
HANDBOOK OF MAGMA FUNCTIONS

Volume 1

Language and Data Structures

John Cannon Wieb Bosma

Claus Fieker Allan Steel

Editors

Version 2.19

Sydney

April 24, 2013



ii



MAGMA
C O M P U T E R • A L G E B R A

HANDBOOK OF MAGMA FUNCTIONS

Editors:

John Cannon Wieb Bosma Claus Fieker Allan Steel

Handbook Contributors:

Geoff Bailey, Wieb Bosma, Gavin Brown, Nils Bruin, John

Cannon, Jon Carlson, Scott Contini, Bruce Cox, Brendan

Creutz, Steve Donnelly, Tim Dokchitser, Willem de Graaf,

Andreas-Stephan Elsenhans, Claus Fieker, Damien Fisher,

Volker Gebhardt, Sergei Haller, Michael Harrison, Florian

Hess, Derek Holt, David Howden, Al Kasprzyk, Markus

Kirschmer, David Kohel, Axel Kohnert, Dimitri Leemans,

Paulette Lieby, Graham Matthews, Scott Murray, Eamonn

O’Brien, Dan Roozemond, Ben Smith, Bernd Souvignier,

William Stein, Allan Steel, Damien Stehlé, Nicole Suther-

land, Don Taylor, Bill Unger, Alexa van der Waall, Paul

van Wamelen, Helena Verrill, John Voight, Mark Watkins,

Greg White

Production Editors:

Wieb Bosma Claus Fieker Allan Steel Nicole Sutherland

HTML Production:

Claus Fieker Allan Steel





PREFACE

The computer algebra system Magma is designed to provide a software environment for
computing with the structures which arise in areas such as algebra, number theory, al-
gebraic geometry and (algebraic) combinatorics. Magma enables users to define and to
compute with structures such as groups, rings, fields, modules, algebras, schemes, curves,
graphs, designs, codes and many others. The main features of Magma include:

• Algebraic Design Philosophy: The design principles underpinning both the user lan-
guage and system architecture are based on ideas from universal algebra and category
theory. The language attempts to approximate as closely as possible the usual mathe-
matical modes of thought and notation. In particular, the principal constructs in the
user language are set, (algebraic) structure and morphism.

• Explicit Typing: The user is required to explicitly define most of the algebraic structures
in which calculations are to take place. Each object arising in the computation is then
defined in terms of these structures.

• Integration: The facilities for each area are designed in a similar manner using generic
constructors wherever possible. The uniform design makes it a simple matter to pro-
gram calculations that span different classes of mathematical structures or which involve
the interaction of structures.

• Relationships: Magma provides a mechanism that manages “relationships” between
complex bodies of information. For example, when substructures and quotient struc-
tures are created by the system, the natural homomorphisms that arise are always
stored. These are then used to support automatic coercion between parent and child
structures.

• Mathematical Databases: Magma has access to a large number of databases containing
information that may be used in searches for interesting examples or which form an
integral part of certain algorithms. Examples of current databases include factorizations
of integers of the form pn ± 1, p a prime; modular equations; strongly regular graphs;
maximal subgroups of simple groups; integral lattices; K3 surfaces; best known linear
codes and many others.

• Performance: The intention is that Magma provide the best possible performance
both in terms of the algorithms used and their implementation. The design philosophy
permits the kernel implementor to choose optimal data structures at the machine level.
Most of the major algorithms currently installed in the Magma kernel are state-of-the-
art and give performance similar to, or better than, specialized programs.

The theoretical basis for the design of Magma is founded on the concepts and methodology
of modern algebra. The central notion is that of an algebraic structure. Every object
created during the course of a computation is associated with a unique parent algebraic
structure. The type of an object is then simply its parent structure.



vi PREFACE

Algebraic structures are first classified by variety: a variety being a class of structures
having the same set of defining operators and satisfying a common set of axioms. Thus,
the collection of all rings forms a variety. Within a variety, structures are partitioned into
categories. Informally, a family of algebraic structures forms a category if its members all
share a common representation. All varieties possess an abstract category of structures
(the finitely presented structures). However, categories based on a concrete representation
are as least as important as the abstract category in most varieties. For example, within
the variety of algebras, the family of finitely presented algebras constitutes an abstract
category, while the family of matrix algebras constitutes a concrete category.

Magma comprises a novel user programming language based on the principles outlined
above together with program code and databases designed to support computational re-
search in those areas of mathematics which are algebraic in nature. The major areas
represented in Magma V2.19 include group theory, ring theory, commutative algebra,
arithmetic fields and their completions, module theory and lattice theory, finite dimen-
sional algebras, Lie theory, representation theory, homological algebra, general schemes
and curve schemes, modular forms and modular curves, L-functions, finite incidence struc-
tures, linear codes and much else.

This set of volumes (known as the Handbook) constitutes the main reference work on
Magma. It aims to provide a comprehensive description of the Magma language and the
mathematical facilities of the system, In particular, it documents every function and oper-
ator available to the user. Our aim (not yet achieved) is to list not only the functionality
of the Magma system but also to show how the tools may be used to solve problems in
the various areas that fall within the scope of the system. This is attempted through the
inclusion of tutorials and sophisticated examples. Finally, starting with the edition corre-
sponding to release V2.8, this work aims to provide some information about the algorithms
and techniques employed in performing sophisticated or time-consuming operations. It will
take some time before this goal is fully realised.

We give a brief overview of the organization of the Handbook.

• Volume 1 contains a terse summary of the language together with a description of the
central datatypes: sets, sequences, tuples, mappings, etc. An index of all intrinsics
appears at the end of the volume.

• Volume 2 deals with basic rings and linear algebra. The rings include the integers, the
rationals, finite fields, univariate and multivariate polynomial rings as well as real and
complex fields. The linear algebra section covers matrices and vector spaces.

• Volume 3 covers global arithmetic fields. The major topics are number fields, their
orders and function fields. More specialised topics include quadratic fields , cyclotomic
fields and algebraically closed fields.

• Volume 4 is concerned with local arithmetic fields. This covers p-adic rings and their
extension and power series rings including Laurent and Puiseux series rings,



PREFACE vii

• Volume 5 describes the facilities for finite groups and, in particular, discusses permu-
tation groups, matrix groups and finite soluble groups defined by a power-conjugate
presentation. A chapter is devoted to databases of groups.

• Volume 6 describes the machinery provided for finitely presented groups. Included
are abelian groups, general finitely presented groups, polycyclic groups, braid groups
and automatic groups. This volume gives a description of the machinery provided for
computing with finitely presented semigroups and monoids.

• Volume 7 is devoted to aspects of Lie theory and module theory. The Lie theory includes
root systems, root data, Coxeter groups, reflection groups and Lie groups.

• Volume 8 covers algebras and representation theory. Associative algebras include
structure-constant algebras, matrix algebras, basic algebras and quaternion algebras.
Following an account of Lie algebras there is a chapter on quantum groups and another
on universal enveloping algebras. The representation theory includes group algebras,
K[G]-modules, character theory, representations of the symmetric group and represen-
tations of Lie groups.

• Volume 9 covers commutative algebra and algebraic geometry. The commutative alge-
bra material includes constructive ideal theory, affine algebras and their modules, in-
variant rings and differential rings. In algebraic geometry the main topics are schemes,
sheaves and toric varieties. Also included are chapters describing specialised machinery
for curves and surfaces.

• Volume 10 describes the machinery pertaining to arithmetic geometry. The main topics
include the arithmetic properties of low genus curves such as conics, elliptic curves and
hyperelliptic curves. The volume concludes with a chapter on L-series.

• Volume 11 is concerned with modular forms.

• Volume 12 covers various aspects of geometry and combinatorial theory. The geometry
section includes finite planes, finite incidence geometry and convex polytopes. The
combinatorial theory topics comprise enumeration, designs, Hadamard matrices, graphs
and networks.

• Volume 13 is primarily concerned with coding theory. Linear codes over both fields
and finite rings are considered at length. Further chapters discuss machinery for AG-
codes, LDPC codes, additive codes and quantum error-correcting codes. The volume
concludes with short chapters on pseudo-random sequences and on linear programming.

Although the Handbook has been compiled with care, it is possible that the semantics of
some facilities have not been described adequately. We regret any inconvenience that this
may cause, and we would be most grateful for any comments and suggestions for improve-
ment. We would like to thank users for numerous helpful suggestions for improvement and
for pointing out misprints in previous versions.



viii PREFACE

The development of Magma has only been possible through the dedication and enthusi-
asm of a group of very talented mathematicians and computer scientists. Since 1990, the
principal members of the Magma group have included: Geoff Bailey, Mark Bofinger, Wieb
Bosma, Gavin Brown, John Brownie, Herbert Brückner, Nils Bruin, Steve Collins, Scott
Contini, Bruce Cox, Brendan Creutz, Steve Donnelly, Willem de Graaf, Andreas-Stephan
Elsenhans, Claus Fieker, Damien Fisher, Alexandra Flynn, Volker Gebhardt, Katharina
Geißler, Sergei Haller, Michael Harrison, Emanuel Herrmann, Florian Heß, David How-
den, Al Kasprzyk, David Kohel, Paulette Lieby, Graham Matthews, Scott Murray, Anne
O‘Kane, Catherine Playoust, Richard Rannard, Colva Roney-Dougal, Dan Roozemond,
Andrew Solomon, Bernd Souvignier, Ben Smith, Allan Steel, Damien Stehlé, Nicole Suther-
land, Don Taylor, Bill Unger, John Voight, Alexa van der Waall, Mark Watkins and Greg
White.

John Cannon
Sydney, December 2012



ACKNOWLEDGEMENTS

The Magma Development Team

Current Members

Geoff Bailey, BSc (Hons) (Sydney), [1995-]: Main interests include elliptic curves (espe-
cially those defined over the rationals), virtual machines and computer language design.
Has implemented part of the elliptic curve facilities especially the calculation of Mordell-
Weil groups. Other main areas of contribution include combinatorics, local fields and the
Magma system internals.

John Cannon, Ph.D. (Sydney), [1971-]: Research interests include computational meth-
ods in algebra, geometry, number theory and combinatorics; the design of mathematical
programming languages and the integration of databases with Computer Algebra systems.
Contributions include overall concept and planning, language design, specific design for
many categories, numerous algorithms (especially in group theory) and general manage-
ment.

Brendan Creutz, Ph.D. (Jacobs University Bremen) [2011-]: Primary research interests
are in arithmetic geometry. Main contributions focus on descent obstructions to the exis-
tence of rational points on curves and torsors under their Jacobians. Currently developing
a package for cyclic covers of the projective line.

Steve Donnelly, Ph.D. (Athens, Ga) [2005-]: Research interests are in arithmetic geom-
etry, particularly elliptic curves and modular forms. Major contributions include descent
methods for elliptic curves (including over function fields) and Cassels-Tate pairings, clas-
sical modular forms of half-integral weight, Hilbert modular forms and fast algorithms for
definite quaternion algebras. Currently working on Hilbert modular forms, and elliptic
curves over number fields.

Andreas-Stephan Elsenhans, Ph.D. (Göttingen) [2012-]: Main research interests are in
the areas of arithmetic and algebraic geometry, particularly cubic and K3 surfaces. Main
contributions focus on cubic surfaces from the arithmetic and algebraic points of view.
Currently working on the computation of invariants.

Michael Harrison, Ph.D. (Cambridge) [2003-]: Research interests are in number theory,
arithmetic and algebraic geometry. Implemented the p-adic methods for counting points
on hyperelliptic curves and their Jacobians over finite fields including Kedlaya’s algorithm
and the modular parameter method of Mestre. Currently working on machinery for general
surfaces and cohomology for projective varieties.

David Howden, Ph.D. (Warwick) [2012-]: Primary research interests are in computa-
tional group theory. Main contributions focus on computing automorphism groups and
isomorphism testing for soluble groups.



x ACKNOWLEDGEMENTS

Allan Steel, Ph.D. (Sydney), [1989-]: Has developed many of the fundamental data
structures and algorithms in Magma for multiprecision integers, finite fields, matrices and
modules, polynomials and Gröbner bases, aggregates, memory management, environmental
features, and the package system, and has also worked on the Magma language interpreter.
In collaboration, he has developed the code for lattice theory (with Bernd Souvignier),
invariant theory (with Gregor Kemper) and module theory (with Jon Carlson and Derek
Holt).

Nicole Sutherland, BSc (Hons) (Macquarie), [1999-]: Works in the areas of number
theory and algebraic geometry. Developed the machinery for Newton polygons and lazy
power series and contributed to the code for local fields, number fields, modules over
Dedekind domains, function fields, schemes and has worked on aspects of algebras.

Don Taylor, D.Phil. (Oxford), [2010-] Research interests are in reflection groups, finite
group theory, and geometry. Implemented algorithms for complex reflection groups and
complex root data. Contributed to the packages for Chevalley groups and groups of Lie
type. Currently developing algorithms for classical groups of isometries, Clifford algebras
and spin groups.

Bill Unger, Ph.D. (Sydney), [1998-]: Main area of interest is computational group theory,
with particular emphasis on algorithms for permutation and matrix groups. Implemented
many of the current permutation and matrix group algorithms for Magma, in particular
BSGS verification, solvable radical and chief series algorithms. Recently discovered a new
method for computing the character table of a finite group.

Mark Watkins, Ph.D. (Athens, Ga), [2003, 2004-2005, 2008-]: Works in the area of
number theory, particularly analytic methods for arithmetic objects. Implemented a range
of analytic tools for the study of elliptic curves including analytic rank, modular degree,
Heegner points and (general) point searching methods. Also deals with conics, lattices,
modular forms, and descent machinery over the rationals.



ACKNOWLEDGEMENTS xi

Former Members

Wieb Bosma, [1989-1996]: Responsible for the initial development of number theory
in Magma and the coordination of work on commutative rings. Also has continuing
involvement with the design of Magma.

Gavin Brown, [1998-2001]: Developed code in basic algebraic geometry, applications of
Gröbner bases, number field and function field kernel operations; applications of Hilbert
series to lists of varieties.

Herbert Brückner, [1998–1999]: Developed code for constructing the ordinary irre-
ducible representations of a finite soluble group and the maximal finite soluble quotient of
a finitely presented group.

Nils Bruin, [2002–2003]: Contributions include Selmer groups of elliptic curves and hy-
perelliptic Jacobians over arbitrary number fields, local solubility testing for arbitrary pro-
jective varieties and curves, Chabauty-type computations on Weil-restrictions of elliptic
curves and some algorithms for, and partial design of, the differential rings module.

Bruce Cox, [1990–1998]: A member of the team that worked on the design of the Magma
language. Responsible for implementing much of the first generation Magma machinery
for permutation and matrix groups.

Claus Fieker, [2000-2011]: Formerly a member of the KANT project. Research interests
are in constructive algebraic number theory and, especially, relative extensions and compu-
tational class field theory. Main contributions are the development of explicit algorithmic
class field theory in the case of both number and function fields and the computation of
Galois groups.

Damien Fisher, [2002-2006]: Implemented a package for p-adic rings and their extensions
and undertook a number of extensions to the Magma language.

Alexandra Flynn, [1995–1998]: Incorporated various Pari modules into Magma, and
developed much of the machinery for designs and finite planes.

Volker Gebhardt, [1999–2003]: Author of the Magma categories for infinite polycyclic
groups and for braid groups. Other contributions include machinery for general finitely
presented groups.

Katharina Geißler, [1999–2001]: Developed the code for computing Galois groups of
number fields and function fields.

Willem de Graaf, [2004-2005]: Contributed functions for computing with finite-
dimensional Lie algebras, finitely-presented Lie algebras, universal enveloping algebras
and quantum groups.

Sergei Haller, [2004, 2006-2007]: Developed code for many aspects of Lie Theory. Of
particular note was his work on the construction of twisted groups of Lie type and the
determination of conjugacy classes of elements in the classical groups (jointly with Scott
Murray (Magma)).



xii ACKNOWLEDGEMENTS

Emanuel Herrmann, [1999]: Contributed code for finding S-integral points on genus 1
curves (not elliptic curves).

Florian Heß, [1999–2001]: Developed a substantial part of the algebraic function field
module in Magma including algorithms for the computation of Riemann-Roch spaces
and class groups. His most recent contribution (2005) is a package for computing all
isomorphisms between a pair of function fields.

Alexander Kasprzyk, [2009-2010]: Developed the toric geometry and polyhedra pack-
ages (along with Gavin Brown and Jaroslaw Buczynski).

David Kohel, [1999–2002]: Contributions include a model for schemes (with G Brown);
algorithms for curves of low genus; implementation of elliptic curves, binary quadratic
forms, quaternion algebras, Brandt modules, spinor genera and genera of lattices, modular
curves, conics (with P Lieby), modules of supersingular points (with W Stein), Witt rings.

Paulette Lieby, [1999–2003]: Contributed to the development of algorithms for alge-
braic geometry, abelian groups and incidence structures. Developed datastructures for
multigraphs and implemented algorithms for planarity, triconnectivity and network flows.

Graham Matthews, [1989–1993]: Involved in the design of the Magma semantics, user
interface, and internal organisation.

Scott Murray, [2001-2002, 2004-2010]: Implemented algorithms for element operations in
split groups of Lie type, representations of split groups of Lie type, split Cartan subalgebras
of modular Lie algebras, and Lang’s Theorem in finite reductive groups. More recently
implemented solutions to conjugacy problems in the classical groups (with S. Haller and
D. Taylor).

Catherine Playoust, [1989–1996]: Wrote extensive documentation and implemented an
early help system. Contributed to system-wide consistency of design and functionality.
Also pioneered the use of Magma for teaching undergraduates.

Richard Rannard, [1997–1998]: Contributed to the code for elliptic curves over finite
fields including a first version of the SEA algorithm.

Colva M. Roney-Dougal, [2001–2003]: Completed the classification of primitive per-
mutation groups up to degree 999 (with Bill Unger). Also undertook a constructive clas-
sification of the maximal subgroups of the classical simple groups.

Dan Roozemond, [2010-2012]: Research focused on the computational aspects of Lie
theory. Ported algorithms for the Weight Multisets from LiE to Magma and developed a
number of algorithms for reductive Lie algebras, particularly over fields of small charac-
teristic.

Michael Slattery, [1987–2006]: Contributed a large part of the machinery for finite
soluble groups including subgroup lattice and automorphism group.

Ben Smith, [2000–2003]: Contributed to an implementation of the Number Field Sieve
and a package for integer linear programming.



ACKNOWLEDGEMENTS xiii

Bernd Souvignier, [1996–1997]: Contributed to the development of algorithms and code
for lattices, local fields, finite dimensional algebras and permutation groups.

Damien Stehlé, [2006, 2008-2010]: Implemented the proveably correct floating-point
LLL algorithm together with a number of fast non-rigorous variants. Also developed a fast
method for enumerating short vectors.

John Voight, [2005-2006]: Implemented algorithms for quaternion algebras over number
fields, associative orders (with Nicole Sutherland), and Shimura curves.

Alexa van der Waall, [2003]: Implemented the module for differential Galois theory.

Paul B. van Wamelen, [2002–2003]: Implemented analytic Jacobians of hyperelliptic
curves in Magma.

Greg White, [2000-2006]: Contributions include fast minimum weight determination,
linear codes over Z/mZ, additive codes, LDPC codes, quantum error-correcting codes,
and a database of best known linear codes (with Cannon and Grassl).



xiv ACKNOWLEDGEMENTS

External Contributors

The Magma system has benefited enormously from contributions made by many members
of the mathematical community. We list below those persons and research groups who have
given the project substantial assistance either by allowing us to adapt their software for
inclusion within Magma or through general advice and criticism. We wish to express our
gratitude both to the people listed here and to all those others who participated in some
aspect of the Magma development.

Algebraic Geometry

A major package for algebraic surfaces providing formal desingularization, the calculation
of adjoints, and rational parameterization was developed by Tobias Beck (RICAM, Linz).
He also implemented a package for computing with algebraic power series. This work was
done while he was a student of Josef Schicho.

A package for working with divisors on varieties has been developed by Martin Bright
(American University of Beirut), Gavin Brown (Loughborough), Mike Harrison
(Magma) and Andrew Wilson (Edinburgh). The functionality includes decomposition
into irreducible components, Riemann-Roch spaces, canonical divisors and (surface) inter-
section numbers.

Machinery for working with Hilbert series of polarised varieties and the associated
databases of K3 surfaces and Fano 3-folds has been constructed by Gavin Brown (War-
wick).

Jaroslaw Buczynski (Texas A&M), along with Gavin Brown (Loughborough) and
Alexander Kasprzyk (Imperial College), developed the toric geometry and polyhedra
packages.

Functions for computing Shioda invariants for genus 3 hyperelliptic curves, reconstructing
models for a curve from such invariants and computing geometric automorphism groups
have been contributed by Reynald Lercier (DGA, Rennes) and Christophe Ritzen-
thaler (Luminy).

Jana Pilnikova (Univerzita Komenskeho, Bratislava) (while a student of Josef Schicho
in Linz) contributed code for the parameterization of degree 8 and 9 Del Pezzo surfaces,
jointly written with Willem de Graaf (Trento).

Miles Reid (Warwick) has been heavily involved in the design and development of a
database of K3 surfaces within Magma.

Josef Schicho (RICAM, Linz) has played a major role in the design and implementation
of the algebraic surfaces package. In particular, Josef has also implemented several of the
modules for rational surface parameterization.

A function that finds the intersection multiplicities for all intersection points of two plane
curves was adapted into Magma from code provided by Chris Smyth (Edinburgh).

Andrew Wilson (Edinburgh) has contributed a package to compute the log canonical
threshold for singular points on a curve.



ACKNOWLEDGEMENTS xv

Arithmetic Geometry Over Characteristic 0 Fields

The method of Chabauty for finding points on elliptic curves was originally implemented
by Nils Bruin in 2003 while a member of the Magma group. In 2009 Nils improved it
considerably by combining it with Mordell-Weil sieving.

Two-cover-descent has been implemented by Nils Bruin (Simon Fraser) for hyperelliptic
curves. Given the Jacobian of a genus 2 curve, Nils has also provided code to compute all
(2, 2)-isogenous abelian surfaces.

The Magma facility for determining the Mordell-Weil group of an elliptic curve over the
rational field is based on the mwrank programs of John Cremona (Nottingham).

John Cremona (Nottingham) has contributed his code implementing Tate’s algorithm
for computing local minimal models for elliptic curves defined over number fields.

The widely-used database of all elliptic curves over Q having conductor up to 300,000
constructed by John Cremona (Warwick) is also included.

Tim Dokchitser (Durham) wrote code for computing root numbers of elliptic curves over
number fields.

Andreas-Stephan Elsenhans (Bayreuth) has provided routines for performing minimi-
sation and reduction for Del Pezzo surfaces of degrees 3 and 4.

Code for determining isomorphism of cubic surfaces has been contributed by Andreas-
Stephan Elsenhans (Bayreuth).

A collection of tools that calculate information about the Picard rank of a surface has been
developed by Andreas-Stephan Elsenhans (Bayreuth).

Code for calculating the invariants, covariants and contravariants of a cubic surface has
been developed by Andreas-Stephan Elsenhans (Bayreuth).

A package contributed by Tom Fisher (Cambridge) deals with curves of genus 1 given
by models of a special kind (genus one normal curves) having degree 2, 3, 4 and 5.

The implementation of 3-descent on elliptic curves was mainly written by Tom Fisher
(Cambridge). An earlier version as well as part of the current version were developed by
Michael Stoll (Bremen).

The algorithms and implementations of 6− and 12-descent are due to Tom Fisher (Cam-
bridge). The new alorithm/implementation of 8-descent is likewise by Tom Fisher; this
partly incorporates and partly replaces the earlier one by Sebastian Stamminger.

Martine Girard (Sydney) has contributed her fast code for determining the heights of a
point on an elliptic curve defined over a number field or a function field.

David Kohel (Singapore–NUS, Magma) has provided implementations of division poly-
nomials and isogeny structures for elliptic curves.

Full and partial descents on cyclic covers of the projective line were implemented by
Michael Mourao (Warwick).



xvi ACKNOWLEDGEMENTS

A package for computing canonical heights on hyperelliptic curves has been contributed
by Steffan Müller (Bayreuth).

David Roberts (Nottingham) contributed some descent machinery for elliptic curves over
function fields.

David Roberts and John Cremona (Nottingham) implemented the Cremona-van Hoeij
algorithm for parametrization of conics over rational function fields.

Jasper Scholten (Leuven) has developed much of the code for computing with elliptic
curves over function fields.

Much of the initial development of the package for computing with hyperelliptic curves is
due to Michael Stoll (Bayreuth). He also contributed many of the high level routines
involving curves over the rationals and their Jacobians, such as Chabauty’s method.

A database of 136, 924, 520 elliptic curves with conductors up to 108 has been provided by
William Stein (Harvard) and Mark Watkins (Penn State).

For elliptic curves defined over finite fields of characteristic 2, Kedlaya’s algorithm for point
counting has been implemented by Frederick Vercauteren (Leuven).

Tom Womack (Nottingham) contributed code for performing four-descent, from which
the current implementation was adapted.

Arithmetic Geometry Over Finite Fields

Various point-counting algorithms for hyperelliptic curves have been implemented by Pier-
rick Gaudry (Ecole Polytechnique, Paris). These include an implementation of the Schoof
algorithm for genus 2 curves.

An implementation of GHS Weil descent for ordinary elliptic curves in characteristic 2 has
been provided by Florian Heß (TU, Berlin).

A Magma package for calculating Igusa and other invariants for genus 2 hyperelliptic
curves was written by Everett Howe (CCR, San Diego) and is based on gp routines devel-
oped by Fernando Rodriguez–Villegas (Texas) as part of the Computational Number
Theory project funded by a TARP grant.

Reynard Lercier (Rennes) provided much advice and assistance to the Magma group
concerning the implementation of the SEA point counting algorithm for elliptic curves.

Reynard Lercier (Rennes) and Christophe Ritzenthaler provided extensions to the
machinery for genus 2 curves defined over finite fields. These include the reconstruction
of a curve from invariants which applies to every characteristic p (previously p > 5), the
geometric automorphism group and the calculation of all twists (not just quadratic).

Frederik Vercauteren (Leuven) has produced efficient implementations of the Tate, Eta
and Ate pairings in Magma.

Class fields over local fields and the multiplicative structure of local fields are computed
using new algorithms and implementations due to Sebastian Pauli (TU Berlin).

The module for Lazy Power Series is based on the ideas of Josef Schicho (Linz).



ACKNOWLEDGEMENTS xvii

Associative Algebras

Fast algorithms for computing the Jacobson radical and unit group of a matrix algebra
over a finite field were designed and implemented by Peter Brooksbank (Bucknell) and
Eamonn O’Brien (Auckland).

A package for computing with algebras equipped with an involution (*-algebras) has been
contributed by Peter Brooksbank (Bucknell) and James Wilson.

An algorithm designed and implemented by Jon Carlson and Graham Matthews
(Athens, Ga.) provides an efficient means for constructing presentations for matrix al-
gebras.

For matrix algebras defined over a finite field, Jon Carlson (Athens, Ga.) designed and
implemented algorithms for the Jacobson radical and unit group which are faster than the
Brooksbank-O’Brien algorithms for larger examples.

A substantial package for working with substructures and homomorphisms of basic alge-
bras, developed by Jon Carlson (Athens, Ga.), was released as part of V2.19. Among
other things, the package can compute the automorphism group of a basic algebra and test
pairs of basic algebras for isomorphism.

Markus Kirschmer (Aachen) has written a number of optimized routines for definite
quaternion algebras over number fields.

Markus Kirschmer has also contributed a package for quaternion algebras defined over
the function fields Fq[t], for q odd. The package includes calculation of the normaliser of
an order and an efficient algorithm for computing the two-sided ideal classes of an order
in a definite quaternion algebra (over Z or Fq[t]).

Quaternion algebras over the rational field Q were originally implemented by David Kohel
(Singapore-NUS, Magma).

The vector enumeration program of Steve Linton (St. Andrews) provides an alternative
to the use of Gröbner basis for constructing a matrix representation of a finitely presented
associative algebra.

John Voight (Vermont) produced the package for quaternion algebras over number fields.

Coding Theory

A package for constructing linear codes associated with lattice points in a convex polytope
has been contributed by Gavin Brown (Loughborough) and Al Kasprzyk (Imperial).

The PERM package developed by Jeff Leon (UIC) is used to determine automorphism
groups of codes, designs and matrices.

The development of machinery for linear codes benefited greatly from the active involve-
ment of Markus Grassl (Karlsruhe) over a long period. Of particular note is his con-
tribution to the development of improved algorithms for computing the minimum weight
and for the enumeration of codewords.



xviii ACKNOWLEDGEMENTS

Routines implementing many different constructions for linear codes over finite fields were
contributed by Markus Grassl (Karlsruhe).

Markus Grassl (Karlsruhe) played a key role in the design of Magma packages for
Additive Codes and Quantum Error-Correcting Codes. The packages were implemented
by Greg White (Magma).

The construction of a database of Best Known Linear Codes over GF(2) was a joint
project with Markus Grassl (Karlsruhe, NUS). Other contributors to this project include:
Andries Brouwer, Zhi Chen, Stephan Grosse, Aaron Gulliver, Ray Hill, David
Jaffe, Simon Litsyn, James B. Shearer and Henk van Tilborg.

The databases of Best Known Linear Codes over GF(3), GF(4), GF(5), GF(7), GF(8) and
GF(9) were constructed by Markus Grassl (IAKS, Karlsruhe).

A substantial collection of intrinsics for constructing and computing properties of Z4 codes
has been contributed by Jaume Pernas, Jaume Pujol and Merc̀ Villanueva (Univer-
sitat Autònoma de Barcelona).

Combinatorics

Michel Berkelaar (Eindhoven) gave us permission to incorporate his lp solve package
for linear programming.

The first stage of the Magma database of Hadamard and skew-Hadamard matrices was
prepared with the assistance of Stelios Georgiou (Athens), Ilias Kotsireas (Wilfrid
Laurier) and Christos Koukouvinos (Athens). In particular, they made available their
tables of Hadamard matrices of orders 32, 36, 44, 48 and 52. Further Hadamard matrices
were contributed by Dragomir Djokovic.

The Magma machinery for symmetric functions is based on the Symmetrica package
developed by Abalbert Kerber (Bayreuth) and colleagues. The Magma version was
implemented by Axel Kohnert of the Bayreuth group.

The PERM package developed by Jeff Leon (UIC) is used to determine automorphism
groups of designs and also to determine isomorphism of pairs of designs.

Automorphism groups and isomorphism of Hadamard matrices are determined by con-
verting to a similar problem for graphs and then applying Brendan McKay’s (ANU)
program nauty. The adaption was undertaken by Paulette Lieby and Geoff Bailey.

The calculation of the automorphism groups of graphs and the determination of graph
isomorphism is performed using Brendan McKay’s (ANU) program nauty (version 2.2).
Databases of graphs and machinery for generating such databases have also been made
available by Brendan. He has also collaborated in the design of the sparse graph machinery.

The code to perform the regular expression matching in the regexp intrinsic function
comes from the V8 regexp package written by Henry Spencer (Toronto).



ACKNOWLEDGEMENTS xix

Commutative Algebra

Gregor Kemper (TU München) has contributed most of the major algorithms of the
Invariant Theory module of Magma, together with many other helpful suggestions in the
area of Commutative Algebra.

Alexa van der Waall (Simon Fraser) has implemented the module for differential Galois
theory.

Galois Groups

Jürgen Klüners (Kassel) has made major contributions to the Galois theory machin-
ery for function fields and number fields. In particular, he implemented functions for
constructing the subfield lattice and automorphism group of a field and also the subfield
lattice of the normal closure of a field. In joint work with Claus Fieker (Magma), Jürgen
has recently developed a new method for determining the Galois group of a polynomial of
arbitary high degree.

Jürgen Klüners (Kassel) and Gunter Malle (Kassel) made available their extensive
tables of polynomials realising all Galois groups over Q up to degree 15.

Galois Representations

Jeremy Le Borgne (Rennes) contributed his package for working with mod p Galois
representations.

Code for constructing Artin representations of the Galois group of the absolute extension
of a number field was developed by Tim Dokchitser (Cambridge).

Jared Weinstein (UCLA) wrote the package on admissible representations of GL2(Qp).

Geometry

The Magma code for computing with incidence geometries has been developed by Dimitri
Leemans (Brussels).

Algorithms for testing whether two convex polytopes embedded in a lattice are isomorphic
or equivalent have been implemented by Al Kasprzyk (Imperial College). Of particular
note is Al’s implementation of the PALP normal form algorithm.

Global Arithmetric Fields

Jean-Francois Biasse (Calgary) implemented a quadratic sieve for computing the class
group of a quadratic field. He also developed a generalisation of the sieve for number fields
having degree greater than 2.

Florian Heß (TU Berlin) has contributed a major package for determining all isomor-
phisms between a pair of algebraic function fields.



xx ACKNOWLEDGEMENTS

David Kohel (Singapore–NUS, Magma) has contributed to the machinery for binary
quadratic forms and has implemented rings of Witt vectors.

Jürgen Klüners (Düsseldorf) and Sebastian Pauli (UNC Greensboro) have developed
algorithms for computing the Picard group of non-maximal orders and for embedding the
unit group of non-maximal orders into the unit group of the field.

The facilities for general number fields and global function fields in Magma are based on
the KANT V4 package developed by Michael Pohst and collaborators, first at Düsseldorf
and then at TU Berlin. This package provides extensive machinery for computing with
maximal orders of number fields and their ideals, Galois groups and function fields. Par-
ticularly noteworthy are functions for computing the class and unit group, and for solving
Diophantine equations.

The fast algorithm of Bosma and Stevenhagen for computing the 2-part of the ideal class
group of a quadratic field has been implemented by Mark Watkins (Bristol).

Group Theory: Finitely-Presented Groups

See also the subsection Group Theory: Soluble Groups.

A new algorithm for computing all normal subgroups of a finitely presented group up to
a specified index has been designed and implemented by David Firth and Derek Holt
(Warwick).

The function for determining whether a given finite permutation group is a homomor-
phic image of a finitely presented group has been implemented in C by Volker Gebhardt
(Magma) from a Magma language prototype developed by Derek Holt (Warwick). A
variant developed by Derek allows one to determine whether a small soluble group is a
homomorphic image.

A small package for working with subgroups of free groups has been developed by Derek
Holt (Warwick). He has also provided code for computing the automorphism group of a
free group.

Versions of Magma from V2.8 onwards employ the Advanced Coset Enumerator designed
by George Havas (UQ) and implemented by Colin Ramsay (UQ). George has also
contributed to the design of the machinery for finitely presented groups.

Derek Holt (Warwick) developed a modified version of his program, kbmag, for inclusion
within Magma. The Magma facilities for groups and monoids defined by confluent rewrite
systems, as well as automatic groups, are supported by this code.

Derek Holt (Warwick) has provided a Magma implementation of his algorithm for testing
whether two finitely presented groups are isomorphic.

An improved version of the Plesken-Fabianska algorithm for finding L2-quotients of a
finitely presented group has been developed and implemented by Sebastian Jambor
(Aachen).



ACKNOWLEDGEMENTS xxi

The low index subgroup function is implemented by code that is based on a Pascal program
written by Charlie Sims (Rutgers).

Group Theory: Finite Groups

A variation of the Product Replacement Algorithm for generating random elements of a
group due to Henrik Bäärnhielm and Charles Leedham-Green has been coded with
their assistance.

A Small Groups database containing all groups having order at most 2000, excluding
order 1024 has been made available by Hans Ulrich Besche (Aachen), Bettina Eick
(Braunschweig), and Eamonn O’Brien (Auckland). This library incorporates “directly”
the libraries of 2-groups of order dividing 256 and the 3-groups of order dividing 729,
which were prepared and distributed at various intervals by Mike Newman (ANU) and
Eamonn O’Brien and various assistants, the first release dating from 1987.

Michael Downward and Eamonn O’Brien (Auckland) provided functions to access
much of the data in the on-line Atlas of Finite Simple Groups for the sporadic groups. A
function to select “good” base points for sporadic groups was provided by Eamonn and
Robert Wilson (QMUL).

The Small Groups database was augmented in V2.14 by code that can enumerate all groups
of any square-free order. This code was developed by Bettina Eick (Braunschweig) and
Eamonn O’Brien (Auckland).

The calculation of automorphism groups (for permutation and matrix groups) and deter-
mining group isomorphism is performed by code written by Derek Holt (Warwick).

Lifting-style algorithms have been developed by Derek Holt (Warwick) for computing
structural information in groups given in terms of the Composition Tree data structure.
The operations include centralisers, conjugacy classes, normalizers, subgroup conjugacy
and maximal subgroups.

Magma includes a database of almost-simple groups defined on standard generators. The
database was originally conceived by Derek Holt (Warwick) with a major extension by
Volker Gebhardt (Magma) and sporadic additions by Bill Unger (Magma).

The routine for computing the subgroup lattice of a group (as distinct from the list of all
conjugacy classes of subgroups) is based on code written by Dimitri Leemans (Brussels).

Csaba Schneider (Lisbon) has implemented code which allows the user to write an
arbitrary element of a classical group as an SLP in terms of its standard generators.

Robert Wilson (QMUL) has made available the data contained in the on-line ATLAS
of Finite Group Representations for use in a Magma database of permutation and matrix
representations for finite simple groups. See http://brauer.maths.qmul.ac.uk/Atlas/.



xxii ACKNOWLEDGEMENTS

Group Theory: Matrix Groups

The Composition Tree (CT) package developed by Henrik Bäärnhielm (Auckland),
Derek Holt (Warwick), Charles Leedham-Green (QMUL) and Eamonn O’Brien
(Auckland), working with numerous collaborators, was first released in V2.17. This package
is designed for computing structural information for large matrix groups defined over a
finite field.

Constructive recognition of quasi-simple groups belonging to the Suzuki and two Ree
families have been implemented by Hendrik Bäärnhielm (QMUL). The package includes
code for constructing their Sylow p-subgroups and maximal subgroups.

The maximal subgroups of all classical groups having degree not exceeding 12 have been
constructed and implemented in Magma by John Bray (QMUL), Derek Holt (Warwick)
and Colva Roney-Dougal (St Andrews).

Peter Brooksbank (Bucknell) implemented a Magma version of his algorithm for per-
forming constructive black-box recognition of low-dimensional symplectic and unitary
groups. He also gave the Magma group permission to base its implementation of the
Kantor-Seress algorithm for black-box recognition of linear groups on his GAP implemen-
tation.

Code which computes the normaliser of a linear group defined over a finite field, using
a theorem of Aschbacher rather than backtrack search, has been provided by Hannah
Coutts (St Andrews).

A package, “Infinite”, has been developed by Alla Detinko (Galway), Dane Flannery
(Galway) and Eamonn O’Brien (Auckland) for computing with groups defined over
number fields, or (rational) function fields in zero or positive characteristic.

An algorithm for determining the conjugacy of any pair of matrices in GL(2, Z) was de-
veloped and implemented by D. Husert (University of Paderborn). In particular, this
allows the conjugacy of elements having infinite order to be determined.

Markus Kirschmer (RWTH, Aachen) has provided a package for computing with finite
subgroups of GL(n,Z). A Magma database of the maximal finite irreducible subgroups
of Sp2n(Q) for 1 ≤ i ≤ 11 has also been made available by Markus.

A much improved algorithm for computing the normaliser or centraliser of a finite subgroup
of GL(n, Z) has been implemented by Markus Kirschmer (Aachen). Markus has also
implemented an algorithm that tests finite subgroups for conjugacy.

Procedures to list irreducible (soluble) subgroups of GL(2, q) and GL(3, q) for arbitrary q
have been provided by Dane Flannery (Galway) and Eamonn O’Brien (Auckland).

A Monte-Carlo algorithm to determine the defining characteristic of a quasisimple group
of Lie type has been contributed by Martin Liebeck (Imperial) and Eamonn O’Brien
(Auckland).

A Monte-Carlo algorithm for non-constructive recognition of simple groups has been con-
tributed by Gunter Malle (Kaiserslautern) and Eamonn O’Brien (Auckland). This



ACKNOWLEDGEMENTS xxiii

procedure includes an algorithm of Babai et al which identifies a quasisimple group of Lie
type.

Magma incorporates a database of the maximal finite rational subgroups of GL(n,Q)
up to dimension 31. This database as constructed by Gabriele Nebe (Aachen) and
Wilhelm Plesken (Aachen). A database of quaternionic matrix groups constructed by
Gabriele is also included.

A function that determines whether a matrix group G (defined over a finite field) is the
normaliser of an extraspecial group in the case where the degree of G is an odd prime uses
the new Monte-Carlo algorithm of Alice Niemeyer (Perth) and has been implemented
in Magma by Eamonn O’Brien (Auckland).

The package for recognizing large degree classical groups over finite fields was designed
and implemented by Alice Niemeyer (Perth) and Cheryl Praeger (Perth). It has been
extended to include 2-dimensional linear groups by Eamonn O’Brien (Auckland).

Eamonn O’Brien (Auckland) has contributed a Magma implementation of algorithms
for determining the Aschbacher category of a subgroup of GL(n, q).

Eamonn O’Brien (Auckland) has provided implementations of constructive recognition
algorithms for the matrix groups (P)SL(2, q) and (P)SL(3, q).

A fast algorithm for determining subgroup conjugacy based on Aschbacher’s theorem clas-
sifying the maximal subgroups of a linear group has been designed and implemented by
Colva Roney-Dougal (St Andrews).

A package for constructing the Sylow p-subgroups of the classical groups has been imple-
mented by Mark Stather (Warwick).

Generators in the natural representation of a finite group of Lie type were constructed
and implemented by Don Taylor (Sydney) with some assistance from Leanne Rylands
(Western Sydney).

Group Theory: Soluble Groups

The soluble quotient algorithm in Magma was designed and implemented by Herbert
Brückner (Aachen).

Code producing descriptions of the groups of order p4, p5, p6, p7 for p > 3 was contributed
by Boris Girnat, Robert McKibbin, Mike Newman, Eamonn O’Brien, and Mike
Vaughan-Lee.

A new approach to the more efficient calculation of the automorphism group of a finite
soluble group has been developed and implemented David Howden (Warwick). A slight
variation of the algorithm is used to test isomorphism.

Most of the algorithms for p-groups and many of the algorithms implemented in Magma
for finite soluble groups are largely due to Charles Leedham–Green (QMUL, London).



xxiv ACKNOWLEDGEMENTS

The NQ program of Werner Nickel (Darmstadt) is used to compute nilpotent quotients
of finitely presented groups. Version 2.2 of NQ was installed in Magma V2.14 by Bill
Unger (Magma) and Michael Vaughan-Lee (Oxford).

The p-quotient program, developed by Eamonn O’Brien (Auckland) based on earlier
work by George Havas and Mike Newman (ANU), provides a key facility for studying
p-groups in Magma. Eamonn’s extensions in Magma of this package for generating p-
groups, computing automorphism groups of p-groups, and deciding isomorphism of p-
groups are also included. He has contributed software to count certain classes of p-groups
and to construct central extensions of soluble groups.

The package for classifying metacyclic p-groups has been developed by Eamonn O’Brien
(Auckland) and Mike Vaughan-Lee (Oxford).

Group Theory: Permutation Groups

Derek Holt (Warwick) has implemented the Magma version of the Bratus/Pak algorithm
for black-box recognition of the symmetric and alternating groups.

Alexander Hulpke (Colorado State) has made available his database of all transitive
permutation groups of degree up to 30. This incorporates the earlier database of Greg
Butler (Concordia) and John McKay (Concordia) containing all transitive groups of
degree up to 15.

The PERM package developed by Jeff Leon (UIC) for efficient backtrack searching in
permutation groups is used for most of the permutation group constructions that employ
backtrack search.

A table containing all primitive groups having degree less than 2,500 has been provided by
Colva Roney-Dougal (St Andrews). The groups of degree up to 1,000 were done jointly
with Bill Unger (Magma).

A table containing all primitive groups having degrees in the range 2,500 to 4,095 has
been provided by Hannah Coutts, Martyn Quick and Colva Roney-Dougal (all at
St Andrews).

Colva Roney-Dougal (St Andrews) has implemented the Beals et al algorithm for per-
forming black-box recognition on the symmetric and alternating groups.

Derek Holt (Warwick) has constructed a table of irreducible representations of quasisim-
ple groups (up to degree 100). Some representations were contributed by Allan Steel,
Volker Gebhardt and Bill Unger (all Magma).

A Magma database has been constructed from the permutation and matrix representations
contained in the on-line Atlas of Finite Simple Groups with the assistance of its author
Robert Wilson (QMUL).



ACKNOWLEDGEMENTS xxv

Homological Algebra

The packages for chain complexes and basic algebras have been developed by Jon F.
Carlson (Athens, GA).

Sergei Haller developed Magma code for computing the first cohomology group of a
finite group with coefficients in a finite (not necessarily abelian) group. This formed the
basis of a package for computing Galois cohomology of linear algebra groups.

Machinery for computing group cohomology and for producing group extensions has been
developed by Derek Holt (Warwick). There are two parts to this machinery. The first
part comprises Derek’s older C-language package for permutation groups while the second
part comprises a recent Magma language package for group cohomology.

In 2011, Derek Holt (Warwick) implemented an alternative algorithm for finding the
dimension of the cohomology group Hn(G,K), for G a finite group, and K a finite field.
In this approach the dimension is found using projective covers and dimension shifting.

The code for computing A∞-structures in group cohomology was developed by Mikael
Vejdemo Johansson (Jena).

L-Functions

Tim Dokchitser (Cambridge) has implemented efficient computation of many kinds of
L-functions, including those attached to Dirichlet characters, number fields, Artin repre-
sentations, elliptic curves and hyperelliptic curves. Vladimir Dokchitser (Cambridge)
has contributed theoretical ideas.

Anton Mellit has contributed code for computing symmetric powers and tensor products
of L-functions.

Lattices and Quadratic Forms

The construction of the sublattice of an integral lattice is performed by code developed by
Markus Kirschmer (Aachen).

A collection of lattices derived from the on-line tables of lattices prepared by Neil Sloane
(AT&T Research) and Gabriele Nebe (Aachen) is included in Magma.

The original functions for computing automorphism groups and isometries of integral lat-
tices are based on the AUTO and ISOM programs of Bernd Souvignier (Nijmegen). In
V2.16 they are replaced by much faster versions developed by Bill Unger (Magma).

Coppersmith’s method (based on LLL) for finding small roots of univariate polynomials
modulo an integer has been implemented by Damien Stehlé (ENS Lyon).

Given a quadratic form F in an arbitrary number of variables, Mark Watkins (Bristol)
has used Denis Simon’s ideas as the basis of an algorithm he has implemented in Magma
for finding a large (totally) isotropic subspace of F .



xxvi ACKNOWLEDGEMENTS

Lie Theory

The major structural machinery for Lie algebras has been implemented for Magma by
Willem de Graaf (Utrecht) and is based on his ELIAS package written in GAP. He has
also implemented a separate package for finitely presented Lie rings.

A database of soluble Lie algebras of dimensions 2, 3 and 4 over all fields has been im-
plemented by Willem de Graaf (Trento). Willem has also provided a database of all
nilpotent Lie algebras of dimension up to 6 over all base fields (except characteristic 2
when the dimension is 6).

More recent extensions to the Lie algebra package developed by Willem de Graaf
(Trento) include quantum groups, universal enveloping algebras, the semisimple subal-
gebras of a simple Lie algebra and nilpotent orbits for simple Lie algebras.

A fast algorithm for multiplying the elements of Coxeter groups based on their automatic
structure has been designed and implemented by Bob Howlett (Sydney). Bob has also
contributed Magma code for computing the growth function of a Coxeter group.

Machinery for computing the W -graphs for Lie types An, E6, E7 and E8 has been supplied
by Bob Howlett (Sydney). Subsequently, Bob supplied code for working with directed
W -graphs.

The original version of the code for root systems and permutation Coxeter groups was
modelled, in part, on the Chevie package of GAP and implemented by Don Taylor
(Sydney) with the assistance of Frank Lübeck (Aachen).

Functions that construct any finite irreducible unitary reflection group in Cn have been
implemented by Don Taylor (Sydney). Extension to the infinite case was implemented
by Scott Murray (Sydney).

The current version of Lie groups in Magma has been implemented by Scott Murray
(Sydney) and Sergei Haller with some assistance from Don Taylor (Sydney).

An extensive package for computing the combinatorial properties of highest weight rep-
resentations of a Lie algebra has been written by Dan Roozemond (Eindhoven). This
code is based in the LiE package with permission of the authors.

Code has been contributed by Robert Zeier (Technical University of Munich) for deter-
mining the irreducible simple subalgebras of the Lie algebra su(k).

Linear Algebra and Module Theory

Parts of the ATLAS (Automatically Tuned Linear Algebra Software) created by R. Clint
Whaley et al. (UTSA) are used for some fundamental matrix algorithms over finite fields
GF(p), where p is about the size of a machine integer.



ACKNOWLEDGEMENTS xxvii

Local Arithmetric Fields

Sebastian Pauli (TU Berlin) has implemented his algorithm for factoring polynomials
over local fields within Magma. This algorithm may also be used for the factorization of
ideals, the computation of completions of global fields, and for splitting extensions of local
fields into towers of unramified and totally ramified extensions.

Modular Forms

Kevin Buzzard (Imperial College) made available his code for computing modular forms
of weight one. The Magma implementation was developed using this as a starting point.

Lassina Dembélé (Warwick) wrote part of the code implementing his algorithm for
computing Hilbert modular forms.

Enrique González-Jiménez (Madrid) contributed a package to compute curves over Q,
of genus at least 2, which are images of X1(N) for a given level N .

Matthew Greenberg (Calgary) and John Voight (Vermont) developed and imple-
mented an algorithm for computing Hilbert modular forms using Shimura curves.

A new implementation (V2.19) of Brandt modules associated to definite quaternion orders,
over Z and over function fields Fq[t], has been developed by Markus Kirschmer (Aachen)
and Steve Donnelly (Magma).

David Kohel (Singapore-NUS, Magma) has provided implementations of division poly-
nomials and isogeny structures for Brandt modules and modular curves. Jointly with
William Stein (Harvard), he implemented the module of supersingular points.

Allan Lauder (Oxford) has contributed code for computing the characteristic polynomial
of a Hecke operator acting on spaces of overconvergent modular forms.

Magma routines for constructing building blocks of modular abelian varieties were con-
tributed by Jordi Quer (Cataluna).

A package for computing with modular symbols (known as HECKE) has been developed by
William Stein (Harvard). William has also provided much of the package for modular
forms.

In 2003–2004, William Stein (Harvard) developed extensive machinery for computing
with modular abelian varieties within Magma.

A package for computing with congruence subgroups of the group PSL(2,R) has been
developed by Helena Verrill (LSU).

John Voight (Vermont) produced the package for Shimura curves and arithmetic Fuchsian
groups.

Dan Yasaki (UNC) provided the package for Bianchi modular forms.



xxviii ACKNOWLEDGEMENTS

Primality and Factorisation

The factorisation of integers of the form pn ± 1, for small primes p, makes use of tables
compiled by Richard Brent that extend tables developed by the Cunningham project.
In addition Magma uses Richard’s intelligent factorization code FACTOR.

One of the main integer factorization tools available in Magma is due to Arjen
K. Lenstra (EPFL) and his collaborators: a multiple polynomial quadratic sieve de-
veloped by Arjen from his “factoring by email” MPQS during visits to Sydney in 1995 and
1998.

The primality of integers is proven using the ECPP (Elliptic Curves and Primality Prov-
ing) package written by François Morain (Ecole Polytechnique and INRIA). The ECPP

program in turn uses the BigNum package developed jointly by INRIA and Digital PRL.

Magma uses the GMP-ECM implementation of the Elliptic Curve Method (ECM) for
integer factorisation. This was developed by Pierrick Gaudry, Jim Fougeron, Lau-
rent Fousse, Alexander Kruppa, Dave Newman, and Paul Zimmermann. See
http://gforge.inria.fr/projects/ecm/.

Real and Complex Arithmetic

The complex arithmetic in Magma uses the MPC package which is being developed by
Andreas Enge, Philippe Théveny and Paul Zimmermann. (For more information
see www.multiprecision.org/mpc/).

Xavier Gourdon (INRIA, Paris) made available his C implementation of A. Schönhage’s
splitting-circle algorithm for the fast computation of the roots of a polynomial to a specified
precision. Xavier also assisted with the adaptation of his code for the Magma kernel.

Some portions of the GNU GMP multiprecision integer library (http://gmplib.org)
are used for integer multiplication.

Most real arithmetic in Magma is based on the MPFR package which is developed by
Paul Zimmermann (Nancy) and associates. (See www.mpfr.org).

Representation Theory

The algorithm of John Dixon for constructing the ordinary irreducible representation of a
finite group from its character has been implemented by Derek Holt (Warwick).

Derek Holt (Warwick) has made a number of important contributions to the design of
the module theory algorithms employed in Magma.

An algorithm of Sam Conlon for determining the degrees of the ordinary irreducible charac-
ters of a soluble group (without determining the full character table) has been implemented
by Derek Holt (Warwick).

In 2011, Derek Holt (Warwick) and John Cannon (Magma) developed a package for
computing the projective indecomposable KG-modules for a finite group G.



ACKNOWLEDGEMENTS xxix

The algorithms used in Magma for finding the lattice of submodules and the endomor-
phism ring of a KG-module (K a finite field) were developed by Charles Leedham-
Green (QMW, London) and Allan Steel (Magma).

Topology

A basic module for defining and computing with simplicial complexes was developed by
Mikael Johansson (Jena).

Nathan Dunfield (Cornell) and William Thurston (Cornell) made available their
database of the fundamental groups of the 10,986 small-volume closed hyperbolic man-
ifolds in the Hodgson-Weeks census.



xxx ACKNOWLEDGEMENTS

Handbook Contributors

Introduction

The Handbook of Magma Functions is the work of many individuals. It was based on a
similar Handbook written for Cayley in 1990. Up until 1997 the Handbook was mainly
written by Wieb Bosma, John Cannon and Allan Steel but in more recent times, as Magma
expanded into new areas of mathematics, additional people became involved. It is not
uncommon for some chapters to comprise contributions from 8 to 10 people. Because of
the complexity and dynamic nature of chapter authorship, rather than ascribe chapter
authors, in the table below we attempt to list those people who have made significant
contributions to chapters.

We distinguish between:

• Principal Author, i.e. one who primarily conceived the core element(s) of a chapter
and who was also responsible for the writing of a large part of its current content, and

◦ Contributing Author, i.e. one who has written a significant amount of content but
who has not had primary responsibility for chapter design and overall content.

It should be noted that attribution of a person as an author of a chapter carries no im-
plications about the authorship of the associated computer code: for some chapters it will
be true that the author(s) listed for a chapter are also the authors of the corresponding
code, but in many chapters this is either not the case or only partly true. Some informa-
tion about code authorship may be found in the sections Magma Development Team and
External Contributors.

The attributions given below reflect the authorship of the material comprising the V2.19
edition. Since many of the authors have since moved on to other careers, we have not
been able to check that all of the attributions below are completely correct. We would
appreciate hearing of any omissions.

In the chapter listing that follows, for each chapter the start of the list of principal authors
(if any) is denoted by • while the start of the list of contributing authors is denoted by ◦.
People who have made minor contributions to one or more chapters are listed in a general
acknowledgement following the chapter listing.



ACKNOWLEDGEMENTS xxxi

The Chapters

1 Statements and Expressions • W.Bosma, A. Steel
2 Functions, Procedures and Packages • W.Bosma, A. Steel
3 Input and Output • W.Bosma, A. Steel
4 Environment and Options • A. Steel ◦ W.Bosma
5 Magma Semantics • G.Matthews
6 The Magma Profiler • D.Fisher
7 Debugging Magma Code • D.Fisher
8 Introduction to Aggregates • W.Bosma
9 Sets • W.Bosma, J. Cannon ◦ A. Steel

10 Sequences • W.Bosma, J. Cannon
11 Tuples and Cartesian Products • W.Bosma
12 Lists • W.Bosma
13 Associative Arrays • A. Steel
14 Coproducts • A. Steel
15 Records • W.Bosma
16 Mappings • W.Bosma
17 Introduction to Rings • W.Bosma
18 Ring of Integers • W.Bosma, A. Steel ◦ S.Contini, B. Smith
19 Integer Residue Class Rings • W.Bosma ◦ S.Donnelly, W. Stein
20 Rational Field • W.Bosma
21 Finite Fields • W.Bosma, A. Steel
22 Nearfields • D.Taylor
23 Univariate Polynomial Rings • A. Steel
24 Multivariate Polynomial Rings • A. Steel
25 Real and Complex Fields • W.Bosma
26 Matrices • A. Steel
27 Sparse Matrices • A. Steel
28 Vector Spaces • J.Cannon, A. Steel
29 Polar Spaces • D.Taylor
30 Lattices • A. Steel, D. Stehlé
31 Lattices With Group Action • B. Souvignier ◦ M.Kirschmer
32 Quadratic Forms • S.Donnelly
33 Binary Quadratic Forms • D.Kohel
34 Number Fields • C.Fieker ◦ W.Bosma, N. Sutherland
35 Quadratic Fields • W.Bosma
36 Cyclotomic Fields • W.Bosma, C. Fieker
37 Orders and Algebraic Fields • C.Fieker ◦ W.Bosma, N. Sutherland
38 Galois Theory of Number Fields • C.Fieker ◦ J.Klüners, K.Geißler



xxxii ACKNOWLEDGEMENTS

39 Class Field Theory • C.Fieker
40 Algebraically Closed Fields • A. Steel
41 Rational Function Fields • A. Steel ◦ A. van derWaall
42 Algebraic Function Fields • F.Heß ◦ C.Fieker, N. Sutherland
43 Class Field Theory For Global Function Fields • C.Fieker
44 Artin Representations • T.Dokchitser
45 Valuation Rings • W.Bosma
46 Newton Polygons • G.Brown, N. Sutherland
47 p-adic Rings and their Extensions • D.Fisher, B. Souvignier ◦ N. Sutherland
48 Galois Rings • A. Steel
49 Power, Laurent and Puiseux Series • A. Steel
50 Lazy Power Series Rings • N. Sutherland
51 General Local Fields • N. Sutherland
52 Algebraic Power Series Rings • T.Beck, M.Harrison
53 Introduction to Modules • J.Cannon
54 Free Modules • J.Cannon, A. Steel
55 Modules over Dedekind Domains • C.Fieker, N. Sutherland
56 Chain Complexes • J.Carlson
57 Groups • J.Cannon ◦ W.Unger
58 Permutation Groups • J.Cannon ◦ B.Cox, W.Unger
59 Matrix Groups over General Rings • J.Cannon ◦ B.Cox, E.A.O’Brien, A. Steel
60 Matrix Groups over Finite Fields • E.A.O’Brien
61 Matrix Groups over Infinite Fields • E.A.O’Brien
62 Matrix Groups over Q and Z • M.Kirschmer, B. Souvignier
63 Finite Soluble Groups • J.Cannon, M. Slattery ◦ E.A.O’Brien
64 Black-box Groups • W.Unger
65 Almost Simple Groups ◦ H.Bäärnhielm, J.Cannon, D.Holt, M. Stather
66 Databases of Groups • W.Unger ◦ V.Gebhardt
67 Automorphism Groups • D.Holt ◦ W.Unger
68 Cohomology and Extensions • D.Holt ◦ S.Haller
69 Abelian Groups • J.Cannon ◦ P.Lieby
70 Finitely Presented Groups • J.Cannon ◦ V.Gebhardt, E.A.O’Brien, M.Vaughan-

Lee
71 Finitely Presented Groups: Advanced • H.Brückner, V.Gebhardt ◦ E.A.O’Brien
72 Polycyclic Groups • V.Gebhardt
73 Braid Groups • V.Gebhardt
74 Groups Defined by Rewrite Systems • D.Holt ◦ G.Matthews
75 Automatic Groups • D.Holt ◦ G.Matthews
76 Groups of Straight-line Programs • J.Cannon



ACKNOWLEDGEMENTS xxxiii

77 Finitely Presented Semigroups • J.Cannon
78 Monoids Given by Rewrite Systems • D.Holt ◦ G.Matthews
79 Algebras • J.Cannon, B. Souvignier
80 Structure Constant Algebras • J.Cannon, B. Souvignier
81 Associative Algebras ◦ J.Cannon, S.Donnelly, N. Sutherland, B. Souvignier, J.Voight
82 Finitely Presented Algebras • A. Steel, S. Linton
83 Matrix Algebras • J.Cannon, A. Steel ◦ J.Carlson
84 Group Algebras • J.Cannon, B. Souvignier
85 Basic Algebras • J.Carlson ◦ M.Vejdemo-Johansson
86 Quaternion Algebras • D.Kohel, J.Voight ◦ S.Donnelly, M.Kirschmer
87 Algebras With Involution • P.Brooksbank, J.Wilson
88 Clifford Algebras • D.Taylor
89 Modules over An Algebra • J.Cannon, A. Steel
90 K[G]-Modules and Group Representations • J.Cannon, A. Steel
91 Characters of Finite Groups • W.Bosma, J. Cannon
92 Representations of Symmetric Groups • A.Kohnert
93 Mod P Galois Representations • J. LeBorgne
94 Introduction to Lie Theory • S.Murray ◦ D.Taylor
95 Coxeter Systems • S.Murray ◦ D.Taylor
96 Root Systems • S.Murray ◦ S.Haller, D.Taylor
97 Root Data • S.Haller, S.Murray ◦ D.Taylor
98 Coxeter Groups • S.Murray ◦ D.Taylor
99 Reflection Groups • S.Murray ◦ D.Taylor

100 Lie Algebras • W.de Graaf, D.Roozemond ◦ S.Haller, S.Murray
101 Kac-moody Lie Algebras • D.Roozemond
102 Quantum Groups • W.de Graaf
103 Groups of Lie Type • S.Murray ◦ S.Haller, D.Taylor
104 Representations of Lie Groups and Algebras • D.Roozemond ◦ S.Murray
105 Gröbner Bases • A. Steel ◦ M.Harrison
106 Polynomial Ring Ideal Operations • A. Steel ◦ M.Harrison
107 Local Polynomial Rings • A. Steel
108 Affine Algebras • A. Steel
109 Modules over Multivariate Rings • A. Steel ◦ M.Harrison
110 Invariant Theory • A. Steel
111 Differential Rings • A. van derWaall
112 Schemes • G.Brown ◦ J.Cannon, M.Harrison, N. Sutherland
113 Coherent Sheaves • M.Harrison
114 Algebraic Curves • G.Brown ◦ N.Bruin, J. Cannon, M.Harrison, A.Wilson
115 Resolution Graphs and Splice Diagrams • G.Brown



xxxiv ACKNOWLEDGEMENTS

116 Algebraic Surfaces • T.Beck, M.Harrison
117 Hilbert Series of Polarised Varieties • G.Brown
118 Toric Varieties • G.Brown, A.Kasprzyk
119 Rational Curves and Conics • D.Kohel, P. Lieby ◦ S.Donnelly, M.Watkins
120 Elliptic Curves • G.Bailey ◦ S.Donnelly, D.Kohel
121 Elliptic Curves over Finite Fields • M.Harrison ◦ P.Lieby
122 Elliptic Curves over Q and Number Fields ◦ G.Bailey, N.Bruin, B.Creutz,
S.Donnelly, D.Kohel, M.Watkins
123 Elliptic Curves over Function Fields • J. Scholten ◦ S.Donnelly
124 Models of Genus One Curves • T.Fisher, S.Donnelly
125 Hyperelliptic Curves ◦ N.Bruin, B.Creutz, S.Donnelly, M.Harrison, D.Kohel,
P. vanWamelen
126 Hypergeometric Motives • M.Watkins
127 L-functions • T.Dokchitser ◦ M.Watkins
128 Modular Curves • D.Kohel ◦ M.Harrison, E.González-Jiménez
129 Small Modular Curves • M.Harrison
130 Congruence Subgroups of PSL2(R) • H.Verrill
131 Arithmetic Fuchsian Groups and Shimura Curves • J.Voight
132 Modular Forms • W.Stein ◦ K.Buzzard, S.Donnelly
133 Modular Symbols • W.Stein ◦ K.Buzzard
134 Brandt Modules • D.Kohel
135 Supersingular Divisors on Modular Curves • D.Kohel, W. Stein
136 Modular Abelian Varieties • W.Stein ◦ J.Quer
137 Hilbert Modular Forms • S.Donnelly
138 Modular Forms over Imaginary Quadratic Fields • D.Yasaki ◦ S.Donnelly
139 Admissible Representations of GL2(Qp) • J.Weinstein ◦ S.Donnelly
140 Simplicial Homology • M.Vejdemo-Johansson
141 Finite Planes • J.Cannon
142 Incidence Geometry • D.Leemans
143 Convex Polytopes and Polyhedra • G.Brown, A.Kasprzyk
144 Enumerative Combinatorics • G.Bailey ◦ G.White
145 Partitions, Words and Young Tableaux • G.White
146 Symmetric Functions • A.Kohnert
147 Incidence Structures and Designs • J.Cannon
148 Hadamard Matrices • G.Bailey
149 Graphs • J.Cannon, P. Lieby ◦ G.Bailey
150 Multigraphs • J.Cannon, P. Lieby
151 Networks • P.Lieby
152 Linear Codes over Finite Fields • J.Cannon, A. Steel ◦ G.White



ACKNOWLEDGEMENTS xxxv

153 Algebraic-geometric Codes • J.Cannon, G.White
154 Low Density Parity Check Codes • G.White
155 Linear Codes over Finite Rings • A. Steel ◦ G.White, M.Villanueva
156 Additive Codes • G.White
157 Quantum Codes • G.White
158 Pseudo-random Bit Sequences • S.Contini
159 Linear Programming • B. Smith

General Acknowledgements

In addition to the contributors listed above, we gratefully acknowledge the contributions
to the Handbook made by the following people:

J. Brownie (group theory)
K. Geißler (Galois groups)
A. Flynn (algebras and designs)
E. Herrmann (elliptic curves)
E. Howe (Igusa invariants)
B. McKay (graph theory)
S. Pauli (local fields)
C. Playoust (data structures, rings)
C. Roney-Dougal (groups)
T. Womack (elliptic curves)





USING THE HANDBOOK

Most sections within a chapter of this Handbook consist of a brief introduction and expla-
nation of the notation, followed by a list of Magma functions, procedures and operators.

Each entry in this list consists of an expression in a box, and an indented explanation of
use and effects. The typewriter typefont is used for commands that can be used literally;
however, one should be aware that most functions operate on variables that must have
values assigned to them beforehand, and return values that should be assigned to variables
(or the first value should be used in an expression). Thus the entry:

Xgcd(a, b)

The extended gcd; returns integers d, l and m such that d is the greatest common divisor
of the integers a and b, and d = l ∗ a + m ∗ b.
indicates that this function could be called in Magma as follows:

g, a, b := Xgcd(23, 28);

If the function has optional named parameters, a line like the following will be found in
the description:

Proof BoolElt Default : true

The first word will be the name of the parameter, the second word will be the type
which its value should have, and the rest of the line will indicate the default for the
parameter, if there is one. Parameters for a function call are specified by appending a
colon to the last argument, followed by a comma-separated list of assignments (using :=)
for each parameter. For example, the function call IsPrime(n: Proof := false) calls
the function IsPrime with argument n but also with the value for the parameter Proof
set to false.

Whenever the symbol # precedes a function name in a box, it indicates that the par-
ticular function is not yet available but should be in the future.

An index is provided at the end of each volume which contains all the intrinsics in the
Handbook.

Running the Examples

All examples presented in this Handbook are available to Magma users. If your Magma
environment has been set up correctly, you can load the source for an example by using
the name of the example as printed in boldface at the top (the name has the form HmEn,
where m is the Chapter number and n is the Example number). So, to run the first
example in the Chapter 28, type:

load "H28E1";



xxxviii USING THE HANDBOOK



VOLUME 1: OVERVIEW

I THE MAGMA LANGUAGE . . . . . . . . . . . . 1
1 STATEMENTS AND EXPRESSIONS 3
2 FUNCTIONS, PROCEDURES AND PACKAGES 33
3 INPUT AND OUTPUT 63
4 ENVIRONMENT AND OPTIONS 93
5 MAGMA SEMANTICS 115
6 THE MAGMA PROFILER 135
7 DEBUGGING MAGMA CODE 145

II SETS, SEQUENCES, AND MAPPINGS . . . . . . 151
8 INTRODUCTION TO AGGREGATES 153
9 SETS 163
10 SEQUENCES 191
11 TUPLES AND CARTESIAN PRODUCTS 213
12 LISTS 221
13 ASSOCIATIVE ARRAYS 227
14 COPRODUCTS 233
15 RECORDS 239
16 MAPPINGS 245



VOLUME 2: OVERVIEW

III BASIC RINGS . . . . . . . . . . . . . . . . . 255
17 INTRODUCTION TO RINGS 257
18 RING OF INTEGERS 277
19 INTEGER RESIDUE CLASS RINGS 329
20 RATIONAL FIELD 349
21 FINITE FIELDS 361
22 NEARFIELDS 389
23 UNIVARIATE POLYNOMIAL RINGS 407
24 MULTIVARIATE POLYNOMIAL RINGS 441
25 REAL AND COMPLEX FIELDS 469

IV MATRICES AND LINEAR ALGEBRA . . . . . . 515
26 MATRICES 517
27 SPARSE MATRICES 557
28 VECTOR SPACES 583
29 POLAR SPACES 607



VOLUME 3: OVERVIEW

V LATTICES AND QUADRATIC FORMS . . . . . 637
30 LATTICES 639
31 LATTICES WITH GROUP ACTION 717
32 QUADRATIC FORMS 743
33 BINARY QUADRATIC FORMS 751

VI GLOBAL ARITHMETIC FIELDS . . . . . . . . 765
34 NUMBER FIELDS 767
35 QUADRATIC FIELDS 833
36 CYCLOTOMIC FIELDS 847
37 ORDERS AND ALGEBRAIC FIELDS 855
38 GALOIS THEORY OF NUMBER FIELDS 961
39 CLASS FIELD THEORY 997
40 ALGEBRAICALLY CLOSED FIELDS 1035
41 RATIONAL FUNCTION FIELDS 1057
42 ALGEBRAIC FUNCTION FIELDS 1079
43 CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS 1189
44 ARTIN REPRESENTATIONS 1215



VOLUME 4: OVERVIEW

VII LOCAL ARITHMETIC FIELDS . . . . . . . . 1225
45 VALUATION RINGS 1227
46 NEWTON POLYGONS 1233
47 p-ADIC RINGS AND THEIR EXTENSIONS 1261
48 GALOIS RINGS 1311
49 POWER, LAURENT AND PUISEUX SERIES 1319
50 LAZY POWER SERIES RINGS 1347
51 GENERAL LOCAL FIELDS 1363
52 ALGEBRAIC POWER SERIES RINGS 1375

VIII MODULES . . . . . . . . . . . . . . . . . 1389
53 INTRODUCTION TO MODULES 1391
54 FREE MODULES 1395
55 MODULES OVER DEDEKIND DOMAINS 1419
56 CHAIN COMPLEXES 1441



VOLUME 5: OVERVIEW

IX FINITE GROUPS . . . . . . . . . . . . . . 1457
57 GROUPS 1459
58 PERMUTATION GROUPS 1515
59 MATRIX GROUPS OVER GENERAL RINGS 1637
60 MATRIX GROUPS OVER FINITE FIELDS 1709
61 MATRIX GROUPS OVER INFINITE FIELDS 1759
62 MATRIX GROUPS OVER Q AND Z 1779
63 FINITE SOLUBLE GROUPS 1789
64 BLACK-BOX GROUPS 1869
65 ALMOST SIMPLE GROUPS 1875
66 DATABASES OF GROUPS 1935
67 AUTOMORPHISM GROUPS 1993
68 COHOMOLOGY AND EXTENSIONS 2011



VOLUME 6: OVERVIEW

X FINITELY-PRESENTED GROUPS . . . . . . . 2039
69 ABELIAN GROUPS 2041
70 FINITELY PRESENTED GROUPS 2077
71 FINITELY PRESENTED GROUPS: ADVANCED 2203
72 POLYCYCLIC GROUPS 2249
73 BRAID GROUPS 2289
74 GROUPS DEFINED BY REWRITE SYSTEMS 2339
75 AUTOMATIC GROUPS 2357
76 GROUPS OF STRAIGHT-LINE PROGRAMS 2377
77 FINITELY PRESENTED SEMIGROUPS 2387
78 MONOIDS GIVEN BY REWRITE SYSTEMS 2399



VOLUME 7: OVERVIEW

XI ALGEBRAS . . . . . . . . . . . . . . . . . 2417
79 ALGEBRAS 2419
80 STRUCTURE CONSTANT ALGEBRAS 2431
81 ASSOCIATIVE ALGEBRAS 2441
82 FINITELY PRESENTED ALGEBRAS 2467
83 MATRIX ALGEBRAS 2505
84 GROUP ALGEBRAS 2545
85 BASIC ALGEBRAS 2559
86 QUATERNION ALGEBRAS 2619
87 ALGEBRAS WITH INVOLUTION 2663
88 CLIFFORD ALGEBRAS 2679

XII REPRESENTATION THEORY . . . . . . . . . 2683
89 MODULES OVER AN ALGEBRA 2685
90 K[G]-MODULES AND GROUP REPRESENTATIONS 2721
91 CHARACTERS OF FINITE GROUPS 2757
92 REPRESENTATIONS OF SYMMETRIC GROUPS 2779
93 MOD P GALOIS REPRESENTATIONS 2787



VOLUME 8: OVERVIEW

XIII LIE THEORY . . . . . . . . . . . . . . . . 2795
94 INTRODUCTION TO LIE THEORY 2797
95 COXETER SYSTEMS 2803
96 ROOT SYSTEMS 2827
97 ROOT DATA 2849
98 COXETER GROUPS 2901
99 REFLECTION GROUPS 2941
100 LIE ALGEBRAS 2973
101 KAC-MOODY LIE ALGEBRAS 3061
102 QUANTUM GROUPS 3071
103 GROUPS OF LIE TYPE 3097
104 REPRESENTATIONS OF LIE GROUPS AND ALGEBRAS 3137



VOLUME 9: OVERVIEW

XIV COMMUTATIVE ALGEBRA . . . . . . . . . 3177

105 GRÖBNER BASES 3179
106 POLYNOMIAL RING IDEAL OPERATIONS 3223
107 LOCAL POLYNOMIAL RINGS 3271
108 AFFINE ALGEBRAS 3285
109 MODULES OVER MULTIVARIATE RINGS 3301
110 INVARIANT THEORY 3353
111 DIFFERENTIAL RINGS 3399

XV ALGEBRAIC GEOMETRY . . . . . . . . . . 3467
112 SCHEMES 3469
113 COHERENT SHEAVES 3601
114 ALGEBRAIC CURVES 3633
115 RESOLUTION GRAPHS AND SPLICE DIAGRAMS 3741
116 ALGEBRAIC SURFACES 3757
117 HILBERT SERIES OF POLARISED VARIETIES 3825
118 TORIC VARIETIES 3859



VOLUME 10: OVERVIEW

XVI ARITHMETIC GEOMETRY . . . . . . . . . . 3909
119 RATIONAL CURVES AND CONICS 3911
120 ELLIPTIC CURVES 3935
121 ELLIPTIC CURVES OVER FINITE FIELDS 3977
122 ELLIPTIC CURVES OVER Q AND NUMBER FIELDS 4001
123 ELLIPTIC CURVES OVER FUNCTION FIELDS 4083
124 MODELS OF GENUS ONE CURVES 4101
125 HYPERELLIPTIC CURVES 4119
126 HYPERGEOMETRIC MOTIVES 4223
127 L-FUNCTIONS 4243



VOLUME 11: OVERVIEW

XVII MODULAR ARITHMETIC GEOMETRY . . . . 4289
128 MODULAR CURVES 4291
129 SMALL MODULAR CURVES 4311
130 CONGRUENCE SUBGROUPS OF PSL2(R) 4335
131 ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES 4361
132 MODULAR FORMS 4385
133 MODULAR SYMBOLS 4427
134 BRANDT MODULES 4483
135 SUPERSINGULAR DIVISORS ON MODULAR CURVES 4497
136 MODULAR ABELIAN VARIETIES 4513
137 HILBERT MODULAR FORMS 4651
138 MODULAR FORMS OVER IMAGINARY QUADRATIC FIELDS 4669
139 ADMISSIBLE REPRESENTATIONS OF GL2(Qp) 4677



VOLUME 12: OVERVIEW

XVIII TOPOLOGY . . . . . . . . . . . . . . . . . 4689
140 SIMPLICIAL HOMOLOGY 4691

XIX GEOMETRY . . . . . . . . . . . . . . . . . 4711
141 FINITE PLANES 4713
142 INCIDENCE GEOMETRY 4749
143 CONVEX POLYTOPES AND POLYHEDRA 4771

XX COMBINATORICS . . . . . . . . . . . . . . 4803
144 ENUMERATIVE COMBINATORICS 4805
145 PARTITIONS, WORDS AND YOUNG TABLEAUX 4811
146 SYMMETRIC FUNCTIONS 4845
147 INCIDENCE STRUCTURES AND DESIGNS 4871
148 HADAMARD MATRICES 4907
149 GRAPHS 4917
150 MULTIGRAPHS 4999
151 NETWORKS 5047



VOLUME 13: OVERVIEW

XXI CODING THEORY . . . . . . . . . . . . . . 5067
152 LINEAR CODES OVER FINITE FIELDS 5069
153 ALGEBRAIC-GEOMETRIC CODES 5145
154 LOW DENSITY PARITY CHECK CODES 5155
155 LINEAR CODES OVER FINITE RINGS 5167
156 ADDITIVE CODES 5207
157 QUANTUM CODES 5233

XXII CRYPTOGRAPHY . . . . . . . . . . . . . . 5271
158 PSEUDO-RANDOM BIT SEQUENCES 5273

XXIII OPTIMIZATION . . . . . . . . . . . . . . . 5281
159 LINEAR PROGRAMMING 5283



lii VOLUME 1: CONTENTS

VOLUME 1: CONTENTS

I THE MAGMA LANGUAGE 1

1 STATEMENTS AND EXPRESSIONS . . . . . . . . . . . . . 3

1.1 Introduction 5

1.2 Starting, Interrupting and Terminating 5

1.3 Identifiers 5

1.4 Assignment 6

1.4.1 Simple Assignment 6

1.4.2 Indexed Assignment 7

1.4.3 Generator Assignment 8

1.4.4 Mutation Assignment 9

1.4.5 Deletion of Values 10

1.5 Boolean values 10

1.5.1 Creation of Booleans 11

1.5.2 Boolean Operators 11

1.5.3 Equality Operators 11

1.5.4 Iteration 12

1.6 Coercion 13

1.7 The where . . . is Construction 14

1.8 Conditional Statements and Expressions 16

1.8.1 The Simple Conditional Statement 16

1.8.2 The Simple Conditional Expression 17

1.8.3 The Case Statement 18

1.8.4 The Case Expression 18

1.9 Error Handling Statements 19

1.9.1 The Error Objects 19

1.9.2 Error Checking and Assertions 19

1.9.3 Catching Errors 20

1.10 Iterative Statements 21

1.10.1 Definite Iteration 21

1.10.2 Indefinite Iteration 22

1.10.3 Early Exit from Iterative Statements 23

1.11 Runtime Evaluation: the eval Expression 24

1.12 Comments and Continuation 26

1.13 Timing 26

1.14 Types, Category Names, and Structures 28

1.15 Random Object Generation 30

1.16 Miscellaneous 32

1.17 Bibliography 32



VOLUME 1: CONTENTS liii

2 FUNCTIONS, PROCEDURES AND PACKAGES . . . . . . . 33

2.1 Introduction 35
2.2 Functions and Procedures 35
2.2.1 Functions 35
2.2.2 Procedures 39
2.2.3 The forward Declaration 41
2.3 Packages 42
2.3.1 Introduction 42
2.3.2 Intrinsics 43
2.3.3 Resolving Calls to Intrinsics 45
2.3.4 Attaching and Detaching Package Files 46
2.3.5 Related Files 47
2.3.6 Importing Constants 47
2.3.7 Argument Checking 48
2.3.8 Package Specification Files 49
2.3.9 User Startup Specification Files 50
2.4 Attributes 51
2.4.1 Predefined System Attributes 51
2.4.2 User-defined Attributes 52
2.4.3 Accessing Attributes 52
2.5 User-defined Verbose Flags 53
2.5.1 Examples 53
2.6 User-Defined Types 56
2.6.1 Declaring User-Defined Types 56
2.6.2 Creating an Object 57
2.6.3 Special Intrinsics Provided by the User 57
2.6.4 Examples 58

3 INPUT AND OUTPUT . . . . . . . . . . . . . . . . . . . 63

3.1 Introduction 65
3.2 Character Strings 65
3.2.1 Representation of Strings 65
3.2.2 Creation of Strings 66
3.2.3 Integer-Valued Functions 67
3.2.4 Character Conversion 67
3.2.5 Boolean Functions 68
3.2.6 Parsing Strings 71
3.3 Printing 72
3.3.1 The print-Statement 72
3.3.2 The printf and fprintf Statements 73
3.3.3 Verbose Printing (vprint, vprintf) 75
3.3.4 Automatic Printing 76
3.3.5 Indentation 78
3.3.6 Printing to a File 78
3.3.7 Printing to a String 79
3.3.8 Redirecting Output 80
3.4 External Files 80
3.4.1 Opening Files 80
3.4.2 Operations on File Objects 81
3.4.3 Reading a Complete File 82
3.5 Pipes 83
3.5.1 Pipe Creation 83
3.5.2 Operations on Pipes 84
3.6 Sockets 85
3.6.1 Socket Creation 85



liv VOLUME 1: CONTENTS

3.6.2 Socket Properties 86
3.6.3 Socket Predicates 86
3.6.4 Socket I/O 87
3.7 Interactive Input 88
3.8 Loading a Program File 89
3.9 Saving and Restoring Workspaces 89
3.10 Logging a Session 90
3.11 Memory Usage 90
3.12 System Calls 90
3.13 Creating Names 91

