestPath, 12-5043ShortestPaths, 12-5043ShortestVectors, 3-683, 3-727 ShortestVectorsMatrix, 3-683 ShortVectors, 3-685, 3-728 ShortVectorsMatrix, 3-686 ShortVectorsProcess, $\mathbf{3}$ -691 ShowIdentifiers, 1-103ShowMemoryUsage, 1-103ShowOptions, 6-2186 ShowPrevious, 1-76

ShowValues, 1-103ShrikhandeGraph, 12-4950ShrinkingGenerator, 13-5276 SiegelTransformation, 2-624 Sieve, 2-384 Sign, 2-290, 2-314, 2-359, 2-427, 2-467, **2-**484, **3-**1213, **5-**1537, **10-**4269, 11 - 4530Signature, 2-286, 2-356, 3-789, 3-895, 11-4369 SignDecomposition, 9-3582, 9-3711 SiksekBound, 10-4017SilvermanBound, 10-4017SimilarityGroup, 2-629, 7-2666 SimNEQ, 3-805, 3-928 SimpleCanonicalDissidentPoints, 9-3842 SimpleCohomologyDimensions, 7-2598SimpleCoreflectionMatrices, 8-2841, 8-2881, 8-2925, 8-2968 SimpleCoroots, 8-2838, 8-2875, 8-2918, **8**-2965, **8**-3121 SimpleEpimorphisms, 6-2110 SimpleExtension, 3-783, 3-885 SimpleGroupName, 5-1896 SimpleGroupOfLieType, 8-3104, 3105 SimpleHomologyDimensions, 7-2593SimpleModule, 7-2584SimpleOrders, 8-2965 SimpleParameters, 7-2674 SimpleQuotientAlgebras, 7-2535SimpleQuotientProcess, 6-2110 SimpleQuotients, 6-2109 SimpleReflectionMatrices, 8-2841, 8-2881, 8-2925, 8-2968 SimpleReflectionPermutations, 8-2842, **8**-2881, **8**-2925, **8**-2968 SimpleReflections, 8-2925SimpleRelativeRoots, 8-2878SimpleRoots, 8-2838, 8-2875, 8-2918, 8-2965, 8-3121 SimpleStarAlgebra, 7-2670 SimpleSubgroups, 5-1502, 5-1563 Simplex, 9-3493, 12-4704 SimplexAlphaCodeZ4, 13-5179 SimplexBetaCodeZ4, 13-5179 SimplexCode, 13-5078SimplicialComplex, 12-4693, 4694 SimplicialProjectivePlane, 12-4704 SimplicialSubdivision, 9-3875SimplifiedModel, **10**-3946, **10**-4126 Simplify, **3**-886, **3**-1050, **3**-1094, **4**-1427, **6-**2183, **6-**2186, **12-**4882 SimplifyLength, 6-2185, 2186 SimplifyPresentation, 6-2186SimplifyRep, 4-1386SimplyConnectedVersion, 8-2891 SimpsonQuadrature, 2-512SimsSchreier, 5-1615

Sin, 2-493, 494, 4-1336 Sincos, 2-494, 4-1336 SingerDifferenceSet, 12-4884 SingletonAsymptoticBound, 13-5128 SingletonBound, 13-5127SingularCones, 9-3872 SingularPoints, 9-3672 SingularRadical, 2-613 SingularRank, 9-3847 SingularSubscheme, 9-3517 Sinh, 2-497, 4-1336 SIntegralDesbovesPoints, 10-4058SIntegralLjunggrenPoints, 10-4058SIntegralPoints, 10-4055SIntegralQuarticPoints, 10-4057SixDescent, 10-4037Size, 9-3751, 9-3755, 12-4950, 12-5029Skeleton, 9-3872, 12-4703 SkewHadamardDatabase, 12-4912 SkewInvariant100, 9-3819 SkewShape, 12-4830SkewWeight, 12-4831 SL, 5-1882 SL2Characteristic, 5-1905SL2ElementToWord, 5-1905 SL2Triple, 8-3058 SL3ElementToWord (G, g), 5-1907 SL4Invariants, 10-4114 Slope, 12-4733 Slopes, 4-1243, 7-2792 SlopeValuation, 9-3455SLPGroup, 6-2379 SLPolynomialRing, 3-976SmallBasis, 9-3199 SmallerField, 5-1726 SmallerFieldBasis, 5-1726SmallerFieldImage, 5-1726SmallGraphDatabase, 12-4991 SmallGroup, 5-1942, 1943 SmallGroupDatabase, 5-1941 SmallGroupDatabaseLimit, 5-1941 SmallGroupDecoding, 5-1948 SmallGroupEncoding, 5-1948 SmallGroupIsInsoluble, 5-1943SmallGroupIsInsolvable, 5-1943SmallGroupIsSoluble, 5-1942SmallGroupIsSolvable, 5-1942SmallGroupProcess, 5-1946SmallGroups, 5-1943, 1944 SmallModularCurve, 11-4314 SmallPeriodMatrix, 10-4208 SmallRoots, 2-420SmithForm, 2-552, 7-2528 SO, 5-1886 Socket, 1-85, 86 SocketInformation, 1-86Socle, 5-1592, 5-1832, 7-2585, 7-2702 SocleAction, 5-1593