4 ENVIRONMENT AND OPTIONS . . . . . . . . . . . . . . 93

4.1 Introduction 95
4.2 Command Line Options 95
4.3 Environment Variables 97
4.4 Set and Get 98
4.5 Verbose Levels 102
4.6 Other Information Procedures 103
4.7 History 104
4.8 The Magma Line Editor 106
4.8.1 Key Bindings (Emacs and VI mode) 106
4.8.2 Key Bindings in Emacs mode only 108
4.8.3 Key Bindings in VI mode only 109
4.9 The Magma Help System 112
4.9.1 Internal Help Browser 113

5 MAGMA SEMANTICS . . . . . . . . . . . . . . . . . . 115

5.1 Introduction 117
5.2 Terminology 117
5.3 Assignment 118
5.4 Uninitialized Identifiers 118
5.5 Evaluation in Magma 119
5.5.1 Call by Value Evaluation 119
5.5.2 Magma’s Evaluation Process 120
5.5.3 Function Expressions 121
5.5.4 Function Values Assigned to Identifiers 122
5.5.5 Recursion and Mutual Recursion 122
5.5.6 Function Application 123
5.5.7 The Initial Context 124
5.6 Scope 124
5.6.1 Local Declarations 125
5.6.2 The ‘first use’ Rule 125
5.6.3 Identifier Classes 126
5.6.4 The Evaluation Process Revisited 126
5.6.5 The ‘single use’ Rule 127
5.7 Procedure Expressions 127
5.8 Reference Arguments 129
5.9 Dynamic Typing 130
5.10 Traps for Young Players 131
5.10.1 Trap 1 131
5.10.2 Trap 2 131
5.11 Appendix A: Precedence 133
5.12 Appendix B: Reserved Words 134



VOLUME 1: CONTENTS lv

6 THE MAGMA PROFILER . . . . . . . . . . . . . . . . 135

6.1 Introduction 137
6.2 Profiler Basics 137
6.3 Exploring the Call Graph 139
6.3.1 Internal Reports 139
6.3.2 HTML Reports 141
6.4 Recursion and the Profiler 141

7 DEBUGGING MAGMA CODE . . . . . . . . . . . . . . 145

7.1 Introduction 147
7.2 Using the Debugger 147



lvi VOLUME 1: CONTENTS

II SETS, SEQUENCES, AND MAPPINGS 151

8 INTRODUCTION TO AGGREGATES . . . . . . . . . . . 153

8.1 Introduction 155
8.2 Restrictions on Sets and Sequences 155
8.2.1 Universe of a Set or Sequence 156
8.2.2 Modifying the Universe of a Set or Sequence 157
8.2.3 Parents of Sets and Sequences 159
8.3 Nested Aggregates 160
8.3.1 Multi-indexing 160

9 SETS . . . . . . . . . . . . . . . . . . . . . . . . . . 163

9.1 Introduction 165
9.1.1 Enumerated Sets 165
9.1.2 Formal Sets 165
9.1.3 Indexed Sets 165
9.1.4 Multisets 165
9.1.5 Compatibility 166
9.1.6 Notation 166
9.2 Creating Sets 166
9.2.1 The Formal Set Constructor 166
9.2.2 The Enumerated Set Constructor 167
9.2.3 The Indexed Set Constructor 169
9.2.4 The Multiset Constructor 170
9.2.5 The Arithmetic Progression Constructors 172
9.3 Power Sets 173
9.3.1 The Cartesian Product Constructors 175
9.4 Sets from Structures 175
9.5 Accessing and Modifying Sets 176
9.5.1 Accessing Sets and their Associated Structures 176
9.5.2 Selecting Elements of Sets 177
9.5.3 Modifying Sets 180
9.6 Operations on Sets 183
9.6.1 Boolean Functions and Operators 183
9.6.2 Binary Set Operators 184
9.6.3 Other Set Operations 185
9.7 Quantifiers 186
9.8 Reduction and Iteration over Sets 189

10 SEQUENCES . . . . . . . . . . . . . . . . . . . . . . 191

10.1 Introduction 193
10.1.1 Enumerated Sequences 193
10.1.2 Formal Sequences 193
10.1.3 Compatibility 194
10.2 Creating Sequences 194
10.2.1 The Formal Sequence Constructor 194
10.2.2 The Enumerated Sequence Constructor 195
10.2.3 The Arithmetic Progression Constructors 196
10.2.4 Literal Sequences 197
10.3 Power Sequences 197
10.4 Operators on Sequences 198
10.4.1 Access Functions 198
10.4.2 Selection Operators on Enumerated Sequences 199



VOLUME 1: CONTENTS lvii

10.4.3 Modifying Enumerated Sequences 200
10.4.4 Creating New Enumerated Sequences from Existing Ones 205

10.5 Predicates on Sequences 208
10.5.1 Membership Testing 208
10.5.2 Testing Order Relations 209

10.6 Recursion, Reduction, and Iteration 210
10.6.1 Recursion 210
10.6.2 Reduction 211

10.7 Iteration 211

10.8 Bibliography 212

11 TUPLES AND CARTESIAN PRODUCTS . . . . . . . . . . 213

11.1 Introduction 215

11.2 Cartesian Product Constructor and Functions 215

11.3 Creating and Modifying Tuples 216

11.4 Tuple Access Functions 218

11.5 Equality 218

11.6 Other operations 219

12 LISTS . . . . . . . . . . . . . . . . . . . . . . . . . 221

12.1 Introduction 223

12.2 Construction of Lists 223

12.3 Creation of New Lists 223

12.4 Access Functions 224

12.5 Assignment Operator 225

13 ASSOCIATIVE ARRAYS . . . . . . . . . . . . . . . . . 227

13.1 Introduction 229

13.2 Operations 229

14 COPRODUCTS . . . . . . . . . . . . . . . . . . . . . 233

14.1 Introduction 235

14.2 Creation Functions 235
14.2.1 Creation of Coproducts 235
14.2.2 Creation of Coproduct Elements 235

14.3 Accessing Functions 236

14.4 Retrieve 236

14.5 Flattening 237

14.6 Universal Map 237

15 RECORDS . . . . . . . . . . . . . . . . . . . . . . . 239

15.1 Introduction 241

15.2 The Record Format Constructor 241

15.3 Creating a Record 242

15.4 Access and Modification Functions 243



lviii VOLUME 1: CONTENTS

16 MAPPINGS . . . . . . . . . . . . . . . . . . . . . . . 245

16.1 Introduction 247
16.1.1 The Map Constructors 247
16.1.2 The Graph of a Map 248
16.1.3 Rules for Maps 248
16.1.4 Homomorphisms 248
16.1.5 Checking of Maps 248
16.2 Creation Functions 249
16.2.1 Creation of Maps 249
16.2.2 Creation of Partial Maps 250
16.2.3 Creation of Homomorphisms 250
16.2.4 Coercion Maps 251
16.3 Operations on Mappings 251
16.3.1 Composition 251
16.3.2 (Co)Domain and (Co)Kernel 252
16.3.3 Inverse 252
16.3.4 Function 252
16.4 Images and Preimages 253
16.5 Parents of Maps 254



VOLUME 2: CONTENTS lix

VOLUME 2: CONTENTS

III BASIC RINGS 255

17 INTRODUCTION TO RINGS . . . . . . . . . . . . . . . 257

17.1 Overview 259
17.2 The World of Rings 260
17.2.1 New Rings from Existing Ones 260
17.2.2 Attributes 261
17.3 Coercion 261
17.3.1 Automatic Coercion 262
17.3.2 Forced Coercion 264
17.4 Generic Ring Functions 266
17.4.1 Related Structures 266
17.4.2 Numerical Invariants 266
17.4.3 Predicates and Boolean Operations 267
17.5 Generic Element Functions 268
17.5.1 Parent and Category 268
17.5.2 Creation of Elements 269
17.5.3 Arithmetic Operations 269
17.5.4 Equality and Membership 270
17.5.5 Predicates on Ring Elements 271
17.5.6 Comparison of Ring Elements 272
17.6 Ideals and Quotient Rings 273
17.6.1 Defining Ideals and Quotient Rings 273
17.6.2 Arithmetic Operations on Ideals 273
17.6.3 Boolean Operators on Ideals 274
17.7 Other Ring Constructions 274
17.7.1 Residue Class Fields 274
17.7.2 Localization 274
17.7.3 Completion 275
17.7.4 Transcendental Extension 275

18 RING OF INTEGERS . . . . . . . . . . . . . . . . . . 277

18.1 Introduction 281
18.1.1 Representation 281
18.1.2 Coercion 281
18.1.3 Homomorphisms 281
18.2 Creation Functions 282
18.2.1 Creation of Structures 282
18.2.2 Creation of Elements 282
18.2.3 Printing of Elements 283
18.2.4 Element Conversions 284
18.3 Structure Operations 285
18.3.1 Related Structures 285
18.3.2 Numerical Invariants 286
18.3.3 Ring Predicates and Booleans 286
18.4 Element Operations 286
18.4.1 Arithmetic Operations 286
18.4.2 Bit Operations 287



lx VOLUME 2: CONTENTS

18.4.3 Equality and Membership 287
18.4.4 Parent and Category 287
18.4.5 Predicates on Ring Elements 288
18.4.6 Comparison of Ring Elements 289
18.4.7 Conjugates, Norm and Trace 289
18.4.8 Other Elementary Functions 290
18.5 Random Numbers 291
18.6 Common Divisors and Common Multiples 292
18.7 Arithmetic Functions 293
18.8 Combinatorial Functions 296
18.9 Primes and Primality Testing 297
18.9.1 Primality 297
18.9.2 Other Functions Relating to Primes 300
18.10 Factorization 301
18.10.1 General Factorization 302
18.10.2 Storing Potential Factors 304
18.10.3 Specific Factorization Algorithms 304
18.10.4 Factorization Related Functions 308
18.11 Factorization Sequences 310
18.11.1 Creation and Conversion 310
18.11.2 Arithmetic 311
18.11.3 Divisors 311
18.11.4 Predicates 311
18.12 Modular Arithmetic 311
18.12.1 Arithmetic Operations 311
18.12.2 The Solution of Modular Equations 312
18.13 Infinities 313
18.13.1 Creation 314
18.13.2 Arithmetic 314
18.13.3 Comparison 314
18.13.4 Miscellaneous 314
18.14 Advanced Factorization Techniques: The Number Field Sieve 315
18.14.1 The Magma Number Field Sieve Implementation 315
18.14.2 Naive NFS 316
18.14.3 Factoring with NFS Processes 316
18.14.4 Data files 321
18.14.5 Distributing NFS Factorizations 322
18.14.6 Magma and CWI NFS Interoperability 323
18.14.7 Tools for Finding a Suitable Polynomial 324
18.15 Bibliography 326

19 INTEGER RESIDUE CLASS RINGS . . . . . . . . . . . . 329

19.1 Introduction 331
19.2 Ideals of Z 331
19.3 Z as a Number Field Order 332
19.4 Residue Class Rings 333
19.4.1 Creation 333
19.4.2 Coercion 334
19.4.3 Elementary Invariants 335
19.4.4 Structure Operations 335
19.4.5 Ring Predicates and Booleans 336
19.4.6 Homomorphisms 336
19.5 Elements of Residue Class Rings 336
19.5.1 Creation 336
19.5.2 Arithmetic Operators 337



VOLUME 2: CONTENTS lxi

19.5.3 Equality and Membership 337
19.5.4 Parent and Category 337
19.5.5 Predicates on Ring Elements 337
19.5.6 Solving Equations over Z/mZ 337
19.6 Ideal Operations 339
19.7 The Unit Group 340
19.8 Dirichlet Characters 341
19.8.1 Creation 342
19.8.2 Element Creation 342
19.8.3 Properties of Dirichlet Groups 343
19.8.4 Properties of Elements 344
19.8.5 Evaluation 345
19.8.6 Arithmetic 346
19.8.7 Example 346

20 RATIONAL FIELD . . . . . . . . . . . . . . . . . . . . 349

20.1 Introduction 351
20.1.1 Representation 351
20.1.2 Coercion 351
20.1.3 Homomorphisms 352
20.2 Creation Functions 353
20.2.1 Creation of Structures 353
20.2.2 Creation of Elements 353
20.3 Structure Operations 354
20.3.1 Related Structures 354
20.3.2 Numerical Invariants 356
20.3.3 Ring Predicates and Booleans 356
20.4 Element Operations 357
20.4.1 Parent and Category 357
20.4.2 Arithmetic Operators 357
20.4.3 Numerator and Denominator 357
20.4.4 Equality and Membership 357
20.4.5 Predicates on Ring Elements 358
20.4.6 Comparison 358
20.4.7 Conjugates, Norm and Trace 358
20.4.8 Absolute Value and Sign 359
20.4.9 Rounding and Truncating 359
20.4.10 Rational Reconstruction 360
20.4.11 Valuation 360
20.4.12 Sequence Conversions 360

21 FINITE FIELDS . . . . . . . . . . . . . . . . . . . . . 361

21.1 Introduction 363
21.1.1 Representation of Finite Fields 363
21.1.2 Conway Polynomials 363
21.1.3 Ground Field and Relationships 364
21.2 Creation Functions 364
21.2.1 Creation of Structures 364
21.2.2 Creating Relations 368
21.2.3 Special Options 368
21.2.4 Homomorphisms 370
21.2.5 Creation of Elements 370
21.2.6 Special Elements 371
21.2.7 Sequence Conversions 372
21.3 Structure Operations 372



lxii VOLUME 2: CONTENTS

21.3.1 Related Structures 373
21.3.2 Numerical Invariants 375
21.3.3 Defining Polynomial 375
21.3.4 Ring Predicates and Booleans 375
21.3.5 Roots 376
21.4 Element Operations 377
21.4.1 Arithmetic Operators 377
21.4.2 Equality and Membership 377
21.4.3 Parent and Category 377
21.4.4 Predicates on Ring Elements 378
21.4.5 Minimal and Characteristic Polynomial 378
21.4.6 Norm, Trace and Frobenius 379
21.4.7 Order and Roots 380
21.5 Polynomials for Finite Fields 382
21.6 Discrete Logarithms 383
21.7 Permutation Polynomials 386
21.8 Bibliography 387

22 NEARFIELDS . . . . . . . . . . . . . . . . . . . . . . 389

22.1 Introduction 391
22.2 Nearfield Properties 391
22.2.1 Sharply Doubly Transitive Groups 392
22.3 Constructing Nearfields 393
22.3.1 Dickson Nearfields 393
22.3.2 Zassenhaus Nearfields 396
22.4 Operations on Elements 397
22.4.1 Nearfield Arithmetic 397
22.4.2 Equality and Membership 397
22.4.3 Parent and Category 397
22.4.4 Predicates on Nearfield Elements 397
22.5 Operations on Nearfields 399
22.6 The Group of Units 400
22.7 Automorphisms 401
22.8 Nearfield Planes 402
22.8.1 Hughes Planes 403
22.9 Bibliography 404

23 UNIVARIATE POLYNOMIAL RINGS . . . . . . . . . . . 407

23.1 Introduction 411
23.1.1 Representation 411
23.2 Creation Functions 411
23.2.1 Creation of Structures 411
23.2.2 Print Options 412
23.2.3 Creation of Elements 413
23.3 Structure Operations 415
23.3.1 Related Structures 415
23.3.2 Changing Rings 415
23.3.3 Numerical Invariants 416
23.3.4 Ring Predicates and Booleans 416
23.3.5 Homomorphisms 416
23.4 Element Operations 417
23.4.1 Parent and Category 417
23.4.2 Arithmetic Operators 417
23.4.3 Equality and Membership 417



VOLUME 2: CONTENTS lxiii

23.4.4 Predicates on Ring Elements 418
23.4.5 Coefficients and Terms 418
23.4.6 Degree 419
23.4.7 Roots 420
23.4.8 Derivative, Integral 422
23.4.9 Evaluation, Interpolation 422
23.4.10 Quotient and Remainder 422
23.4.11 Modular Arithmetic 424
23.4.12 Other Operations 424
23.5 Common Divisors and Common Multiples 424
23.5.1 Common Divisors and Common Multiples 425
23.5.2 Content and Primitive Part 426
23.6 Polynomials over the Integers 427
23.7 Polynomials over Finite Fields 427
23.8 Factorization 428
23.8.1 Factorization and Irreducibility 428
23.8.2 Resultant and Discriminant 432
23.8.3 Hensel Lifting 433
23.9 Ideals and Quotient Rings 434
23.9.1 Creation of Ideals and Quotients 434
23.9.2 Ideal Arithmetic 434
23.9.3 Other Functions on Ideals 435
23.9.4 Other Functions on Quotients 436
23.10 Special Families of Polynomials 436
23.10.1 Orthogonal Polynomials 436
23.10.2 Permutation Polynomials 437
23.10.3 The Bernoulli Polynomial 438
23.10.4 Swinnerton-Dyer Polynomials 438
23.11 Bibliography 438

24 MULTIVARIATE POLYNOMIAL RINGS . . . . . . . . . . 441

24.1 Introduction 443
24.1.1 Representation 443
24.2 Polynomial Rings and Polynomials 444
24.2.1 Creation of Polynomial Rings 444
24.2.2 Print Names 446
24.2.3 Graded Polynomial Rings 446
24.2.4 Creation of Polynomials 447
24.3 Structure Operations 447
24.3.1 Related Structures 447
24.3.2 Numerical Invariants 448
24.3.3 Ring Predicates and Booleans 448
24.3.4 Changing Coefficient Ring 448
24.3.5 Homomorphisms 448
24.4 Element Operations 449
24.4.1 Arithmetic Operators 449
24.4.2 Equality and Membership 449
24.4.3 Predicates on Ring Elements 450
24.4.4 Coefficients, Monomials and Terms 450
24.4.5 Degrees 455
24.4.6 Univariate Polynomials 456
24.4.7 Derivative, Integral 457
24.4.8 Evaluation, Interpolation 458
24.4.9 Quotient and Reductum 459
24.4.10 Diagonalizing a Polynomial of Degree 2 460
24.5 Greatest Common Divisors 461



lxiv VOLUME 2: CONTENTS

24.5.1 Common Divisors and Common Multiples 461
24.5.2 Content and Primitive Part 462
24.6 Factorization and Irreducibility 463
24.7 Resultants and Discriminants 467
24.8 Polynomials over the Integers 467
24.9 Bibliography 468

25 REAL AND COMPLEX FIELDS . . . . . . . . . . . . . . 469

25.1 Introduction 473
25.1.1 Overview of Real Numbers in Magma 473
25.1.2 Coercion 474
25.1.3 Homomorphisms 475
25.1.4 Special Options 475
25.1.5 Version Functions 476
25.2 Creation Functions 476
25.2.1 Creation of Structures 476
25.2.2 Creation of Elements 478
25.3 Structure Operations 479
25.3.1 Related Structures 479
25.3.2 Numerical Invariants 479
25.3.3 Ring Predicates and Booleans 480
25.3.4 Other Structure Functions 480
25.4 Element Operations 480
25.4.1 Generic Element Functions and Predicates 480
25.4.2 Comparison of and Membership 481
25.4.3 Other Predicates 481
25.4.4 Arithmetic 481
25.4.5 Conversions 481
25.4.6 Rounding 482
25.4.7 Precision 483
25.4.8 Constants 483
25.4.9 Simple Element Functions 484
25.4.10 Roots 485
25.4.11 Continued Fractions 490
25.4.12 Algebraic Dependencies 491
25.5 Transcendental Functions 491
25.5.1 Exponential, Logarithmic and Polylogarithmic Functions 491
25.5.2 Trigonometric Functions 493
25.5.3 Inverse Trigonometric Functions 495
25.5.4 Hyperbolic Functions 497
25.5.5 Inverse Hyperbolic Functions 498
25.6 Elliptic and Modular Functions 499
25.6.1 Eisenstein Series 499
25.6.2 Weierstrass Series 501
25.6.3 The Jacobi θ and Dedekind η-functions 502
25.6.4 The j-invariant and the Discriminant 503
25.6.5 Weber’s Functions 504
25.7 Theta Functions 505
25.8 Gamma, Bessel and Associated Functions 506
25.9 The Hypergeometric Function 508
25.10 Other Special Functions 509
25.11 Numerical Functions 511
25.11.1 Summation of Infinite Series 511
25.11.2 Integration 511
25.11.3 Numerical Derivatives 512
25.12 Bibliography 512



VOLUME 2: CONTENTS lxv

IV MATRICES AND LINEAR ALGEBRA 515

26 MATRICES . . . . . . . . . . . . . . . . . . . . . . . 517

26.1 Introduction 521
26.2 Creation of Matrices 521
26.2.1 General Matrix Construction 521
26.2.2 Shortcuts 523
26.2.3 Construction of Structured Matrices 525
26.2.4 Construction of Random Matrices 528
26.2.5 Creating Vectors 529
26.3 Elementary Properties 529
26.4 Accessing or Modifying Entries 530
26.4.1 Indexing 530
26.4.2 Extracting and Inserting Blocks 531
26.4.3 Row and Column Operations 534
26.5 Building Block Matrices 537
26.6 Changing Ring 538
26.7 Elementary Arithmetic 539
26.8 Nullspaces and Solutions of Systems 540
26.9 Predicates 543
26.10 Determinant and Other Properties 544
26.11 Minimal and Characteristic Polynomials and Eigenvalues 546
26.12 Canonical Forms 548
26.12.1 Canonical Forms over General Rings 548
26.12.2 Canonical Forms over Fields 548
26.12.3 Canonical Forms over Euclidean Domains 551
26.13 Orders of Invertible Matrices 554
26.14 Miscellaneous Operations on Matrices 555
26.15 Bibliography 555

27 SPARSE MATRICES . . . . . . . . . . . . . . . . . . . 557

27.1 Introduction 559
27.2 Creation of Sparse Matrices 559
27.2.1 Construction of Initialized Sparse Matrices 559
27.2.2 Construction of Trivial Sparse Matrices 560
27.2.3 Construction of Structured Matrices 562
27.2.4 Parents of Sparse Matrices 562
27.3 Accessing Sparse Matrices 563
27.3.1 Elementary Properties 563
27.3.2 Weights 564
27.4 Accessing or Modifying Entries 564
27.4.1 Extracting and Inserting Blocks 566
27.4.2 Row and Column Operations 568
27.5 Building Block Matrices 569
27.6 Conversion to and from Dense Matrices 570
27.7 Changing Ring 570
27.8 Predicates 571
27.9 Elementary Arithmetic 572
27.10 Multiplying Vectors or Matrices by Sparse Matrices 573
27.11 Non-trivial Properties 573
27.11.1 Nullspace and Rowspace 573
27.11.2 Rank 574
27.12 Determinant and Other Properties 574



lxvi VOLUME 2: CONTENTS

27.12.1 Elementary Divisors (Smith Form) 575
27.12.2 Verbosity 575
27.13 Linear Systems (Structured Gaussian Elimination) 575
27.14 Bibliography 582

28 VECTOR SPACES . . . . . . . . . . . . . . . . . . . . 583

28.1 Introduction 585
28.1.1 Vector Space Categories 585
28.1.2 The Construction of a Vector Space 585
28.2 Creation of Vector Spaces and Arithmetic with Vectors 586
28.2.1 Construction of a Vector Space 586
28.2.2 Construction of a Vector Space with Inner Product Matrix 587
28.2.3 Construction of a Vector 587
28.2.4 Deconstruction of a Vector 589
28.2.5 Arithmetic with Vectors 589
28.2.6 Indexing Vectors and Matrices 592
28.3 Subspaces, Quotient Spaces and Homomorphisms 594
28.3.1 Construction of Subspaces 594
28.3.2 Construction of Quotient Vector Spaces 596
28.4 Changing the Coefficient Field 598
28.5 Basic Operations 599
28.5.1 Accessing Vector Space Invariants 599
28.5.2 Membership and Equality 600
28.5.3 Operations on Subspaces 601
28.6 Reducing Vectors Relative to a Subspace 601
28.7 Bases 602
28.8 Operations with Linear Transformations 604

29 POLAR SPACES . . . . . . . . . . . . . . . . . . . . . 607

29.1 Introduction 609
29.2 Reflexive Forms 609
29.2.1 Quadratic Forms 610
29.3 Inner Products 611
29.3.1 Orthogonality 613
29.4 Isotropic and Singular Vectors and Subspaces 614
29.5 The Standard Forms 617
29.6 Constructing Polar Spaces 620
29.6.1 Symplectic Spaces 621
29.6.2 Unitary Spaces 621
29.6.3 Quadratic Spaces 622
29.7 Isometries and Similarities 625
29.7.1 Isometries 625
29.7.2 Similarities 628
29.8 Wall Forms 629
29.9 Invariant Forms 630
29.9.1 Semi-invariant Forms 633
29.10 Bibliography 635



VOLUME 3: CONTENTS lxvii

VOLUME 3: CONTENTS

V LATTICES AND QUADRATIC FORMS 637

30 LATTICES . . . . . . . . . . . . . . . . . . . . . . . 639

30.1 Introduction 643
30.2 Presentation of Lattices 644
30.3 Creation of Lattices 645
30.3.1 Elementary Creation of Lattices 645
30.3.2 Lattices from Linear Codes 649
30.3.3 Lattices from Algebraic Number Fields 650
30.3.4 Special Lattices 652
30.4 Lattice Elements 653
30.4.1 Creation of Lattice Elements 653
30.4.2 Operations on Lattice Elements 653
30.4.3 Predicates and Boolean Operations 655
30.4.4 Access Operations 655
30.5 Properties of Lattices 657
30.5.1 Associated Structures 657
30.5.2 Attributes of Lattices 658
30.5.3 Predicates and Booleans on Lattices 659
30.5.4 Base Ring and Base Change 660
30.6 Construction of New Lattices 660
30.6.1 Sub- and Superlattices and Quotients 660
30.6.2 Standard Constructions of New Lattices 662
30.7 Reduction of Matrices and Lattices 665
30.7.1 LLL Reduction 665
30.7.2 Pair Reduction 675
30.7.3 Seysen Reduction 676
30.7.4 HKZ Reduction 677
30.7.5 Recovering a Short Basis from Short Lattice Vectors 680
30.8 Minima and Element Enumeration 680
30.8.1 Minimum, Density and Kissing Number 681
30.8.2 Shortest and Closest Vectors 683
30.8.3 Short and Close Vectors 685
30.8.4 Short and Close Vector Processes 691
30.8.5 Successive Minima and Theta Series 692
30.8.6 Lattice Enumeration Utilities 693
30.9 Theta Series as Modular Forms 696
30.10 Voronoi Cells, Holes and Covering Radius 697
30.11 Orthogonalization 699
30.12 Testing Matrices for Definiteness 701
30.13 Genera and Spinor Genera 702
30.13.1 Genus Constructions 702
30.13.2 Invariants of Genera and Spinor Genera 702
30.13.3 Invariants of p-adic Genera 704
30.13.4 Neighbour Relations and Graphs 704
30.14 Attributes of Lattices 708
30.15 Database of Lattices 708
30.15.1 Creating the Database 709
30.15.2 Database Information 709



lxviii VOLUME 3: CONTENTS

30.15.3 Accessing the Database 710
30.15.4 Hermitian Lattices 712
30.16 Bibliography 714

31 LATTICES WITH GROUP ACTION . . . . . . . . . . . . 717

31.1 Introduction 719
31.2 Automorphism Group and Isometry Testing 719
31.2.1 Automorphism Group and Isometry Testing over Fq [t] 726
31.3 Lattices from Matrix Groups 728
31.3.1 Creation of G-Lattices 728
31.3.2 Operations on G-Lattices 729
31.3.3 Invariant Forms 729
31.3.4 Endomorphisms 730
31.3.5 G-invariant Sublattices 731
31.3.6 Lattice of Sublattices 735
31.4 Bibliography 741

32 QUADRATIC FORMS . . . . . . . . . . . . . . . . . . 743

32.1 Introduction 745
32.2 Constructions and Conversions 745
32.3 Local Invariants 746
32.4 Isotropic Subspaces 747
32.5 Bibliography 750

33 BINARY QUADRATIC FORMS . . . . . . . . . . . . . . 751

33.1 Introduction 753
33.2 Creation Functions 753
33.2.1 Creation of Structures 753
33.2.2 Creation of Forms 754
33.3 Basic Invariants 754
33.4 Operations on Forms 755
33.4.1 Arithmetic 755
33.4.2 Attribute Access 756
33.4.3 Boolean Operations 756
33.4.4 Related Structures 757
33.5 Class Group 757
33.6 Class Group Coercions 760
33.7 Discrete Logarithms 760
33.8 Elliptic and Modular Invariants 761
33.9 Class Invariants 762
33.10 Matrix Action on Forms 763
33.11 Bibliography 763



VOLUME 3: CONTENTS lxix

VI GLOBAL ARITHMETIC FIELDS 765

34 NUMBER FIELDS . . . . . . . . . . . . . . . . . . . . 767

34.1 Introduction 771

34.2 Creation Functions 773
34.2.1 Creation of Number Fields 773
34.2.2 Maximal Orders 779
34.2.3 Creation of Elements 780
34.2.4 Creation of Homomorphisms 781

34.3 Structure Operations 782
34.3.1 General Functions 782
34.3.2 Related Structures 783
34.3.3 Representing Fields as Vector Spaces 786
34.3.4 Invariants 788
34.3.5 Basis Representation 790
34.3.6 Ring Predicates 792
34.3.7 Field Predicates 793

34.4 Element Operations 793
34.4.1 Parent and Category 793
34.4.2 Arithmetic 794
34.4.3 Equality and Membership 794
34.4.4 Predicates on Elements 795
34.4.5 Finding Special Elements 795
34.4.6 Real and Complex Valued Functions 796
34.4.7 Norm, Trace, and Minimal Polynomial 798
34.4.8 Other Functions 800

34.5 Class and Unit Groups 800

34.6 Galois Theory 803

34.7 Solving Norm Equations 804

34.8 Places and Divisors 807
34.8.1 Creation of Structures 807
34.8.2 Operations on Structures 807
34.8.3 Creation of Elements 807
34.8.4 Arithmetic with Places and Divisors 808
34.8.5 Other Functions for Places and Divisors 808

34.9 Characters 811
34.9.1 Creation Functions 811
34.9.2 Functions on Groups and Group Elements 811
34.9.3 Predicates on Group Elements 814
34.9.4 Passing between Dirichlet and Hecke Characters 815
34.9.5 L-functions of Hecke Characters 819
34.9.6 Hecke Grössencharacters and their L-functions 820

34.10 Number Field Database 827
34.10.1 Creation 827
34.10.2 Access 828

34.11 Bibliography 830



lxx VOLUME 3: CONTENTS

35 QUADRATIC FIELDS . . . . . . . . . . . . . . . . . . 833

35.1 Introduction 835
35.1.1 Representation 835
35.2 Creation of Structures 836
35.3 Operations on Structures 837
35.3.1 Ideal Class Group 838
35.3.2 Norm Equations 841
35.4 Special Element Operations 842
35.4.1 Greatest Common Divisors 842
35.4.2 Modular Arithmetic 842
35.4.3 Factorization 843
35.4.4 Conjugates 843
35.4.5 Other Element Functions 843
35.5 Special Functions for Ideals 845
35.6 Bibliography 845

36 CYCLOTOMIC FIELDS . . . . . . . . . . . . . . . . . 847

36.1 Introduction 849
36.2 Creation Functions 849
36.2.1 Creation of Cyclotomic Fields 849
36.2.2 Creation of Elements 850
36.3 Structure Operations 851
36.3.1 Invariants 852
36.4 Element Operations 852
36.4.1 Predicates on Elements 852
36.4.2 Conjugates 852

37 ORDERS AND ALGEBRAIC FIELDS . . . . . . . . . . . 855

37.1 Introduction 861
37.2 Creation Functions 863
37.2.1 Creation of General Algebraic Fields 863
37.2.2 Creation of Orders and Fields from Orders 867
37.2.3 Maximal Orders 872
37.2.4 Creation of Elements 877
37.2.5 Creation of Homomorphisms 879
37.3 Special Options 881
37.4 Structure Operations 883
37.4.1 General Functions 884
37.4.2 Related Structures 885
37.4.3 Representing Fields as Vector Spaces 891
37.4.4 Invariants 893
37.4.5 Basis Representation 897
37.4.6 Ring Predicates 901
37.4.7 Order Predicates 902
37.4.8 Field Predicates 903
37.4.9 Setting Properties of Orders 904
37.5 Element Operations 905
37.5.1 Parent and Category 905
37.5.2 Arithmetic 905
37.5.3 Equality and Membership 906
37.5.4 Predicates on Elements 906
37.5.5 Finding Special Elements 907
37.5.6 Real and Complex Valued Functions 908
37.5.7 Norm, Trace, and Minimal Polynomial 910



VOLUME 3: CONTENTS lxxi

37.5.8 Other Functions 912
37.6 Ideal Class Groups 913
37.6.1 Setting the Class Group Bounds Globally 921
37.7 Unit Groups 922
37.8 Solving Equations 925
37.8.1 Norm Equations 925
37.8.2 Thue Equations 929
37.8.3 Unit Equations 931
37.8.4 Index Form Equations 931
37.9 Ideals and Quotients 932
37.9.1 Creation of Ideals in Orders 933
37.9.2 Invariants 934
37.9.3 Basis Representation 937
37.9.4 Two–Element Presentations 938
37.9.5 Predicates on Ideals 939
37.9.6 Ideal Arithmetic 941
37.9.7 Roots of Ideals 944
37.9.8 Factorization and Primes 944
37.9.9 Other Ideal Operations 946
37.9.10 Quotient Rings 951
37.10 Places and Divisors 954
37.10.1 Creation of Structures 954
37.10.2 Operations on Structures 954
37.10.3 Creation of Elements 955
37.10.4 Arithmetic with Places and Divisors 956
37.10.5 Other Functions for Places and Divisors 956
37.11 Bibliography 958

38 GALOIS THEORY OF NUMBER FIELDS . . . . . . . . . 961

38.1 Automorphism Groups 964
38.2 Galois Groups 971
38.2.1 Straight-line Polynomials 975
38.2.2 Invariants 977
38.2.3 Subfields and Subfield Towers 979
38.2.4 Solvability by Radicals 986
38.2.5 Linear Relations 987
38.2.6 Other 990
38.3 Subfields 990
38.3.1 The Subfield Lattice 991
38.4 Galois Cohomology 994
38.5 Bibliography 995

39 CLASS FIELD THEORY . . . . . . . . . . . . . . . . . 997

39.1 Introduction 999
39.1.1 Overview 999
39.1.2 Magma 1000
39.2 Creation 1003
39.2.1 Ray Class Groups 1003
39.2.2 Selmer groups 1006
39.2.3 Maps 1008
39.2.4 Abelian Extensions 1009
39.2.5 Binary Operations 1014
39.3 Galois Module Structure 1014
39.3.1 Predicates 1015



lxxii VOLUME 3: CONTENTS

39.3.2 Constructions 1015
39.4 Conversion to Number Fields 1016
39.5 Invariants 1017
39.6 Automorphisms 1020
39.7 Norm Equations 1022
39.8 Attributes 1025
39.8.1 Orders 1025
39.8.2 Abelian Extensions 1028
39.9 Group Theoretic Functions 1032
39.9.1 Generic Groups 1032
39.10 Bibliography 1033

40 ALGEBRAICALLY CLOSED FIELDS . . . . . . . . . . . 1035

40.1 Introduction 1037
40.2 Representation 1037
40.3 Creation of Structures 1038
40.4 Creation of Elements 1039
40.4.1 Coercion 1039
40.4.2 Roots 1039
40.4.3 Variables 1040
40.5 Related Structures 1045
40.6 Properties 1045
40.7 Ring Predicates and Properties 1046
40.8 Element Operations 1046
40.8.1 Arithmetic Operators 1047
40.8.2 Equality and Membership 1047
40.8.3 Parent and Category 1047
40.8.4 Predicates on Ring Elements 1047
40.8.5 Minimal Polynomial, Norm and Trace 1048
40.9 Simplification 1050
40.10 Absolute Field 1051
40.11 Bibliography 1055

41 RATIONAL FUNCTION FIELDS . . . . . . . . . . . . . 1057

41.1 Introduction 1059
41.2 Creation Functions 1059
41.2.1 Creation of Structures 1059
41.2.2 Names 1060
41.2.3 Creation of Elements 1061
41.3 Structure Operations 1061
41.3.1 Related Structures 1061
41.3.2 Invariants 1062
41.3.3 Ring Predicates and Booleans 1062
41.3.4 Homomorphisms 1062
41.4 Element Operations 1063
41.4.1 Arithmetic 1063
41.4.2 Equality and Membership 1063
41.4.3 Numerator, Denominator and Degree 1064
41.4.4 Predicates on Ring Elements 1064
41.4.5 Evaluation 1064
41.4.6 Derivative 1065
41.4.7 Partial Fraction Decomposition 1065
41.5 Padé-Hermite Approximants 1068



VOLUME 3: CONTENTS lxxiii

41.5.1 Introduction 1068
41.5.2 Ordering of Sequences 1068
41.5.3 Approximants 1072
41.6 Bibliography 1077

42 ALGEBRAIC FUNCTION FIELDS . . . . . . . . . . . . . 1079

42.1 Introduction 1087
42.1.1 Representations of Fields 1087
42.2 Creation of Algebraic Function Fields and their Orders 1088
42.2.1 Creation of Algebraic Function Fields 1088
42.2.2 Creation of Orders of Algebraic Function Fields 1091
42.2.3 Orders and Ideals 1096
42.3 Related Structures 1097
42.3.1 Parent and Category 1097
42.3.2 Other Related Structures 1097
42.4 General Structure Invariants 1101
42.5 Galois Groups 1106
42.6 Subfields 1110
42.7 Automorphism Group 1111
42.7.1 Automorphisms over the Base Field 1112
42.7.2 General Automorphisms 1114
42.7.3 Field Morphisms 1116
42.8 Global Function Fields 1119
42.8.1 Functions relative to the Exact Constant Field 1119
42.8.2 Functions Relative to the Constant Field 1121
42.8.3 Functions related to Class Group 1122
42.9 Structure Predicates 1126
42.10 Homomorphisms 1127
42.11 Elements 1128
42.11.1 Creation of Elements 1129
42.11.2 Parent and Category 1130
42.11.3 Sequence Conversions 1131
42.11.4 Arithmetic Operators 1132
42.11.5 Equality and Membership 1132
42.11.6 Predicates on Elements 1132
42.11.7 Functions related to Norm and Trace 1133
42.11.8 Functions related to Orders and Integrality 1135
42.11.9 Functions related to Places and Divisors 1136
42.11.10 Other Operations on Elements 1139
42.12 Ideals 1142
42.12.1 Creation of Ideals 1142
42.12.2 Parent and Category 1142
42.12.3 Arithmetic Operators 1143
42.12.4 Roots of Ideals 1143
42.12.5 Equality and Membership 1145
42.12.6 Predicates on Ideals 1145
42.12.7 Further Ideal Operations 1147
42.13 Places 1153
42.13.1 Creation of Structures 1153
42.13.2 Creation of Elements 1153
42.13.3 Related Structures 1155
42.13.4 Structure Invariants 1155
42.13.5 Structure Predicates 1156
42.13.6 Element Operations 1156
42.13.7 Completion at Places 1159



lxxiv VOLUME 3: CONTENTS

42.14 Divisors 1159
42.14.1 Creation of Structures 1159
42.14.2 Creation of Elements 1159
42.14.3 Related Structures 1160
42.14.4 Structure Invariants 1160
42.14.5 Structure Predicates 1160
42.14.6 Element Operations 1160
42.14.7 Functions related to Divisor Class Groups of Global Function Fields 1171
42.15 Differentials 1176
42.15.1 Creation of Structures 1176
42.15.2 Creation of Elements 1176
42.15.3 Related Structures 1177
42.15.4 Subspaces 1177
42.15.5 Structure Predicates 1178
42.15.6 Operations on Elements 1178
42.16 Weil Descent 1182
42.17 Function Field Database 1184
42.17.1 Creation 1185
42.17.2 Access 1185
42.18 Bibliography 1186

43 CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS 1189

43.1 Ray Class Groups 1191
43.2 Creation of Class Fields 1194
43.3 Properties of Class Fields 1196
43.4 The Ring of Witt Vectors of Finite Length 1199
43.5 The Ring of Twisted Polynomials 1201
43.5.1 Creation of Twisted Polynomial Rings 1201
43.5.2 Operations with the Ring of Twisted Polynomials 1202
43.5.3 Creation of Twisted Polynomials 1202
43.5.4 Operations with Twisted Polynomials 1204
43.6 Analytic Theory 1205
43.7 Related Functions 1211
43.8 Enumeration of Places 1213
43.9 Bibliography 1214

44 ARTIN REPRESENTATIONS . . . . . . . . . . . . . . . 1215

44.1 Overview 1217
44.2 Constructing Artin Representations 1217
44.3 Basic Invariants 1219
44.4 Arithmetic 1222
44.5 Implementation Notes 1224
44.6 Bibliography 1224



VOLUME 4: CONTENTS lxxv

VOLUME 4: CONTENTS

VII LOCAL ARITHMETIC FIELDS 1225

45 VALUATION RINGS . . . . . . . . . . . . . . . . . . . 1227

45.1 Introduction 1229
45.2 Creation Functions 1229
45.2.1 Creation of Structures 1229
45.2.2 Creation of Elements 1229
45.3 Structure Operations 1230
45.3.1 Related Structures 1230
45.3.2 Numerical Invariants 1230
45.4 Element Operations 1230
45.4.1 Arithmetic Operations 1230
45.4.2 Equality and Membership 1230
45.4.3 Parent and Category 1230
45.4.4 Predicates on Ring Elements 1231
45.4.5 Other Element Functions 1231

46 NEWTON POLYGONS . . . . . . . . . . . . . . . . . . 1233

46.1 Introduction 1235
46.2 Newton Polygons 1237
46.2.1 Creation of Newton Polygons 1237
46.2.2 Vertices and Faces of Polygons 1239
46.2.3 Tests for Points and Faces 1243
46.3 Polynomials Associated with Newton Polygons 1244
46.4 Finding Valuations of Roots of Polynomials from Newton Polygons 1245
46.5 Using Newton Polygons to Find Roots of Polynomials over Series Rings 1245
46.5.1 Operations not associated with Duval’s Algorithm 1246
46.5.2 Operations associated with Duval’s algorithm 1251
46.5.3 Roots of Polynomials 1258
46.6 Bibliography 1260

47 p-ADIC RINGS AND THEIR EXTENSIONS . . . . . . . . 1261

47.1 Introduction 1265
47.2 Background 1265
47.3 Overview of the p-adics in Magma 1266
47.3.1 p-adic Rings 1266
47.3.2 p-adic Fields 1266
47.3.3 Free Precision Rings and Fields 1267
47.3.4 Precision of Extensions 1267
47.4 Creation of Local Rings and Fields 1267
47.4.1 Creation Functions for the p-adics 1267
47.4.2 Creation Functions for Unramified Extensions 1269
47.4.3 Creation Functions for Totally Ramified Extensions 1271
47.4.4 Creation Functions for Unbounded Precision Extensions 1272
47.4.5 Miscellaneous Creation Functions 1273
47.4.6 Other Elementary Constructions 1274



lxxvi VOLUME 4: CONTENTS

47.4.7 Attributes of Local Rings and Fields 1274

47.5 Elementary Invariants 1274

47.6 Operations on Structures 1278
47.6.1 Ramification Predicates 1280

47.7 Element Constructions and Conversions 1281
47.7.1 Constructions 1281
47.7.2 Element Decomposers 1284

47.8 Operations on Elements 1285
47.8.1 Arithmetic 1285
47.8.2 Equality and Membership 1286
47.8.3 Properties 1288
47.8.4 Precision and Valuation 1288
47.8.5 Logarithms and Exponentials 1290
47.8.6 Norm and Trace Functions 1291
47.8.7 Teichmüller Lifts 1293

47.9 Linear Algebra 1293

47.10 Roots of Elements 1293

47.11 Polynomials 1294
47.11.1 Operations for Polynomials 1294
47.11.2 Roots of Polynomials 1296
47.11.3 Factorization 1300

47.12 Automorphisms of Local Rings and Fields 1304

47.13 Completions 1306

47.14 Class Field Theory 1307
47.14.1 Unit Group 1307
47.14.2 Norm Group 1308
47.14.3 Class Fields 1309

47.15 Extensions 1309

47.16 Bibliography 1310

48 GALOIS RINGS . . . . . . . . . . . . . . . . . . . . . 1311

48.1 Introduction 1313

48.2 Creation Functions 1313
48.2.1 Creation of Structures 1313
48.2.2 Names 1314
48.2.3 Creation of Elements 1315
48.2.4 Sequence Conversions 1315

48.3 Structure Operations 1316
48.3.1 Related Structures 1316
48.3.2 Numerical Invariants 1317
48.3.3 Ring Predicates and Booleans 1317

48.4 Element Operations 1317
48.4.1 Arithmetic Operators 1317
48.4.2 Euclidean Operations 1318
48.4.3 Equality and Membership 1318
48.4.4 Parent and Category 1318
48.4.5 Predicates on Ring Elements 1318



VOLUME 4: CONTENTS lxxvii

49 POWER, LAURENT AND PUISEUX SERIES . . . . . . . . 1319

49.1 Introduction 1321
49.1.1 Kinds of Series 1321
49.1.2 Puiseux Series 1321
49.1.3 Representation of Series 1322
49.1.4 Precision 1322
49.1.5 Free and Fixed Precision 1322
49.1.6 Equality 1323
49.1.7 Polynomials over Series Rings 1323

49.2 Creation Functions 1323
49.2.1 Creation of Structures 1323
49.2.2 Special Options 1325
49.2.3 Creation of Elements 1326

49.3 Structure Operations 1327
49.3.1 Related Structures 1327
49.3.2 Invariants 1328
49.3.3 Ring Predicates and Booleans 1328

49.4 Basic Element Operations 1328
49.4.1 Parent and Category 1328
49.4.2 Arithmetic Operators 1328
49.4.3 Equality and Membership 1329
49.4.4 Predicates on Ring Elements 1329
49.4.5 Precision 1329
49.4.6 Coefficients and Degree 1330
49.4.7 Evaluation and Derivative 1331
49.4.8 Square Root 1332
49.4.9 Composition and Reversion 1332

49.5 Transcendental Functions 1334
49.5.1 Exponential and Logarithmic Functions 1334
49.5.2 Trigonometric Functions and their Inverses 1336
49.5.3 Hyperbolic Functions and their Inverses 1336

49.6 The Hypergeometric Series 1337

49.7 Polynomials over Series Rings 1337

49.8 Extensions of Series Rings 1340
49.8.1 Constructions of Extensions 1340
49.8.2 Operations on Extensions 1341
49.8.3 Elements of Extensions 1344
49.8.4 Optimized Representation 1345

49.9 Bibliography 1346

50 LAZY POWER SERIES RINGS . . . . . . . . . . . . . . 1347

50.1 Introduction 1349

50.2 Creation of Lazy Series Rings 1350

50.3 Functions on Lazy Series Rings 1350

50.4 Elements 1351
50.4.1 Creation of Finite Lazy Series 1351
50.4.2 Arithmetic with Lazy Series 1354
50.4.3 Finding Coefficients of Lazy Series 1355
50.4.4 Predicates on Lazy Series 1358
50.4.5 Other Functions on Lazy Series 1359



lxxviii VOLUME 4: CONTENTS

51 GENERAL LOCAL FIELDS . . . . . . . . . . . . . . . . 1363

51.1 Introduction 1365
51.2 Constructions 1365
51.3 Operations with Fields 1366
51.3.1 Predicates on Fields 1369
51.4 Maximal Order 1369
51.5 Homomorphisms from Fields 1370
51.6 Automorphisms and Galois Theory 1370
51.7 Local Field Elements 1371
51.7.1 Arithmetic 1371
51.7.2 Predicates on Elements 1371
51.7.3 Other Operations on Elements 1372
51.8 Polynomials over General Local Fields 1373

52 ALGEBRAIC POWER SERIES RINGS . . . . . . . . . . . 1375

52.1 Introduction 1377
52.2 Basics 1377
52.2.1 Data Structures 1377
52.2.2 Verbose Output 1378
52.3 Constructors 1378
52.3.1 Rational Puiseux Expansions 1379
52.4 Accessors and Expansion 1383
52.5 Arithmetic 1384
52.6 Predicates 1385
52.7 Modifiers 1386
52.8 Bibliography 1387



VOLUME 4: CONTENTS lxxix

VIII MODULES 1389

53 INTRODUCTION TO MODULES . . . . . . . . . . . . . 1391

53.1 Overview 1393
53.2 General Modules 1393
53.3 The Presentation of Submodules 1394

54 FREE MODULES . . . . . . . . . . . . . . . . . . . . 1395

54.1 Introduction 1397
54.1.1 Free Modules 1397
54.1.2 Module Categories 1397
54.1.3 Presentation of Submodules 1398
54.1.4 Notation 1398
54.2 Definition of a Module 1398
54.2.1 Construction of Modules of n-tuples 1398
54.2.2 Construction of Modules of m× n Matrices 1399
54.2.3 Construction of a Module with Specified Basis 1399
54.3 Accessing Module Information 1399
54.4 Standard Constructions 1400
54.4.1 Changing the Coefficient Ring 1400
54.4.2 Direct Sums 1400
54.5 Elements 1401
54.6 Construction of Elements 1401
54.6.1 Deconstruction of Elements 1402
54.6.2 Operations on Module Elements 1402
54.6.3 Properties of Vectors 1404
54.6.4 Inner Products 1404
54.7 Bases 1405
54.8 Submodules 1405
54.8.1 Construction of Submodules 1405
54.8.2 Operations on Submodules 1406
54.8.3 Membership and Equality 1406
54.8.4 Operations on Submodules 1407
54.9 Quotient Modules 1407
54.9.1 Construction of Quotient Modules 1407
54.10 Homomorphisms 1408
54.10.1 HomR(M, N) for R-modules 1408
54.10.2 HomR(M, N) for Matrix Modules 1409
54.10.3 Modules HomR(M, N) with Given Basis 1411
54.10.4 The Endomorphsim Ring 1411
54.10.5 The Reduced Form of a Matrix Module 1412
54.10.6 Construction of a Matrix 1415
54.10.7 Element Operations 1416

55 MODULES OVER DEDEKIND DOMAINS . . . . . . . . . 1419

55.1 Introduction 1421
55.2 Creation of Modules 1422
55.3 Elementary Functions 1426
55.4 Predicates on Modules 1428
55.5 Arithmetic with Modules 1429
55.6 Basis of a Module 1430
55.7 Other Functions on Modules 1431



lxxx VOLUME 4: CONTENTS

55.8 Homomorphisms between Modules 1433
55.9 Elements of Modules 1436
55.9.1 Creation of Elements 1436
55.9.2 Arithmetic with Elements 1437
55.9.3 Other Functions on Elements 1437
55.10 Pseudo Matrices 1438
55.10.1 Construction of a Pseudo Matrix 1438
55.10.2 Elementary Functions 1438
55.10.3 Basis of a Pseudo Matrix 1439
55.10.4 Predicates 1439
55.10.5 Operations with Pseudo Matrices 1439

56 CHAIN COMPLEXES . . . . . . . . . . . . . . . . . . 1441

56.1 Complexes of Modules 1443
56.1.1 Creation 1443
56.1.2 Subcomplexes and Quotient Complexes 1444
56.1.3 Access Functions 1444
56.1.4 Elementary Operations 1445
56.1.5 Extensions 1446
56.1.6 Predicates 1447
56.2 Chain Maps 1449
56.2.1 Creation 1450
56.2.2 Access Functions 1450
56.2.3 Elementary Operations 1451
56.2.4 Predicates 1451
56.2.5 Maps on Homology 1454



VOLUME 5: CONTENTS lxxxi

VOLUME 5: CONTENTS

IX FINITE GROUPS 1457

57 GROUPS . . . . . . . . . . . . . . . . . . . . . . . . 1459

57.1 Introduction 1463
57.1.1 The Categories of Finite Groups 1463

57.2 Construction of Elements 1464
57.2.1 Construction of an Element 1464
57.2.2 Coercion 1464
57.2.3 Homomorphisms 1464
57.2.4 Arithmetic with Elements 1466

57.3 Construction of a General Group 1468
57.3.1 The General Group Constructors 1468
57.3.2 Construction of Subgroups 1472
57.3.3 Construction of Quotient Groups 1473

57.4 Standard Groups and Extensions 1475
57.4.1 Construction of a Standard Group 1475
57.4.2 Construction of Extensions 1477

57.5 Transfer Functions Between Group Categories 1478

57.6 Basic Operations 1481
57.6.1 Accessing Group Information 1482

57.7 Operations on the Set of Elements 1483
57.7.1 Order and Index Functions 1483
57.7.2 Membership and Equality 1484
57.7.3 Set Operations 1485
57.7.4 Random Elements 1486
57.7.5 Action on a Coset Space 1489

57.8 Standard Subgroup Constructions 1490
57.8.1 Abstract Group Predicates 1491

57.9 Characteristic Subgroups and Normal Structure 1493
57.9.1 Characteristic Subgroups and Subgroup Series 1493
57.9.2 The Abstract Structure of a Group 1495

57.10 Conjugacy Classes of Elements 1496

57.11 Conjugacy Classes of Subgroups 1500
57.11.1 Conjugacy Classes of Subgroups 1500
57.11.2 The Poset of Subgroup Classes 1504

57.12 Cohomology 1509

57.13 Characters and Representations 1510
57.13.1 Character Theory 1510
57.13.2 Representation Theory 1511

57.14 Databases of Groups 1513

57.15 Bibliography 1513



lxxxii VOLUME 5: CONTENTS

58 PERMUTATION GROUPS . . . . . . . . . . . . . . . . 1515

58.1 Introduction 1521
58.1.1 Terminology 1521
58.1.2 The Category of Permutation Groups 1521
58.1.3 The Construction of a Permutation Group 1521
58.2 Creation of a Permutation Group 1522
58.2.1 Construction of the Symmetric Group 1522
58.2.2 Construction of a Permutation 1523
58.2.3 Construction of a General Permutation Group 1525
58.3 Elementary Properties of a Group 1526
58.3.1 Accessing Group Information 1526
58.3.2 Group Order 1528
58.3.3 Abstract Properties of a Group 1528
58.4 Homomorphisms 1529
58.5 Building Permutation Groups 1532
58.5.1 Some Standard Permutation Groups 1532
58.5.2 Direct Products and Wreath Products 1534
58.6 Permutations 1536
58.6.1 Coercion 1536
58.6.2 Arithmetic with Permutations 1536
58.6.3 Properties of Permutations 1537
58.6.4 Predicates for Permutations 1538
58.6.5 Set Operations 1539
58.7 Conjugacy 1541
58.8 Subgroups 1548
58.8.1 Construction of a Subgroup 1548
58.8.2 Membership and Equality 1550
58.8.3 Elementary Properties of a Subgroup 1551
58.8.4 Standard Subgroups 1552
58.8.5 Maximal Subgroups 1555
58.8.6 Conjugacy Classes of Subgroups 1557
58.8.7 Classes of Subgroups Satisfying a Condition 1562
58.9 Quotient Groups 1563
58.9.1 Construction of Quotient Groups 1563
58.9.2 Abelian, Nilpotent and Soluble Quotients 1564
58.10 Permutation Group Actions 1566
58.10.1 G-Sets 1566
58.10.2 Creating a G-Set 1566
58.10.3 Images, Orbits and Stabilizers 1569
58.10.4 Action on a G-Space 1574
58.10.5 Action on Orbits 1575
58.10.6 Action on a G-invariant Partition 1577
58.10.7 Action on a Coset Space 1582
58.10.8 Reduced Permutation Actions 1583
58.10.9 The Jellyfish Algorithm 1583
58.11 Normal and Subnormal Subgroups 1585
58.11.1 Characteristic Subgroups and Normal Series 1585
58.11.2 Maximal and Minimal Normal Subgroups 1588
58.11.3 Lattice of Normal Subgroups 1588
58.11.4 Composition and Chief Series 1589
58.11.5 The Socle 1592
58.11.6 The Soluble Radical and its Quotient 1595
58.11.7 Complements and Supplements 1597
58.11.8 Abelian Normal Subgroups 1599
58.12 Cosets and Transversals 1600
58.12.1 Cosets 1600



VOLUME 5: CONTENTS lxxxiii

58.12.2 Transversals 1602
58.13 Presentations 1602
58.13.1 Generators and Relations 1603
58.13.2 Permutations as Words 1603
58.14 Automorphism Groups 1604
58.15 Cohomology 1606
58.16 Representation Theory 1608
58.17 Identification 1610
58.17.1 Identification as an Abstract Group 1610
58.17.2 Identification as a Permutation Group 1610
58.18 Base and Strong Generating Set 1615
58.18.1 Construction of a Base and Strong Generating Set 1615
58.18.2 Defining Values for Attributes 1618
58.18.3 Accessing the Base and Strong Generating Set 1619
58.18.4 Working with a Base and Strong Generating Set 1620
58.18.5 Modifying a Base and Strong Generating Set 1622
58.19 Permutation Representations of Linear Groups 1622
58.20 Permutation Group Databases 1628
58.21 Ordered Partition Stacks 1629
58.21.1 Construction of Ordered Partition Stacks 1629
58.21.2 Properties of Ordered Partition Stacks 1629
58.21.3 Operations on Ordered Partition Stacks 1630
58.22 Bibliography 1632

59 MATRIX GROUPS OVER GENERAL RINGS . . . . . . . . 1637

59.1 Introduction 1641
59.1.1 Introduction to Matrix Groups 1641
59.1.2 The Support 1642
59.1.3 The Category of Matrix Groups 1642
59.1.4 The Construction of a Matrix Group 1642
59.2 Creation of a Matrix Group 1642
59.2.1 Construction of the General Linear Group 1642
59.2.2 Construction of a Matrix Group Element 1643
59.2.3 Construction of a General Matrix Group 1645
59.2.4 Changing Rings 1646
59.2.5 Coercion between Matrix Structures 1647
59.2.6 Accessing Associated Structures 1647
59.3 Homomorphisms 1648
59.3.1 Construction of Extensions 1650
59.4 Operations on Matrices 1651
59.4.1 Arithmetic with Matrices 1652
59.4.2 Predicates for Matrices 1654
59.4.3 Matrix Invariants 1654
59.5 Global Properties 1657
59.5.1 Group Order 1658
59.5.2 Membership and Equality 1659
59.5.3 Set Operations 1660
59.6 Abstract Group Predicates 1662
59.7 Conjugacy 1664
59.8 Subgroups 1668
59.8.1 Construction of Subgroups 1668
59.8.2 Elementary Properties of Subgroups 1669
59.8.3 Standard Subgroups 1669
59.8.4 Low Index Subgroups 1671
59.8.5 Conjugacy Classes of Subgroups 1672



lxxxiv VOLUME 5: CONTENTS

59.9 Quotient Groups 1674
59.9.1 Construction of Quotient Groups 1675
59.9.2 Abelian, Nilpotent and Soluble Quotients 1676

59.10 Matrix Group Actions 1677
59.10.1 Orbits and Stabilizers 1678
59.10.2 Orbit and Stabilizer Functions for Large Groups 1680
59.10.3 Action on Orbits 1686
59.10.4 Action on a Coset Space 1688
59.10.5 Action on the Natural G-Module 1689

59.11 Normal and Subnormal Subgroups 1690
59.11.1 Characteristic Subgroups and Subgroup Series 1690
59.11.2 The Soluble Radical and its Quotient 1692
59.11.3 Composition and Chief Factors 1693

59.12 Coset Tables and Transversals 1695

59.13 Presentations 1695
59.13.1 Presentations 1695
59.13.2 Matrices as Words 1696

59.14 Automorphism Groups 1696

59.15 Representation Theory 1699

59.16 Base and Strong Generating Set 1702
59.16.1 Introduction 1702
59.16.2 Controlling Selection of a Base 1702
59.16.3 Construction of a Base and Strong Generating Set 1703
59.16.4 Defining Values for Attributes 1705
59.16.5 Accessing the Base and Strong Generating Set 1705

59.17 Soluble Matrix Groups 1706
59.17.1 Conversion to a PC-Group 1706
59.17.2 Soluble Group Functions 1706
59.17.3 p-group Functions 1707
59.17.4 Abelian Group Functions 1707

59.18 Bibliography 1707

60 MATRIX GROUPS OVER FINITE FIELDS . . . . . . . . . 1709

60.1 Introduction 1711

60.2 Finding Elements with Prescribed Properties 1711

60.3 Monte Carlo Algorithms for Subgroups 1712

60.4 Aschbacher Reduction 1715
60.4.1 Introduction 1715
60.4.2 Primitivity 1716
60.4.3 Semilinearity 1718
60.4.4 Tensor Products 1720
60.4.5 Tensor-induced Groups 1722
60.4.6 Normalisers of Extraspecial r-groups and Symplectic 2-groups 1724
60.4.7 Writing Representations over Subfields 1726
60.4.8 Decompositions with Respect to a Normal Subgroup 1729

60.5 Constructive Recognition for Simple Groups 1733

60.6 Composition Trees for Matrix Groups 1738

60.7 The LMG functions 1747

60.8 Unipotent Matrix Groups 1755

60.9 Bibliography 1757



VOLUME 5: CONTENTS lxxxv

61 MATRIX GROUPS OVER INFINITE FIELDS . . . . . . . . 1759

61.1 Overview 1761
61.2 Construction of Congruence Homomorphisms 1762
61.3 Testing Finiteness 1763
61.4 Deciding Virtual Properties of Linear Groups 1765
61.5 Other Properties of Linear Groups 1768
61.6 Other Functions for Nilpotent Matrix Groups 1770
61.7 Examples 1770
61.8 Bibliography 1777

62 MATRIX GROUPS OVER Q AND Z . . . . . . . . . . . . 1779

62.1 Overview 1781
62.2 Invariant Forms 1781
62.3 Endomorphisms 1782
62.4 New Groups From Others 1783
62.5 Perfect Forms and Normalizers 1783
62.6 Conjugacy 1784
62.7 Conjugacy Tests for Matrices 1785
62.8 Examples 1785
62.9 Bibliography 1787

63 FINITE SOLUBLE GROUPS . . . . . . . . . . . . . . . 1789

63.1 Introduction 1793
63.1.1 Power-Conjugate Presentations 1793
63.2 Creation of a Group 1794
63.2.1 Construction Functions 1794
63.2.2 Definition by Presentation 1795
63.2.3 Possibly Inconsistent Presentations 1798
63.3 Basic Group Properties 1799
63.3.1 Infrastructure 1799
63.3.2 Numerical Invariants 1800
63.3.3 Predicates 1800
63.4 Homomorphisms 1801
63.5 New Groups from Existing 1804
63.6 Elements 1808
63.6.1 Definition of Elements 1808
63.6.2 Arithmetic Operations on Elements 1810
63.6.3 Properties of Elements 1811
63.6.4 Predicates for Elements 1811
63.6.5 Set Operations 1812
63.7 Conjugacy 1815
63.8 Subgroups 1817
63.8.1 Definition of Subgroups by Generators 1817
63.8.2 Membership and Coercion 1818
63.8.3 Inclusion and Equality 1820
63.8.4 Standard Subgroup Constructions 1821
63.8.5 Properties of Subgroups 1822
63.8.6 Predicates for Subgroups 1823
63.8.7 Hall π-Subgroups and Sylow Systems 1825
63.8.8 Conjugacy Classes of Subgroups 1826
63.9 Quotient Groups 1830
63.9.1 Construction of Quotient Groups 1830
63.9.2 Abelian and p-Quotients 1831



lxxxvi VOLUME 5: CONTENTS

63.10 Normal Subgroups and Subgroup Series 1832
63.10.1 Characteristic Subgroups 1832
63.10.2 Subgroup Series 1833
63.10.3 Series for p-groups 1835
63.10.4 Normal Subgroups and Complements 1835
63.11 Cosets 1837
63.11.1 Coset Tables and Transversals 1837
63.11.2 Action on a Coset Space 1837
63.12 Automorphism Group 1838
63.12.1 General Soluble Group 1838
63.12.2 p-group 1842
63.12.3 Isomorphism and Standard Presentations 1844
63.13 Generating p-groups 1847
63.14 Representation Theory 1851
63.15 Central Extensions 1854
63.16 Transfer Between Group Categories 1857
63.16.1 Transfer to GrpPC 1857
63.16.2 Transfer from GrpPC 1858
63.17 More About Presentations 1860
63.17.1 Conditioned Presentations 1860
63.17.2 Special Presentations 1861
63.17.3 CompactPresentation 1864
63.18 Optimizing Magma Code 1865
63.18.1 PowerGroup 1865
63.19 Bibliography 1866

64 BLACK-BOX GROUPS . . . . . . . . . . . . . . . . . . 1869

64.1 Introduction 1871
64.2 Construction of an SLP-Group and its Elements 1871
64.2.1 Structure Constructors 1871
64.2.2 Construction of an Element 1871
64.3 Arithmetic with Elements 1871
64.3.1 Accessing the Defining Generators 1872
64.4 Operations on Elements 1872
64.4.1 Equality and Comparison 1872
64.4.2 Attributes of Elements 1872
64.5 Set-Theoretic Operations 1873
64.5.1 Membership and Equality 1873
64.5.2 Set Operations 1874
64.5.3 Coercions Between Related Groups 1874

65 ALMOST SIMPLE GROUPS . . . . . . . . . . . . . . . 1875

65.1 Introduction 1879
65.1.1 Overview 1879
65.2 Creating Finite Groups of Lie Type 1880
65.2.1 Generic Creation Function 1880
65.2.2 The Orders of the Chevalley Groups 1881
65.2.3 Classical Groups 1882
65.2.4 Exceptional Groups 1889
65.3 Group Recognition 1891
65.3.1 Constructive Recognition of Alternating Groups 1892
65.3.2 Determining the Type of a Finite Group of Lie Type 1895
65.3.3 Classical Forms 1898
65.3.4 Recognizing Classical Groups in their Natural Representation 1902



VOLUME 5: CONTENTS lxxxvii

65.3.5 Constructive Recognition of Linear Groups 1904
65.3.6 Constructive Recognition of Symplectic Groups 1908
65.3.7 Constructive Recognition of Unitary Groups 1908
65.3.8 Constructive Recognition of SL(d, q) in Low Degree 1909
65.3.9 Constructive Recognition of Suzuki Groups 1910
65.3.10 Constructive Recognition of Small Ree Groups 1916
65.3.11 Constructive Recognition of Large Ree Groups 1919
65.4 Properties of Finite Groups Of Lie Type 1921
65.4.1 Maximal Subgroups of the Classical Groups 1921
65.4.2 Maximal Subgroups of the Exceptional Groups 1922
65.4.3 Sylow Subgroups of the Classical Groups 1923
65.4.4 Sylow Subgroups of Exceptional Groups 1924
65.4.5 Conjugacy of Subgroups of the Classical Groups 1927
65.4.6 Conjugacy of Elements of the Exceptional Groups 1928
65.4.7 Irreducible Subgroups of the General Linear Group 1928
65.5 Atlas Data for the Sporadic Groups 1929
65.6 Bibliography 1932

66 DATABASES OF GROUPS . . . . . . . . . . . . . . . . 1935

66.1 Introduction 1939
66.2 Database of Small Groups 1940
66.2.1 Basic Small Group Functions 1941
66.2.2 Processes 1945
66.2.3 Small Group Identification 1947
66.2.4 Accessing Internal Data 1948
66.3 The p-groups of Order Dividing p7 1950
66.4 Metacyclic p-groups 1951
66.5 Database of Perfect Groups 1953
66.5.1 Specifying an Entry of the Database 1954
66.5.2 Creating the Database 1954
66.5.3 Accessing the Database 1954
66.5.4 Finding Legal Keys 1956
66.6 Database of Almost-Simple Groups 1958
66.6.1 The Record Fields 1958
66.6.2 Creating the Database 1959
66.6.3 Accessing the Database 1960
66.7 Database of Transitive Groups 1962
66.7.1 Accessing the Databases 1962
66.7.2 Processes 1965
66.7.3 Transitive Group Identification 1966
66.8 Database of Primitive Groups 1967
66.8.1 Accessing the Databases 1967
66.8.2 Processes 1969
66.8.3 Primitive Group Identification 1971
66.9 Database of Rational Maximal Finite Matrix Groups 1971
66.10 Database of Integral Maximal Finite Matrix Groups 1973
66.11 Database of Finite Quaternionic Matrix Groups 1975
66.12 Database of Finite Symplectic Matrix Groups 1976
66.13 Database of Irreducible Matrix Groups 1978
66.13.1 Accessing the Database 1978
66.14 Database of Quasisimple Matrix Groups 1979
66.15 Database of Soluble Irreducible Groups 1980
66.15.1 Basic Functions 1980
66.15.2 Searching with Predicates 1982
66.15.3 Associated Functions 1983



lxxxviii VOLUME 5: CONTENTS

66.15.4 Processes 1983
66.16 Database of ATLAS Groups 1985
66.16.1 Accessing the Database 1986
66.16.2 Accessing the ATLAS Groups 1986
66.16.3 Representations of the ATLAS Groups 1987
66.17 Fundamental Groups of 3-Manifolds 1988
66.17.1 Basic Functions 1988
66.17.2 Accessing the Data 1989
66.18 Bibliography 1990

67 AUTOMORPHISM GROUPS . . . . . . . . . . . . . . . 1993

67.1 Introduction 1995
67.2 Creation of Automorphism Groups 1996
67.3 Access Functions 1998
67.4 Order Functions 1999
67.5 Representations of an Automorphism Group 2001
67.6 Automorphisms 2003
67.7 Stored Attributes of an Automorphism Group 2006
67.8 Holomorphs 2009
67.9 Bibliography 2010

68 COHOMOLOGY AND EXTENSIONS . . . . . . . . . . . 2011

68.1 Introduction 2013
68.2 Creation of a Cohomology Module 2014
68.3 Accessing Properties of the Cohomology Module 2015
68.4 Calculating Cohomology 2016
68.5 Cocycles 2018
68.6 The Restriction to a Subgroup 2021
68.7 Other Operations on Cohomology Modules 2022
68.8 Constructing Extensions 2023
68.9 Constructing Distinct Extensions 2026
68.10 Finite Group Cohomology 2030
68.10.1 Creation of Gamma-groups 2031
68.10.2 Accessing Information 2032
68.10.3 One Cocycles 2033
68.10.4 Group Cohomology 2034
68.11 Bibliography 2037



VOLUME 6: CONTENTS lxxxix

VOLUME 6: CONTENTS

X FINITELY-PRESENTED GROUPS 2039

69 ABELIAN GROUPS . . . . . . . . . . . . . . . . . . . 2041

69.1 Introduction 2043

69.2 Construction of a Finitely Presented Abelian Group and its Elements 2043
69.2.1 The Free Abelian Group 2043
69.2.2 Relations 2044
69.2.3 Specification of a Presentation 2045
69.2.4 Accessing the Defining Generators and Relations 2046

69.3 Construction of a Generic Abelian Group 2047
69.3.1 Specification of a Generic Abelian Group 2047
69.3.2 Accessing Generators 2050
69.3.3 Computing Abelian Group Structure 2050

69.4 Elements 2052
69.4.1 Construction of Elements 2052
69.4.2 Representation of an Element 2053
69.4.3 Arithmetic with Elements 2054

69.5 Construction of Subgroups and Quotient Groups 2055
69.5.1 Construction of Subgroups 2055
69.5.2 Construction of Quotient Groups 2057

69.6 Standard Constructions and Conversions 2057

69.7 Operations on Elements 2059
69.7.1 Order of an Element 2059
69.7.2 Discrete Logarithm 2060
69.7.3 Equality and Comparison 2061

69.8 Invariants of an Abelian Group 2062

69.9 Canonical Decomposition 2062

69.10 Set-Theoretic Operations 2063
69.10.1 Functions Relating to Group Order 2063
69.10.2 Membership and Equality 2063
69.10.3 Set Operations 2064

69.11 Coset Spaces 2065
69.11.1 Coercions Between Groups and Subgroups 2065

69.12 Subgroup Constructions 2066

69.13 Subgroup Chains 2067

69.14 General Group Properties 2067
69.14.1 Properties of Subgroups 2068
69.14.2 Enumeration of Subgroups 2068

69.15 Representation Theory 2070

69.16 The Hom Functor 2070

69.17 Automorphism Groups 2072

69.18 Cohomology 2072

69.19 Homomorphisms 2072

69.20 Bibliography 2075



xc VOLUME 6: CONTENTS

70 FINITELY PRESENTED GROUPS . . . . . . . . . . . . 2077

70.1 Introduction 2081
70.1.1 Overview of Facilities 2081
70.1.2 The Construction of Finitely Presented Groups 2081
70.2 Free Groups and Words 2082
70.2.1 Construction of a Free Group 2082
70.2.2 Construction of Words 2083
70.2.3 Access Functions for Words 2083
70.2.4 Arithmetic Operators for Words 2085
70.2.5 Comparison of Words 2086
70.2.6 Relations 2087
70.3 Construction of an FP-Group 2089
70.3.1 The Quotient Group Constructor 2089
70.3.2 The FP-Group Constructor 2091
70.3.3 Construction from a Finite Permutation or Matrix Group 2092
70.3.4 Construction of the Standard Presentation for a Coxeter Group 2094
70.3.5 Conversion from a Special Form of FP-Group 2095
70.3.6 Construction of a Standard Group 2096
70.3.7 Construction of Extensions 2098
70.3.8 Accessing the Defining Generators and Relations 2100
70.4 Homomorphisms 2100
70.4.1 General Remarks 2100
70.4.2 Construction of Homomorphisms 2101
70.4.3 Accessing Homomorphisms 2101
70.4.4 Computing Homomorphisms to Finite Groups 2104
70.4.5 The L2-Quotient Algorithm 2112
70.4.6 Infinite L2 quotients 2119
70.4.7 Searching for Isomorphisms 2123
70.5 Abelian, Nilpotent and Soluble Quotient 2125
70.5.1 Abelian Quotient 2125
70.5.2 p-Quotient 2128
70.5.3 The Construction of a p-Quotient 2129
70.5.4 Nilpotent Quotient 2131
70.5.5 Soluble Quotient 2137
70.6 Subgroups 2140
70.6.1 Specification of a Subgroup 2140
70.6.2 Index of a Subgroup: The Todd-Coxeter Algorithm 2142
70.6.3 Implicit Invocation of the Todd-Coxeter Algorithm 2147
70.6.4 Constructing a Presentation for a Subgroup 2148
70.7 Subgroups of Finite Index 2152
70.7.1 Low Index Subgroups 2152
70.7.2 Subgroup Constructions 2161
70.7.3 Properties of Subgroups 2166
70.8 Coset Spaces and Tables 2170
70.8.1 Coset Tables 2170
70.8.2 Coset Spaces: Construction 2172
70.8.3 Coset Spaces: Elementary Operations 2173
70.8.4 Accessing Information 2174
70.8.5 Double Coset Spaces: Construction 2178
70.8.6 Coset Spaces: Selection of Cosets 2179
70.8.7 Coset Spaces: Induced Homomorphism 2180
70.9 Simplification 2183
70.9.1 Reducing Generating Sets 2183
70.9.2 Tietze Transformations 2183
70.10 Representation Theory 2194
70.11 Small Group Identification 2198



VOLUME 6: CONTENTS xci

70.11.1 Concrete Representations of Small Groups 2200
70.12 Bibliography 2200

71 FINITELY PRESENTED GROUPS: ADVANCED . . . . . . 2203

71.1 Introduction 2205
71.2 Low Level Operations on Presentations and Words 2205
71.2.1 Modifying Presentations 2206
71.2.2 Low Level Operations on Words 2208
71.3 Interactive Coset Enumeration 2210
71.3.1 Introduction 2210
71.3.2 Constructing and Modifying a Coset Enumeration Process 2211
71.3.3 Starting and Restarting an Enumeration 2216
71.3.4 Accessing Information 2218
71.3.5 Induced Permutation Representations 2227
71.3.6 Coset Spaces and Transversals 2228
71.4 p-Quotients (Process Version) 2231
71.4.1 The p-Quotient Process 2231
71.4.2 Using p-Quotient Interactively 2232
71.5 Soluble Quotients 2241
71.5.1 Introduction 2241
71.5.2 Construction 2241
71.5.3 Calculating the Relevant Primes 2243
71.5.4 The Functions 2243
71.6 Bibliography 2247

72 POLYCYCLIC GROUPS . . . . . . . . . . . . . . . . . 2249

72.1 Introduction 2251
72.2 Polycyclic Groups and Polycyclic Presentations 2251
72.2.1 Introduction 2251
72.2.2 Specification of Elements 2252
72.2.3 Access Functions for Elements 2252
72.2.4 Arithmetic Operations on Elements 2253
72.2.5 Operators for Elements 2254
72.2.6 Comparison Operators for Elements 2254
72.2.7 Specification of a Polycyclic Presentation 2255
72.2.8 Properties of a Polycyclic Presentation 2259
72.3 Subgroups, Quotient Groups, Homomorphisms and Extensions 2259
72.3.1 Construction of Subgroups 2259
72.3.2 Coercions Between Groups and Subgroups 2260
72.3.3 Construction of Quotient Groups 2261
72.3.4 Homomorphisms 2261
72.3.5 Construction of Extensions 2262
72.3.6 Construction of Standard Groups 2262
72.4 Conversion between Categories 2265
72.5 Access Functions for Groups 2266
72.6 Set-Theoretic Operations in a Group 2267
72.6.1 Functions Relating to Group Order 2267
72.6.2 Membership and Equality 2267
72.6.3 Set Operations 2268
72.7 Coset Spaces 2269
72.8 The Subgroup Structure 2272
72.8.1 General Subgroup Constructions 2272
72.8.2 Subgroup Constructions Requiring a Nilpotent Covering Group 2272
72.9 General Group Properties 2273



xcii VOLUME 6: CONTENTS

72.9.1 General Properties of Subgroups 2274
72.9.2 Properties of Subgroups Requiring a Nilpotent Covering Group 2274
72.10 Normal Structure and Characteristic Subgroups 2276
72.10.1 Characteristic Subgroups and Subgroup Series 2276
72.10.2 The Abelian Quotient Structure of a Group 2280
72.11 Conjugacy 2280
72.12 Representation Theory 2281
72.13 Power Groups 2287
72.14 Bibliography 2288

73 BRAID GROUPS . . . . . . . . . . . . . . . . . . . . 2289

73.1 Introduction 2291
73.1.1 Lattice Structure and Simple Elements 2292
73.1.2 Representing Elements of a Braid Group 2293
73.1.3 Normal Form for Elements of a Braid Group 2294
73.1.4 Mixed Canonical Form and Lattice Operations 2295
73.1.5 Conjugacy Testing and Conjugacy Search 2296
73.2 Constructing and Accessing Braid Groups 2298
73.3 Creating Elements of a Braid Group 2299
73.4 Working with Elements of a Braid Group 2305
73.4.1 Accessing Information 2305
73.4.2 Computing Normal Forms of Elements 2308
73.4.3 Arithmetic Operators and Functions for Elements 2311
73.4.4 Boolean Predicates for Elements 2315
73.4.5 Lattice Operations 2319
73.4.6 Invariants of Conjugacy Classes 2323
73.5 Homomorphisms 2332
73.5.1 General Remarks 2332
73.5.2 Constructing Homomorphisms 2332
73.5.3 Accessing Homomorphisms 2333
73.5.4 Representations of Braid Groups 2336
73.6 Bibliography 2338

74 GROUPS DEFINED BY REWRITE SYSTEMS . . . . . . . 2339

74.1 Introduction 2341
74.1.1 Terminology 2341
74.1.2 The Category of Rewrite Groups 2341
74.1.3 The Construction of a Rewrite Group 2341
74.2 Constructing Confluent Presentations 2342
74.2.1 The Knuth-Bendix Procedure 2342
74.2.2 Defining Orderings 2343
74.2.3 Setting Limits 2345
74.2.4 Accessing Group Information 2347
74.3 Properties of a Rewrite Group 2349
74.4 Arithmetic with Words 2350
74.4.1 Construction of a Word 2350
74.4.2 Element Operations 2351
74.5 Operations on the Set of Group Elements 2353
74.6 Homomorphisms 2355
74.6.1 General Remarks 2355
74.6.2 Construction of Homomorphisms 2355
74.7 Conversion to a Finitely Presented Group 2356
74.8 Bibliography 2356



VOLUME 6: CONTENTS xciii

75 AUTOMATIC GROUPS . . . . . . . . . . . . . . . . . . 2357

75.1 Introduction 2359
75.1.1 Terminology 2359
75.1.2 The Category of Automatic Groups 2359
75.1.3 The Construction of an Automatic Group 2359
75.2 Creation of Automatic Groups 2360
75.2.1 Construction of an Automatic Group 2360
75.2.2 Modifying Limits 2361
75.2.3 Accessing Group Information 2365
75.3 Properties of an Automatic Group 2366
75.4 Arithmetic with Words 2368
75.4.1 Construction of a Word 2368
75.4.2 Operations on Elements 2369
75.5 Homomorphisms 2371
75.5.1 General Remarks 2371
75.5.2 Construction of Homomorphisms 2372
75.6 Set Operations 2372
75.7 The Growth Function 2374
75.8 Bibliography 2375

76 GROUPS OF STRAIGHT-LINE PROGRAMS . . . . . . . . 2377

76.1 Introduction 2379
76.2 Construction of an SLP-Group and its Elements 2379
76.2.1 Structure Constructors 2379
76.2.2 Construction of an Element 2380
76.3 Arithmetic with Elements 2380
76.3.1 Accessing the Defining Generators and Relations 2380
76.4 Addition of Extra Generators 2381
76.5 Creating Homomorphisms 2381
76.6 Operations on Elements 2383
76.6.1 Equality and Comparison 2383
76.7 Set-Theoretic Operations 2383
76.7.1 Membership and Equality 2383
76.7.2 Set Operations 2384
76.7.3 Coercions Between Related Groups 2385
76.8 Bibliography 2385

77 FINITELY PRESENTED SEMIGROUPS . . . . . . . . . . 2387

77.1 Introduction 2389
77.2 The Construction of Free Semigroups and their Elements 2389
77.2.1 Structure Constructors 2389
77.2.2 Element Constructors 2390
77.3 Elementary Operators for Words 2390
77.3.1 Multiplication and Exponentiation 2390
77.3.2 The Length of a Word 2390
77.3.3 Equality and Comparison 2391
77.4 Specification of a Presentation 2392
77.4.1 Relations 2392
77.4.2 Presentations 2392
77.4.3 Accessing the Defining Generators and Relations 2393
77.5 Subsemigroups, Ideals and Quotients 2394
77.5.1 Subsemigroups and Ideals 2394
77.5.2 Quotients 2395



xciv VOLUME 6: CONTENTS

77.6 Extensions 2395
77.7 Elementary Tietze Transformations 2395
77.8 String Operations on Words 2397

78 MONOIDS GIVEN BY REWRITE SYSTEMS . . . . . . . . 2399

78.1 Introduction 2401
78.1.1 Terminology 2401
78.1.2 The Category of Rewrite Monoids 2401
78.1.3 The Construction of a Rewrite Monoid 2401
78.2 Construction of a Rewrite Monoid 2402
78.3 Basic Operations 2407
78.3.1 Accessing Monoid Information 2407
78.3.2 Properties of a Rewrite Monoid 2408
78.3.3 Construction of a Word 2410
78.3.4 Arithmetic with Words 2410
78.4 Homomorphisms 2412
78.4.1 General Remarks 2412
78.4.2 Construction of Homomorphisms 2412
78.5 Set Operations 2412
78.6 Conversion to a Finitely Presented Monoid 2414
78.7 Bibliography 2415



VOLUME 7: CONTENTS xcv

VOLUME 7: CONTENTS

XI ALGEBRAS 2417

79 ALGEBRAS . . . . . . . . . . . . . . . . . . . . . . . 2419

79.1 Introduction 2421
79.1.1 The Categories of Algebras 2421
79.2 Construction of General Algebras and their Elements 2421
79.2.1 Construction of a General Algebra 2422
79.2.2 Construction of an Element of a General Algebra 2423
79.3 Construction of Subalgebras, Ideals and Quotient Algebras 2423
79.3.1 Subalgebras and Ideals 2423
79.3.2 Quotient Algebras 2424
79.4 Operations on Algebras and Subalgebras 2424
79.4.1 Invariants of an Algebra 2424
79.4.2 Changing Rings 2425
79.4.3 Bases 2425
79.4.4 Decomposition of an Algebra 2426
79.4.5 Operations on Subalgebras 2428
79.5 Operations on Elements of an Algebra 2429
79.5.1 Operations on Elements 2429
79.5.2 Comparisons and Membership 2430
79.5.3 Predicates on Elements 2430

80 STRUCTURE CONSTANT ALGEBRAS . . . . . . . . . . 2431

80.1 Introduction 2433
80.2 Construction of Structure Constant Algebras and Elements 2433
80.2.1 Construction of a Structure Constant Algebra 2433
80.2.2 Construction of Elements of a Structure Constant Algebra 2434
80.3 Operations on Structure Constant Algebras and Elements 2435
80.3.1 Operations on Structure Constant Algebras 2435
80.3.2 Indexing Elements 2436
80.3.3 The Module Structure of a Structure Constant Algebra 2437
80.3.4 Homomorphisms 2437

81 ASSOCIATIVE ALGEBRAS . . . . . . . . . . . . . . . . 2441

81.1 Introduction 2443
81.2 Construction of Associative Algebras 2443
81.2.1 Construction of an Associative Structure Constant Algebra 2443
81.2.2 Associative Structure Constant Algebras from other Algebras 2444
81.3 Operations on Algebras and their Elements 2445
81.3.1 Operations on Algebras 2445
81.3.2 Operations on Elements 2447
81.3.3 Representations 2448
81.3.4 Decomposition of an Algebra 2448
81.4 Orders 2450
81.4.1 Creation of Orders 2451
81.4.2 Attributes 2454
81.4.3 Bases of Orders 2455



xcvi VOLUME 7: CONTENTS

81.4.4 Predicates 2456
81.4.5 Operations with Orders 2457
81.5 Elements of Orders 2458
81.5.1 Creation of Elements 2458
81.5.2 Arithmetic of Elements 2458
81.5.3 Predicates on Elements 2459
81.5.4 Other Operations with Elements 2459
81.6 Ideals of Orders 2460
81.6.1 Creation of Ideals 2460
81.6.2 Attributes of Ideals 2461
81.6.3 Arithmetic for Ideals 2462
81.6.4 Predicates on Ideals 2462
81.6.5 Other Operations on Ideals 2463
81.7 Quaternionic Orders 2465
81.8 Bibliography 2466

82 FINITELY PRESENTED ALGEBRAS . . . . . . . . . . . 2467

82.1 Introduction 2469
82.2 Representation and Monomial Orders 2469
82.3 Exterior Algebras 2470
82.4 Creation of Free Algebras and Elements 2470
82.4.1 Creation of Free Algebras 2470
82.4.2 Print Names 2470
82.4.3 Creation of Polynomials 2471
82.5 Structure Operations 2471
82.5.1 Related Structures 2471
82.5.2 Numerical Invariants 2471
82.5.3 Homomorphisms 2472
82.6 Element Operations 2473
82.6.1 Arithmetic Operators 2473
82.6.2 Equality and Membership 2473
82.6.3 Predicates on Algebra Elements 2473
82.6.4 Coefficients, Monomials, Terms and Degree 2474
82.6.5 Evaluation 2476
82.7 Ideals and Gröbner Bases 2477
82.7.1 Creation of Ideals 2477
82.7.2 Gröbner Bases 2478
82.7.3 Verbosity 2479
82.7.4 Related Functions 2480
82.8 Basic Operations on Ideals 2482
82.8.1 Construction of New Ideals 2483
82.8.2 Ideal Predicates 2483
82.8.3 Operations on Elements of Ideals 2484
82.9 Changing Coefficient Ring 2485
82.10 Finitely Presented Algebras 2485
82.11 Creation of FP-Algebras 2485
82.12 Operations on FP-Algebras 2487
82.13 Finite Dimensional FP-Algebras 2488
82.14 Vector Enumeration 2492
82.14.1 Finitely Presented Modules 2492
82.14.2 S-algebras 2492
82.14.3 Finitely Presented Algebras 2493
82.14.4 Vector Enumeration 2493
82.14.5 The Isomorphism 2494
82.14.6 Sketch of the Algorithm 2495



VOLUME 7: CONTENTS xcvii

82.14.7 Weights 2495
82.14.8 Setup Functions 2496
82.14.9 The Quotient Module Function 2496
82.14.10 Structuring Presentations 2496
82.14.11 Options and Controls 2497
82.14.12 Weights 2497
82.14.13 Limits 2498
82.14.14 Logging 2499
82.14.15 Miscellaneous 2500

82.15 Bibliography 2503

83 MATRIX ALGEBRAS . . . . . . . . . . . . . . . . . . 2505

83.1 Introduction 2509

83.2 Construction of Matrix Algebras and their Elements 2509
83.2.1 Construction of the Complete Matrix Algebra 2509
83.2.2 Construction of a Matrix 2509
83.2.3 Constructing a General Matrix Algebra 2511
83.2.4 The Invariants of a Matrix Algebra 2512

83.3 Construction of Subalgebras, Ideals and Quotient Rings 2513

83.4 The Construction of Extensions and their Elements 2515
83.4.1 The Construction of Direct Sums and Tensor Products 2515
83.4.2 Construction of Direct Sums and Tensor Products of Elements 2517

83.5 Operations on Matrix Algebras 2518

83.6 Changing Rings 2518

83.7 Elementary Operations on Elements 2518
83.7.1 Arithmetic 2518
83.7.2 Predicates 2519

83.8 Elements of Mn as Homomorphisms 2523

83.9 Elementary Operations on Subalgebras and Ideals 2524
83.9.1 Bases 2524
83.9.2 Intersection of Subalgebras 2524
83.9.3 Membership and Equality 2524

83.10 Accessing and Modifying a Matrix 2525
83.10.1 Indexing 2525
83.10.2 Extracting and Inserting Blocks 2526
83.10.3 Joining Matrices 2526
83.10.4 Row and Column Operations 2527

83.11 Canonical Forms 2527
83.11.1 Canonical Forms for Matrices over Euclidean Domains 2527
83.11.2 Canonical Forms for Matrices over a Field 2529

83.12 Diagonalising Commutative Algebras over a Field 2532

83.13 Solutions of Systems of Linear Equations 2534

83.14 Presentations for Matrix Algebras 2535
83.14.1 Quotients and Idempotents 2535
83.14.2 Generators and Presentations 2538
83.14.3 Solving the Word Problem 2542

83.15 Bibliography 2544



xcviii VOLUME 7: CONTENTS

84 GROUP ALGEBRAS . . . . . . . . . . . . . . . . . . . 2545

84.1 Introduction 2547

84.2 Construction of Group Algebras and their Elements 2547
84.2.1 Construction of a Group Algebra 2547
84.2.2 Construction of a Group Algebra Element 2549

84.3 Construction of Subalgebras, Ideals and Quotient Algebras 2550

84.4 Operations on Group Algebras and their Subalgebras 2552
84.4.1 Operations on Group Algebras 2552
84.4.2 Operations on Subalgebras of Group Algebras 2553

84.5 Operations on Elements 2555

85 BASIC ALGEBRAS . . . . . . . . . . . . . . . . . . . 2559

85.1 Introduction 2563

85.2 Basic Algebras 2563
85.2.1 Creation 2563
85.2.2 Special Basic Algebras 2564
85.2.3 Access Functions 2570
85.2.4 Elementary Operations 2571
85.2.5 Boolean Functions 2575

85.3 Homomorphisms 2575

85.4 Subalgebras and Quotient Algebras 2576
85.4.1 Subalgebras and their Constructions 2576
85.4.2 Ideals and their Construction 2577
85.4.3 Quotient Algebras 2578

85.5 Minimal Forms and Gradings 2579

85.6 Automorphisms and Isomorphisms 2581

85.7 Modules over Basic Algebras 2583
85.7.1 Indecomposable Projective Modules 2583
85.7.2 Creation 2584
85.7.3 Access Functions 2585
85.7.4 Predicates 2587
85.7.5 Elementary Operations 2588

85.8 Homomorphisms of Modules 2590
85.8.1 Creation 2590
85.8.2 Access Functions 2591
85.8.3 Projective Covers and Resolutions 2592

85.9 Duals and Injectives 2596
85.9.1 Injective Modules 2597

85.10 Cohomology 2600
85.10.1 Ext-Algebras 2605

85.11 Group Algebras of p-groups 2607
85.11.1 Access Functions 2608
85.11.2 Projective Resolutions 2608
85.11.3 Cohomology Generators 2609
85.11.4 Cohomology Rings 2610
85.11.5 Restrictions and Inflations 2610

85.12 A-infinity Algebra Structures on Group Cohomology 2614
85.12.1 Homological Algebra Toolkit 2616

85.13 Bibliography 2618



VOLUME 7: CONTENTS xcix

86 QUATERNION ALGEBRAS . . . . . . . . . . . . . . . . 2619

86.1 Introduction 2621
86.2 Creation of Quaternion Algebras 2622
86.3 Creation of Quaternion Orders 2626
86.3.1 Creation of Orders from Elements 2627
86.3.2 Creation of Maximal Orders 2628
86.3.3 Creation of Orders with given Discriminant 2630
86.3.4 Creation of Orders with given Discriminant over the Integers 2631
86.4 Elements of Quaternion Algebras 2632
86.4.1 Creation of Elements 2632
86.4.2 Arithmetic of Elements 2632
86.5 Attributes of Quaternion Algebras 2634
86.6 Hilbert Symbols and Embeddings 2636
86.7 Predicates on Algebras 2639
86.8 Recognition Functions 2640
86.9 Attributes of Orders 2642
86.10 Predicates of Orders 2643
86.11 Operations with Orders 2644
86.12 Ideal Theory of Orders 2645
86.12.1 Creation and Access Functions 2645
86.12.2 Enumeration of Ideal Classes 2648
86.12.3 Operations on Ideals 2651
86.13 Norm Spaces and Basis Reduction 2652
86.14 Isomorphisms 2654
86.14.1 Isomorphisms of Algebras 2654
86.14.2 Isomorphisms of Orders 2655
86.14.3 Isomorphisms of Ideals 2655
86.14.4 Examples 2657
86.15 Units and Unit Groups 2659
86.16 Bibliography 2661

87 ALGEBRAS WITH INVOLUTION . . . . . . . . . . . . . 2663

87.1 Introduction 2665
87.2 Algebras with Involution 2665
87.2.1 Reflexive Forms 2666
87.2.2 Systems of Reflexive Forms 2666
87.2.3 Basic Attributes of ∗-Algebras 2667
87.2.4 Adjoint Algebras 2668
87.2.5 Group Algebras 2669
87.2.6 Simple ∗-Algebras 2670
87.3 Decompositions of ∗-Algebras 2671
87.4 Recognition of ∗-Algebras 2672
87.4.1 Recognition of Simple ∗-Algebras 2672
87.4.2 Recognition of Arbitrary ∗-Algebras 2673
87.5 Intersections of Classical Groups 2675
87.6 Bibliography 2677

88 CLIFFORD ALGEBRAS . . . . . . . . . . . . . . . . . 2679

88.1 Introduction 2681
88.2 Clifford Algebras and their Elements 2681
88.2.1 Elements of a Clifford Algebra 2682
88.3 Bibliography 2682



c VOLUME 7: CONTENTS

XII REPRESENTATION THEORY 2683

89 MODULES OVER AN ALGEBRA . . . . . . . . . . . . . 2685

89.1 Introduction 2687

89.2 Modules over a Matrix Algebra 2688
89.2.1 Construction of an A-Module 2688
89.2.2 Accessing Module Information 2689
89.2.3 Standard Constructions 2691
89.2.4 Element Construction and Operations 2692
89.2.5 Submodules 2694
89.2.6 Quotient Modules 2697
89.2.7 Structure of a Module 2698
89.2.8 Decomposability and Complements 2704
89.2.9 Lattice of Submodules 2706
89.2.10 Homomorphisms 2710

89.3 Modules over a General Algebra 2716
89.3.1 Introduction 2716
89.3.2 Construction of Algebra Modules 2716
89.3.3 The Action of an Algebra Element 2717
89.3.4 Related Structures of an Algebra Module 2717
89.3.5 Properties of an Algebra Module 2718
89.3.6 Creation of Algebra Modules from other Algebra Modules 2718

90 K[G]-MODULES AND GROUP REPRESENTATIONS . . . . 2721

90.1 Introduction 2723

90.2 Construction of K[G]-Modules 2723
90.2.1 General K[G]-Modules 2723
90.2.2 Natural K[G]-Modules 2725
90.2.3 Action on an Elementary Abelian Section 2726
90.2.4 Permutation Modules 2727
90.2.5 Action on a Polynomial Ring 2729

90.3 The Representation Afforded by a K[G]-module 2730

90.4 Standard Constructions 2732
90.4.1 Changing the Coefficient Ring 2732
90.4.2 Writing a Module over a Smaller Field 2733
90.4.3 Direct Sum 2737
90.4.4 Tensor Products of K[G]-Modules 2737
90.4.5 Induction and Restriction 2738
90.4.6 The Fixed-point Space of a Module 2739
90.4.7 Changing Basis 2739

90.5 The Construction of all Irreducible Modules 2740
90.5.1 Generic Functions for Finding Irreducible Modules 2740
90.5.2 The Burnside Algorithm 2743
90.5.3 The Schur Algorithm for Soluble Groups 2744
90.5.4 The Rational Algorithm 2747

90.6 Extensions of Modules 2750

90.7 The Construction of Projective Indecomposable Modules 2751



VOLUME 7: CONTENTS ci

91 CHARACTERS OF FINITE GROUPS . . . . . . . . . . . 2757

91.1 Creation Functions 2759
91.1.1 Structure Creation 2759
91.1.2 Element Creation 2759
91.1.3 The Table of Irreducible Characters 2760
91.2 Character Ring Operations 2764
91.2.1 Related Structures 2764
91.3 Element Operations 2765
91.3.1 Arithmetic 2765
91.3.2 Predicates and Booleans 2765
91.3.3 Accessing Class Functions 2766
91.3.4 Conjugation of Class Functions 2767
91.3.5 Functions Returning a Scalar 2767
91.3.6 The Schur Index 2768
91.3.7 Attribute 2771
91.3.8 Induction, Restriction and Lifting 2771
91.3.9 Symmetrization 2772
91.3.10 Permutation Character 2773
91.3.11 Composition and Decomposition 2773
91.3.12 Finding Irreducibles 2773
91.3.13 Brauer Characters 2776
91.4 Bibliography 2778

92 REPRESENTATIONS OF SYMMETRIC GROUPS . . . . . . 2779

92.1 Introduction 2781
92.2 Representations of the Symmetric Group 2781
92.2.1 Integral Representations 2781
92.2.2 The Seminormal and Orthogonal Representations 2782
92.3 Characters of the Symmetric Group 2783
92.3.1 Single Values 2783
92.3.2 Irreducible Characters 2783
92.3.3 Character Table 2783
92.4 Representations of the Alternating Group 2783
92.5 Characters of the Alternating Group 2784
92.5.1 Single Values 2784
92.5.2 Irreducible Characters 2784
92.5.3 Character Table 2784
92.6 Bibliography 2785

93 MOD P GALOIS REPRESENTATIONS . . . . . . . . . . . 2787

93.1 Introduction 2789
93.1.1 Motivation 2789
93.1.2 Definitions 2789
93.1.3 Classification of ϕ-modules 2790
93.1.4 Connection with Galois Representations 2790
93.2 ϕ-modules and Galois Representations in Magma 2790
93.2.1 ϕ-modules 2791
93.2.2 Semisimple Galois Representations 2792
93.3 Examples 2793



cii VOLUME 8: CONTENTS

VOLUME 8: CONTENTS

XIII LIE THEORY 2795

94 INTRODUCTION TO LIE THEORY . . . . . . . . . . . . 2797

94.1 Descriptions of Coxeter Groups 2799

94.2 Root Systems and Root Data 2800

94.3 Coxeter and Reflection Groups 2800

94.4 Lie Algebras and Groups of Lie Type 2801

94.5 Highest Weight Representations 2801

94.6 Universal Enveloping Algebras and Quantum Groups 2801

94.7 Bibliography 2802

95 COXETER SYSTEMS . . . . . . . . . . . . . . . . . . 2803

95.1 Introduction 2805

95.2 Coxeter Matrices 2805

95.3 Coxeter Graphs 2807

95.4 Cartan Matrices 2809

95.5 Dynkin Digraphs 2812

95.6 Finite and Affine Coxeter Groups 2814

95.7 Hyperbolic Groups 2822

95.8 Related Structures 2823

95.9 Bibliography 2825

96 ROOT SYSTEMS . . . . . . . . . . . . . . . . . . . . 2827

96.1 Introduction 2829
96.1.1 Reflections 2829
96.1.2 Definition of a Root System 2829
96.1.3 Simple and Positive Roots 2830
96.1.4 The Coxeter Group 2830
96.1.5 Nonreduced Root Systems 2831

96.2 Constructing Root Systems 2831

96.3 Operators on Root Systems 2835

96.4 Properties of Root Systems 2837

96.5 Roots and Coroots 2838
96.5.1 Accessing Roots and Coroots 2838
96.5.2 Reflections 2841
96.5.3 Operations and Properties for Roots and Coroot Indices 2843

96.6 Building Root Systems 2846

96.7 Related Structures 2848

96.8 Bibliography 2848



VOLUME 8: CONTENTS ciii

97 ROOT DATA . . . . . . . . . . . . . . . . . . . . . . 2849

97.1 Introduction 2853
97.1.1 Reflections 2853
97.1.2 Definition of a Split Root Datum 2854
97.1.3 Simple and Positive Roots 2854
97.1.4 The Coxeter Group 2854
97.1.5 Nonreduced Root Data 2855
97.1.6 Isogeny of Split Reduced Root Data 2855
97.1.7 Extended Root Data 2856

97.2 Constructing Root Data 2856
97.2.1 Constructing Sparse Root Data 2862

97.3 Operations on Root Data 2864

97.4 Properties of Root Data 2871

97.5 Roots, Coroots and Weights 2874
97.5.1 Accessing Roots and Coroots 2874
97.5.2 Reflections 2881
97.5.3 Operations and Properties for Root and Coroot Indices 2883
97.5.4 Weights 2886

97.6 Building Root Data 2888

97.7 Morphisms of Root Data 2894

97.8 Constants Associated with Root Data 2896

97.9 Related Structures 2899

97.10 Bibliography 2900

98 COXETER GROUPS . . . . . . . . . . . . . . . . . . . 2901

98.1 Introduction 2903
98.1.1 The Normal Form for Words 2904

98.2 Constructing Coxeter Groups 2904

98.3 Converting Between Types of Coxeter Group 2907

98.4 Operations on Coxeter Groups 2910

98.5 Properties of Coxeter Groups 2915

98.6 Operations on Elements 2916

98.7 Roots, Coroots and Reflections 2918
98.7.1 Accessing Roots and Coroots 2918
98.7.2 Operations and Properties for Root and Coroot Indices 2921
98.7.3 Weights 2924

98.8 Reflections 2925

98.9 Reflection Subgroups 2927

98.10 Root Actions 2930

98.11 Standard Action 2932

98.12 Braid Groups 2932

98.13 W -graphs 2933

98.14 Related Structures 2938

98.15 Bibliography 2939



civ VOLUME 8: CONTENTS

99 REFLECTION GROUPS . . . . . . . . . . . . . . . . . 2941

99.1 Introduction 2943
99.2 Construction of Pseudo-reflections 2943
99.2.1 Pseudo-reflections Preserving Reflexive Forms 2946
99.3 Construction of Reflection Groups 2948
99.4 Construction of Real Reflection Groups 2948
99.5 Construction of Finite Complex Reflection Groups 2951
99.6 Operations on Reflection Groups 2959
99.7 Properties of Reflection Groups 2963
99.8 Roots, Coroots and Reflections 2965
99.8.1 Accessing Roots and Coroots 2965
99.8.2 Reflections 2968
99.8.3 Weights 2969
99.9 Related Structures 2971
99.10 Bibliography 2971

100 LIE ALGEBRAS . . . . . . . . . . . . . . . . . . . . . 2973

100.1 Introduction 2977
100.1.1 Guide for the Reader 2977
100.2 Constructors for Lie Algebras 2978
100.3 Finitely Presented Lie Algebras 2981
100.3.1 Construction of the Free Lie Algebra 2982
100.3.2 Properties of the Free Lie Algebra 2982
100.3.3 Operations on Elements of the Free Lie Algebra 2983
100.3.4 Construction of a Finitely-Presented Lie Algebra 2984
100.3.5 Homomorphisms of the Free Lie Algebra 2988
100.4 Lie Algebras Generated by Extremal Elements 2989
100.4.1 Constructing Lie Algebras Generated by Extremal Elements 2990
100.4.2 Properties of Lie Algebras Generated by Extremal Elements 2991
100.4.3 Instances of Lie Algebras Generated by Extremal Elements 2995
100.4.4 Studying the Parameter Space 2997
100.5 Families of Lie Algebras 3000
100.5.1 Almost Reductive Lie Algebras 3000
100.5.2 Cartan-Type Lie Algebras 3003
100.5.3 Melikian Lie Algebras 3008
100.6 Construction of Elements 3009
100.6.1 Construction of Elements of Structure Constant Algebras 3010
100.6.2 Construction of Matrix Elements 3010
100.7 Construction of Subalgebras, Ideals and Quotients 3011
100.8 Operations on Lie Algebras 3013
100.8.1 Basic Invariants 3016
100.8.2 Changing Base Rings 3017
100.8.3 Bases 3017
100.8.4 Operations for Semisimple and Reductive Lie Algebras 3018
100.9 Operations on Subalgebras and Ideals 3025
100.9.1 Standard Ideals and Subalgebras 3026
100.9.2 Cartan and Toral Subalgebras 3027
100.9.3 Standard Series 3029
100.9.4 The Lie Algebra of Derivations 3031
100.10 Properties of Lie Algebras and Ideals 3032
100.11 Operations on Elements 3034
100.11.1 Indexing 3035
100.12 The Natural Module 3036
100.13 Operations for Matrix Lie Algebras 3037



VOLUME 8: CONTENTS cv

100.14 Homomorphisms 3037

100.15 Automorphisms of Classical-type Reductive Algebras 3038

100.16 Restrictable Lie Algebras 3039

100.17 Universal Enveloping Algebras 3041
100.17.1 Background 3041
100.17.2 Construction of Universal Enveloping Algebras 3042
100.17.3 Related Structures 3043
100.17.4 Elements of Universal Enveloping Algebras 3043

100.18 Solvable and Nilpotent Lie Algebras Classification 3046
100.18.1 The List of Solvable Lie Algebras 3046
100.18.2 Comments on the Classification over Finite Fields 3047
100.18.3 The List of Nilpotent Lie Algebras 3048
100.18.4 Intrinsics for Working with the Classifications 3049

100.19 Semisimple Subalgebras of Simple Lie Algebras 3053

100.20 Nilpotent Orbits in Simple Lie Algebras 3055

100.21 Bibliography 3059

101 KAC-MOODY LIE ALGEBRAS . . . . . . . . . . . . . . 3061

101.1 Introduction 3063

101.2 Generalized Cartan Matrices 3064

101.3 Affine Kac-Moody Lie Algebras 3065
101.3.1 Constructing Affine Kac-Moody Lie Algebras 3065
101.3.2 Properties of Affine Kac-Moody Lie Algebras 3066
101.3.3 Constructing Elements of Affine Kac-Moody Lie Algebras 3067
101.3.4 Properties of Elements of Affine Kac-Moody Lie Algebras 3068

101.4 Bibliography 3069

102 QUANTUM GROUPS . . . . . . . . . . . . . . . . . . 3071

102.1 Introduction 3073

102.2 Background 3073
102.2.1 Gaussian Binomials 3073
102.2.2 Quantized Enveloping Algebras 3074
102.2.3 Representations of Uq(L) 3075
102.2.4 PBW-type Bases 3075
102.2.5 The Z-form of Uq(L) 3076
102.2.6 The Canonical Basis 3077
102.2.7 The Path Model 3078

102.3 Gauss Numbers 3079

102.4 Construction 3080

102.5 Related Structures 3081

102.6 Operations on Elements 3082

102.7 Representations 3084

102.8 Hopf Algebra Structure 3087

102.9 Automorphisms 3088

102.10 Kashiwara Operators 3090

102.11 The Path Model 3090

102.12 Elements of the Canonical Basis 3093

102.13 Homomorphisms to the Universal Enveloping Algebra 3095

102.14 Bibliography 3096



cvi VOLUME 8: CONTENTS

103 GROUPS OF LIE TYPE . . . . . . . . . . . . . . . . . 3097

103.1 Introduction 3101
103.1.1 The Steinberg Presentation 3101
103.1.2 Bruhat Normalisation 3101
103.1.3 Twisted Groups of Lie type 3102
103.2 Constructing Groups of Lie Type 3102
103.2.1 Split Groups 3102
103.2.2 Galois Cohomology 3105
103.2.3 Twisted Groups 3109
103.3 Operations on Groups of Lie Type 3110
103.4 Properties of Groups of Lie Type 3114
103.5 Constructing Elements 3115
103.6 Operations on Elements 3117
103.6.1 Basic Operations 3117
103.6.2 Decompositions 3119
103.6.3 Conjugacy and Cohomology 3119
103.7 Properties of Elements 3120
103.8 Roots, Coroots and Weights 3120
103.8.1 Accessing Roots and Coroots 3121
103.8.2 Reflections 3123
103.8.3 Operations and Properties for Root and Coroot Indices 3124
103.8.4 Weights 3125
103.9 Building Groups of Lie Type 3125
103.10 Automorphisms 3127
103.10.1 Basic Functionality 3127
103.10.2 Constructing Special Automorphisms 3128
103.10.3 Operations and Properties of Automorphisms 3129
103.11 Algebraic Homomorphisms 3130
103.12 Twisted Tori 3130
103.13 Sylow Subgroups 3132
103.14 Representations 3133
103.15 Bibliography 3135

104 REPRESENTATIONS OF LIE GROUPS AND ALGEBRAS . . 3137

104.1 Introduction 3139
104.1.1 Highest Weight Modules 3139
104.1.2 Toral Elements 3140
104.1.3 Other Highest Weight Representations 3140
104.2 Constructing Weight Multisets 3141
104.3 Constructing Representations 3142
104.3.1 Lie Algebras 3142
104.3.2 Groups of Lie Type 3146
104.4 Operations on Weight Multisets 3148
104.4.1 Basic Operations 3148
104.4.2 Conversion Functions 3151
104.4.3 Calculating with Representations 3152
104.5 Operations on Representations 3162
104.5.1 Lie Algebras 3162
104.5.2 Groups of Lie Type 3166
104.6 Other Functions for Representation Decompositions 3167
104.6.1 Operations Related to the Symmetric Group 3171
104.6.2 FusionRules 3172
104.7 Subgroups of Small Rank 3173
104.8 Subalgebras of su(d) 3174
104.9 Bibliography 3176



VOLUME 9: CONTENTS cvii

VOLUME 9: CONTENTS

XIV COMMUTATIVE ALGEBRA 3177

105 GRÖBNER BASES . . . . . . . . . . . . . . . . . . . . 3179

105.1 Introduction 3181
105.2 Representation and Monomial Orders 3181
105.2.1 Lexicographical: lex 3182
105.2.2 Graded Lexicographical: glex 3182
105.2.3 Graded Reverse Lexicographical: grevlex 3182
105.2.4 Graded Reverse Lexicographical (Weighted): grevlexw 3183
105.2.5 Elimination (k): elim 3183
105.2.6 Elimination List: elim 3183
105.2.7 Inverse Block: invblock 3184
105.2.8 Univariate: univ 3184
105.2.9 Weight: weight 3184
105.3 Polynomial Rings and Ideals 3185
105.3.1 Creation of Polynomial Rings and Accessing their Monomial Orders 3185
105.3.2 Creation of Graded Polynomial Rings 3187
105.3.3 Element Operations Using the Grading 3188
105.3.4 Creation of Ideals and Accessing their Bases 3191
105.4 Gröbner Bases 3192
105.4.1 Gröbner Bases over Fields 3192
105.4.2 Gröbner Bases over Euclidean Rings 3192
105.4.3 Construction of Gröbner Bases 3194
105.4.4 Related Functions 3199
105.4.5 Gröbner Bases of Boolean Polynomial Rings 3201
105.4.6 Verbosity 3202
105.4.7 Degree-d Gröbner Bases 3214
105.5 Changing Coefficient Ring 3216
105.6 Changing Monomial Order 3216
105.7 Hilbert-driven Gröbner Basis Construction 3218
105.8 SAT solver 3220
105.9 Bibliography 3221

106 POLYNOMIAL RING IDEAL OPERATIONS . . . . . . . . 3223

106.1 Introduction 3225
106.2 Creation of Polynomial Rings and their Ideals 3226
106.3 First Operations on Ideals 3226
106.3.1 Simple Ideal Constructions 3226
106.3.2 Basic Commutative Algebra Operations 3226
106.3.3 Ideal Predicates 3229
106.3.4 Element Operations with Ideals 3231
106.4 Computation of Varieties 3233
106.5 Multiplicities 3235
106.6 Elimination 3236
106.6.1 Construction of Elimination Ideals 3236
106.6.2 Univariate Elimination Ideal Generators 3238
106.6.3 Relation Ideals 3241



cviii VOLUME 9: CONTENTS

106.7 Variable Extension of Ideals 3242

106.8 Homogenization of Ideals 3243

106.9 Extension and Contraction of Ideals 3243

106.10 Dimension of Ideals 3244

106.11 Radical and Decomposition of Ideals 3245
106.11.1 Radical 3245
106.11.2 Primary Decomposition 3246
106.11.3 Triangular Decomposition 3252
106.11.4 Equidimensional Decomposition 3254

106.12 Normalisation and Noether Normalisation 3255
106.12.1 Noether Normalisation 3255
106.12.2 Normalisation 3256

106.13 Hilbert Series and Hilbert Polynomial 3259

106.14 Syzygies 3262

106.15 Maps between Rings 3263

106.16 Symmetric Polynomials 3264

106.17 Functions for Polynomial Algebra and Module Generators 3265

106.18 Bibliography 3268

107 LOCAL POLYNOMIAL RINGS . . . . . . . . . . . . . . 3271

107.1 Introduction 3273

107.2 Elements and Local Monomial Orders 3273
107.2.1 Local Lexicographical: llex 3274
107.2.2 Local Graded Lexicographical: lglex 3274
107.2.3 Local Graded Reverse Lexicographical: lgrevlex 3274

107.3 Local Polynomial Rings and Ideals 3275
107.3.1 Creation of Local Polynomial Rings and Accessing their Monomial Orders 3275
107.3.2 Creation of Ideals and Accessing their Bases 3276

107.4 Standard Bases 3277
107.4.1 Construction of Standard Bases 3278

107.5 Operations on Ideals 3280
107.5.1 Basic Operations 3280
107.5.2 Ideal Predicates 3281
107.5.3 Operations on Elements of Ideals 3283

107.6 Changing Coefficient Ring 3283

107.7 Changing Monomial Order 3284

107.8 Dimension of Ideals 3284

107.9 Bibliography 3284

108 AFFINE ALGEBRAS . . . . . . . . . . . . . . . . . . . 3285

108.1 Introduction 3287

108.2 Creation of Affine Algebras 3287

108.3 Operations on Affine Algebras 3289

108.4 Maps between Affine Algebras 3292

108.5 Finite Dimensional Affine Algebras 3292

108.6 Affine Algebras which are Fields 3294

108.7 Rings and Fields of Fractions of Affine Algebras 3296



VOLUME 9: CONTENTS cix

109 MODULES OVER MULTIVARIATE RINGS . . . . . . . . . 3301

109.1 Introduction 3303
109.2 Module Basics: Embedded and Reduced Modules 3303
109.3 Monomial Orders 3305
109.3.1 Term Over Position: TOP 3306
109.3.2 Term Over Position (Weighted): TOPW 3306
109.3.3 Position Over Term: POT 3306
109.3.4 Position Over Term (Permutation): POTPERM 3307
109.3.5 Block TOP-TOP: TOPTOP 3307
109.3.6 Block TOP-POT: TOPPOT 3307
109.4 Basic Creation and Access 3307
109.4.1 Creation of Ambient Embedded Modules 3307
109.4.2 Creation of Reduced Modules 3308
109.4.3 Localization 3308
109.4.4 Basic Invariants 3309
109.4.5 Creation of Module Elements 3310
109.4.6 Element Operations 3311
109.5 The Homomorphism Type 3315
109.6 Submodules and Quotient Modules 3318
109.6.1 Creation 3318
109.6.2 Module Bases 3319
109.7 Basic Module Constructions 3322
109.8 Predicates 3323
109.9 Module Operations 3324
109.10 Changing Ring 3326
109.11 Hilbert Series 3326
109.12 Free Resolutions 3328
109.12.1 Constructing Free Resolutions 3328
109.12.2 Betti Numbers and Related Invariants 3332
109.13 The Hom Module and Ext 3342
109.14 Tensor Products and Tor 3345
109.15 Cohomology Of Coherent Sheaves 3347
109.16 Bibliography 3351

110 INVARIANT THEORY . . . . . . . . . . . . . . . . . . 3353

110.1 Introduction 3355
110.2 Invariant Rings of Finite Groups 3356
110.2.1 Creation 3356
110.2.2 Access 3356
110.3 Group Actions on Polynomials 3357
110.4 Permutation Group Actions on Polynomials 3357
110.5 Matrix Group Actions on Polynomials 3358
110.6 Algebraic Group Actions on Polynomials 3359
110.7 Verbosity 3359
110.8 Construction of Invariants of Specified Degree 3359
110.9 Construction of G-modules 3363
110.10 Molien Series 3364
110.11 Primary Invariants 3365
110.12 Secondary Invariants 3366
110.13 Fundamental Invariants 3368
110.14 The Module of an Invariant Ring 3373
110.15 The Algebra of an Invariant Ring and Algebraic Relations 3374
110.16 Properties of Invariant Rings 3378



cx VOLUME 9: CONTENTS

110.17 Steenrod Operations 3379
110.18 Minimalization and Homogeneous Module Testing 3380
110.19 Attributes of Invariant Rings and Fields 3383
110.20 Invariant Rings of Linear Algebraic Groups 3385
110.20.1 Creation 3386
110.20.2 Access 3386
110.20.3 Functions 3386
110.21 Invariant Fields 3392
110.21.1 Creation 3392
110.21.2 Access 3393
110.21.3 Functions for Invariant Fields 3393
110.22 Invariants of the Symmetric Group 3396
110.23 Bibliography 3398

111 DIFFERENTIAL RINGS . . . . . . . . . . . . . . . . . 3399

111.1 Introduction 3403
111.2 Differential Rings and Fields 3404
111.2.1 Creation 3404
111.2.2 Creation of Differential Ring Elements 3406
111.3 Structure Operations on Differential Rings 3407
111.3.1 Category and Parent 3407
111.3.2 Related Structures 3407
111.3.3 Derivation and Differential 3409
111.3.4 Numerical Invariants 3409
111.3.5 Predicates and Booleans 3410
111.3.6 Precision 3411
111.4 Element Operations on Differential Ring Elements 3413
111.4.1 Category and Parent 3413
111.4.2 Arithmetic 3413
111.4.3 Predicates and Booleans 3414
111.4.4 Coefficients and Terms 3415
111.4.5 Conjugates, Norm and Trace 3416
111.4.6 Derivatives and Differentials 3417
111.5 Changing Related Structures 3417
111.6 Ring and Field Extensions 3421
111.7 Ideals and Quotient Rings 3426
111.7.1 Defining Ideals and Quotient Rings 3426
111.7.2 Boolean Operations on Ideals 3427
111.8 Wronskian Matrix 3427
111.9 Differential Operator Rings 3428
111.9.1 Creation 3428
111.9.2 Creation of Differential Operators 3429
111.10 Structure Operations on Differential Operator Rings 3430
111.10.1 Category and Parent 3430
111.10.2 Related Structures 3430
111.10.3 Derivation and Differential 3430
111.10.4 Predicates and Booleans 3431
111.10.5 Precision 3432
111.11 Element Operations on Differential Operators 3433
111.11.1 Category and Parent 3433
111.11.2 Arithmetic 3433
111.11.3 Predicates and Booleans 3434
111.11.4 Coefficients and Terms 3434
111.11.5 Order and Degree 3435
111.11.6 Related Differential Operators 3436



VOLUME 9: CONTENTS cxi

111.11.7 Application of Operators 3437
111.12 Related Maps 3438
111.13 Changing Related Structures 3439
111.14 Euclidean Algorithms, GCDs and LCMs 3443
111.14.1 Euclidean Right and Left Division 3443
111.14.2 Greatest Common Right and Left Divisors 3444
111.14.3 Least Common Left Multiples 3445
111.15 Related Matrices 3446
111.16 Singular Places and Indicial Polynomials 3447
111.16.1 Singular Places 3447
111.16.2 Indicial Polynomials 3449
111.17 Rational Solutions 3450
111.18 Newton Polygons 3451
111.19 Symmetric Powers 3453
111.20 Differential Operators of Algebraic Functions 3454
111.21 Factorisation of Operators over Differential Laurent Series Rings 3454
111.21.1 Slope Valuation of an Operator 3455
111.21.2 Coprime Index 1 and LCLM Factorisation 3456
111.21.3 Right Hand Factors of Operators 3461
111.22 Bibliography 3466



cxii VOLUME 9: CONTENTS

XV ALGEBRAIC GEOMETRY 3467

112 SCHEMES . . . . . . . . . . . . . . . . . . . . . . . . 3469

112.1 Introduction and First Examples 3475
112.1.1 Ambient Spaces 3476
112.1.2 Schemes 3477
112.1.3 Rational Points 3478
112.1.4 Projective Closure 3480
112.1.5 Maps 3481
112.1.6 Linear Systems 3483
112.1.7 Aside: Types of Schemes 3484
112.2 Ambients 3485
112.2.1 Affine and Projective Spaces 3485
112.2.2 Scrolls and Products 3487
112.2.3 Functions and Homogeneity on Ambient Spaces 3490
112.2.4 Prelude to Points 3491
112.3 Constructing Schemes 3494
112.4 Different Types of Scheme 3498
112.5 Basic Attributes of Schemes 3500
112.5.1 Functions of the Ambient Space 3500
112.5.2 Functions of the Equations 3501
112.6 Function Fields and their Elements 3503
112.7 Rational Points and Point Sets 3506
112.8 Zero-dimensional Schemes 3510
112.9 Local Geometry of Schemes 3512
112.9.1 Point Conditions 3512
112.9.2 Point Computations 3513
112.9.3 Analytically Hypersurface Singularities 3513
112.10 Global Geometry of Schemes 3516
112.11 Base Change for Schemes 3519
112.12 Affine Patches and Projective Closure 3521
112.13 Arithmetic Properties of Schemes and Points 3524
112.13.1 Height 3524
112.13.2 Restriction of Scalars 3524
112.13.3 Local Solubility 3525
112.13.4 Searching for Points 3528
112.14 Maps between Schemes 3529
112.14.1 Creation of Maps 3530
112.14.2 Basic Attributes 3540
112.14.3 Maps and Points 3542
112.14.4 Maps and Schemes 3544
112.14.5 Maps and Closure 3547
112.14.6 Automorphisms 3549
112.14.7 Scheme Graph Maps 3559
112.15 Tangent and Secant Varieties and Isomorphic Projections 3563
112.15.1 Tangent Varieties 3563
112.15.2 Secant Varieties 3564
112.15.3 Isomorphic Projection to Subspaces 3565
112.16 Linear Systems 3567
112.16.1 Creation of Linear Systems 3568
112.16.2 Basic Algebra of Linear Systems 3574
112.16.3 Linear Systems and Maps 3579
112.17 Divisors 3579
112.17.1 Divisor Groups 3580
112.17.2 Creation Of Divisors 3580



VOLUME 9: CONTENTS cxiii

112.17.3 Ideals and Factorisations 3582
112.17.4 Basic Divisor Predicates 3583
112.17.5 Arithmetic of Divisors 3584
112.17.6 Further Divisor Properties 3584
112.17.7 Riemann-Roch Spaces 3586
112.18 Isolated Points on Schemes 3587
112.19 Advanced Examples 3595
112.19.1 A Pair of Twisted Cubics 3595
112.19.2 Curves in Space 3598
112.20 Bibliography 3599

113 COHERENT SHEAVES . . . . . . . . . . . . . . . . . . 3601

113.1 Introduction 3603
113.2 Creation Functions 3604
113.3 Accessor Functions 3607
113.4 Basic Constructions 3609
113.5 Sheaf Homomorphisms 3611
113.6 Divisor Maps and Riemann-Roch Spaces 3612
113.7 Predicates 3616
113.8 Miscellaneous 3619
113.9 Examples 3620
113.10 Bibliography 3631

114 ALGEBRAIC CURVES . . . . . . . . . . . . . . . . . . 3633

114.1 First Examples 3639
114.1.1 Ambients 3639
114.1.2 Curves 3640
114.1.3 Projective Closure 3641
114.1.4 Points 3642
114.1.5 Choosing Coordinates 3643
114.1.6 Function Fields and Divisors 3644
114.2 Ambient Spaces 3647
114.3 Algebraic Curves 3649
114.3.1 Creation 3649
114.3.2 Base Change 3651
114.3.3 Basic Attributes 3653
114.3.4 Basic Invariants 3655
114.3.5 Random Curves 3655
114.3.6 Ordinary Plane Curves 3657
114.4 Local Geometry 3661
114.4.1 Creation of Points on Curves 3661
114.4.2 Operations at a Point 3662
114.4.3 Singularity Analysis 3663
114.4.4 Resolution of Singularities 3664
114.4.5 Log Canonical Thresholds 3666
114.4.6 Local Intersection Theory 3669
114.5 Global Geometry 3671
114.5.1 Genus and Singularities 3671
114.5.2 Projective Closure and Affine Patches 3673
114.5.3 Special Forms of Curves 3674
114.6 Maps and Curves 3676
114.6.1 Elementary Maps 3676
114.6.2 Maps Induced by Morphisms 3678
114.7 Automorphism Groups of Curves 3680



cxiv VOLUME 9: CONTENTS

114.7.1 Group Creation Functions 3680
114.7.2 Automorphisms 3681
114.7.3 Automorphism Group Operations 3683
114.7.4 Pullbacks and Pushforwards 3684
114.7.5 Quotients of Curves 3687

114.8 Function Fields 3691
114.8.1 Function Fields 3692
114.8.2 Representations of the Function Field 3697
114.8.3 Differentials 3697

114.9 Divisors 3701
114.9.1 Places 3702
114.9.2 Divisor Group 3707
114.9.3 Creation of Divisors 3707
114.9.4 Arithmetic of Divisors 3711
114.9.5 Other Operations on Divisors 3713

114.10 Linear Equivalence of Divisors 3714
114.10.1 Linear Equivalence and Class Group 3714
114.10.2 Riemann–Roch Spaces 3716
114.10.3 Index Calculus 3719

114.11 Advanced Examples 3722
114.11.1 Trigonal Curves 3722
114.11.2 Algebraic Geometric Codes 3724

114.12 Curves over Global Fields 3726
114.12.1 Finding Rational Points 3726
114.12.2 Regular Models of Arithmetic Surfaces 3727
114.12.3 Minimization and Reduction 3728

114.13 Minimal Degree Functions and Plane Models 3730
114.13.1 General Functions and Clifford Index One 3730
114.13.2 Small Genus Functions 3732
114.13.3 Small Genus Plane Models 3736

114.14 Bibliography 3739

115 RESOLUTION GRAPHS AND SPLICE DIAGRAMS . . . . . 3741

115.1 Introduction 3743

115.2 Resolution Graphs 3743
115.2.1 Graphs, Vertices and Printing 3744
115.2.2 Creation from Curve Singularities 3746
115.2.3 Creation from Pencils 3748
115.2.4 Creation by Hand 3749
115.2.5 Modifying Resolution Graphs 3750
115.2.6 Numerical Data Associated to a Graph 3751

115.3 Splice Diagrams 3752
115.3.1 Creation of Splice Diagrams 3752
115.3.2 Numerical Functions of Splice Diagrams 3754

115.4 Translation Between Graphs 3755
115.4.1 Splice Diagrams from Resolution Graphs 3755

115.5 Bibliography 3756



VOLUME 9: CONTENTS cxv

116 ALGEBRAIC SURFACES . . . . . . . . . . . . . . . . . 3757

116.1 Introduction 3759
116.2 General Surfaces 3759
116.2.1 Introduction 3760
116.2.2 Creation Functions 3760
116.2.3 Invariants 3763
116.2.4 Singularity Properties 3766
116.2.5 Kodaira-Enriques Classification 3769
116.2.6 Minimal Models 3770
116.2.7 Special Surfaces in Projective 4-space 3780
116.3 Surfaces in P3 3782
116.3.1 Introduction 3782
116.3.2 Embedded Formal Desingularization of Curves 3782
116.3.3 Formal Desingularization of Surfaces 3786
116.3.4 Adjoint Systems and Birational Invariants 3790
116.3.5 Classification and Parameterization of Rational Surfaces 3792
116.3.6 Reduction to Special Models 3793
116.3.7 Parametrization of Rational Surfaces 3797
116.3.8 Parametrization of Special Surfaces 3801
116.4 Del Pezzo Surfaces 3804
116.4.1 Introduction 3804
116.4.2 Creation of General Del Pezzos 3804
116.4.3 Parametrization of Del Pezzo Surfaces 3805
116.4.4 Minimization and Reduction of Surfaces 3814
116.4.5 Cubic Surfaces over Finite Fields 3816
116.4.6 Construction of Cubic Surfaces 3818
116.4.7 Invariant Theory of Cubic Surfaces 3818
116.4.8 The Pentahedron of a Cubic Surface 3822
116.5 Bibliography 3823

117 HILBERT SERIES OF POLARISED VARIETIES . . . . . . 3825

117.1 Introduction 3827
117.1.1 Key Warning and Disclaimer 3827
117.1.2 Overview of the Chapter 3829
117.2 Hilbert Series and Graded Rings 3830
117.2.1 Hilbert Series and Hilbert Polynomials 3830
117.2.2 Interpreting the Hilbert Numerator 3832
117.3 Baskets of Singularities 3835
117.3.1 Point Singularities 3836
117.3.2 Curve Singularities 3838
117.3.3 Baskets of Singularities 3840
117.3.4 Curves and Dissident Points 3842
117.4 Generic Polarised Varieties 3842
117.4.1 Accessing the Data 3843
117.4.2 Generic Creation, Checking, Changing 3844
117.5 Subcanonical Curves 3845
117.5.1 Creation of Subcanonical Curves 3845
117.5.2 Catalogue of Subcanonical Curves 3846
117.6 K3 Surfaces 3846
117.6.1 Creating and Comparing K3 Surfaces 3846
117.6.2 Accessing the Key Data 3847
117.6.3 Modifying K3 Surfaces 3847
117.7 The K3 Database 3848
117.7.1 Searching the K3 Database 3848
117.7.2 Working with the K3 Database 3851



cxvi VOLUME 9: CONTENTS

117.8 Fano 3-folds 3852
117.8.1 Creation: f = 1, 2 or ≥ 3 3853
117.8.2 A Preliminary Fano Database 3854
117.9 Calabi–Yau 3-folds 3854
117.10 Building Databases 3855
117.10.1 The K3 Database 3855
117.10.2 Making New Databases 3856
117.11 Bibliography 3857

118 TORIC VARIETIES . . . . . . . . . . . . . . . . . . . 3859

118.1 Introduction and First Examples 3863
118.1.1 The Projective Plane as a Toric Variety 3863
118.1.2 Resolution of a Nonprojective Toric Variety 3865
118.1.3 The Cox Ring of a Toric Variety 3866
118.2 Fans in Toric Lattices 3869
118.2.1 Construction of Fans 3869
118.2.2 Components of Fans 3872
118.2.3 Properties of Fans 3874
118.2.4 Maps of Fans 3875
118.3 Geometrical Properties of Cones and Polyhedra 3876
118.4 Toric Varieties 3878
118.4.1 Constructors for Toric Varieties 3879
118.4.2 Toric Varieties and Their Fans 3880
118.4.3 Properties of Toric Varieties 3881
118.4.4 Affine Patches on Toric Varieties 3882
118.5 Cox Rings 3882
118.5.1 The Cox Ring of a Toric Variety 3882
118.5.2 Cox Rings in Their Own Right 3884
118.5.3 Recovering a Toric Variety From a Cox Ring 3885
118.6 Invariant Divisors and Riemann-Roch Spaces 3887
118.6.1 Divisor Group 3888
118.6.2 Constructing Invariant Divisors 3888
118.6.3 Properties of Divisors 3890
118.6.4 Linear Equivalence of Divisors 3893
118.6.5 Riemann–Roch Spaces of Invariant Divisors 3893
118.7 Maps of Toric Varieties 3896
118.7.1 Maps from Lattice Maps 3896
118.7.2 Properties of Toric Maps 3897
118.8 The Geometry of Toric Varieties 3898
118.8.1 Resolution of Singularities and Linear Systems 3898
118.8.2 Mori Theory of Toric Varieties 3898
118.8.3 Decomposition of Toric Morphisms 3903
118.9 Schemes in Toric Varieties 3905
118.9.1 Construction of Subschemes 3906
118.10 Bibliography 3908



VOLUME 10: CONTENTS cxvii

VOLUME 10: CONTENTS

XVI ARITHMETIC GEOMETRY 3909

119 RATIONAL CURVES AND CONICS . . . . . . . . . . . . 3911

119.1 Introduction 3913
119.2 Rational Curves and Conics 3914
119.2.1 Rational Curve and Conic Creation 3914
119.2.2 Access Functions 3915
119.2.3 Rational Curve and Conic Examples 3916
119.3 Conics 3919
119.3.1 Elementary Invariants 3919
119.3.2 Alternative Defining Polynomials 3919
119.3.3 Alternative Models 3920
119.3.4 Other Functions on Conics 3920
119.4 Local-Global Correspondence 3921
119.4.1 Local Conditions for Conics 3921
119.4.2 Norm Residue Symbol 3921
119.5 Rational Points on Conics 3923
119.5.1 Finding Points 3923
119.5.2 Point Reduction 3925
119.6 Isomorphisms 3927
119.6.1 Isomorphisms with Standard Models 3927
119.7 Automorphisms 3931
119.7.1 Automorphisms of Rational Curves 3931
119.7.2 Automorphisms of Conics 3932
119.8 Bibliography 3934

120 ELLIPTIC CURVES . . . . . . . . . . . . . . . . . . . 3935

120.1 Introduction 3939
120.2 Creation Functions 3940
120.2.1 Creation of an Elliptic Curve 3940
120.2.2 Creation Predicates 3943
120.2.3 Changing the Base Ring 3944
120.2.4 Alternative Models 3945
120.2.5 Predicates on Curve Models 3946
120.2.6 Twists of Elliptic Curves 3947
120.3 Operations on Curves 3950
120.3.1 Elementary Invariants 3950
120.3.2 Associated Structures 3953
120.3.3 Predicates on Elliptic Curves 3953
120.4 Polynomials 3954
120.5 Subgroup Schemes 3955
120.5.1 Creation of Subgroup Schemes 3955
120.5.2 Associated Structures 3956
120.5.3 Predicates on Subgroup Schemes 3956
120.5.4 Points of Subgroup Schemes 3956
120.6 The Formal Group 3957
120.7 Operations on Point Sets 3958
120.7.1 Creation of Point Sets 3958



cxviii VOLUME 10: CONTENTS

120.7.2 Associated Structures 3959
120.7.3 Predicates on Point Sets 3959
120.8 Morphisms 3960
120.8.1 Creation Functions 3960
120.8.2 Predicates on Isogenies 3965
120.8.3 Structure Operations 3965
120.8.4 Endomorphisms 3966
120.8.5 Automorphisms 3967
120.9 Operations on Points 3967
120.9.1 Creation of Points 3967
120.9.2 Creation Predicates 3968
120.9.3 Access Operations 3969
120.9.4 Associated Structures 3969
120.9.5 Arithmetic 3969
120.9.6 Division Points 3970
120.9.7 Point Order 3973
120.9.8 Predicates on Points 3973
120.9.9 Weil Pairing 3975
120.10 Bibliography 3976

121 ELLIPTIC CURVES OVER FINITE FIELDS . . . . . . . . 3977

121.1 Supersingular Curves 3979
121.2 The Order of the Group of Points 3980
121.2.1 Point Counting 3980
121.2.2 Zeta Functions 3986
121.2.3 Cryptographic Elliptic Curve Domains 3987
121.3 Enumeration of Points 3988
121.4 Abelian Group Structure 3989
121.5 Pairings on Elliptic Curves 3990
121.5.1 Weil Pairing 3990
121.5.2 Tate Pairing 3990
121.5.3 Eta Pairing 3991
121.5.4 Ate Pairing 3992
121.6 Weil Descent in Characteristic Two 3996
121.7 Discrete Logarithms 3998
121.8 Bibliography 3999

122 ELLIPTIC CURVES OVER Q AND NUMBER FIELDS . . . . 4001

122.1 Introduction 4005
122.2 Curves over the Rationals 4005
122.2.1 Local Invariants 4005
122.2.2 Kodaira Symbols 4007
122.2.3 Complex Multiplication 4008
122.2.4 Isogenous Curves 4008
122.2.5 Mordell–Weil Group 4009
122.2.6 Heights and Height Pairing 4015
122.2.7 Two-Descent and Two-Coverings 4021
122.2.8 The Cassels-Tate Pairing 4024
122.2.9 Four-Descent 4026
122.2.10 Eight-Descent 4030
122.2.11 Three-Descent 4031
122.2.12 Nine-Descent 4038
122.2.13 p-Isogeny Descent 4039
122.2.14 Heegner Points 4043



VOLUME 10: CONTENTS cxix

122.2.15 Analytic Information 4050
122.2.16 Integral and S-integral Points 4055
122.2.17 Elliptic Curve Database 4058

122.3 Curves over Number Fields 4062
122.3.1 Local Invariants 4062
122.3.2 Complex Multiplication 4063
122.3.3 Mordell–Weil Groups 4063
122.3.4 Heights 4064
122.3.5 Two Descent 4065
122.3.6 Selmer Groups 4065
122.3.7 The Cassels-Tate Pairing 4071
122.3.8 Elliptic Curve Chabauty 4071
122.3.9 Auxiliary Functions for Etale Algebras 4075
122.3.10 Analytic Information 4076
122.3.11 Elliptic Curves of Given Conductor 4077

122.4 Curves over p-adic Fields 4078
122.4.1 Local Invariants 4078

122.5 Bibliography 4079

123 ELLIPTIC CURVES OVER FUNCTION FIELDS . . . . . . 4083

123.1 An Overview of Relevant Theory 4085

123.2 Local Computations 4087

123.3 Elliptic Curves of Given Conductor 4088

123.4 Heights 4089

123.5 The Torsion Subgroup 4090

123.6 The Mordell–Weil Group 4090

123.7 Two Descent 4092

123.8 The L-function and Counting Points 4093

123.9 Action of Frobenius 4096

123.10 Extended Examples 4096

123.11 Bibliography 4099

124 MODELS OF GENUS ONE CURVES . . . . . . . . . . . . 4101

124.1 Introduction 4103

124.2 Related Functionality 4104

124.3 Creation of Genus One Models 4104

124.4 Predicates on Genus One Models 4107

124.5 Access Functions 4107

124.6 Minimisation and Reduction 4108

124.7 Genus One Models as Coverings 4110

124.8 Families of Elliptic Curves with Prescribed n-Torsion 4112

124.9 Transformations between Genus One Models 4112

124.10 Invariants for Genus One Models 4113

124.11 Covariants and Contravariants for Genus One Models 4114

124.12 Examples 4115

124.13 Bibliography 4117



cxx VOLUME 10: CONTENTS

125 HYPERELLIPTIC CURVES . . . . . . . . . . . . . . . . 4119

125.1 Introduction 4123
125.2 Creation Functions 4123
125.2.1 Creation of a Hyperelliptic Curve 4123
125.2.2 Creation Predicates 4124
125.2.3 Changing the Base Ring 4125
125.2.4 Models 4126
125.2.5 Predicates on Models 4128
125.2.6 Twisting Hyperelliptic Curves 4129
125.2.7 Type Change Predicates 4131
125.3 Operations on Curves 4131
125.3.1 Elementary Invariants 4132
125.3.2 Igusa Invariants 4132
125.3.3 Shioda Invariants 4136
125.3.4 Base Ring 4138
125.4 Creation from Invariants 4138
125.5 Function Field 4141
125.5.1 Function Field and Polynomial Ring 4141
125.6 Points 4141
125.6.1 Creation of Points 4141
125.6.2 Random Points 4143
125.6.3 Predicates on Points 4143
125.6.4 Access Operations 4143
125.6.5 Arithmetic of Points 4143
125.6.6 Enumeration and Counting Points 4144
125.6.7 Frobenius 4145
125.7 Isomorphisms and Transformations 4146
125.7.1 Creation of Isomorphisms 4146
125.7.2 Arithmetic with Isomorphisms 4147
125.7.3 Invariants of Isomorphisms 4148
125.7.4 Automorphism Group and Isomorphism Testing 4148
125.8 Jacobians 4153
125.8.1 Creation of a Jacobian 4153
125.8.2 Access Operations 4153
125.8.3 Base Ring 4153
125.8.4 Changing the Base Ring 4154
125.9 Richelot Isogenies 4154
125.10 Points on the Jacobian 4157
125.10.1 Creation of Points 4158
125.10.2 Random Points 4161
125.10.3 Booleans and Predicates for Points 4161
125.10.4 Access Operations 4162
125.10.5 Arithmetic of Points 4162
125.10.6 Order of Points on the Jacobian 4163
125.10.7 Frobenius 4163
125.10.8 Weil Pairing 4164
125.11 Rational Points and Group Structure over Finite Fields 4165
125.11.1 Enumeration of Points 4165
125.11.2 Counting Points on the Jacobian 4165
125.11.3 Deformation Point Counting 4170
125.11.4 Abelian Group Structure 4171
125.12 Jacobians over Number Fields or Q 4172
125.12.1 Searching For Points 4172
125.12.2 Torsion 4172
125.12.3 Heights and Regulator 4174
125.12.4 The 2-Selmer Group 4179



VOLUME 10: CONTENTS cxxi

125.13 Two-Selmer Set of a Curve 4187
125.14 Chabauty’s Method 4190
125.15 Cyclic Covers of P1 4195
125.15.1 Points 4195
125.15.2 Descent 4196
125.15.3 Descent on the Jacobian 4197
125.15.4 Partial Descent 4200
125.16 Kummer Surfaces 4203
125.16.1 Creation of a Kummer Surface 4203
125.16.2 Structure Operations 4203
125.16.3 Base Ring 4203
125.16.4 Changing the Base Ring 4204
125.17 Points on the Kummer Surface 4204
125.17.1 Creation of Points 4204
125.17.2 Access Operations 4205
125.17.3 Predicates on Points 4205
125.17.4 Arithmetic of Points 4205
125.17.5 Rational Points on the Kummer Surface 4206
125.17.6 Pullback to the Jacobian 4206
125.18 Analytic Jacobians of Hyperelliptic Curves 4207
125.18.1 Creation and Access Functions 4208
125.18.2 Maps between Jacobians 4209
125.18.3 From Period Matrix to Curve 4216
125.18.4 Voronoi Cells 4218
125.19 Bibliography 4219

126 HYPERGEOMETRIC MOTIVES . . . . . . . . . . . . . 4223

126.1 Introduction 4225
126.2 Functionality 4227
126.2.1 Creation Functions 4227
126.2.2 Access Functions 4228
126.2.3 Functionality with L-series and Euler Factors 4229
126.2.4 Associated Schemes and Curves 4232
126.2.5 Utility Functions 4232
126.3 Examples 4233
126.4 Bibliography 4241

127 L-FUNCTIONS . . . . . . . . . . . . . . . . . . . . . 4243

127.1 Overview 4245
127.2 Built-in L-series 4246
127.3 Computing L-values 4257
127.4 Arithmetic with L-series 4259
127.5 General L-series 4260
127.5.1 Terminology 4261
127.5.2 Constructing a General L-Series 4262
127.5.3 Setting the Coefficients 4266
127.5.4 Specifying the Coefficients Later 4266
127.5.5 Generating the Coefficients from Local Factors 4268
127.6 Accessing the Invariants 4268
127.7 Precision 4271
127.7.1 L-series with Unusual Coefficient Growth 4272
127.7.2 Computing L(s) when Im(s) is Large (ImS Parameter) 4272
127.7.3 Implementation of L-series Computations (Asymptotics Parameter) 4272
127.8 Verbose Printing 4273



cxxii VOLUME 10: CONTENTS

127.9 Advanced Examples 4273
127.9.1 Handmade L-series of an Elliptic Curve 4273
127.9.2 Self-made Dedekind Zeta Function 4274
127.9.3 L-series of a Genus 2 Hyperelliptic Curve 4274
127.9.4 Experimental Mathematics for Small Conductor 4276
127.9.5 Tensor Product of L-series Coming from l-adic Representations 4277
127.9.6 Non-abelian Twist of an Elliptic Curve 4278
127.9.7 Other Tensor Products 4279
127.9.8 Symmetric Powers 4281
127.10 Weil Polynomials 4284
127.11 Bibliography 4287



VOLUME 11: CONTENTS cxxiii

VOLUME 11: CONTENTS

XVII MODULAR ARITHMETIC GEOMETRY 4289

128 MODULAR CURVES . . . . . . . . . . . . . . . . . . . 4291

128.1 Introduction 4293
128.2 Creation Functions 4293
128.2.1 Creation of a Modular Curve 4293
128.2.2 Creation of Points 4293
128.3 Invariants 4294
128.4 Modular Polynomial Databases 4295
128.5 Parametrized Structures 4297
128.6 Associated Structures 4300
128.7 Automorphisms 4301
128.8 Class Polynomials 4301
128.9 Modular Curves and Quotients (Canonical Embeddings) 4302
128.10 Modular Curves of Given Level and Genus 4304
128.11 Bibliography 4309

129 SMALL MODULAR CURVES . . . . . . . . . . . . . . . 4311

129.1 Introduction 4313
129.2 Small Modular Curve Models 4313
129.3 Projection Maps 4315
129.4 Automorphisms 4317
129.5 Cusps and Rational Points 4321
129.6 Standard Functions and Forms 4323
129.7 Parametrized Structures 4325
129.8 Modular Generators and q-Expansions 4327
129.9 Extended Example 4332
129.10 Bibliography 4334

130 CONGRUENCE SUBGROUPS OF PSL2(R) . . . . . . . . . 4335

130.1 Introduction 4337
130.2 Congruence Subgroups 4338
130.2.1 Creation of Subgroups of PSL2(R) 4339
130.2.2 Relations 4340
130.2.3 Basic Attributes 4340
130.3 Structure of Congruence Subgroups 4341
130.3.1 Cusps and Elliptic Points of Congruence Subgroups 4342
130.4 Elements of PSL2(R) 4344
130.4.1 Creation 4344
130.4.2 Membership and Equality Testing 4344
130.4.3 Basic Functions 4344
130.5 The Upper Half Plane 4345
130.5.1 Creation 4345
130.5.2 Basic Attributes 4346
130.6 Action of PSL2(R) on the Upper Half Plane 4347



cxxiv VOLUME 11: CONTENTS

130.6.1 Arithmetic 4348
130.6.2 Distances, Angles and Geodesics 4348
130.7 Farey Symbols and Fundamental Domains 4349
130.8 Points and Geodesics 4351
130.9 Graphical Output 4351
130.10 Bibliography 4359

131 ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES 4361

131.1 Arithmetic Fuchsian Groups 4363
131.1.1 Creation 4363
131.1.2 Quaternionic Functions 4365
131.1.3 Basic Invariants 4368
131.1.4 Group Structure 4369
131.2 Unit Disc 4371
131.2.1 Creation 4371
131.2.2 Basic Operations 4372
131.2.3 Access Operations 4372
131.2.4 Distance and Angles 4374
131.2.5 Structural Operations 4375
131.3 Fundamental Domains 4377
131.4 Triangle Groups 4379
131.4.1 Creation of Triangle Groups 4380
131.4.2 Fundamental Domain 4380
131.4.3 CM Points 4380
131.5 Bibliography 4383

132 MODULAR FORMS . . . . . . . . . . . . . . . . . . . 4385

132.1 Introduction 4387
132.1.1 Modular Forms 4387
132.1.2 About the Package 4388
132.1.3 Categories 4389
132.1.4 Verbose Output 4389
132.1.5 An Illustrative Overview 4390
132.2 Creation Functions 4393
132.2.1 Ambient Spaces 4393
132.2.2 Base Extension 4396
132.2.3 Elements 4397
132.3 Bases 4398
132.4 q-Expansions 4400
132.5 Arithmetic 4402
132.6 Predicates 4403
132.7 Properties 4405
132.8 Subspaces 4407
132.9 Operators 4409
132.10 Eisenstein Series 4411
132.11 Weight Half Forms 4413
132.12 Weight One Forms 4413
132.13 Newforms 4413
132.13.1 Labels 4416
132.14 Reductions and Embeddings 4418
132.15 Congruences 4419
132.16 Overconvergent Modular Forms 4421
132.17 Algebraic Relations 4422



VOLUME 11: CONTENTS cxxv

132.18 Elliptic Curves 4424
132.19 Modular Symbols 4425
132.20 Bibliography 4426

133 MODULAR SYMBOLS . . . . . . . . . . . . . . . . . . 4427

133.1 Introduction 4429
133.1.1 Modular Symbols 4429
133.2 Basics 4430
133.2.1 Verbose Output 4430
133.2.2 Categories 4430
133.3 Creation Functions 4431
133.3.1 Ambient Spaces 4431
133.3.2 Labels 4435
133.3.3 Creation of Elements 4436
133.4 Bases 4439
133.5 Associated Vector Space 4442
133.6 Degeneracy Maps 4443
133.7 Decomposition 4445
133.8 Subspaces 4449
133.9 Twists 4451
133.10 Operators 4452
133.11 The Hecke Algebra 4457
133.12 The Intersection Pairing 4458
133.13 q-Expansions 4459
133.14 Special Values of L-functions 4462
133.14.1 Winding Elements 4464
133.15 The Associated Complex Torus 4465
133.15.1 The Period Map 4470
133.15.2 Projection Mappings 4470
133.16 Modular Abelian Varieties 4472
133.16.1 Modular Degree and Torsion 4472
133.16.2 Tamagawa Numbers and Orders of Component Groups 4474
133.17 Elliptic Curves 4477
133.18 Dimension Formulas 4479
133.19 Bibliography 4480

134 BRANDT MODULES . . . . . . . . . . . . . . . . . . . 4483

134.1 Introduction 4485
134.2 Brandt Module Creation 4485
134.2.1 Creation of Elements 4487
134.2.2 Operations on Elements 4487
134.2.3 Categories and Parent 4488
134.2.4 Elementary Invariants 4488
134.2.5 Associated Structures 4489
134.2.6 Verbose Output 4490
134.3 Subspaces and Decomposition 4491
134.3.1 Boolean Tests on Subspaces 4492
134.4 Hecke Operators 4493
134.5 q-Expansions 4494
134.6 Dimensions of Spaces 4494
134.7 Brandt Modules Over Fq [t] 4495
134.8 Bibliography 4495



cxxvi VOLUME 11: CONTENTS

135 SUPERSINGULAR DIVISORS ON MODULAR CURVES . . . 4497

135.1 Introduction 4499
135.1.1 Categories 4500
135.1.2 Verbose Output 4500
135.2 Creation Functions 4500
135.2.1 Ambient Spaces 4500
135.2.2 Elements 4501
135.2.3 Subspaces 4502
135.3 Basis 4503
135.4 Properties 4504
135.5 Associated Spaces 4505
135.6 Predicates 4506
135.7 Arithmetic 4507
135.8 Operators 4509
135.9 The Monodromy Pairing 4510
135.10 Bibliography 4511

136 MODULAR ABELIAN VARIETIES . . . . . . . . . . . . 4513

136.1 Introduction 4519
136.1.1 Categories 4520
136.1.2 Verbose Output 4520
136.2 Creation and Basic Functions 4521
136.2.1 Creating the Modular Jacobian J0(N) 4521
136.2.2 Creating the Modular Jacobians J1(N) and JH(N) 4522
136.2.3 Abelian Varieties Attached to Modular Forms 4524
136.2.4 Abelian Varieties Attached to Modular Symbols 4526
136.2.5 Creation of Abelian Subvarieties 4527
136.2.6 Creation Using a Label 4528
136.2.7 Invariants 4529
136.2.8 Conductor 4532
136.2.9 Number of Points 4532
136.2.10 Inner Twists and Complex Multiplication 4533
136.2.11 Predicates 4536
136.2.12 Equality and Inclusion Testing 4541
136.2.13 Modular Embedding and Parameterization 4542
136.2.14 Coercion 4543
136.2.15 Modular Symbols to Homology 4546
136.2.16 Embeddings 4547
136.2.17 Base Change 4549
136.2.18 Additional Examples 4550
136.3 Homology 4553
136.3.1 Creation 4553
136.3.2 Invariants 4554
136.3.3 Functors to Categories of Lattices and Vector Spaces 4554
136.3.4 Modular Structure 4556
136.3.5 Additional Examples 4557
136.4 Homomorphisms 4558
136.4.1 Creation 4559
136.4.2 Restriction, Evaluation, and Other Manipulations 4560
136.4.3 Kernels 4564
136.4.4 Images 4565
136.4.5 Cokernels 4567
136.4.6 Matrix Structure 4568
136.4.7 Arithmetic 4570
136.4.8 Polynomials 4573



VOLUME 11: CONTENTS cxxvii

136.4.9 Invariants 4574
136.4.10 Predicates 4575
136.5 Endomorphism Algebras and Hom Spaces 4578
136.5.1 Creation 4578
136.5.2 Subgroups and Subrings 4579
136.5.3 Pullback and Pushforward of Hom Spaces 4582
136.5.4 Arithmetic 4582
136.5.5 Quotients 4583
136.5.6 Invariants 4584
136.5.7 Structural Invariants 4586
136.5.8 Matrix and Module Structure 4587
136.5.9 Predicates 4589
136.5.10 Elements 4591
136.6 Arithmetic of Abelian Varieties 4592
136.6.1 Direct Sum 4592
136.6.2 Sum in an Ambient Variety 4594
136.6.3 Intersections 4595
136.6.4 Quotients 4597
136.7 Decomposing and Factoring Abelian Varieties 4598
136.7.1 Decomposition 4598
136.7.2 Factorization 4599
136.7.3 Decomposition with respect to an Endomorphism or a Commutative Ring 4600
136.7.4 Additional Examples 4600
136.8 Building blocks 4602
136.8.1 Background and Notation 4602
136.9 Orthogonal Complements 4606
136.9.1 Complements 4606
136.9.2 Dual Abelian Variety 4607
136.9.3 Intersection Pairing 4609
136.9.4 Projections 4610
136.9.5 Left and Right Inverses 4611
136.9.6 Congruence Computations 4613
136.10 New and Old Subvarieties and Natural Maps 4614
136.10.1 Natural Maps 4614
136.10.2 New Subvarieties and Quotients 4616
136.10.3 Old Subvarieties and Quotients 4617
136.11 Elements of Modular Abelian Varieties 4618
136.11.1 Arithmetic 4619
136.11.2 Invariants 4620
136.11.3 Predicates 4621
136.11.4 Homomorphisms 4623
136.11.5 Representation of Torsion Points 4624
136.12 Subgroups of Modular Abelian Varieties 4625
136.12.1 Creation 4625
136.12.2 Elements 4627
136.12.3 Arithmetic 4628
136.12.4 Underlying Abelian Group and Lattice 4630
136.12.5 Invariants 4631
136.12.6 Predicates and Comparisons 4632
136.13 Rational Torsion Subgroups 4634
136.13.1 Cuspidal Subgroup 4634
136.13.2 Upper and Lower Bounds 4636
136.13.3 Torsion Subgroup 4637
136.14 Hecke and Atkin-Lehner Operators 4637
136.14.1 Creation 4637
136.14.2 Invariants 4639
136.15 L-series 4640



cxxviii VOLUME 11: CONTENTS

136.15.1 Creation 4640
136.15.2 Invariants 4641
136.15.3 Characteristic Polynomials of Frobenius Elements 4642
136.15.4 Values at Integers in the Critical Strip 4643
136.15.5 Leading Coefficient 4645
136.16 Complex Period Lattice 4646
136.16.1 Period Map 4646
136.16.2 Period Lattice 4646
136.17 Tamagawa Numbers and Component Groups of Neron Models 4646
136.17.1 Component Groups 4646
136.17.2 Tamagawa Numbers 4647
136.18 Elliptic Curves 4648
136.18.1 Creation 4648
136.18.2 Invariants 4649
136.19 Bibliography 4650

137 HILBERT MODULAR FORMS . . . . . . . . . . . . . . 4651

137.1 Introduction 4653
137.1.1 Definitions and Background 4653
137.1.2 Algorithms and the Jacquet-Langlands Correspondence 4654
137.1.3 Algorithm I (Using Definite Quaternion Orders) 4655
137.1.4 Algorithm II (Using Indefinite Quaternion Orders) 4655
137.1.5 Categories 4655
137.1.6 Verbose Output 4655
137.2 Creation of Full Cuspidal Spaces 4655
137.3 Basic Properties 4657
137.4 Elements 4659
137.5 Operators 4659
137.6 Creation of Subspaces 4661
137.7 Eigenspace Decomposition and Eigenforms 4664
137.8 Further Examples 4666
137.9 Bibliography 4668

138 MODULAR FORMS OVER IMAGINARY QUADRATIC FIELDS4669

138.1 Introduction 4671
138.1.1 Algorithms 4671
138.1.2 Categories 4672
138.1.3 Verbose Output 4672
138.2 Creation 4673
138.3 Attributes 4673
138.4 Hecke Operators 4674
138.5 Newforms 4675
138.6 Bibliography 4676

139 ADMISSIBLE REPRESENTATIONS OF GL2(Qp) . . . . . . 4677

139.1 Introduction 4679
139.1.1 Motivation 4679
139.1.2 Definitions 4679
139.1.3 The Principal Series 4680
139.1.4 Supercuspidal Representations 4680
139.1.5 The Local Langlands Correspondence 4681
139.1.6 Connection with Modular Forms 4681
139.1.7 Category 4681



VOLUME 11: CONTENTS cxxix

139.1.8 Verbose Output 4681
139.2 Creation of Admissible Representations 4682
139.3 Attributes of Admissible Representations 4682
139.4 Structure of Admissible Representations 4683
139.5 Local Galois Representations 4684
139.6 Examples 4684
139.7 Bibliography 4688



cxxx VOLUME 12: CONTENTS

VOLUME 12: CONTENTS

XVIII TOPOLOGY 4689

140 SIMPLICIAL HOMOLOGY . . . . . . . . . . . . . . . . 4691

140.1 Introduction 4693
140.2 Simplicial Complexes 4693
140.2.1 Standard Topological Objects 4704
140.3 Homology Computation 4705
140.4 Bibliography 4709



VOLUME 12: CONTENTS cxxxi

XIX GEOMETRY 4711

141 FINITE PLANES . . . . . . . . . . . . . . . . . . . . 4713

141.1 Introduction 4715
141.1.1 Planes in Magma 4715
141.2 Construction of a Plane 4715
141.3 The Point-Set and Line-Set of a Plane 4718
141.3.1 Introduction 4718
141.3.2 Creating Point-Sets and Line-Sets 4718
141.3.3 Using the Point-Set and Line-Set to Create Points and Lines 4718
141.3.4 Retrieving the Plane from Points, Lines, Point-Sets and Line-Sets 4722
141.4 The Set of Points and Set of Lines 4722
141.5 The Defining Points of a Plane 4723
141.6 Subplanes 4724
141.7 Structures Associated with a Plane 4725
141.8 Numerical Invariants of a Plane 4726
141.9 Properties of Planes 4727
141.10 Identity and Isomorphism 4727
141.11 The Connection between Projective and Affine Planes 4728
141.12 Operations on Points and Lines 4729
141.12.1 Elementary Operations 4729
141.12.2 Deconstruction Functions 4730
141.12.3 Other Point and Line Functions 4733
141.13 Arcs 4734
141.14 Unitals 4737
141.15 The Collineation Group of a Plane 4738
141.15.1 The Collineation Group Function 4739
141.15.2 General Action of Collineations 4740
141.15.3 Central Collineations 4744
141.15.4 Transitivity Properties 4745
141.16 Translation Planes 4746
141.17 Planes and Designs 4746
141.18 Planes, Graphs and Codes 4747

142 INCIDENCE GEOMETRY . . . . . . . . . . . . . . . . 4749

142.1 Introduction 4751
142.2 Construction of Incidence and Coset Geometries 4752
142.2.1 Construction of an Incidence Geometry 4752
142.2.2 Construction of a Coset Geometry 4756
142.3 Elementary Invariants 4759
142.4 Conversion Functions 4761
142.5 Residues 4762
142.6 Truncations 4763
142.7 Shadows 4763
142.8 Shadow Spaces 4763
142.9 Automorphism Group and Correlation Group 4764
142.10 Properties of Incidence Geometries and Coset Geometries 4764
142.11 Intersection Properties of Coset Geometries 4765
142.12 Primitivity Properties on Coset Geometries 4766
142.13 Diagram of an Incidence Geometry 4767
142.14 Bibliography 4770



cxxxii VOLUME 12: CONTENTS

143 CONVEX POLYTOPES AND POLYHEDRA . . . . . . . . 4771

143.1 Introduction and First Examples 4773
143.2 Polytopes, Cones and Polyhedra 4778
143.2.1 Polytopes 4778
143.2.2 Cones 4779
143.2.3 Polyhedra 4780
143.2.4 Arithmetic Operations on Polyhedra 4782
143.3 Basic Combinatorics of Polytopes and Polyhedra 4783
143.3.1 Vertices and Inequalities 4783
143.3.2 Facets and Faces 4785
143.4 The Combinatorics of Polytopes 4786
143.4.1 Points in Polytopes 4786
143.4.2 Ehrhart Theory of Polytopes 4787
143.4.3 Automorphisms of a Polytope 4787
143.4.4 Operations on Polytopes 4788
143.5 Cones and Polyhedra 4788
143.5.1 Generators of Cones 4788
143.5.2 Properties of Polyhedra 4789
143.5.3 Attributes of Polyhedra 4793
143.5.4 Combinatorics of Polyhedral Complexes 4793
143.6 Toric Lattices 4793
143.6.1 Toric Lattices 4794
143.6.2 Points of Toric Lattices 4795
143.6.3 Operations on Toric Lattices 4798
143.6.4 Maps of Toric Lattices 4800
143.7 Bibliography 4801



VOLUME 12: CONTENTS cxxxiii

XX COMBINATORICS 4803

144 ENUMERATIVE COMBINATORICS . . . . . . . . . . . . 4805

144.1 Introduction 4807
144.2 Combinatorial Functions 4807
144.3 Subsets of a Finite Set 4809

145 PARTITIONS, WORDS AND YOUNG TABLEAUX . . . . . 4811

145.1 Introduction 4813
145.2 Partitions 4813
145.3 Words 4816
145.3.1 Ordered Monoids 4816
145.3.2 Plactic Monoids 4819
145.4 Tableaux 4822
145.4.1 Tableau Monoids 4822
145.4.2 Creation of Tableaux 4824
145.4.3 Enumeration of Tableaux 4827
145.4.4 Random Tableaux 4829
145.4.5 Basic Access Functions 4830
145.4.6 Properties 4833
145.4.7 Operations 4835
145.4.8 The Robinson-Schensted-Knuth Correspondence 4838
145.4.9 Counting Tableaux 4842
145.5 Bibliography 4844