SocleFactor, 5-1592SocleFactors, 5-1592, 7-2703 SocleImage, 5-1593 SocleKernel, 5-1593 SocleQuotient, 5-1593SocleSeries, 5-1592, 7-2703 SolubleNormalQuotient, 5-1599SolubleQuotient, 5-1564, 5-1676, 5-1858, **6**-2137, 2138, **6**-2244 SolubleRadical, 5-1595, 5-1692, 8-3026, 8-3126 SolubleResidual, 5-1494, 5-1585, 5-1690 SolubleSchreier, 5-1616 SolubleSubgroups, 5-1502 Solution, 2-312, 313, 2-337, 2-541, **7-**2534, **13-**5289 Solutions, 3-930 SolvableLieAlgebra, 8-3049SolvableQuotient, 5-1564, 5-1676, 5-1858, **6**-2137, 2138, **6**-2244 SolvableRadical, 5-1595, 5-1692, 8-3026 SolvableResidual, 5-1494, 5-1585, 5-1690 SolvableSchreier, 5-1616SolvableSubgroups, 5-1502, 5-1562 Solve, 9-3800 SolveByRadicals, 3-986SOMinus, 5-1887 SOPlus, **5**-1886 Sort, 1-203 SortDecomposition, 11-4446, 11-4491 Sp, 5-1885 SpaceOfDifferentialsFirstKind, 3-1177, 9-3698 SpaceOfHolomorphicDifferentials, 3-1177, 9-3698 SpanningFan, 9-3870 SpanningForest, 12-4965, 12-5037 SpanningTree, 12-4965, 12-5037 SpanZ2CodeZ4, 13-5189 SparseIrreducibleRootDatum, 8-2862 SparseMatrix, 2-559, 560, 2-570 SparseMatrixStructure, 2-562 SparseRootDatum, 8-2862, 2863 SparseStandardRootDatum, 8-2862 Spec, 9-3486, 9-3496 SpecialEvaluate, 3-1205SpecialLieAlgebra, 8-3005SpecialLinearGroup, 5-1882 SpecialOrthogonalGroup, 5-1885, 1886 SpecialOrthogonalGroupMinus, 5-1887 SpecialOrthogonalGroupPlus, 5-1886 SpecialPresentation, 5-1862 SpecialUnitaryGroup, 5-1884 SpecialWeights, 5-1862 Spectrum, 8-3156, 12-4950 Sphere, 12-4704, 12-4964 SpherePackingBound, 13-5127 Spin, 5-1888

lx

SpinMinus, 5-1889 SpinorCharacters, 3-703SpinorGenera, 3-702SpinorGenerators, 3-703SpinorGenus, 3-702SpinorNorm, 2-624, 5-1902 SpinorRepresentatives, 3-705SpinPlus, 5-1888 Splice, 4-1446 SpliceDiagram, 9-3752, 3753, 9-3755, 3756 SpliceDiagramVertex, 9-3753 Split, 1-71 SplitAllByValues, 5-1631 SplitCell, 5-1630 SplitCellsByValues, 5-1631Splitcomponents, 12-4958, 12-5035 SplitExtension, 5-1510, 5-1606, 5-2023 SplitMaximalToralSubalgebra, 8-3028 SplitRealPlace, 11-4366 SplitRootDatum, 8-2893 SplittingCartanSubalgebra, 8-3028 SplittingField, 2-366, 3-777, 3-865, 4-1273 SplitToralSubalgebra, 8-3028SPolynomial, 9-3200, 9-3311 SPrincipalDivisorMap, 3-1174 Sprint, 1-79 Sprintf, 1-79 Sqrt, 2-338, 2-346, 2-380, 2-484, 3-794, **3**-905, **3**-944, **3**-1040, **3**-1143, 4-1293, 4-1332, 4-1360 SquareFreeFactorization, 4-1301SquarefreeFactorization, 2-291, 2-311, **2-**431, **2-**463 SquarefreePart, 2-463SquarefreePartialFractionDecomposition, 3-1065 SquareLatticeGraph, 12-4950SquareRoot, 2-338, 2-380, 2-484, 3-794, **3-**905, **3-**944, **3-**1040, **3-**1143, 4-1293, 4-1332, 4-1360 SQUFOF, 2-307 SrAutomorphism, 11-4318SRegulator, 3-1174SrivastavaCode, 13-5111 SSGaloisRepresentation, 7-2792, 2793 Stabiliser, 5-1571StabiliserCode, 13-5247StabiliserGroup, 13-5249 StabiliserMatrix, 13-5247 StabiliserOfSpaces, 5-1683 Stabilizer, 5-1571, 5-1679, 11-4347, **12-**4740, **12-**4901, **12-**4984 StabilizerCode, 13-5247StabilizerGroup, 13-5249 StabilizerLadder, 5-1601 StabilizerMatrix, 13-5247 StandardAction, 8-2932, 8-2964

StandardActionGroup, 8-2932, 8-2964 StandardAlternatingForm, 2-617 StandardBasis, 9-3278 StandardForm, 7-2636, 13-5082, 13-5185 StandardFormConjugationMatrices, 7-2540StandardGenerators, 5-1929, 8-3066 StandardGraph, 12-4928, 12-5007 StandardGroup, 5-1522StandardHermitianForm, 2-618StandardLattice, 3-647StandardMaximalTorus, 8-3126 StandardMetacyclicPGroup (P), 5-1952 StandardParabolicSubgroup, 8-2927 StandardPresentation, 5-1844, 5-1930 StandardPseudoAlternatingForm, 2-617StandardQuadraticForm, 2-618StandardRepresentation, 8-3133, 8-3142, 8-3146 StandardRootDatum, 8-2861 StandardRootSystem, 8-2834 StandardSimplex, 12-4778StandardSymmetricForm, 2-619StandardTableaux, $\mathbf{12}\text{-}4827$ StandardTableauxOfWeight, 12-4827Star, 7-2667 StarInvolution, 11-4454StarOnGroupAlgebra, 7-2669 StartEnumeration, 6-2216 StartNewClass, 6-2232 Stauduhar, 3-973SteenrodOperation, 9-3379 SteinitzClass, 4-1431 SteinitzForm, 4-1431SternsAttack, 13-5124StirlingFirst, 2-296, 12-4808 StirlingSecond, 2-296, 12-4808 StoreFactor, 2-304StringToCode, 1-67StringToInteger, 1-68StringToIntegerSequence, 1-68 Strip, 5-1621 StrongApproximation, 3-1211StrongGenerators, 5-1620, 5-1706 StronglyConnectedComponents, 12-4957, **12-**5034 StronglyRegularGraphsDatabase, 12-4989StructureConstant, 7-2768 StructureConstants, 8-2897StructureSheaf, 9-3604SU, 5-1884 sub, 2-285, 2-335, 2-366, 367, 2-594, 3-660, 3-778, 3-827, 3-836, 3-865, **3-**869, **3-**1089, **3-**1185, **4-**1366, **4-**1405, **4-**1424, **4-**1444, **5-**1472, **5**-1548, **5**-1668, **5**-1817, **6**-2055, 2056, **6**-2140, **6**-2259, **6**-2394, **7**-2423, 7-2513, 7-2550, 7-2576, 7-2694, 7-2719, 8-2846, 8-2888, 8-3011,

9-3318, **12**-4724, **12**-4938, **12**-5018, **12-**5053, **13-**5089, **13-**5190, **13-**5218 SubalgebraFromBasis, 7-2576 SubalgebraModule, 7-2718 SubalgebrasInclusionGraph, 8-3053 SubcanonicalCurve, $9-38\overline{4}5$ Subcode, 13-5089, 5090, 13-5190, 5191, **13-**5218, 5219, **13-**5242 SubcodeBetweenCode, 13-5090, 13-5219 SubcodeWordsOfWeight, 13-5090, 13-5219 SubfieldCode, 13-5117 SubfieldLattice, 3-991 SubfieldRepresentationCode, 13-5117 SubfieldRepresentationParityCode, 13-5117Subfields, 3-803, 3-991, 3-1110 SubfieldSubcode, 13-5117 SubfieldSubplane, 12-4724Subgroup, 6-2174, 6-2222, 11-4579, 4580, **11-**4625 SubgroupClasses, 5-1500, 5-1557, 5-1672, **5-**1826 SubgroupLattice, 5-1504, 5-1827 SubgroupOfTorus, 11-4465Subgroups, 5-1500, 5-1557, 5-1672, **5**-1826, **5**-1930, **6**-2068 SubgroupScheme, 10-3955, 11-4297, 11-4325 SubgroupsData, 5-1931 SubgroupsLift, 5-1559, 5-1674 Sublattice, 12-4798, 4799 SublatticeClasses, 3-732 SublatticeLattice, 3-736Sublattices, $\mathbf{3}$ -731, 732 Submatrix, 2-531, 532, 2-566, 7-2526 SubmatrixRange, 2-532, 2-566 Submodule, 9-3319SubmoduleAction, 5-1689 SubmoduleImage, 5-1689 SubmoduleLattice, 7-2706 SubmoduleLatticeAbort, 7-2706 Submodules, 7-2706SubnormalSeries, 5-1494, 5-1586, 5-1691, 5-1834 SubOrder, 3-868, 3-1098 Subring, 11-4580 Subsequences, 1-186, 12-4809 subset, 1-184, 2-274, 2-339, 2-435, **2**-600, **3**-659, **3**-792, **3**-902, **3**-939, **3**-942, **3**-992, **3**-1014, **3**-1126, **3**-1198, **4**-1406, **4**-1428, **5**-1484, 1485, **5**-1508, **5**-1551, **5**-1659, **5**-1820, **6**-2063, 2064, **6**-2167, **6**-2267, 2268, 6-2383, 7-2428, 7-2462, 7-2483, 7-2488, 7-2524, 7-2696, 7-2708, 8-2846, 8-2889, 8-3013, 8-3110, **9**-3229, **9**-3281, **9**-3290, **9**-3323, **9**-3508, **9**-3578, **9**-3683, **11**-4340, 11-4492, 11-4506, 11-4541, 11-4590, 11-4633, 12-4728, 12-4730, 12-4782,