146 SYMMETRIC FUNCTIONS . . . . . . . . . . . . . . . . 4845

146.1 Introduction 4847
146.2 Creation 4849
146.2.1 Creation of Symmetric Function Algebras 4849
146.2.2 Creation of Symmetric Functions 4851
146.3 Structure Operations 4854
146.3.1 Related Structures 4854
146.3.2 Ring Predicates and Booleans 4855
146.3.3 Predicates on Basis Types 4855
146.4 Element Operations 4855
146.4.1 Parent and Category 4855
146.4.2 Print Styles 4856
146.4.3 Additive Arithmetic Operators 4856
146.4.4 Multiplication 4857
146.4.5 Plethysm 4858
146.4.6 Boolean Operators 4858
146.4.7 Accessing Elements 4859
146.4.8 Multivariate Polynomials 4860
146.4.9 Frobenius Homomorphism 4861
146.4.10 Inner Product 4862
146.4.11 Combinatorial Objects 4862
146.4.12 Symmetric Group Character 4862
146.4.13 Restrictions 4863
146.5 Transition Matrices 4864
146.5.1 Transition Matrices from Schur Basis 4864
146.5.2 Transition Matrices from Monomial Basis 4866
146.5.3 Transition Matrices from Homogeneous Basis 4867
146.5.4 Transition Matrices from Power Sum Basis 4868



cxxxiv VOLUME 12: CONTENTS

146.5.5 Transition Matrices from Elementary Basis 4869
146.6 Bibliography 4870

147 INCIDENCE STRUCTURES AND DESIGNS . . . . . . . . 4871

147.1 Introduction 4873
147.2 Construction of Incidence Structures and Designs 4874
147.3 The Point-Set and Block-Set of an Incidence Structure 4878
147.3.1 Introduction 4878
147.3.2 Creating Point-Sets and Block-Sets 4879
147.3.3 Creating Points and Blocks 4879
147.4 General Design Constructions 4881
147.4.1 The Construction of Related Structures 4881
147.4.2 The Witt Designs 4884
147.4.3 Difference Sets and their Development 4884
147.5 Elementary Invariants of an Incidence Structure 4886
147.6 Elementary Invariants of a Design 4887
147.7 Operations on Points and Blocks 4889
147.8 Elementary Properties of Incidence Structures and Designs 4891
147.9 Resolutions, Parallelisms and Parallel Classes 4893
147.10 Conversion Functions 4896
147.11 Identity and Isomorphism 4897
147.12 The Automorphism Group of an Incidence Structure 4898
147.12.1 Construction of Automorphism Groups 4898
147.12.2 Action of Automorphisms 4901
147.13 Incidence Structures, Graphs and Codes 4903
147.14 Automorphisms of Matrices 4904
147.15 Bibliography 4905

148 HADAMARD MATRICES . . . . . . . . . . . . . . . . . 4907

148.1 Introduction 4909
148.2 Equivalence Testing 4909
148.3 Associated 3–Designs 4911
148.4 Automorphism Group 4912
148.5 Databases 4912
148.5.1 Updating the Databases 4913

149 GRAPHS . . . . . . . . . . . . . . . . . . . . . . . . 4917

149.1 Introduction 4921
149.2 Construction of Graphs and Digraphs 4922
149.2.1 Bounds on the Graph Order 4922
149.2.2 Construction of a General Graph 4923
149.2.3 Construction of a General Digraph 4926
149.2.4 Operations on the Support 4928
149.2.5 Construction of a Standard Graph 4929
149.2.6 Construction of a Standard Digraph 4931
149.3 Graphs with a Sparse Representation 4932
149.4 The Vertex–Set and Edge–Set of a Graph 4934
149.4.1 Introduction 4934
149.4.2 Creating Edges and Vertices 4934
149.4.3 Operations on Vertex-Sets and Edge-Sets 4936
149.4.4 Operations on Edges and Vertices 4937
149.5 Labelled, Capacitated and Weighted Graphs 4938



VOLUME 12: CONTENTS cxxxv

149.6 Standard Constructions for Graphs 4938
149.6.1 Subgraphs and Quotient Graphs 4938
149.6.2 Incremental Construction of Graphs 4940
149.6.3 Constructing Complements, Line Graphs; Contraction, Switching 4943
149.7 Unions and Products of Graphs 4945
149.8 Converting between Graphs and Digraphs 4947
149.9 Construction from Groups, Codes and Designs 4947
149.9.1 Graphs Constructed from Groups 4947
149.9.2 Graphs Constructed from Designs 4948
149.9.3 Miscellaneous Graph Constructions 4949
149.10 Elementary Invariants of a Graph 4950
149.11 Elementary Graph Predicates 4951
149.12 Adjacency and Degree 4953
149.12.1 Adjacency and Degree Functions for a Graph 4953
149.12.2 Adjacency and Degree Functions for a Digraph 4954
149.13 Connectedness 4956
149.13.1 Connectedness in a Graph 4956
149.13.2 Connectedness in a Digraph 4957
149.13.3 Graph Triconnectivity 4957
149.13.4 Maximum Matching in Bipartite Graphs 4959
149.13.5 General Vertex and Edge Connectivity in Graphs and Digraphs 4960
149.14 Distances, Paths and Circuits in a Graph 4963
149.14.1 Distances, Paths and Circuits in a Possibly Weighted Graph 4963
149.14.2 Distances, Paths and Circuits in a Non-Weighted Graph 4963
149.15 Maximum Flow, Minimum Cut, and Shortest Paths 4964
149.16 Matrices and Vector Spaces Associated with a Graph or Digraph 4965
149.17 Spanning Trees of a Graph or Digraph 4965
149.18 Directed Trees 4966
149.19 Colourings 4967
149.20 Cliques, Independent Sets 4968
149.21 Planar Graphs 4973
149.22 Automorphism Group of a Graph or Digraph 4976
149.22.1 The Automorphism Group Function 4976
149.22.2 nauty Invariants 4977
149.22.3 Graph Colouring and Automorphism Group 4979
149.22.4 Variants of Automorphism Group 4980
149.22.5 Action of Automorphisms 4984
149.23 Symmetry and Regularity Properties of Graphs 4987
149.24 Graph Databases and Graph Generation 4989
149.24.1 Strongly Regular Graphs 4989
149.24.2 Small Graphs 4991
149.24.3 Generating Graphs 4992
149.24.4 A General Facility 4995
149.25 Bibliography 4997

150 MULTIGRAPHS . . . . . . . . . . . . . . . . . . . . . 4999

150.1 Introduction 5003
150.2 Construction of Multigraphs 5004
150.2.1 Construction of a General Multigraph 5004
150.2.2 Construction of a General Multidigraph 5005
150.2.3 Printing of a Multi(di)graph 5006
150.2.4 Operations on the Support 5007
150.3 The Vertex–Set and Edge–Set of Multigraphs 5008
150.4 Vertex and Edge Decorations 5011
150.4.1 Vertex Decorations: Labels 5011



cxxxvi VOLUME 12: CONTENTS

150.4.2 Edge Decorations 5012
150.4.3 Unlabelled, or Uncapacitated, or Unweighted Graphs 5015
150.5 Standard Construction for Multigraphs 5018
150.5.1 Subgraphs 5018
150.5.2 Incremental Construction of Multigraphs 5020
150.5.3 Vertex Insertion, Contraction 5024
150.5.4 Unions of Multigraphs 5025
150.6 Conversion Functions 5026
150.6.1 Orientated Graphs 5027
150.6.2 Converse 5027
150.6.3 Converting between Simple Graphs and Multigraphs 5027
150.7 Elementary Invariants and Predicates for Multigraphs 5028
150.8 Adjacency and Degree 5030
150.8.1 Adjacency and Degree Functions for Multigraphs 5031
150.8.2 Adjacency and Degree Functions for Multidigraphs 5032
150.9 Connectedness 5033
150.9.1 Connectedness in a Multigraph 5034
150.9.2 Connectedness in a Multidigraph 5034
150.9.3 Triconnectivity for Multigraphs 5035
150.9.4 Maximum Matching in Bipartite Multigraphs 5035
150.9.5 General Vertex and Edge Connectivity in Multigraphs and Multidigraphs 5035
150.10 Spanning Trees 5037
150.11 Planar Graphs 5038
150.12 Distances, Shortest Paths and Minimum Weight Trees 5042
150.13 Bibliography 5046

151 NETWORKS . . . . . . . . . . . . . . . . . . . . . . 5047

151.1 Introduction 5049
151.2 Construction of Networks 5049
151.2.1 Magma Output: Printing of a Network 5051
151.3 Standard Construction for Networks 5053
151.3.1 Subgraphs 5053
151.3.2 Incremental Construction: Adding Edges 5057
151.3.3 Union of Networks 5058
151.4 Maximum Flow and Minimum Cut 5059
151.5 Bibliography 5065



VOLUME 13: CONTENTS cxxxvii

VOLUME 13: CONTENTS

XXI CODING THEORY 5067

152 LINEAR CODES OVER FINITE FIELDS . . . . . . . . . . 5069

152.1 Introduction 5073
152.2 Construction of Codes 5074
152.2.1 Construction of General Linear Codes 5074
152.2.2 Some Trivial Linear Codes 5076
152.2.3 Some Basic Families of Codes 5077
152.3 Invariants of a Code 5079
152.3.1 Basic Numerical Invariants 5079
152.3.2 The Ambient Space and Alphabet 5080
152.3.3 The Code Space 5080
152.3.4 The Dual Space 5081
152.3.5 The Information Space and Information Sets 5082
152.3.6 The Syndrome Space 5083
152.3.7 The Generator Polynomial 5083
152.4 Operations on Codewords 5084
152.4.1 Construction of a Codeword 5084
152.4.2 Arithmetic Operations on Codewords 5085
152.4.3 Distance and Weight 5085
152.4.4 Vector Space and Related Operations 5086
152.4.5 Predicates for Codewords 5087
152.4.6 Accessing Components of a Codeword 5087
152.5 Coset Leaders 5088
152.6 Subcodes 5089
152.6.1 The Subcode Constructor 5089
152.6.2 Sum, Intersection and Dual 5091
152.6.3 Membership and Equality 5092
152.7 Properties of Codes 5093
152.8 The Weight Distribution 5095
152.8.1 The Minimum Weight 5095
152.8.2 The Weight Distribution 5100
152.8.3 The Weight Enumerator 5101
152.8.4 The MacWilliams Transform 5102
152.8.5 Words 5103
152.8.6 Covering Radius and Diameter 5105
152.9 Families of Linear Codes 5106
152.9.1 Cyclic and Quasicyclic Codes 5106
152.9.2 BCH Codes and their Generalizations 5108
152.9.3 Quadratic Residue Codes and their Generalizations 5111
152.9.4 Reed–Solomon and Justesen Codes 5113
152.9.5 Maximum Distance Separable Codes 5114
152.10 New Codes from Existing 5114
152.10.1 Standard Constructions 5114
152.10.2 Changing the Alphabet of a Code 5117
152.10.3 Combining Codes 5118
152.11 Coding Theory and Cryptography 5122
152.11.1 Standard Attacks 5123
152.11.2 Generalized Attacks 5124



cxxxviii VOLUME 13: CONTENTS

152.12 Bounds 5125
152.12.1 Best Known Bounds for Linear Codes 5125
152.12.2 Bounds on the Cardinality of a Largest Code 5126
152.12.3 Bounds on the Minimum Distance 5128
152.12.4 Asymptotic Bounds on the Information Rate 5128
152.12.5 Other Bounds 5128
152.13 Best Known Linear Codes 5129
152.14 Decoding 5135
152.15 Transforms 5136
152.15.1 Mattson–Solomon Transforms 5136
152.15.2 Krawchouk Polynomials 5137
152.16 Automorphism Groups 5137
152.16.1 Introduction 5137
152.16.2 Group Actions 5138
152.16.3 Automorphism Group 5139
152.16.4 Equivalence and Isomorphism of Codes 5142
152.17 Bibliography 5142

153 ALGEBRAIC-GEOMETRIC CODES . . . . . . . . . . . . 5145

153.1 Introduction 5147
153.2 Creation of an Algebraic Geometric Code 5148
153.3 Properties of AG–Codes 5150
153.4 Access Functions 5151
153.5 Decoding AG Codes 5151
153.6 Toric Codes 5152
153.7 Bibliography 5153

154 LOW DENSITY PARITY CHECK CODES . . . . . . . . . 5155

154.1 Introduction 5157
154.1.1 Constructing LDPC Codes 5157
154.1.2 Access Functions 5158
154.1.3 LDPC Decoding and Simulation 5160
154.1.4 Density Evolution 5162

155 LINEAR CODES OVER FINITE RINGS . . . . . . . . . . 5167

155.1 Introduction 5169
155.2 Construction of Codes 5169
155.2.1 Construction of General Linear Codes 5169
155.2.2 Construction of Simple Linear Codes 5172
155.2.3 Construction of General Cyclic Codes 5173
155.3 Invariants of Codes 5175
155.4 Codes over Z4 5176
155.4.1 The Gray Map 5176
155.4.2 Families of Codes over Z4 5178
155.4.3 Derived Binary Codes 5184
155.4.4 The Standard Form 5185
155.4.5 Constructing New Codes from Old 5186
155.4.6 Invariants of Codes over Z4 5189
155.4.7 Other Z4 functions 5190
155.5 Construction of Subcodes of Linear Codes 5190
155.5.1 The Subcode Constructor 5190
155.6 Weight Distributions 5191
155.6.1 Hamming Weight 5191



VOLUME 13: CONTENTS cxxxix

155.6.2 Lee Weight 5192
155.6.3 Euclidean Weight 5194

155.7 Weight Enumerators 5195

155.8 Constructing New Codes from Old 5198
155.8.1 Sum, Intersection and Dual 5198
155.8.2 Standard Constructions 5199

155.9 Operations on Codewords 5202
155.9.1 Construction of a Codeword 5202
155.9.2 Operations on Codewords and Vectors 5203
155.9.3 Accessing Components of a Codeword 5205

155.10 Boolean Predicates 5205

155.11 Bibliography 5206

156 ADDITIVE CODES . . . . . . . . . . . . . . . . . . . 5207

156.1 Introduction 5209

156.2 Construction of Additive Codes 5210
156.2.1 Construction of General Additive Codes 5210
156.2.2 Some Trivial Additive Codes 5212

156.3 Invariants of an Additive Code 5213
156.3.1 The Ambient Space and Alphabet 5213
156.3.2 Basic Numerical Invariants 5214
156.3.3 The Code Space 5215
156.3.4 The Dual Space 5215

156.4 Operations on Codewords 5216
156.4.1 Construction of a Codeword 5216
156.4.2 Arithmetic Operations on Codewords 5216
156.4.3 Distance and Weight 5217
156.4.4 Vector Space and Related Operations 5217
156.4.5 Predicates for Codewords 5218
156.4.6 Accessing Components of a Codeword 5218

156.5 Subcodes 5218
156.5.1 The Subcode Constructor 5218
156.5.2 Sum, Intersection and Dual 5220
156.5.3 Membership and Equality 5221

156.6 Properties of Codes 5221

156.7 The Weight Distribution 5222
156.7.1 The Minimum Weight 5222
156.7.2 The Weight Distribution 5225
156.7.3 The Weight Enumerator 5225
156.7.4 The MacWilliams Transform 5226
156.7.5 Words 5226

156.8 Families of Linear Codes 5227
156.8.1 Cyclic Codes 5227
156.8.2 Quasicyclic Codes 5228

156.9 New Codes from Old 5229
156.9.1 Standard Constructions 5229
156.9.2 Combining Codes 5230

156.10 Automorphism Group 5231



cxl VOLUME 13: CONTENTS

157 QUANTUM CODES . . . . . . . . . . . . . . . . . . . 5233

157.1 Introduction 5235
157.2 Constructing Quantum Codes 5237
157.2.1 Construction of General Quantum Codes 5237
157.2.2 Construction of Special Quantum Codes 5242
157.2.3 CSS Codes 5242
157.2.4 Cyclic Quantum Codes 5243
157.2.5 Quasi-Cyclic Quantum Codes 5246
157.3 Access Functions 5247
157.3.1 Quantum Error Group 5248
157.4 Inner Products and Duals 5250
157.5 Weight Distribution and Minimum Weight 5252
157.6 New Codes From Old 5255
157.7 Best Known Quantum Codes 5256
157.8 Best Known Bounds 5259
157.9 Automorphism Group 5260
157.10 Hilbert Spaces 5262
157.10.1 Creation of Quantum States 5263
157.10.2 Manipulation of Quantum States 5265
157.10.3 Inner Product and Probabilities of Quantum States 5266
157.10.4 Unitary Transformations on Quantum States 5269
157.11 Bibliography 5270



VOLUME 13: CONTENTS cxli

XXII CRYPTOGRAPHY 5271

158 PSEUDO-RANDOM BIT SEQUENCES . . . . . . . . . . . 5273

158.1 Introduction 5275
158.2 Linear Feedback Shift Registers 5275
158.3 Number Theoretic Bit Generators 5276
158.4 Correlation Functions 5278
158.5 Decimation 5279



cxlii VOLUME 13: CONTENTS

XXIII OPTIMIZATION 5281

159 LINEAR PROGRAMMING . . . . . . . . . . . . . . . . 5283

159.1 Introduction 5285
159.2 Explicit LP Solving Functions 5286
159.3 Creation of LP objects 5288
159.4 Operations on LP objects 5288
159.5 Bibliography 5291



PART I
THE MAGMA LANGUAGE

1 STATEMENTS AND EXPRESSIONS 3

2 FUNCTIONS, PROCEDURES AND PACKAGES 33

3 INPUT AND OUTPUT 63

4 ENVIRONMENT AND OPTIONS 93

5 MAGMA SEMANTICS 115

6 THE MAGMA PROFILER 135

7 DEBUGGING MAGMA CODE 145





1 STATEMENTS AND EXPRESSIONS
1.1 Introduction . . . . . . . . . 5

1.2 Starting, Interrupting and Termi-
nating . . . . . . . . . . . . 5

<Ctrl>-C 5
quit; 5
<Ctrl>-D 5
<Ctrl>-\ 5

1.3 Identifiers . . . . . . . . . . 5

1.4 Assignment . . . . . . . . . . 6

1.4.1 Simple Assignment . . . . . . . . 6

x := e; 6
x1, x2, ..., xn := e; 6
:= e; 6

assigned 6

1.4.2 Indexed Assignment . . . . . . . . 7

x[e1][e2]...[en] := e; 7
x[e1,e2,...,en] := e; 7

1.4.3 Generator Assignment . . . . . . . 8

E<x1, x2, ...xn> := e; 8
E<[x]> := e; 8
AssignNames(∼S, [s1, ... sn] ) 9

1.4.4 Mutation Assignment . . . . . . . 9

x o:= e; 9

1.4.5 Deletion of Values . . . . . . . . . 10

delete 10

1.5 Boolean values . . . . . . . . 10

1.5.1 Creation of Booleans . . . . . . . . 11

Booleans() 11
# 11
true 11
false 11
Random(B) 11

1.5.2 Boolean Operators . . . . . . . . 11

and 11
or 11
xor 11
not 11

1.5.3 Equality Operators . . . . . . . . 11

eq 11
ne 12
cmpeq 12
cmpne 12

1.5.4 Iteration . . . . . . . . . . . . . 12

1.6 Coercion . . . . . . . . . . . 13

! 13

IsCoercible(S, x) 13

1.7 The where . . . is Construction . 14

e1 where id is e2 14
e1 where id := e2 14

1.8 Conditional Statements and
Expressions . . . . . . . . . . 16

1.8.1 The Simple Conditional Statement . 16

1.8.2 The Simple Conditional Expression . 17

bool select e1 else e2 17

1.8.3 The Case Statement . . . . . . . . 18

1.8.4 The Case Expression . . . . . . . . 18

1.9 Error Handling Statements . . . 19

1.9.1 The Error Objects . . . . . . . . . 19

Error(x) 19
e‘Position 19
e‘Traceback 19
e‘Object 19
e‘Type 19

1.9.2 Error Checking and Assertions . . . 19

error e, ..., e; 19
error if bool, e, ..., e; 19
assert bool; 20
assert2 bool; 20
assert3 bool; 20

1.9.3 Catching Errors . . . . . . . . . . 20

1.10 Iterative Statements . . . . . . 21

1.10.1 Definite Iteration . . . . . . . . . 21

1.10.2 Indefinite Iteration . . . . . . . . 22

1.10.3 Early Exit from Iterative Statements . 23

continue; 23
continue id; 23
break; 23
break id; 23

1.11 Runtime Evaluation: the eval Ex-
pression . . . . . . . . . . . 24

eval expression 24

1.12 Comments and Continuation . . 26

// 26
/* */ 26
\ 26

1.13 Timing . . . . . . . . . . . . 26

Cputime() 26
Cputime(t) 26



4 THE MAGMA LANGUAGE Part I

Realtime() 26
Realtime(t) 27
ClockCycles() 27
time statement; 27
vtime flag: statement; 27
vtime flag, n: statement: 27

1.14 Types, Category Names, and
Structures . . . . . . . . . . 28

Type(x) 28
Category(x) 28
ExtendedType(x) 28
ExtendedCategory(x) 28
ISA(T, U) 28
MakeType(S) 29
ElementType(S) 29

CoveringStructure(S, T) 29
ExistsCoveringStructure(S, T) 29

1.15 Random Object Generation . . . 30

SetSeed(s, c) 30
SetSeed(s) 30
GetSeed() 31
Random(S) 31
Random(a, b) 31
Random(b) 31

1.16 Miscellaneous . . . . . . . . . 32

IsIntrinsic(S) 32

1.17 Bibliography . . . . . . . . . 32



Chapter 1

STATEMENTS AND EXPRESSIONS

1.1 Introduction

This chapter contains a very terse overview of the basic elements of the Magma language.

1.2 Starting, Interrupting and Terminating

If Magma has been installed correctly, it may be activated by typing ‘magma’.

<Ctrl>-C

Interrupt Magma while it is performing some task (that is, while the user does
not have a ‘prompt’) to obtain a new prompt. Magma will try to interrupt at a
convenient point (this may take some time). If <Ctrl>-C is typed twice within half
a second, Magma will exit completely immediately.

quit;

<Ctrl>-D

Terminate the current Magma-session.

<Ctrl>-\

Immediately quit Magma (send the signal SIGQUIT to the Magma process on
Unix machines). This is occasionally useful when <Ctrl>-C does not seem to work.

1.3 Identifiers

Identifiers (names for user variables, functions etc.) must begin with a letter, and this
letter may be followed by any combination of letters or digits, provided that the name is
not a reserved word (see the chapter on reserved words a complete list). In this definition
the underscore is treated as a letter; but note that a single underscore is a reserved word.
Identifier names are case-sensitive; that is, they are distinguished from one another by
lower and upper case.

Intrinsic Magma functions usually have names beginning with capital letters (current
exceptions are pCore, pQuotient and the like, where the p indicates a prime). Note that
these identifiers are not reserved words; that is, one may use names of intrinsic functions
for variables.



6 THE MAGMA LANGUAGE Part I

1.4 Assignment
In this section the basic forms of assignment of values to identifiers are described.

1.4.1 Simple Assignment

x := expression;

Given an identifier x and an expression expression, assign the value of expression to
x.

Example H1E1

> x := 13;

> y := x^2-2;

> x, y;

13 167

Intrinsic function names are identifiers just like the x and y above. Therefore it is possible to
reassign them to your own variable.

> f := PreviousPrime;

> f(y);

163

In fact, the same can also be done with the infix operators, except that it is necessary to enclose
their names in quotes. Thus it is possible to define your own function Plus to be the function
taking the arguments of the intrinsic + operator.

> Plus := ’+’;

> Plus(1/2, 2);

5/2

Note that redefining the infix operator will not change the corresponding mutation assignment
operator (in this case +:=).

x1, x2, ..., xn := expression;

Assignment of n ≥ 1 values, returned by the expression on the right hand side. Here
the xi are identifiers, and the right hand side expression must return m ≥ n values;
the first n of these will be assigned to x1, x2, ..., xn respectively.

:= expression;

Ignore the value(s) returned by the expression on the right hand side.

assigned x

An expression which yields the value true if the ‘local’ identifier x has a value
currently assigned to it and false otherwise. Note that the assigned-expression
will return false for intrinsic function names, since they are not ‘local’ variables
(the identifiers can be assigned to something else, hiding the intrinsic function).



Ch. 1 STATEMENTS AND EXPRESSIONS 7

Example H1E2

The extended greatest common divisor function Xgcd returns 3 values: the gcd d of the arguments
m and n, as well as multipliers x and y such that d = xm + yn. If one is only interested in the
gcd of the integers m = 12 and n = 15, say, one could use:

> d := Xgcd(12, 15);

To obtain the multipliers as well, type

> d, x, y := Xgcd(12, 15);

while the following offers ways to retrieve two of the three return values.

> d, x := Xgcd(12, 15);

> d, _, y := Xgcd(12, 15);

> _, x, y := Xgcd(12, 15);

1.4.2 Indexed Assignment

x[expression1][expression2]...[expressionn] := expression;

x[expression1,expression2,...,expressionn] := expression;

If the argument on the left hand side allows indexing at least n levels deep, and if
this indexing can be used to modify the argument, this offers two equivalent ways
of accessing and modifying the entry indicated by the expressions expri. The most
important case is that of (nested) sequences.

Example H1E3

Left hand side indexing can be used (as is explained in more detail in the chapter on sequences)
to modify existing entries.

> s := [ [1], [1, 2], [1, 2, 3] ];

> s;

[

[ 1 ],

[ 1, 2 ],

[ 1, 2, 3 ]

]

> s[2, 2] := -1;

> s;

[

[ 1 ],

[ 1, -1 ],

[ 1, 2, 3 ]

]



8 THE MAGMA LANGUAGE Part I

1.4.3 Generator Assignment
Because of the importance of naming the generators in the case of finitely presented mag-
mas, special forms of assignment allow names to be assigned at the time the magma itself
is assigned.

E<x1, x2, ...xn> := expression;

If the right hand side expression returns a structure that allows naming of ‘gener-
ators’, such as finitely generated groups or algebras, polynomial rings, this assigns
the first n names to the variables x1, x2, ..., xn. Naming of generators usu-
ally has two aspects; firstly, the strings x1, x2, ...xn are used for printing of the
generators, and secondly, to the identifiers x1, x2, ...xn are assigned the values
of the generators. Thus, except for this side effect regarding printing, the above
assignment is equivalent to the n + 1 assignments:

E := expression;
x1 := E.1; x2 := E.2; ... xn := E.n;

E<[x]> := expression;

If the right hand side expression returns a structure S that allows naming of ‘gener-
ators’, this assigns the names of S to be those formed by appending the numbers 1,
2, etc. in order enclosed in square brackets to x (considered as a string) and assigns
x to the sequence of the names of S.

Example H1E4

We demonstrate the sequence method of generator naming.

> P<[X]> := PolynomialRing(RationalField(), 5);

> P;

Polynomial ring of rank 5 over Rational Field

Lexicographical Order

Variables: X[1], X[2], X[3], X[4], X[5]

> X;

[

X[1],

X[2],

X[3],

X[4],

X[5]

]

> &+X;

X[1] + X[2] + X[3] + X[4] + X[5]

> (&+X)^2;

X[1]^2 + 2*X[1]*X[2] + 2*X[1]*X[3] + 2*X[1]*X[4] +

2*X[1]*X[5] + X[2]^2 + 2*X[2]*X[3] + 2*X[2]*X[4] +

2*X[2]*X[5] + X[3]^2 + 2*X[3]*X[4] + 2*X[3]*X[5] +

X[4]^2 + 2*X[4]*X[5] + X[5]^2



Ch. 1 STATEMENTS AND EXPRESSIONS 9

AssignNames(∼S, [s1, ... sn] )

If S is a structure that allows naming of ‘generators’ (see the Index for a complete
list), this procedure assigns the names specified by the strings to these generators.
The number of generators has to match the length of the sequence. This will result
in the creation of a new structure.

Example H1E5

> G<a, b> := Group<a, b | a^2 = b^3 = a^b*b^2>;

> w := a * b;

> w;

a * b

> AssignNames(~G, ["c", "d"]);

> G;

Finitely presented group G on 2 generators

Relations

c^2 = d^-1 * c * d^3

d^3 = d^-1 * c * d^3

> w;

a * b

> Parent(w);

Finitely presented group on 2 generators

Relations

a^2 = b^-1 * a * b^3

b^3 = b^-1 * a * b^3

> G eq Parent(w);

true

1.4.4 Mutation Assignment

x o:= expression;

This is the mutation assignment : the expression is evaluated and the operator o is
applied on the result and the current value of x, and assigned to x again. Thus the
result is equivalent to (but an optimized version of): x := x o expression;. The
operator may be any of the operations join, meet, diff, sdiff, cat, *, +, -, /,
^, div, mod, and, or, xor provided that the operation is legal on its arguments of
course.



10 THE MAGMA LANGUAGE Part I

Example H1E6

The following simple program to produce a set consisting of the first 10 powers of 2 involves the
use of two different mutation assignments.

> x := 1;

> S := { };

> for i := 1 to 10 do

> S join:= { x };

> x *:= 2;

> end for;

> S;

{ 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 }

1.4.5 Deletion of Values

delete x

(Statement.) Delete the current value of the identifier x. The memory occupied is
freed, unless other variables still refer to it. If x is the name of an intrinsic Magma
function that has been reassigned to, the identifier will after deletion again refer to
that intrinsic function. Intrinsic functions cannot be deleted.

1.5 Boolean values

This section deals with logical values (“Booleans”).
Booleans are primarily of importance as (return) values for (intrinsic) predicates. It is

important to know that the truth-value of the operators and and or is always evaluated
left to right , that is, the left-most clause is evaluated first, and if that determines the value
of the operator evaluation is aborted; if not, the next clause is evaluated, etc. So, for
example, if x is a boolean, it is safe (albeit silly) to type:

> if x eq true or x eq false or x/0 eq 1 then
> "fine";
> else
> "error";
> end if;

even though x/0 would cause an error (”Bad arguments”, not ”Division by zero”!) upon
evaluation, because the truth value will have been determined before the evaluation of x/0
takes place.



Ch. 1 STATEMENTS AND EXPRESSIONS 11

1.5.1 Creation of Booleans

Booleans()

The Boolean structure.

#B

Cardinality of Boolean structure (2).

true

false

The Boolean elements.

Random(B)

Return a random Boolean.

1.5.2 Boolean Operators

x and y

Returns true if both x and y are true, false otherwise. If x is false, the expression
for y is not evaluated.

x or y

Returns true if x or y is true (or both are true), false otherwise. If x is true,
the expression for y is not evaluated.

x xor y

Returns true if either x or y is true (but not both), false otherwise.

not x

Negate the truth value of x.

1.5.3 Equality Operators
Magma provides two equality operators: eq for strong (comparable) equality testing, and
cmpeq for weak equality testing. The operators depend on the concept of comparability.
Objects x and y in Magma are said to be comparable if both of the following points hold:
(a)x and y are both elements of a structure S or there is a structure S such x and y will

be coerced into S by automatic coercion;
(b)There is an equality test for elements of S defined within Magma.

The possible automatic coercions are listed in the descriptions of the various Magma
modules. For instance, the table in the introductory chapter on rings shows that inte-
gers can be coerced automatically into the rational field so an integer and a rational are
comparable.

x eq y

If x and y are comparable, return true if x equals y (which will always work by the
second rule above). If x and y are not comparable, an error results.



12 THE MAGMA LANGUAGE Part I

x ne y

If x and y are comparable, return true if x does not equal y. If x and y are not
comparable, an error results.

x cmpeq y

If x and y are comparable, return whether x equals y. Otherwise, return false.
Thus this operator always returns a value and an error never results. It is useful
when comparing two objects of completely different types where it is desired that
no error can happen. However, it is strongly recommended that eq is usually used
to allow Magma to pick up common unintentional type errors.

x cmpne y

If x and y are comparable, return whether x does not equal y. Otherwise, return
true. Thus this operator always returns a value and an error never results. It is
useful when comparing two objects of completely different types where it is desired
that no error can happen. However, it is strongly recommended that ne is usually
used to allow Magma to pick up common unintentional type errors.

Example H1E7

We illustrate the different semantics of eq and cmpeq.

> 1 eq 2/2;

true

> 1 cmpeq 2/2;

true

> 1 eq "x";

Runtime error in ’eq’: Bad argument types

> 1 cmpeq "x";

false

> [1] eq ["x"];

Runtime error in ’eq’: Incompatible sequences

> [1] cmpeq ["x"];

false

1.5.4 Iteration
A Boolean structure B may be used for enumeration: for x in B do, and x in B in set
and sequence constructors.



Ch. 1 STATEMENTS AND EXPRESSIONS 13

Example H1E8

The following program checks that the functions ne and xor coincide.

> P := Booleans();

> for x, y in P do

> (x ne y) eq (x xor y);

> end for;

true

true

true

true

Similarly, we can test whether for any pair of Booleans x, y it is true that

x = y ⇐⇒ (x ∧ y) ∨ (¬x ∧ ¬y).

> equal := true;

> for x, y in P do

> if (x eq y) and not ((x and y) or (not x and not y)) then

> equal := false;

> end if;

> end for;

> equal;

true

1.6 Coercion

Coercion is a fundamental concept in Magma. Given a structures A and B, there is
often a natural mathematical mapping from A to B (e.g., embedding, projection), which
allows one to transfer elements of A to corresponding elements of B. This is known as
coercion. Natural and obvious coercions are supported in Magma as much as possible;
see the relevant chapters for the coercions possible between various structures.

S ! x

Given a structure S and an object x, attempt to coerce x into S and return the
result if successful. If the attempt fails, an error ensues.

IsCoercible(S, x)

Given a structure S and an object x, attempt to coerce x into S; if successful, return
true and the result of the coercion, otherwise return false.



14 THE MAGMA LANGUAGE Part I

1.7 The where . . . is Construction
By the use of the where ... is construction, one can within an expression temporarily
assign an identifier to a sub-expression. This allows for compact code and efficient re-use
of common sub-expressions.

expression1 where identifier is expression2

expression1 where identifier := expression2

This construction is an expression that temporarily assigns the identifier to the
second expression and then yields the value of the first expression. The identifier
may be referred to in the first expression and it will equal the value of the second
expression. The token := can be used as a synonym for is. The scope of the
identifier is the where ... is construction alone except for when the construction
is part of an expression list — see below.

The where operator is left-associative. This means that there can be multiple
uses of where ... is constructions and each expression can refer to variables bound
in the enclosing constructions.

Another important feature is found in a set or sequence constructor. If there
are where ... is constructions in the predicate, then any variables bound in them
may be referred to in the expression at the beginning of the constructor. If the
whole predicate is placed in parentheses, then any variables bound in the predicate
do not extend to the expression at the beginning of the constructor.

The where operator also extends left in expression lists. That is, if there is an
expression E in a expression list which is a where construction (or chain of where
constructions), the identifiers bound in that where construction (or chain) will be
defined in all expressions in the list which are to the left of E. Expression lists
commonly arise as argument lists to functions or procedures, return arguments,
print statements (with or without the word ‘print’) etc. A where construction also
overrides (hides) any where construction to the right of it in the same list. Using
parentheses around a where expression ensures that the identifiers bound within it
are not seen outside it.

Example H1E9

The following examples illustrate simple uses of where ... is.

> x := 1;

> x where x is 10;

10

> x;

1

> Order(G) + Degree(G) where G is Sym(3);

9

Since where is left-associative we may have multiple uses of it. The use of parentheses, of course,
can override the usual associativity.

> x := 1;



Ch. 1 STATEMENTS AND EXPRESSIONS 15

> y := 2;

> x + y where x is 5 where y is 6;

11

> (x + y where x is 5) where y is 6; // the same

11

> x + y where x is (5 where y is 6);

7

> x + y where x is y where y is 6;

12

> (x + y where x is y) where y is 6; // the same

12

> x + y where x is (y where y is 6);

8

We now illustrate how the left expression in a set or sequence constructor can reference the
identifiers of where constructions in the predicate.

> { a: i in [1 .. 10] | IsPrime(a) where a is 3*i + 1 };
{ 7, 13, 19, 31 }
> [<x, y>: i in [1 .. 10] | IsPrime(x) and IsPrime(y)

> where x is y + 2 where y is 2 * i + 1];

[ <5, 3>, <7, 5>, <13, 11>, <19, 17> ]

We next demonstrate the semantics of where constructions inside expression lists.

> // A simple use:

> [a, a where a is 1];

[ 1, 1 ]

> // An error: where does not extend right

> print [a where a is 1, a];

User error: Identifier ’a’ has not been declared

> // Use of parentheses:

> [a, (a where a is 1)] where a is 2;

[ 2, 1 ]

> // Another use of parentheses:

> print [a, (a where a is 1)];

User error: Identifier ’a’ has not been declared

> // Use of a chain of where expressions:

> [<a, b>, <b, a> where a is 1 where b is 2];

[ <1, 2>, <2, 1> ]

> // One where overriding another to the right of it:

> [a, a where a is 2, a where a is 3];

[ 2, 2, 3 ]



16 THE MAGMA LANGUAGE Part I

1.8 Conditional Statements and Expressions
The conditional statement has the usual form if ... then ... else ... end if;. It
has several variants. Within the statement, a special prompt will appear, indicating that
the statement has yet to be closed. Conditional statements may be nested.

The conditional expression, select ... else, is used for in-line conditionals.

1.8.1 The Simple Conditional Statement

if Boolean expression then
statements1

else
statements2

end if;

if Boolean expression then
statements

end if;

The standard conditional statement: the value of the Boolean expression is evalu-
ated. If the result is true, the first block of statements is executed, if the result
is false the second block of statements is executed. If no action is desired in the
latter case, the construction may be abbreviated to the second form above.

if Boolean expression1 then
statements1

elif Boolean expression2 then
statements2

else
statements3

end if;

Since nested conditions occur frequently, elif provides a convenient abbreviation
for else if, which also restricts the ‘level’:

if Boolean expression then
statements1

elif Boolean expression2 then
statements2

else
statements3

end if;

is equivalent to

if Boolean expression1 then
statements1

else
if Boolean expression2 then



Ch. 1 STATEMENTS AND EXPRESSIONS 17

statements2
else

statements3
end if;

end if;

Example H1E10

> m := Random(2, 10000);

> if IsPrime(m) then

> m, "is prime";

> else

> Factorization(m);

> end if;

[ <23, 1>, <37, 1> ]

1.8.2 The Simple Conditional Expression

Boolean expression select expression1 else expression2

This is an expression, of which the value is that of expression1 or expression2,
depending on whether Boolean expression is true or false.

Example H1E11

Using the select ... else construction, we wish to assign the sign of y to the variable s.

> y := 11;

> s := (y gt 0) select 1 else -1;

> s;

1

This is not quite right (when y = 0), but fortunately we can nest select ... else constructions:

> y := -3;

> s := (y gt 0) select 1 else (y eq 0 select 0 else -1);

> s;

-1

> y := 0;

> s := (y gt 0) select 1 else (y eq 0 select 0 else -1);

> s;

0

The select ... else construction is particularly important in building sets and sequences,
because it enables in-line if constructions. Here is a sequence containing the first 100 entries of
the Fibonacci sequence:

> f := [ i gt 2 select Self(i-1)+Self(i-2) else 1 : i in [1..100] ];



18 THE MAGMA LANGUAGE Part I

1.8.3 The Case Statement

case expression :
when expression, . . . , expression:

statements
...

when expression, . . . , expression:
statements

end case;

The expression following case is evaluated. The statements following the first ex-
pression whose value equals this value are executed, and then the case statement
has finished. If none of the values of the expressions equal the value of the case
expression, then the statements following else are executed. If no action is desired
in the latter case, the construction may be abbreviated to the second form above.

Example H1E12

> x := 73;

> case Sign(x):

> when 1:

> x, "is positive";

> when 0:

> x, "is zero";

> when -1:

> x, "is negative";

> end case;

73 is positive

1.8.4 The Case Expression

case< expression |
expressionleft,1 : expressionright,1,

...
expressionleft,n : expressionright,n,
default : expressiondef >

This is the expression form of case. The expression is evaluated to the value v.
Then each of the left-hand expressions expressionleft,i is evaluated until one is found
whose value equals v; if this happens the value of the corresponding right-hand
expression expressionright,i is returned. If no left-hand expression with value v is
found the value of the default expression expressiondef is returned.

The default case cannot be omitted, and must come last.



Ch. 1 STATEMENTS AND EXPRESSIONS 19

1.9 Error Handling Statements
Magma has facilities for both reporting and handling errors. Errors can arise in a variety
of circumstances within Magma’s internal code (due to, for instance, incorrect usage of
a function, or the unexpected failure of an algorithm). Magma allows the user to raise
errors in their own code, as well as catch many kinds of errors.

1.9.1 The Error Objects
All errors in Magma are of type Err. Error objects not only include a description of
the error, but also information relating to the location at which the error was raised, and
whether the error was a user error, or a system error.

Error(x)

Constructs an error object with user information given by x, which can be of any
type. The object x is stored in the Object attributed of the constructed error object,
and the Type attribute of the object is set to “ErrUser”. The remaining attributes
are uninitialized until the error is raised by an error statement; at that point they
are initialized with the appropriate positional information.

e‘Position

Stores the position at which the error object e was raised. If the error object has
not yet been raised, the attribute is undefined.

e‘Traceback

Stores the stack traceback giving the position at which the error object e was raised.
If the error object has not yet been raised, the attribute is undefined.

e‘Object

Stores the user defined error information for the error. If the error is a system error,
then this will be a string giving a textual description of the error.

e‘Type

Stores the type of the error. Currently, there are only two types of errors in Magma:
“Err” denotes a system error, and “ErrUser” denotes an error raised by the user.

1.9.2 Error Checking and Assertions

error expression, ..., expression;

Raises an error, with the error information being the printed value of the expressions.
This statement is useful, for example, when an illegal value of an argument is passed
to a function.

error if Boolean expression, expression, ..., expression;

If the given boolean expression evaluates to true, then raises an error, with the error
information being the printed value of the expressions. This statement is designed
for checking that certain conditions must be met, etc.



20 THE MAGMA LANGUAGE Part I

assert Boolean expression;

assert2 Boolean expression;

assert3 Boolean expression;

These assertion statements are useful to check that certain conditions are satisfied.
There is an underlying Assertions flag, which is set to 1 by default.

For each statement, if the Assertions flag is less than the level specified by
the statement (respectively 1, 2, 3 for the above statements), then nothing is done.
Otherwise, the given boolean expression is evaluated and if the result is false, an
error is raised, with the error information being an appropriate message.

It is recommended that when developing package code, assert is used for im-
portant tests (always to be tested in any mode), while assert2 is used for more
expensive tests, only to be checked in the debug mode, while assert3 is be used for
extremely stringent tests which are very expensive.

Thus the Assertions flag can be set to 0 for no checking at all, 1 for normal
checks, 2 for debug checks and 3 for extremely stringent checking.

1.9.3 Catching Errors

try
statements1

catch e
statements2

end try;

The try/catch statement lets users handle raised errors. The semantics of a
try/catch statement are as follows: the block of statements statements1 is ex-
ecuted. If no error is raised during its execution, then the block of statements
statements2 is not executed; if an error is raised at any point in statements1, ex-
ecution immediately transfers to statements2 (the remainder of statements1 is not
executed). When transfer is controlled to the catch block, the variable named e
is initialized to the error that was raised by statements1; this variable remains in
scope until the end of the catch block, and can be both read from and written
to. The catch block can, if necessary, reraise e, or any other error object, using an
error statement.

Example H1E13

The following example demonstrates the use of error objects, and try/catch statements.

> procedure always_fails(x)

> error Error(x);

> end procedure;

>

> try

> always_fails(1);



Ch. 1 STATEMENTS AND EXPRESSIONS 21

> always_fails(2); // we never get here

> catch e

> print "In catch handler";

> error "Error calling procedure with parameter: ", e‘Object;

> end try;

In catch handler

Error calling procedure with parameter: 1

1.10 Iterative Statements
Three types of iterative statement are provided in Magma: the for-statement providing
definite iteration and the while- and repeat-statements providing indefinite iteration.

Iteration may be performed over an arithmetic progression of integers or over any finite
enumerated structure. Iterative statements may be nested. If nested iterations occur over
the same enumerated structure, abbreviations such as for x, y in X do may be used;
the leftmost identifier will correspond to the outermost loop, etc. (For nested iteration in
sequence constructors, see Chapter 10.)

Early termination of the body of loop may be specified through use of the ‘jump’
commands break and continue.

1.10.1 Definite Iteration

for i := expression1 to expression2 by expression3 do
statements

end for;

The expressions in this for loop must return integer values, say b, e and s (for
‘begin’, ‘end’ and ‘step’) respectively. The loop is ignored if either s > 0 and b > e,
or s < 0 and b < e. If s = 0 an error occurs. In the remaining cases, the value
b + k · s will be assigned to i, and the statements executed, for k = 0, 1, 2, . . . in
succession, as long as b + k · s ≤ e (for e > 0) or b + k · s ≥ e (for e < 0).

If the required step size is 1, the above may be abbreviated to:

for i := expression1 to expression2 do
statements

end for;

for x in S do
statements

end for;

Each of the elements of the finite enumerated structure S will be assigned to x in
succession, and each time the statements will be executed. It is possible to nest
several of these for loops compactly as follows.

for x11, ..., x1n1 in S1, ..., xm1, ..., xmnm in Sm do
statements

end for;



22 THE MAGMA LANGUAGE Part I

1.10.2 Indefinite Iteration

while Boolean expression do
statements

end while;

Check whether or not the Boolean expression has the value true; if it has, execute
the statements. Repeat this until the expression assumes the value false, in which
case statements following the end while; will be executed.

Example H1E14

The following short program implements a run of the famous 3x+1 problem on a random integer
between 1 and 100.

> x := Random(1, 100);

> while x gt 1 do

> x;

> if IsEven(x) then

> x div:= 2;

> else

> x := 3*x+1;

> end if;

> end while;

13

40

20

10

5

16

8

4

2

repeat
statements

until Boolean expression;

Execute the statements, then check whether or not the Boolean expression has the
value true. Repeat this until the expression assumes the value false, in which case
the loop is exited, and statements following it will be executed.



Ch. 1 STATEMENTS AND EXPRESSIONS 23

Example H1E15

This example is similar to the previous one, except that it only prints x and the number of steps
taken before x becomes 1. We use a repeat loop, and show that the use of a break statement
sometimes makes it unnecessary that the Boolean expression following the until ever evaluates
to true. Similarly, a while true statement may be used if the user makes sure the loop will be
exited using break.

> x := Random(1, 1000);

> x;

172

> i := 0;

> repeat

> while IsEven(x) do

> i +:= 1;

> x div:= 2;

> end while;

> if x eq 1 then

> break;

> end if;

> x := 3*x+1;

> i +:= 1;

> until false;

> i;

31

1.10.3 Early Exit from Iterative Statements

continue;

The continue statement can be used to jump to the end of the innermost enclosing
loop: the termination condition for the loop is checked immediately.

continue identifier;

As in the case of break, this allows jumps out of nested for loops: the termina-
tion condition of the loop with loop variable identifier is checked immediately after
continue identifier is encountered.

break;

A break inside a loop causes immediate exit from the innermost enclosing loop.

break identifier;

In nested for loops, this allows breaking out of several loops at once: this will cause
an immediate exit from the loop with loop variable identifier.



24 THE MAGMA LANGUAGE Part I

Example H1E16

> p := 10037;

> for x in [1 .. 100] do

> for y in [1 .. 100] do

> if x^2 + y^2 eq p then

> x, y;

> break x;

> end if;

> end for;

> end for;

46 89

Note that break instead of break x would have broken only out of the inner loop; the output in
that case would have been:

46 89

89 46

1.11 Runtime Evaluation: the eval Expression

Sometimes it is convenient to able to evaluate expressions that are dynamically constructed
at runtime. For instance, consider the problem of implementing a database of mathematical
objects in Magma. Suppose that these mathematical objects are very large, but can be
constructed in only a few lines of Magma code (a good example of this would be Magma’s
database of best known linear codes). It would be very inefficient to store these objects
in a file for later retrieval; a better solution would be to instead store a string giving
the code necessary to construct each object. Magma’s eval feature can then be used to
dynamically parse and execute this code on demand.

eval expression

The eval expression works as follows: first, it evaluates the given expression, which
must evaluate to a string. This string is then treated as a piece of Magma code
which yields a result (that is, the code must be an expression, not a statement), and
this result becomes the result of the eval expression.

The string that is evaluated can be of two forms: it can be a Magma expression,
e.g., “1+2”, “Random(x)”, or it can be a sequence of Magma statements. In the
first case, the string does not have to be terminated with a semicolon, and the result
of the expression given in the string will be the result of the eval expression. In the
second case, the last statement given in the string should be a return statement; it
is easiest to think of this case as defining the body of a function.

The string that is used in the eval expression can refer to any variable that is
in scope during the evaluation of the eval expression. However, it is not possible
for the expression to modify any of these variables.



Ch. 1 STATEMENTS AND EXPRESSIONS 25

Example H1E17

In this example we demonstrate the basic usage of the eval keyword.

> x := eval "1+1"; // OK

> x;

2

> eval "1+1;"; // not OK

2

>> eval "1+1;"; // not OK

^

Runtime error: eval must return a value

> eval "return 1+1;"; // OK

2

> eval "x + 1"; // OK

3

> eval "x := x + 1; return x";

>> eval "x := x + 1; return x";

^

In eval expression, line 1, column 1:

>> x := x + 1; return x;

^

Located in:

>> eval "x := x + 1; return x";

^

User error: Imported environment value ’x’ cannot be used as a local

Example H1E18

In this example we demonstrate how eval can be used to construct Magma objects specified with
code only available at runtime.

> M := Random(MatrixRing(GF(2), 5));

> M;

[1 1 1 1 1]

[0 0 1 0 1]

[0 0 1 0 1]

[1 0 1 1 1]

[1 1 0 1 1]

> Write("/tmp/test", M, "Magma");

> s := Read("/tmp/test");

> s;

MatrixAlgebra(GF(2), 5) ! [ GF(2) | 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1,

1, 0, 1, 1, 1, 1, 1, 0, 1, 1 ]

> M2 := eval s;

> assert M eq M2;



26 THE MAGMA LANGUAGE Part I

1.12 Comments and Continuation

//

One-line comment: any text following the double slash on the same line will be
ignored by Magma.

/* */

Multi-line comment: any text between /* and */ is ignored by Magma.

\

Line continuation character: this symbol and the <return> immediately following is
ignored by Magma. Evaluation will continue on the next line without interruption.
This is useful for long input lines.

Example H1E19

> // The following produces an error:

> x := 12

> 34;

User error: bad syntax

> /* but this is correct

> and reads two lines: */

> x := 12\

> 34;

> x;

1234

1.13 Timing

Cputime()

Return the CPU time (as a real number of default precision) used since the beginning
of the Magma session. Note that for the MSDOS version, this is the real time
used since the beginning of the session (necessarily, since process CPU time is not
available).

Cputime(t)

Return the CPU time (as a real number of default precision) used since time t. Time
starts at 0.0 at the beginning of a Magma session.

Realtime()

Return the absolute real time (as a real number of default precision), which is the
number of seconds since 00:00:00 GMT, January 1, 1970. For the MSDOS version,
this is the real time used since the beginning of the session.



Ch. 1 STATEMENTS AND EXPRESSIONS 27

Realtime(t)

Return the real time (as a real number of default precision) elapsed since time t.

ClockCycles()

Return the number of clock cycles of the CPU since Magma’s startup. Note that
this matches the real time (i.e., not process user/system time). If the operation is
not supported on the current processor, zero is returned.

time statement;

Execute the statement and print the time taken when the statement is completed.

vtime flag: statement;

vtime flag, n: statement:

If the verbose flag flag (see the function SetVerbose) has a level greater than or
equal to n, execute the statement and print the time taken when the statement is
completed. If the flag has level 0 (i.e., is not turned on), still execute the statement,
but do not print the timing. In the first form of this statement, where a specific
level is not given, n is taken to be 1. This statement is useful in Magma code found
in packages where one wants to print the timing of some sub-algorithm if and only
if an appropriate verbose flag is turned on.

Example H1E20

The time command can be used to time a single statement.

> n := 2^109-1;

> time Factorization(n);

[<745988807, 1>, <870035986098720987332873, 1>]

Time: 0.149

Alternatively, we can extract the current time t and use Cputime. This method can be used to
time the execution of several statements.

> m := 2^111-1;

> n := 2^113-1;

> t := Cputime();

> Factorization(m);

[<7, 1>, <223, 1>, <321679, 1>, <26295457, 1>, <319020217, 1>, <616318177, 1>]

> Factorization(n);

[<3391, 1>, <23279, 1>, <65993, 1>, <1868569, 1>, <1066818132868207, 1>]

> Cputime(t);

0.121

We illustrate a simple use of vtime with vprint within a function.

> function MyFunc(G)

> vprint User1: "Computing order...";

> vtime User1: o := #G;



28 THE MAGMA LANGUAGE Part I

> return o;

> end function;

> SetVerbose("User1", 0);

> MyFunc(Sym(4));

24

> SetVerbose("User1", 1);

> MyFunc(Sym(4));

Computing order...

Time: 0.000

24

1.14 Types, Category Names, and Structures

The following functions deal with types or category names and general structures. Magma
has two levels of granularity when referring to types. In most cases, the coarser grained
types (of type Cat) are used. Examples of these kinds of types are “polynomial rings”
(RngUPol) and “finite fields” (FldFin). However, sometimes more specific typing informa-
tion is sometimes useful. For instance, the algorithm used to factorize polynomials differs
significantly, depending on the coefficient ring. Hence, we might wish to implement a spe-
cialized factorization algorithm polynomials over some particular ring type. Due to this
need, Magma also supports extended types.

An extended type (of type ECat) can be thought of as a type taking a parame-
ter. Using extended types, we can talk about “polynomial rings over the integers”
(RngUPol[RngInt]), or “maps from the integers to the rationals” (Map[RngInt, FldRat]).
Extended types can interact with normal types in all ways, and thus generally only need
to be used when the extra level of information is required.

Type(x)

Category(x)

Given any object x, return the type (or category name) of x.

ExtendedType(x)

ExtendedCategory(x)

Given any object x, return the extended type (or category name) of x.

ISA(T, U)

Given types (or extended types) T and U , return whether T ISA U , i.e., whether
objects of type T inherit properties of type U . For example, ISA(RngInt, Rng) is
true, because the ring of integers Z is a ring.



Ch. 1 STATEMENTS AND EXPRESSIONS 29

MakeType(S)

Given a string S specifying a type return the actual type corresponding to S. This
is useful when some intrinsic name hides the symbol which normally refers to the
actual type.

ElementType(S)

Given any structure S, return the type of the elements of S. For example, the
element type of the ring of integers Z is RngIntElt since that is the type of the
integers which lie in Z.

CoveringStructure(S, T)

Given structures S and T , return a covering structure C for S and T , so that S and
T both embed into C. An error results if no such covering structure exists.

ExistsCoveringStructure(S, T)

Given structures S and T , return whether a covering structure C for S and T exists,
and if so, return such a C, so that S and T both embed into C.

Example H1E21

We demonstrate the type and structure functions.

> Type(3);

RngIntElt

> t := MakeType("RngIntElt");

> t;

RngIntElt

> Type(3) eq t;

true

> Z := IntegerRing();

> Type(Z);

RngInt

> ElementType(Z);

RngIntElt

> ISA(RngIntElt, RngElt);

true

> ISA(RngIntElt, GrpElt);

false

> ISA(FldRat, Fld);

true

The following give examples of when covering structures exist or do not exist.

> Q := RationalField();

> CoveringStructure(Z, Q);

Rational Field

> ExistsCoveringStructure(Z, DihedralGroup(3));

false



30 THE MAGMA LANGUAGE Part I

> ExistsCoveringStructure(Z, CyclotomicField(5));

true Cyclotomic Field of order 5 and degree 4

> ExistsCoveringStructure(CyclotomicField(3), CyclotomicField(5));

true Cyclotomic Field of order 15 and degree 8

> ExistsCoveringStructure(GF(2), GF(3));

false

> ExistsCoveringStructure(GF(2^6), GF(2, 15));

true Finite field of size 2^30

Our last example demonstrates the use of extended types:

> R<x> := PolynomialRing(Integers());

> ExtendedType(R);

RngUPol[RngInt]

> ISA(RngUPol[RngInt], RngUPol);

true

> f := x + 1;

> ExtendedType(f);

RngUPolElt[RngInt]

> ISA(RngUPolElt[RngInt], RngUPolElt);

true

1.15 Random Object Generation

Pseudo-random quantities are used in several Magma algorithms, and may also be gener-
ated explicitly by some intrinsics. Throughout the Handbook, the word ‘random’ is used
for ‘pseudo-random’.

Since V2.7 (June 2000), Magma contains an implementation of the Monster random
number generator of G. Marsaglia [Mar00]. The period of this generator is 229430 − 227382

(approximately 108859), and passes all of the stringent tests in Marsaglia’s Diehard test
suite [Mar95]. Since V2.13 (July 2006), this generator is combined with the MD5 hash
function to produce a higher-quality result.

Because the generator uses an internal array of machine integers, one ‘seed’ variable
does not express the whole state, so the method for setting or getting the generator state
is by way of a pair of values: (1) the seed for initializing the array, and (2) the number of
steps performed since the initialization.

SetSeed(s, c)

SetSeed(s)

(Procedure.) Reset the random number generator to have initial seed s (0 ≤ s <
232), and advance to step c (0 ≤ c < 264). If c is not given, it is taken to be
0. Passing -Sn to Magma at startup is equivalent to typing SetSeed(n); after
startup.



Ch. 1 STATEMENTS AND EXPRESSIONS 31

GetSeed()

Return the initial seed s used to initialize the random-number generator and also
the current step c. This is the complement to the SetSeed function.

Random(S)

Given a finite set or structure S, return a random element of S.

Random(a, b)

Return a random integer lying in the interval [a, b], where a ≤ b.

Random(b)

Return a random integer lying in the interval [0, b], where b is a non-negative in-
teger. Because of the good properties of the underlying Monster generator, calling
Random(1) is a good safe way to produce a sequence of random bits.

Example H1E22

We demonstrate how one can return to a previous random state by the use of GetSeed and
SetSeed. We begin with initial seed 1 at step 0 and create a multi-set of 100,000 random integers
in the range [1..4].

> SetSeed(1);

> GetSeed();

1 0

> time S := {* Random(1, 4): i in [1..100000] *};

Time: 0.490

> S;

{* 1^^24911, 2^^24893, 3^^25139, 4^^25057 *}

We note the current state by GetSeed, and then print 10 random integers in the range [1..100].

> GetSeed();

1 100000

> [Random(1, 100): i in [1 .. 10]];

[ 85, 41, 43, 69, 66, 61, 63, 31, 84, 11 ]

> GetSeed();

1 100014

We now restart with a different initial seed 23 (again at step 0), and do the same as before, noting
the different random integers produced.

> SetSeed(23);

> GetSeed();

23 0

> time S := {* Random(1, 4): i in [1..100000] *};

Time: 0.500

> S;

{* 1^^24962, 2^^24923, 3^^24948, 4^^25167 *}

> GetSeed();



32 THE MAGMA LANGUAGE Part I

23 100000

> [Random(1, 100): i in [1 .. 10]];

[ 3, 93, 11, 62, 6, 73, 46, 52, 100, 30 ]

> GetSeed();

23 100013

Finally, we restore the random generator state to what it was after the creation of the multi-set
for the first seed. We then print the 10 random integers in the range [1..100], and note that they
are the same as before.

> SetSeed(1, 100000);

> [Random(1, 100): i in [1 .. 10]];

[ 85, 41, 43, 69, 66, 61, 63, 31, 84, 11 ]

> GetSeed();

1 100014

1.16 Miscellaneous

IsIntrinsic(S)

Given a string S, return true if and only an intrinsic with the name S exists in the
current version of Magma. If the result is true, return also the actual intrinsic.

Example H1E23

We demonstrate the function IsIntrinsic.

> IsIntrinsic("ABCD");

false

> l, a := IsIntrinsic("Abs");

> l;

true

> a(-3);

3

1.17 Bibliography
[Mar95] G. Marsaglia. DIEHARD: a battery of tests of randomness.

URL:http://stat.fsu.edu/pub/diehard/, 1995.
[Mar00] G. Marsaglia. The Monster, a random number generator with period 102857

times as long as the previously touted longest-period one. Preprint, 2000.



2 FUNCTIONS, PROCEDURES
AND PACKAGES

2.1 Introduction . . . . . . . . . 35

2.2 Functions and Procedures . . . 35

2.2.1 Functions . . . . . . . . . . . . 35

f := func< x1, ..., xn: - | e>; 36
f := func< x1, ..., xn, ...: - | e>; 36

2.2.2 Procedures . . . . . . . . . . . . 39

p := proc< x1, ..., xn: - | e>; 40
p := proc< x1, ..., xn, ...: - | e>; 40

2.2.3 The forward Declaration . . . . . . 41

forward 41

2.3 Packages . . . . . . . . . . . 42

2.3.1 Introduction . . . . . . . . . . . 42

2.3.2 Intrinsics . . . . . . . . . . . . . 43

intrinsic 43

2.3.3 Resolving Calls to Intrinsics . . . . 45

2.3.4 Attaching and Detaching Package Files46

Attach(F) 47
Detach(F) 47
freeze; 47

2.3.5 Related Files . . . . . . . . . . . 47

2.3.6 Importing Constants . . . . . . . . 47

import "filename": ident list; 47

2.3.7 Argument Checking . . . . . . . . 48

require condition: print args; 48
requirerange v, L, U; 48
requirege v, L; 48

2.3.8 Package Specification Files . . . . . 49

AttachSpec(S) 49
DetachSpec(S) 49

2.3.9 User Startup Specification Files . . . 50

2.4 Attributes . . . . . . . . . . 51

2.4.1 Predefined System Attributes . . . . 51

2.4.2 User-defined Attributes . . . . . . 52

AddAttribute(C, F) 52
declare attributes C: F1, . . . , Fn; 52

2.4.3 Accessing Attributes . . . . . . . . 52

S‘fieldname 52
S‘‘N 52
assigned 52
assigned 52
S‘fieldname := e; 53
S‘‘N := e; 53
delete S‘fieldname; 53
delete S‘‘N; 53
GetAttributes(C) 53
ListAttributes(C) 53

2.5 User-defined Verbose Flags . . . 53

declare verbose F, m; 53

2.5.1 Examples . . . . . . . . . . . . 53

2.6 User-Defined Types . . . . . . 56

2.6.1 Declaring User-Defined Types . . . . 56

declare type T; 56
declare type T : P1, . . . , Pn; 56
declare type T [E]; 56
declare type T [E] : P1, . . . , Pn; 56

2.6.2 Creating an Object . . . . . . . . 57

New(T) 57

2.6.3 Special Intrinsics Provided by the User57

2.6.4 Examples . . . . . . . . . . . . 58





Chapter 2

FUNCTIONS, PROCEDURES
AND PACKAGES

2.1 Introduction
Functions are one of the most fundamental elements of the Magma language. The first
section describes the various ways in which a standard function may be defined while the
second section describes the definition of a procedure (i.e. a function which doesn’t return
a value). The second half of the chapter is concerned with user-defined intrinsic functions
and procedures.

2.2 Functions and Procedures
There are two slightly different syntactic forms provided for the definition of a user function
(as opposed to an intrinsic function). For the case of a function whose definition can be
expressed as a single expression, an abbreviated form is provided. The syntax for the
definition of user procedures is similar. Names for functions and procedures are ordinary
identifiers and so obey the rules as given in Chapter 1 for other variables.

2.2.1 Functions

f := function(x1, ..., xn: parameters)
statements

end function;

function f(x1, ..., xn: parameters)
statements

end function;

This creates a function taking n ≥ 0 arguments, and assigns it to f . The statements
may comprise any number of valid Magma statements, but at least one of them
must be of the form return expression;. The value of that expression (possibly
dependent on the values of the arguments x1, . . . , xn) will be the return value for
the function; failure to return a value will lead to a run-time error when the func-
tion is invoked. (In fact, a return statement is also required for every additional
‘branch’ of the function that has been created using an if ... then ... else
... construction.)

The function may return multiple values. Usually one uses the form return ex-
pression, . . ., expression;. If one wishes to make the last return value(s) undefined
(so that the number of return values for the function is the same in all ‘branches’ of



36 THE MAGMA LANGUAGE Part I

the function) the underscore symbol ( ) may be used. (The undefined symbol may
only be used for final values of the list.) This construct allows behaviour similar to
the intrinsic function IsSquare, say, which returns true and the square root of its
argument if that exists, and false and the undefined value otherwise. See also the
example below.

If there are parameters given, they must consist of a comma-separated list of
clauses each of the form identifier := value. The identifier gives the name of
the parameter, which can then be treated as a normal value argument within the
statements. The value gives a default value for the parameter, and may depend
on any of the arguments or preceding parameters; if, when the function is called,
the parameter is not assigned a value, this default value will be assigned to the
parameter. Thus parameters are always initialized. If no parameters are desired,
the colon following the last argument, together with parameters, may be omitted.

The only difference between the two forms of function declaration lies in recur-
sion. Functions may invoke themselves recursively since their name is part of the
syntax; if the first of the above declarations is used, the identifier f cannot be used
inside the definition of f (and $$ will have to be used to refer to f itself instead),
while the second form makes it possible to refer to f within its definition.

An invocation of the user function f takes the form f(m1, ..., mn), where
m1, . . . , mn are the actual arguments.

f := function(x1, ..., xn, ...: parameters)
statements

end function;

function f(x1, ..., xn, ...: parameters)
statements

end function;

This creates a variadic function, which can take n or more arguments. The semantics
are identical to the standard function definition described above, with the exception
of function invocation. An invocation of a variadic function f takes the form f(y1,
..., ym), where y1, . . . , ym are the arguments to the function, and m ≥ n. These
arguments get bound to the parameters as follows: for i < n, the argument yi is
bound to the parameter xi. For i ≥ n, the arguments yi are bound to the last
parameter xn as a list [∗yn, . . . , ym∗].

f := func< x1, ..., xn: parameters | expression>;

This is a short form of the function constructor designed for the situation in which
the value of the function can be defined by a single expression. A function f is
created which returns the value of the expression (possibly involving the function
arguments x1, . . . , xn). Optional parameters are permitted as in the standard func-
tion constructor.

f := func< x1, ..., xn, ...: parameters | expression>;

This is a short form of the function constructor for variadic functions, otherwise
identical to the short form describe above.



Ch. 2 FUNCTIONS, PROCEDURES AND PACKAGES 37

Example H2E1

This example illustrates recursive functions.

> fibonacci := function(n)

> if n le 2 then

> return 1;

> else

> return $$(n-1) + $$(n-2);

> end if;

> end function;

>

> fibonacci(10)+fibonacci(12);

199

> function Lucas(n)

> if n eq 1 then

> return 1;

> elif n eq 2 then

> return 3;

> else

> return Lucas(n-1)+Lucas(n-2);

> end if;

> end function;

>

> Lucas(11);

199

> fibo := func< n | n le 2 select 1 else $$(n-1) + $$(n-2) >;

> fibo(10)+fibo(12);

199

Example H2E2

This example illustrates the use of parameters.

> f := function(x, y: Proof := true, Al := "Simple")

> return <x, y, Proof, Al>;

> end function;

>

> f(1, 2);

<1, 2, true, Simple>

> f(1, 2: Proof := false);

<1, 2, false, Simple>

> f(1, 2: Al := "abc", Proof := false);

<1, 2, false, abc>



38 THE MAGMA LANGUAGE Part I

Example H2E3

This example illustrates the returning of undefined values.

> f := function(x)

> if IsOdd(x) then

> return true, x;

> else

> return false, _;

> end if;

> end function;

>

> f(1);

true 1

> f(2);

false

> a, b := f(1);

> a;

true

> b;

1

> a, b := f(2);

> a;

false

> // The following produces an error:

> b;

>> b;

^

User error: Identifier ’b’ has not been assigned

Example H2E4

This example illustrates the use of variadic functions.

> f := function(x, y, ...)

> print "x: ", x;

> print "y: ", y;

> return [x + z : z in y];

> end function;

>

> f(1, 2);

x: 1

y: [* 2*]

[ 3 ]

> f(1, 2, 3);

x: 1

y: [* 2, 3*]

[ 3, 4 ]

> f(1, 2, 3, 4);



Ch. 2 FUNCTIONS, PROCEDURES AND PACKAGES 39

x: 1

y: [* 2, 3, 4*]

[ 3, 4, 5 ]

2.2.2 Procedures

p := procedure(x1, ..., xn: parameters)
statements

end procedure;

procedure p(x1, ..., xn: parameters)
statements

end procedure;

The procedure, taking n ≥ 0 arguments and defined by the statements is created and
assigned to p. Each of the arguments may be either a variable (yi) or a referenced
variable (∼yi). Inside the procedure only referenced variables (and local variables)
may be (re-)assigned to. The procedure p is invoked by typing p(x1, ..., xn),
where the same succession of variables and referenced variables is used (see the
example below). Procedures cannot return values.

If there are parameters given, they must consist of a comma-separated list of
clauses each of the form identifier := value. The identifier gives the name of
the parameter, which can then be treated as a normal value argument within the
statements. The value gives a default value for the parameter, and may depend
on any of the arguments or preceding parameters; if, when the function is called,
the parameter is not assigned a value, this default value will be assigned to the
parameter. Thus parameters are always initialized. If no parameters are desired,
the colon following the last argument, together with parameters, may be omitted.

As in the case of function, the only difference between the two declarations lies
in the fact that the second version allows recursive calls to the procedure within
itself using the identifier (p in this case).

p := procedure(x1, ..., xn, ...: parameters)
statements

end procedure;

procedure p(x1, ..., xn, ...: parameters)
statements

end procedure;

Creates and assigns a new variadic procedure to p. The use of a variadic procedure
is identical to that of a variadic function, described previously.



40 THE MAGMA LANGUAGE Part I

p := proc< x1, ..., xn: parameters | expression>;

This is a short form of the procedure constructor designed for the situation in which
the action of the procedure may be accomplished by a single statement. A procedure
p is defined which calls the procedure given by the expression. This expression must
be a simple procedure call (possibly involving the procedure arguments x1, . . . , xn).
Optional parameters are permitted as in the main procedure constructor.

p := proc< x1, ..., xn, ...: parameters | expression>;

This is a short form of the procedure constructor for variadic procedures.

Example H2E5

By way of simple example, the following (rather silly) procedure assigns a Boolean to the variable
holds, according to whether or not the first three arguments x, y, z satisfy x2 + y2 = z2. Note
that the fourth argument is referenced, and hence can be assigned to; the first three arguments
cannot be changed inside the procedure.

> procedure CheckPythagoras(x, y, z, ~h)

> if x^2+y^2 eq z^2 then

> h := true;

> else

> h := false;

> end if;

> end procedure;

We use this to find some Pythagorean triples (in a particularly inefficient way):

> for x, y, z in { 1..15 } do

> CheckPythagoras(x, y, z, ~h);

> if h then

> "Yes, Pythagorean triple!", x, y, z;

> end if;

> end for;

Yes, Pythagorean triple! 3 4 5

Yes, Pythagorean triple! 4 3 5

Yes, Pythagorean triple! 5 12 13

Yes, Pythagorean triple! 6 8 10

Yes, Pythagorean triple! 8 6 10

Yes, Pythagorean triple! 9 12 15

Yes, Pythagorean triple! 12 5 13

Yes, Pythagorean triple! 12 9 15



Ch. 2 FUNCTIONS, PROCEDURES AND PACKAGES 41

2.2.3 The forward Declaration

forward f;

The forward declaration of a function or procedure f ; although the assignment of a
value to f is deferred, f may be called from within another function or procedure
already.

The forward statement must occur on the ‘main’ level, that is, outside other
functions or procedures. (See also Chapter 5.)

Example H2E6

We give an example of mutual recursion using the forward declaration. In this example we define
a primality testing function which uses the factorization of n − 1, where n is the number to be
tested. To obtain the complete factorization we need to test whether or not factors found are
prime. Thus the prime divisor function and the primality tester call each other.
First we define a simple function that proves primality of n by finding an integer of multiplicative
order n− 1 modulo n.

> function strongTest(primdiv, n)

> return exists{ x : x in [2..n-1] | \

> Modexp(x, n-1, n) eq 1 and

> forall{ p : p in primdiv | Modexp(x, (n-1) div p, n) ne 1 }

> };

> end function;

Next we define a rather crude isPrime function: for odd n > 3 it first checks for a few (3) random
values of a that an−1 ≡ 1 mod n, and if so, it applies the above primality prover. For that we
need the not yet defined function for finding the prime divisors of an integer.

> forward primeDivisors;

> function isPrime(n)

> if n in { 2, 3 } or

> IsOdd(n) and

> forall{ a : a in { Random(2, n-2): i in [1..3] } |

> Modexp(a, n-1, n) eq 1 } and

> strongTest( primeDivisors(n-1), n )

> then

> return true;

> else

> return false;

> end if;

> end function;

Finally, we define a function that finds the prime divisors. Note that it calls the isPrime function.
Note also that this function is recursive, and that it calls a function upon its definition, in the
form func< ..> ( .. ).

> primeDivisors := function(n)

> if isPrime(n) then

> return { n };



42 THE MAGMA LANGUAGE Part I

> else

> return func< d | primeDivisors(d) join primeDivisors(n div d) >

> ( rep{ d : d in [2..Isqrt(n)] | n mod d eq 0 });

> end if;

> end function;

> isPrime(1087);

true;

2.3 Packages

2.3.1 Introduction
For brevity, in this section we shall use the term function to include both functions and
procedures.

The term intrinsic function or intrinsic refers to a function whose signature is stored in
the system table of signatures. In terms of their origin, there are two kinds of intrinsics,
system intrinsics (or standard functions) and user intrinsics, but they are indistinguishable
in their use. A system intrinsic is an intrinsic that is part of the definition of the Magma
system, whereas a user intrinsic is an informal addition to Magma, created by a user of
the system. While most of the standard functions in Magma are implemented in C, a
growing number are implemented in the Magma language. User intrinsics are defined in
the Magma language using a package mechanism (the same syntax, in fact, as that used
by developers to write standard functions in the Magma language).

This section explains the construction of user intrinsics by means of packages. From
now on, intrinsic will be used as an abbreviation for user intrinsic.

It is useful to summarize the properties possessed by an intrinsic function that are not
possessed by an ordinary user-defined function. Firstly, the signature of every intrinsic
function is stored in the system’s table of signatures. In particular, such functions will
appear when signatures are listed and printing the function’s name will produce a summary
of the behaviour of the function. Secondly, intrinsic functions are compiled into the Magma
internal pseudo-code. Thus, once an intrinsic function has been debugged, it does not have
to be compiled every time it is needed. If the definition of the function involves a large
body of code, this can save a significant amount of time when the function definition has
to be loaded.

An intrinsic function is defined in a special type of file known as a package. In general
terms a package is a Magma source file that defines constants, one or more intrinsic
functions, and optionally, some ordinary functions. The definition of an intrinsic function
may involve Magma standard functions, functions imported from other packages and
functions whose definition is part of the package. It should be noted that constants and
functions (other than intrinsic functions) defined in a package will not be visible outside
the package, unless they are explicitly imported.

The syntax for the definition of an intrinsic function is similar to that of an ordinary
function except that the function header must define the function’s signature together with



Ch. 2 FUNCTIONS, PROCEDURES AND PACKAGES 43

text summarizing the semantics of the function. As noted above, an intrinsic function
definition must reside in a package file. It is necessary for Magma to know the location
of all necessary package files. A package may be attached or detached through use of the
Attach or Detach procedures. More generally, a family of packages residing in a directory
tree may be specified through provision of a spec file which specifies the locations of a
collection of packages relative to the position of the spec file. Automatic attaching of the
packages in a spec file may be set by means of an environment variable (MAGMA SYSTEM SPEC
for the Magma system packages and MAGMA USER SPEC for a users personal packages).

So that the user does not have to worry about explicitly compiling packages, Magma
has an auto-compile facility that will automatically recompile and reload any package that
has been modified since the last compilation. It does this by comparing the time stamp on
the source file (as specified in an Attach procedure call or spec file) with the time stamp on
the compiled code. To avoid the possible inefficiency caused by Magma checking whether
the file is up to date every time an intrinsic function is referenced, the user can indicate
that the package is stable by including the freeze; directive at the top of the package
containing the function definition.

A constant value or function defined in the body of a package may be accessed in a
context outside of its package through use of the import statement. The arguments for an
intrinsic function may be checked through use of the require statement and its variants.
These statements have the effect of generating an error message at the level of the caller
rather than in the called intrinsic function.

See also the section on user-defined attributes for the declare attributes directive
to declare user-defined attributes used by the package and related packages.

2.3.2 Intrinsics
Besides the definition of constants at the top, a package file just consists of intrinsics.
There is only one way a intrinsic can be referred to (whether from within or without the
package). When a package is attached, its intrinsics are incorporated into Magma. Thus
intrinsics are ‘global’ — they affect the global Magma state and there is only one set of
Magma intrinsics at any time. There are no ‘local’ intrinsics.

A package may contain undefined references to identifiers. These are presumed to be
intrinsics from other packages which will be attached subsequent to the loading of this
package.

intrinsic name(arg-list [, ...]) [ -> ret-list ]
{comment-text}

statements
end intrinsic;

The syntax of a intrinsic declaration is as above, where name is the name of the
intrinsic (any identifier; use single quotes for non-alphanumeric names like ’+’);
arg-list is the argument list (optionally including parameters preceded by a colon);
optionally there is an arrow and return type list ret-list; the comment text is any text
within the braces (use \} to get a right brace within the text, and use " to repeat
the comment from the immediately preceding intrinsic); and statements is a list of



44 THE MAGMA LANGUAGE Part I

statements making up the body. arg-list is a list of comma-separated arguments of
the form

name::type
∼name::type
∼name

where name is the name of the argument (any identifier), and type designates the
type, which can be either a simple category name, an extended type, or one of the
following:

. Any type
[ ] Sequence type
{ } Set type
{[ ]} Set or Sequence type
{@ @} Iset type
{* *} Multiset type
< > Tuple type

or a composite type:

[type] Sequences over type
{type} Sets over type
{[type]} Sets or sequences over type
{@type@} Indexed sets over type
{*type*} Multisets over type

where type is either a simple or extended type. The reference form type ∼name
requires that the input argument must be initialized to an object of that type. The
reference form ∼name is a plain reference argument — it need not be initialized.
Parameters may also be specified—these are just as in functions and procedures
(preceded by a colon). If arg-list is followed by “. . .” then the intrinsic is variadic,
with semantics similar to that of a variadic function, described previously.

ret-list is a list of comma-separated simple types. If there is an arrow and the
return list, the intrinsic is assumed to be functional; otherwise it is assumed to be
procedural.

The body of statements should return the correct number and types of arguments
if the intrinsic is functional, while the body should return nothing if the intrinsic is
procedural.

Example H2E7

A functional intrinsic for greatest common divisors taking two integers and returning another:

intrinsic myGCD(x::RngIntElt, y::RngIntElt) -> RngIntElt

{ Return the GCD of x and y}
return ...;



Ch. 2 FUNCTIONS, PROCEDURES AND PACKAGES 45

end intrinsic;

A procedural intrinsic for Append taking a reference to a sequence Q and any object then modi-
fying Q:

intrinsic Append(∼ Q::SeqEnum, . x)

{ Append x to Q }
...;

end intrinsic;

A functional intrinsic taking a sequence of sets as arguments 2 and 3:

intrinsic IsConjugate(G::GrpPerm, R::[ { } ], S::[ { } ]) -> BoolElt

{ True iff partitions R and S of the support of G are conjugate in G }
return ...;

end intrinsic;

2.3.3 Resolving Calls to Intrinsics
It is often the case that many intrinsics share the same name. For instance, the intrinsic

Factorization has many implementations for various object types. We will call such
intrinsics overloaded intrinsics, or refer to each of the participating intrinsics as an overload.
When the user calls such an overloaded intrinsic, Magma must choose the “best possible”
overload.

Magma’s overload resolution process is quite simple. Suppose the user is calling an
intrinsic of arity r, with a list of parameters 〈p1, . . . , pr〉. Let the tuple of the types of these
parameters be 〈t1, . . . , tr〉, and let S be the set of all relevant overloads (that is, overloads
with the appropriate name and of arity r). We will represent overloads as r-tuples of types.

To pick the “best possible” overload, for each parameter p ∈ {p1, . . . , pr}, Magma finds
the set Si ⊆ S of participating intrinsics which are the best matches for that parameter.
More specifically, an intrinsic s = 〈u1, . . . , ur〉 is included in Si if and only if ti is a ui, and
no participating intrinsic s′ = 〈v1, . . . , vr〉 exists such that ti is a vi and vi is a ui. Once the
sets Si are computed, Magma finds their intersection. If this intersection is empty, then
there is no match. If this intersection has cardinality greater than one, then the match is
ambiguous. Otherwise, Magma calls the overload thus obtained.

An example at this point will make the above process clearer:

Example H2E8

We demonstrate Magma’s lookup mechanism with the following example. Suppose we have the
following overloaded intrinsics:

intrinsic overloaded(x::RngUPolElt, y::RngUPolElt) -> RngIntElt

{ Overload 1 }
return 1;

end intrinsic;

intrinsic overloaded(x::RngUPolElt[RngInt], y::RngUPolElt) -> RngIntElt



46 THE MAGMA LANGUAGE Part I

{ Overload 2 }
return 2;

end intrinsic;

intrinsic overloaded(x::RngUPolElt, y::RngUPolElt[RngInt]) -> RngIntElt

{ Overload 3 }
return 3;

end intrinsic;

intrinsic overloaded(x::RngUPolElt[RngInt], y::RngUPolElt[RngInt]) -> RngIntElt

{ Overload 4 }
return 4;

end intrinsic;

The following Magma session illustrates how the lookup mechanism operates for the intrinsic
overloaded:

> R1<x> := PolynomialRing(Integers());

> R2<y> := PolynomialRing(Rationals());

> f1 := x + 1;

> f2 := y + 1;

> overloaded(f2, f2);

1

> overloaded(f1, f2);

2

> overloaded(f2, f1);

3

> overloaded(f1, f1);

4

2.3.4 Attaching and Detaching Package Files
The procedures Attach and Detach are provided to attach or detach package files. Once a
file is attached, all intrinsics within it are included in Magma. If the file is modified, it is
automatically recompiled just after the user hits return and just before the next statement
is executed. So there is no need to re-attach the file (or ‘re-load’ it). If the recompilation of
a package file fails (syntax errors, etc.), all of the intrinsics of the package file are removed
from the Magma session and none of the intrinsics of the package file are included again
until the package file is successfully recompiled. When errors occur during compilation of
a package, the appropriate messages are printed with the string ‘[PC]’ at the beginning of
the line, indicating that the errors are detected by the Magma package compiler.

If a package file contains the single directive freeze; at the top then the package file
becomes frozen — it will not be automatically recompiled after each statement is entered
into Magma. A frozen package is recompiled if need be, however, when it is attached (thus
allowing fixes to be updated) — the main point of freezing a package which is ‘stable’ is
to stop Magma looking at it between every statement entered into Magma interactively.



Ch. 2 FUNCTIONS, PROCEDURES AND PACKAGES 47

When a package file is complete and tested, it is usually installed in a spec file so it
is automatically attached when the spec file is attached. Thus Attach and Detach are
generally only used when one is developing a single package file containing new intrinsics.

Attach(F)

Procedure to attach the package file F .

Detach(F)

Procedure to detach the package file F .

freeze;

Freeze the package file in which this appears at the top.

2.3.5 Related Files
There are two files related to any package source file file.m:

file.sig sig file containing signature information;
file.lck lock file.

The lock file exists while a package file is being compiled. If someone else tries to
compile the file, it will just sit there till the lock file disappears. In various circumstances
(system down, Magma crash) .lck files may be left around; this will mean that the next
time Magma attempts to compile the associated source file it will just sit there indefinitely
waiting for the .lck file to disappear. In this case the user should search for .lck files
that should be removed.

2.3.6 Importing Constants

import "filename": ident list;

This is the general form of the import statement, where "filename" is a string and
ident list is a list of identifiers.

The import statement is a normal statement and can in fact be used anywhere in
Magma, but it is recommended that it only be used to import common constants
and functions/procedures shared between a collection of package files. It has the fol-
lowing semantics: for each identifier I in the list ident list, that identifier is declared
just like a normal identifier within Magma. Within the package file referenced by
filename, there should be an assignment of the same identifier I to some object O.
When the identifier I is then used as an expression after the import statement, the
value yielded is the object O.

The file that is named in the import statement must already have been attached
by the time the identifiers are needed. The best way to achieve this in practice is to
place this file in the spec file, along with the package files, so that all the files can
be attached together.

Thus the only way objects (whether they be normal objects, procedures or func-
tions) assigned within packages can be referenced from outside the package is by an
explicit import with the ‘import’ statement.



48 THE MAGMA LANGUAGE Part I

Example H2E9

Suppose we have a spec file that lists several package files. Included in the spec file is the file
defs.m containing:

MY LIMIT := 10000;

function fred(x)

return 1/x;

end function;

Then other package files (in the same directory) listed in the spec file which wish to use these
definitions would have the line

import "defs.m": MY LIMIT, fred;

at the top. These could then be used inside any intrinsics of such package files. (If the package
files are not in the same directory, the pathname of defs.m will have to be given appropriately in
the import statement.)

2.3.7 Argument Checking
Using ‘require’ etc. one can do argument checking easily within intrinsics. If a necessary
condition on the argument fails to hold, then the relevant error message is printed and the
error pointer refers to the caller of the intrinsic. This feature allows user-defined intrinsics
to treat errors in actual arguments in exactly the same way as they are treated by the
Magma standard functions.

require condition: print args;

The expression condition may be any yielding a Boolean value. If the value is false,
then print args is printed and execution aborts with the error pointer pointing to
the caller. The print arguments print args can consist of any expressions (depending
on arguments or variables already defined in the intrinsic).

requirerange v, L, U;

The argument variable v must be the name of one of the argument variables (includ-
ing parameters) and must be of integer type. L and U may be any expressions each
yielding an integer value. If v is not in the range [L, . . . , U ], then an appropriate
error message is printed and execution aborts with the error pointer pointing to the
caller.

requirege v, L;

The argument variable v must be the name of one of the argument variables (in-
cluding parameters) and must be of integer type. L must yield an integer value. If
v is not greater than or equal to L, then an appropriate error message is printed
and execution aborts with the error pointer pointing to the caller.



Ch. 2 FUNCTIONS, PROCEDURES AND PACKAGES 49

Example H2E10

A trivial version of Binomial(n, k) which checks that n ≥ 0 and 0 ≤ k ≤ n.

intrinsic Binomial(n::RngIntElt, k::RngIntElt) -> RngIntElt

{ Return n choose k }
requirege n, 0;

requirerange k, 0, n;

return Factorial(n) div Factorial(n - k) div Factorial(k);

end intrinsic;

A simple function to find a random p-element of a group G.

intrinsic pElement(G::Grp, p::RngIntElt) -> GrpElt

{ Return p-element of group G }
require IsPrime(p): "Argument 2 is not prime";

x := random{x: x in G | Order(x) mod p eq 0};

return x^(Order(x) div p);

end intrinsic;

2.3.8 Package Specification Files
A spec file (short for ‘specification file’) lists a complete tree of Magma package files.

This makes it easy to collect many package files together and attach them simultaneously.
The specification file consists of a list of tokens which are just space-separated words.

The tokens describe a list of package files and directories containing other packages. The
list is described as follows. The files that are to be attached in the directory indicated by
S are listed enclosed in { and } characters. A directory may be listed there as well, if it is
followed by a list of files from that directory (enclosed in braces again); arbitrary nesting
is allowed this way. A filename of the form +spec is interpreted as another specification file
whose contents will be recursively attached when AttachSpec (below) is called. The files
are taken relative to the directory that contains the specification file. See also the example
below.

AttachSpec(S)

If S is a string indicating the name of a spec file, this command attaches all the files
listed in S. The format of the spec file is given above.

DetachSpec(S)

If S is a string indicating the name of a spec file, this command detaches all the files
listed in S. The format of the spec file is given above.



50 THE MAGMA LANGUAGE Part I

Example H2E11

Suppose we have a spec file /home/user/spec consisting of the following lines:

{

Group

{

chiefseries.m

socle.m

}

Ring

{

funcs.m

Field

{

galois.m

}

}

}

Then there should be the files

/home/user/spec/Group/chiefseries.m

/home/user/spec/Group/socle.m

/home/user/spec/Ring/funcs.m

/home/user/spec/Ring/Field/galois.m

and if one typed within Magma

AttachSpec("/home/user/spec");

then each of the above files would be attached. If instead of the filename galois.m we have
+galspec, then the file /home/user/spec/Ring/Field/galspec would be a specification file itself
whose contents would be recursively attached.

2.3.9 User Startup Specification Files
The user may specify a list of spec files to be attached automatically when Magma starts
up. This is done by setting the environment variable MAGMA USER SPEC to a colon separated
list of spec files.

Example H2E12

One could have

setenv MAGMA USER SPEC "$HOME/Magma/spec:/home/friend/Magma/spec"

in one’s .cshrc . Then when Magma starts up, it will attach all packages listed in the spec files
$HOME/Magma/spec and /home/friend/Magma/spec.



Ch. 2 FUNCTIONS, PROCEDURES AND PACKAGES 51

2.4 Attributes

This section is placed beside the section on packages because the use of attributes is most
common within packages.
For any structure within Magma, it is possible to have attributes associated with it. These
are simply values stored within the structure and are referred to by named fields in exactly
the same manner as Magma records.

There are two kinds of structure attributes: predefined system attributes and user-
defined attributes. Both kinds are discussed in the following subsections. A description of
how attributes are accessed and assigned then follows.

2.4.1 Predefined System Attributes
The valid fields of predefined system attributes are automatically defined at the startup of
Magma. These fields now replace the old method of using the procedure AssertAttribute
and the function HasAttribute (which will still work for some time to preserve backwards
compatibility). For each name which is a valid first argument for AssertAttribute and
HasAttribute, that name is a valid attribute field for structures of the appropriate cate-
gory. Thus the backquote method for accessing attributes described in detail below should
now be used instead of the old method. For such attributes, the code:

> S‘Name := x;

is completely equivalent to the code:

> AssertAttribute(S, "Name", x);

(note that the function AssertAttribute takes a string for its second argument so the
name must be enclosed in double quotes). Similarly, the code:

> if assigned S‘Name then
> x := S‘Name;
> // do something with x...
> end if;

is completely equivalent to the code:

> l, x := HasAttribute(S, "Name");
> if l then
> // do something with x...
> end if;

(note again that the function HasAttribute takes a string for its second argument so the
name must be enclosed in double quotes).

Note also that if a system attribute is not set, referring to it in an expression (using the
backquote operator) will not trigger the calculation of it (while the corresponding intrinsic
function will if it exists); rather an error will ensue. Use the assigned operator to test
whether an attribute is actually set.



52 THE MAGMA LANGUAGE Part I

2.4.2 User-defined Attributes
For any category C, the user can stipulate valid attribute fields for structures of C. After
this is done, any structure of category C may have attributes assigned to it and accessed
from it.

There are two ways of adding new valid attributes to a category C: by the procedure
AddAttribute or by the declare attributes package declaration. The former should be
used outside of packages (e.g. in interactive usage), while the latter must be used within
packages to declare attribute fields used by the package and related packages.

AddAttribute(C, F)

(Procedure.) Given a category C, and a string F , append the field name F to
the list of valid attribute field names for structures belonging to category C. This
procedure should not be used within packages but during interactive use. Previous
fields for C are still valid – this just adds another valid one.

declare attributes C: F1, . . . , Fn;

Given a category C, and a comma-separated list of identifiers F1, . . . , Fn append
the field names specified by the identifiers to the list of valid attribute field names
for structures belonging to category C. This declaration directive must be used
within (and only within) packages to declare attribute fields used by the package
and packages related to it which use the same fields. It is not a statement but
a directive which is stored with the other information of the package when it is
compiled and subsequently attached – not when any code is actually executed.

2.4.3 Accessing Attributes
Attributes of structures are accessed in the same way that records are: using the backquote
(‘) operator. The double backquote operator (‘‘) can also be used if the field name is a
string.

S‘fieldname

S‘‘N

Given a structure S and a field name, return the current value for the given field in
S. If the value is not assigned, an error results. The field name must be valid for
the category of S. In the S‘‘N form, N is a string giving the field name.

assigned S‘fieldname

assigned S‘‘N

Given a structure S and a field name, return whether the given field in S currently
has a value. The field name must be valid for the category of S. In the S‘‘N form,
N is a string giving the field name.



Ch. 2 FUNCTIONS, PROCEDURES AND PACKAGES 53

S‘fieldname := expression;

S‘‘N := expression;

Given a structure S and a field name, assign the given field of S to be the value of
the expression (any old value is first discarded). The field name must be valid for
the category of S. In the S‘‘N form, N is a string giving the field name.

delete S‘fieldname;

delete S‘‘N;

Given a structure S and a field name, delete the given field of S. The field then
becomes unassigned in S. The field name must be valid for the category of S and the
field must be currently assigned in S. This statement is not allowed for predefined
system attributes. In the S‘‘N form, N is a string giving the field name.

GetAttributes(C)

Given a category C, return the valid attribute field names for structures belonging
to category C as a sorted sequence of strings.

ListAttributes(C)

(Procedure.) Given a category C, list the valid attribute field names for structures
belonging to category C.

2.5 User-defined Verbose Flags
Verbose flags may be defined by users within packages.

declare verbose F, m;

Given a verbose flag name F (without quotes), and a literal integer m, create the
verbose flag F , with the maximal allowable level for the flag set to m. This directive
may only be used within package files.

2.5.1 Examples
In this subsection we give examples which illustrate all of the above features.

Example H2E13

We illustrate how the predefined system attributes may be used. Note that the valid arguments for
AssertAttribute and HasAttribute documented elsewhere now also work as system attributes so
see the documentation for these functions for details as to the valid system attribute field names.

> // Create group G.

> G := PSL(3, 2);

> // Check whether order known.

> assigned G‘Order;

false

> // Attempt to access order -- error since not assigned.

> G‘Order;



54 THE MAGMA LANGUAGE Part I

>> G‘Order;

^

Runtime error in ‘: Attribute ’Order’ for this structure

is valid but not assigned

> // Force computation of order by intrinsic Order.

> Order(G);

168

> // Check Order field again.

> assigned G‘Order;

true

> G‘Order;

168

> G‘‘"Order"; // String form for field

168

> o := "Order";

> G‘‘o;

168

> // Create code C and set its minimum weight.

> C := QRCode(GF(2), 31);

> C‘MinimumWeight := 7;

> C;

[31, 16, 7] Quadratic Residue code over GF(2)

...

Example H2E14

We illustrate how user attributes may be defined and used in an interactive session. This situation
would arise rarely – more commonly, attributes would be used within packages.

> // Add attribute field MyStuff for matrix groups.

> AddAttribute(GrpMat, "MyStuff");

> // Create group G.

> G := GL(2, 3);

> // Try illegal field.

> G‘silly;

>> G‘silly;

^

Runtime error in ‘: Invalid attribute ’silly’ for this structure

> // Try legal but unassigned field.

> G‘MyStuff;

>> G‘MyStuff;

^

Runtime error in ‘: Attribute ’MyStuff’ for this structure is valid but not

assigned

> // Assign field and notice value.

> G‘MyStuff := [1, 2];

> G‘MyStuff;



Ch. 2 FUNCTIONS, PROCEDURES AND PACKAGES 55

[ 1, 2 ]

Example H2E15

We illustrate how user attributes may be used in packages. This is the most common usage of such
attributes. We first give some (rather naive) Magma code to compute and store a permutation
representation of a matrix group. Suppose the following code is stored in the file permrep.m.

declare attributes GrpMat: PermRep, PermRepMap;

intrinsic PermutationRepresentation(G::GrpMat) -> GrpPerm

{A permutation group representation P of G, with homomorphism f: G -> P};

// Only compute rep if not already stored.

if not assigned G‘PermRep then

G‘PermRepMap, G‘PermRep := CosetAction(G, sub<G|>);

end if;

return G‘PermRep, G‘PermRepMap;

end intrinsic;

Note that the information stored will be reused in subsequent calls of the intrinsic. Then the
package can be attached within a Magma session and the intrinsic PermutationRepresentation

called like in the following code (assumed to be run in the same directory).

> Attach("permrep.m");

> G := GL(2, 2);

> P, f := PermutationRepresentation(G);

> P;

Permutation group P acting on a set of cardinality 6

(1, 2)(3, 5)(4, 6)

(1, 3)(2, 4)(5, 6)

> f;

Mapping from: GrpMat: G to GrpPerm: P

Suppose the following line were also in the package file:

declare verbose MyAlgorithm, 3;

Then there would be a new verbose flag MyAlgorithm for use anywhere within Magma, with the
maximum 3 for the level.



56 THE MAGMA LANGUAGE Part I

2.6 User-Defined Types
Since Magma V2.19, types may be defined by users within packages. This facility allows
the user to declare new type names and create objects with such types and then supply
some basic primitives and intrinsic functions for such objects.

The new types are known as user-defined types. The way these are typically used is that
after declaring such a type T , the user supplies package intrinsics to: (1) create objects of
type T and set relevant attributes to define the objects; (2) perform some basic primitives
which are common to all objects in Magma; (3) perform non-trivial computations on
objects of type T .

2.6.1 Declaring User-Defined Types
The following declarations are used to declare user-defined types. They may only be
placed in package files, i.e., files that are included either by using Attach or a spec
file (see above). Declarations may appear in any package file and at any place within the
file at the top level (not in a function, etc.). In particular, it is not required that the
declaration of a type appears before package code which refers to the type (as long as the
type is declared before running the code). Examples below will illustrate how the basic
declarations are used.

declare type T;

Declare the given type name T (without quotes) to be a user-defined type.

declare type T : P1, . . . , Pn;

Declare the given type name T (without quotes) to be a user-defined type, and
also declare T to inherit from the user types P1, . . . , Pn (which must be declared
separately). As a result, ISA(T, Pi) will be true for each i and when intrinsic
signatures are scanned at a function call, an object of type T will match an argument
of a signature with type Pi for any i.

NB: currently one may not inherit from existing Magma internal types or virtual
types (categories). It is hoped that this restriction will be removed in the future.

declare type T [E];

Declare the given type names T and E (both without quotes) to be user-defined
types. This form also specifies that E is the element type corresponding to T ; i.e., if
an object x has an element of type T for its parent, then x must have type E. This
relationship is needed for the construction of sets and sequences which have objects
of type T as a universe. The type E may also be declared separately, but this is not
necessary.

declare type T [E] : P1, . . . , Pn;

This is a combination of the previous kinds two declarations: T and E are declared
as user-defined types while E is also declared to be the element type of T , and T is
declared to inherit from user-defined types P1, . . . , Pn.



Ch. 2 FUNCTIONS, PROCEDURES AND PACKAGES 57

2.6.2 Creating an Object

New(T)

Create an empty object of type T , where T is a user-defined type. Typically, after
setting X to the result of this function, the user should set attributes in X to define
relevant properties of the object which are characteristic of objects of type T .

2.6.3 Special Intrinsics Provided by the User
Let T be a user-defined type. Besides the declaration of T , the following special intrinsics
are mostly required to be defined for type T (the requirements are specified for each
kind of intrinsic). These intrinsics allow the internal Magma functions to perform some
fundamental operations on objects of type T . Note that the special intrinsics need not be
in one file or in the same file as the declaration.

intrinsic Print(X::T)
{Print X}

// Code: Print X with no new line, via printf
end intrinsic;

intrinsic Print(X::T, L::MonStgElt)
{Print X at level L}

// Code: Print X at level L with no new line, via printf
end intrinsic;

Exactly one of these intrinsics must be provided by the user for type T . Each is a
procedure rather than a function (i.e., nothing is returned), and should contain one or
more print statements. The procedure is called automatically by Magma whenever the
object X of type T is to be printed. A new line should not occur at the end of the last (or
only) line of printing: one should use printf (see examples below).

When the second form of the intrinsic is provided, it allows X to be printed differently
depending on the print level L, which is a string equal to one of "Default", "Minimal",
"Maximal", "Magma".

intrinsic Parent(X::T) -> .
{Parent of X}

// Code: Return the parent of X
end intrinsic;

This intrinsic is only needed when T is an element type, so objects of type T have
parents. It should be a user-provided package function, which takes an object X of type T
(user-defined), and returns the parent of X, assuming it has one. In such a case, typically
the attribute Parent will be defined for X and so X‘Parent should simply be returned.



58 THE MAGMA LANGUAGE Part I

intrinsic ’in’(e::., X::T) -> BoolElt
{Return whether e is in X}

// Code: Return whether e is in X
end intrinsic;

This intrinsic is only needed when objects of type T (user-defined) have elements, and
should be a user-provided package function, which takes any object e and an object X of
type T (user-defined), and returns whether e is an element of X.

intrinsic IsCoercible(X::T, y::.) -> BoolElt, .
{Return whether y is coercible into X and the result if so}

// Code: do tests on the type of y to see whether coercible
// On failure, do:
// return false, "Illegal coercion"; // Or more particular message
// Assumed coercible now; set x to result of coercion into X
return true, x;

end intrinsic;

Assuming that objects of type T (user-defined) have elements (and so coercion into
such objects makes sense), this must be a user-provided package function, which takes an
object X of type T (user-defined) and an object Y of any type. If Y is coercible into
X, the function should return true and the result of the coercion (whose parent should
be X). Otherwise, the function should return false and a string giving the reason for
failure. If this package intrinsic is provided, then the coercion operation X!y will also
automatically work for an object X of type T (i.e., the internal coercion code in Magma
will automatically call this function).

2.6.4 Examples
Some basic examples illustrating the general use of user-defined types are given here. Non-
trivial examples can also be found in much of the standard Magma package code (one can
search for "declare type" in the package .m files to see several typical uses).

Example H2E16

In this first simple example, we create a user-defined type MyRat which is used for a primitive
representation of rational numbers. Of course, a serious version would keep the numerators &
denominators always reduced, but for simplicity we skip such details. We define the operations +

and * here; one would typically add other operations like -, eq and IsZero, etc.

declare type MyRat;

declare attributes MyRat: Numer, Denom;

intrinsic MyRational(n::RngIntElt, d::RngIntElt) -> MyRat

{Create n/d}



Ch. 2 FUNCTIONS, PROCEDURES AND PACKAGES 59

require d ne 0: "Denominator must be non-zero";

r := New(MyRat);

r‘Numer := n;

r‘Denom := d;

return r;

end intrinsic;

intrinsic Print(r::MyRat)

{Print r}

n := r‘Numer;

d := r‘Denom;

g := GCD(n, d);

if d lt 0 then g := -g; end if;

printf "%o/%o", n div g, d div g; // NOTE: no newline!

end intrinsic;

intrinsic ’+’(r::MyRat, s::MyRat) -> MyRat

{Return r + s}

rn := r‘Numer;

rd := r‘Denom;

sn := s‘Numer;

sd := s‘Denom;

return MyRational(rn*sd + sn*rd, rd*sd);

end intrinsic;

intrinsic ’*’(r::MyRat, s::MyRat) -> MyRat

{Return r * s}

rn := r‘Numer;

rd := r‘Denom;

sn := s‘Numer;

sd := s‘Denom;

return MyRational(rn*sn, rd*sd);

end intrinsic;

Assuming the above code is placed in a file MyRat.m, one could attach it in Magma and then do
some simple operations, as follows.

> Attach("myrat.m");

> r := MyRational(3, -9);

> r;

-1/3

> s := MyRational(4, 7);

> s;

> r+s;

5/21

> r*s;

-4/21



60 THE MAGMA LANGUAGE Part I

Example H2E17

In this example, we define a type DirProd for direct products of rings, and a corresponding element
type DirProdElt for their elements. Objects of type DirProd contain a tuple Rings with the rings
making up the direct product, while objects of type DirProdElt contain a tuple Element with the
elements of the corresponding rings, and also a reference to the parent direct product object.

/* Declare types and attributes */

// Note that we declare DirProdElt as element type of DirProd:

declare type DirProd[DirProdElt];

declare attributes DirProd: Rings;

declare attributes DirProdElt: Elements, Parent;

/* Special intrinsics for DirProd */

intrinsic DirectProduct(Rings::Tup) -> DirProd

{Create the direct product of given rings (a tuple)}

require forall{R: R in Rings | ISA(Type(R), Rng)}:

"Tuple entries are not all rings";

D := New(DirProd);

D‘Rings := Rings;

return D;

end intrinsic;

intrinsic Print(D::DirProd)

{Print D}

Rings := D‘Rings;

printf "Direct product of %o", Rings; // NOTE: no newline!

end intrinsic;

function CreateElement(D, Elements)

// Create DirProdElt with parent D and given Elements

x := New(DirProdElt);

x‘Elements := Elements;

x‘Parent := D;

return x;

end function;

intrinsic IsCoercible(D::DirProd, x::.) -> BoolElt, .

{Return whether x is coercible into D and the result if so}

Rings := D‘Rings;

n := #Rings;

if Type(x) ne Tup then

return false, "Coercion RHS must be a tuple";

end if;

if #x ne n then

return false, "Wrong length of tuple for coercion";

end if;



Ch. 2 FUNCTIONS, PROCEDURES AND PACKAGES 61

Elements := <>;

for i := 1 to n do

l, t := IsCoercible(Rings[i], x[i]);

if not l then

return false, Sprintf("Tuple entry %o not coercible", i);

end if;

Append(~Elements, t);

end for;

y := CreateElement(D, Elements);

return true, y;

end intrinsic;

/* Special intrinsics for DirProdElt */

intrinsic Print(x::DirProdElt)

{Print x}

printf "%o", x‘Elements; // NOTE: no newline!

end intrinsic;

intrinsic Parent(x::DirProdElt) -> DirProd

{Parent of x}

return x‘Parent;

end intrinsic;

intrinsic ’+’(x::DirProdElt, y::DirProdElt) -> DirProdElt

{Return x + y}

D := Parent(x);

require D cmpeq Parent(y): "Incompatible arguments";

Ex := x‘Elements;

Ey := y‘Elements;

return CreateElement(D, <Ex[i] + Ey[i]: i in [1 .. #Ex]>);

end intrinsic;

intrinsic ’*’(x::DirProdElt, y::DirProdElt) -> DirProdElt

{Return x * y}

D := Parent(x);

require D cmpeq Parent(y): "Incompatible arguments";

Ex := x‘Elements;

Ey := y‘Elements;

return CreateElement(D, <Ex[i] * Ey[i]: i in [1 .. #Ex]>);

end intrinsic;

A sample Magma session using the above package is as follows. We create elements x, y of a direct
product D and do simple operations on x, y. One would of course add other intrinsic functions
for basic operations on the elements.

> Attach("DirProd.m");

> Z := IntegerRing();



62 THE MAGMA LANGUAGE Part I

> Q := RationalField();

> F8<a> := GF(2^3);

> F9<b> := GF(3^2);

> D := DirectProduct(<Z, Q, F8, F9>);

> x := D!<1, 2/3, a, b>;

> y := D!<2, 3/4, a+1, b+1>;

> x;

<1, 2/3, a, b>

> Parent(x);

Direct product of <Integer Ring, Rational Field, Finite field of

size 2^3, Finite field of size 3^2>

> y;

<2, 3/4, a^3, b^2>

> x+y;

<3, 17/12, 1, b^3>

> x*y;

<2, 1/2, a^4, b^3>

> D!x;

<1, 2/3, a, b>

> S := [x, y]; S;

[

<1, 2/3, a, b>,

<2, 3/4, a^3, b^2>

]

>

> &+S;

<3, 17/12, 1, b^3>



3 INPUT AND OUTPUT
3.1 Introduction . . . . . . . . . 65

3.2 Character Strings . . . . . . . 65

3.2.1 Representation of Strings . . . . . . 65

3.2.2 Creation of Strings . . . . . . . . 66

"abc" 66
BinaryString(s) 66
BString(s) 66
cat 66
* 66
cat:= 66
*:= 66
&cat s 66
&* s 66
^ 66
s[i] 66
s[i] 67
ElementToSequence(s) 67
Eltseq(s) 67
ElementToSequence(s) 67
Eltseq(s) 67
Substring(s, n, k) 67

3.2.3 Integer-Valued Functions . . . . . . 67

# 67
Index(s, t) 67
Position(s, t) 67

3.2.4 Character Conversion . . . . . . . 67

StringToCode(s) 67
CodeToString(n) 67
StringToInteger(s) 68
StringToInteger(s, b) 68
StringToIntegerSequence(s) 68
IntegerToString(n) 68
IntegerToString(n, b) 68

3.2.5 Boolean Functions . . . . . . . . . 68

eq 68
ne 68
in 68
notin 69
lt 69
le 69
gt 69
ge 69

3.2.6 Parsing Strings . . . . . . . . . . 71

Split(S, D) 71
Split(S) 71
Regexp(R, S) 71

3.3 Printing . . . . . . . . . . . 72

3.3.1 The print-Statement . . . . . . . 72

print e; 72

print e, ..., e; 72
print e: -; 72

3.3.2 The printf and fprintf Statements 73

printf format, e, ..., e; 73
fprintf file, format, e, ..., e; 74

3.3.3 Verbose Printing (vprint, vprintf)75

vprint flag: e, ..., e; 75
vprint flag, n: e, ..., e; 75
vprintf flag: format, e, ..., e; 75
vprintf flag, n: format, e, ..., e; 75

3.3.4 Automatic Printing . . . . . . . . 76

ShowPrevious() 76
ShowPrevious(i) 76
ClearPrevious() 76
SetPreviousSize(n) 77
GetPreviousSize() 77

3.3.5 Indentation . . . . . . . . . . . . 78

IndentPush() 78
IndentPop() 78

3.3.6 Printing to a File . . . . . . . . . 78

PrintFile(F, x) 78
Write(F, x) 78
WriteBinary(F, s) 79
PrintFile(F, x, L) 79
Write(F, x, L) 79
PrintFileMagma(F, x) 79

3.3.7 Printing to a String . . . . . . . . 79

Sprint(x) 79
Sprint(x, L) 79
Sprintf(F, ...) 79

3.3.8 Redirecting Output . . . . . . . . 80

SetOutputFile(F) 80
UnsetOutputFile() 80
HasOutputFile() 80

3.4 External Files . . . . . . . . . 80

3.4.1 Opening Files . . . . . . . . . . . 80

Open(S, T) 80

3.4.2 Operations on File Objects . . . . . 81

Flush(F) 81
Tell(F) 81
Seek(F, o, p) 81
Rewind(F) 81
Put(F, S) 81
Puts(F, S) 81
Getc(F) 81
Gets(F) 81
IsEof(S) 81
Ungetc(F, c) 81



64 THE MAGMA LANGUAGE Part I

3.4.3 Reading a Complete File . . . . . . 82

Read(F) 82
ReadBinary(F) 82

3.5 Pipes . . . . . . . . . . . . 83

3.5.1 Pipe Creation . . . . . . . . . . . 83

POpen(C, T) 83
Pipe(C, S) 83

3.5.2 Operations on Pipes . . . . . . . . 84

Read(P : -) 84
ReadBytes(P : -) 84
Write(P, s) 85
WriteBytes(P, Q) 85

3.6 Sockets . . . . . . . . . . . 85

3.6.1 Socket Creation . . . . . . . . . . 85

Socket(H, P : -) 85
Socket( : -) 86
WaitForConnection(S) 86

3.6.2 Socket Properties . . . . . . . . . 86

SocketInformation(S) 86

3.6.3 Socket Predicates . . . . . . . . . 86

IsServerSocket(S) 86

3.6.4 Socket I/O . . . . . . . . . . . . 87

Read(S : -) 87
ReadBytes(S : -) 87
Write(S, s) 87
WriteBytes(S, Q) 87

3.7 Interactive Input . . . . . . . 88

read id; 88
read id, prompt; 88
readi id; 89
readi id, prompt; 89

3.8 Loading a Program File . . . . 89

load "filename"; 89
iload "filename"; 89

3.9 Saving and Restoring Workspaces 89

save "filename"; 89
restore "filename"; 89

3.10 Logging a Session . . . . . . . 90

SetLogFile(F) 90
UnsetLogFile() 90
SetEchoInput(b) 90

3.11 Memory Usage . . . . . . . . 90

GetMemoryUsage() 90
GetMaximumMemoryUsage() 90
ResetMaximumMemoryUsage() 90

3.12 System Calls . . . . . . . . . 90

Alarm(s) 90
ChangeDirectory(s) 90
GetCurrentDirectory() 90
Getpid() 91
Getuid() 91
System(C) 91
%! shell-command 91

3.13 Creating Names . . . . . . . . 91

Tempname(P) 91



Chapter 3

INPUT AND OUTPUT

3.1 Introduction

This chapter is concerned with the various facilities provided for communication between
Magma and its environment. The first section describes character strings and their op-
erations. Following this, the various forms of the print-statement are presented. Next
the file type is introduced and its operations summarized. The chapter concludes with
a section listing system calls. These include facilities that allow the user to execute an
operating system command from within Magma or to run an external process.

3.2 Character Strings

Strings of characters play a central role in input/output so that the operations provided for
strings to some extent reflect this. However, if one wishes, a more general set of operations
are available if the string is first converted into a sequence. We will give some examples of
this below.

Magma provides two kinds of strings: normal character strings, and binary strings.
Character strings are an inappropriate choice for manipulating data that includes non-
printable characters. If this is required, a better choice is the binary string type. This type
is similar semantically to a sequence of integers, in which each character is represented by
its ASCII value between 0 and 255. The difference between a binary string and a sequence
of integers is that a binary string is stored internally as an array of bytes, which is a more
space-efficient representation.

3.2.1 Representation of Strings
Character strings may consist of all ordinary characters appearing on your keyboard, in-
cluding the blank (space). Two symbols have a special meaning: the double-quote " and
the backslash \. The double-quote is used to delimit a character string, and hence cannot
be used inside a string; to be able to use a double-quote in strings the backslash is designed
to be an escape character and is used to indicate that the next symbol has to be taken
literally; thus, by using \" inside a string one indicates that the symbol " has to be taken
literally and is not to be interpreted as the end-of-string delimiter. Thus:

> "\"Print this line in quotes\"";
"Print this line in quotes"

To obtain a literal backslash, one simply types two backslashes; for characters other than
double-quotes and backslash it does not make a difference when a backslash precedes them



66 THE MAGMA LANGUAGE Part I

inside a string, with the exception of n, r and t. Any occurrence of \n or \r inside a string
is converted into a <new-line> while \t is converted into a <tab>. For example:

> "The first line,\nthe second line, and then\ran\tindented line";
The first line,
the second line, and then
an indented line

Note that a backslash followed by a return allows one to conveniently continue the current
construction on the next line; so \<return> inside a string will be ignored, except that
input will continue on a new line on your screen.

Binary strings, on the hand, can consist of any character, whether printable or non-
printable. Binary strings cannot be constructed using literals, but must be constructed
either from a character string, or during a read operation from a file.

3.2.2 Creation of Strings

"abc"

Create a string from a succession of keyboard characters (a, b, c) enclosed in double
quotes " ".

BinaryString(s)

BString(s)

Create a binary string from the character string s.

s cat t

s * t

Concatenate the strings s and t.

s cat:= t

s *:= t

Modification-concatenation of the string s with t: concatenate s and t and put the
result in s.

&cat s

&* s

Given an enumerated sequence s of strings, return the concatenation of these strings.

s ^ n

Form the n-fold concatenation of the string s, for n ≥ 0. If n = 0 this is the empty
string, if n = 1 it equals s, etc.

s[i]

Returns the substring of s consisting of the i-th character.



Ch. 3 INPUT AND OUTPUT 67

s[i]

Returns the numeric value representing the i-th character of s.

ElementToSequence(s)

Eltseq(s)

Returns the sequence of characters of s (as length 1 strings).

ElementToSequence(s)

Eltseq(s)

Returns the sequence of numeric values representing the characters of s.

Substring(s, n, k)

Return the substring of s of length k starting at position n.

3.2.3 Integer-Valued Functions

#s

The length of the string s.

Index(s, t)

Position(s, t)

This function returns the position (an integer p with 0 < p ≤ #s) in the string s
where the beginning of a contiguous substring t occurs. It returns 0 if t is not a
substring of s. (If t is the empty string, position 1 will always be returned, even if
s is empty as well.)

3.2.4 Character Conversion
To perform more sophisticated operations, one may convert the string into a sequence

and use the extensive facilities for sequences described in the next part of this manual; see
the examples at the end of this chapter for details.

StringToCode(s)

Returns the code number of the first character of string s. This code depends on
the computer system that is used; it is ASCII on most UNIX machines.

CodeToString(n)

Returns a character (string of length 1) corresponding to the code number n, where
the code is system dependent (see previous entry).



68 THE MAGMA LANGUAGE Part I

StringToInteger(s)

Returns the integer corresponding to the string of decimal digits s. All non-space
characters in the string s must be digits (0, 1, . . . , 9), except the first character,
which is also allowed to be + or −. An error results if any other combination of
characters occurs. Leading zeros are omitted.

StringToInteger(s, b)

Returns the integer corresponding to the string of digits s, all assumed to be written
in base b. All non-space characters in the string s must be digits less than b (if b is
greater than 10, ‘A’ is used for 10, ‘B’ for 11, etc.), except the first character, which
is also allowed to be + or −. An error results if any other combination of characters
occurs.

StringToIntegerSequence(s)

Returns the sequence of integers corresponding to the string s of space-separated
decimal numbers. All non-space characters in the string s must be digits (0, 1, . . . , 9),
except the first character after each space, which is also allowed to be + or −.
An error results if any other combination of characters occurs. Leading zeros are
omitted. Each number can begin with a sign (+ or −) without a space.

IntegerToString(n)

Convert the integer n into a string of decimal digits; if n is negative the first character
of the string will be −. (Note that leading zeros and a + sign are ignored when
Magma builds an integer, so the resulting string will never begin with + or 0
characters.)

IntegerToString(n, b)

Convert the integer n into a string of digits with the given base (which must be in
the range [2 . . . 36]); if n is negative the first character of the string will be −.

3.2.5 Boolean Functions

s eq t

Returns true if and only if the strings s and t are identical. Note that blanks are
significant.

s ne t

Returns true if and only if the strings s and t are distinct. Note that blanks are
significant.

s in t

Returns true if and only if s appears as a contiguous substring of t. Note that the
empty string is contained in every string.



Ch. 3 INPUT AND OUTPUT 69

s notin t

Returns true if and only if s does not appear as a contiguous substring of t. Note
that the empty string is contained in every string.

s lt t

Returns true if s is lexicographically less than t, false otherwise. Here the ordering
on characters imposed by their ASCII code number is used.

s le t

Returns true if s is lexicographically less than or equal to t, false otherwise. Here
the ordering on characters imposed by their ASCII code number is used.

s gt t

Returns true if s is lexicographically greater than t, false otherwise. Here the
ordering on characters imposed by their ASCII code number is used.

s ge t

Returns true if s is lexicographically greater than or equal to t, false otherwise.
Here the ordering on characters imposed by their ASCII code number is used.

Example H3E1

> "Mag" cat "ma";

Magma

Omitting double-quotes usually has undesired effects:

> "Mag cat ma";

Mag cat ma

And note that there are two different equalities involved in the following!

> "73" * "9" * "42" eq "7" * "3942";

true

> 73 * 9 * 42 eq 7 * 3942;

true

The next line shows how strings can be concatenated quickly, and also that strings of blanks can
be used for formatting:

> s := ("Mag" cat "ma? ")^2;

> s, " "^30, s[4]^12, "!";

Magma? Magma? mmmmmmmmmmmm !

Here is a way to list (in a sequence) the first occurrence of each of the ten digits in the decimal
expansion of π, using IntegerToString and Position.

> pi := Pi(RealField(1001));

> dec1000 := Round(10^1000*(pi-3));

> I := IntegerToString(dec1000);

> [ Position(I, IntegerToString(i)) : i in [0..9] ];



70 THE MAGMA LANGUAGE Part I

[ 32, 1, 6, 9, 2, 4, 7, 13, 11, 5 ]

Using the length # and string indexing [ ] it is also easy to count the number of occurrences of
each digit in the string containing the first 1000 digits.

> [ #[i : i in [1..#I] | I[i] eq IntegerToString(j)] : j in [0..9] ];

[ 93, 116, 103, 102, 93, 97, 94, 95, 101, 106 ]

We would like to test if the ASCII-encoding of the string ‘Magma’ appears. This could be done
as follows, using StringToCode and in, or alternatively, Position. To reduce the typing, we first
abbreviate IntegerToString to is and StringToCode to sc.

> sc := StringToCode;

> its := IntegerToString;

> M := its(sc("M")) * its(sc("a")) * its(sc("g")) * its(sc("m")) * its(sc("a"));

> M;

779710310997

> M in I;

false

> Position(I, M);

0

So ‘Magma’ does not appear this way. However, we could be satisfied if the letters appear
somewhere in the right order. To do more sophisticated operations (like this) on strings, it is
necessary to convert the string into a sequence, because sequences constitute a more versatile
data type, allowing many more advanced operations than strings.

> Iseq := [ I[i] : i in [1..#I] ];

> Mseq := [ M[i] : i in [1..#M] ];

> IsSubsequence(Mseq, Iseq);

false

> IsSubsequence(Mseq, Iseq: Kind := "Sequential");

true

Finally, we find that the string ‘magma’ lies in between ‘Pi’ and ‘pi’:

> "Pi" le "magma";

true

> "magma" lt "pi";

true



Ch. 3 INPUT AND OUTPUT 71

3.2.6 Parsing Strings

Split(S, D)

Split(S)

Given a string S, together with a string D describing a list of separator characters,
return the sequence of strings obtained by splitting S at any of the characters
contained in D. That is, S is considered as a sequence of fields, with any character
in D taken to be a delimiter separating the fields. If D is omitted, it is taken to be
the string consisting of the newline character alone (so S is split into the lines found
in it). If S is desired to be split into space-separated words, the argument " \t\n"
should be given for D.

Example H3E2

We demonstrate elementary uses of Split.

> Split("a b c d", " ");

[ a, b, c, d ]

> // Note that an empty field is included if the

> // string starts with the separator:

> Split(" a b c d", " ");

[ , a, b, c, d ]

> Split("abxcdyefzab", "xyz");

[ ab, cd, ef, ab ]

> // Note that no splitting happens if the delimiter

> // is empty:

> Split("abcd", "");

[ abcd ]

Regexp(R, S)

Given a string R specifying a regular expression, together with a string S, return
whether S matches R. If so, return also the matched substring of S, together
with the sequence of matched substrings of S corresponding to the parenthesized
expressions of R. This function is based on the freely distributable reimplementation
of the V8 regexp package by Henry Spencer. The syntax and interpretation of the
characters |, *, +, ?, ^, $, [], \ is the same as in the UNIX command egrep.
The parenthesized expressions are numbered in left-to-right order of their opening
parentheses. Note that the parentheses should not have an initial backslash before
them as the UNIX commands grep and ed require.



72 THE MAGMA LANGUAGE Part I

Example H3E3

We demonstrate some elementary uses of Regexp.

> Regexp("b.*d", "abcde");

true bcd []

> Regexp("b(.*)d", "abcde");

true bcd [ c ]

> Regexp("b.*d", "xyz");

false

> date := "Mon Jun 17 10:27:27 EST 1996";

> _, _, f := Regexp("([0-9][0-9]):([0-9][0-9]):([0-9][0-9])", date);

> f;

[ 10, 27, 27 ]

> h, m, s := Explode(f);

> h, m, s;

10 27 27

3.3 Printing

3.3.1 The print-Statement

print expression;

print expression, ..., expression;

print expression: parameters;

Print the value of the expression. Some limited ways of formatting output are
described in the section on strings. Four levels of printing (that may in specific
cases coincide) exist, and may be indicated after the colon: Default (which is the
same as the level obtained if no level is indicated), Minimal, Maximal, and Magma.
The last of these produces output representing the value of the identifier as valid
Magma-input (when possible).



Ch. 3 INPUT AND OUTPUT 73

3.3.2 The printf and fprintf Statements

printf format, expression, ..., expression;

Print values of the expressions under control of format. The first argument, the
format string, must be a string which contains two types of objects: plain char-
acters, which are simply printed, and conversion specifications (indicated by the %
character), each of which causes conversion and printing of zero or more of the ex-
pressions. (Use %% to get a literal percent character.) Currently, the only conversion
specifications allowed are: %o and %O, which stand for “object”, %m, which stands
for “magma”, and %h, which stands for “hexadecimal”.

The hexadecimal conversion specification will print its argument in hexadecimal;
currently, it only supports integer arguments. The object and magma conversion
specifications each print the corresponding argument; they differ only in the printing
mode used. The %o form uses the default printing mode, while the %O form uses
the printing mode specified by the next argument (as a string). The “magma”
conversion specification uses a printing mode of Magma. It is thus equivalent to (but
shorter than) using %O and an extra argument of "Magma".

For each of these conversion specifications, the object can be printed in a field
of a particular width by placing extra characters immediately after the % character:
digits describing a positive integer, specifying a field with width equal to that number
and with right-justification; digits describing a negative integer, specifying a field
with width equal to the absolute value of the number and with left-justification;
or the character * specifying a field width given by the next appropriate expression
argument (with justification determined by the sign of the number). This statement
is thus like the C language function printf(), except that %o (and %O and %m) covers
all kinds of objects — it is not necessary to have different conversion specifications
for the different types of Magma objects. Note also that this statement does not
print a newline character after its arguments while the print statement does (a \n
character should be placed in the format string if this is desired). A newline character
will be printed just before the next prompt, though, if there is an incomplete line
at that point.

Example H3E4

The following statements demonstrate simple uses of printf.

> for i := 1 to 150 by 33 do printf "[%3o]\n", i; end for;

[ 1]

[ 34]

[ 67]

[100]

[133]

> for i := 1 to 150 by 33 do printf "[%-3o]\n", i; end for;

[1 ]

[34 ]

[67 ]



74 THE MAGMA LANGUAGE Part I

[100]

[133]

> for w := 1 to 5 do printf "[%*o]", w, 1; end for;

[1][ 1][ 1][ 1][ 1]

Example H3E5

Some further uses of the printf statement are illustrated below.

> x := 3;

> y := 4;

> printf "x = %o, y = %o\n", x, y;

x = 3, y = 4

> printf "G’"; printf "day";

G’day

> p := 53.211;

> x := 123.2;

> printf "%.3o%% of %.2o is %.3o\n", p, x, p/100.0 * x;

53.211% of 123.20 is 65.556

> Zx<x> := PolynomialRing(Integers());

> printf "%O\n", x, "Magma";

Polynomial(\[0, 1])

fprintf file, format, expression, ..., expression;

Print values of the expressions under control of format into the file given by file.
The first argument file must be either a string specifying a file which can be opened
for appending (tilde expansion is performed on the filename), or an file object (see
the section below on external files) opened for writing. The rest of the arguments
are exactly as in the printf statement. In the string (filename) case, the file is
opened for appending, the string obtained from the formatted printing of the other
arguments is appended to the file, and the file is closed. In the file object case,
the string obtained from the formatted printing of the other arguments is simply
appended to the file. Note that this statement, like printf, does not print a newline
character after its arguments (a \n character should be placed in the format string
if this is desired).

Example H3E6

The following statements demonstrate a (rather contrived) use of fprintf with a file pipe.

> p := 1000000000000000000000000000057;

> F := POpen("sort -n", "w");

> for i := 100 to 110 do

> fprintf F, "%30o (2^%o mod p)\n", 2^i mod p, i;

> end for;

> // Close F and then see output on standard output:



Ch. 3 INPUT AND OUTPUT 75

> delete F;

37107316853453566312041115519 (2^109 mod p)

70602400912917605986812821219 (2^102 mod p)

74214633706907132624082231038 (2^110 mod p)

129638414606681695789005139447 (2^106 mod p)

141204801825835211973625642438 (2^103 mod p)

259276829213363391578010278894 (2^107 mod p)

267650600228229401496703205319 (2^100 mod p)

282409603651670423947251284876 (2^104 mod p)

518553658426726783156020557788 (2^108 mod p)

535301200456458802993406410638 (2^101 mod p)

564819207303340847894502569752 (2^105 mod p)

3.3.3 Verbose Printing (vprint, vprintf)
The following statements allow convenient printing of information conditioned by whether
an appropriate verbose flag is turned on.

vprint flag: expression, ..., expression;

vprint flag, n: expression, ..., expression;

If the verbose flag flag (see the function SetVerbose) has a level greater than or
equal to n, print the expressions to the right of the colon exactly as in the print
statement. If the flag has level 0 (i.e. is not turned on), do nothing. In the first
form of this statement, where a specific level is not given, n is taken to be 1. This
statement is useful in Magma code found in packages where one wants to print
verbose information if an appropriate verbose flag is turned on.

vprintf flag: format, expression, ..., expression;

vprintf flag, n: format, expression, ..., expression;

If the verbose flag flag (see the function SetVerbose) has a level greater than or
equal to n, print using the format and the expressions to the right of the colon
exactly as in the printf statement. If the flag has level 0 (i.e. is not turned on),
do nothing. In the first form of this statement, where a specific level is not given, n
is taken to be 1. This statement is useful in Magma code found in packages where
one wants to print verbose information if an appropriate verbose flag is turned on.



76 THE MAGMA LANGUAGE Part I

3.3.4 Automatic Printing
Magma allows automatic printing of expressions: basically, a statement consisting of an
expression (or list of expressions) alone is taken as a shorthand for the print-statement.

Some subtleties are involved in understanding the precise behaviour of Magma in
interpreting lone expressions as statements. The rules Magma follows are outlined here.
In the following, a call-form means any expression of the form f(arguments); that is,
anything which could be a procedure call or a function call.

(a)Any single expression followed by a semicolon which is not a call-form is printed, just
as if you had ‘print’ in front of it.

(b)For a single call-form followed by a semicolon (which could be a function call or proce-
dure call), the first signature which matches the input arguments is taken and if that is
procedural, the whole call is taken as a procedure call, otherwise it is taken as function
call and the results are printed.

(c) A comma-separated list of any expressions is printed, just as if you had ‘print’ in front of
it. Here any call-form is taken as a function call only so procedure calls are impossible.

(d)A print level modifier is allowed after an expression list (whether the list has length 1
or more). Again any call-form is taken as a function call only so procedure calls are
impossible.

(e) Any list of objects printed, whether by any of the above rules or by the ‘print’ statement,
is placed in the previous value buffer. $1 gives the last printed list, $2 the one before,
etc. Note that multi-return values stay as a list of values in the previous value buffer.
The only way to get at the individual values of such a list is by assignment to a list
of identifiers, or by where (this is of course the only way to get the second result out
of Quotrem, etc.). In other places, a $1 expression is evaluated with principal value
semantics.

Magma also provides procedures to manipulate the previous value buffer in which $1, etc.
are stored.

ShowPrevious()

Show all the previous values stored. This does not change the contents of the
previous value buffer.

ShowPrevious(i)

Show the i-th previous value stored. This does not change the contents of the
previous value buffer.

ClearPrevious()

Clear all the previous values stored. This is useful for ensuring that no more memory
is used than that referred to by the current identifiers.



Ch. 3 INPUT AND OUTPUT 77

SetPreviousSize(n)

Set the size of the previous value buffer (this is not how many values are defined in
it at the moment, but the maximum number that will be stored). The default size
is 3.

GetPreviousSize()

Return the size of the previous value buffer.

Example H3E7

Examples which illustrate point (a):

> 1;

1

> x := 3;

> x;

3

Examples which illustrate point (b):

> 1 + 1; // really function call ’+’(1, 1)

2

> Q := [ 0 ];

> Append(~Q, 1); // first (in fact only) match is procedure call

> Append(Q, 1); // first (in fact only) match is function call

[ 0, 1, 1 ]

> // Assuming fp is assigned to a procedure or function:

> fp(x); // whichever fp is at runtime

> SetVerbose("Meataxe", true); // simple procedure call

Examples which illustrate point (c):

> 1, 2;

1 2

> // Assuming f assigned:

> f(x), 1; // f only can be a function

> SetVerbose("Meataxe", true), 1; // type error in ’SetVerbose’

> // (since no function form)

Examples which illustrate point (d):

> 1: Magma;

1

> Sym(3), []: Maximal;

Symmetric group acting on a set of cardinality 3

Order = 6 = 2 * 3

[]

> SetVerbose("Meataxe", true): Magma; // type error as above

Examples which illustrate point (e):

> 1;



78 THE MAGMA LANGUAGE Part I

1

> $1;

1

> 2, 3;

2 3

> $1;

2 3

> Quotrem(124124, 123);

1009 17

> $1;

1009 17

> a, b := $1;

> a;

1009

3.3.5 Indentation
Magma has an indentation level which determines how many initial spaces should be
printed before each line. The level can be increased or decreased. Each time the top
level of Magma is reached (i.e. a prompt is printed), the level is reset to 0. The level is
usually changed in verbose output of recursive functions and procedures. The functions
SetIndent and GetIndent are used to control and examine the number of spaces used for
each indentation level (default 4).

IndentPush()

Increase (push) the indentation level by 1. Thus the beginning of a line will have s
more spaces than before, where s is the current number of indentation spaces.

IndentPop()

Decrease (pop) the indentation level by 1. Thus the beginning of a line will have s
less spaces than before, where s is the current number of indentation spaces. If the
current level is already 0, an error occurs.

3.3.6 Printing to a File

PrintFile(F, x)

Write(F, x)

Overwrite BoolElt Default : false

Print x to the file specified by the string F . If this file already exists, the output
will be appended, unless the optional parameter Overwrite is set to true, in which
case the file is overwritten.



Ch. 3 INPUT AND OUTPUT 79

WriteBinary(F, s)

Overwrite BoolElt Default : false

Write the binary string s to the file specified by the string F . If this file already
exists, the output will be appended, unless the optional parameter Overwrite is set
to true, in which case the file is overwritten.

PrintFile(F, x, L)

Write(F, x, L)

Overwrite BoolElt Default : false

Print x in format defined by the string L to the file specified by the string F . If
this file already exists, the output will be appended unless the optional parameter
Overwrite is set to true, in which case the file is overwritten. The level L can be
any of the print levels on the print command above (i.e., it must be one of the
strings "Default", "Minimal", "Maximal", or "Magma").

PrintFileMagma(F, x)

Overwrite BoolElt Default : false

Print x in Magma format to the file specified by the string F . If this file already
exists, the output will be appended, unless the optional parameter Overwrite is set
to true, in which case the file is overwritten.

3.3.7 Printing to a String
Magma allows the user to obtain the string corresponding to the output obtained when
printing an object by means of the Sprint function. The Sprintf function allows format-
ted printing like the printf statement.

Sprint(x)

Sprint(x, L)

Given any Magma object x, this function returns a string containing the output
obtained when x is printed. If a print level L is given also (a string), the printing
is done according to that level (see the print statement for the possible printing
levels).

Sprintf(F, ...)

Given a format string F , together with appropriate extra arguments corresponding
to F , return the string resulting from the formatted printing of F and the arguments.
The format string F and arguments should be exactly as for the printf statement
– see that statement for details.



80 THE MAGMA LANGUAGE Part I

Example H3E8

We demonstrate elementary uses of Sprintf.

> Q := [Sprintf("{%4o<->%-4o}", x, x): x in [1,10,100,1000]];

> Q;

[ { 1<->1 }, { 10<->10 }, { 100<->100 }, {1000<->1000} ]

3.3.8 Redirecting Output

SetOutputFile(F)

Overwrite BoolElt Default : false

Redirect all Magma output to the file specified by the string F . By using
SetOutputFile(F: Overwrite := true) the file F is emptied before output is
written onto it.

UnsetOutputFile()

Close the output file, so that output will be directed to standard output again.

HasOutputFile()

If Magma currently has an output or log file F , return true and F ; otherwise return
false.

3.4 External Files
Magma provides a special file type for the reading and writing of external files. Most of
the standard C library functions can be applied to such files to manipulate them.

3.4.1 Opening Files

Open(S, T)

Given a filename (string) S, together with a type indicator T , open the file named by
S and return a Magma file object associated with it. Tilde expansion is performed
on S. The standard C library function fopen() is used, so the possible characters
allowed in T are the same as those allowed for that function in the current operating
system, and have the same interpretation. Thus one should give the value "r" for
T to open the file for reading, and give the value "w" for T to open the file for
writing, etc. (Note that in the PC version of Magma, the character "b" should
also be included in T if the file is desired to be opened in binary mode.) Once a file
object is created, various I/O operations can be performed on it — see below. A
file is closed by deleting it (i.e. by use of the delete statement or by reassigning the
variable associated with the file); there is no Fclose function. This ensures that the
file is not closed while there are still multiple references to it. (The function is called
Open instead of Fopen to follow Perl-style conventions. The following functions also
follow such conventions where possible.)



Ch. 3 INPUT AND OUTPUT 81

3.4.2 Operations on File Objects

Flush(F)

Given a file F , flush the buffer of F .

Tell(F)

Given a file F , return the offset in bytes of the file pointer within F .

Seek(F, o, p)

Perform fseek(F, o, p); i.e. move the file pointer of F to offset o (relative to p: 0
means beginning, 1 means current, 2 means end).

Rewind(F)

Perform rewind(F); i.e. move the file pointer of F to the beginning.

Put(F, S)

Put (write) the characters of the string S to the file F .

Puts(F, S)

Put (write) the characters of the string S, followed by a newline character, to the
file F .

Getc(F)

Given a file F , get and return one more character from file F as a string. If F is at
end of file, a special EOF marker string is returned; the function IsEof should be
applied to the character to test for end of file. (Thus the only way to loop over a
file character by character is to get each character and test whether it is the EOF
marker before processing it.)

Gets(F)

Given a file F , get and return one more line from file F as a string. The newline
character is removed before the string is returned. If F is at end of file, a special
EOF marker string is returned; the function IsEof should be applied to the string
to test for end of file.

IsEof(S)

Given a string S, return whether S is the special EOF marker.

Ungetc(F, c)

Given a character (length one string) C, together with a file F , perform ungetc(C,
F); i.e. push the character C back into the input buffer of F .



82 THE MAGMA LANGUAGE Part I

Example H3E9

We write a function to count the number of lines in a file. Note the method of looping over the
characters of the file: we must get the line and then test whether it is the special EOF marker.

> function LineCount(F)

> FP := Open(F, "r");

> c := 0;

> while true do

> s := Gets(FP);

> if IsEof(s) then

> break;

> end if;

> c +:= 1;

> end while;

> return c;

> end function;

> LineCount("/etc/passwd");

59

3.4.3 Reading a Complete File

Read(F)

Function that returns the contents of the text-file with name indicated by the string
F . Here F may be an expression returning a string.

ReadBinary(F)

Function that returns the contents of the text-file with name indicated by the string
F as a binary string.

Example H3E10

In this example we show how Read can be used to import the complete output from a separate C

program into a Magma session. We assume that a file mystery.c (of which the contents are shown
below) is present in the current directory. We first compile it, from within Magma, and then use
it to produce output for the Magma version of our mystery function.

> Read("mystery.c");

#include <stdio.h>

main(argc, argv)

int argc;

char **argv;

{

int n, i;

n = atoi(argv[1]);

for (i = 1; i <= n; i++)

printf("%d\n", i * i);



Ch. 3 INPUT AND OUTPUT 83

return 0;

}

> System("cc mystery.c -o mystery");

> mysteryMagma := function(n)

> System("./mystery " cat IntegerToString(n) cat " >outfile");

> output := Read("outfile");

> return StringToIntegerSequence(output);

> end function;

> mysteryMagma(5);

[ 1, 4, 9, 16, 25 ]

3.5 Pipes

Pipes are used to communicate with newly-created processes. Currently pipes are only
available on UNIX systems.

The Magma I/O module is currently undergoing revision, and the current pipe facilities
are a mix of the old and new methods. A more uniform model will be available in future
releases.

3.5.1 Pipe Creation

POpen(C, T)

Given a shell command line C, together with a type indicator T , open a pipe between
the Magma process and the command to be executed. The standard C library
function popen() is used, so the possible characters allowed in T are the same as
those allowed for that function in the current operating system, and have the same
interpretation. Thus one should give the value "r" for T so that Magma can read
the output from the command, and give the value "w" for T so that Magma can
write into the input of the command. See the Pipe intrinsic for a method for sending
input to, and receiving output from, a single command.

Important: this function returns a File object, and the I/O functions for files
described previously must be used rather then those described in the following.

Pipe(C, S)

Given a shell command C and an input string S, create a pipe to the command C,
send S into the standard input of C, and return the output of C as a string. Note
that for many commands, S should finish with a new line character if it consists of
only one line.



84 THE MAGMA LANGUAGE Part I

Example H3E11

We write a function which returns the current time as 3 values: hour, minutes, seconds. The
function opens a pipe to the UNIX command “date” and applies regular expression matching to
the output to extract the relevant fields.

> function GetTime()

> D := POpen("date", "r");

> date := Gets(D);

> _, _, f := Regexp("([0-9][0-9]):([0-9][0-9]):([0-9][0-9])", date);

> h, m, s := Explode(f);

> return h, m, s;

> end function;

> h, m, s := GetTime();

> h, m, s;

14 30 01

> h, m, s := GetTime();

> h, m, s;

14 30 04

3.5.2 Operations on Pipes
When a read request is made on a pipe, the available data is returned. If no data is
currently available, then the process waits until some does becomes available, and returns
that. (It will also return if the pipe has been closed and hence no more data can be
transmitted.) It does not continue trying to read more data, as it cannot tell whether or
not there is some “on the way”.

The upshot of all this is that care must be exercised as reads may return less data than
is expected.

Read(P : parameters)

Max RngIntElt Default : 0
Waits for data to become available for reading from P and then returns it as a string.
If the parameter Max is set to a positive value then at most that many characters
will be read. Note that less than Max characters may be returned, depending on the
amount of currently available data.

If the pipe has been closed then the special EOF marker string is returned.

ReadBytes(P : parameters)

Max RngIntElt Default : 0
Waits for data to become available for reading from P and then returns it as a
sequence of bytes (integers in the range 0..255). If the parameter Max is set to a
positive value then at most that many bytes will be read. Note that less than Max
bytes may be returned, depending on the amount of currently available data.

If the pipe has been closed then the empty sequence is returned.



Ch. 3 INPUT AND OUTPUT 85

Write(P, s)

Writes the characters of the string s to the pipe P .

WriteBytes(P, Q)

Writes the bytes in the byte sequence Q to the pipe P . Each byte must be an integer
in the range 0..255.

3.6 Sockets
Sockets may be used to establish communication channels between machines on the same
network. Once established, they can be read from or written to in much the same ways
as more familiar I/O constructs like files. One major difference is that the data is not
instantly available, so the I/O operations take much longer than with files. Currently
sockets are only available on UNIX systems.

Strictly speaking, a socket is a communication endpoint whose defining information
consists of a network address and a port number. (Even more strictly speaking, the
communication protocol is also part of the socket. Magma only uses TCP sockets, however,
so we ignore this point from now on.)

The network address selects on which of the available network interfaces communication
will take place; it is a string identifying the machine on that network, in either domain name
or dotted-decimal format. For example, both "localhost" and "127.0.0.1" identify
the machine on the loopback interface (which is only accessible from the machine itself),
whereas "foo.bar.com" or "10.0.0.3" might identify the machine in a local network,
accessible from other machines on that network.

The port number is just an integer that identifies the socket on a particular network
interface. It must be less than 65 536. A value of 0 will indicate that the port number
should be chosen by the operating system.

There are two types of sockets, which we will call client sockets and server sockets. The
purpose of a client socket is to initiate a connection to a server socket, and the purpose of a
server socket is to wait for clients to initiate connections to it. (Thus the server socket needs
to be created before the client can connect to it.) Once a server socket accepts a connection
from a client socket, a communication channel is established and the distinction between
the two becomes irrelevant, as they are merely each side of a communication channel.

In the following descriptions, the network address will often be referred to as the host.
So a socket is identified by a (host, port) pair, and an established communication channel
consists of two of these pairs: (local-host, local-port), (remote-host, remote-port).

3.6.1 Socket Creation

Socket(H, P : parameters)

LocalHost MonStgElt Default : none

LocalPort RngIntElt Default : 0
Attempts to create a (client) socket connected to port P of host H. Note: these are
the remote values; usually it does not matter which local values are used for client



86 THE MAGMA LANGUAGE Part I

sockets, but for those rare occasions where it does they may be specified using the
parameters LocalHost and LocalPort. If these parameters are not set then suitable
values will be chosen by the operating system. Also note that port numbers below
1 024 are usually reserved for system use, and may require special privileges to be
used as the local port number.

Socket( : parameters)

LocalHost MonStgElt Default : none

LocalPort RngIntElt Default : 0

Attempts to create a server socket on the current machine, that can be used to
accept connections. The parameters LocalHost and LocalPort may be used to
specify which network interface and port the socket will accept connections on; if
either of these are not set then their values will be determined by the operating
system. Note that port numbers below 1 024 are usually reserved for system use,
and may require special privileges to be used as the local port number.

WaitForConnection(S)

This may only be used on server sockets. It waits for a connection attempt to
be made, and then creates a new socket to handle the resulting communication
channel. Thus S may continue to be used to accept connection attempts, while the
new socket is used for communication with whatever entity just connected. Note:
this new socket is not a server socket.

3.6.2 Socket Properties

SocketInformation(S)

This routine returns the identifying information for the socket as a pair of tuples.
Each tuple is a <host, port> pair — the first tuple gives the local information and the
second gives the remote information. Note that this second tuple will be undefined
for server sockets.

3.6.3 Socket Predicates

IsServerSocket(S)

Returns whether S is a server socket or not.



Ch. 3 INPUT AND OUTPUT 87

3.6.4 Socket I/O
Due to the nature of the network, it takes significant time to transmit data from one
machine to another. Thus when a read request is begun it may take some time to complete,
usually because the data to be read has not yet arrived. Also, data written to a socket
may be broken up into smaller pieces for transmission, each of which may take different
amounts of time to arrive. Thus, unlike files, there is no easy way to tell if there is still
more data to be read; the current lack of data is no indicator as to whether more might
arrive.

When a read request is made on a socket, the available data is returned. If no data is
currently available, then the process waits until some does becomes available, and returns
that. (It will also return if the socket has been closed and hence no more data can be
transmitted.) It does not continue trying to read more data, as it cannot tell whether or
not there is some “on the way”.

The upshot of all this is that care must be exercised as reads may return less data than
is expected.

Read(S : parameters)

Max RngIntElt Default : 0

Waits for data to become available for reading from S and then returns it as a string.
If the parameter Max is set to a positive value then at most that many characters
will be read. Note that less than Max characters may be returned, depending on the
amount of currently available data.

If the socket has been closed then the special EOF marker string is returned.

ReadBytes(S : parameters)

Max RngIntElt Default : 0

Waits for data to become available for reading from S and then returns it as a
sequence of bytes (integers in the range 0..255). If the parameter Max is set to a
positive value then at most that many bytes will be read. Note that less than Max
bytes may be returned, depending on the amount of currently available data.

If the socket has been closed then the empty sequence is returned.

Write(S, s)

Writes the characters of the string s to the socket S.

WriteBytes(S, Q)

Writes the bytes in the byte sequence Q to the socket S. Each byte must be an
integer in the range 0..255.



88 THE MAGMA LANGUAGE Part I

Example H3E12

Here is a trivial use of sockets to send a message from one Magma process to another running on
the same machine. The first Magma process sets up a server socket and waits for another Magma

to contact it.

> // First Magma process

> server := Socket(: LocalHost := "localhost");

> SocketInformation(server);

<localhost, 32794>

> S1 := WaitForConnection(server);

The second Magma process establishes a client socket connection to the first, writes a greeting
message to it, and closes the socket.

> // Second Magma process

> S2 := Socket("localhost", 32794);

> SocketInformation(S2);

<localhost, 32795> <localhost, 32794>

> Write(S2, "Hello, other world!");

> delete S2;

The first Magma process is now able to continue; it reads and displays all data sent to it until the
socket is closed.

> // First Magma process

> SocketInformation(S1);

<localhost, 32794> <localhost, 32795>

> repeat

> msg := Read(S1);

> msg;

> until IsEof(msg);

Hello, other world!

EOF

3.7 Interactive Input

read identifier;

read identifier, prompt;

This statement will cause Magma to assign to the given identifier the string of
characters appearing (at run-time) on the following line. This allows the user to
provide an input string at run-time. If the optional prompt is given (a string), that
is printed first.



Ch. 3 INPUT AND OUTPUT 89

readi identifier;

readi identifier, prompt;

This statement will cause Magma to assign to the given identifier the literal integer
appearing (at run-time) on the following line. This allows the user to specify integer
input at run-time. If the optional prompt is given (a string), that is printed first.

3.8 Loading a Program File

load "filename";

Input the file with the name specified by the string. The file will be read in, and
the text will be treated as Magma input. Tilde expansion of file names is allowed.

iload "filename";

(Interactive load.) Input the file with the name specified by the string. The file will
be read in, and the text will be treated as Magma input. Tilde expansion of file
names is allowed. In contrast to load, the user has the chance to interact as each
line is read in:

As the line is read in, it is displayed and the system waits for user response. At
this point, the user can skip the line (by moving “down”), edit the line (using the
normal editing keys) or execute it (by pressing “enter”). If the line is edited, the
new line is executed and the original line is presented again.

3.9 Saving and Restoring Workspaces

save "filename";

Copy all information present in the current Magma workspace onto a file specified
by the string "filename". The workspace is left intact, so executing this command
does not interfere with the current computation.

restore "filename";

Copy a previously stored Magma workspace from the file specified by the string
"filename" into central memory. Information present in the current workspace prior
to the execution of this command will be lost. The computation can now proceed
from the point it was at when the corresponding save-command was executed.



90 THE MAGMA LANGUAGE Part I

3.10 Logging a Session

SetLogFile(F)

Overwrite BoolElt Default : false

Set the log file to be the file specified by the string F : all input and output will be
sent to this log file as well as to the terminal. If a log file is already in use, it is closed
and F is used instead. By using SetLogFile(F: Overwrite := true) the file F is
emptied before input and output are written onto it. See also HasOutputFile.

UnsetLogFile()

Stop logging Magma’s output.

SetEchoInput(b)

Set to true or false according to whether or not input from external files should also
be sent to standard output.

3.11 Memory Usage

GetMemoryUsage()

Return the current memory usage of Magma (in bytes as an integer). This is the
process data size, which does not include the executable code.

GetMaximumMemoryUsage()

Return the maximum memory usage of Magma (in bytes as an integer) which has
been attained since last reset (see ResetMaximumMemoryUsage). This is the maxi-
mum process data size, which does not include the executable code.

ResetMaximumMemoryUsage()

Reset the value of the maximum memory usage of Magma to be the current memory
usage of Magma (see GetMaximumMemoryUsage).

3.12 System Calls

Alarm(s)

A procedure which when used on UNIX systems, sends the signal SIGALRM to the
Magma process after s seconds. This allows the user to specify that a Magma-
process should self-destruct after a certain period.

ChangeDirectory(s)

Change to the directory specified by the string s. Tilde expansion is allowed.

GetCurrentDirectory()

Returns the current directory as a string.



Ch. 3 INPUT AND OUTPUT 91

Getpid()

Returns Magma’s process ID (value of the Unix C system call getpid()).

Getuid()

Returns the user ID (value of the Unix C system call getuid()).

System(C)

Execute the system command specified by the string C. This is done by calling the
C function system().

This also returns the system command’s return value as an integer. On most
Unix systems, the lower 8 bits of this value give the process status while the next 8
bits give the value given by the command to the C function exit() (see the Unix
manual entries for system(3) or wait(2), for example). Thus one should normally
divide the result by 256 to get the exit value of the program on success.

See also the Pipe intrinsic function.

%! shell-command

Execute the given command in the Unix shell then return to Magma. Note that this
type of shell escape (contrary to the one using a System call) takes place entirely
outside Magma and does not show up in Magma’s history.

3.13 Creating Names
Sometimes it is necessary to create names for files from within Magma that will not clash
with the names of existing files.

Tempname(P)

Given a prefix string P , return a unique temporary name derived from P (by use of
the C library function mktemp()).





4 ENVIRONMENT AND OPTIONS
4.1 Introduction . . . . . . . . . 95

4.2 Command Line Options . . . . 95

magma -b 95
magma -c filename 95
magma -d 96
magma -n 96
magma -q name 96
magma -r workspace 96
magma -s filename 96
magma -S integer 96

4.3 Environment Variables . . . . . 97

MAGMA STARTUP FILE 97
MAGMA PATH 97
MAGMA MEMORY LIMIT 97
MAGMA LIBRARY ROOT 97
MAGMA LIBRARIES 97
MAGMA SYSTEM SPEC 97
MAGMA USER SPEC 97
MAGMA HELP DIR 97
MAGMA TEMP DIR 97

4.4 Set and Get . . . . . . . . . 98

SetAssertions(b) 98
GetAssertions() 98
SetAutoColumns(b) 98
GetAutoColumns() 98
SetAutoCompact(b) 98
GetAutoCompact() 98
SetBeep(b) 98
GetBeep() 98
SetColumns(n) 98
GetColumns() 98
GetCurrentDirectory() 99
SetEchoInput(b) 99
GetEchoInput() 99
GetEnvironmentValue(s) 99
GetEnv(s) 99
SetHistorySize(n) 99
GetHistorySize() 99
SetIgnorePrompt(b) 99
GetIgnorePrompt() 99
SetIgnoreSpaces(b) 99
GetIgnoreSpaces() 99
SetIndent(n) 99
GetIndent() 99
SetLibraries(s) 100
GetLibraries() 100
SetLibraryRoot(s) 100
GetLibraryRoot() 100
SetLineEditor(b) 100
GetLineEditor() 100
SetLogFile(F) 100
UnsetLogFile() 100

SetMemoryLimit(n) 100
GetMemoryLimit() 100
SetNthreads(n) 100
GetNthreads() 100
SetOutputFile(F) 101
UnsetOutputFile() 101
SetPath(s) 101
GetPath() 101
SetPrintLevel(l) 101
GetPrintLevel() 101
SetPrompt(s) 101
GetPrompt() 101
SetQuitOnError(b) 101
SetRows(n) 101
GetRows() 101
GetTempDir() 102
SetTraceback(n) 102
GetTraceback() 102
SetSeed(s, c) 102
GetSeed() 102
GetVersion() 102
SetViMode(b) 102
GetViMode() 102

4.5 Verbose Levels . . . . . . . 102

SetVerbose(s, i) 102
SetVerbose(s, b) 102
GetVerbose(s) 102
IsVerbose(s) 103
IsVerbose(s, l) 103
ListVerbose() 103
ClearVerbose() 103

4.6 Other Information Procedures 103

ShowMemoryUsage() 103
ShowIdentifiers() 103
ShowValues() 103
Traceback() 103
ListSignatures(C) 103
ListSignatures(F, C) 104
ListCategories() 104
ListTypes() 104

4.7 History . . . . . . . . . . 104

%p 104
%pn 104
%pn1 n2 104
%P 104
%Pn 104
%Pn1 n2 104
%s 104
%sn 105
%sn1 n2 105
%S 105
%Sn 105



94 THE MAGMA LANGUAGE Part I

%Sn1 n2 105
% 105
%n 105
%n1 n2 105
%e 105
%en 105
%en1 n2 105
%! shell-command 105

4.8 The Magma Line Editor . . . 106

SetViMode 106
SetViMode 106

4.8.1 Key Bindings (Emacs and VI mode) 106

<Return> 106
<Backspace> 106
<Delete> 106
<Tab> 106
<Ctrl>-A 106
<Ctrl>-B 106
<Ctrl>-C 106
<Ctrl>-D 106
<Ctrl>-E 107
<Ctrl>-F 107
<Ctrl>-H 107
<Ctrl>-I 107
<Ctrl>-J 107
<Ctrl>-K 107
<Ctrl>-L 107
<Ctrl>-M 107
<Ctrl>-N 107
<Ctrl>-P 107
<Ctrl>-U 108
<Ctrl>-Vchar 108
<Ctrl>-W 108
<Ctrl>-X 108
<Ctrl>-Y 108
<Ctrl>-Z 108
<Ctrl>- 108
<Ctrl>-\ 108

4.8.2 Key Bindings in Emacs mode only . 108

Mb 108
MB 108
Mf 108
MF 108

4.8.3 Key Bindings in VI mode only . . 109

0 109
$ 109
<Ctrl>-space 109
% 109

; 109
, 109
B 109
b 109
E 109
e 109
Fchar 109
fchar 109
h 109
H 109
l 110
L 110
Tchar 110
tchar 110
w 110
W 110
A 110
a 110
C 110
crange 110
D 110
drange 110
I 110
i 110
j 111
k 111
P 111
p 111
R 111
rchar 111
S 111
s 111
U 111
u 111
X 111
x 111
Y 111
yrange 111

4.9 The Magma Help System . . . 112

SetHelpExternalBrowser(S, T) 113
SetHelpExternalBrowser(S) 113
SetHelpUseExternalBrowser(b) 113
SetHelpExternalSystem(s) 113
SetHelpUseExternalSystem(b) 113
GetHelpExternalBrowser() 113
GetHelpExternalSystem() 113
GetHelpUseExternal() 113

4.9.1 Internal Help Browser . . . . . . 113



Chapter 4

ENVIRONMENT AND OPTIONS

4.1 Introduction
This chapter describes the environmental features of Magma, together with options which
can be specified at start-up on the command line, or within Magma by the Set- proce-
dures. The history and line-editor features of Magma are also described.

4.2 Command Line Options
When starting up Magma, various command-line options can be supplied, and a list of
files to be automatically loaded can also be specified. These files may be specified by simply
listing their names as normal arguments (i.e., without a - option) following the Magma
command. For each such file name, a search for the specified file is conducted, starting in
the current directory, and in directories specified by the environment variable MAGMA PATH
after that if necessary. It is also possible to have a startup file, in which one would usually
store personal settings of parameters and variables. The startup file is specified by the
MAGMA STARTUP FILE environment variable which should be set in the user’s .cshrc file or
similar. This environment variable can be overridden by the -s option, or cancelled by the
-n option. The files specified by the arguments to Magma are loaded after the startup
file. Thus the startup file is not cancelled by giving extra file arguments, which is what is
usually desired.

Magma also allows one to set variables from the command line — if one of the argu-
ments is of the form var:=val, where var is a valid identifier (consisting of letters, under-
scores, or non-initial digits) and there is no space between var and the :=, then the variable
var is assigned within Magma to the string value val at the point where that argument
is processed. (Functions like StringToInteger should be used to convert the value to an
object of another type once inside Magma.)

magma -b

If the -b argument is given to Magma, the opening banner and all other introduc-
tory messages are suppressed. The final “total time” message is also suppressed.
This is useful when sending the whole output of a Magma process to a file so that
extra removing of unwanted output is not needed.

magma -c filename

If the -c argument is given to Magma, followed by a filename, the filename is as-
sumed to refer to a package source file and the package is compiled and Magma then
exits straight away. This option is rarely needed since packages are automatically
compiled when attached.



96 THE MAGMA LANGUAGE Part I

magma -d

If the -d option is supplied to Magma, the licence for the current magmapassfile
is dumped. That is, the expiry date and the valid hostids are displayed. Magma
then exits.

magma -n

If the -n option is supplied to Magma, any startup file specified by the environment
variable MAGMA STARTUP FILE or by the -s option is cancelled.

magma -q name

If the -q option is supplied to Magma, then Magma operates in a special manner
as a slave (with the given name) for the MPQS integer factorisation algorithm. Please
see that function for more details.

magma -r workspace

If the -r option is supplied to Magma, together with a workspace file, that
workspace is automatically restored by Magma when it starts up.

magma -s filename

If the -s option is supplied to Magma, the given filename is used for the
startup file for Magma. This overrides the variable of the environment variable
MAGMA STARTUP FILE if it has been set. This option should not be used (as it was
before), for automatically loading files since that can be done by just listing them
as arguments to the Magma process.

magma -S integer

When starting up Magma, it is possible to specify a seed for the generation of
pseudo-random numbers. (Pseudo-random quantities are used in several Magma
algorithms, and may also be generated explicitly by some intrinsics.) The seed
should be in the range 0 to (232− 1) inclusive. If -S is not followed by any number,
or if the -S option is not used, Magma selects the seed itself.

Example H4E1

By typing the command

magma file1 x:=abc file2

Magma would start up, read the user’s startup file specified by MAGMA STARTUP FILE if existent,
then read the file file1, then assign the variable x to the string value "abc", then read the file
file2, then give the prompt.



Ch. 4 ENVIRONMENT AND OPTIONS 97

4.3 Environment Variables

This section lists some environment variables used by Magma. These variables are set
by an appropriate operating system command and are used to define various search paths
and other run-time options.

MAGMA STARTUP FILE

The name of the default start-up file. It can be overridden by the magma -s com-
mand.

MAGMA PATH

Search path for files that are loaded (a colon separated list of directories). It need not
include directories for the libraries, just personal directories. This path is searched
before the library directories.

MAGMA MEMORY LIMIT

Limit on the size of the memory that may be used by a Magma-session (in bytes).

MAGMA LIBRARY ROOT

The root directory for the Magma libraries (by supplying an absolute path name).
From within Magma SetLibraryRoot and GetLibraryRoot can be used to change
and view the value.

MAGMA LIBRARIES

Give a list of Magma libraries (as a colon separated list of sub-directories of the
library root directory). From within Magma SetLibraries and GetLibraries can
be used to change and view the value.

MAGMA SYSTEM SPEC

The Magma system spec file containing the system packages automatically attached
at start-up.

MAGMA USER SPEC

The personal user spec file containing the user packages automatically attached at
start-up.

MAGMA HELP DIR

The root directory for the Magma help files.

MAGMA TEMP DIR

Optional variable containing the directory Magma is to use for temporary files.
If not specified, this defaults to /tmp (on Unix-like systems) or the system-wide
temporary directory (on Windows systems).



98 THE MAGMA LANGUAGE Part I

4.4 Set and Get

The Set- procedures allow the user to attach values to certain environment variables. The
Get- functions enable one to obtain the current values of these variables.

SetAssertions(b)

GetAssertions()

Controls the checking of assertions (see the assert statement and related statements
in the chapter on the language). Default is SetAssertions(1). The relevant values
are 0 for no checking at all, 1 for normal checks, 2 for debug checks and 3 for
extremely stringent checking.

SetAutoColumns(b)

GetAutoColumns()

If enabled, the IO system will try to determine the number of columns in the win-
dow by using ioctl(); when a window change or a stop/cont occurs, the Columns
variable (below) will be automatically updated. If disabled, the Columns vari-
able will only be changed when explicitly done so by SetColumns. Default is
SetAutoColumns(true).

SetAutoCompact(b)

GetAutoCompact()

Control whether automatic compaction is performed. Normally the memory man-
ager of Magma will compact all of its memory between each statement at the top
level. This removes fragmentation and reduces excessive memory usage. In some
very rare situations, the compactions may become very slow (one symptom is that
an inordinate pause occurs between prompts when only a trivial operation or noth-
ing is done). In such cases, turning the automatic compaction off may help (at the
cost of possibly more use of memory). Default is SetAutoCompact(true).

SetBeep(b)

GetBeep()

Controls ‘beeps’. Default is SetBeep(true).

SetColumns(n)

GetColumns()

Controls the number of columns used by the IO system. This affects the line editor
and the output system. (As explained above, if AutoColumns is on, this variable
will be automatically determined.) The number of columns will determine how
words are wrapped. If set to 0, word wrap is not performed. The default value is
SetColumns(80) (unless SetAutoColumns(true)).



Ch. 4 ENVIRONMENT AND OPTIONS 99

GetCurrentDirectory()

Returns the current directory as a string. (Use ChangeDirectory(s) to change the
working directory.)

SetEchoInput(b)

GetEchoInput()

Set to true or false according to whether or not input from external files should
also be sent to standard output.

GetEnvironmentValue(s)

GetEnv(s)

Returns the value of the external environment variable s as a string.

SetHistorySize(n)

GetHistorySize()

Controls the number of lines saved in the history. If the number is set to 0, no
history is preserved.

SetIgnorePrompt(b)

GetIgnorePrompt()

Controls the option to ignore the prompt to allow the pasting of input lines back
in. If enabled, any leading ’>’ characters (possibly separated by white space) are
ignored by the history system when the input file is a terminal, unless the line
consists of the ’>’ character alone (without a following space), which could not
come from a prompt since in a prompt a space or another character follows a ’>’.
Default is SetIgnorePrompt(false).

SetIgnoreSpaces(b)

GetIgnoreSpaces()

Controls the option to ignore spaces when searching in the line editor. If the user
moves up or down in the line editor using <Ctrl>-P or <Ctrl>-N (see the line editor
key descriptions) and if the cursor is not at the beginning of the line, a search is
made forwards or backwards, respectively, to the first line which starts with the
same string as the string consisting of all the characters before the cursor. While
doing the search, spaces are ignored if and only if this option is on (value true).
Default is SetIgnoreSpaces(true).

SetIndent(n)

GetIndent()

Controls the indentation level for formatting output. The default is SetIndent(4).