12-4889, **12**-4936, **13**-5092, **13**-5205, 13-5221 Subsets, 1-185, 186, 12-4809 Substitute, 6-2209, 6-2397 Substring, 1-67 SubsystemSubgroup, 8-3125 SubWeights, 8-3150Subword, 6-2209, 6-2397 SuccessiveMinima, $\mathbf{3}$ -692 SuggestedPrecision, 4-1301, 4-1373 Sum, 8-2843, 8-2883, 8-2921, 12-4882 Summands, 12-4799SumNorm, 2-427, 2-467 SumOf, 11-4594 SumOfBettiNumbersOfSimpleModules, 7-2606 SumOfDivisors, 2-294, 2-311 SumOfImages, 11-4594SumOfMorphismImages, 11-4594SUnitAction, 3-949 SUnitCohomologyProcess, 3-994SUnitDiscLog, 3-949SUnitGroup, 3-947, 3-1174 Superlattice, 12-4799SuperScheme, 9-3500SupersingularEllipticCurve, 10-3942 SupersingularModule, 11-4500SupersingularPolynomial, 10-3979 SuperSummitCanonicalLength, 6-2307 SuperSummitInfimum, 6-2307 SuperSummitProcess, 6-2327 SuperSummitRepresentative, 6-2324 SuperSummitSet, 6-2324 SuperSummitSupremum, 6-2307 Supplements, 5-1598Support, 2-419, 2-563, 2-590, 3-655, 3-809, 3-945, 3-956, 3-1154, 3-1164, **4**-1404, **5**-1568, **7**-2437, **7**-2556, 7-2694, 8-3036, 9-3582, 9-3709, 12-4723, 12-4859, 12-4886, 12-4890, **12**-4928, **12**-5007, **13**-5086, **13**-5203, 13-5217 SupportingCone, 12-4786Supremum, 6-2306 Surface, 9-3760 SurjectivePart, 11-4561 Suspension, 12-4703SuzukiGroup, 5-1889 SuzukiIrreducibleRepresentation, 5-1912SuzukiMaximalSubgroups, 5-1922 SuzukiMaximalSubgroupsConjugacy, 5-1922 SuzukiSylow, 5-1924 SuzukiSylowConjugacy, 5-1925 SVPermutation, 5-1620SVWord, 5-1621 SwapColumns, 2-534, 2-568, 7-2527 SwapRows, 2-534, 2-568, 7-2527 SwinnertonDyerPolynomial, 2-438Switch, 12-4944

Sylow, 5-1491, 5-1554, 5-1670, 5-1825, **6-**2066, **10-**4171 SylowBasis, 5-1825 SylowSubgroup, 5-1491, 5-1554, 5-1670, **5**-1825, **6**-2066, **8**-3132 SylowSystem, 5-1770 Sym, 5-1476, 5-1522, 5-1532, 6-2097 SymmetricBilinearForm, 2-460, 5-1900 SymmetricCharacter, 7-2783, 12-4862SymmetricCharacterTable, 7-2783 SymmetricCharacterValue, 7-2783 SymmetricComponents, 7-2772 SymmetricElementToWord (G, g), 5-1612, **5-**1893 SymmetricForms, 3-729, 730, 5-1781 SymmetricFunctionAlgebra, 12-4850SymmetricFunctionAlgebraElementary, 12-4850 SymmetricFunctionAlgebraHomogeneous, **12-**4850 SymmetricFunctionAlgebraMonomial, ${f 12}{-}4850$ SymmetricFunctionAlgebraPower, 12-4850SymmetricFunctionAlgebraSchur, 12-4850SymmetricGroup, 5-1476, 5-1522, 5-1532, 6-2097 SymmetricMatrix, 2-526, 3-745 SymmetricNormaliser, 5-1554 SymmetricNormalizer, 5-1554SymmetricPower, 7-2517, 8-3144, 8-3155, 8-3163, 9-3453, 10-4282 SymmetricRepresentation, 6-2336, 7-2781 SymmetricRepresentationOrthogonal, 7-2782 SymmetricRepresentationSeminormal, 7-2782 SymmetricSquare, 3-665, 7-2517, 7-2737 SymmetricSquarePreimage (G, g), 5-1909 SymmetricToQuadraticForm, 2-622 SymmetricWeightEnumerator, 13-5196Symmetrization, 7-2772 SymplecticComponent, 7-2772SymplecticComponents, 7-2773 SymplecticDual, 13-5250 SymplecticForm, 5-1899 SymplecticGroup, 5-1885 SymplecticInnerProduct, 13-5250SymplecticMatrixGroupDatabase, 5-1977 SymplecticSpace, 2-621 SymplecticTransvection, 8-2946Syndrome, 13-5085SyndromeSpace, 13-5083System, 1-91 SystemNormaliser, 5-1825 SystemNormalizer, $\mathbf{5}\text{-}1825$ SystemOfEigenvalues, $\mathbf{11}\text{-}4460$ SyzygyMatrix, 9-3262 SyzygyModule, 7-2593, 9-3325 SzClassMap, 5-1928 SzClassRepresentative, 5-1928 SzConjugacyClasses, 5-1928