100 THE MAGMA LANGUAGE Part I

SetLibraries(s)

GetLibraries()

Controls the Magma library directories via environment variable MAGMA LIBRARIES.
The procedure SetLibraries takes a string, which will be taken as the (colon-
separated) list of sub-directories in the library root directory for the libraries; the
function GetLibraryRoot returns the current value as a string. These directories
will be searched when you try to load a file; note however that first the directories
indicated by the current value of your path environment variable MAGMA PATH will
be searched. See SetLibraryRoot for the root directory.

SetLibraryRoot(s)

GetLibraryRoot()

Controls the root directory for the Magma libraries, via the environment variable
MAGMA LIBRARY ROOT. The procedure SetLibraryRoot takes a string, which will be
the absolute pathname for the root of the libraries; the function GetLibraryRoot
returns the current value as a string. See also SetLibraries

SetLineEditor(b)

GetLineEditor()

Controls the line editor. Default is SetLineEditor(true).

SetLogFile(F)

Overwrite BoolElt Default : false

UnsetLogFile()

Procedure. Set the log file to be the file specified by the string F : all input and
output will be sent to this log file as well as to the terminal. If a log file is already
in use, it is closed and F is used instead. The parameter Overwrite can be used to
indicate that the file should be truncated before writing input and output on it; by
default the file is appended.

SetMemoryLimit(n)

GetMemoryLimit()

Set the limit (in bytes) of the memory which the memory manager will allocate (no
limit if 0). Default is SetMemoryLimit(0).

SetNthreads(n)

GetNthreads()

Set the number of threads to be used in multi-threaded algorithms to be n, if
POSIX threads are enabled in this version of Magma. Currently, this affects the
coding theory minimum weight algorithm (MinimumWeight) and the F4 Gröbner
basis algorithm for medium-sized primes (Groebner).



Ch. 4 ENVIRONMENT AND OPTIONS 101

SetOutputFile(F)

Overwrite BoolElt Default : false

UnsetOutputFile()

Start/stop redirecting all Magma output to a file (specified by the string F ). The
parameter Overwrite can be used to indicate that the file should be truncated
before writing output on it.

SetPath(s)

GetPath()

Controls the path by which the searching of files is done. The path consists of a colon
separated list of directories which are searched in order (“.” implicitly assumed at
the front). Tilde expansion is done on each directory. (May be overridden by the
environment variable MAGMA PATH.)

SetPrintLevel(l)

GetPrintLevel()

Controls the global printing level, which is one of "Minimal", "Magma", "Maximal",
"Default". Default is SetPrintLevel("Default").

SetPrompt(s)

GetPrompt()

Controls the terminal prompt (a string). Expansion of the following % escapes
occurs:
%% The character %
%h The current history line number.
%S The parser ‘state’: when a new line is about to be read while the parser has

only seen incomplete statements, the state consists of a stack of words like
“if”, “while”, indicating the incomplete statements.

%s Like %S except that only the topmost word is displayed.
Default is SetPrompt("%S> ").

SetQuitOnError(b)

Set whether Magma should quit on any error to b. If b is true, Magma
will completely quit when any error (syntax, runtime, etc.) occurs. Default is
SetQuitOnError(false).

SetRows(n)

GetRows()

Controls the number of rows in a page used by the IO system. This affects the
output system. If set to 0, paging is not performed. Otherwise a prompt is given
after the given number of rows for a new page. The default value is SetRows(0).



102 THE MAGMA LANGUAGE Part I

GetTempDir()

Returns the directory Magma uses for storing temporary files. May be influenced
on startup via the MAGMA TEMP DIR environment variable (see Section 4.3).

SetTraceback(n)

GetTraceback()

Controls whether Magma should produce a traceback of user function calls before
each error message. The default value is SetTraceback(true).

SetSeed(s, c)

GetSeed()

Controls the initialization seed and step number for pseudo-random number gener-
ation. For details, see the section on random object generation in the chapter on
statements and expressions.

GetVersion()

Return integers x, y and z such the current version of Magma is Vx.y–z.

SetViMode(b)

GetViMode()

Controls the type of line editor used: Emacs (false) or VI style. Default is
SetViMode(false).

4.5 Verbose Levels
By turning verbose printing on for certain modules within Magma, some information on
computations that are performed can be obtained. For each option, the verbosity may
have different levels. The default is level 0 for each option.

There are also 5 slots available for user-defined verbose flags. The flags can be set in
user programs by SetVerbose("Usern", true) where n should be one of 1, 2, 3, 4, 5, and
the current setting is returned by GetVerbose("Usern").

SetVerbose(s, i)

SetVerbose(s, b)

Set verbose level for s to be level i or b. Here the argument s must be a string. The
verbosity may have different levels. An integer i for the second argument selects the
appropriate level. A second argument i of 0 or b of false means no verbosity. A
boolean value for b of true for the second argument selects level 1. (See above for
the valid values for the string s).

GetVerbose(s)

Return the value of verbose flag s as an integer. (See above for the valid values for
the string s).



Ch. 4 ENVIRONMENT AND OPTIONS 103

IsVerbose(s)

Return the whether the value of verbose flag s is non-zero. (See above for the valid
values for the string s).

IsVerbose(s, l)

Return the whether the value of verbose flag s is greater than or equal to l. (See
above for the valid values for the string s).

ListVerbose()

List all verbose flags. That is, print each verbose flag and its maximal level.

ClearVerbose()

Clear all verbose flags. That is, set the level for all verbose flags to 0.

4.6 Other Information Procedures

The following procedures print information about the current state of Magma.

ShowMemoryUsage()

(Procedure.) Show Magma’s current memory usage.

ShowIdentifiers()

(Procedure.) List all identifiers that have been assigned to.

ShowValues()

(Procedure.) List all identifiers that have been assigned to with their values.

Traceback()

(Procedure.) Display a traceback of the current Magma function invocations.

ListSignatures(C)

Isa BoolElt Default : true

Search MonStgElt Default : “Both”
ShowSrc BoolElt Default : false

List all intrinsic functions, procedures and operators having objects from category
C among their arguments or return values. The parameter Isa may be set to false
so that any categories which C inherit from are not considered. The parameter
Search, with valid string values Both, Arguments, ReturnValues, may be used
to specify whether the arguments, the return values, or both, are considered (de-
fault both). ShowSrc can be used to see where package intrinsics are defined. Use
ListCategories for the names of the categories.



104 THE MAGMA LANGUAGE Part I

ListSignatures(F, C)

Isa BoolElt Default : true

Search MonStgElt Default : “Both”
ShowSrc BoolElt Default : false

Given an intrinsic F and category C, list all signatures of F which match the
category C among their arguments or return values. The parameters are as for the
previous procedure.

ListCategories()

ListTypes()

Procedure to list the (abbreviated) names for all available categories in Magma.

4.7 History
Magma provides a history system which allows the recall and editing of previous lines.
The history system is invoked by typing commands which begin with the history character
‘%’. Currently, the following commands are available.

%p

List the contents of the history buffer. Each line is preceded by its history line
number.

%pn

List the history line n in %p format.

%pn1 n2

List the history lines in the range n1 to n2 in %p format.

%P

List the contents of the history buffer. The initial numbers are not printed.

%Pn

List the history line n in %P format.

%Pn1 n2

List the history lines in the range n1 to n2 in %P format.

%s

List the contents of the history buffer with an initial statement for each line to reset
the random number seed to the value it was just before the line was executed. This
is useful when one wishes to redo a computation using exactly the same seed as
before but does not know what the seed was at the time.



Ch. 4 ENVIRONMENT AND OPTIONS 105

%sn

Print the history line n in %s format.

%sn1 n2

Print the history lines in the range n1 to n2 in %s format.

%S

As for %s except that the statement to set the seed is only printed if the seed has
changed since the previous time it was printed. Also, it is not printed if it would
appear in the middle of a statement (i.e., the last line did not end in a semicolon).

%Sn

Print the history line n in %S format.

%Sn1 n2

Print the history lines in the range n1 to n2 in %S format.

%

Reenter the last line into the input stream.

%n

Reenter the line specified by line number n into the input stream.

%n1 n2

Reenter the history lines in the range n1 to n2 into the input stream.

%e

Edit the last line. The editor is taken to be the value of the EDITOR environment
variable if is set, otherwise “/bin/ed” is used. If after the editor has exited the file
has not been changed then nothing is done. Otherwise the contents of the new file
are reentered into the input stream.

%en

Edit the line specified by line number n.

%en1 n2

Edit the history lines in the range n1 to n2.

%! shell-command

Execute the given command in the Unix shell then return to Magma.



106 THE MAGMA LANGUAGE Part I

4.8 The Magma Line Editor

Magma provides a line editor with both Emacs and VI style key bindings. To enable the
VI style of key bindings, type

SetViMode(true)

and type

SetViMode(false)

to revert to the Emacs style of key bindings. By default ViMode is false; that is, the
Emacs style is in effect.

Many key bindings are the same in both Emacs and VI style. This is because some VI
users like to be able to use some Emacs keys (like <Ctrl>-P) as well as the VI command
keys. Thus key bindings in Emacs which are not used in VI insert mode can be made
common to both.

4.8.1 Key Bindings (Emacs and VI mode)
<Ctrl>-key means hold down the Control key and press key.

<Return>

Accept the line and print a new line. This works in any mode.

<Backspace>

<Delete>

Delete the previous character.

<Tab>

Complete the word which the cursor is on or just after. If the word doesn’t have a
unique completion, it is first expanded up to the common prefix of all the possible
completions. An immediately following Tab key will list all of the possible comple-
tions. Currently completion occurs for system functions and procedures, parameters,
reserved words, and user identifiers.

<Ctrl>-A

Move to the beginning of the line (“alpha” = “beginning”).

<Ctrl>-B

Move back a character (“back”).

<Ctrl>-C

Abort the current line and start a new line.

<Ctrl>-D



Ch. 4 ENVIRONMENT AND OPTIONS 107

On an empty line, send a EOF character (i.e., exit at the top level of the command
interpreter). If at end of line, list the completions. Otherwise, delete the character
under the cursor (“delete”).

<Ctrl>-E

Move to the end of the line (“end”).

<Ctrl>-F

Move forward a character (“forward”).

<Ctrl>-H

Same as Backspace.

<Ctrl>-I

Same as Tab.

<Ctrl>-J

Same as Return.

<Ctrl>-K

Delete all characters from the cursor to the end of the line (“kill”).

<Ctrl>-L

Redraw the line on a new line (helpful if the screen gets wrecked by programs like
“write”, etc.).

<Ctrl>-M

Same as <Return>.

<Ctrl>-N

Go forward a line in the history buffer (“next”). If the cursor is not at the begin-
ning of the line, go forward to the first following line which starts with the same
string (ignoring spaces iff the ignore spaces option is on — see SetIgnoreSpaces)
as the string consisting of all the characters before the cursor. Also, if <Ctrl>-N
is typed initially at a new line and the last line entered was actually a recall of a
preceding line, then the next line after that is entered into the current buffer. Thus
to repeat a sequence of lines (with minor modifications perhaps to each), then one
only needs to go back to the first line with <Ctrl>-P (see below), press <Return>,
then successively press <Ctrl>-N followed by <Return> for each line.

<Ctrl>-P

Go back a line in the history buffer (“previous”). If the cursor is not at the beginning
of the line, go back to the first preceding line which starts with the same string
(ignoring spaces iff the ignore spaces option is on — see SetIgnoreSpaces) as the
string consisting of all the characters before the cursor. For example, typing at a



108 THE MAGMA LANGUAGE Part I

new line x:= and then <Ctrl>-P will go back to the last line which assigned x (if a
line begins with, say, x :=, it will also be taken).

<Ctrl>-U

Clear the whole of the current line.

<Ctrl>-Vchar

Insert the following character literally.

<Ctrl>-W

Delete the previous word.

<Ctrl>-X

Same as <Ctrl>-U.

<Ctrl>-Y

Insert the contents of the yank-buffer before the character under the cursor.

<Ctrl>-Z

Stop Magma.

<Ctrl>-

Undo the last change.

<Ctrl>-\
Immediately quit Magma.

On most systems the arrow keys also have the obvious meaning.

4.8.2 Key Bindings in Emacs mode only
Mkey means press the Meta key and then key. (At the moment, the Meta key is only the
Esc key.)

Mb

MB

Move back a word (“Back”).

Mf

MF

Move forward a word (“Forward”).



Ch. 4 ENVIRONMENT AND OPTIONS 109

4.8.3 Key Bindings in VI mode only
In the VI mode, the line editor can also be in two modes: the insert mode and the command
mode. When in the insert mode, any non-control character is inserted at the current cursor
position. The command mode is then entered by typing the Esc key. In the command
mode, various commands are given a range giving the extent to which they are performed.
The following ranges are available:

0

Move to the beginning of the line.

$

Move to the end of the line.

<Ctrl>-space

Move to the first non-space character of the line.

%

Move to the matching bracket. (Bracket characters are (, ), [, ], {, }, <, and >.)

;

Move to the next character. (See ‘F’, ‘f’, ‘T’, and ‘t’.)

,

Move to the previous character. (See ‘F’, ‘f’, ‘T’, and ‘t’.)

B

Move back a space-separated word (“Back”).

b

Move back a word (“back”).

E

Move forward to the end of the space-separated word (“End”).

e

Move forward to the end of the word (“end”).

Fchar

Move back to the first occurrence of char.

fchar

Move forward to the first occurrence of char.

h

H

Move back a character (<Ctrl>-H = Backspace).



110 THE MAGMA LANGUAGE Part I

l

L

Move back a character (<Ctrl>-L = forward on some keyboards).

Tchar

Move back to just after the first occurrence of char.

tchar

Move forward to just before the first occurrence of char.

w

Move forward a space-separated word (“Word”).

W

Move forward a word (“word”).

Any range may be preceded by a number to multiply to indicate how many times the
operation is done. The VI-mode also provides the yank-buffer, which contains characters
which are deleted or “yanked” – see below.

The following keys are also available in command mode:

A

Move to the end of the line and change to insert mode (“Append”).

a

Move forward a character (if not already at the end of the line) and change to insert
mode (“append”).

C

Delete all the characters to the end of line and change to insert mode (“Change”).

crange

Delete all the characters to the specified range and change to insert mode (“change”).

D

Delete all the characters to the end of line (“Delete”).

drange

Delete all the characters to the specified range (“delete”).

I

Move to the first non-space character in the line and change to insert mode (“In-
sert”).

i



Ch. 4 ENVIRONMENT AND OPTIONS 111

Change to insert mode (“insert”).

j

Go forward a line in the history buffer (same as <Ctrl>-N).

k

Go back a line in the history buffer (same as <Ctrl>-P).

P

Insert the contents of the yank-buffer before the character under the cursor.

p

Insert the contents of the yank-buffer before the character after the cursor.

R

Enter over-type mode: typed characters replace the old characters under the cursor
without insertion. Pressing Esc returns to the command mode.

rchar

Replace the character the cursor is over with char.

S

Delete the whole line and change to insert mode (“Substitute”).

s

Delete the current character and change to insert mode (“substitute”).

U
u

Undo the last change.

X

Delete the character to the left of the cursor.

x

Delete the character under the cursor.

Y

“Yank” the whole line - i.e., copy the whole line into the yank-buffer (“Yank”).

yrange

Copy all characters from the cursor to the specified range into the yank-buffer
(“yank”).



112 THE MAGMA LANGUAGE Part I

4.9 The Magma Help System

Magma provides extensive online help facilities that can be accessed in different ways. The
easiest way to access the documentation is by typing:

magmahelp

Which should start some browser (usually netscape) on the main page of the Magma
documentation.

The easiest way to get some information about any Magma intrinsic is by typing:
(Here we assume you to be interested in FundamentalUnit)

> FundamentalUnit;

Which now will list all signatures for this intrinsic (i.e. all known ways to use this function):

> FundamentalUnit;
Intrinsic ’FundamentalUnit’
Signatures:

(<FldQuad> K) -> FldQuadElt
(<RngQuad> O) -> RngQuadElt

The fundamental unit of K or O
(<RngQuad> R) -> RngQuadElt

Fundamental unit of the real quadratic order.

Next, to get more detailed information, try

> ?FundamentalUnit

But now several things could happen depending on the installation. Using the default,
you get

===========================================================
PATH: /magma/ring-field-algebra/quadratic/operation/\

class-group/FundamentalUnit
KIND: Intrinsic
===========================================================
FundamentalUnit(K) : FldQuad -> FldQuadElt
FundamentalUnit(O) : RngQuad -> RngQuadElt

A generator for the unit group of the order O or the
maximal order

of the quadratic field K.
===========================================================

Second, a WWW-browser could start on the part of the online help describing your
function (or at least the index of the first character). Third, some arbitrary program could
be called to provide you with the information.

If SetVerbose("Help", true); is set, Magma will show the exact command used and
the return value obtained.



Ch. 4 ENVIRONMENT AND OPTIONS 113

SetHelpExternalBrowser(S, T)

SetHelpExternalBrowser(S)

Defines the external browser to be used if SetHelpUseExternalBrowser(true) is
in effect. The string has to be a valid command taking exactly one argument (%s)
which will we replaced by a URL. In case two strings are provided, the second
defines a fall-back system. Typical use for this is to first try to use an already
running browser and if this fails, start a new one.

SetHelpUseExternalBrowser(b)

Tells Magma to actually use (or stop to use) the external browser. If both
SetHelpUseExternalSystem and SetHelpUseExternalBrowser are set to true, the
assignment made last will be effective.

SetHelpExternalSystem(s)

This will tell Magma to use a user defined external program to access the help.
The string has to contain exactly one %s which will be replaced by the argument to
?. The resulting string must be a valid command.

SetHelpUseExternalSystem(b)

Tells Magma to actually use (or stop to use) the external help system. If both
SetHelpUseExternalSystem and SetHelpUseExternalBrowser are set to true, the
assignment made last will be effective.

GetHelpExternalBrowser()

Returns the currently used command strings.

GetHelpExternalSystem()

Returns the currently used command string.

GetHelpUseExternal()

The first value is the currently used value from SetHelpUseExternalBrowser, the
second reflects SetHelpUseExternalSystem.

4.9.1 Internal Help Browser
Magma has a very powerful internal help-browser that can be entered with

> ??





5 MAGMA SEMANTICS
5.1 Introduction . . . . . . . . 117

5.2 Terminology . . . . . . . . 117

5.3 Assignment . . . . . . . . . 118

5.4 Uninitialized Identifiers . . . 118

5.5 Evaluation in Magma . . . . 119

5.5.1 Call by Value Evaluation . . . . . 119

5.5.2 Magma’s Evaluation Process . . . 120

5.5.3 Function Expressions . . . . . . 121

5.5.4 Function Values Assigned to Identifiers122

5.5.5 Recursion and Mutual Recursion . 122

5.5.6 Function Application . . . . . . 123

5.5.7 The Initial Context . . . . . . . 124

5.6 Scope . . . . . . . . . . . 124

5.6.1 Local Declarations . . . . . . . . 125

5.6.2 The ‘first use’ Rule . . . . . . . 125

5.6.3 Identifier Classes . . . . . . . . 126

5.6.4 The Evaluation Process Revisited . 126

5.6.5 The ‘single use’ Rule . . . . . . . 127

5.7 Procedure Expressions . . . . 127

5.8 Reference Arguments . . . . 129

5.9 Dynamic Typing . . . . . . 130

5.10 Traps for Young Players . . . 131

5.10.1 Trap 1 . . . . . . . . . . . . . 131

5.10.2 Trap 2 . . . . . . . . . . . . . 131

5.11 Appendix A: Precedence . . . 133

5.12 Appendix B: Reserved Words . 134





Chapter 5

MAGMA SEMANTICS

5.1 Introduction
This chapter describes the semantics of Magma (how expressions are evaluated, how
identifiers are treated, etc.) in a fairly informal way. Although some technical language
is used (particularly in the opening few sections) the chapter should be easy and essential
reading for the non-specialist. The chapter is descriptive in nature, describing how Magma
works, with little attempt to justify why it works the way it does. As the chapter proceeds,
it becomes more and more precise, so while early sections may gloss over or omit things
for the sake of simplicity and learnability, full explanations are provided later.

It is assumed that the reader is familiar with basic notions like a function, an operator,
an identifier, a type ...

And now for some buzzwords: Magma is an imperative, call by value, statically scoped,
dynamically typed programming language, with an essentially functional subset. The
remainder of the chapter explains what these terms mean, and why a user might want to
know about such things.

5.2 Terminology
Some terminology will be useful. It is perhaps best to read this section only briefly, and
to refer back to it when necessary.

The term expression will be used to refer to a textual entity. The term value will be
used to refer to a run-time value denoted by an expression. To understand the difference
between an expression and a value consider the expressions 1+2 and 3. The expressions
are textually different but they denote the same value, namely the integer 3.

A function expression is any expression of the form function ... end function or of
the form func< ... | ... >. The former type of function expression will be said to be
in the statement form, the latter in the expression form. A function value is the run-time
value denoted by a function expression. As with integers, two function expressions can be
textually different while denoting the same (i.e., extensionally equal) function value. To
clearly distinguish function values from function expressions, the notation FUNC( ... : ...
) will be used to describe function values.

The formal arguments of a function in the statement form are the identifiers that
appear between the brackets just after the function keyword, while for a function in the
expression form they are the identifiers that appear before the |. The arguments to a
function are the expressions between the brackets when a function is applied.

The body of a function in the statement form is the statements after the formal ar-
guments. The body of a function in the expression form is the expression after the |
symbol.



118 THE MAGMA LANGUAGE Part I

An identifier is said to occur inside a function expression when it is occurs textually
anywhere in the body of a function.

5.3 Assignment

An assignment is an association of an identifier to a value. The statement,

> a := 6;

establishes an association between the identifier a and the value 6 (6 is said to be the value
of a, or to be assigned to a). A collection of such assignments is called a context.

When a value V is assigned to an identifier I one of two things happens:
(1) if I has not been previously assigned to, it is added to the current context and associated

with V . I is said to be declared when it is assigned to for the first time.
(2) if I has been previously assigned to, the value associated with I is changed to V . I is

said to be re-assigned.
The ability to assign and re-assign to identifiers is why Magma is called an imperative
language.

One very important point about assignment is illustrated by the following example.
Say we type,

> a := 6;
> b := a+7;

After executing these two lines the context is [ (a,6), (b,13) ]. Now say we type,

> a := 0;

The context is now [ (a,0), (b,13) ]. Note that changing the value of a does not
change the value of b because b’s value is statically determined at the point where it is
assigned. Changing a does not produce the context [ (a,0), (b,7) ].

5.4 Uninitialized Identifiers

Before executing a piece of code Magma attempts to check that it is semantically well
formed (i.e., that it will execute without crashing). One of the checks Magma makes is to
check that an identifier is declared (and thus initialized) before it is used in an expression.
So, for example assuming a had not been previously declared, then before executing either
of the following lines Magma will raise an error:

> a;
> b := a;

Magma can determine that execution of either line will cause an error since a has no as-
signed value. The user should be aware that the checks made for semantic well-formedness
are necessarily not exhaustive!



Ch. 5 MAGMA SEMANTICS 119

There is one important rule concerning uninitialized identifiers and assignment. Con-
sider the line,

> a := a;

Now if a had been previously declared then this is re-assignment of a. If not then it is
an error since a on the right hand side of the := has no value. To catch this kind of
error Magma checks the expression on the right hand side of the := for semantic well
formedness before it declares the identifiers on the left hand side of the :=. Put another
way the identifiers on the left hand side are not considered to be declared in the right hand
side, unless they were declared previously.

5.5 Evaluation in Magma

Evaluation is the process of computing (or constructing) a value from an expression. For
example the value 3 can be computed from the expression 1+2. Computing a value from
an expression is also known as evaluating an expression.

There are two aspects to evaluation, namely when and how it is performed. This section
discusses these two aspects.

5.5.1 Call by Value Evaluation
Magma employs call by value evaluation. This means that the arguments to a function
are evaluated before the function is applied to those arguments. Assume f is a function
value. Say we type,

> r := f( 6+7, true or false );

Magma evaluates the two arguments to 13 and true respectively, before applying f .
While knowing the exact point at which arguments are evaluated is not usually very

important, there are cases where such knowledge is crucial. Say we type,

> f := function( n, b )
> if b then return n else return 1;
> end function;

and we apply f as follows

> r := f( 4/0, false );

Magma treats this as an error since the 4/0 is evaluated, and an error produced, before
the function f is applied.

By contrast some languages evaluate the arguments to a function only if those argu-
ments are encountered when executing the function. This evaluation process is known as
call by name evaluation. In the above example r would be set to the value 1 and the ex-
pression 4/0 would never be evaluated because b is false and hence the argument n would
never be encountered.



120 THE MAGMA LANGUAGE Part I

Operators like + and ∗ are treated as infix functions. So

> r := 6+7;

is treated as the function application,

> r := ’+’(6,7);

Accordingly all arguments to an operator are evaluated before the operator is applied.
There are three operators, ‘select’, ‘and’ and ‘or’ that are exceptions to this rule and

are thus not treated as infix functions. These operators use call by name evaluation and
only evaluate arguments as need be. For example if we type,

> false and (4/0 eq 6);

Magma will reply with the answer false since Magma knows that false and X for all X
is false.

5.5.2 Magma’s Evaluation Process
Let us examine more closely how Magma evaluates an expression as it will help later in
understanding more complex examples, specifically those using functions and maps. To
evaluate an expression Magma proceeds by a process of identifier substitution, followed by
simplification to a canonical form. Specifically expression evaluation proceeds as follows,
(1) replace each identifier in the expression by its value in the current context.
(2) simplify the resultant value to its canonical form.
The key point here is that the replacement step takes an expression and yields an unsim-
plified value! A small technical note: to avoid the problem of having objects that are part
expressions, part values, all substitutions in step 1 are assumed to be done simultaneously
for all identifiers in the expression. The examples in this chapter will however show the
substitutions being done in sequence and will therefore be somewhat vague about what
exactly these hybrid objects are!

To clarify this process assume that we type,

> a := 6;
> b := 7;

producing the context [ (a,6), (b,7) ]. Now say we type,

> c := a+b;

This produces the context [ (a,6), (b,7), (c,13) ]. By following the process outlined
above we can see how this context is calculated. The steps are,
(1) replace a in the expression a+b by its value in the current context giving 6+b.
(2) replace b in 6+b by its value in the current context giving 6+7.
(3) simplify 6+7 to 13

The result value of 13 is then assigned to c giving the previously stated context.



Ch. 5 MAGMA SEMANTICS 121

5.5.3 Function Expressions
Magma’s evaluation process might appear to be an overly formal way of stating the obvious
about calculating expression values. This formality is useful, however when it comes to
function (and map) expressions.

Functions in Magma are first class values, meaning that Magma treats function values
just like it treats any other type of value (e.g., integer values). A function value may be
passed as an argument to another function, may be returned as the result of a function,
and may be assigned to an identifier in the same way that any other type of value is. Most
importantly however function expressions are evaluated exactly as are all other expressions.
The fact that Magma treats functions as first class values is why Magma is said to have
an essentially functional subset.

Take the preceding example. It was,

> a := 6;
> b := 7;
> c := a+b;

giving the context [ (a,6),(b,7),(c,13) ]. Now say I type,

> d := func< n | a+b+c+n >;

Magma uses the same process to evaluate the function expression func< n | a+b+c+n >
on the right hand side of the assignment d := ... as it does to evaluate expression a+b on
the right hand side of the assignment c := .... So evaluation of this function expression
proceeds as follows,

(1) replace a in the expression func< n | a+b+c+n > by its value in the current context
giving func< n | 6+b+c+n >.

(2) replace b in func< n | 6+b+c+n > by its value in the current context giving func< n
| 6+7+c+n >.

(3) replace c in func< n | 6+7+c+n > by its value in the current context giving FUNC(n :
6+7+13+n)

(4) simplify the resultant value FUNC(n : 6+7+13+n) to the value FUNC(n : 26+n).

Note again that the process starts with an expression and ends with a value, and that
throughout the function expression is evaluated just like any other expression. A small
technical point: function simplification may not in fact occur but the user is guaranteed
that the simplification process will at least produce a function extensionally equal to the
function in its canonical form.

The resultant function value is now assigned to d just like any other type of value would
be assigned to an identifier yielding the context [ (a,6),(b,7), (c,8), (d,FUNC(n :
26+n)) ].

As a final point note that changing the value of any of a, b, and c, does not change the
value of d!



122 THE MAGMA LANGUAGE Part I

5.5.4 Function Values Assigned to Identifiers
Say we type the following,

> a := 1;
> b := func< n | a >;
> c := func< n | b(6) >;

The first line leaves a context of the form [ (a,1) ]. The second line leaves a context of
the form [ (a,1), (b,FUNC(n : 1)) ].

The third line is evaluated as follows,
(1) replace the value of b in the expression func< n | b(6) > by its value in the current

context giving FUNC(n : (FUNC(n : 1))(6)).
(2) simplify this value to FUNC(n : 1) since applying the function value FUNC(n : 1)

to the argument 6 always yields 1.
The key point here is that identifiers whose assigned value is a function value (in this case
b), are treated exactly like identifiers whose assigned value is any other type of value.

Now look back at the example at the end of the previous section. One step in the series
of replacements was not mentioned. Remember that + is treated as a shorthand for an
infix function. So a+b is equivalent to ’+’(a,b). + is an identifier (assigned a function
value), and so in the replacement part of the evaluation process there should have been an
extra step, namely,
(4) replace + in func< n : 6+7+13+n > by its value in the current context giving FUNC(n

: A( A( A(6,7), 13 ), n )).
(5) simplify the resultant value to FUNC(n : A( 26, n )). where A is the (function)

value that is the addition function.

5.5.5 Recursion and Mutual Recursion
How do we write recursive functions? Function expressions have no names so how can a
function expression apply itself to do recursion?

It is tempting to say that the function expression could recurse by using the identifier
that the corresponding function value is to be assigned to. But the function value may
not be being assigned at all: it may simply be being passed as an actual argument to
some other function value. Moreover even if the function value were being assigned to an
identifier the function expression cannot use that identifier because the assignment rules
say that the identifiers on the left hand side of the := in an assignment statement are not
considered declared on the right hand side, unless they were previously declared.

The solution to the problem is to use the $$ pseudo-identifier. $$ is a placeholder for
the function value denoted by the function expression inside which the $$ occurs. An
example serves to illustrate the use of $$. A recursive factorial function can be defined as
follows,

> factorial := function(n)
> if n eq 1 then
> return 1;



Ch. 5 MAGMA SEMANTICS 123

> else
> return n * $$(n-1);
> end if;
> end function;

Here $$ is a placeholder for the function value that the function expression function(n)
if n eq ... end function denotes (those worried that the denoted function value ap-
pears to be defined in terms of itself are referred to the fixed point semantics of recursive
functions in any standard text on denotational semantics).

A similar problem arises with mutual recursion where a function value f applies another
function value g, and g likewise applies f . For example,

> f := function(...) ... a := g(...); ... end function;
> g := function(...) ... b := f(...); ... end function;

Again Magma’s evaluation process appears to make this impossible, since to construct f
Magma requires a value for g, but to construct g Magma requires a value for f . Again
there is a solution. An identifier can be declared ‘forward’ to inform Magma that a
function expression for the forward identifier will be supplied later. The functions f and
g above can therefore be declared as follows,

> forward f, g;
> f := function(...) ... a := g(...); ... end function;
> g := function(...) ... b := f(...); ... end function;

(strictly speaking it is only necessary to declare g forward as the value of f will be known by
the time the function expression function(...) ... b := f(...); ... end function
is evaluated).

5.5.6 Function Application
It was previously stated that Magma employs call by value evaluation, meaning that the
arguments to a function are evaluated before the function is applied. This subsection
discusses how functions are applied once their arguments have been evaluated.

Say we type,

> f := func< a, b | a+b >;

producing the context [ (f,FUNC(a,b : a+b)) ].
Now say we apply f by typing,

> r := f( 1+2, 6+7 ).

How is the value to be assigned to r calculated? If we follow the evaluation process we will
reach the final step which will say something like,

“simplify (FUNC(a, b : A(a,b)))(3,13) to its canonical form”
where as before A is the value that is the addition function. How is this simplification
performed? How are function values applied to actual function arguments to yield result



124 THE MAGMA LANGUAGE Part I

values? Not unsurprisingly the answer is via a process of substitution. The evaluation of
a function application proceeds as follows,

(1) replace each formal argument in the function body by the corresponding actual argu-
ment.

(2) simplify the function body to its canonical form.

Exactly what it means to “simplify the function body ...” is intentionally left vague as the
key point here is the process of replacing formal arguments by values in the body of the
function.

5.5.7 The Initial Context
The only thing that remains to consider with the evaluation semantics, is how to get the
ball rolling. Where do the initial values for things like the addition function come from?
The answer is that when Magma starts up it does so with an initial context defined. This
initial context has assignments of all the built-in Magma function values to the appropriate
identifiers. The initial context contains for example the assignment of the addition function
to the identifier +, the multiplication function to the identifier *, etc.

If, for example, we start Magma and immediately type,

> 1+2;

then in evaluating the expression 1+2 Magma will replace + by its value in the initial
context.

Users interact with this initial context by typing statements at the top level (i.e.,
statements not inside any function or procedure). A user can change the initial context
through re-assignment or expand it through new assignments.

5.6 Scope

Say we type the following,

> temp := 7;
> f := function(a,b)
> temp := a * b;
> return temp^2;
> end function;

If the evaluation process is now followed verbatim, the resultant context will look like
[ (temp,7), (f,FUNC(a,b : 7 := a*b; return 7^2;)) ], which is quite clearly not
what was intended!



Ch. 5 MAGMA SEMANTICS 125

5.6.1 Local Declarations
What is needed in the previous example is some way of declaring that an identifier, in this
case temp, is a ‘new’ identifier (i.e., distinct from other identifiers with the same name)
whose use is confined to the enclosing function. Magma provides such a mechanism, called
a local declaration. The previous example could be written,

> temp := 7;
> f := function(a,b)
> local temp;
> temp := a * b;
> return temp^2;
> end function;

The identifier temp inside the body of f is said to be ‘(declared) local’ to the enclosing
function. Evaluation of these two assignments would result in the context being [ (temp,
7), (f, FUNC(a,b : local temp := a*b; return local temp^2;)) ] as intended.

It is very important to remember that temp and local temp are distinct ! Hence if we
now type,

> r := f(3,4);

the resultant context would be [ (temp,7), (f,FUNC(a,b : local temp := a*b;
return local temp^2;)), (r,144) ]. The assignment to local temp inside the body
of f does not change the value of temp outside the function. The effect of an assignment
to a local identifier is thus localized to the enclosing function.

5.6.2 The ‘first use’ Rule
It can become tedious to have to declare all the local variables used in a function body.
Hence Magma adopts a convention whereby an identifier can be implicitly declared ac-
cording to how it is first used in a function body. The convention is that if the first use
of an identifier inside a function body is on the left hand side of a :=, then the identifier
is considered to be local, and the function body is considered to have an implicit local
declaration for this identifier at its beginning. There is in fact no need therefore to declare
temp as local in the previous example as the first use of temp is on the left hand side of a
:= and hence temp is implicitly declared local.

It is very important to note that the term ‘first use’ refers to the first textual use of an
identifier. Consider the following example,

> temp := 7;
> f := function(a,b)
> if false then
> temp := a * b;
> return temp;
> else
> temp;
> return 1;



126 THE MAGMA LANGUAGE Part I

> end if;
> end function;

The first textual use of temp in this function body is in the line

> temp := a * b;

Hence temp is considered as a local inside the function body. It is not relevant that the
if false ... condition will never be true and so the first time temp will be encountered
when f is applied to some arguments is in the line

> temp;

‘First use’ means ‘first textual use’, modulo the rule about examining the right hand side
of a := before the left!

5.6.3 Identifier Classes
It is now necessary to be more precise about the treatment of identifiers in Magma. Every
identifier in a Magma program is considered to belong to one of three possible classes,
these being:
(a) the class of value identifiers
(b)the class of variable identifiers
(c) the class of reference identifiers
The class an identifier belongs to indicates how the identifier is used in a program.

The class of value identifiers includes all identifiers that stand as placeholders for values,
namely:
(a) all loop identifiers;
(b)the $$ pseudo-identifier;
(c) all identifiers whose first use in a function expression is as a value (i.e., not on the left

hand side of an :=, nor as an actual reference argument to a procedure).
Because value identifiers stand as placeholders for values to be substituted during the
evaluation process, they are effectively constants, and hence they cannot be assigned to.
Assigning to a value identifier would be akin to writing something like 7 := 8;!

The class of variable identifiers includes all those identifiers which are declared as local,
either implicitly by the first use rule, or explicitly through a local declaration. Identifiers
in this class may be assigned to.

The class of reference identifiers will be discussed later.

5.6.4 The Evaluation Process Revisited
The reason it is important to know the class of an identifier is that the class of an identifier
effects how it is treated during the evaluation process. Previously it was stated that the
evaluation process was,
(1) replace each identifier in the expression by its value in the current context.
(2) simplify the resultant value to its canonical form.



Ch. 5 MAGMA SEMANTICS 127

Strictly speaking the first step of this process should read,
(1′) replace each free identifier in the expression by its value in the current context, where

an identifier is said to be free if it is a value identifier which is not a formal argument,
a loop identifier, or the $$ identifier.

This definition of the replacement step ensures for example that while computing the value
of a function expression F , Magma does not attempt to replace F ’s formal arguments with
values from the current context!

5.6.5 The ‘single use’ Rule
As a final point on identifier classes it should be noted that an identifier may belong to
only one class within an expression. Specifically therefore an identifier can only be used
in one way inside a function body. Consider the following function,

> a := 7;
> f := function(n) a := a; return a; end function;

It is not the case that a is considered as a variable identifier on the left hand side of the
:=, and as a value identifier on the right hand side of the :=. Rather a is considered to be
a value identifier as its first use is as a value on the right hand side of the := (remember
that Magma inspects the right hand side of an assignment, and hence sees a first as a
value identifier, before it inspects the left hand side where it sees a being used as a variable
identifier).

5.7 Procedure Expressions

To date we have only discussed function expressions, these being a mechanism for com-
puting new values from the values of identifiers in the current context. Together with
assignment this provides us with a means of changing the current context – to compute a
new value for an identifier in the current context, we call a function and then re-assign the
identifier with the result of this function. That is we do

> X := f(Y);

where Y is a list of arguments possibly including the current value of X.
At times however using re-assignment to change the value associated with an identifier

can be both un-natural and inefficient. Take the problem of computing some reduced form
of a matrix. We could write a function that looked something like this,

reduce :=
function( m )

local lm;
...
lm := m;
while not reduced do



128 THE MAGMA LANGUAGE Part I

...
lm := some_reduction(m);
...

end while;
...
end function;

Note that the local lm is necessary since we cannot assign to the function’s formal argument
m since it stands for a value (and values cannot be assigned to). Note also that the function
is inefficient in its space usage since at any given point in the program there are at least
two different copies of the matrix (if the function was recursive then there would be more
than two copies!).

Finally the function is also un-natural. It is perhaps more natural to think of writing a
program that takes a given matrix and changes that matrix into its reduced form (i.e., the
original matrix is lost). To accommodate for this style of programming, Magma includes
a mechanism, the procedure expression with its reference arguments, for changing an
association of an identifier and a value in place.

Before examining procedure expressions further, it is useful to look at a simple example
of a procedure expression. Say we type:

> a := 5; b := 6;

giving the context [ (a,5), (b,6) ]. Say we now type the following:

> p := procedure( x, ~y ) y := x; end procedure;

This gives us a context that looks like [ (a,5), (b,6), (p, PROC(x,∼y : y := x;))
], using a notation analogous to the FUNC notation.

Say we now type the following statement,

> p(a, ~b);

This is known as a call of the procedure p (strictly it should be known as a call to the
procedure value associated with the identifier p, since like functions, procedures in Magma
are first class values!). Its effect is to change the current context to [ (a,5), (b,5),
(p, PROC(a,∼b : b := a;)) ]. a and x are called actual and formal value arguments
respectively since they are not prefixed by a ∼, while b and y are called actual and formal
reference arguments respectively because they are prefixed by a ∼.

This example illustrates the defining attribute of procedures, namely that rather than
returning a value, a procedure changes the context in which it is called. In this case the
value of b was changed by the call to p. Observe however that only b was changed by the
call to p as only b in the call, and its corresponding formal argument y in the definition,
are reference arguments (i.e., prefixed with a ∼). A procedure may therefore only change
that part of the context associated with its reference arguments! All other parts of the
context are left unchanged. In this case a and p were left unchanged!

Note that apart from reference arguments (and the corresponding fact that that pro-
cedures do not return values), procedures are exactly like functions. In particular:



Ch. 5 MAGMA SEMANTICS 129

a) procedures are first class values that can be assigned to identifiers, passed as arguments,
returned from functions, etc.

b) procedure expressions are evaluated in the same way that function expressions are.

c) procedure value arguments (both formal and actual) behave exactly like function argu-
ments (both formal and actual). Thus procedure value arguments obey the standard
substitution semantics.

d) procedures employ the same notion of scope as functions.

e) procedure calling behaves like function application.

f) procedures may be declared ‘forward’ to allow for (mutual) recursion.

g) a procedure may be assigned to an identifier in the initial context.

The remainder of this section will thus restrict itself to looking at reference arguments, the
point of difference between procedures and functions.

5.8 Reference Arguments

If we look at a context it consists of a set of pairs, each pair being a name (an identifier)
and a value (that is said to be assigned to that identifier).

When a function is applied actual arguments are substituted for formal arguments,
and the body of the function is evaluated. The process of evaluating an actual argument
yields a value and any associated names are ignored. Magma’s evaluation semantics treats
identifiers as ’indexes’ into the context – when Magma wants the value of say x it searches
through the context looking for a pair whose name component is x. The corresponding
value component is then used as the value of x and the name part is simply ignored
thereafter.

When we call a procedure with a reference argument, however, the name components
of the context become important. When, for example we pass x as an actual reference
argument to a formal reference argument y in some procedure, Magma remembers the
name x. Then if y is changed (e.g., by assignment) in the called procedure, Magma,
knowing the name x, finds the appropriate pair in the calling context and updates it by
changing its corresponding value component. To see how this works take the example in
the previous section. It was,

> a := 5; b := 6;
> p := procedure( x, ~y ) y := x; end procedure;
> p(a, ~b);

In the call Magma remembers the name b. Then when y is assigned to in the body of p,
Magma knows that y is really b in the calling context, and hence changes b in the calling
context appropriately. This example shows that an alternate way of thinking of reference
arguments is as synonyms for the same part of (or pair in) the calling context.



130 THE MAGMA LANGUAGE Part I

5.9 Dynamic Typing
Magma is a dynamically typed language. In practice this means that:
(a) there is no need to declare the type of identifiers (this is especially important for iden-

tifiers assigned function values!).
(b)type violations are only checked for when the code containing the type violation is

actually executed.
To make these ideas clearer consider the following two functions,

> f := func< a, b | a+b >;
> g := func< a, b | a+true >;

First note that there are no declarations of the types of any of the identifiers.
Second consider the use of + in the definition of function f . Which addition function

is meant by the + in a+b? Integer addition? Matrix addition? Group addition? ... Or
in other words what is the type of the identifier + in function f? Is it integer addition,
matrix addition, etc.? The answer to this question is that + here denotes all possible
addition function values (+ is said to denote a family of function values), and Magma will
automatically chose the appropriate function value to apply when it knows the type of a
and b.

Say we now type,

> f(1,2);

Magma now knows that a and b in f are both integers and thus + in f should be taken
to mean the integer addition function. Hence it will produce the desired answer of 3.

Finally consider the definition of the function g. It is clear X+true for all X is a type
error, so it might be expected that Magma would raise an error as soon as the definition of
g is typed in. Magma does not however raise an error at this point. Rather it is only when
g is applied and the line return a + true is actually executed that an error is raised.

In general the exact point at which type checking is done is not important. Sometimes
however it is. Say we had typed the following definition for g,

> g := function(a,b)
> if false then
> return a+true;
> else
> return a+b;
> end if;
> end function;

Now because the if false condition will never be true, the line return a+true will never
be executed, and hence the type violation of adding a to true will never be raised!

One closing point: it should be clear now that where it was previously stated that
the initial context “contains assignments of all the built-in Magma function values to the
appropriate identifiers”, in fact the initial context contains assignments of all the built-in
Magma function families to the appropriate identifiers.



Ch. 5 MAGMA SEMANTICS 131

5.10 Traps for Young Players

This section describes the two most common sources of confusion encountered when using
Magma’s evaluation strategy.

5.10.1 Trap 1
We boot Magma. It begins with an initial context something like [ ..., (’+’,A),
(’-’,S), ... ] where A is the (function) value that is the addition function, and S is
the (function) value that is the subtraction function.

Now say we type,

> ’+’ := ’-’;
> 1 + 2;

Magma will respond with the answer -1.
To see why this is so consider the effect of each line on the current context. After the

first line the current context will be [ ..., (’+’,S), (’-’,S), ... ], where S is as
before. The identifier + has been re-assigned. Its new value is the value of the identifier ’-’
in the current context, and the value of ’-’ is the (function) value that is the subtraction
function. Hence in the second line when Magma replaces the identifier + with its value in
the current context, the value that is substituted is therefore S, the subtraction function!

5.10.2 Trap 2
Say we type,

> f := func< n | n + 1 >;
> g := func< m | m + f(m) >;

After the first line the current context is [ (f,FUNC( n : n+1)) ]. After the sec-
ond line the current context is [ (f,FUNC( n : n+1)), (g,FUNC(m : m + FUNC(n :
n+1)(m))) ].

If we now type,

> g(6);

Magma will respond with the answer 13.
Now say we decide that our definition of f is wrong. So we now type in a new definition

for f as follows,

> f := func< n | n + 2 >;

If we again type,

> g(6);

Magma will again reply with the answer 13!
To see why this is so consider how the current context changes. After typing in the

initial definitions of f and g the current context is [ (f, FUNC(n : n+1)), (g, FUNC(m
: m + FUNC(n : n+1)(m))) ]. After typing in the second definition of f the current



132 THE MAGMA LANGUAGE Part I

context is [ (f, FUNC(n : n+2)), (g, FUNC(m : m + FUNC(n : n+1)(m)))]. Re-
member that changing the value of one identifier, in this case f , does not change the value
of any other identifiers, in this case g! In order to change the value of g to reflect the new
value of f , g would have to be re-assigned.



Ch. 5 MAGMA SEMANTICS 133

5.11 Appendix A: Precedence
The table below defines the relative precedence of operators in Magma, with decreasing
strength (so operators higher in the table bind more strongly). The column on the right
indicates whether the operator is left-, right-, or non-associative.

‘ ‘‘ left
( left
[ left
assigned right
~ non
# non
&* &+ &and &cat &join &meet &or non-associative
$ $$ non
. left
@ @@ left
! !! right
^ right
unary- right
cat left
* / div mod left
+ - left
meet left
sdiff left
diff left
join left
adj in notadj notin notsubset subset non
cmpeq cmpne eq ge gt le lt ne left
not right
and left
or xor left
^^ non
? else select right
-> left
= left
:= is where left



134 THE MAGMA LANGUAGE Part I

5.12 Appendix B: Reserved Words
The list below contains all reserved words in the Magma language; these cannot be used
as identifier names.

elif is require
adj else join requirege
and end le requirerange
assert eq load restore
assert2 error local return
assert3 eval lt save
assigned exists meet sdiff
break exit mod select
by false ne subset
case for not then
cat forall notadj time
catch forward notin to
clear fprintf notsubset true
cmpeq freeze or try
cmpne function print until
continue ge printf vprint
declare gt procedure vprintf
default if quit vtime
delete iload random when
diff import read where
div in readi while
do intrinsic repeat xor



6 THE MAGMA PROFILER
6.1 Introduction . . . . . . . . 137

6.2 Profiler Basics . . . . . . . 137

SetProfile(b) 137
ProfileReset() 137
ProfileGraph() 138

6.3 Exploring the Call Graph . . 139

6.3.1 Internal Reports . . . . . . . . 139

ProfilePrintByTotalCount(G) 140
ProfilePrintByTotalTime(G) 140
ProfilePrintChildrenByCount(G, n) 140
ProfilePrintChildrenByTime(G, n) 140

6.3.2 HTML Reports . . . . . . . . . 141

ProfileHTMLOutput(G, prefix) 141

6.4 Recursion and the Profiler . . 141





Chapter 6

THE MAGMA PROFILER

6.1 Introduction

One of the most important aspects of the development cycle is optimization. It is often the
case that during the implementation of an algorithm, a programmer makes erroneous as-
sumptions about its run-time behavior. These errors can lead to performance which differs
in surprising ways from the expected output. The unfortunate tendency of programmers
to optimize code before establishing run-time bottlenecks tends to exacerbate the problem.

Experienced programmers will thus often be heard repeating the famous mantra “Pre-
mature optimization is the root of all evil”, coined by Sir Charles A. R. Hoare, the inventor
of the Quick sort algorithm. Instead of optimizing during the initial implementation, it is
generally better to perform an analysis of the run-time behaviour of the complete program,
to determine what are the actual bottlenecks. In order to assist in this task, Magma pro-
vides a profiler, which gives the programmer a detailed breakdown of the time spent in a
program. In this chapter, we provide an overview of how to use the profiler.

6.2 Profiler Basics

The Magma profiler records timing information for each function, procedure, map, and
intrinsic call made by your program. When the profiler is switched on, upon the entry and
exit to each such call the current system clock time is recorded. This information is then
stored in a call graph, which can be viewed in various ways.

SetProfile(b)

Turns profiling on (if b is true) or off (if b is false). Profiling information is stored
cumulatively, which means that in the middle of a profiling run, the profiler can
be switched off during sections for which profiling information is not wanted. At
startup, the profiler is off. Turning the profiler on will slow down the execution of
your program slightly.

ProfileReset()

Clear out all information currently recorded by the profiler. It is generally a good
idea to do this after the call graph has been obtained, so that future profiling runs
in the same Magma session begin with a clean slate.



138 THE MAGMA LANGUAGE Part I

ProfileGraph()

Get the call graph based upon the information recorded up to this point by the
profiler. This function will return an error if the profiler has not yet been turned
on.

The call graph is a directed graph, with the nodes representing the functions
that were called during the program’s execution. There is an edge in the call graph
from a function x to a function y if y was called during the execution of x. Thus,
recursive calls will result in cycles in the call graph.

Each node in the graph has an associated label, which is a record with the
following fields:
(i) Name: the name of the function
(ii) Time: the total time spent in the function
(iii) Count: the number of times the function was called

Each edge 〈x, y〉 in the graph also has an associated label, which is a record with
the following fields:
(i) Time: the total time spent in function y when it was called from function x

(ii) Count: the total number of times function y was called by function x

Example H6E1

We illustrate the basic use of the profiler in the following example. The code we test is a simple
implementation of the Fibonacci sequence; this can be replaced by any Magma code that needs
to be profiled.

> function fibonacci(n)

> if n eq 1 or n eq 2 then

> return 1;

> else

> return fibonacci(n - 1) + fibonacci(n - 2);

> end if;

> end function;

>

> SetProfile(true);

> time assert fibonacci(27) eq Fibonacci(27);

Time: 10.940

> SetProfile(false);

> G := ProfileGraph();

> G;

Digraph

Vertex Neighbours

1 2 3 6 7 ;

2 2 3 4 5 ;

3 ;

4 ;

5 ;



Ch. 6 THE MAGMA PROFILER 139

6 ;

7 ;

> V := Vertices(G);

> Label(V!1);

rec<recformat<Name: Strings(), Time: RealField(), Count: IntegerRing()> |

Name := <main>,

Time := 10.93999999999999950262,

Count := 1

>

> Label(V!2);

rec<recformat<Name: Strings(), Time: RealField(), Count: IntegerRing()> |

Name := fibonacci,

Time := 10.93999999999999950262,

Count := 392835

>

> E := Edges(G);

> Label(E![1,2]);

rec<recformat<Time: RealField(), Count: IntegerRing()> |

Time := 10.93999999999999950262,

Count := 1

>

6.3 Exploring the Call Graph

6.3.1 Internal Reports
The above example demonstrates that while the call graph contains some useful informa-
tion, it does not afford a particularly usable interface. The Magma profiler contains some
profile report generators which can be used to study the call graph in a more intuitive way.

The reports are all tabular, and have a similar set of columns:

(i) Index: The numeric identifier for the function in the vertex list of the call graph.

(ii) Name: The name of the function. The function name will be followed by an asterisk
if a recursive call was made through it.

(iii) Time: The time spent in the function; depending on the report, the meaning might
vary slightly.

(iv) Count: The number of times the function was called; depending on the report, the
meaning might vary slightly.



140 THE MAGMA LANGUAGE Part I

ProfilePrintByTotalCount(G)

Percentage BoolElt Default : false

Max RngIntElt Default : −1
Print the list of functions in the call graph, sorted in descending order by the total
number of times they were called. The Time and Count fields of the report give the
total time and total number of times the function was called. If Percentage is true,
then the Time and Count fields represent their values as percentages of the total
value. If Max is non-negative, then the report only displays the first Max entries.

ProfilePrintByTotalTime(G)

Percentage BoolElt Default : false

Max RngIntElt Default : −1
Print the list of functions in the call graph, sorted in descending order by the total
time spent in them. Apart from the sort order, this function’s behaviour is identical
to that of ProfilePrintByTotalCount.

ProfilePrintChildrenByCount(G, n)

Percentage BoolElt Default : false

Max RngIntElt Default : −1
Given a vertex n in the call graph G, print the list of functions called by the function
n, sorted in descending order by the number of times they were called by n. The
Time and Count fields of the report give the time spent during calls by the function
n and the number of times the function was called by the function n. If Percentage
is true, then the Time and Count fields represent their values as percentages of the
total value. If Max is non-negative, then the report only displays the first Max entries.

ProfilePrintChildrenByTime(G, n)

Percentage BoolElt Default : false

Max RngIntElt Default : −1
Given a vertex n in the call graph G, print the list of functions in the called by
the function n, sorted in descending order by the time spent during calls by the
function n. Apart from the sort order, this function’s behaviour is identical to that
of ProfilePrintChildrenByCount.

Example H6E2

Continuing with the previous example, we examine the call graph using profile reports.

> ProfilePrintByTotalTime(G);

Index Name Time Count

1 <main> 10.940 1

2 fibonacci 10.940 392835

3 eq(<RngIntElt> x, <RngIntElt> y) -> BoolElt 1.210 710646



Ch. 6 THE MAGMA PROFILER 141

4 -(<RngIntElt> x, <RngIntElt> y) -> RngIntElt 0.630 392834

5 +(<RngIntElt> x, <RngIntElt> y) -> RngIntElt 0.250 196417

6 Fibonacci(<RngIntElt> n) -> RngIntElt 0.000 1

7 SetProfile(<BoolElt> v) 0.000 1

> ProfilePrintChildrenByTime(G, 2);

Function: fibonacci

Function Time: 10.940

Function Count: 392835

Index Name Time Count

2 fibonacci (*) 182.430 392834

3 eq(<RngIntElt> x, <RngIntElt> y) -> BoolElt 1.210 710645

4 -(<RngIntElt> x, <RngIntElt> y) -> RngIntElt 0.630 392834

5 +(<RngIntElt> x, <RngIntElt> y) -> RngIntElt 0.250 196417

* A recursive call is made through this child

6.3.2 HTML Reports

While the internal reports are useful for casual inspection of a profile run, for detailed
examination a text-based interface has serious limitations. Magma’s profiler also supports
the generation of HTML reports of the profile run. The HTML report can be loaded
up in any web browser. If Javascript is enabled, then the tables in the report can be
dynamically sorted by any field, by clicking on the column heading you wish to perform
a sort with. Clicking the column heading multiple times will alternate between ascending
and descending sorts.

ProfileHTMLOutput(G, prefix)

Given a call graph G, an HTML report is generated using the file prefix prefix.
The index file of the report will be “prefix.html”, and exactly n additional files will
be generated with the given filename prefix, where n is the number of functions in
the call graph.

6.4 Recursion and the Profiler

Recursive calls can cause some difficulty with profiler results. The profiler takes care to
ensure that double-counting does not occur, but this can lead to unintuitive results, as the
following example shows.



142 THE MAGMA LANGUAGE Part I

Example H6E3

In the following example, recursive is a recursive function which simply stays in a loop for half
a second, and then recurses if not in the base case. Thus, the total running time should be
approximately (n + 1)/2 seconds, where n is the parameter to the function.

> procedure delay(s)

> t := Cputime();

> repeat

> _ := 1+1;

> until Cputime(t) gt s;

> end procedure;

>

> procedure recursive(n)

> if n ne 0 then

> recursive(n - 1);

> end if;

>

> delay(0.5);

> end procedure;

>

> SetProfile(true);

> recursive(1);

> SetProfile(false);

> G := ProfileGraph();

Printing the profile results by total time yield no surprises:

> ProfilePrintByTotalTime(G);

Index Name Time Count

1 <main> 1.020 1

2 recursive 1.020 2

5 delay 1.020 2

8 Cputime(<FldReElt> T) -> FldReElt 0.130 14880

7 +(<RngIntElt> x, <RngIntElt> y) -> RngIntElt 0.020 14880

9 gt(<FldReElt> x, <FldReElt> y) -> BoolElt 0.020 14880

3 ne(<RngIntElt> x, <RngIntElt> y) -> BoolElt 0.000 2

4 -(<RngIntElt> x, <RngIntElt> y) -> RngIntElt 0.000 1

6 Cputime() -> FldReElt 0.000 2

10 SetProfile(<BoolElt> v) 0.000 1

However, printing the children of recursive, and displaying the results in percentages, does yield
a surprise:

> ProfilePrintChildrenByTime(G, 2 : Percentage);

Function: recursive

Function Time: 1.020

Function Count: 2

Index Name Time Count

5 delay 100.00 33.33

2 recursive (*) 50.00 16.67



Ch. 6 THE MAGMA PROFILER 143

3 ne(<RngIntElt> x, <RngIntElt> y) -> BoolElt 0.00 33.33

4 -(<RngIntElt> x, <RngIntElt> y) -> RngIntElt 0.00 16.67

* A recursive call is made through this child

At first glance, this doesn’t appear to make sense, as the sum of the time column is 150%! The
reason for this behavior is because some time is “double counted”: the total time for the first call
to recursive includes the time for the recursive call, which is also counted separately. In more
detail:

> V := Vertices(G);

> E := Edges(G);

> Label(V!1)‘Name;

<main>

> Label(V!2)‘Name;

recursive

> Label(E![1,2])‘Time;

1.019999999999999795718

> Label(E![2,2])‘Time;

0.51000000000000000888

> Label(V!2)‘Time;

1.019999999999999795718

As can seen in the above, the total time for recursive is approximately one second, as expected.
The double-counting of the recursive call can be seen in the values of Time for the edges [1,2]

and [2,2].





7 DEBUGGING MAGMA CODE
7.1 Introduction . . . . . . . . 147

SetDebugOnError(f) 147

7.2 Using the Debugger . . . . . 147





Chapter 7

DEBUGGING MAGMA CODE

7.1 Introduction

In ordered to facilitate the debugging of complex pieces of Magma code, Magma includes
a debugger. This debugger is very much a prototype, and can cause Magma to crash.

SetDebugOnError(f)

If f is true, then upon an error Magma will break into the debugger. The usage
of the debugger is described in the next section.

7.2 Using the Debugger

When use of the debugger is enabled and an error occurs, Magma will break into the
command-line debugger. The syntax of the debugger is modelled on the GNU GDB de-
bugger for C programs, and supports the following commands (acceptable abbreviations
for the commands are given in parentheses):

backtrace (bt) Print out the stack of function and procedure calls, from
the top level to the point at which the error occurred. Each line i this trace gives a
single frame, which consists of the function/procedure that was called, as well as all
local variable definitions for that function. Each frame is numbered so that it can be
referenced in other debugger commands.

frame (f) n Change the current frame to the frame numbered n (the
list of frames can be obtained using the backtrace command). The current frame is
used by other debugger commands, such as print, to determine the context within
which expressions should be evaluated. The default current frame is the top-most
frame.

list (l) [n] Print a source code listing for the current context (the
context is set by the frame command). If n is specified, then the list command will
print n lines of source code; the default value is 10.

print (p) expr Evaluate the expression expr in the current context (the
context is set by the frame command). The print command has semantics identical
to evaluating the expression eval "expr" at the current point in the program.

help (h) Print brief help on usage.

quit (q) Quit the debugger and return to the Magma session.



148 THE MAGMA LANGUAGE Part I

Example H7E1

We now give a sample session in the debugger. In the following, we have written a function
to evaluate f(n) = Σn

i=11/n, but have in our implementation we have accidentally included the
evaluation of the term at n = 0.

> function f(n)

> if n ge 0 then

> return 1.0 / n + f(n - 1);

> else

> return 1.0 / n;

> end if;

> end function;

>

> SetDebugOnError(true);

> f(3);

f(

n: 3

)

f(

n: 2

)

f(

n: 1

)

f(

n: 0

)

>> return 1.0 / n + f(n - 1);

^

Runtime error in ’/’: Division by zero

debug> p n

0

debug> p 1.0 / (n + 1)

1.00000000000000000000000000000

debug> bt

#0 *f(

n: 0

) at <main>:1

#1 f(

n: 1

) at <main>:1

#2 f(

n: 2

) at <main>:1

#3 f(

n: 3

) at <main>:1

debug> f 1



Ch. 7 DEBUGGING MAGMA CODE 149

debug> p n

1

debug> p 1.0 / n

1.00000000000000000000000000000





PART II
SETS, SEQUENCES, AND MAPPINGS

8 INTRODUCTION TO AGGREGATES 153

9 SETS 163

10 SEQUENCES 191

11 TUPLES AND CARTESIAN PRODUCTS 213

12 LISTS 221

13 ASSOCIATIVE ARRAYS 227

14 COPRODUCTS 233

15 RECORDS 239

16 MAPPINGS 245





8 INTRODUCTION TO AGGREGATES
8.1 Introduction . . . . . . . . 155

8.2 Restrictions on Sets and
Sequences . . . . . . . . . 155

8.2.1 Universe of a Set or Sequence . . . 156

8.2.2 Modifying the Universe of a Set or Se-
quence . . . . . . . . . . . . . 157

8.2.3 Parents of Sets and Sequences . . . 159

8.3 Nested Aggregates . . . . . 160

8.3.1 Multi-indexing . . . . . . . . . 160





Chapter 8

INTRODUCTION TO AGGREGATES

8.1 Introduction

This part of the Handbook comprises four chapters on aggregate objects in Magma as
well as a chapter on maps.

Sets, sequences, tuples and lists are the four main types of aggregates, and each has its
own specific purpose. Sets are used to collect objects that are elements of some common
structure, and the most important operation is to test element membership. Sequences
also contain objects of a common structure, but here the emphasis is on the ordering of
the objects, and the most important operation is that of accessing (or modifying) elements
at given positions. Sets will contain at most one copy of any element, whereas sequences
may contain arbitrarily many copies of the same object. Enumerated sets and sequences
are of arbitrary but finite length and will store all elements explicitly (with the exception
of arithmetic progressions), while formal sets and sequences may be infinite, and use a
Boolean function to test element membership. Indexed sets are a hybrid form of sets al-
lowing indexing like sequences. Elements of Cartesian products of structures in Magma
will be called tuples; they are of fixed length, and each coefficient must be in the corre-
sponding structure of the defining Cartesian product. Lists are arbitrary finite ordered
collections of objects of any type, and are mainly provided to the user to store assorted
data to which access is not critical.

8.2 Restrictions on Sets and Sequences

Here we will explain the subtleties behind the mechanism dealing with sets and sequences
and their universes and parents. Although the same principles apply to their formal
counterparts, we will only talk about enumerated sets and sequences here, for two reasons:
the enumerated versions are much more useful and common, and the very restricted number
of operations on formal sets/sequences make issues of universe and overstructure of less
importance for them.

In principle, every object e in Magma has some parent structure S such that e ∈ S;
this structure can be used for type checking (are we allowed to apply function f to e?),
algorithm look-up etc. To avoid storing the structure with every element of a set or
sequence and having to look up the structure of every element separately, only elements
of a common structure are allowed in sets or sequences, and that common parent will only
be stored once.



156 SETS, SEQUENCES, AND MAPPINGS Part II

8.2.1 Universe of a Set or Sequence
This common structure is called the universe of the set or sequence. In the general con-
structors it may be specified up front to make clear what the universe for the set or sequence
will be; the difference between the sets i and s in

> i := { IntegerRing() | 1, 2, 3 };
> s := { RationalField() | 1, 2, 3 };
lies entirely in their universes. The specification of the universe may be omitted if there is
an obvious common overstructure for the elements. Thus the following provides a shorter
way to create the set containing 1, 2, 3 and having the ring of integers as universe:

> i := { 1, 2, 3 };
Only empty sets and sequences that have been obtained directly from the constructions

> S := { };
> T := [ ];

do not have their universe defined – we will call them the null set or sequence. (There
are two other ways in which empty sets and sequences arise: it is possible to create empty
sequences with a prescribed universe, using

> S := { U | };
> T := [ U | ];

and it may happen that a non-empty set/sequence becomes empty in the course of a
computation. In both cases these empty objects have their universe defined and will not
be null).

Usually (but not always: the exception will be explained below) the universe of a set
or sequence is the parent for all its elements; thus the ring of integers is the parent of 2
in the set i = {1, 2, 3}, rather than that set itself. The universe is not static, and it is not
necessarily the same structure as the parent of the elements before they were put in the
set or sequence. To illustrate this point, suppose that we try to create a set containing
integers and rational numbers, say T = {1, 2, 1/3}; then we run into trouble with the rule
that the universe must be common for all elements in T ; the way this problem is solved
in Magma is by automatic coercion: the obvious universe for T is the field of rational
numbers of which 1/3 is already an element and into which any integer can be coerced in
an obvious way. Hence the assignment

> T := { 1, 2, 1/3 }
will result in a set with universe the field of rationals (which is also present when Magma
is started up). Consequently, when we take the element 1 of the set T , it will have the
rational field as its parent rather than the integer ring! It will now be clear that

> s := { 1/1, 2, 3 };
is a shorter way to specify the set of rational numbers 1,2, 3 than the way we saw before, but
in general it is preferable to declare the universe beforehand using the { U | } notation.



Ch. 8 INTRODUCTION TO AGGREGATES 157

Of course

> T := { Integers() | 1, 2, 1/3 }
would result in an error because 1/3 cannot be coerced into the ring of integers.

So, usually not every element of a given structure can be coerced into another structure,
and even if it can, it will not always be done automatically. The possible (automatic)
coercions are listed in the descriptions of the various Magma modules. For instance, the
table in the introductory chapter on rings shows that integers can be coerced automatically
into the rational field.

In general, every Magma structure is valid as a universe. This includes enumerated
sets and sequences themselves, that is, it is possible to define a set or sequence whose
elements are confined to be elements of a given set or sequence. So, for example,

> S := [ [ 1..10 ] | x^2+x+1 : x in { -3 .. 2 by 1 } ];

produces the sequence [7, 3, 1, 1, 3, 7] of values of the polynomial x2 + x + 1 for x ∈ Z with
−3 ≤ x ≤ 2. However, an entry of S will in fact have the ring of integers as its parent
(and not the sequence [1..10]), because the effect of the above assignment is that the values
after the | are calculated and coerced into the universe, which is [1..10]; but coercing an
element into a sequence or set means that it will in fact be coerced into the universe of
that sequence/set, in this case the integers. So the main difference between the above
assignment and

> T := [ Integers() | x^2+x+1 : x in { -3 .. 2 by 1} ];

is that in the first case it is checked that the resulting values y satisfy 1 ≤ y ≤ 10, and an
error would occur if this is violated:

> S := [ [ 1..10 ] | x^2+x+1 : x in { -3 .. 3 by 1} ];

leads to a run-time error.
In general then, the parent of an element of a set or sequence will be the universe of the

set or sequence, unless that universe is itself a set or sequence, in which case the parent
will be the universe of this universe, and so on, until a non-set or sequence is encountered.

8.2.2 Modifying the Universe of a Set or Sequence
Once a (non-null) set or sequence S has been created, the universe has been defined. If one
attempts to modify S (that is, to add elements, change entries etc. using a procedure that
will not reassign the result to a new set or sequence), the universe will not be changed,
and the modification will only be successful if the new element can be coerced into the
current universe. Thus,

> Z := Integers();
> T := [ Z | 1, 2, 3/3 ];
> T[2] := 3/4;

will result in an error, because 3/4 cannot be coerced into Z.



158 SETS, SEQUENCES, AND MAPPINGS Part II

The universe of a set or sequence S can be explicitly modified by creating a parent for
S with the desired universe and using the ! operator for the coercion; as we will see in
the next subsection, such a parent can be created using the PowerSet and PowerSequence
commands. Thus, for example, the set {1, 2} can be made into a sequence of rationals as
follows:

> I := { 1, 2 };
> P := PowerSet( RationalField() );
> J := P ! I;

The coercion will be successful if every element of the sequence can be coerced into the
new universe, and it is not necessary that the old universe could be coerced completely
into the new one: the set {3/3} of rationals can be coerced into PowerSet(Integers()).
As a consequence, the empty set (or sequence) with any universe can be coerced into the
power set (power sequence) of any other universe.

Binary functions on sets or sequences (like join or cat) can only applied to sets and
sequences that are compatible: the operation on S with universe A and T with universe B
can only be performed if a common universe C can be found such that the elements of S
and T are all elements of C. The compatibility conditions are dependent on the particular
Magma module to which A and B belong (we refer to the corresponding chapters of this
manual for further information) and do also apply to elements of a ∈ A and b ∈ B —
that is, the compatibility conditions for S and T are the same as the ones that determine
whether binary operations on a ∈ A and b ∈ B are allowed. For example, we are able to
join a set of integers and a set of rationals:

> T := { 1, 2 } join { 1/3 };
for the same reason that we can do

> c := 1 + 1/3;

(automatic coercion for rings). The resulting set T will have the rationals as universe.
The basic rules for compatibility of two sets or sequences are then:
(1) every set/sequence is compatible with the null set/sequence (which has no universe

defined (see above));
(2) two sets/sequences with the same universe are compatible;
(3) a set/sequence S with universe A is compatible with set/sequence T with universe B

if the elements of A can be automatically coerced into B, or vice versa;
(4)more generally, a set/sequence S with universe A is also compatible with set/sequence

T with universe B if Magma can automatically find an over-structure for the parents
A and B (see below);

(5)nested sets and sequences are compatible only when they are of the same ‘depth’ and
‘type’ (that is, sets and sequences appear in exactly the same recursive order in both)
and the universes are compatible.

The possibility of finding an overstructure C for the universe A and B of sets or sequences
S and T (such that A ⊂ C ⊃ B), is again module-dependent. We refer the reader for



Ch. 8 INTRODUCTION TO AGGREGATES 159

details to the Introductions of Parts III–VI, and we give some examples here; the next
subsection contains the rules for parents of sets and sequences.

8.2.3 Parents of Sets and Sequences
The universe of a set or sequence S is the common parent for all its elements; but S itself
is a Magma object as well, so it should have a parent too.

The parent of a set is a power set: the set of all subsets of the universe of S. It
can be created using the PowerSet function. Similarly, PowerSequence(A) creates the
parent structure for a sequence of elements from the structure A – that is, the elements of
PowerSequence(A) are all sequences of elements of A.

The rules for finding a common overstructure for structures A and B, where either A or
B is a set/sequence or the parent of a set/sequence, are as follows. (If neither A nor B is
a set, sequence, or its parent we refer to the Part of this manual describing the operations
on A and B.)

(1)The overstructure of A and B is the same as that of B and A.

(2) If A is the null set or sequence (empty, and no universe specified) the overstructure of
A and B is B.

(3) If A is a set or sequence with universe U , the overstructure of A and B is the over-
structure of U and B; in particular, the overstructure of A and A will be the universe
U of A.

(4) If A is the parent of a set (a power set), then A and B can only have a common
overstructure if B is also the parent of a set, in which case the overstructure is the
power set of the overstructure of the universes U and V of A and B respectively.
Likewise for sequences instead of sets.

We give two examples to illustrate rules (3) and (4). It is possible to create a set with a
set as its universe:

> S := { { 1..100 } | x^3 : x in [ 0..3 ] };
If we wish to intersect this set with some set of integers, say the formal set of odd integers

> T := {! x : x in Integers() | IsOdd(x) !};
> W := S meet T;

then we can only do that if we can find a universe for W , which must be the common
overstructure of the universe U = {1, 2, . . . , 100} of S and the universe ‘ring of integers’ of
T . By rule (3) above, this overstructure of U = {1, 2, . . . , 100} will be the overstructure
of the universe of U and the ring of integers; but the universe of U is the ring of integers
(because it is the default for the set {1, 2, . . . , 100}), and hence the overstructure we are
looking for (and the universe for W ) will be the ring of integers.

For the second example we look at sequences of sequences:

> a := [ [ 1 ], [ 1, 2, 3 ] ];



160 SETS, SEQUENCES, AND MAPPINGS Part II

> b := [ [ 2/3 ] ];

so a is a sequence of sequences of integers, and b is a sequence of sequences of rationals. If
we wish to concatenate a and b,

> c := a cat b;

we will only succeed if we find a universe for c. This universe must be the common
overstructure of the universes of a and b, which are the ‘power sequence of the integers’
and the ‘power sequence of the rationals’ respectively. By rule (4), the overstructure of
these two power sequences is the power sequence of the common overstructure of the
rationals and the integers, which is the rationals themselves. Hence c will be a sequence
of sequences of rationals, and the elements of a will have to be coerced.

8.3 Nested Aggregates
Enumerated sets and sequences can be arbitrarily nested (that is, one may create sets of
sets, as well as sequences of sets etc.); tuples can also be nested and may be freely mixed
with sets and sequences (as long as the proper Cartesian product parent can be created).
Lists can be nested, and one may create lists of sets or sequences or tuples.

8.3.1 Multi-indexing
Since sequences (and lists) can be nested, assignment functions and mutation operators

allow you to use multi-indexing, that is, one can use a multi-index i1, i2, . . . , ir rather than
a single i to reach r levels deep. Thus, for example, if S = [ [1, 2], [2, 3] ], instead of

> S[2][2] := 4;

one may use the multi-index 2, 2 to obtain the same effect of changing the 3 into a 4:

> S[2,2] := 4;

All ij in the multi-index i1, i2, . . . , ir have to be greater than 0, and an error will also be
flagged if any ij indexes beyond the length at level j, that is, if ij > #S[i1, . . . , ij−1],
(which means i1 > #S for j = 1). There is one exception: the last index ir is allowed to
index beyond the current length of the sequence at level r if the multi-index is used on the
left-hand side of an assignment, in which case any intermediate terms will be undefined.
This generalizes the possibility to assign beyond the length of a ‘flat’ sequence. In the
above example the following assignments are allowed:

> S[2,5] := 7;

(and the result will be S = [ [1, 2], [2, 3, undef, undef, 7] ])

> S[4] := [7];

(and the result will be S = [ [1, 2], [2, 3], undef, [7] ]). But the following results in an
error:

> S[4,1] := 7;

Finally we point out that multi-indexing should not be confused with the use of sequences as



Ch. 8 INTRODUCTION TO AGGREGATES 161

indexes to create subsequences. For example, to create a subsequence of S = [5, 13, 17, 29]
consisting of the second and third terms, one may use

> S := [ 5, 13, 17, 29 ];
> T := S[ [2, 3] ];

To obtain the second term of this subsequence one could have done:

> x := S[ [2, 3] ][2];

(so x now has the value S[3] = 17), but it would have been more efficient to index the
indexing sequence, since it is rather expensive to build the subsequence [ S[2], S[3] ] first,
so:

> x := S[ [2, 3][2] ];

has the same effect but is better (of course x := S[3] would be even better in this simple
example.) To add to the confusion, it is possible to mix the above constructions for
indexing, since one can use lists of sequences and indices for indexing; continuing our
example, there is now a third way to do the same as above, using an indexing list that
first takes out the subsequence consisting of the second and third terms and then extracts
the second term of that:

> x := S[ [2, 3], 2 ];

Similarly, the construction

> X := S[ [2, 3], [2] ];

pulls out the subsequence consisting of the second term of the subsequence of terms two
and three of S, in other words, this assigns the sequence consisting of the element 17, not
just the element itself!





9 SETS
9.1 Introduction . . . . . . . . 165

9.1.1 Enumerated Sets . . . . . . . . 165

9.1.2 Formal Sets . . . . . . . . . . . 165

9.1.3 Indexed Sets . . . . . . . . . . 165

9.1.4 Multisets . . . . . . . . . . . . 165

9.1.5 Compatibility . . . . . . . . . . 166

9.1.6 Notation . . . . . . . . . . . . 166

9.2 Creating Sets . . . . . . . . 166

9.2.1 The Formal Set Constructor . . . 166

{! x in F | P(x) !} 166

9.2.2 The Enumerated Set Constructor . 167

{ } 167
{ U | } 167
{ e1, e2, ..., en } 167
{ U | e1, e2, ..., en } 167
{ e(x) : x in E | P(x) } 168
{ U | e(x) : x in E | P(x) } 168
{ e(x1,...,xk) : x1 in E1, ..., xk

in Ek | P(x1, ..., xk) } 168
{ U | e(x1,...,xk) : x1 in E1, ...,

xk in Ek | P(x1, ..., xk) } 168

9.2.3 The Indexed Set Constructor . . . 169

{@ @} 169
{@ U | @} 169
{@ e1, e2, ..., en @} 169
{@ U | e1, e2, ..., em @} 169
{@ e(x) : x in E | P(x) @} 169
{@ U | e(x) : x in E | P(x) @} 169
{@ e(x1,...,xk) : x1 in E1, ..., xk

in Ek | P(x1, ..., xk) @} 170
{@ U | e(x1,...,xk) : x1 in E1, ...,

xk in Ek | P(x1, ..., xk)@} 170

9.2.4 The Multiset Constructor . . . . 170

{* *} 170
{* U | *} 170
{* e1, e2, ..., en *} 171
{* U | e1, e2, ..., em *} 171
{* e(x) : x in E | P(x) *} 171
{* U | e(x) : x in E | P(x) *} 171
{* e(x1,...,xk) : x1 in E1, ..., xk

in Ek | P(x1, ..., xk) *} 171
{* U | e(x1,...,xk) : x1 in E1, ...,

xk in Ek | P(x1, ..., xk)*} 171

9.2.5 The Arithmetic Progression Construc-
tors . . . . . . . . . . . . . . 172

{ i..j } 172
{ U | i..j } 172
{ i .. j by k } 173

{ U | i .. j by k } 173

9.3 Power Sets . . . . . . . . . 173

PowerSet(R) 173
PowerIndexedSet(R) 173
PowerMultiset(R) 174
in 174
PowerFormalSet(R) 174
in 174
in 174
! 174
! 174
! 174

9.3.1 The Cartesian Product Constructors 175

9.4 Sets from Structures . . . . . 175

Set(M) 175
FormalSet(M) 175

9.5 Accessing and Modifying Sets . 176

9.5.1 Accessing Sets and their Associated
Structures . . . . . . . . . . . 176

# 176
Category(S) 176
Type(S) 176
Parent(R) 176
Universe(R) 176
Index(S, x) 176
Position(S, x) 176
S[i] 176
S[I] 176

9.5.2 Selecting Elements of Sets . . . . 177

Random(R) 178
random{ e(x) : x in E | P(x) } 178
random{e(x1, ..., xk) : x1 in E1,

..., xk in Ek | P(x1, ..., xk)} 178
Representative(R) 178
Rep(R) 178
ExtractRep(∼R, ∼r) 179
rep{ e(x) : x in E | P(x) } 179
rep{ e(x1, ..., xk) : x1 in E1, ...,

xk in Ek | P(x1, ..., xk) } 179
Minimum(S) 180
Min(S) 180
Maximum(S) 180
Max(S) 180
Hash(x) 180

9.5.3 Modifying Sets . . . . . . . . . 180

Include(∼S, x) 180
Include(S, x) 180
Exclude(∼S, x) 180
Exclude(S, x) 180
ChangeUniverse(∼S, V) 181



164 SETS, SEQUENCES, AND MAPPINGS Part II

ChangeUniverse(S, V) 181
CanChangeUniverse(S, V) 181
SetToIndexedSet(E) 182
IndexedSetToSet(S) 182
Isetset(S) 182
IndexedSetToSequence(S) 182
Isetseq(S) 182
MultisetToSet(S) 182
SetToMultiset(E) 182
SequenceToMultiset(Q) 182

9.6 Operations on Sets . . . . . 183

9.6.1 Boolean Functions and Operators . 183

IsNull(R) 183
IsEmpty(R) 183
eq 183
ne 183
in 183
notin 183
subset 184
notsubset 184
eq 184
ne 184
IsDisjoint(R, S) 184

9.6.2 Binary Set Operators . . . . . . 184

join 184
meet 185
diff 185
sdiff 185

9.6.3 Other Set Operations . . . . . . 185

Multiplicity(S, x) 185
Multiplicities(S) 185
Subsets(S) 185
Subsets(S, k) 186
RandomSubset(S, k) 186
Multisets(S, k) 186
Subsequences(S, k) 186
Permutations(S) 186
Permutations(S, k) 186

9.7 Quantifiers . . . . . . . . . 186

exists(t){ e(x): x in E | P(x) } 186
exists(t1, ..., tr){ e(x) :

x in E | P(x) } 186
exists(t){e(x1, ..., xk): x1 in E1,

..., xk in Ek | P(x1, ..., xk)} 187
exists(t1, ..., tr){ e(x1, ..., xk) :

x1 in E1, ..., xk in Ek | P } 187
forall(t){ e(x) : x in E | P(x) } 188
forall(t1, ..., tr){ e(x) :

x in E | P(x) } 188
forall(t){e(x1, ..., xk): x1 in E1,

..., xk in Ek | P(x1, ..., xk)} 188
forall(t1, ..., tr){ e(x1, ..., xk) :

x1 in E1, ..., xk in Ek | P } 188

9.8 Reduction and Iteration over Sets189

x in S 189
& 189



Chapter 9

SETS

9.1 Introduction
A set in Magma is a (usually unordered) collection of objects belonging to some common
structure (called the universe of the set). There are four basic types of sets: enumer-
ated sets, whose elements are all stored explicitly (with one exception, see below); formal
sets, whose elements are stored implicitly by means of a predicate that allows for testing
membership; indexed sets, which are restricted enumerated sets having a numbering on
elements; and multisets, which are enumerated sets with possible repetition of elements.
In particular, enumerated and indexed sets and multisets are always finite, and formal sets
are allowed to be infinite.