SzElementToWord, 5-1912SzIsConjugate, 5-1928 SzPresentation, 5-1912Tableau, 12-4824 TableauIntegerMonoid, 12-4822TableauMonoid, 12-4822Tableaux, 12-4862 TableauxOfShape, $\mathbf{12}\text{-}4827$ TableauxOnShapeWithContent, 12-4827TableauxWithContent, 12-4827TaftDecomposition, 7-2671 Tails, 6-2232 TamagawaNumber, 10-4005, 11-4474, 11-4647 TamagawaNumbers, 10-4005TameOrder, **7**-2630 Tan, 2-494, 4-1336 Tangent, 12-4735 TangentAngle, 11-4348, 11-4374 TangentCone, 9-3513, 9-3663 TangentLine, 9-3663 TangentSheaf, 9-3606 TangentSpace, 9-3513 TangentVariety, 9-3563 Tanh, 2-497, 4-1336 TannerGraph, 13-5159TargetRestriction, 3-813 TateLichtenbaumPairing, 3-1175 TatePairing, 10-3990 TeichmuellerLift, 4-1293 TeichmuellerSystem, 3-1200 Tell, 1-81 Tempname, 1-91 TensorBasis, 5-1720 TensorFactors, 5-1720 TensorInducedAction, 5-1722 TensorInducedBasis, 5-1722 TensorInducedPermutations, 5-1722TensorPower, 7-2737, 8-3154, 9-3609 TensorProduct, 2-590, 2-601, 3-664, 7-2515, 7-2517, 7-2564, 7-2737, 8-3086, 8-3144, 8-3154, 8-3163, 9-3345, 9-3609, 10-4259, 12-4946 TensorWreathProduct, 5-1650 Term, 2-453, 4-1445 TerminalIndex, 9-3838 TerminalPolarisation, 9-3838TerminalVertex, 12-4937, 12-5009 Terms, 2-419, 2-452, 453, 4-1445, 7-2474, 9-3312, 9-3435 TestHeckeRep, 8-2937 TestWG, 8-2935 Theta, 2-505 ThetaOperator, 11-4454ThetaSeries, 3-692, 3-761, 11-4494 ThetaSeriesIntegral, 3-693 ThetaSeriesModularForm, 3-696ThetaSeriesModularFormSpace, 3-696ThreeDescent, 10-4031

ThreeDescentByIsogeny, 10-4035ThreeDescentCubic, 10-4033ThreeIsogenyDescent, 10-4034ThreeIsogenyDescentCubic, 10-4035ThreeIsogenySelmerGroups, 10-4034ThreeSelmerElement, 10-4036ThreeSelmerGroup, 10-4033ThreeTorsionMatrices, $\mathbf{10}$ -4037 ThreeTorsionPoints, 10-4037 ThreeTorsionType, 10-4037Thue, 3-929, 930 TietzeProcess, 6-2185 TjurinaNumber, 9-3235 To2DUpperHalfSpaceFundamentalDomian, **10-**4211 ToAnalyticJacobian, 10-4209ToddCoxeter, 6-2143ToddCoxeterSchreier, 5-1616, 5-1704 ToLiE, 8-3170 Top, 3-992, 5-1506, 7-2707 TopQuotients, 5-1956 Tor, 9-3345ToralRootDatum, 8-2862 ToralRootSystem, 8-2834 ToricAffinePatch, 9-3882 ToricCode, 13-5152ToricLattice, 12-4794, 12-4798 ToricVariety, 9-3879, 3880, 9-3885, 9-3888 ToricVarietyMap, 9-3896 TorsionBound, 10-4063, 10-4090, 10-4172, **11-**4472 TorsionCoefficients, $\mathbf{12}\text{-}4706$ TorsionFreeRank, 6-2062, 6-2127 TorsionFreeSubgroup, 6-2062 TorsionInvariants, 6-2062 TorsionLowerBound, 11-4636TorsionMultiple, 11-4636TorsionSubgroup, 6-2062, 10-3989, 10-4011, **10-**4063, **10-**4090, **10-**4172, **11-**4637 TorsionSubgroupScheme, 10-3955TorsionUnitGroup, 3-802, 3-922 Torus, 12-4704 TorusTerm, 8-3116 TotalDegree, 2-456, 3-1064, 7-2475 TotalLinking, 9-3754 TotallyRamifiedExtension, 4-1271, 4-1340 TotallySingularComplement, 2-623 TotallyUnitTrivialSubgroup, 3-811 TotalNumberOfCosets, 6-2222Trace, 2-289, 2-358, 2-379, 2-545, **2**-591, **3**-798, **3**-910, **3**-1048, **3**-1133, **4**-1291, **5**-1656, **7**-2459, **7**-2521, **7**-2556, **7**-2633, **10**-3984, **11**-4575, **13**-5086, **13**-5117, **13**-5217 TraceAbs, 2-379, 3-798, 3-910 Traceback, 1-103TraceInnerProduct, 13- 5217TraceMatrix, 3-900