9.1.1 Enumerated Sets
Enumerated sets are finite, and can be specified in three basic ways (see also section 2
below): by listing all elements; by an expression involving elements of some finite structure;
and by an arithmetic progression. If an arithmetic progression is specified, the elements
are not calculated explicitly until a modification of the set necessitates it; in all other cases
all elements of the enumerated set are stored explicitly.

9.1.2 Formal Sets
A formal set consists of the subset of elements of some carrier set (structure) on which a
certain predicate assumes the value ‘true’.

The only set-theoretic operations that can be performed on formal sets are union,
intersection, difference and symmetric difference, and element membership testing.

9.1.3 Indexed Sets
For some purposes it is useful to be able to access elements of a set through an index map,
which numbers the elements of the set. For that purpose Magma has indexed sets, on
which a very few basic set operations are allowed (element membership testing) as well
as some sequence-like operations (such as accessing the i-th term, getting the index of an
element, appending and pruning).

9.1.4 Multisets
For some purposes it is useful to construct a set with some of its members repeated. For
that purpose Magma has multisets, which take into account the repetition of members.
The number of times an object x occurs in a multiset S is called the multiplicity of x
in S. Magma has the ˆˆ operator to specify a multiplicity: the expression x^^n means
the object x with multiplicity n. In the following, whenever any multiset constructor or
function expects an element y, the expression xˆˆn may usually be used.



166 SETS, SEQUENCES, AND MAPPINGS Part II

9.1.5 Compatibility
The binary operators for sets do not allow mixing of the four types of sets (so one cannot
take the intersection of an enumerated set and a formal set, for example), but it is easy to
convert an enumerated set into a formal set – see the section on binary operators below –
and there are functions provided for making an enumerated set out of an indexed set or a
multiset (and vice versa).

By the limitation on their construction formal sets can only contain elements from one
structure in Magma. The elements of enumerated sets are also restricted, in the sense
that either some universe must be specified upon creation, or Magma must be able to find
such universe automatically. The rules for compatibility of elements and the way Magma
deals with these universes are the same for sequences and sets, and are described in the
previous chapter. The restrictions on indexed sets are the same as those for enumerated
sets.

9.1.6 Notation
Certain expressions appearing in the sections below (possibly with subscripts) have a
standard interpretation:
U the universe: any Magma structure;
E the carrier set for enumerated sets: any enumerated structure (it must be possible to

loop over its elements – see the Introduction to this Part (Chapter 8));
F the carrier set for formal sets: any structure for which membership testing using in is

defined – see the Introduction to this Part (Chapter 8));
x a free variable which successively takes the elements of E (or F in the formal case) as

its values;
P a Boolean expression that usually involves the variable(s) x, x1, . . . , xk;
e an expression that also usually involves the variable(s) x, x1, . . . , xk.

9.2 Creating Sets
The customary braces { and } are used to define enumerated sets. Formal sets are delimited
by the composite braces {! and !}. For indexed sets {@ and @} are used. For multisets {*
and *} are used.

9.2.1 The Formal Set Constructor
The formal set constructor has the following fixed format (the expressions appearing in
the construct are defined above):

{! x in F | P(x) !}
Form the formal set consisting of the subset of elements x of F for which P (x) is
true. If P (x) is true for every element of F , the set constructor may be abbreviated
to {! x in F !}. Note that the universe of a formal set will always be equal to
the carrier set F .



Ch. 9 SETS 167

9.2.2 The Enumerated Set Constructor
Enumerated sets can be constructed by expressions enclosed in braces, provided that the
values of all expressions can be automatically coerced into some common structure, as out-
lined in the Introduction, (Chapter 8). All general constructors have an optional universe
(U in the list below) up front, that allows the user to specify into which structure all terms
of the sets should be coerced.

{ }
The null set: an empty set that does not have its universe defined.

{ U | }
The empty set with universe U .

{ e1, e2, ..., en }
Given a list of expressions e1, . . . , en, defining elements a1, a2, . . . , an all belonging
to (or automatically coercible into) a single algebraic structure U , create the set
{ a1, a2, ..., an } of elements of U .

Example H9E1

We create a set by listing its elements explicitly.

> S := { (7^2+1)/5, (8^2+1)/5, (9^2-1)/5 };
> S;

{ 10, 13, 16 }
> Parent(S);

Set of subsets of Rational Field

Thus S was created as a set of rationals, because / on integers has a rational result. If one wishes
to obtain a set of integers, one could specify the universe (or one could use div, or one could use
! on every element to coerce it into the ring of integers):

> T := { Integers() | (7^2+1)/5, (8^2+1)/5, (9^2-1)/5 };
> T;

{ 10, 13, 16 }
> Parent(T);

Set of subsets of Integer Ring

{ U | e1, e2, ..., en }
Given a list of expressions e1, . . . , en, which define elements a1, a2, . . . , an that are
all coercible into U , create the set {a1, a2, ..., an } of elements of U .



168 SETS, SEQUENCES, AND MAPPINGS Part II

{ e(x) : x in E | P(x) }
Form the set of elements e(x), all belonging to some common structure, for those
x ∈ E with the property that the predicate P (x) is true. The expressions appearing
in this construct have the interpretation given in the Introduction (Chapter 8) (in
particular, E must be a finite structure that can be enumerated).

If P (x) is true for every value of x in E, then the set constructor may be abbre-
viated to { e(x) : x in E }.

{ U | e(x) : x in E | P(x) }
Form the set of elements of U consisting of the values e(x) for those x ∈ E for which
the predicate P (x) is true (an error results if not all e(x) are coercible into U). The
expressions appearing in this construct have the same interpretation as before.

If P is always true, it may be omitted (including the |).
{ e(x1,...,xk) : x1 in E1, ..., xk in Ek | P(x1, ..., xk) }

The set consisting of those elements e(x1, . . . , xk), in some common structure, for
which x1, . . . , xk in E1, . . . , Ek have the property that P (x1, . . . , xk) is true. The
expressions appearing in this construct have the interpretation given in the Intro-
duction (Chapter 8).

Note that if two successive allowable structures Ei and Ei+1 are identical, then
the specification of the carrier sets for xi and xi+1 may be abbreviated to xi, xi+1

in Ei.
Also, if P (x1, ..., xk) is always true, it may be omitted (including the |).

{ U | e(x1,...,xk) : x1 in E1, ..., xk in Ek | P(x1, ..., xk) }
As in the previous entry, the set consisting of those elements e(x1, . . . , xk) for which
P (x1, . . . , xk) is true, is formed, as a set of elements of U (an error occurs if not all
e(x1, . . . , xk) are elements of or coercible into U).

Again, identical successive structures may be abbreviated, and a predicate that
is always true may be omitted.

Example H9E2

Now that Fermat’s last theorem may have been proven, it may be of interest to find integers
that almost satisfy xn + yn = zn. In this example we find all 2 < x, y, z < 1000 such that
x3 + y3 = z3 + 1. First we build a set of cubes, then two sets of pairs for which the sum of cubes
differs from a cube by 1. Note that we build a set rather than a sequence of cubes because we
only need fast membership testing. Also note that the resulting sets of pairs do not have their
elements in the order in which they were found.

> cubes := { Integers() | x^3 : x in [1..1000] };
> plus := { <a, b> : a in [2..1000], b in [2..1000] | \

> b ge a and (a^3+b^3-1) in cubes };
> plus;

{



Ch. 9 SETS 169

< 9, 10 >,

< 135, 235 >

< 334, 438 >,

< 73, 144 >,

< 64, 94 >,

< 244, 729 >

}
Note that we spend a lot of time cubing integers this way. For a more efficient approach, see a
subsequent example.

9.2.3 The Indexed Set Constructor
The creation of indexed sets is similar to that of enumerated sets.

{@ @}
The null set: an empty indexed set that does not have its universe defined.

{@ U | @}
The empty indexed set with universe U .

{@ e1, e2, ..., en @}
Given a list of expressions e1, . . . , en, defining elements a1, a2, . . . , an all belonging
to (or automatically coercible into) a single algebraic structure U , create the indexed
set Q = { a1, a2, ..., an } of elements of U .

{@ U | e1, e2, ..., em @}
Given a list of expressions e1, . . . , em, which define elements a1, a2, . . . , an that are
all coercible into U , create the indexed set Q = {a1, a2, ..., an } of elements of U .

{@ e(x) : x in E | P(x) @}
Form the indexed set of elements e(x), all belonging to some common structure,
for those x ∈ E with the property that the predicate P (x) is true. The expres-
sions appearing in this construct have the interpretation given in the Introduction
(Chapter 8) (in particular, E must be a finite structure that can be enumerated).

If P is always true, it may be omitted (including the |).
{@ U | e(x) : x in E | P(x) @}

Form the indexed set of elements of U consisting of the values e(x) for those x ∈ E
for which the predicate P (x) is true (an error results if not all e(x) are coercible
into U). The expressions appearing in this construct have the same interpretation
as before.

If P is always true, it may be omitted (including the |).



170 SETS, SEQUENCES, AND MAPPINGS Part II

{@ e(x1,...,xk) : x1 in E1, ..., xk in Ek | P(x1, ..., xk) @}
The indexed set consisting of those elements e(x1, . . . , xk) (in some common struc-
ture), for which x1, . . . , xk in E1 × . . .×Ek have the property that P (x1, . . . , xk) is
true. The expressions appearing in this construct have the interpretation given in
the Introduction (Chapter 8).

Note that if two successive allowable structures Ei and Ei+1 are identical, then
the specification of the carrier sets for xi and xi+1 may be abbreviated to xi, xi+1

in Ei.
Also, if P (x1, ..., xk) is always true, it may be omitted.

{@ U | e(x1,...,xk) : x1 in E1, ..., xk in Ek | P(x1, ..., xk)@}
As in the previous entry, the indexed set consisting of those elements e(x1, . . . , xk)
for which P (x1, . . . , xk) is true is formed, as an indexed set of elements of U (an
error occurs if not all e(x1, . . . , xk) are elements of or coercible into U).

Again, identical successive structures may be abbreviated, and a predicate that
is always true may be omitted.

Example H9E3

In the previous example we found pairs x, y such that x3 + y3 differs by one from some cube z3.
Using indexed sets it is somewhat easier to retrieve the integer z as well. We give a small example.
Note also that it is beneficial to know here that evaluation of expressions proceeds left to right.

> cubes := { @ Integers() | z^3 : z in [1..25] @};
> plus := { <x, y, z> : x in [-10..10], y in [-10..10], z in [1..25] |

> y ge x and Abs(x) gt 1 and Abs(y) gt 1 and (x^3+y^3-1) in cubes

> and (x^3+y^3-1) eq cubes[z] };
> plus;

{ <-6, 9, 8>, <9, 10, 12>, <-8, 9, 6> }

9.2.4 The Multiset Constructor
The creation of multisets is similar to that of enumerated sets. An important difference
is that repetitions are significant and the operator ˆˆ (mentioned above) may be used to
specify the multiplicity of an element.

{* *}
The null set: an empty multiset that does not have its universe defined.

{* U | *}
The empty multiset with universe U .



Ch. 9 SETS 171

{* e1, e2, ..., en *}
Given a list of expressions e1, . . . , en, defining elements a1, a2, . . . , an all belonging to
(or automatically coercible into) a single algebraic structure U , create the multiset
Q = {∗ a1, a2, ..., an ∗} of elements of U .

{* U | e1, e2, ..., em *}
Given a list of expressions e1, . . . , em, which define elements a1, a2, . . . , an that are
all coercible into U , create the multiset Q = {∗ a1, a2, ..., an ∗} of elements of U .

{* e(x) : x in E | P(x) *}
Form the multiset of elements e(x), all belonging to some common structure, for
those x ∈ E with the property that the predicate P (x) is true. The expressions
appearing in this construct have the interpretation given in the Introduction (Chap-
ter 8) (in particular, E must be a finite structure that can be enumerated).

If P is always true, it may be omitted (including the |).

{* U | e(x) : x in E | P(x) *}
Form the multiset of elements of U consisting of the values e(x) for those x ∈ E
for which the predicate P (x) is true (an error results if not all e(x) are coercible
into U). The expressions appearing in this construct have the same interpretation
as before.

If P is always true, it may be omitted (including the |).

{* e(x1,...,xk) : x1 in E1, ..., xk in Ek | P(x1, ..., xk) *}
The multiset consisting of those elements e(x1, . . . , xk) (in some common structure),
for which x1, . . . , xk in E1 × . . .× Ek have the property that P (x1, . . . , xk) is true.
The expressions appearing in this construct have the interpretation given in the
Introduction (Chapter 8).

Note that if two successive allowable structures Ei and Ei+1 are identical, then
the specification of the carrier sets for xi and xi+1 may be abbreviated to xi, xi+1

in Ei.
Also, if P (x1, ..., xk) is always true, it may be omitted.

{* U | e(x1,...,xk) : x1 in E1, ..., xk in Ek | P(x1, ..., xk)*}
As in the previous entry, the multiset consisting of those elements e(x1, . . . , xk) for
which P (x1, . . . , xk) is true is formed, as an multiset of elements of U (an error
occurs if not all e(x1, . . . , xk) are elements of or coercible into U).

Again, identical successive structures may be abbreviated, and a predicate that
is always true may be omitted.



172 SETS, SEQUENCES, AND MAPPINGS Part II

Example H9E4

Here we demonstrate the use of the multiset constructors.

> M := {* 1, 1, 1, 3, 5 *};
> M;

{* 1^^3, 3, 5 *}
> M := {* 1^^4, 2^^5, 1/2^^3 *};
> M;

> // Count frequency of digits in first 1000 digits of pi:

> pi := Pi(RealField(1001));

> dec1000 := Round(10^1000*(pi-3));

> I := IntegerToString(dec1000);

> F := {* I[i]: i in [1 .. #I] *};

> F;

{* 7^^95, 3^^102, 6^^94, 2^^103, 9^^106, 5^^97,

1^^116, 8^^101, 4^^93, 0^^93 *}
> for i := 0 to 9 do i, Multiplicity(F, IntegerToString(i)); end for;

0 93

1 116

2 103

3 102

4 93

5 97

6 94

7 95

8 101

9 106

9.2.5 The Arithmetic Progression Constructors
Some special constructors exist to create and store enumerated sets of integers in arithmetic
progression efficiently. This only works for arithmetic progressions of elements of the ring
of integers.

{ i..j }
{ U | i..j }

The enumerated set whose elements form the arithmetic progression i, i + 1, i +
2, . . . , j, where i and j are (expressions defining) integers. If j is less than i then
the empty set will be created.

The only universe U that is legal here is the ring of integers.



Ch. 9 SETS 173

{ i .. j by k }
{ U | i .. j by k }

The enumerated set consisting of the integers forming the arithmetic progression
i, i + k, i + 2 ∗ k, . . . , j, where i, j and k are (expressions defining) integers (but
k 6= 0).

If k is positive then the last element in the progression will be the greatest integer
of the form i + n ∗ k that is less than or equal to j. If j is less than i, the empty set
will be constructed.

If k is negative then the last element in the progression will be the least integer
of the form i + n ∗ k that is greater than or equal to j. If j is greater than i, the
empty set will be constructed.

As for the previous constructor, only the ring of integers is allowed as a legal
universe U .

Example H9E5

It is possible to use the arithmetic progression constructors to save typing in the creation of
‘arithmetic progressions’ of elements of other structures than the ring of integers, but it should
be kept in mind that the result will not be treated especially efficiently like the integer case. Here
is the ‘wrong’ way, as well as two correct ways to create a set of 10 finite field elements.

> S := { FiniteField(13) | 1..10 };
Runtime error in { .. }: Invalid set universe

> S := { FiniteField(13) | x : x in { 1..10 } };
> S;

{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
> G := PowerSet(FiniteField(13));

> S := G ! { 1..10 };
> S;

{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

9.3 Power Sets

The PowerSet constructor returns a structure comprising the subsets of a given structure
R; it is mainly useful as a parent for other set and sequence constructors. The only
operations that are allowed on power sets are printing, testing element membership, and
coercion into the power set (see the examples below).

PowerSet(R)

The structure comprising all enumerated subsets of structure R.

PowerIndexedSet(R)

The structure comprising all indexed subsets of structure R.



174 SETS, SEQUENCES, AND MAPPINGS Part II

PowerMultiset(R)

The structure consisting of all submultisets of the structure R.

S in P

Returns true if enumerated set S is in the power set P , that is, if all elements of
the set S are contained in or coercible into R, where P is the power set of R; false
otherwise.

PowerFormalSet(R)

The structure comprising all formal subsets of structure R.

S in P

Returns true if indexed set S is in the power set P , that is, if all elements of the
set S are contained in or coercible into R, where P is the power set of R; false
otherwise.

S in P

Returns true if multiset S is in the power set P , that is, if all elements of the set S
are contained in or coercible into R, where P is the power set of R; false otherwise.

P ! S

Return a set with universe R consisting of the elements of the set S, where P is the
power set of R. An error results if not all elements of S can be coerced into R.

P ! S

Return an indexed set with universe R consisting of the elements of the set S, where
P is the power set of R. An error results if not all elements of S can be coerced into
R.

P ! S

Return an multiset with universe R consisting of the elements of the set S, where P
is the power set of R. An error results if not all elements of S can be coerced into
R.



Ch. 9 SETS 175

Example H9E6

> S := { 1 .. 10 };
> P := PowerSet(S);

> P;

Set of subsets of { 1 .. 10 }
> F := { 6/3, 12/4 };
> F in P;

true

> G := P ! F;

> Parent(F);

Set of subsets of Rational Field

> Parent(G);

Set of subsets of { 1 .. 10 }

9.3.1 The Cartesian Product Constructors

Using car< > and CartesianProduct( ), it is possible to create the Cartesian product of
sets (or, in fact, of any combination of structures), but the result will be of type ‘Cartesian
product’ rather than set, and the elements are tuples – we refer the reader to Chapter 11
for details.

9.4 Sets from Structures

Set(M)

Given a finite structure that allows explicit enumeration of its elements, return the
set containing its elements (having M as its universe).

FormalSet(M)

Given a structure M , return the formal set consisting of its elements.



176 SETS, SEQUENCES, AND MAPPINGS Part II

9.5 Accessing and Modifying Sets

Enumerated sets can be modified by inserting or removing elements. Indexed sets allow
some sequence-like operators for modification and access.

9.5.1 Accessing Sets and their Associated Structures

#R

Cardinality of the enumerated, indexed, or multi- set R. Note that for a multiset,
repetitions are significant, so the result may be greater than the underlying set.

Category(S)

Type(S)

The category of the object S. For a set this will be one of SetEnum, SetIndx,
SetMulti, or SetFormal. For a power set the type is one of PowSetEnum,
PowSetIndx, PowSetMulti.

Parent(R)

Returns the parent structure of R, that is, the structure consisting of all (enumer-
ated) sequences over the universe of R.

Universe(R)

Returns the ‘universe’ of the (enumerated or indexed or multi- or formal) set R,
that is, the common structure to which all elements of the set belong. An error is
signalled when R is the null set.

Index(S, x)

Position(S, x)

Given an indexed set S, and an element x, returns the index i such that S[i] = x if
such index exists, or return 0 if x is not in S. If x is not in the universe of S, an
attempt will be made to coerce it; an error occurs if this fails.

S[i]

Return the i-th entry of indexed set S. If i < 1 or i > #S an error occurs. Note
that indexing is not allowed on the left hand side.

S[I]

The indexed set {S[i1], . . . , S[ir]} consisting of terms selected from the indexed set
S, according to the terms of the integer sequence I. If any term of I lies outside the
range 1 to #S, then an error results. If I is the empty sequence, then the empty
set with universe the same as that of S is returned.



Ch. 9 SETS 177

Example H9E7

We build an indexed set of sets to illustrate the use of the above functions.

> B := { @ { i : i in [1..k] } : k in [1..5] @};
> B;

{ @

{ 1 },
{ 1, 2 },
{ 1, 2, 3 },
{ 1, 2, 3, 4 },
{ 1, 2, 3, 4, 5 },

@}
> #B;

5

> Universe(B);

Set of subsets of Integer Ring

> Parent(B);

Set of indexed subsets of Set of subsets of Integer Ring

> Category(B);

SetIndx

> Index(B, { 2, 1});
2

> #B[2];

2

> Universe(B[2]);

Integer Ring

9.5.2 Selecting Elements of Sets
Most finite structures in Magma, including enumerated sets, allow one to obtain a random
element using Random. There is an alternative (and often preferable) option for enumerated
sets in the random{ } constructor. This makes it possible to choose a random element of
the set without generating the whole set first.

Likewise, rep{ } is an alternative to the general Rep function returning a representative
element of a structure, having the advantage of aborting the construction of the set as soon
as one element has been found.

Here, E will again be an enumerable structure, that is, a structure that allows enumer-
ation of its elements (see the Appendix for an exhaustive list).

Note that random{ e(x) : x in E | P(x)} does not return a random element of
the set of values e(x), but rather a value of e(x) for a random x in E which satisfies P
(and mutatis mutandis for rep).

See the subsection on Notation in the Introduction (Chapter 8) for conventions regard-
ing e, x, E, P .



178 SETS, SEQUENCES, AND MAPPINGS Part II

Random(R)

A random element chosen from the enumerated, indexed or multi- set R. Every
element has an equal probability of being chosen for enumerated or indexed sets,
and a weighted probability in proportion to its multiplicity for multisets. Succes-
sive invocations of the function will result in independently chosen elements being
returned as the value of the function. If R is empty an error occurs.

random{ e(x) : x in E | P(x) }
Given an enumerated structure E and a Boolean expression P , return the value of
the expression e(y) for a randomly chosen element y of E for which P (y) is true.

P may be omitted if it is always true.

random{e(x1, ..., xk) : x1 in E1, ..., xk in Ek | P(x1, ..., xk)}
Given enumerated structures E1, . . . , Ek, and a Boolean expression P (x1, . . ., xk),
return the value of the expression e(y1, · · · , yk) for a randomly chosen element <
y1, . . . , yk > of E1 × · · · × Ek, for which P (y1, . . . , yk) is true.

P may be omitted if it is always true.
If successive structures Ei and Ei+1 are identical, then the abbreviation xi, xi+1

in Ei may be used.

Example H9E8

Here are two ways to find a ‘random’ primitive element for a finite field.

> p := 10007;

> F := FiniteField(p);

> proots := { z : z in F | IsPrimitive(z) };
> #proots;

5002

> Random(proots);

5279

This way, a set of 5002 elements is built (and primitivity is checked for all elements of F ), and a
random choice is made. Alternatively, we use random.

> random{ x : x in F | IsPrimitive(x) };
4263

In this case random elements in F are chosen until one is found that is primitive. Since almost half
of F ’s elements are primitive, only very few primitivity tests will be done before success occurs.

Representative(R)

Rep(R)

An arbitrary element chosen from the enumerated, indexed, or multi- set R.



Ch. 9 SETS 179

ExtractRep(∼R, ∼r)
Assigns an arbitrary element chosen from the enumerated set R to r, and removes
it from R. Thus the set R is modified, as well as the element r. An error occurs if
R is empty.

rep{ e(x) : x in E | P(x) }
Given an enumerated structure E and a Boolean expression P , return the value of
the expression e(y) for the first element y of E for which P (y) is true. If P (x) is
false for every element of E, an error will occur.

rep{ e(x1, ..., xk) : x1 in E1, ..., xk in Ek | P(x1, ..., xk) }
Given enumerated structures E1, . . . , Ek, and a Boolean expression P (x1, . . ., xk),
return the value of the expression e(y1, · · · , yk) for the first element < y1, . . . , yk >
of E1 × · · · × Ek, for which P (y1, . . . , yk) is true. An error occurs if no element of
E1 × · · · × Ek satisfies P .

P may be omitted if it is always true.
If successive structures Ei and Ei+1 are identical, then the abbreviation xi, xi+1

in Ei may be used.

Example H9E9

As an illustration of the use of ExtractRep, we modify an earlier example, and find cubes satisfying
x3 + y3 = z3 − 1 (with x, y, z ≤ 1000).

> cubes := { Integers() | x^3 : x in [1..1000] };
> cc := cubes;

> min := { };
> while not IsEmpty(cc) do

> ExtractRep(~cc, ~a);

> for b in cc do

> if a+b+1 in cubes then

> min join:= { <a, b> };
> end if;

> end for;

> end while;

> { < Iroot(x[1], 3), Iroot(x[2], 3) > : x in min };
{ <138, 135>, <823, 566>, <426, 372>, <242, 720>,

<138, 71>, <426, 486>, <6, 8> }
Note that instead of taking cubes over again, we only have to take cube roots in the last line (on
the small resulting set) once.



180 SETS, SEQUENCES, AND MAPPINGS Part II

Minimum(S)

Min(S)

Given a non-empty enumerated, indexed, or multi- set S, such that lt and eq are
defined on the universe of S, this function returns the minimum of the elements of
S. If S is an indexed set, the position of the minimum is also returned.

Maximum(S)

Max(S)

Given a non-empty enumerated, indexed, or multi- set S, such that lt and eq are
defined on the universe of S, this function returns the maximum of the elements of
S. If S is an indexed set, the position of the maximum is also returned.

Hash(x)

Given a Magma object x which can be placed in a set, return the hash value of
x used by the set machinery. This is a fixed but arbitrary non-negative integer
(whose maximum value is the maximum value of a C unsigned long on the particular
machine). The crucial property is that if x and y are objects and x equals y then the
hash values of x and y are equal (even if x and y have different internal structures).
Thus one could implement sets manually if desired by the use of this function.

9.5.3 Modifying Sets

Include(∼S, x)

Include(S, x)

Create the enumerated, indexed, or multi- set obtained by putting the element x in
S (S is unchanged if S is not a multiset and x is already in S). If S is an indexed
set, the element will be appended at the end. If S is a multiset, the multiplicity of
x will be increased accordingly. If x is not in the universe of S, an attempt will be
made to coerce it; an error occurs if this fails.

There are two versions of this: a procedure, where S is replaced by the new set,
and a function, which returns the new set. The procedural version takes a reference
∼ S to S as an argument.

Note that the procedural version is much more efficient since the set S will not
be copied.

Exclude(∼S, x)

Exclude(S, x)

Create a new set by removing the element x from S. If S is an enumerated set,
nothing happens if x is not in S. If S is a multiset, the multiplicity of x will be
decreased accordingly. If x is not in the universe of S, an attempt will be made to
coerce it; an error occurs if this fails.



Ch. 9 SETS 181

There are two versions of this: a procedure, where S is replaced by the new set,
and a function, which returns the new set. The procedural version takes a reference
∼ S to S as an argument.

Note that the procedural version is much more efficient since the set S will not
be copied.

ChangeUniverse(∼S, V)

ChangeUniverse(S, V)

Given an enumerated, indexed, or multi- set S with universe U and a structure
V which contains U , construct a new set of the same type which consists of the
elements of S coerced into V .

There are two versions of this: a procedure, where S is replaced by the new set,
and a function, which returns the new set. The procedural version takes a reference
∼ S to S as an argument.

Note that the procedural version is much more efficient since the set S will not
be copied.

CanChangeUniverse(S, V)

Given an enumerated, indexed, or multi- set S with universe U and a structure V
which contains U , attempt to construct a new set T of the same type which consists
of the elements of S coerced into V ; if successful, return true and T , otherwise
return false.

Example H9E10

This example uses Include and Exclude to find a set (if it exists) of cubes of integers such that
the elements of a given set R can be expressed as the sum of two of those.

> R := { 218, 271, 511 };
> x := 0;

> cubes := { 0 };
> while not IsEmpty(R) do

> x +:= 1;

> c := x^3;

> Include(~cubes, c);

> Include(~cubes, -c);

> for z in cubes do

> Exclude(~R, z+c);

> Exclude(~R, z-c);

> end for;

> end while;

We did not record how the elements of R were obtained as sums of a pair of cubes. For that, the
following suffices.

> R := { 218, 271, 511 }; // it has been emptied !

> { { x, y } : x, y in cubes | x+y in R };



182 SETS, SEQUENCES, AND MAPPINGS Part II

{
{ -729, 1000 },
{ -125, 343 },
{ -1, 512 },

}

SetToIndexedSet(E)

Given an enumerated set E, this function returns an indexed set with the same
elements (and universe) as E.

IndexedSetToSet(S)

Isetset(S)

Given an indexed set S, this function returns an enumerated set with the same
elements (and universe) as E.

IndexedSetToSequence(S)

Isetseq(S)

Given an indexed set S, this function returns a sequence with the same elements
(and universe) as E.

MultisetToSet(S)

Given a multiset S, this function returns an enumerated set with the same elements
(and universe) as S.

SetToMultiset(E)

Given an enumerated set E, this function returns a multiset with the same elements
(and universe) as E.

SequenceToMultiset(Q)

Given an enumerated sequence E, this function returns a multiset with the same
elements (and universe) as E.



Ch. 9 SETS 183

9.6 Operations on Sets

9.6.1 Boolean Functions and Operators
As explained in the Introduction (Chapter 8), when elements are taken out of a set their
parent will be the universe of the set (or, if the universe is itself a set, the universe of the
universe, etc.); in particular, the set itself is not the parent. Hence equality testing on set
elements is in fact equality testing between two elements of certain algebraic structures,
and the sets are irrelevant. We only list the (in)equality operator for convenience here.

Element membership testing is of critical importance for all types of sets.
Testing whether or not R is a subset of S can be done if R is an enumerated or indexed

set and S is any set; hence (in)equality testing is only possible between sets that are not
formal sets.

IsNull(R)

Returns true if and only if the enumerated, indexed, or multi- set R is empty and
does not have its universe defined.

IsEmpty(R)

Returns true if and only if the enumerated, indexed or multi- set R is empty.

x eq y

Given an element x of a set R with universe U and an element y of a set S with
universe V , where a common overstructure W can be found with U ⊂ W ⊃ V (see
the Introduction (Chapter 8) for details on overstructures), return true if and only
if x and y are equal as elements of W .

x ne y

Given an element x of a set R with universe U and an element y of a set S with
universe V , where a common overstructure W can be found with U ⊂ W ⊃ V (see
the Introduction (Chapter 8) for details on overstructures), return true if and only
if x and y are distinct as elements of W .

x in R

Returns true if and only if the element x is a member of the set R. If x is not an
element of the universe U of R, it is attempted to coerce x into U ; if this fails, an
error occurs.

x notin R

Returns true if and only if the element x is not a member of the set R. If x is not
an element of the parent structure U of R, it is attempted to coerce x into U ; if this
fails, an error occurs.



184 SETS, SEQUENCES, AND MAPPINGS Part II

R subset S

Returns true if the enumerated, indexed or multi- set R is a subset of the set S,
false otherwise. For multisets, if an element x of R has multiplicity n in R, the
multiplicity of x in S must be at least n. Coercion of the elements of R into S is
attempted if necessary, and an error occurs if this fails.

R notsubset S

Returns true if the enumerated, indexed, or multi- set R is a not a subset of the set
S, false otherwise. Coercion of the elements of R into S is attempted if necessary,
and an error occurs if this fails.

R eq S

Returns true if and only if R and S are identical sets, where R and S are enumerated,
indexed or multi- sets For indexed sets, the index function is irrelevant for deciding
equality. For multisets, matching multiplicities must also be equal. Coercion of the
elements of R into S is attempted if necessary, and an error occurs if this fails.

R ne S

Returns true if and only if R and S are distinct sets, where R and S are enumerated
indexed, or multi- sets. For indexed sets, the index function is irrelevant for deciding
equality. For multisets, matching multiplicities must also be equal. Coercion of the
elements of R into S is attempted if necessary, and an error occurs if this fails.

IsDisjoint(R, S)

Returns true iff the enumerated, indexed or multi- sets R and S are disjoint. Co-
ercion of the elements of R into S is attempted if necessary, and an error occurs if
this fails.

9.6.2 Binary Set Operators
For each of the following operators, R and S are sets of the same type. If R and S are
both formal sets, then an error will occur unless both have been constructed with the same
carrier structure F in the definition. If R and S are both enumerated, indexed, or multi-
sets, then an error occurs unless the universes of R and S are compatible, as defined in
the Introduction to this Part (Chapter 8).
Note that

Q := { ! x in R !}
converts an enumerated set R into a formal set Q.

R join S

Union of the sets R and S (see above for the restrictions on R and S). For multisets,
matching multiplicities are added in the union.



Ch. 9 SETS 185

R meet S

Intersection of the sets R and S (see above for the restrictions on R and S). For
multisets, the minimum of matching multiplicities is stored in the intersection.

R diff S

Difference of the sets R and S. i.e., the set consisting of those elements of R which
are not members of S (see above for the restrictions on R and S). For multisets, the
difference contains any elements of R remaining after removing the corresponding
elements of S the appropriate number of times.

R sdiff S

Symmetric difference of the sets R and S. i.e., the set consisting of those elements
which are members of either R or S but not both (see above for the restrictions
on R and S). Alternatively, it is the union of the difference of R with S and the
difference of S with R.

Example H9E11

> R := { 1, 2, 3 };
> S := { 1, 1/2, 1/3 };
> R join S;

{ 1/3, 1/2, 1, 2, 3 }
> R meet S;

{ 1 }
> R diff S;

{ 2, 3 }
> S diff R;

{ 1/3, 1/2 }
> R sdiff S;

{ 1/3, 1/2, 2, 3 }

9.6.3 Other Set Operations

Multiplicity(S, x)

Return the multiplicity in multiset S of element x. If x is not in S, zero is returned.

Multiplicities(S)

Returns the sequence of multiplicities of distinct elements in the multiset S. The
order is the same as the internal enumeration order of the elements.

Subsets(S)

The set of all subsets of S.



186 SETS, SEQUENCES, AND MAPPINGS Part II

Subsets(S, k)

The set of subsets of S of size k. If k is larger than the cardinality of S then the
result will be empty.

RandomSubset(S, k)

A random subset of S of size k. It is an error if k is larger than the size of S.

Multisets(S, k)

The set of multisets consisting of k not necessarily distinct elements of S.

Subsequences(S, k)

The set of sequences of length k with elements from S.

Permutations(S)

The set of permutations (stored as sequences) of the elements of S.

Permutations(S, k)

The set of permutations (stored as sequences) of each of the subsets of S of cardi-
nality k.

9.7 Quantifiers

To test whether some enumerated set is empty or not, one may use the IsEmpty function.
However, to use IsEmpty, the set has to be created in full first. The existential quantifier
exists enables one to do the test and abort the construction of the set as soon as an
element is found; moreover, the element found will be assigned to a variable.

Likewise, forall enables one to abort the construction of the set as soon as an element
not satisfying a certain property is encountered.

Note that exists(t){ e(x) : x in E | P(x) } is not designed to return true if an
element of the set of values e(x) satisfies P , but rather if there is an x ∈ E satisfying P (x)
(in which case e(x) is assigned to t).

For the notation used here, see the beginning of this chapter.

exists(t){ e(x): x in E | P(x) }
exists(t1, ..., tr){ e(x) : x in E | P(x) }

Given an enumerated structure E and a Boolean expression P (x), the Boolean value
true is returned if E contains at least one element x for which P (x) is true. If P (x)
is not true for any element x of E, then the Boolean value false is returned.

Moreover, if P (x) is found to be true for the element y, say, of E, then in the first
form of the exists expression, variable t will be assigned the value of the expression
e(y). If P (x) is never true for an element of E, t will be left unassigned. In the
second form, where r variables t1, . . . , tr are given, the result e(y) should be a tuple
of length r; each variable will then be assigned to the corresponding component of



Ch. 9 SETS 187

the tuple. Similarly, all the variables will be left unassigned if P (x) is never true.
The clause (t) may be omitted entirely.

P may be omitted if it is always true.

exists(t){e(x1, ..., xk): x1 in E1, ..., xk in Ek | P(x1, ..., xk)}
exists(t1, ..., tr){ e(x1, ..., xk) : x1 in E1, ..., xk in Ek | P }

Given enumerated structures E1, . . . , Ek, and a Boolean expression P (x1, . . ., xk),
the Boolean value true is returned if there is an element < y1, . . ., yk > in the
Cartesian product E1× · · · ×Ek, such that P (y1, . . . , yk) is true. If P (x1, . . . , xk) is
not true for any element (y1, . . ., yk) of E1 × · · · ×Ek, then the Boolean value false
is returned.

Moreover, if P (x1, . . ., xk) is found to be true for the element < y1, . . . , yk > of
E1 × · · · × Ek, then in the first form of the exists expression, the variable t will be
assigned the value of the expression e(y1, · · · , yk). If P (x1, . . ., xk) is never true for
an element of E1×· · ·×Ek, then the variable t will be left unassigned. In the second
form, where r variables t1, . . . , tr are given, the result e(y1, · · · , yk) should be a tuple
of length r; each variable will then be assigned to the corresponding component of
the tuple. Similarly, all the variables will be left unassigned if P (x1, . . ., xk) is never
true. The clause (t) may be omitted entirely.

P may be omitted if it is always true.
If successive structures Ei and Ei+1 are identical, then the abbreviation xi, xi+1

in Ei may be used.

Example H9E12

As a variation on an earlier example, we check whether or not some integers can be written as
sums of cubes (less than 103 in absolute value):

> exists(t){ <x, y> : x, y in [ t^3 : t in [-10..10] ] | x + y eq 218 };
true

> t;

<-125, 343>

> exists(t){ <x, y> : x, y in [ t^3 : t in [1..10] ] | x + y eq 218 };
false

> t;

>> t;

^

User error: Identifier ’t’ has not been declared



188 SETS, SEQUENCES, AND MAPPINGS Part II

forall(t){ e(x) : x in E | P(x) }
forall(t1, ..., tr){ e(x) : x in E | P(x) }

Given an enumerated structure E and a Boolean expression P (x), the Boolean value
true is returned if P (x) is true for every element x of E.

If P (x) is not true for at least one element x of E, then the Boolean value false
is returned.

Moreover, if P (x) is found to be false for the element y, say, of E, then in the first
form of the exists expression, variable t will be assigned the value of the expression
e(y). If P (x) is true for every element of E, t will be left unassigned. In the second
form, where r variables t1, . . . , tr are given, the result e(y) should be a tuple of
length r; each variable will then be assigned to the corresponding component of the
tuple. Similarly, all the variables will be left unassigned if P (x) is always true. The
clause (t) may be omitted entirely.

P may be omitted if it is always true.

forall(t){e(x1, ..., xk): x1 in E1, ..., xk in Ek | P(x1, ..., xk)}
forall(t1, ..., tr){ e(x1, ..., xk) : x1 in E1, ..., xk in Ek | P }

Given sets E1, . . . , Ek, and a Boolean expression P (x1, . . ., xk), the Boolean value
true is returned if P (x1, . . . , xk) is true for every element (x1, . . ., xk) in the Carte-
sian product E1 × · · · × Ek.

If P (x1, . . . , xk) fails to be true for some element (y1, . . ., yk) of E1 × · · · × Ek,
then the Boolean value false is returned.

Moreover, if P (x1, . . ., xk) is false for the element < y1, . . . , yk > of E1×· · ·×Ek,
then in the first form of the exists expression, the variable t will be assigned the
value of the expression e(y1, · · · , yk). If P (x1, . . ., xk) is true for every element of
E1×· · ·×Ek, then the variable t will be left unassigned. In the second form, where
r variables t1, . . . , tr are given, the result e(y1, · · · , yk) should be a tuple of length
r; each variable will then be assigned to the corresponding component of the tuple.
Similarly, all the variables will be left unassigned if P (x1, . . ., xk) is never true. The
clause (t) may be omitted entirely.

P may be omitted if it is always true.
If successive structures Ei and Ei+1 are identical, then the abbreviation xi, xi+1

in Ei may be used.

Example H9E13

This example shows that forall and exists may be nested.
It is well known that every prime that is 1 modulo 4 can be written as the sum of two squares,
but not every integer m congruent to 1 modulo 4 can. In this example we explore for small m
whether perhaps m± ε (with |ε| ≤ 1) is always a sum of squares.

> forall(u){ m : m in [5..1000 by 4] |

> exists{ <x, y, z> : x, y in [0..30], z in [-1, 0, 1] |

> x^2+y^2+z eq m } };



Ch. 9 SETS 189

false

> u;

77

9.8 Reduction and Iteration over Sets

Both enumerated and indexed sets allow enumeration of their elements; formal sets do not.
For indexed sets the enumeration will occur according to the order given by the indexing.

Instead of using a loop to apply the same binary associative operator to all elements of
an enumerated or indexed set, it is in certain cases possible to use the reduction operator
&.

x in S

Enumerate the elements of an enumerated or indexed set S. This can be used in
loops, as well as in the set and sequence constructors.

&o S

Given an enumerated or indexed set S = { a1, a2, . . . , an} of elements belonging to
an algebraic structure U , and an (associative) operator ◦ : U × U → U , form the
element ai1 ◦ ai2 ◦ ai3 ◦ . . . ◦ ain , for some permutation i1, . . . , in of 1, . . . , n.

Currently, the following operators may be used to reduce enumerated sets: +,
*, and, or, join, meet and +, *, and, or to reduce indexed sets. An error
will occur if the operator is not defined on U .

If S contains a single element a, then the value returned is a. If S is the null set
(empty and no universe specified) or S is empty with universe U (and the operation
is defined in U), then the result (or error) depends on the operation and upon U .
The following table defines the return value:

empty null

&+ U ! 0 error

&∗ U ! 1 error

&and true true

&or false false

&join empty null

&meet error error

Warning: since the reduction may take place in an arbitrary order on the argu-
ments a1, . . . , an, the result is not unambiguously defined if the operation is not
commutative on the arguments!



190 SETS, SEQUENCES, AND MAPPINGS Part II

Example H9E14

The function choose defined below takes a set S and an integer k as input, and produces a set of
all subsets of S with cardinality k.

> function choose(S, k)

> if k eq 0 then

> return { { } };
> else

> return &join{{ s join { x} : s in choose(S diff { x}, k-1) } : x in S};
> end if;

> end function;

So, for example:

> S := { 1, 2, 3, 4 };
> choose(S, 2);

{
{ 1, 3 },
{ 1, 4 },
{ 2, 4 },
{ 2, 3 },
{ 1, 2 },
{ 3, 4 }

}
Try to guess what happens if k < 0.



10 SEQUENCES

10.1 Introduction . . . . . . . . 193

10.1.1 Enumerated Sequences . . . . . . 193

10.1.2 Formal Sequences . . . . . . . . 193

10.1.3 Compatibility . . . . . . . . . . 194

10.2 Creating Sequences . . . . . 194

10.2.1 The Formal Sequence Constructor . 194

[! x in F | P(x) !] 194

10.2.2 The Enumerated Sequence Construc-
tor . . . . . . . . . . . . . . 195

[ ] 195
[ U | ] 195
[ e1, e2, ..., en ] 195
[ U | e1, e2, ..., em ] 195
[ e(x) : x in E | P(x) ] 195
[ U | e(x) : x in E | P(x) ] 195
[ e(x1,...,xk) : x1 in E1, ..., xk

in Ek | P(x1, ..., xk) ] 195
[ U | e(x1,...,xk) : x1 in E1, ...,

xk in Ek | P(x1, ..., xk) ] 196

10.2.3 The Arithmetic Progression Construc-
tors . . . . . . . . . . . . . . 196

[ i..j ] 196
[ U | i..j ] 196
[ i .. j by k ] 196
[ U | i .. j by k ] 196

10.2.4 Literal Sequences . . . . . . . . 197

\[ m1, ..., mn ] 197

10.3 Power Sequences . . . . . . 197

PowerSequence(R) 197
in 197
! 197

10.4 Operators on Sequences . . . 198

10.4.1 Access Functions . . . . . . . . 198

# 198
Parent(S) 198
Universe(S) 198
S[i] 198

10.4.2 Selection Operators on Enumerated
Sequences . . . . . . . . . . . 199

S[I] 199
Minimum(S) 199
Min(S) 199
Maximum(S) 199
Max(S) 199
Index(S, x) 199
Index(S, x, f) 199
Position(S, x) 199

Position(S, x, f) 199
Representative(R) 199
Rep(R) 199
Random(R) 200
Explode(R) 200
Eltseq(R) 200

10.4.3 Modifying Enumerated Sequences . 200

Append(∼S, x) 200
Append(S, x) 200
Exclude(∼S, x) 200
Exclude(S, x) 200
Include(∼S, x) 201
Include(S, x) 201
Insert(∼S, i, x) 201
Insert(S, i, x) 201
Insert(∼S, k, m, T) 201
Insert(S, k, m, T) 201
Prune(∼S) 202
Prune(S) 202
Remove(∼S, i) 202
Remove(S, i) 202
Reverse(∼S) 202
Reverse(S) 202
Rotate(∼S, p) 202
Rotate(S, p) 202
Sort(∼S) 203
Sort(S) 203
Sort(∼S, C) 203
Sort(∼S, C, ∼p) 203
Sort(S, C) 203
ParallelSort(∼S, ∼T) 203
Undefine(∼S, i) 203
Undefine(S, i) 203
ChangeUniverse(S, V) 204
ChangeUniverse(S, V) 204
CanChangeUniverse(S, V) 204

10.4.4 Creating New Enumerated Sequences
from Existing Ones . . . . . . . 205

cat 205
cat:= 205
Partition(S, p) 205
Partition(S, P) 206
Setseq(S) 206
SetToSequence(S) 206
Seqset(S) 206
SequenceToSet(S) 206
And(S, T) 207
And(∼S, T) 207
Or(S, T) 207
Or(∼S, T) 207
Xor(S, T) 207
Xor(∼S, T) 207
Not(S) 207
Not(∼S) 207



192 SETS, SEQUENCES, AND MAPPINGS Part II

10.5 Predicates on Sequences . . . 208

IsComplete(S) 208
IsDefined(S, i) 208
IsEmpty(S) 208
IsNull(S) 208

10.5.1 Membership Testing . . . . . . . 208

in 208
notin 208
IsSubsequence(S, T) 209
IsSubsequence(S, T: Kind := o) 209
eq 209
ne 209

10.5.2 Testing Order Relations . . . . . 209

lt 209
le 209

ge 210
gt 210

10.6 Recursion, Reduction, and Itera-
tion . . . . . . . . . . . . 210

10.6.1 Recursion . . . . . . . . . . . 210

Self(n) 210
Self() 210

10.6.2 Reduction . . . . . . . . . . . 211

& 211

10.7 Iteration . . . . . . . . . . 211

for x in S do st; end for; 211

10.8 Bibliography . . . . . . . . 212



Chapter 10

SEQUENCES

10.1 Introduction

A sequence in Magma is a linearly ordered collection of objects belonging to some common
structure (called the universe of the sequence).

There are two types of sequence: enumerated sequences, of which the elements are all
stored explicitly (with one exception, see below); and formal sequences, of which elements
are stored implicitly by means of a predicate that allows for testing membership. In
particular, enumerated sequences are always finite, and formal sequences are allowed to be
infinite. In this chapter a sequence will be either a formal or an enumerated sequence.

10.1.1 Enumerated Sequences
An enumerated sequence of length l is an array of indefinite length of which only finitely
many terms – including the l-th term, but no term of bigger index — have been defined
to be elements of some common structure. Such sequence is called complete if all of the
terms (from index 1 up to the length l) are defined.

In practice the length of an enumerated sequence must be less than 230.
Incomplete enumerated sequences are allowed as a convenience for the programmer in

building complete enumerated sequences. Some sequence functions require their arguments
to be complete; if that is the case, it is mentioned explicitly in the description below.
However, all functions using sequences in other Magma modules always assume that
a sequence that is passed in as an argument is complete. Note that the following line
converts a possibly incomplete sequence S into a complete sequence T :

T := [ s : s in S ];
because the enumeration using the in operator simply ignores undefined terms.

Enumerated sequences of Booleans are highly optimized (stored as bit-vectors).

10.1.2 Formal Sequences
A formal sequence consists of elements of some range set on which a certain predicate
assumes the value ‘true’.

There is only a very limited number of operations that can be performed on them.



194 SETS, SEQUENCES, AND MAPPINGS Part II

10.1.3 Compatibility
The binary operators for sequences do not allow mixing of the formal and enumerated
sequence types (so one cannot take the concatenation of an enumerated sequence and a
formal sequence, for example); but it is easy to convert an enumerated sequence into a
formal sequence – see the section on binary operators below.

By the limitation on their construction formal sequences can only contain elements from
one structure in Magma. The elements of enumerated sequences are also restricted, in
the sense that either some common structure must be specified upon creation, or Magma
must be able to find such universe automatically. The rules for compatibility of elements
and the way Magma deals with these parents is the same for sequences and sets, and is
outlined in Chapter 8.

10.2 Creating Sequences

Square brackets are used for the definition of enumerated sequences; formal sequences are
delimited by the composite brackets [! and !].

Certain expressions appearing below (possibly with subscripts) have the standard in-
terpretation:

U the universe: any Magma structure;

E the range set for enumerated sequences: any enumerated structure (it must be possible
to loop over its elements – see the Introduction to this Part);

F the range set for formal sequences: any structure for which membership testing using
in is defined – see the Introduction to this Part);

x a free variable which successively takes the elements of E (or F in the formal case) as
its values;

P a Boolean expression that usually involves the variable(s) x, x1, . . . , xk;

e an expression that also usually involves the variable(s) x, x1, . . . , xk.

10.2.1 The Formal Sequence Constructor
The formal sequence constructor has the following fixed format (the expressions appearing
in the construct are defined above):

[! x in F | P(x) !]

Create the formal sequence consisting of the subsequence of elements x of F for
which P (x) is true. If P (x) is true for every element of F , the sequence constructor
may be abbreviated to [! x in F !]



Ch. 10 SEQUENCES 195

10.2.2 The Enumerated Sequence Constructor
Sequences can be constructed by expressions enclosed in square brackets, provided that
the values of all expressions can be automatically coerced into some common structure,
as outlined in the Introduction. All general constructors have the universe U optionally
up front, which allows the user to specify into which structure all terms of the sequences
should be coerced.

[ ]

The null sequence (empty, and no universe specified).

[ U | ]

The empty sequence with universe U .

[ e1, e2, ..., en ]

Given a list of expressions e1, . . . , en, defining elements a1, a2, . . . , an all belonging to
(or automatically coercible into) a single algebraic structure U , create the sequence
Q = [a1, a2, ..., an ] of elements of U .

As for multisets, one may use the expression x^^n to specify the object x with
multiplicity n: this is simply interpreted to mean x repeated n times (i.e., no internal
compaction of the repetition is done).

[ U | e1, e2, ..., em ]

Given a list of expressions e1, . . . , em, which define elements a1, a2, . . . , an that are
all coercible into U , create the sequence Q = [a1, a2, ..., an ] of elements of U .

[ e(x) : x in E | P(x) ]

Form the sequence of elements e(x), all belonging to some common structure, for
those x ∈ E with the property that the predicate P (x) is true. The expressions
appearing in this construct have the interpretation given at the beginning of this
section.

If P (x) is true for every element of E, the sequence constructor may be abbre-
viated to [ e(x) : x in E ] .

[ U | e(x) : x in E | P(x) ]

Form the sequence of elements of U consisting of the values e(x) for those x ∈ E
for which the predicate P (x) is true (an error results if not all e(x) are coercible
into U). The expressions appearing in this construct have the same interpretation
as above.

[ e(x1,...,xk) : x1 in E1, ..., xk in Ek | P(x1, ..., xk) ]

The sequence consisting of those elements e(x1, . . . , xk), in some common structure,
for which x1, . . . , xk in E1, . . . , Ek have the property that P (x1, . . . , xk) is true.

The expressions appearing in this construct have the interpretation given at the
beginning of this section.



196 SETS, SEQUENCES, AND MAPPINGS Part II

Note that if two successive ranges Ei and Ei+1 are identical, then the specification
of the ranges for xi and xi+1 may be abbreviated to xi, xi+1 in Ei.

Also, if P (x1, ..., xk) is always true, it may be omitted.

[ U | e(x1,...,xk) : x1 in E1, ..., xk in Ek | P(x1, ..., xk) ]

As in the previous entry, the sequence consisting of those elements e(x1, . . . , xk)
for which P (x1, . . . , xk) is true is formed, as a sequence of elements of U (an error
occurs if not all e(x1, . . . , xk) are coercible into U).

10.2.3 The Arithmetic Progression Constructors
Since enumerated sequences of integers arise so often, there are a few special constructors
to create and handle them efficiently in case the entries are in arithmetic progression. The
universe must be the ring of integers. Some effort is made to preserve the special way of
storing arithmetic progressions under sequence operations.

[ i..j ]

[ U | i..j ]

The enumerated sequence of integers whose elements form the arithmetic progression
i, i + 1, i + 2, . . . , j, where i and j are (expressions defining) arbitrary integers. If j
is less than i then the empty sequence of integers will be created.

The universe U , if it is specified, has to be the ring of integers; any other universe
will lead to an error.

[ i .. j by k ]

[ U | i .. j by k ]

The enumerated sequence consisting of the integers forming the arithmetic progres-
sion i, i + k, i + 2 ∗ k, . . . , j, where i, j and k are (expressions defining) arbitrary
integers (but k 6= 0).

If k is positive then the last element in the progression will be the greatest integer
of the form i + n ∗ k that is less than or equal to j; if j is less than i, the empty
sequence of integers will be constructed.

If k is negative then the last element in the progression will be the least integer
of the form i + n ∗ k that is greater than or equal to j; if j is greater than i, the
empty sequence of integers will be constructed.

The universe U , if it is specified, has to be the ring of integers; any other universe
will lead to an error.

Example H10E1

As in the case of sets, it is possible to use the arithmetic progression constructors to save some
typing in the creation of sequences of elements of rings other than the ring of integers, but the
result will not be treated especially efficiently.

> s := [ IntegerRing(200) | x : x in [ 25..125 ] ];



Ch. 10 SEQUENCES 197

10.2.4 Literal Sequences
A literal sequence is an enumerated sequence all of whose terms are from the same structure
and all of these are ‘typed in’ literally. The sole purpose of literal sequences is to load
certain enumerated sequences very fast and very space-efficiently; this is only useful when
reading in very large sequences (all of whose elements must have been specified literally,
that is, not as some expression other than a literal), but then it may save a lot of time.
The result will be an enumerated sequence, that is, not distinguished in any way from
other such sequences.

At present, only literal sequences of integers are supported.

\[ m1, ..., mn ]

Given a succession of literal integers m1, . . . , mn, build the enumerated sequence
[m1, . . . , mn], in a time and space efficient way.

10.3 Power Sequences

The PowerSequence constructor returns a structure comprising the enumerated sequences
of a given structure R; it is mainly useful as a parent for other set and sequence con-
structors. The only operations that are allowed on power sequences are printing, testing
element membership, and coercion into the power sequence (see the examples below).

PowerSequence(R)

The structure comprising all enumerated sequences of elements of structure R. If R
itself is a sequence (or set) then the power structure of its universe is returned.

S in P

Returns true if enumerated sequence S is in the power sequence P , that is, if all
elements of the sequence S are contained in or coercible into R, where P is the
power sequence of R; false otherwise.

P ! S

Return a sequence with universe R consisting of the entries of the enumerated se-
quence S, where P is the power sequence of R. An error results if not all elements
of S can be coerced into R.

Example H10E2

> S := [ 1 .. 10 ];

> P := PowerSequence(S);

> P;

Set of sequences over [ 1 .. 10 ]

> F := [ 6/3, 12/4 ];

> F in P;

true

> G := P ! F;



198 SETS, SEQUENCES, AND MAPPINGS Part II

> Parent(F);

Set of sequences over Rational Field

> Parent(G);

Set of sequences over [ 1 .. 10 ]

10.4 Operators on Sequences

This section lists functions for obtaining information about existing sequences, for modify-
ing sequences and for creating sequences from others. Most of these operators only apply
to enumerated sequences.

10.4.1 Access Functions

#S

Returns the length of the enumerated sequence S, which is the index of the last
term of S whose value is defined. The length of the empty sequence is zero.

Parent(S)

Returns the parent structure for a sequence S, that is, the structure consisting of
all (enumerated) sequences over the universe of S.

Universe(S)

Returns the ‘universe’ of the sequence S, that is, the common structure to which all
elements of the sequence belong. This universe may itself be a set or sequence. An
error is signalled when S is the null sequence.

S[i]

The i-th term si of the sequence S. If i ≤ 0, or i > #S + 1, or S[i] is not defined,
then an error results. Here i is allowed to be a multi-index (see Introduction for
the interpretation). This can be used as the left hand side of an assignment: S[i]
:= x redefines the i-th term of the sequence S to be x. If i ≤ 0, then an error
results. If i > n, then the sequence [s1, . . . , sn, sn+1, . . . , si−1, x] replaces S, where
sn+1, . . . , si−1 are all undefined. Here i is allowed to be a multi-index.

An error occurs if x cannot be coerced into the universe of S.



Ch. 10 SEQUENCES 199

10.4.2 Selection Operators on Enumerated Sequences
Here, S denotes an enumerated sequence [s1, . . . , sn]. Further, i and j are integers or
multi-indices (see Introduction).

S[I]

The sequence [si1 , . . . , sir ] consisting of terms selected from the sequence S, accord-
ing to the terms of the integer sequence I. If any term of I lies outside the range 1
to #S, then an error results. If I is the empty sequence, then the empty set with
universe the same as that of S is returned.

The effect of T := S[I] differs from that of T := [ S[i] : i in I ]: if in
the first case an undefined entry occurs for i ∈ I between 1 and #S it will be copied
over; in the second such undefined entries will lead to an error.

Minimum(S)

Min(S)

Given a non-empty, complete enumerated sequence S such that lt and eq are defined
on the universe of S, this function returns two values: a minimal element s in S, as
well as the first position i such that s = S[i].

Maximum(S)

Max(S)

Given a non-empty, complete enumerated sequence S such that gt and eq are defined
on the universe of S, this function returns two values: a maximal element s in S, as
well as the first position i such that s = S[i].

Index(S, x)

Index(S, x, f)

Position(S, x)

Position(S, x, f)

Returns either the position of the first occurrence of x in the sequence S, or zero
if S does not contain x. The second variants of each function starts the search at
position f . This can save time in second (and subsequent) searches for the same
entry further on. If no occurrence of x in S from position f onwards is found, then
zero is returned.

Representative(R)

Rep(R)

An (arbitrary) element chosen from the enumerated sequence R



200 SETS, SEQUENCES, AND MAPPINGS Part II

Random(R)

A random element chosen from the enumerated sequence R. Every element has an
equal probability of being chosen. Successive invocations of the function will result
in independently chosen elements being returned as the value of the function. If R
is empty an error occurs.

Explode(R)

Given an enumerated sequence R of length r this function returns the r entries of
the sequence (in order).

Eltseq(R)

The enumerated sequence R itself. This function is just included for completeness.

10.4.3 Modifying Enumerated Sequences
The operations given here are available as both procedures and functions. In the procedure
version, the given sequence is destructively modified ‘in place’. This is very efficient, since
it is not necessary to make a copy of the sequence. In the function version, the given
sequence is not changed, but a modified version of it is returned. This is more suitable if
the old sequence is still required. Some of the functions also return useful but non-obvious
values.

Here, S denotes an enumerated sequence, and x an element of some structure V . The
modifications involving S and x will only be successful if x can be coerced into the universe
of S; an error occurs if this fails. (See the Introduction to this Part).

Append(∼S, x)

Append(S, x)

Create an enumerated sequence by adding the object x to the end of S, i.e., the
enumerated sequence [s1, . . . sn, x].

There are two versions of this: a procedure, where S is replaced by the appended
sequence, and a function, which returns the new sequence. The procedural version
takes a reference ∼ S to S as an argument.

Note that the procedural version is much more efficient since the sequence S will
not be copied.

Exclude(∼S, x)

Exclude(S, x)

Create an enumerated sequence obtained by removing the first occurrence of the
object x from S, i.e., the sequence [s1,. . . si−1, si+1, . . ., sn], where si is the first
term of S that is equal to x. If x is not in S then this is just S.

There are two versions of this: a procedure, where S is replaced by the new
sequence, and a function, which returns the new sequence. The procedural version
takes a reference ∼ S to S as an argument.



Ch. 10 SEQUENCES 201

Note that the procedural version is much more efficient since the sequence S will
not be copied.

Include(∼S, x)

Include(S, x)

Create a sequence by adding the object x to the end of S, provided that no term of S
is equal to x. Thus, if x does not occur in S, the enumerated sequence [s1, . . . , sn, x]
is created.

There are two versions of this: a procedure, where S is replaced by the new
sequence, and a function, which returns the new sequence. The procedural version
takes a reference ∼ S to S as an argument.

Note that the procedural version is much more efficient since the sequence S will
not be copied.

Insert(∼S, i, x)

Insert(S, i, x)

Create the sequence formed by inserting the object x at position i in S and moving
the terms S[i], . . . , S[n] down one place, i.e., the enumerated sequence [s1,. . . si−1,
x, si, . . ., sn]. Note that i may be bigger than the length n of S, in which case the
new length of S will be i, and the entries S[n + 1], . . . , S[i− 1] will be undefined.

There are two versions of this: a procedure, where S is replaced by the new
sequence, and a function, which returns the new sequence. The procedural version
takes a reference ∼ S to S as an argument.

Note that the procedural version is much more efficient since the sequence S will
not be copied.

Insert(∼S, k, m, T)

Insert(S, k, m, T)

Create the sequence [s1, . . ., sk−1, t1, . . ., tl, sm+1, . . ., sn]. If k ≤ 0 or
k > m + 1, then an error results. If k = m + 1 then the terms of T will be
inserted into S immediately before the term sk. If k > n, then the sequence
[s1, . . . , sn, sn+1, . . . , sk−1, t1, . . . , tl] is created, where sn+1, . . . , sk−1 are all unde-
fined. In the case where T is the empty sequence, terms sk, . . . , sm are deleted from
S.

There are two versions of this: a procedure, where S is replaced by the new
sequence, and a function, which returns the new sequence. The procedural version
takes a reference ∼ S to S as an argument.

Note that the procedural version is much more efficient since the sequence S will
not be copied.



202 SETS, SEQUENCES, AND MAPPINGS Part II

Prune(∼S)
Prune(S)

Create the enumerated sequence formed by removing the last term of the sequence
S, i.e., the sequence [s1, . . ., sn−1]. An error occurs if S is empty.

There are two versions of this: a procedure, where S is replaced by the new
sequence, and a function, which returns the new sequence. The procedural version
takes a reference ∼ S to S as an argument.

Note that the procedural version is much more efficient since the sequence S will
not be copied.

Remove(∼S, i)

Remove(S, i)

Create the enumerated sequence formed by removing the i-th term from S, i.e., the
sequence [s1,. . . si−1, si+1, . . ., sn]. An error occurs if i < 1 or i > n.

There are two versions of this: a procedure, where S is replaced by the new
sequence, and a function, which returns the new sequence. The procedural version
takes a reference ∼ S to S as an argument.

Note that the procedural version is much more efficient since the sequence S will
not be copied.

Reverse(∼S)
Reverse(S)

Create the enumerated sequence formed by reversing the order of the terms in the
complete enumerated sequence S, i.e., the sequence [sn, . . . , s1].

There are two versions of this: a procedure, where S is replaced by the new
sequence, and a function, which returns the new sequence. The procedural version
takes a reference ∼ S to S as an argument.

Note that the procedural version is much more efficient since the sequence S will
not be copied.

Rotate(∼S, p)

Rotate(S, p)

Given a complete sequence S and an integer p, create the enumerated sequence
formed by cyclically rotating the terms of the sequence p terms: if p is positive,
rotation will be to the right; if p is negative, S is cyclically rotated −p terms to the
left; if p is zero nothing happens.

There are two versions of this: a procedure, where S is replaced by the new
sequence, and a function, which returns the new sequence. The procedural version
takes a reference ∼ S to S as an argument.

Note that the procedural version is much more efficient since the sequence S will
not be copied.



Ch. 10 SEQUENCES 203

Sort(∼S)
Sort(S)

Given a complete enumerated sequence S whose terms belong to a structure on which
lt and eq are defined, create the enumerated sequence formed by (quick-)sorting
the terms of S into increasing order.

There are two versions of this: a procedure, where S is replaced by the new
sequence, and a function, which returns the new sequence. The procedural version
takes a reference ∼ S to S as an argument.

Note that the procedural version is much more efficient since the sequence S will
not be copied.

Sort(∼S, C)

Sort(∼S, C, ∼p)
Sort(S, C)

Given a complete enumerated sequence S and a comparison function C which com-
pares elements of S, create the enumerated sequence formed by sorting the terms
of S into increasing order with respect to C. The comparison function C must take
two arguments and return an integer less than, equal to, or greater than 0 accord-
ing to whether the first argument is less than, equal to, or greater than the second
argument (e.g.: func<x, y | x - y>).

There are three versions of this: a procedure, where S is replaced by the new
sequence, a procedure, where S is replaced by the new sequence and the correspond-
ing permutation p is set, and a function, which returns the new sequence and the
corresponding permutation. The procedural version takes a reference ∼ S to S as
an argument. Note that the procedural version is much more efficient since the
sequence S will not be copied.

ParallelSort(∼S, ∼T)
Given a complete enumerated sequence S, sorts it in place and simultaneously sorts
T in the same order. That is, whenever the sorting process would swap the two
elements S[i] and S[j] then the two elements T[i] and T[j] are also swapped.

Undefine(∼S, i)

Undefine(S, i)

Create the sequence which is the same as the enumerated sequence S but with the
i-th term of S undefined; i may be bigger than #S, but i ≤ 0 produces an error.

There are two versions of this: a procedure, where S is replaced by the new
sequence, and a function, which returns the new sequence. The procedural version
takes a reference ∼ S to S as an argument.

Note that the procedural version is much more efficient since the sequence S will
not be copied.



204 SETS, SEQUENCES, AND MAPPINGS Part II

ChangeUniverse(S, V)

ChangeUniverse(S, V)

Given a sequence S with universe U and a structure V which contains U , construct
a sequence which consists of the elements of S coerced into V .

There are two versions of this: a procedure, where S is replaced by the new
sequence, and a function, which returns the new sequence. The procedural version
takes a reference ∼ S to S as an argument.

Note that the procedural version is much more efficient since the sequence S will
not be copied.

CanChangeUniverse(S, V)

Given a sequence S with universe U and a structure V which contains U , attempt
to construct a sequence T which consists of the elements of S coerced into V ; if
successful, return true and T , otherwise return false.

Example H10E3

We present three ways to obtain the Farey series Fn of degree n.
The Farey series Fn of degree n consists of all rational numbers with denominator less than or
equal to n, in order of magnitude. Since we will need numerator and denominator often, we first
abbreviate those functions.

> D := Denominator;

> N := Numerator;

The first method calculates the entries in order. It uses the fact that for any three consecutive

Farey fractions p
q
, p′

q′ ,
p′′
q′′ of degree n:

p′′ = bq + n

q′
cp′ − p, q′′ = bq + n

q′
cq′ − q.

> farey := function(n)

> f := [ RationalField() | 0, 1/n ];

> p := 0;

> q := 1;

> while p/q lt 1 do

> p := ( D(f[#f-1]) + n) div D(f[#f]) * N(f[#f]) - N(f[#f-1]);

> q := ( D(f[#f-1]) + n) div D(f[#f]) * D(f[#f]) - D(f[#f-1]);

> Append(~f, p/q);

> end while;

> return f;

> end function;

The second method calculates the Farey series recursively. It uses the property that Fn may

be obtained from Fn−1 by inserting a new fraction (namely p+p′
q+q′ ) between any two consecutive

rationals p
q

and p′
q′ in Fn−1 for which q + q′ equals n.

> function farey(n)



Ch. 10 SEQUENCES 205

> if n eq 1 then

> return [RationalField() | 0, 1 ];

> else

> f := farey(n-1);

> i := 0;

> while i lt #f-1 do

> i +:= 1;

> if D(f[i]) + D(f[i+1]) eq n then

> Insert( ~f, i+1, (N(f[i]) + N(f[i+1]))/(D(f[i]) + D(f[i+1])));

> end if;

> end while;

> return f;

> end if;

> end function;

The third method is very straightforward, and uses Sort and Setseq (defined above).

> farey := func< n |

> Sort(Setseq({ a/b : a in { 0..n}, b in { 1..n} | a le b }))>;
> farey(6);

[ 0, 1/6, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 1 ]

10.4.4 Creating New Enumerated Sequences from Existing Ones

S cat T

The enumerated sequence formed by concatenating the terms of S with the terms
of T , i.e. the sequence [s1, . . . , sn, t1, . . . , tm].

If the universes of S and T are different, an attempt to find a common overstruc-
ture is made; if this fails an error results (see the Introduction).

S cat:= T

Mutation assignment: change S to be the concatenation of S and T . Functionally
equivalent to S := S cat T.

If the universes of S and T are different, an attempt to find a common overstruc-
ture is made; if this fails an error results (see the Introduction).

Partition(S, p)

Given a complete non-empty sequence S as well as an integer p that divides the
length n of S, construct the sequence whose terms are the sequences formed by
taking p terms of S at a time.



206 SETS, SEQUENCES, AND MAPPINGS Part II

Partition(S, P)

Given a complete non-empty sequence S as well as a complete sequence of positive
integers P , such that the sum of the entries of P equals the length of S, construct
the sequence whose terms are the sequences formed by taking P [i] terms of S, for
i = 1, . . . , #P .

Setseq(S)

SetToSequence(S)

Given a set S, construct a sequence whose terms are the elements of S taken in
some arbitrary order.

Seqset(S)

SequenceToSet(S)

Given a sequence S, create a set whose elements are the distinct terms of S.

Example H10E4

The following example illustrates several of the access, creation and modification operations on
sequences.
Given a rational number r, this function returns a sequence of different integers di such that
r =

∑
1/di [Bee93].

> egyptian := function(r)

> n := Numerator(r);

> d := Denominator(r);

> s := [d : i in [1..n]];

> t := { d};
> i := 2;

> while i le #s do

> c := s[i];

> if c in t then

> Remove(~s, i);

> s cat:= [c+1, c*(c+1)];

> else

> t join:= { c};
> i := i+1;

> end if;

> end while;

> return s;

> end function;

Note that the result may be rather larger than necessary:

> e := egyptian(11/13);

> // Check the result!

> &+[1/d : d in e];

11/13



Ch. 10 SEQUENCES 207

> #e;

2047

> #IntegerToString(Maximum(e));

1158

while instead of this sequence of 2047 integers, the biggest of the entries having 1158 decimal
digits, the following equation also holds:

1

3
+

1

4
+

1

6
+

1

12
+

1

78
=

11

13
.

10.4.4.1 Operations on Sequences of Booleans
The following operation work pointwise on sequences of booleans of equal length.

And(S, T)

And(∼S, T)

The sequence whose ith entry is the logical and of the ith entries of S and T . The
result is placed in S if it is given by reference (∼).

Or(S, T)

Or(∼S, T)

The sequence whose ith entry is the logical or of the ith entries of S and T . The
result is placed in S if it is given by reference.

Xor(S, T)

Xor(∼S, T)

The sequence whose ith entry is the logical xor of the ith entries of S and T . The
result is placed in S if it is given by reference.

Not(S)

Not(∼S)
The sequence whose ith entry is the logical not of the ith entry of S. The result is
placed in S if it is given by reference.



208 SETS, SEQUENCES, AND MAPPINGS Part II

10.5 Predicates on Sequences

Boolean valued operators and functions on enumerated sequences exist to test whether
entries are defined (see previous section), to test for membership and containment, and to
compare sequences with respect to an ordering on its entries. On formal sequences, only
element membership can be tested.

IsComplete(S)

Boolean valued function, returning true if and only if each of the terms S[i] for
1 ≤ i ≤ #S is defined, for an enumerated sequence S.

IsDefined(S, i)

Given an enumerated sequence S and an index i, this returns true if and only if S[i]
is defined. (Hence the result is false if i > #S, but an error results if i < 1.) Note
that the index i is allowed to be a multi-index; if i = [i1, . . . , ir] is a multi-index and
ij > #S[i1, . . . , ij−1] the function returns false, but if S is s levels deep and r > s
while ij ≤ #S[i1, . . . , ij−1] for 1 ≤ j ≤ s, then an error occurs.

IsEmpty(S)

Boolean valued function, returning true if and only if the enumerated sequence S
is empty.

IsNull(S)

Boolean valued function, returning true if and only if the enumerated sequence S
is empty and its universe is undefined, false otherwise.

10.5.1 Membership Testing
Here, S and T denote sequences. The element x is always assumed to be compatible with
S.

x in S

Returns true if the object x occurs as a term of the enumerated or formal sequence
S, false otherwise. If x is not in the universe of S, coercion is attempted. If that
fails, an error results.

x notin S

Returns true if the object x does not occur as a term of the enumerated or formal
sequence S, false otherwise. If x is not in the universe of S, coercion is attempted.
If that fails, an error results.



Ch. 10 SEQUENCES 209

IsSubsequence(S, T)

IsSubsequence(S, T: Kind := option)

Kind MonStgElt Default : “Consecutive”
Returns true if the enumerated sequence S appears as a subsequence of consecutive
elements of the enumerated sequence T , false otherwise.

By changing the default value "Consecutive" of the parameter Kind to
"Sequential" or to "Setwise", this returns true if and only if the elements of
S appear in order (but not necessarily consecutively) in T , or if and only if all ele-
ments of S appear as elements of T ; so in the latter case the test is merely whether
the set of elements of S is contained in the set of elements of T .

If the universes of S and T are not the same, coercion is attempted.

S eq T

Returns true if the enumerated sequences S and T are equal, false otherwise. If
the universes of S and T are not the same, coercion is attempted.

S ne T

Returns true if the enumerated sequences S and T are not equal, false otherwise.
If the universes of S and T are not the same, coercion is attempted.

10.5.2 Testing Order Relations
Here, S and T denote complete enumerated sequences with universe U and V respectively,
such that a common overstructure W for U and V can be found (as outlined in the
Introduction), and such that on W an ordering on the elements is defined allowing the
Magma operators eq (=), le (≤), lt (<), gt (>), and ge (≥) to be invoked on its
elements.

With these comparison operators the lexicographical ordering is used to order complete
enumerated sequences. Sequences S and T are equal (S eq T) if and only if they have the
same length and all terms are the same. A sequence S precedes T (S lt T) in the ordering
imposed by that of the terms if at the first index i where S and T differ then S[i] < T [i].
If the length of T exceeds that of S and S and T agree in all places where S until after
the length of S, then S lt T is true also. In all other cases where S 6= T one has S gt T.

S lt T

Returns true if the sequence S precedes the sequence T under the ordering induced
from S, false otherwise. Thus, true is returned if and only if either S[k] < T [k]
and S[i] = T [i] (for 1 ≤ i < k) for some k, or S[i] = T [i] for 1 ≤ i ≤ #S and
#S < #T .

S le T

Returns true if the sequence S either precedes the sequence T , under the ordering
induced from S, or is equal to T , false otherwise. Thus, true is returned if and
only if either S[k] < T [k] and S[i] = T [i] (for 1 ≤ i < k) for some k, or S[i] = T [i]
for 1 ≤ i ≤ #S and #S ≤ #T .



210 SETS, SEQUENCES, AND MAPPINGS Part II

S ge T

Returns true if the sequence S either comes after the sequence T , under the ordering
induced from S, or is equal to T , false otherwise. Thus, true is returned if and
only if either S[k] > T [k] and S[i] = T [i] (for 1 ≤ i < k) for some k, or S[i] = T [i]
for 1 ≤ i ≤ #T and #S ≥ #T .

S gt T

Returns true if the sequence S comes after the sequence T under the ordering
induced from S, false otherwise. Thus, true is returned if and only if either
S[k] > T [k] and S[i] = T [i] (for 1 ≤ i < k) for some k, or S[i] = T [i] for 1 ≤ i ≤ #T
and #S > #T .

10.6 Recursion, Reduction, and Iteration

10.6.1 Recursion

It is often very useful to be able to refer to a sequence currently under construction, for
example to define the sequence recursively. For this purpose the Self operator is available.

Self(n)

Self()

This operator enables the user to refer to an already defined previous entry s[n] of
the enumerated sequence s inside the sequence constructor, or the sequence s itself.

Example H10E5

The example below shows how the sequence of the first 100 Fibonacci numbers can be created
recursively, using Self. Next it is shown how to use reduction on these 100 integers.

> s := [ i gt 2 select Self(i-2)+Self(i-1) else 1 : i in [1..100] ];

> &+s;

927372692193078999175



Ch. 10 SEQUENCES 211

10.6.2 Reduction
Instead of using a loop to apply the same binary associative operator to all elements of a
complete enumerated sequence, it is possible to use the reduction operator &.

&◦ S

Given a complete enumerated sequence S = [a1, a2, . . . , an] of elements belonging
to an algebraic structure U , and an (associative) operator ◦ : U ×U → U , form the
element a1 ◦ a2 ◦ a3 ◦ . . . ◦ an.

Currently, the following operators may be used to reduce sequences: +, *, and,
or, join, meet, cat. An error will occur if the operator is not defined on U .

If S contains a single element a, then the value returned is a. If S is the null
sequence (empty and no universe specified), then reduction over S leads to an error;
if S is empty with universe U in which the operation is defined, then the result (or
error) depends on the operation and upon U . The following table defines the return
value:

empty null

&+ U ! 0 error

&∗ U ! 1 error

&and true true

&or false false

&join empty null

&meet error error

&cat empty null

10.7 Iteration

Enumerated sequences allow iteration over their elements. In particular, they can be used
as the range set in the sequence and set constructors, and as domains in for loops.

When multiple range sequences are used, it is important to know in which order the
range are iterated over; the rule is that the repeated iteration takes place as nested loops
where the first range forms the innermost loop, etc. See the examples below.

for x in S do statements; end for;

An enumerated sequence S may be the range for the for-statement. The iteration
only enumerates the defined terms of the sequence.

Example H10E6

The first example shows how repeated iteration inside a sequence constructor corresponds to
nesting of loops.

> [<number, letter> : number in [1..5], letter in ["a", "b", "c"]];



212 SETS, SEQUENCES, AND MAPPINGS Part II

[ <1, a>, <2, a>, <3, a>, <4, a>, <5, a>, <1, b>, <2, b>, <3, b>, <4, b>, <5,

b>, <1, c>, <2, c>, <3, c>, <4, c>, <5, c> ]

> r := [];

> for letter in ["a", "b", "c"] do

> for number in [1..5] do

> Append(~r, <number, letter>);

> end for;

> end for;

> r;

[ <1, a>, <2, a>, <3, a>, <4, a>, <5, a>, <1, b>, <2, b>, <3, b>, <4, b>, <5,

b>, <1, c>, <2, c>, <3, c>, <4, c>, <5, c> ]

This explains why the first construction below leads to an error, whereas the second leads to the
desired sequence.

> // The following produces an error:

> [ <x, y> : x in [0..5], y in [0..x] | x^2+y^2 lt 16 ];

^

User error: Identifier ’x’ has not been declared

> [ <x, y> : x in [0..y], y in [0..5] | x^2+y^2 lt 16 ];

[ <0, 0>, <0, 1>, <1, 1>, <0, 2>, <1, 2>, <2, 2>, <0, 3>, <1, 3>, <2, 3> ]

Note the following! In the last line below there are two different things with the name x. One is
the (inner) loop variable, the other just an identifier with value 1000 that is used in the bound for
the other (outer) loop variable y: the limited scope of the inner loop variable x makes it invisible
to y, whence the error in the first case.

> // The following produces an error:

> #[ <x, y> : x in [0..5], y in [0..x] | x^2+y^2 lt 100 ];

^

User error: Identifier ’x’ has not been declared

> x := 1000;

> #[ <x, y> : x in [0..5], y in [0..x] | x^2+y^2 lt 100 ];

59

10.8 Bibliography
[Bee93] L. Beeckmans. The splitting algorithm for Egyptian fractions. J. Number Th.,

43:173–185, 1993.



11 TUPLES AND CARTESIAN PRODUCTS
11.1 Introduction . . . . . . . . 215

11.2 Cartesian Product Constructor
and Functions . . . . . . . . 215

car< > 215
CartesianProduct(R, S) 215
CartesianProduct(L) 215
CartesianPower(R, k) 215
Flat(C) 215
NumberOfComponents(C) 216
Component(C, i) 216
C[i] 216
# 216
Rep(C) 216
Random(C) 216

11.3 Creating and Modifying Tuples 216

elt< > 216
! 216
< a1, a2, ..., ak > 216

Append(T, x) 216
Append(∼T, x) 217
Prune(T) 217
Prune(∼T) 217
Flat(T) 217

11.4 Tuple Access Functions . . . 218

Parent(T) 218
# 218
T[i] 218
Explode(T) 218
TupleToList(T) 218
Tuplist(T) 218

11.5 Equality . . . . . . . . . . 218

eq 218
ne 218

11.6 Other operations . . . . . . 219

&* 219





Chapter 11

TUPLES AND CARTESIAN PRODUCTS

11.1 Introduction

A cartesian product may be constructed from a finite number of factors, each of which
may be a set or algebraic structure. The term tuple will refer to an element of a cartesian
product.

Note that the rules for tuples are quite different to those for sequences. Sequences are
elements of a cartesian product of n copies of a fixed set (or algebraic structure) while tuples
are elements of cartesian products where the factors may be different sets (structures). The
semantics for tuples are quite different to those for sequences. In particular, the parent
cartesian product of a tuple is fixed once and for all. This is in contrast to a sequence, which
may grow and shrink during its life (thus implying a varying parent cartesian product).

11.2 Cartesian Product Constructor and Functions

The special constructor car< ... > is used for the creation of cartesian products of
structures.

car< R1, ..., Rk >

Given a list of sets or algebraic structures R1, . . . , Rk, construct the cartesian prod-
uct set R1 × · · · ×Rk.

CartesianProduct(R, S)

Given structures R and S, construct the cartesian product set R × S. This is the
same as calling the car constructor with the two arguments R and S.

CartesianProduct(L)

Given a sequence or tuple L of structures, construct the cartesian product of the
elements of L.

CartesianPower(R, k)

Given a structure R and an integer k, construct the cartesian power set Rk.

Flat(C)

Given a cartesian product C of structures which may themselves be cartesian prod-
ucts, return the cartesian product of the base structures, considered in depth-first
order (see Flat for the element version).



216 SETS, SEQUENCES, AND MAPPINGS Part II

NumberOfComponents(C)

Given a cartesian product C, return the number of components of C.

Component(C, i)

C[i]

The i-th component of C.

#C

Given a cartesian product C, return the cardinality of C.

Rep(C)

Given a cartesian product C, return a representative of C.