TraceOfFrobenius, 10-3984, 10-4088 TraceOfProduct, 2-545TracesOfFrobenius, 10-4006TraceZeroSubspace, 7-2454 TrailingCoefficient, 2-418, 2-451, 452, 7 - 2474TrailingTerm, 2-419, 2-453, 454, 7-2475 Transformation, $\mathbf{10}\text{-}4146$ TransformationMatrix, 3-898, 3-937, **3-**1102, **3-**1149 TransformForm, 5-1901, 1902 TransitiveGroup, 5-1962, 1963 TransitiveGroupDatabaseLimit, 5-1962 TransitiveGroupDescription, 5-1962 ${\tt TransitiveGroupIdentification, 5-1966}$ TransitiveGroupProcess, 5-1965 TransitiveGroups, 5-1963 TransitiveQuotient, 5-1583 Transitivity, $\mathbf{5}$ -1571 Translation, 9-3436, 9-3552, 9-3556, 9-3676 TranslationMap, 9-3438, 10-3963 TranslationOfSimplex, 9-3556TranslationToInfinity, 9-3676 Transport, 6-2331 Transpose, 2-539, 2-572, 4-1439, 7-2521 TransposePartition, 8-3171 Transvection, 8-2944Transversal, 2-601, 5-1489, 5-1602, **5**-1695, **5**-1837, **6**-2065, **6**-2162, 2163, **6**-2175, **6**-2229, **6**-2269, **8**-2928, 2929 TransversalElt, 8-2928, 2929 TransversalProcess, 5-1602 TransversalProcessNext, 5-1602 TransversalProcessRemaining, 5-1602 TransversalWords, 8-2928 TransverseIndex, 9-3840 TransverseIntersections, 9-3752TransverseType, 9-3839 TrapezoidalQuadrature, 2-512TrialDivision, 2-305, 3-843 TriangularDecomposition, 9-3252 TriangularGraph, 12-4950 Triangulation, 12-4788TriangulationOfBoundary, 12-4788TrivialLieRepresentationDecomposition, 8-3141 TrivialModule, 7-2723 TrivialOneCocycle, 5-2033 TrivialRepresentation, 8-3142, 8-3146 TrivialRootDatum, 8-2862 TrivialRootSystem, 8-2834 Truncate, 2-290, 2-359, 2-482, 4-1331, 9-3415 TruncateCoefficients, 9-3436 TruncatedAlgebra, 7-2578 Truncation, 12-4763 TupleToList, 1-218, 1-224

lxiv

Tuplist, 1-218, 1-224 TwelveDescent, $\mathbf{10}$ -4038 Twist, 9-3323, 9-3605, 10-4227 TwistedBasis, 8-3023 TwistedCartanName, 8-2865 TwistedDual, 2-634 TwistedGroup, 5-2034 TwistedGroupOfLieType, 8-3109 TwistedLieAlgebra, 8-3002 TwistedPolynomials, 3-1201 TwistedQRCode, 13-5112 TwistedRootDatum, 8-2892TwistedSemilinearDual, 2-634 TwistedTori, 8-3131TwistedToriOrders, 8-3130 TwistedTorus, 8-3131 TwistedTorusOrder, 8-3130TwistedWindingElement, $\mathbf{11}$ -4464 TwistedWindingSubmodule, 11-4465TwistingDegree, 8-2867 Twists, 10-3948, 10-4129 TwoCocycle, 3-1022, 5-2019 TwoCover, 10-4065TwoCoverDescent, 10-4187TwoCoverPullback, 10-4028TwoDescendantsOverTwoIsogenyDescendant, 10-4023 TwoDescent, 10-4021, 10-4065, 10-4092 TwoElement, 3-938, 3-1148 TwoElementNormal, 2-332, 3-938 TwoGenerators, 3-1158, 9-3703 TwoGenus, 9-3847 TwoIsogeny, 10-3963TwoIsogenyDescent, 10-4023TwoIsogenySelmerGroups, 10-4093TwoSelmerGroup, 10-4068, 10-4092, 10-4180 TwoSidedIdealClasses, 7-2465, 7-2649 TwoSidedIdealClassGroup, 7-2465, 7-2649 TwoTorsionPolynomial, $\mathbf{10}$ -3954 TwoTorsionSubgroup, 3-759, 10-4172 TwoTransitiveGroupIdentification, 5-1611 Type, 1-28, 1-176, 2-266, 2-268, 3-657, 3-782, 3-793, 9-3407, 9-3413, **9**-3430, **9**-3433, **10**-3915, **10**-3953, **10**-3956, **10**-3959, **10**-3969, **11**-4488 TypeOfContraction, 9-3898 TypeOfSequence, 3-1069Types, 12-4759 ${\tt TypesOfContractions, } \textbf{9-}3898$ UltraSummitProcess, 6-2327 UltraSummitRepresentative, 6-2324UltraSummitSet, 6-2324 UncapacitatedGraph, 12-5016 Undefine, 1-203UnderlyingDigraph, 12-4947, 12-5027 UnderlyingElement, 5-1872 UnderlyingField, 3-1099, 9-3407

UnderlyingGraph, 9-3750, 9-3753, 12-4703, 12-4947, 12-5027 UnderlyingMultiDigraph, 12-5028 UnderlyingMultiGraph, 12-5027 UnderlyingNetwork, 12-5028 UnderlyingRing, 3-1099, 9-3407, 9-3884 UnderlyingVertex, 9-3753 Ungetc, 1-81 UniformizingElement, 3-810, 3-934, 3-958, **3**-1158, **4**-1276, **4**-1282, **4**-1326, 4-1342, 4-1371 UniformizingParameter, 9-3694, 9-3706 Union, 9-3496, 9-3651, 12-4882, 12-4945, 12-5025, 5026 UnipotentMatrixGroup, 5-1755 UnipotentStabiliser, 5-1684 UnitalFeet, 12-4737UnitaryForm, 5-1900UnitaryReflection, 8-2946 UnitarySpace, 2-621 UnitaryTransvection, 8-2946 UnitDisc, **11-**4371 UnitEquation, 3-931 UnitGenerators, $\mathbf{2}\text{-}343$ UnitGroup, 2-285, 2-335, 2-340, 2-355, **2-**373, **2-**400, **3-**802, **3-**922, **3-**951, **3**-1122, **4**-1308, **7**-2465, **7**-2660 UnitGroupAsSubgroup, 3-922 UnitGroupGenerators, 4-1308 UnitRank, 3-789, 3-802, 3-895, 3-923, 3-1122 Units, 7-2465, 7-2659 UnitTrivialSubgroup, 3-811 UnitVector, 9-3310 Unity, 3-1199, 3-1202 UnivariateEliminationIdealGenerator, 9 - 3238UnivariateEliminationIdealGenerators, 9 - 3238UnivariatePolynomial, 2-456UniversalEnvelopingAlgebra, 8-3042 UniversalMap, 1-237UniversalPropertyOfCokernel, 11-4561 Universe, 1-176, 1-198, 1-229, 6-2050 UniverseCode, 13-5076, 13-5172 UnlabelledCayleyGraph, 12-4947UnlabelledGraph, 12-5015UnlabelledSchreierGraph, 12-4948UnramifiedExtension, 4-1269, 4-1340 UnramifiedQuotientRing, 4-1269 UnsetBounds, 13-5289UnsetGlobalTCParameters, 6-2147 UnsetLogFile, 1-90, 1-100 UnsetOutputFile, 1-80, 1-101 UntwistedOvergroup, 8-3109 UntwistedRootDatum, 8-2893 UnweightedGraph, 12-5016 UpdateHadamardDatabase, 12-4914

lxv

UpperCentralSeries, 5-1494, 5-1585, 5-1691, 5-1834, 6-2278, 8-3030 UpperHalfPlane, 11-4345UpperTriangularMatrix, 2-526 UserGenerators, $\mathbf{6-}2050$ UserRepresentation, 6-2053 UsesBrandt, 11-4506UsesMestre, 11-4506UseTwistedHopfStructure, 8-3087 Valence, **12-**4954 Valency, 9-3754 ValidateCryptographicCurve, 10-3987 Valuation, 2-290, 2-332, 2-360, 2-419, **2**-423, **3**-808, **3**-912, **3**-936, **3**-956, **3**-1136, **3**-1148, **3**-1166, **3**-1179, 4-1231, 4-1289, 4-1331, 4-1344, **4**-1355, **4**-1372, **9**-3694, **9**-3699, **9**-3705, 3706, **9**-3713 ValuationRing, 3-1062, 4-1229 ValuationsOfRoots, 4-1245, 4-1296 ValueList, 2-345ValuesOnUnitGenerators, 2-345VanLintBound, 13-5127 VariableExtension, 9-3242 VariableWeights, 9-3188 VariantRepresentatives, 2-395 Variety, 9-3233, 9-3580, 9-3890 VarietySequence, 9-3233 VarietySizeOverAlgebraicClosure, 9-3234 Vector, 2-529, 9-3311 VectorSpace, 2-355, 2-373, 2-586, 587, **2**-599, **3**-786, **3**-892, **5**-1648, **7**-2488, **7**-2570, **9**-3292, **11**-4399, **11**-4442, **11**-4554, **11**-4587, **12**-4725, **13**-5080 VectorSpaceWithBasis, 2-602 Verify, 5-1616, 5-1704 VerifyMinimumDistanceLowerBound, 13-5097 VerifyMinimumDistanceUpperBound, 13-5098 VerifyMinimumWeightUpperBound, 13-5098 VerifyRelation, 3-988VerschiebungImage, 3-1200 VerschiebungMap, 3-1200 Vertex, 9-3745, 9-3753 VertexConnectivity, 12-4960, 12-5036 VertexLabels, 9-3754, 12-5011 VertexPath, 9-3755, 12-4967 VertexSeparator, 12-4960, 12-5035 VertexSet, 12-4934VerticalJoin, 2-537, 2-569, 4-1439, **7-**2526 Vertices, 4-1240, 9-3753, 12-4783, 12-4934 VirtualDecomposition, 8-3151 VirtualRayIndices, 9-3874 VirtualRays, 9-3874 Voronoi, 10-4218 VoronoiCell, 3-697VoronoiData, 11-4673

VoronoiGraph, 3-697 VoronoiRelevantVectors, 3-698 WaitForConnection, 1-86WallDecomposition, 2-629 WallForm, 2-629 WallIsometry, 2-629 WeakDegree, 9-3435WeakOrder, 9-3435WeberClassPolynomial, 3-762, 11-4301 WeberF, 2-504WeberF1, 2-504WeberF2, 2-504WeberToHilbertClassPolynomial, 11-4302WedderburnDecomposition, 7-2671 WeierstrassModel, 10-3945WeierstrassPlaces, 3-1105, 3-1155, **3**-1170, **9**-3703, **9**-3717 WeierstrassPoints, 9-3717 WeierstrassSeries, 2-501, 3-761 Weight, 2-591, 4-1243, 4-1404, 6-2083, 8-3166, 10-4228, 11-4406, 11-4657, **12-**4814, **12-**4830, **12-**5014, **13-**5085, 13-5203, 13-5217 WeightClass, 5-1861 WeightDistribution, 13-5100, 13-5192, **13-**5225, **13-**5252 WeightedDegree, 3-1064, 9-3188, 9-3312 WeightedDynkinDiagram, 8-3058WeightEnumerator, 13-5101, 13-5196, **13-**5225 WeightLattice, 8-2886, 8-2924, 8-2969, 8-3125 WeightOneHalfData, 11-4406, 11-4413 WeightOrbit, 8-2887, 8-2924, 8-2970 Weights, 7-2793, 8-3148, 8-3162, 8-3166, **9-**3843, **11-**4530, **12-**5014 WeightsAndMultiplicities, 8-3148 WeightsAndVectors, 8-3085, 8-3162, 8-3166 WeightSequence, 8-3091 WeightsOfFlip, 9-3899 WeightToPartition, 8-3171 WeightVectors, 8-3166 Weil, 9-3890 WeilDescent, 3-1182, 10-3996 WeilDescentDegree, 3-1183, 10-3997 WeilDescentGenus, 3-1183, 10-3997 WeilHeight, 10-4015 WeilPairing, 10-3975, 10-3990, 10-4164 WeilPolynomialOverFieldExtension, 10-4284WeilPolynomialToRankBound, 10-4284WeilRepresentation, 11-4684WeilRestriction, 3-1100, 9-3524 WeilToClassGroupsMap, 9-3887 WeilToClassLatticesMap, 9-3887 WeylGroup, 8-3024, 3025, 8-3113 WeylWord, 8-3091 WG2GroupRep, 8-2937 WG2HeckeRep, 8-2937

WGelement2WGtable, 8-2936WGidealgens2WGtable, 8-2937 WGtable2WG, 8-2935 Widths, 11-4350 WindingElement, 11-4464WindingLattice, 11-4464WindingSubmodule, 11-4464WittDecomposition, 2-616WittDesign, 12-4884WittIndex, 2-616WittInvariant, 3-746 WittInvariants, 3-747 WittLieAlgebra, 8-3005 WittRing, 3-1199 Word, 12-4833WordAcceptor, 6-2366WordAcceptorSize, 6-2366 WordDifferenceAutomaton, 6-2366 WordDifferences, 6-2366 WordDifferenceSize, 6-2366 WordGroup, 5-1604, 5-1696 WordInStrongGenerators, 5-1621 WordMap, 5-1755 WordProblem, 7-2542WordProblemData, 7-2542 Words, 13-5103, 13-5226 WordsOfBoundedLeeWeight, 13-5193WordsOfBoundedWeight, 13-5104, 13-5227 WordsOfLeeWeight, 13-5193 WordStrip, **5**-1621 WordToSequence, $\mathbf{6}\text{-}2305$ WordToTableau, $\mathbf{12}$ -4824 WreathProduct, 5-1535, 5-1650, 5-1805 Write, 1-78, 79, 1-85, 1-87 WriteBinary, 1-79 WriteBytes, 1-85, 1-87 WriteGModuleOver, 7-2735WriteHadamardDatabase, 12-4914WriteK3Data, 9-3856 WriteOverLargerField, 5-1718 WriteOverSmallerField, 5-1728, 7-2733 WriteRawHadamardData, 12-4915 WriteRepresentationOver, 7-2735 WriteWG, 8-2938 WronskianDeterminant, 9-3427WronskianMatrix, 9-3427 WronskianOrders, 3-1105, 3-1170, 9-3695, 9-3717 WZWFusion, 8-3172X, 9-3506 XGCD, 2-292, 293, 2-425, 4-1231, 4-1318 Xgcd, 2-292, 293, 2-425, 4-1231 Xor, 1-207xor, 1-11 YoungSubgroup, 5-1533YoungSubgroupLadder, 5-1601 Z4CodeFromBinaryChain, 13-5184 ZariskiDecomposition, 9-3586

ZassenhausNearfield, 2-396 ZBasis, 7-2455, 7-2461, 8-2992 ZClasses, 5-1784ZechLog, 2-384 Zero, 2-269, 2-283, 2-336, 2-354, 2-371, **2**-399, **2**-414, **2**-447, **2**-479, **2**-588, **3**-653, **3**-781, **3**-878, **3**-1039, **3**-1061, **3-**1130, **3-**1199, **3-**1202, **4-**1281, **4-**1315, **4-**1327, **4-**1401, **7-**2423, **7**-2458, **7**-2471, **7**-2632, **7**-2693, **7**-2760, **8**-2983, **8**-3009, **8**-3044, 8-3082, 9-3310, 9-3406, 9-3429, **12-**4796 ZeroChainMap, 4-1450ZeroCocycle, 5-2018 ZeroCode, 13-5076, 13-5172 ZeroComplex, 4-1443ZeroCone, 12-4779ZeroDivisor, 3-1164, 9-3581, 9-3889 Zeroes, 3-789, 3-895, 3-1136 ZeroExtension, 4-1447ZeroFan, 9-3870 ZeroGammaOrbitsOnRoots, 8-2867ZeroMap, 7-2590, 11-4559, 12-4800 ZeroMatrix, 2-525ZeroModularAbelianVariety, 11-4527ZeroModule, 7-2584ZeroRootLattice, 8-2875 ZeroRootSpace, 8-2875Zeros, 3-895, 3-1136, 3-1153, 9-3704 ZeroSubgroup, 11-4625ZeroSubscheme, 9-3619 ZeroSubspace, 11-4407ZeroSubvariety, 11-4528ZeroSumCode, 13-5076, 13-5172 ZetaFunction, 2-510, 3-1120, 9-3696, 10-3986, 10-4145 ZetaFunctionsByDeformation, 10-4170 ZGenerators, 12-4788ZinovievCode, 13-5121

lxvii