Random(C)

Given a cartesian product C, return a random element of C.

Example H11E1

We create the product of Q and Z.

> C := car< RationalField(), Integers() >;

> C;

Cartesian Product<Rational Field, Ring of Integers>

11.3 Creating and Modifying Tuples

elt< C | a1, a2, ..., ak >

C ! < a1, a2, ..., ak >

Given a cartesian product C = R 1 × · · · × Rk and a sequence of elements
a1, a2, . . . , ak, such that ai belongs to the set Ri (i = 1, . . . , k), create the tuple
T =< a1, a2, ..., ak > of C.

< a1, a2, ..., ak >

Given a cartesian product C = R1×· · ·×Rk and a list of elements a1, a2, . . . , ak, such
that ai belongs to the set Ri, (i = 1, . . . , k), create the tuple T =< a1, a2, ..., ak >
of C. Note that if C does not already exist, it will be created at the time this
expression is evaluated.

Append(T, x)

Return the tuple formed by adding the object x to the end of the tuple T . Note
that the result lies in a new cartesian product of course.



Ch. 11 TUPLES AND CARTESIAN PRODUCTS 217

Append(∼T, x)

(Procedure.) Destructively add the object x to the end of the tuple T . Note that
the new T lies in a new cartesian product of course.

Prune(T)

Return the tuple formed by removing the last term of the tuple T . The length of
T must be greater than 1. Note that the result lies in a new cartesian product of
course.

Prune(∼T)
(Procedure.) Destructively remove the last term of the tuple T . The length of T
must be greater than 1. Note that the new T lies in a new cartesian product of
course.

Flat(T)

Construct the flattened version of the tuple T. The flattening is done in the same
way as Flat, namely depth-first.

Example H11E2

We build a set of pairs consisting of primes and their reciprocals.

> C := car< Integers(), RationalField() >;

> C ! < 26/13, 13/26 >;

<2, 1/2>

> S := { C | <p, 1/p> : p in [1..25] | IsPrime(p) };
> S;

{ <5, 1/5>, <7, 1/7>, <2, 1/2>, <19, 1/19>, <17, 1/17>, <23, 1/23>, <11, 1/11>,

<13, 1/13>, <3, 1/3> }



218 SETS, SEQUENCES, AND MAPPINGS Part II

11.4 Tuple Access Functions

Parent(T)

The cartesian product to which the tuple T belongs.

#T

Number of components of the tuple T .

T[i]

Return the i-th component of tuple T . Note that this indexing can also be used on
the left hand side for modification of T .

Explode(T)

Given a tuple T of length n, this function returns the n entries of T (in order).

TupleToList(T)

Tuplist(T)

Given a tuple T return a list containing the entries of T .

Example H11E3

> f := < 11/2, 13/3, RootOfUnity(3, CyclotomicField(3)) >;

> f;

<11/2, 13/3, (zeta_3)>

> #f;

3

> Parent(f);

Cartesian Product<Rational Field, Rational Field, Cyclotomic field Q(zeta_3)>

> f[1]+f[2]+f[3];

(1/6) * (59 + 6*zeta_3)

> f[3] := 7;

> f;

<11/2, 13/3, 7>

11.5 Equality

T eq U

Return true if and only if the tuples T and U are equal.

T ne U

Return true if and only if the tuples T and U are distinct.



Ch. 11 TUPLES AND CARTESIAN PRODUCTS 219

11.6 Other operations

&*T

For a tuple T where each component lies in a structure that supports multiplication
and such there exists a common over structure, return the product of the entries.





12 LISTS
12.1 Introduction . . . . . . . . 223

12.2 Construction of Lists . . . . 223

[* *] 223
[* e1, e2, ..., en *] 223

12.3 Creation of New Lists . . . . 223

cat 223
cat:= 223
Append(S, x) 223
Append(∼S, x) 223
Insert(∼S, i, x) 224
Insert(S, i, x) 224
Prune(S) 224
Prune(∼S) 224

SequenceToList(Q) 224
Seqlist(Q) 224
TupleToList(T) 224
Tuplist(T) 224
Reverse(L) 224

12.4 Access Functions . . . . . . 224

# 224
IsEmpty(S) 224
S[i] 224
S[I] 225
IsDefined(L, i) 225

12.5 Assignment Operator . . . . 225

S[i] := x 225





Chapter 12

LISTS

12.1 Introduction

A list in Magma is an ordered finite collection of objects. Unlike sequences, lists are
not required to consist of objects that have some common parent. Lists are not stored
compactly and the operations provided for them are not extensive. They are mainly
provided to enable the user to gather assorted objects temporarily together.

12.2 Construction of Lists

Lists can be constructed by expressions enclosed in special brackets [* and *].

[* *]

The empty list.

[* e1, e2, ..., en *]

Given a list of expressions e1, . . . , en, defining elements a1, a2, . . . , an, create the list
containing a1, a2, . . . , an.

12.3 Creation of New Lists

Here, S denotes the list [∗ s1, . . . , sn ∗], while T denotes the list [∗ t1, . . . , tm ∗].

S cat T

The list formed by concatenating the terms of the list S with the terms of the list
T , i.e. the list [∗ s1, . . . , sn, t1, . . . , tm ∗].

S cat:= T

(Procedure.) Destructively concatenate the terms of the list T to S; i.e. so S becomes
the list [∗ s1, . . . , sn, t1, . . . , tm ∗].

Append(S, x)

The list formed by adding the object x to the end of the list S, i.e. the list
[∗ s1, . . . sn, x ∗].

Append(∼S, x)

(Procedure.) Destructively add the object x to the end of the list S; i.e. so S
becomes the list [∗ s1, . . . sn, x ∗].



224 SETS, SEQUENCES, AND MAPPINGS Part II

Insert(∼S, i, x)

Insert(S, i, x)

Create the list formed by inserting the object x at position i in S and moving the
terms S[i], . . . , S[n] down one place, i.e., the list [∗ s1, . . . , si−1, x, si, . . . , sn ∗]. Note
that i must not be bigger than n + 1 where n is the length of S.

There are two versions of this: a procedure, where S is replaced by the new list,
and a function, which returns the new list. The procedural version takes a reference
∼ S to S as an argument.

Note that the procedural version is much more efficient since the list S will not
be copied.

Prune(S)

The list formed by removing the last term of the list S, i.e. the list [∗ s1, . . ., sn−1 ∗].
Prune(∼S)

(Procedure.) Destructively remove the last term of the list S; i.e. so S becomes the
list [∗ s1, . . ., sn−1 ∗].

SequenceToList(Q)

Seqlist(Q)

Given a sequence Q, construct a list whose terms are the elements of Q taken in the
same order.

TupleToList(T)

Tuplist(T)

Given a tuple T , construct a list whose terms are the elements of T taken in the
same order.

Reverse(L)

Given a list L return the same list, but in reverse order.

12.4 Access Functions

#S

The length of the list S.

IsEmpty(S)

Return whether S is empty (has zero length).

S[i]

Return the i-th term of the list S. If either i ≤ 0 or i > #S+1, then an error results.
Here i is allowed to be a multi-index (see Section 8.3.1 for the interpretation).



Ch. 12 LISTS 225

S[I]

Return the sublist of S given by the indices in the sequence I. Each index in I must
be in the range [1..l], where l is the length of S.

IsDefined(L, i)

Checks whether the ith item in L is defined or not, that is it returns true if i is at
most the length of L and false otherwise.

12.5 Assignment Operator

S[i] := x

Redefine the i-th term of the list S to be x. If i ≤ 0, then an error results. If
i = #S + 1, then x is appended to S. Otherwise, if i > #S + 1, an error results.
Here i is allowed to be a multi-index.





13 ASSOCIATIVE ARRAYS
13.1 Introduction . . . . . . . . 229

13.2 Operations . . . . . . . . . 229

AssociativeArray() 229
AssociativeArray(I) 229
A[x] := y 229

A[x] 229
IsDefined(A, x) 229
Remove(∼ A, x) 229
Universe(A) 229
Keys(A) 230





Chapter 13

ASSOCIATIVE ARRAYS

13.1 Introduction

An associative array in Magma is an array which may be indexed by arbitrary elements of
an index structure I. The indexing may thus be by objects which are not integers. These
objects are known as the keys. For each current key there is an associated value. The
values associated with the keys need not lie in a fixed universe but may be of any type.

13.2 Operations

AssociativeArray()

Create the null associative array with no index universe. The first assignment to
the array will determine its index universe.

AssociativeArray(I)

Create the empty associative array with index universe I.

A[x] := y

Set the value in A associated with index x to be y. If x is not coercible into the
current index universe I of A, then an attempt is first made to lift the index universe
of A to contain both I and x.

A[x]

Given an index x coercible into the index universe I of A, return the value associated
with x. If x is not in the keys of A, then an error is raised.

IsDefined(A, x)

Given an index x coercible into the index universe I of A, return whether x is
currently in the keys of A and if so, return also the value A[x].

Remove(∼ A, x)

(Procedure.) Destructively remove the value indexed by x from the array A. If x is
not present as an index, then nothing happens (i.e., an error is not raised).

Universe(A)

Given an associative array A, return the index universe I of A, in which the keys of
A currently lie.



230 SETS, SEQUENCES, AND MAPPINGS Part II

Keys(A)

Given an associative array A, return the current keys of A as a set. Warning: this
constructs a new copy of the set of keys, so should only be called when that is
needed. It is not meant to be used as a quick access function.

Example H13E1

This example shows simple use of associative arrays. First we create an array indexed by rationals.

> A := AssociativeArray();

> A[1/2] := 7;

> A[3/8] := "abc";

> A[3] := 3/8;

> A[1/2];

7

> IsDefined(A, 3);

true 3/8

> IsDefined(A, 4);

false

> IsDefined(A, 3/8);

true abc

> Keys(A);

{ 3/8, 1/2, 3 }

> for x in Keys(A) do x, A[x]; end for;

1/2 7

3/8 abc

3 3/8

> Remove(~A, 3/8);

> IsDefined(A, 3/8);

false

> Keys(A);

{ 1/2, 3 }

> Universe(A);

Rational Field

We repeat that an associative array can be indexed by elements of any structure. We now index
an array by elements of the symmetric group S3.

> G := Sym(3);

> A := AssociativeArray(G);

> v := 1; for x in G do A[x] := v; v +:= 1; end for;

> A;

Associative Array with index universe GrpPerm: G, Degree 3, Order 2 * 3

> Keys(A);

{

(1, 3, 2),

(2, 3),

(1, 3),

(1, 2, 3),



Ch. 13 ASSOCIATIVE ARRAYS 231

(1, 2),

Id(G)

}

> A[G!(1,3,2)];

3





14 COPRODUCTS
14.1 Introduction . . . . . . . . 235

14.2 Creation Functions . . . . . 235

14.2.1 Creation of Coproducts . . . . . 235

cop< > 235
cop< > 235

14.2.2 Creation of Coproduct Elements . 235

m(e) 235
! 235

14.3 Accessing Functions . . . . . 236

Injections(C) 236

# 236
Constituent(C, i) 236
Index(x) 236

14.4 Retrieve . . . . . . . . . . 236

Retrieve(x) 236

14.5 Flattening . . . . . . . . . 237

Flat(C) 237

14.6 Universal Map . . . . . . . 237

UniversalMap(C, S, [ n1, ..., nm ]) 237





Chapter 14

COPRODUCTS

14.1 Introduction

Coproducts can be useful in various situations, as they may contain objects of entirely
different types. Although the coproduct structure will serve as a single parent for such
diverse objects, the proper parents of the elements are recorded internally and restored
whenever the element is retrieved from the coproduct.

14.2 Creation Functions

There are two versions of the coproduct constructor. Ordinarily, coproducts will be con-
structed from a list of structures. These structures are called the constituents of the
coproduct. A single sequence argument is allowed as well to be able to create coproducts
of parameterized families of structures conveniently.

14.2.1 Creation of Coproducts

cop< S1, S2, ..., Sk >

cop< [ S1, S2, ..., Sk ] >

Given a list or a sequence of two or more structures S1, S2, . . ., Sk, this function
creates and returns their coproduct C as well as a sequence of maps [m1, m2, . . .,
mk] that provide the injections mi : Si → C.

14.2.2 Creation of Coproduct Elements
Coproduct elements are usually created by the injections returned as the second return
value from the cop<> constructor. The bang (!) operator may also be used but only if the
type of the relevant constituent is unique for the particular coproduct.

m(e)

Given a coproduct injection map m and an element of one of the constituents of the
coproduct C, create the coproduct element version of e.

C ! e

Given a coproduct C and an element e of one of the constituents of C such that
the type of that constituent is unique within that coproduct, create the coproduct
element version of e.



236 SETS, SEQUENCES, AND MAPPINGS Part II

14.3 Accessing Functions

Injections(C)

Given a coproduct C, return the sequence of injection maps returned as the second
argument from the cop<> constructor.

#C

Given a coproduct C, return the length (number of constituents) of C.

Constituent(C, i)

Given a coproduct C and an integer i between 1 and the length of C, return the
i-th constituent of C.

Index(x)

Given an element x from a coproduct C, return the constituent number of C to
which x belongs.

14.4 Retrieve
The function described here restores an element of a coproduct to its original state.

Retrieve(x)

Given an element x of some coproduct C, return the element as an element of the
structure that formed its parent before it was mapped into C.

Example H14E1

We illustrate basic uses of the coproduct constructors and functions.

> C := cop<IntegerRing(), Strings()>;

> x := C ! 5;

> y := C ! "abc";

> x;

5

> y;

abc

> Parent(x);

Coproduct<Integer Ring, String structure>

> x eq 5;

true

> x eq y;

false

> Retrieve(x);

5

> Parent(Retrieve(x));

Integer Ring



Ch. 14 COPRODUCTS 237

14.5 Flattening
The function described here enables the ‘concatenation’ of coproducts into a single one.

Flat(C)

Given a coproduct C of structures which may themselves be coproducts, return the
coproduct of the base structures, considered in depth-first order.

14.6 Universal Map

UniversalMap(C, S, [ n1, ..., nm ])

Given maps n1, . . ., nm from structures S1, . . ., Sm that compose the coproduct C,
to some structure S, this function returns the universal map C → S.





15 RECORDS
15.1 Introduction . . . . . . . . 241

15.2 The Record Format Constructor 241

recformat< > 241

15.3 Creating a Record . . . . . . 242

rec< > 242

15.4 Access and Modification
Functions . . . . . . . . . 243

Format(r) 243
Names(F) 243
Names(r) 243
r‘fieldname 243
r‘fieldname:= e; 243
delete 243
assigned 243
r‘‘s 243





Chapter 15

RECORDS

15.1 Introduction
In a record several objects can be collected. The objects in a record are stored in record
fields, and are accessed by using fieldnames. Records are like tuples (and unlike sets or
sequences) in that the objects need not all be of the same kind. Though records and
tuples are somewhat similar, there are several differences too. The components of tuples
are indexed by integers, and every component must be defined. The fields of records are
indexed by fieldnames, and it is possible for some (or all) of the fields of a record not to
be assigned; in fact, a field of a record may be assigned or deleted at any time. A record
must be constructed according to a pre-defined record format, whereas a tuple may be
constructed without first giving the Cartesian product that is its parent, since Magma
can deduce the parent from the tuple.

In the definition of a record format, each field is given a fieldname. If the field is also
given a parent magma or a category, then in any record created according to this format,
that field must conform to this requirement. However, if the field is not given a parent
magma or category, there is no restriction on the kinds of values stored in that field;
different records in the format may contain disparate values in that field. By contrast,
every component of a Cartesian product is a magma, and the components of all tuples in
this product must be elements of the corresponding magma.

Because of the flexibility of records, with respect to whether a field is assigned and what
kind of value is stored in it, Boolean operators are not available for comparing records.

15.2 The Record Format Constructor
The special constructor recformat< ... > is used for the creation of record formats. A
record format must be created before records in that format are created.

recformat< L >

Construct the record format corresponding to the non-empty fieldname list L. Each
term of L must be one of the following:
(a)fieldname in which case there is no restriction on values that may be stored in

this field of records having this format;
(b)fieldname:expression where the expression evaluates to a magma which will be

the parent of values stored in this field of records having this format; or
(c) fieldname:expression where the expression evaluates to a category which will

be the category of values stored in this field of records having this format;

where fieldname consists of characters that would form a valid identifier name. Note
that it is not a string.



242 SETS, SEQUENCES, AND MAPPINGS Part II

Example H15E1

We create a record format with these fields: n, an integer; misc, which has no restrictions; and
seq, a sequence (with any universe possible).

> RF := recformat< n : Integers(), misc, seq : SeqEnum >;

> RF;

recformat<n: IntegerRing(), misc, seq: SeqEnum>

> Names(RF);

[ n, misc, seq ]

15.3 Creating a Record

Before a record is created, its record format must be defined. A record may be created by
assigning as few or as many of the record fields as desired.

rec< F | L >

Given a record format F , construct the record format corresponding to the field
assignment list L. Each term of L must be of the form fieldname : = expression
where fieldname is in F and the value of the expression conforms (directly or by
coercion) to any restriction on it. The list L may be empty, and there is no fixed
order for the fieldnames.

Example H15E2

We build some records having the record format RF.

> RF := recformat< n : Integers(), misc, seq : SeqEnum >;

> r := rec< RF | >;

> r;

rec<RF | >

> s := rec< RF | misc := "adsifaj", n := 42, seq := [ GF(13) | 4, 8, 1 ]>;

> s;

rec<RF | n := 42, misc := adsifaj, seq := [ 4, 8, 1 ]>

> t := rec< RF | seq := [ 4.7, 1.9 ], n := 51/3 >;

> t;

rec<RF | n := 17, seq := [ 4.7, 1.9 ]>

> u := rec< RF | misc := RModule(PolynomialRing(Integers(7)), 4) >;

> u;

rec<RF | misc := RModule of dimension 4 with base ring Univariate Polynomial

Algebra over Integers(7)>



Ch. 15 RECORDS 243

15.4 Access and Modification Functions

Fields of records may be inspected, assigned and deleted at any time.

Format(r)

The format of record r.

Names(F)

The fieldnames of the record format F returned as a sequence of strings.

Names(r)

The fieldnames of record r returned as a sequence of strings.

r‘fieldname

Return the field of record r with this fieldname. The format of r must include this
fieldname, and the field must be assigned in r.

r‘fieldname:= expression;

Reassign the given field of r to be the value of the expression. The format of r
must include this fieldname, and the expression’s value must satisfy (directly or by
coercion) any restriction on the field.

delete r‘fieldname

(Statement.) Delete the current value of the given field of record r.

assigned r‘fieldname

Returns true if and only if the given field of record r currently contains a value.

r‘‘s

Given an expression s that evaluates to a string, return the field of record r with the
fieldname corresponding to this string. The format of r must include this fieldname,
and the field must be assigned in r.

This syntax may be used anywhere that r‘fieldname may be used, including in
left hand side assignment, assigned and delete.



244 SETS, SEQUENCES, AND MAPPINGS Part II

Example H15E3

> RF := recformat< n : Integers(), misc, seq : SeqEnum >;

> r := rec< RF | >;

> s := rec< RF | misc := "adsifaj", n := 42, seq := [ GF(13) | 4, 8, 1 ]>;

> t := rec< RF | seq := [ 4.7, 1.9 ], n := 51/3 >;

> u := rec< RF | misc := RModule(PolynomialRing(Integers(7)), 4) >;

> V4 := u‘misc;

> assigned r‘seq;

false

> r‘seq := Append(t‘seq, t‘n); assigned r‘seq;

true

> r;

rec<RF | seq := [ 4.7, 1.9, 17 ]>

> // The following produces an error:

> t‘‘(s‘misc);

>> t‘‘(s‘misc);

^

Runtime error in ‘: Field ’adsifaj’ does not exist in this record

> delete u‘‘("m" cat "isc"); u;

rec<RF | >



16 MAPPINGS
16.1 Introduction . . . . . . . . 247

16.1.1 The Map Constructors . . . . . . 247

16.1.2 The Graph of a Map . . . . . . . 248

16.1.3 Rules for Maps . . . . . . . . . 248

16.1.4 Homomorphisms . . . . . . . . 248

16.1.5 Checking of Maps . . . . . . . . 248

16.2 Creation Functions . . . . . 249

16.2.1 Creation of Maps . . . . . . . . 249

map< > 249
map< > 249
map< > 249

16.2.2 Creation of Partial Maps . . . . . 250

pmap< > 250
pmap< > 250
pmap< > 250

16.2.3 Creation of Homomorphisms . . . 250

hom< > 250
hom< > 250
hom< > 250
hom< > 251
hom< > 251

16.2.4 Coercion Maps . . . . . . . . . 251

Coercion(D, C) 251
Bang(D, C) 251

16.3 Operations on Mappings . . . 251

16.3.1 Composition . . . . . . . . . . 251

* 251
Components(f) 251

16.3.2 (Co)Domain and (Co)Kernel . . . 252

Domain(f) 252
Codomain(f) 252
Image(f) 252
Kernel(f) 252

16.3.3 Inverse . . . . . . . . . . . . . 252

Inverse(m) 252

16.3.4 Function . . . . . . . . . . . . 252

Function(f) 252

16.4 Images and Preimages . . . . 253

@ 253
f(a) 253
@ 253
f(S) 253
@ 253
f(C) 253
@@ 253
@@ 253
@@ 253
HasPreimage(x, f) 253

16.5 Parents of Maps . . . . . . . 254

Parent(m) 254
Domain(P) 254
Codomain(P) 254
Maps(D, C) 254
Iso(D, C) 254
Aut(S) 254





Chapter 16

MAPPINGS

16.1 Introduction
Mappings play a fundamental role in algebra and, indeed, throughout mathematics. Re-
flecting this importance, mappings are one of the fundamental datatypes in our language.
The most general way to define a mapping f : A → B in a programming language is
to write a function which, given any element of A, will return its image under f in B.
While this approach to the definition of mappings is completely general, it is desirable to
have mappings as an independent datatype. It is then possible to provide a very compact
notation for specifying important classes of mappings such as homomorphisms. Further, a
range of operations peculiar to the mapping type can be provided.

Mappings are created either through use of mapping constructors as described in this
Chapter, or through use of certain standard functions that return mappings as either
primary or secondary values.

All mappings are objects in the Magma category Map.

16.1.1 The Map Constructors
There are three main mapping constructors: the general map constructor map< >, the ho-
momorphism constructor hom< >, and the partial map constructor pmap< >. The general
form of all constructors is the same: inside the angle brackets there are two components
separated by a pipe |. To the left the user specifies a domain A and a codomain B, sepa-
rated by ->; to the right of the pipe the user specifies how images are obtained for elements
of the domain. The latter can be done in one of several ways: one specifies either the graph
of the map, or a rule describing how images are to be formed, or for homomorphisms, one
specifies generator images. We will describe each in the next subsections. The result is
something like map< A -> B | expression>.

The domain and codomain of the map can be arbitrary magmas. When a full map
(as opposed to a partial map) is constructed by use of a graph, the domain is necessarily
finite.

The main difference between maps and partial maps is that a partial map need not be
defined for every element of the domain. The main difference between these two types of
map and homomorphisms is that the latter are supposed to provide structure-preserving
maps between algebraic structures. On the one hand this makes it possible to allow the
specification of images for homomorphisms in a different fashion: homomorphism can be
given via images for generators of the domain. On the other hand homomorphisms are
restricted to cases where domain and (image in the) codomain have a similar structure.
The generator image form only makes sense for domains that are finitely presented. Ho-
momorphisms are described in more detail below.



248 SETS, SEQUENCES, AND MAPPINGS Part II

16.1.2 The Graph of a Map
Let A and B be structures. A subgraph of the cartesian product C = A×B is a subset G
of C such that each element of A appears at most once among the first components of the
pairs < a, b > of G. A subgraph having the additional property that every element of A
appears as the first component of some pair < a, b > of G is called a graph of A×B.

A mapping between A and B can be identified with a graph G of A×B, a partial map
can be identified with a subgraph. We now describe how a graph may be represented in
the context of the map constructor. An element of the graph of A×B can be given either
as a tuple <a, b>, or as an arrow pair a -> b. The specification of a (sub)graph in a map
constructor should then consist of either a (comma separated) list, a sequence, or a set of
such tuples or arrow pairs (a mixture is permitted).

16.1.3 Rules for Maps
The specification of a rule in the map constructor involves a free variable and an expression,
usually involving the free variable, separated by :->, for example x :-> 3*x - 1. The
scope of the free variable is restricted to the map constructor (so the use of x does not
interfere with values of x outside the constructor). A general expression is allowed in the
rule, which may involve intrinsic or user functions, and even in-line definitions of such
functions.

16.1.4 Homomorphisms
Probably the most useful form of the map-constructor is the version for homomorphisms.
Most interesting mappings in algebra are homomorphisms, and if an algebraic structure
A belongs to a family of algebraic structures which form a variety we have the fundamen-
tal result that a homomorphism is uniquely determined by the images of any generating
set. This provides us with a particularly compact way of defining and representing homo-
morphisms. While the syntax of the homomorphism constructor is similar to that of the
general mapping constructor, the semantics are sometimes different.

The kind of homomorphism built by the hom-constructor is determined entirely by the
domain: thus, a group homomorphism results from applying hom to a domain A that is
one of the types of group in Magma, a ring homomorphism results when A is a ring, etc.
As a consequence, the requirements on the specification of homomorphisms are dependent
on the category to which A belongs. Often, the codomain of a homomorphism is required
to belong to the same variety. But even within a category the specification may depend
on the type of structure; for details we refer the reader to the specific chapters.

A homomorphism can be specified using either a rule map or by generator images. In
the latter case the processor will seek to express an element as a word in the generators of
A when asked to compute its image. Thus A needs to be finitely presented.

16.1.5 Checking of Maps
It should be pointed out that checking the ‘correctness’ of mappings can be done to a
limited extent only. If the mapping is given by means of a graph, Magma will check
that no multiple images are specified, and that an image is given for every element of the



Ch. 16 MAPPINGS 249

domain (unless a partial map is defined). If a rule is given, it cannot be checked that it is
defined on all of the domain. Also, it is in general the responsibility of the user to ensure
that the images provided for a hom constructor do indeed define a homomorphism.

16.2 Creation Functions

In this section we describe the creation of maps, partial maps, and homomorphisms via the
various forms of the constructors, as well as maps that define coercions between algebraic
structures.

16.2.1 Creation of Maps
Maps between structures A and B may be specified either by providing the full graph (as
defined in the previous section) or by supplying an expression rule for finding images.

map< A -> B | G >

Given a finite structure A, a structure B and a graph G of A × B, construct the
mapping f : A → B, as defined by G. The graph G may be given by either a set,
sequence, or list of tuples or arrow-pairs as described in the Introduction to this
Chapter. Note that G must be a full graph, i.e., every element of A must occur
exactly once as a first component.

map< A -> B | x :-> e(x) >

Given a set or structure A, a set or structure B, a variable x and an expression e(x),
usually involving x, construct the mapping f : A → B, as defined by e(x). It is the
user’s responsibility to ensure that a value is defined for every x ∈ A. The scope of
the variable x is restricted to the map-constructor.

map< A -> B | x :-> e(x), y :-> i(y) >

Given a set or structure A, a set or structure B, a variable x, an expression e(x),
usually involving x, a variable y, and an expression i(y), usually involving y, con-
struct the mapping f : A → B, as defined by x 7→ e(x), with corresponding inverse
f−1 : B → A, as defined by y 7→ i(y). It is the user’s responsibility to ensure that
a value e(x) is defined for every x ∈ A, a value i(y) is defined for every y ∈ B, and
that i(y) is the true inverse of e(x). The scope of the variables x and y is restricted
to the map-constructor.



250 SETS, SEQUENCES, AND MAPPINGS Part II

16.2.2 Creation of Partial Maps
Partial mappings are quite different to both general mappings and homomorphisms, in
that images need not be defined for every element of the domain.

pmap< A -> B | G >

Given a finite structure A of cardinality n, a structure B and a subgraph G of A×B,
construct the partial map f : A → B, as defined by G. The subgraph G may be
given by either a set, sequence, or list of tuples or arrow-pairs as described in the
Introduction to this Chapter.

pmap< A -> B | x :-> e(x) >

Given a set A, a set B, a variable x and an expression e(x), construct the partial map
f : A → B, as defined by e(x). This form of the map constructor is a special case of
the previous one whereby the image of x can be defined using a single expression.
Again the scope of x is restricted to the map-constructor.

pmap< A -> B | x :-> e(x), y :-> i(y) >

This constructor is the same as the map constructor above which allows the inverse
map i(y) to be specified, except that the result is marked to be a partial map.

16.2.3 Creation of Homomorphisms
The principal construction for homomorphisms consists of the generator image form, where
the images of the generators of the domain are listed. Note that the kind of homomorphism
and the kind and number of generators for which images are expected, depend entirely on
the type of the domain. Moreover, some features of the created homomorphism, e.g.
whether checking of the homomorphism is done during creation or whether computing
preimages is possible, depend on the types of the domain and the codomain. We refer to
the appropriate handbook chapters for further information.

hom< A -> B | G >

Given a finitely generated algebraic structure A and a structure B, as well as a
graph G of A × B, construct the homomorphism f : A → B defined by extending
the map of the generators of A to all of A. The graph G may be given by either
a set, sequence, or list of tuples or arrow-pairs as described in the Introduction to
this Chapter.

The detailed requirements on the specification are module-dependent, and can
be found in the chapter describing the domain A.

hom< A -> B | y1, ..., yn >

hom< A -> B | x1 -> y1, ..., xn -> yn >

This is a module-dependent constructor for homomorphisms between structures A
and B; see the chapter describing the functions for A. In general after the bar the
images for all generators of the structure A must be specified.



Ch. 16 MAPPINGS 251

hom< A -> B | x :-> e(x) >

Given a structure A, a structure B, a variable x and an expression e(x), construct
the homomorphism f : A → B, as defined by e(x). This form of the map constructor
is a special case of the previous one whereby the image of x can be defined using a
single expression. Again the scope of x is restricted to the map-constructor.

hom< A -> B | x :-> e(x), y :-> i(y) >

This constructor is the same as the map constructor above which allows the inverse
map i(y) to be specified, except that the result is marked to be a homomorphism.

16.2.4 Coercion Maps
Magma has a sophisticated machinery for coercion of elements into structures other than
the parent. Non-automatic coercion is usually performed via the ! operator. To obtain
the coercion map corresponding to ! in a particular instance the Coercion function can
be used.

Coercion(D, C)

Bang(D, C)

Given structures D and C such that elements from D can be coerced into C, return
the map m that performs this coercion. Thus the domain of m will be D and the
codomain will be C.

16.3 Operations on Mappings

16.3.1 Composition
Although compatible maps can be composed by repeated application, say g(f(x)), it is
also possible to create a composite map.

f * g

Given a mapping f : A → B, and a mapping g : B → C, construct the composition
h of the mappings f and g as the mapping h = g ◦ f : A → C.

Components(f)

Returns the maps which were composed to form f .



252 SETS, SEQUENCES, AND MAPPINGS Part II

16.3.2 (Co)Domain and (Co)Kernel

The domain and codomain of any map can simply be accessed. Only for some intrinsic
maps and for maps with certain domains and codomains, also the formation of image,
kernel and cokernel is available.

Domain(f)

The domain of the mapping f .

Codomain(f)

The codomain of the mapping f .

Image(f)

Given a mapping f with domain A and codomain B, return the image of A in B
as a substructure of B. This function is currently supported only for some intrinsic
maps and for maps with certain domains and codomains.

Kernel(f)

Given the homomorphism f with domain A and codomain B, return the kernel of f
as a substructure of A. This function is currently supported only for some intrinsic
maps and for maps with certain domains and codomains.

16.3.3 Inverse

Inverse(m)

The inverse map of the map m.

16.3.4 Function

For a map given by a rule, it is possible to get access to the rule as a user defined function.

Function(f)

The function underlying the mapping f . Only available if f has been defined by
the user by means of a rule map (i. e., an expression for the image under f of an
arbitrary element of the domain).



Ch. 16 MAPPINGS 253

16.4 Images and Preimages
The standard mathematical notation is used to denote the calculation of a map image.
Some mappings defined by certain system intrinsics and constructors permit the taking of
preimages. However, preimages are not available for any mapping defined by means of the
mapping constructor.

a @ f

f(a)

Given a mapping f with domain A and codomain B, and an element a belonging
to A, return the image of a under f as an element of B.

S @ f

f(S)

Given a mapping f with domain A and codomain B, and a finite enumerated set,
indexed set, or sequence S of elements belonging to A, return the image of S under
f as an enumerated set, indexed set, or sequence of elements of B.

C @ f

f(C)

Given a homomorphism f with domain A and codomain B, and a substructure C
of A, return the image of C under f as a substructure of B.

y @@ f

Given a mapping f with domain A and codomain B, where f supports preimages,
and an element y belonging to B, return the preimage of y under f as an element
of A.

If the mapping f is a homomorphism, then a single element is returned as the
preimage of y. In order to obtain the full preimage of y, it is necessary to form the
coset K ∗ y@@f , where K is the kernel of f .

R @@ f

Given a mapping f with domain A and codomain B, where f supports preimages,
and a finite enumerated set, indexed set, or sequence of elements R belonging to B,
return the preimage of R under f as an enumerated set, indexed set, or sequence of
elements of A.

D @@ f

Given a mapping f with domain A and codomain B, where f supports preimages
and the kernel of f is known or can be computed, and a substructure D of B, return
the preimage of D under f as a substructure of A.

HasPreimage(x, f)

Return whether the preimage of x under f can be taken and the preimage as a
second argument if it can.



254 SETS, SEQUENCES, AND MAPPINGS Part II

16.5 Parents of Maps
Parents of maps are structures knowing a domain and a codomain. They are often used in
automorphism group calculations where a map is returned from an automorphism group
into the set of all automorphisms of some structure. Parents of maps all inherit from the
type PowMap. The type PowMapAut which inherits from PowMap is type which the parents
of automorphisms inherit from.

There is also a power structure of maps (of type PowStr, similar to that of other
structures) which is used as a common overstructure of the different parents.

Parent(m)

The parent of m.

Domain(P)

Codomain(P)

The domain and codomain of the maps for which P is the parent.

Maps(D, C)

Iso(D, C)

The parent of maps (or isomorphisms) from D to C. Iso will only return a different
structure to Maps if it has been specifically implemented for such maps.

Aut(S)

The parent of automorphisms of S.



INDEX OF INTRINSICS

!, 1-13, 1-174, 1-197, 1-216, 1-235,
2-269, 2-283, 2-336, 2-342, 2-353,
354, 2-370, 2-397, 2-413, 2-447,
2-478, 2-588, 3-653, 3-737, 3-754,
3-760, 3-780, 3-877, 878, 3-952,
3-992, 3-1039, 3-1061, 3-1129–1131,
3-1154, 3-1159, 3-1199, 4-1229,
4-1281, 4-1315, 4-1326, 4-1351,
4-1371, 4-1401, 4-1415, 4-1436,
5-1464, 5-1506, 5-1508, 5-1523,
1524, 5-1536, 5-1643, 1644, 5-1647,
5-1808, 1809, 5-1819, 5-1871, 5-1874,
5-2003, 2004, 6-2052, 6-2065, 6-2083,
6-2252, 6-2260, 6-2299–2301, 6-2350,
6-2368, 6-2380, 6-2385, 6-2390,
6-2410, 7-2423, 7-2434, 7-2458,
7-2471, 7-2509, 2510, 7-2549, 7-2553,
7-2632, 7-2682, 7-2693, 7-2707,
2708, 7-2711, 7-2759, 2760, 8-2983,
8-3009, 3010, 8-3044, 8-3082, 8-3115,
9-3310, 9-3406, 9-3429, 9-3492,
9-3504, 9-3507, 9-3648, 9-3661,
9-3681, 3682, 9-3692, 9-3707, 9-3745,
10-3967, 10-4141, 10-4158, 4159,
10-4204, 11-4344, 4345, 11-4372,
11-4397, 11-4437, 11-4487, 11-4501,
11-4543, 11-4591, 12-4718, 4719,
12-4795, 12-4816, 4817, 12-4819, 4820,
12-4824, 4825, 12-4852, 4853, 12-4860,
12-4879, 4880, 12-4934, 4935, 12-5008,
5009, 13-5084, 13-5202, 13-5216,
13-5263

!!, 3-933, 3-1142, 3-1218, 5-1536,
11-4444

∼, 12-4858
( , ), 2-590, 4-1404, 5-1466, 5-1537,

5-1652, 5-1871, 6-2085, 6-2352,
6-2370, 7-2447, 13-5086, 13-5203,
13-5217

( , , ), 5-1466, 5-1537, 5-1652, 5-1810,
5-2004, 6-2085, 6-2254, 6-2352,
6-2370

(,), 8-3118
( ), 1-235, 1-253, 2-604, 4-1416,

6-2088, 6-2101, 6-2174, 6-2333,
7-2766, 9-3316, 10-3958

*, 1-66, 1-251, 2-269, 2-273, 2-287,
2-311, 2-314, 2-337, 2-339, 2-346,
2-357, 2-377, 2-397, 2-417, 2-434,
2-449, 2-481, 2-539, 2-572, 573,
2-589, 2-604, 3-654, 3-661, 3-755,
3-763, 3-794, 3-808, 3-905, 3-933,

3-941, 3-952, 3-956, 3-976, 3-992,
3-1014, 3-1047, 3-1063, 3-1132,
3-1142, 1143, 3-1156, 3-1159, 3-1161,
3-1178, 3-1198, 1199, 3-1204, 3-1222,
4-1230, 4-1285, 4-1317, 4-1328,
4-1344, 4-1354, 4-1371, 4-1384,
4-1402, 4-1416, 4-1429, 4-1437,
4-1439, 4-1451, 5-1466, 5-1536,
5-1539, 5-1600, 5-1652, 5-1678,
5-1810, 5-1871, 5-2004, 6-2054,
6-2066, 6-2085, 6-2173, 6-2253,
6-2312, 6-2351, 6-2369, 6-2380,
6-2390, 6-2411, 7-2428, 2429, 7-2458,
7-2460, 7-2462, 7-2473, 7-2483,
7-2488, 7-2519, 7-2551, 7-2556,
7-2571, 7-2576, 7-2588, 7-2632,
7-2651, 7-2693, 7-2765, 8-2983,
8-3014, 8-3034, 8-3045, 8-3068,
8-3082, 8-3117, 8-3127, 8-3149,
9-3226, 9-3280, 9-3290, 9-3311,
9-3316, 9-3322, 9-3413, 9-3433,
9-3504, 9-3536, 9-3584, 9-3682,
9-3699, 9-3705, 9-3711, 9-3871,
9-3889, 10-3970, 10-4113, 10-4147,
10-4162, 10-4205, 10-4259, 11-4344,
11-4347, 4348, 11-4372, 11-4375,
11-4402, 11-4487, 11-4507, 11-4570,
11-4592, 11-4619, 12-4700, 12-4782,
4783, 12-4796, 12-4817, 12-4820,
12-4835, 12-4857, 13-5085, 13-5203,
13-5216, 13-5265

*:=, 1-66, 2-270, 2-287, 2-337, 2-357,
2-377, 2-397, 2-417, 2-449, 2-481,
3-654, 3-1047, 4-1230, 4-1317,
5-1810, 6-2253, 6-2312, 7-2473,
8-3149, 10-3970, 10-4162, 12-4857

+, 2-269, 2-273, 2-287, 2-311, 2-314,
2-337, 2-339, 2-357, 2-377, 2-397,
2-417, 2-434, 2-449, 2-481, 2-539,
2-572, 2-589, 2-601, 3-653, 3-664,
3-737, 3-794, 3-808, 3-871, 3-905,
3-942, 3-952, 3-956, 3-976, 3-1047,
3-1063, 3-1095, 3-1132, 3-1143,
3-1156, 3-1161, 3-1178, 3-1199,
3-1204, 3-1222, 4-1230, 4-1285,
4-1317, 4-1328, 4-1344, 4-1354,
4-1371, 4-1384, 4-1402, 4-1407,
4-1429, 4-1437, 4-1451, 6-2054,
6-2066, 7-2429, 7-2457, 2458, 7-2462,
7-2473, 7-2483, 7-2488, 7-2518,
7-2555, 7-2571, 7-2632, 7-2693,
7-2696, 7-2708, 7-2765, 8-2846,



ii INDEX OF INTRINSICS

8-2889, 8-2983, 8-3034, 8-3045,
8-3068, 8-3082, 8-3148, 3149, 9-3226,
9-3280, 9-3290, 9-3311, 9-3322,
9-3413, 9-3433, 9-3504, 9-3584,
9-3699, 9-3705, 9-3711, 9-3889,
10-3969, 10-4111, 10-4162, 11-4348,
11-4372, 11-4402, 11-4487, 11-4507,
11-4570, 4571, 11-4582, 11-4594,
11-4619, 11-4628, 12-4698, 12-4782,
12-4795, 4796, 12-4857, 12-4940–4942,
12-5020–5022, 12-5057, 5058, 13-5085,
13-5091, 13-5198, 13-5203, 13-5216,
13-5220, 13-5265

+:=, 2-270, 2-287, 2-337, 2-357, 2-377,
2-397, 2-417, 2-449, 2-481, 3-654,
3-1047, 4-1230, 4-1317, 7-2473,
8-3148, 3149, 10-3970, 10-4162,
12-4857, 12-4941, 4942, 12-5021, 5022,
12-5058

-, 2-269, 2-287, 2-311, 2-314, 2-337,
2-357, 2-377, 2-397, 2-417, 2-449,
2-481, 2-539, 2-572, 2-589, 3-653,
3-794, 3-808, 3-905, 3-952, 3-956,
3-976, 3-1047, 3-1063, 3-1132,
3-1156, 3-1161, 3-1178, 3-1199,
3-1204, 3-1222, 4-1230, 4-1285,
4-1317, 4-1328, 4-1344, 4-1354,
4-1371, 4-1384, 4-1402, 4-1437,
6-2054, 7-2429, 7-2458, 7-2473,
7-2518, 2519, 7-2555, 2556, 7-2632,
7-2693, 7-2765, 8-2983, 8-3034,
8-3045, 8-3068, 8-3082, 9-3311,
9-3413, 9-3433, 9-3504, 9-3584,
9-3699, 9-3705, 9-3711, 9-3889,
10-3969, 3970, 10-4143, 10-4158,
10-4162, 10-4205, 11-4348, 11-4372,
11-4402, 11-4487, 11-4507, 11-4571,
11-4619, 12-4783, 12-4796, 12-4857,
12-4941, 12-4943, 12-5021, 12-5023,
5024, 13-5085, 13-5203, 13-5216,
13-5265

-:=, 2-270, 2-287, 2-337, 2-357, 2-377,
2-397, 2-417, 2-449, 2-481, 3-654,
3-1047, 4-1230, 4-1317, 7-2473,
10-3970, 10-4162, 12-4857, 12-4941,
12-4943, 12-5021, 12-5024

-A, 2-572
-x, 8-3068
., 2-342, 343, 2-370, 371, 2-413, 2-435,

2-447, 2-478, 2-599, 3-653, 3-782,
3-795, 3-884, 3-907, 3-976, 3-1040,
3-1061, 3-1129, 3-1199, 3-1202,
4-1276, 4-1315, 4-1326, 4-1342,
4-1350, 4-1371, 4-1399, 4-1427,
5-1482, 5-1526, 5-1647, 5-1799,
5-1872, 5-2003, 6-2046, 6-2050,
6-2100, 6-2266, 6-2299, 2300, 6-2348,
6-2365, 6-2380, 6-2393, 6-2407,

7-2425, 7-2458, 7-2471, 7-2487,
7-2512, 7-2570, 7-2632, 7-2689,
8-3017, 8-3044, 8-3067, 8-3082,
9-3289, 9-3406, 9-3429, 9-3486,
9-3498, 9-3504, 9-3681, 9-3885,
11-4397, 11-4487, 11-4501, 11-4586,
11-4627, 12-4718, 4719, 12-4795,
12-4816, 12-4819, 12-4851, 12-4879,
12-4934, 4935, 13-5080, 13-5175,
13-5215

/, 2-270, 2-273, 2-287, 2-311, 2-314,
2-337, 2-346, 2-353, 2-357, 2-377,
2-397, 2-417, 2-449, 2-481, 2-589,
2-596, 3-654, 3-661, 3-794, 3-905,
3-942, 3-952, 3-1047, 3-1063,
3-1132, 3-1143, 3-1178, 4-1230,
4-1286, 4-1328, 4-1344, 4-1371,
4-1402, 4-1437, 5-1466, 5-1474,
5-1536, 5-1563, 5-1652, 5-1675,
5-1810, 5-1830, 6-2057, 6-2090,
6-2254, 6-2261, 6-2312, 6-2351,
6-2369, 7-2424, 7-2429, 7-2459,
7-2473, 7-2483, 7-2486, 7-2551,
7-2632, 7-2694, 8-3011, 8-3149,
9-3226, 9-3287, 9-3322, 9-3414,
9-3504, 9-3699, 10-3970, 10-4259,
11-4348, 11-4372, 11-4402, 11-4583,
11-4597, 11-4628, 12-4796

/:=, 2-270, 2-287, 2-337, 2-357, 2-481,
5-1810, 6-2254, 6-2312, 8-3149,
10-3970

< >, 1-216
=, 6-2044, 6-2087, 6-2392
@, 1-253, 6-2101, 6-2174, 6-2333,

7-2766, 9-3437, 9-3493, 9-3684,
9-3693, 9-3875, 10-4147, 11-4566,
11-4623

@@, 1-253, 6-2102, 6-2333, 9-3542,
9-3544, 9-3684, 10-4147, 11-4566,
11-4623

[. . .], 1-66, 67, 1-176, 1-195, 196, 1-198,
199, 1-216, 1-218, 1-224, 225, 1-229,
2-531, 2-564, 2-593, 3-800, 3-912,
3-992, 4-1402, 6-2088, 7-2436,
7-2475, 7-2525, 7-2694, 7-2766,
8-3035, 3036, 9-3493, 9-3648, 9-3662,
10-3969, 10-4143, 10-4162, 10-4205,
12-4730, 4731, 13-5087, 13-5218

[* *], 1-223
[], 2-530, 2-564, 2-592, 3-756, 4-1402,

6-2044, 6-2087, 2088, 7-2436, 7-2525,
7-2556, 7-2694, 8-3035, 3036, 9-3311,
9-3316, 12-4817, 13-5205

" ", 1-66
#, 1-11, 1-67, 1-176, 1-198, 1-216,

1-218, 1-224, 1-236, 2-266, 2-335,
2-375, 2-416, 2-448, 3-703, 3-709,
3-737, 3-828, 3-991, 3-1185, 4-1278,



INDEX OF INTRINSICS iii

4-1317, 5-1483, 5-1506, 5-1528,
5-1601, 5-1658, 5-1756, 5-1800,
5-1956, 5-1960, 5-1972, 1973, 5-1975,
5-1977, 5-1986, 5-1999, 6-2063,
6-2083, 6-2107, 6-2174, 6-2267,
6-2305, 6-2327, 6-2349, 6-2352,
6-2366, 6-2370, 6-2380, 6-2390,
6-2409, 6-2411, 7-2424, 7-2471,
7-2707, 7-2766, 2767, 8-2916, 8-3016,
8-3112, 10-3956, 10-3980, 10-4059,
10-4144, 10-4165, 11-4631, 12-4726,
12-4817, 12-4820, 12-4886, 12-4889,
12-4936, 12-4992, 13-5079, 13-5175,
13-5215

#A, 11-4532
#N, 2-399
&, 1-189, 1-211, 9-3496
&*, 1-66, 1-219, 3-941
&cat, 1-66
&meet, 3-943, 3-992
&meet S, 2-601, 9-3228, 9-3281
\[. . .], 1-197
^, 1-66, 2-270, 2-287, 2-311, 2-314,

2-337, 2-346, 2-357, 2-377, 2-397,
2-417, 2-424, 2-449, 2-481, 2-539,
2-572, 3-755, 3-794, 3-905, 3-942,
3-952, 3-1047, 3-1063, 3-1132,
3-1143, 3-1199, 3-1204, 4-1230,
4-1285, 4-1317, 4-1328, 4-1344,
4-1354, 4-1371, 4-1416, 5-1466,
5-1490, 1491, 5-1494, 5-1536, 1537,
5-1552, 1553, 5-1569, 5-1652, 5-1669,
1670, 5-1678, 5-1690, 5-1810,
5-1815, 5-1821, 5-1871, 5-2004,
6-2085, 6-2161, 2162, 6-2253, 2254,
6-2272, 6-2312, 6-2351, 2352, 6-2370,
6-2380, 6-2390, 6-2411, 7-2428, 2429,
7-2457, 7-2459, 7-2473, 7-2519,
7-2571, 7-2644, 7-2692, 7-2717,
7-2739, 7-2765, 7-2767, 8-3014,
8-3045, 8-3082, 3083, 8-3118, 8-3127,
9-3226, 9-3280, 9-3290, 9-3357, 3358,
9-3414, 9-3433, 9-3504, 9-3682,
9-3871, 11-4344, 11-4402, 11-4570,
11-4592, 12-4740, 12-4795, 12-4857,
12-4904, 12-4946, 13-5138

^-1, 2-572
^:=, 2-270, 2-287, 2-337, 2-357, 2-481,

5-1810, 6-2253, 2254, 6-2312
‘, 1-52, 1-243
‘‘, 1-52
‘‘, 1-243
{ }, 1-167, 1-172, 173
{* *}, 1-170, 171
{@ @}, 1-169
A, 11-4598
AbelianBasis, 5-1496, 5-1833

AbelianExtension, 3-1009, 1010, 3-1012,
3-1194

AbelianGroup, 2-343, 5-1469, 5-1475,
5-1532, 5-1794, 5-1858, 6-2045, 2046,
6-2051, 6-2057, 6-2096, 6-2262,
6-2265, 10-3989, 10-4012, 10-4171,
11-4630

AbelianInvariants, 5-1496, 5-1707, 5-1833
AbelianLieAlgebra, 8-2980
AbelianNormalQuotient, 5-1599
AbelianNormalSubgroup, 5-1599
AbelianpExtension, 3-1010
AbelianQuotient, 5-1564, 5-1676, 5-1831,

6-2057, 6-2125, 6-2280
AbelianQuotientInvariants, 5-1831, 6-2125,

2126, 6-2280
AbelianSubfield, 3-1016
AbelianSubgroups, 5-1501, 5-1562, 5-1826
Abs, 2-290, 2-314, 2-359, 2-427, 2-467,

2-484, 11-4373
AbsoluteAffineAlgebra, 3-1051
AbsoluteAlgebra, 10-4075
AbsoluteBasis, 2-355, 3-791, 3-898
AbsoluteCartanMatrix, 7-2754
AbsoluteCharacteristicPolynomial, 3-798,

3-910
AbsoluteDegree, 2-356, 3-788, 3-893,

3-1018, 3-1102, 4-1275
AbsoluteDiscriminant, 2-356, 3-788,

3-894, 3-1018, 3-1103
AbsoluteField, 3-783, 3-885
AbsoluteFunctionField, 3-1098
AbsoluteGaloisGroup, 3-1022
AbsoluteInertiaDegree, 4-1274
AbsoluteInertiaIndex, 4-1274
AbsoluteInvariants, 10-4135
AbsoluteLogarithmicHeight, 3-796, 3-908
AbsolutelyIrreducibleConstituents, 7-2743
AbsolutelyIrreducibleModule, 7-2698
AbsolutelyIrreducibleModules, 7-2740
AbsolutelyIrreducibleModulesBurnside,

7-2743
AbsolutelyIrreducibleModulesInit, 7-2746
AbsolutelyIrreducibleModulesSchur, 5-1852,

7-2744
AbsolutelyIrreducibleRepresentationProc-

essDelete, 7-2746
AbsolutelyIrreducibleRepresentationsInit,

7-2746
AbsolutelyIrreducibleRepresentationsSchur,

5-1852
AbsoluteMinimalPolynomial, 3-799, 3-911,

3-1134
AbsoluteModuleOverMinimalField, 7-2733
AbsoluteModulesOverMinimalField, 7-2734
AbsoluteNorm, 2-379, 3-798, 3-910, 3-935
AbsoluteOrder, 3-885, 3-1098
AbsolutePolynomial, 3-1051



iv INDEX OF INTRINSICS

AbsolutePrecision, 4-1288, 4-1329, 4-1344
AbsoluteQuotientRing, 3-1051
AbsoluteRamificationDegree, 4-1275
AbsoluteRamificationIndex, 4-1275
AbsoluteRank, 8-2867
AbsoluteRationalScroll, 9-3489
AbsoluteRepresentation, 5-1689
AbsoluteRepresentationMatrix, 3-799, 3-911
AbsoluteTotallyRamifiedExtension, 4-1273
AbsoluteTrace, 2-379, 3-798, 3-910
AbsoluteValue, 2-290, 2-314, 2-359,

2-427, 2-467, 2-484, 11-4373
AbsoluteValues, 3-796, 3-908
Absolutize, 3-1051
ActingGroup, 5-2032, 8-3106
ActingWord, 5-1604
Action, 5-1567, 5-1574, 6-2174, 7-2585,

7-2690, 12-4741, 12-4901, 12-4984
ActionGenerator, 3-729, 7-2584, 7-2690,

7-2731
ActionGenerators, 7-2731
ActionGroup, 7-2731
ActionImage, 5-1574, 12-4741, 12-4901,

12-4985
ActionKernel, 5-1574, 12-4741, 12-4902,

12-4985
ActionMatrix, 7-2616, 7-2717
AdamsOperator, 8-3155
AddAttribute, 1-52
AddColumn, 2-535, 2-568, 7-2527
AddConstraints, 13-5288
AddCubics, 10-4036, 10-4111
AddEdge, 12-4942, 12-5022, 5023, 12-5058
AddEdges, 12-4942, 4943, 12-5023, 12-5058
AddGenerator, 3-1033, 6-2206, 6-2396
AdditiveCode, 13-5210, 5211
AdditiveCyclicCode, 13-5227, 5228
AdditiveGroup, 2-285, 2-335, 2-373,

4-1276
AdditiveHilbert90, 2-380
AdditiveOrder, 8-2845, 8-2885, 8-2921,

8-3124
AdditivePolynomialFromRoots, 3-1202
AdditiveQuasiCyclicCode, 13-5228
AdditiveRepetitionCode, 13-5212
AdditiveUniverseCode, 13-5213
AdditiveZeroCode, 13-5212
AdditiveZeroSumCode, 13-5213
AddNormalizingGenerator, 5-1622
AddRedundantGenerators, 6-2381
AddRelation, 3-920, 6-2206, 6-2395
AddRelator, 6-2214
AddRepresentation, 8-3149
AddRow, 2-534, 2-568, 7-2527
AddScaledMatrix, 2-539, 540
AddSimplex, 12-4701
Addsimplex, 12-4701
AddSubgroupGenerator, 6-2215

AddVectorToLattice, 12-4798
AddVertex, 12-4941, 12-5021
AddVertices, 12-4941, 12-5021
adj, 12-4951, 12-5029
AdjacencyMatrix, 3-705, 12-4965
Adjoin, 7-2457
Adjoint, 2-548, 7-2522, 9-3436
AdjointAlgebra, 7-2668
AdjointIdeal, 9-3658
AdjointIdealForNodalCurve, 9-3658
AdjointLinearSystem, 9-3659
AdjointLinearSystemForNodalCurve, 9-3658
AdjointLinearSystemFromIdeal, 9-3658
AdjointMatrix, 8-3035
AdjointPreimage (G, g), 5-1909
AdjointRepresentation, 8-3134, 8-3142,

8-3147
AdjointRepresentationDecomposition, 8-3141
Adjoints, 9-3659
AdjointVersion, 8-2891
AdmissableTriangleGroups, 11-4380
AdmissiblePair, 11-4684
Advance, 5-1631, 5-1946, 5-1965, 5-1970,

5-1984
AffineAction, 5-1593
AffineAlgebra, 3-1046, 9-3288
AffineAlgebraMapKernel, 9-3292
AffineDecomposition, 9-3523, 9-3552
AffineGammaLinearGroup, 5-1623
AffineGeneralLinearGroup, 5-1622, 5-1883
AffineGroup, 2-401, 5-1628
AffineImage, 5-1593
AffineKernel, 5-1593
AffineLieAlgebra, 8-3065
AffinePatch, 9-3521, 3522, 9-3674
AffinePlane, 9-3647
AffineSigmaLinearGroup, 5-1623
AffineSpace, 9-3485, 3486, 9-3647
AffineSpecialLinearGroup, 5-1623, 5-1883
AFRNumber, 9-3847
AGammaL, 5-1623
AGCode, 13-5148
AGDecode, 13-5151
AGDualCode, 13-5148
Agemo, 5-1835, 6-2067
AGL, 5-1622, 5-1883
AGM, 2-509
AHom, 7-2590, 7-2711
AInfinityRecord, 7-2614
aInvariants, 10-3950, 10-4113
Alarm, 1-90
AlgComb, 4-1384
Algebra, 2-355, 3-786, 3-891, 4-1444,

7-2422, 7-2433, 2434, 7-2444, 2445,
7-2454, 7-2461, 7-2488, 7-2552,
7-2585, 7-2642, 7-2717, 8-2981,
8-3043, 9-3375

AlgebraGenerators, 7-2539



INDEX OF INTRINSICS v

AlgebraicClosure, 3-1038
AlgebraicGenerators, 8-3111
AlgebraicGeometricCode, 13-5148
AlgebraicGeometricDualCode, 13-5148
AlgebraicPowerSeries, 4-1379
AlgebraicToAnalytic, 3-1211
AlgebraMap, 9-3540
AlgebraOverCenter, 7-2445
AlgebraStructure, 7-2539
AlgorithmicFunctionField, 9-3697
AllCliques, 12-4970, 4971
AllCompactChainMaps, 7-2609
AllCones, 9-3872
AllDefiningPolynomials, 9-3540
Alldeg, 12-4953, 12-4955, 12-5031,

12-5033
AllExtensions, 4-1310
AllFaces, 4-1240
AllHomomorphisms, 6-2070
AllInformationSets, 13-5082
AllInverseDefiningPolynomials, 9-3540
AllIrreduciblePolynomials, 2-382
AllLinearRelations, 2-491
AllNilpotentLieAlgebras, 8-3050
AllPairsShortestPaths, 12-5044
AllParallelClasses, 12-4894
AllParallelisms, 12-4894
AllPartitions, 5-1578
AllPassants, 12-4735
AllRays, 9-3874
AllResolutions, 12-4893
AllRoots, 2-381
AllSecants, 12-4735
AllSlopes, 4-1243
AllSolvableLieAlgebras, 8-3050
AllSqrts, 2-338
AllSquareRoots, 2-338
AllTangents, 12-4735, 12-4737
AllVertices, 4-1240
AlmostSimpleGroupDatabase, 5-1959
Alphabet, 13-5080, 13-5175, 13-5213
AlphaBetaData, 10-4228
Alt, 5-1475, 5-1532, 6-2096
AlternantCode, 13-5110
AlternatingCharacter, 7-2784
AlternatingCharacterTable, 7-2784
AlternatingCharacterValue, 7-2784
AlternatingDominant, 8-3160, 3161
AlternatingElementToWord (G, g), 5-1613,

5-1894
AlternatingGroup, 5-1475, 5-1532, 6-2096
AlternatingPower, 8-3155
AlternatingSquarePreimage (G, g), 5-1909
AlternatingSum, 2-511
AlternatingWeylSum, 8-3162
Ambient, 9-3309, 9-3500, 9-3574, 9-3874,

12-4793
AmbientMatrix, 9-3316

AmbientModule, 11-4489
AmbientSpace, 3-657, 9-3500, 9-3574,

9-3653, 11-4405, 13-5080, 13-5175,
13-5214

AmbientVariety, 11-4631
AmbiguousForms, 3-759
AModule, 7-2584, 7-2608
AnalyticDrinfeldModule, 3-1207
AnalyticHomomorphisms, 10-4212
AnalyticInformation, 10-4094
AnalyticJacobian, 10-4208
AnalyticModule, 3-1210
AnalyticRank, 10-4052, 10-4076, 10-4094
And, 1-207
and, 1-11
Angle, 11-4349, 11-4374
AnisotropicSubdatum, 8-2867
Annihilator, 7-2577, 9-3324
AntiAutomorphismTau, 8-3088
Antipode, 8-3087
AntisymmetricForms, 3-730, 5-1781
AntisymmetricMatrix, 2-526, 527
ApparentCodimension, 9-3835, 9-3844
ApparentEquationDegrees, 9-3835, 9-3844
ApparentSyzygyDegrees, 9-3835, 9-3844
Append, 1-200, 1-216, 217, 1-223
Apply, 9-3437
ApplyContravariant, 9-3821
ApplyTransformation, 10-4113
ApproximateByTorsionGroup, 11-4625
ApproximateByTorsionPoint, 11-4624
ApproximateOrder, 11-4620
ApproximateStabiliser, 5-1683
AQInvariants, 5-1831, 6-2125, 2126, 6-2280
Arccos, 2-495, 4-1336
Arccosec, 2-496
Arccot, 2-496
Arcsec, 2-496
Arcsin, 2-495, 4-1336
Arctan, 2-496, 4-1336
Arctan2, 2-496
AreCohomologous, 5-2033
AreIdentical, 6-2316
AreInvolutionsConjugate, 5-1713
AreLinearlyEquivalent, 9-3893
AreProportional, 12-4796
ArfInvariant, 2-623
Arg, 2-482
Argcosech, 2-498
Argcosh, 2-498, 4-1337
Argcoth, 2-499
Argsech, 2-498
Argsinh, 2-498, 4-1336
Argtanh, 2-498, 4-1337
Argument, 2-482, 11-4373
ArithmeticGenus, 9-3516, 9-3671, 9-3764
ArithmeticGenusOfDesingularization, 9-3791
ArithmeticGeometricMean, 2-509



vi INDEX OF INTRINSICS

ArithmeticTriangleGroup, 11-4380
ArithmeticVolume, 11-4368, 11-4374
Arrows, 9-3755
ArtinMap, 3-1020
ArtinRepresentation, 3-1221, 10-4231
ArtinRepresentations, 3-1217
ArtinSchreierExtension, 3-1183
ArtinSchreierImage, 3-1200
ArtinSchreierMap, 3-1200
ArtinTateFormula, 10-4284
AsExtensionOf, 3-871, 3-1095
ASigmaL, 5-1623
ASL, 5-1623, 5-1883
AssertAttribute, 2-305, 2-369, 4-1325,

5-1545, 5-1618, 5-1667, 5-1703,
5-1705, 5-2006, 7-2771

AssertEmbedding, 11-4548
AssignCapacities, 12-5012, 5013
AssignCapacity, 12-5012
assigned, 1-6, 1-52, 1-243
AssignEdgeLabels, 12-5013
AssignLabel, 12-5011, 5012
AssignLabels, 12-5011, 5012
AssignLDPCMatrix, 13-5158
AssignNamePrefix, 3-1038
AssignNames, 1-9, 2-342, 2-369, 2-413,

2-446, 2-476, 3-782, 3-837, 3-884,
3-1060, 3-1089, 3-1154, 3-1160,
4-1278, 4-1314, 4-1326, 4-1342,
4-1350, 4-1368, 7-2470, 7-2623,
8-3043, 8-3081, 9-3405, 9-3428,
9-3486, 9-3498, 9-3503, 9-3885

AssignVertexLabels, 12-5011
AssignWeight, 12-5012
AssignWeights, 12-5012, 5013
AssociatedEllipticCurve, 10-4022, 10-4028
AssociatedGradedAlgebra, 7-2579
AssociatedHyperellipticCurve, 10-4028
AssociatedNewSpace, 11-4446
AssociatedPrimitiveCharacter, 2-344, 3-812
AssociatedPrimitiveGrossencharacter, 3-821
AssociativeAlgebra, 7-2422, 7-2443, 2444
AssociativeArray, 1-229
AteqPairing, 10-3992
AteTPairing, 10-3992
AtkinLehner, 11-4454
AtkinLehnerInvolution, 11-4301, 11-4318
AtkinLehnerOperator, 11-4409, 11-4494,

11-4509, 11-4637, 4638, 11-4660
AtkinModularPolynomial, 11-4295
ATLASGroup, 5-1986
ATLASGroupNames, 5-1986
Attach, 1-47
AttachSpec, 1-49
Augmentation, 7-2556
AugmentationIdeal, 7-2553
AugmentationMap, 7-2552
AugmentCode, 13-5114, 13-5229

Aut, 1-254, 9-3555, 10-4146, 12-4900,
13-5140

AutoCorrelation, 13-5278
AutomaticGroup, 6-2360, 2361
Automorphism, 8-3127, 9-3549, 9-3552,

9-3555, 9-3676, 10-3931, 3932,
10-3961

AutomorphismGroup, 2-355, 2-375, 2-401,
3-719, 3-721, 3-727, 3-803, 3-964,
965, 3-1020, 3-1112, 3-1115, 1116,
4-1304, 4-1370, 5-1604, 5-1696,
5-1838, 5-1843, 5-1996, 5-1998,
6-2072, 7-2582, 7-2714, 8-3127,
9-3555, 9-3680, 10-3967, 10-4149,
12-4739, 12-4764, 12-4787, 12-4898,
12-4904, 12-4976, 13-5139, 13-5231,
13-5260

AutomorphismGroupMatchingIdempotents,
7-2581

AutomorphismGroupOverCyclotomicExtension,
11-4319

AutomorphismGroupOverExtension, 11-4319
AutomorphismGroupOverQ, 11-4318
AutomorphismGroupSolubleGroup, 5-1841
AutomorphismGroupStabilizer, 12-4899,

13-5140
AutomorphismOmega, 8-3088
Automorphisms, 3-964, 3-1112, 3-1115,

4-1304, 9-3681, 10-3967
AutomorphismSubgroup, 12-4899, 13-5139
AutomorphismTalpha, 8-3088
AutomorphousClasses, 3-703
AuxiliaryLevel, 11-4504
BachBound, 3-802, 3-916
BadPlaces, 10-4062, 10-4087
BadPrimes, 10-3921, 10-4005, 10-4179
BaerDerivation, 12-4746
BaerSubplane, 12-4746
Ball, 12-4964
Bang, 1-251
BarAutomorphism, 8-3088
BarycentricSubdivision, 12-4702
Base, 5-1619, 5-1705
BaseChange, 3-660, 7-2792, 9-3519, 3520,

9-3652, 10-3944, 3945, 10-4125,
10-4154, 10-4204

BaseChangeMatrix, 7-2596
BaseComponent, 9-3575
BaseCurve, 11-4300
BaseElement, 6-2327
BaseExtend, 2-342, 3-660, 8-3111,

9-3519, 3520, 10-3944, 3945, 10-4125,
10-4154, 10-4204, 11-4396, 11-4486,
11-4549, 11-4578

BaseField, 2-355, 2-367, 2-599, 3-783,
3-885, 3-1018, 3-1045, 3-1097, 1098,
3-1185, 3-1198, 1199, 4-1275, 4-1399,
7-2634, 8-2836, 9-3407, 9-3500,



INDEX OF INTRINSICS vii

9-3653, 10-3915, 10-4138, 10-4153,
10-4203, 10-4209, 11-4657, 11-4659,
11-4673

BaseImage, 5-1620
BaseImageWordStrip, 5-1621
BaseLocus, 9-3585
BaseModule, 7-2512, 8-3036, 3037
BaseMPolynomial, 2-324
BasePoint, 5-1619, 5-1705
BasePoints, 9-3546, 9-3577
BaseRing, 2-343, 344, 2-415, 2-447,

2-530, 2-563, 3-660, 3-885, 3-976,
3-1018, 3-1061, 3-1097, 1098, 3-1199,
3-1202, 3-1204, 4-1275, 4-1327,
4-1341, 4-1350, 4-1366, 4-1399,
4-1426, 5-1647, 7-2424, 7-2454,
7-2471, 7-2512, 7-2553, 2554, 7-2570,
7-2634, 7-2689, 8-2836, 8-2867,
8-2982, 8-2991, 8-3016, 8-3043,
8-3066, 8-3109, 8-3111, 9-3309,
9-3407, 9-3430, 9-3500, 9-3653,
9-3884, 10-3915, 10-3953, 10-3956,
10-4108, 10-4138, 10-4153, 10-4203,
10-4209, 11-4340, 11-4366, 11-4405,
11-4489, 11-4504, 11-4529, 11-4657,
11-4673, 12-4854

BaseScheme, 9-3546, 9-3575
BasicAlgebra, 7-2563–2565
BasicAlgebraOfBlockAlgebra, 7-2566
BasicAlgebraOfEndomorphismAlgebra, 7-2565
BasicAlgebraOfExtAlgebra, 7-2566, 7-2606
BasicAlgebraOfGroupAlgebra, 7-2565
BasicAlgebraOfHeckeAlgebra, 7-2565
BasicAlgebraOfMatrixAlgebra, 7-2565
BasicAlgebraOfPrincipalBlock, 7-2566
BasicAlgebraOfSchurAlgebra, 7-2565
BasicCodegrees, 8-2913, 8-2961
BasicDegrees, 8-2913, 8-2961
BasicOrbit, 5-1619, 5-1705
BasicOrbitLength, 5-1619, 5-1705
BasicOrbitLengths, 5-1619, 5-1705
BasicOrbits, 5-1619
BasicRootMatrices, 8-2957
BasicStabiliser, 5-1619, 5-1706
BasicStabiliserChain, 5-1619, 5-1706
BasicStabilizer, 5-1619, 5-1706
BasicStabilizerChain, 5-1619, 5-1706
Basis, 2-355, 2-602, 3-659, 3-790,

3-897, 3-937, 3-1102, 3-1149,
3-1166, 4-1405, 4-1430, 4-1439,
7-2425, 7-2455, 7-2461, 7-2477,
7-2524, 7-2570, 7-2634, 7-2717,
7-2762, 8-2992, 8-3017, 9-3192,
9-3277, 9-3319, 9-3717, 10-4089,
11-4398, 11-4439, 11-4489, 11-4503,
11-4586, 12-4795, 4796, 13-5080,
13-5175, 13-5215

BasisChange, 8-2876

BasisDenominator, 3-659
BasisElement, 2-602, 7-2425, 7-2478,

7-2524, 7-2682, 8-3017, 9-3192,
9-3277, 9-3319

BasisMatrix, 2-602, 3-659, 3-738, 3-898,
3-937, 3-1102, 3-1149, 7-2461,
7-2554, 7-2642, 9-3319, 13-5080,
13-5215

BasisOfDifferentialsFirstKind, 3-1177,
9-3698

BasisOfHolomorphicDifferentials, 3-1177,
9-3698

BasisProduct, 7-2434, 7-2682, 8-3010
BasisProducts, 7-2435, 8-3010
BasisReduction, 3-672, 673
Basket, 9-3841, 9-3843
BBSModulus, 13-5278
BCHBound, 13-5128
BCHCode, 13-5108
BDLC, 13-5131
BDLCLowerBound, 13-5126
BDLCUpperBound, 13-5126
Bell, 2-296, 12-4808
BerlekampMassey, 13-5275
BernoulliApproximation, 2-509, 12-4808
BernoulliNumber, 2-509, 12-4808
BernoulliPolynomial, 2-438, 12-4808
BesselFunction, 2-507
BesselFunctionSecondKind, 2-508
BestApproximation, 2-490
BestDimensionLinearCode, 13-5131
BestKnownLinearCode, 13-5130
BestKnownQuantumCode, 13-5257
BestLengthLinearCode, 13-5130
BestTranslation, 2-326
BettiNumber, 9-3333, 10-4095, 12-4706
BettiNumbers, 9-3333, 9-3844
BettiTable, 9-3333
BFSTree, 12-4966, 12-5037
BianchiCuspForms, 11-4673
Bicomponents, 12-4957, 12-5034
BigO, 4-1282, 4-1327
BigPeriodMatrix, 10-4208
BinaryForms, 9-3386
BinaryQuadraticForms, 3-753
BinaryResidueCode, 13-5184
BinaryString, 1-66
BinaryTorsionCode, 13-5184
Binomial, 2-296, 12-4807
bInvariants, 10-3951, 10-4113
BipartiteGraph, 12-4929
Bipartition, 12-4954, 12-5030
BiquadraticResidueSymbol, 3-843
BitFlip, 13-5269
BitPrecision, 2-480, 2-483
BKLC, 13-5130
BKLCLowerBound, 13-5126
BKLCUpperBound, 13-5126



viii INDEX OF INTRINSICS

BKQC, 13-5257
BLLC, 13-5130
BLLCLowerBound, 13-5126
BLLCUpperBound, 13-5126
Block, 12-4879, 12-4890
BlockDegree, 12-4887, 12-4889
BlockDegrees, 12-4887
BlockGraph, 12-4903, 12-4949
BlockGroup, 12-4899
BlockMatrix, 2-537
Blocks, 5-1716, 7-2776, 12-4886
BlocksAction, 5-1578
BlockSet, 12-4879
BlocksImage, 5-1578, 5-1716
BlockSize, 12-4887, 12-4889
BlockSizes, 12-4887
BlocksKernel, 5-1578
BlowUp, 9-3497
Blowup, 9-3664, 9-3871, 9-3896
BlumBlumShub, 13-5277
BlumBlumShubModulus, 13-5278
BogomolovNumber, 9-3853
BooleanPolynomialRing, 9-3201, 3202
Booleans, 1-11
BorderedDoublyCirculantQRCode, 13-5112
Borel, 12-4760
BorelSubgroup, 12-4760
Bottom, 3-991, 5-1506, 7-2707
Bound, 3-979
Boundary, 12-4697
BoundaryIntersection, 11-4375
BoundaryMap, 4-1445, 11-4450
BoundaryMaps, 4-1445
BoundaryMatrix, 12-4706
BoundaryPoints, 12-4786
BoundedFSubspace, 11-4603
BQPlotkinSum, 13-5187
BraidGroup, 6-2096, 6-2298, 8-2932
Branch, 8-3153
BranchVertexPath, 12-4967
BrandtModule, 11-4485, 4486, 11-4495,

11-4505
BrandtModuleDimension, 11-4494, 4495
BrandtModuleDimensionOfNewSubspace,

11-4495
BrauerCharacter, 7-2776
BrauerClass, 11-4604
BravaisGroup, 5-1783
BreadthFirstSearchTree, 12-4966, 12-5037
Bruhat, 8-3119
BruhatDescendants, 8-2914
BruhatLessOrEqual, 8-2913
BSGS, 5-1615, 5-1703
BString, 1-66
BuildHomomorphismFromGradedCap, 7-2579
BurauRepresentation, 6-2337
BurnsideMatrix, 5-1827
CalabiYau, 9-3854

CalculateCanonicalClass, 9-3750
CalculateMultiplicities, 9-3750
CalculateTransverseIntersections, 9-3751
CalderbankShorSteaneCode, 13-5242
CambridgeMatrix, 7-2510
CanChangeRing, 11-4549
CanChangeUniverse, 1-181, 1-204
CanContinueEnumeration, 6-2217
CanDetermineIsomorphism, 11-4536
CanIdentifyGroup, 5-1947
CanNormalize, 3-1210
CanonicalBasis, 8-3085
CanonicalClass, 9-3751, 9-3889
CanonicalCoordinateIdeal, 9-3777
CanonicalCurve, 10-4232
CanonicalDissidentPoints, 9-3842
CanonicalDivisor, 3-1160, 9-3581, 9-3710,

9-3889
CanonicalElements, 8-3093
CanonicalFactorRepresentation, 6-2305
CanonicalGraph, 12-4980
CanonicalHeight, 10-4015, 10-4175
CanonicalImage, 9-3718
CanonicalInvolution, 11-4301
CanonicalLength, 6-2306
CanonicalLinearSystem, 9-3659
CanonicalLinearSystemFromIdeal, 9-3658
CanonicalMap, 9-3718
CanonicalModularPolynomial, 11-4295
CanonicalScheme, 10-4232
CanonicalSheaf, 9-3604
CanonicalWeightedModel, 9-3776
CanRedoEnumeration, 6-2217
CanSignNormalize, 3-1211
CanteautChabaudsAttack, 13-5124
Capacities, 12-5014
Capacity, 12-5014
car, 1-215
Cardinality, 2-399
CarlitzModule, 3-1205
CarmichaelLambda, 2-293
CartanInteger, 8-2897
CartanMatrix, 7-2540, 7-2754, 8-2809,

2810, 8-2817, 8-2835, 8-2865,
8-2912, 8-2960, 8-3066, 8-3113,
9-3752

CartanName, 8-2820, 8-2835, 8-2865,
8-2911, 8-2960, 8-3018, 8-3066,
8-3112

CartanSubalgebra, 8-3027
CartesianPower, 1-215
CartesianProduct, 1-215, 12-4946
Cartier, 3-1181, 9-3700, 9-3890
CartierRepresentation, 3-1181, 9-3700
CasimirValue, 8-3152
CasselsMap, 10-4066
CasselsTatePairing, 10-4025



INDEX OF INTRINSICS ix

cat, 1-66, 1-205, 1-223, 13-5118,
13-5200, 13-5230

cat:=, 1-66, 1-205, 1-223
Catalan, 2-483, 12-4807
Category, 1-28, 1-176, 2-266, 2-268,

2-285, 2-287, 2-335, 2-337, 2-354,
2-357, 2-373, 2-377, 2-397, 2-415,
2-417, 2-447, 2-479, 480, 3-657,
3-757, 3-782, 3-793, 3-884, 3-905,
3-1045, 3-1047, 3-1062, 3-1097,
3-1130, 3-1142, 3-1156, 4-1230,
4-1316, 4-1318, 4-1327, 1328, 7-2471,
7-2764, 9-3407, 9-3413, 9-3430,
9-3433, 10-3915, 10-3953, 10-3956,
10-3959, 10-3969, 11-4488, 12-4854,
4855

CayleyGraph, 12-4947
Ceiling, 2-290, 2-314, 2-359, 2-483
Cell, 5-1630
CellNumber, 5-1629
CellSize, 5-1630
Center, 2-266, 2-285, 2-335, 4-1230,

5-1493, 5-1586, 5-1690, 5-1832,
6-2058, 6-2276, 8-3026, 11-4375

CenterDensity, 3-682
CenterPolynomials, 8-3116
CentralCharacter, 3-818, 3-821, 11-4657,

11-4682
CentralCollineationGroup, 12-4744
CentralEndomorphisms, 3-731, 5-1782
CentralExtension, 5-1855
CentralExtensionProcess, 5-1855
CentralExtensions, 5-1855
CentralIdempotents, 7-2449
Centraliser, 5-1490, 1491, 5-1508, 5-1553,

5-1821, 6-2058, 6-2272, 2273, 7-2445,
7-2447, 7-2554, 7-2557, 8-3026

CentraliserOfInvolution, 5-1712, 1713
CentralisingMatrix, 5-1718
Centralizer, 5-1490, 1491, 5-1508, 5-1553,

5-1670, 5-1821, 6-2058, 6-2272, 2273,
7-2445, 7-2447, 7-2518, 7-2554,
7-2557, 7-2577, 8-3026

CentralizerGLZ, 5-1783, 5-1785
CentralizerOfNormalSubgroup, 5-1553
CentralOrder, 5-1656
CentralValue, 10-4257
Centre, 2-266, 2-373, 3-784, 3-889,

3-1045, 4-1316, 5-1493, 5-1586,
5-1690, 5-1832, 6-2058, 6-2276,
7-2445, 7-2518, 7-2577, 7-2764,
8-3026

CentredAffinePatch, 9-3523
CentreDensity, 3-682
CentreOfEndomorphismAlgebra, 5-1782
CentreOfEndomorphismRing, 3-731, 5-1782,

7-2714
CentrePolynomials, 8-3116

CFP, 6-2305
Chabauty, 10-4071, 4072, 10-4191
Chabauty0, 10-4191
ChainComplex, 12-4707
ChainMap, 4-1450
ChainmapToCohomology, 7-2616
ChangeAlgebra, 7-2585
ChangeAmbient, 12-4793
ChangeBase, 5-1622
ChangeBasis, 7-2434, 7-2444, 8-2980
ChangeDerivation, 9-3417, 9-3439
ChangeDifferential, 9-3418, 9-3439
ChangeDirectory, 1-90
ChangeField, 3-1218
ChangeIdempotents, 7-2579
ChangeModel, 3-1213
ChangeOfBasisMatrix, 5-1701
ChangeOrder, 9-3216, 3217, 9-3284
ChangePrecision, 2-483, 3-953, 4-1279,

4-1289, 4-1327, 4-1330, 4-1340,
7-2791, 9-3412

ChangeRepresentationType, 7-2553
ChangeRing, 2-415, 2-448, 2-538, 2-570,

3-660, 4-1327, 4-1350, 4-1386,
4-1400, 5-1646, 7-2425, 7-2485,
7-2518, 7-2692, 7-2732, 8-3017,
8-3043, 8-3081, 8-3111, 9-3216,
9-3283, 9-3326, 10-3944, 10-4105,
10-4125, 11-4549

ChangeSupport, 12-4928, 12-5007
ChangeUniverse, 1-181, 1-204, 4-1400
ChangGraphs, 12-4950
Character, 3-1219
CharacterDegrees, 5-1510, 5-1851, 7-2762,

2763
CharacterDegreesPGroup, 5-1851, 7-2763
Characteristic, 2-266, 2-286, 2-335,

2-356, 2-375, 2-416, 2-448, 2-479,
3-788, 3-893, 3-1046, 3-1062,
3-1101, 4-1230, 4-1278, 4-1317,
4-1328, 7-2471

CharacteristicPolynomial, 2-379, 2-546,
3-798, 3-910, 3-1133, 1134, 4-1292,
5-1656, 7-2460, 7-2522, 7-2633,
11-4573, 12-4950, 13-5275

CharacteristicPolynomialFromTraces,
10-4095

CharacteristicSeries, 5-1999
CharacteristicVector, 2-588, 4-1401
CharacterMultiset, 8-3162, 8-3166
CharacterRing, 7-2759
CharacterTable, 5-1510, 5-1608, 5-1700,

5-1851, 6-2070, 7-2761
CharacterTableConlon, 5-1851, 7-2762
CharacterTableDS, 7-2761
CharacterWithSchurIndex, 7-2771
ChebyshevFirst, 2-436
ChebyshevSecond, 2-436



x INDEX OF INTRINSICS

ChebyshevT, 2-436
ChebyshevU, 2-436
CheckCodimension, 9-3844
CheckFunctionalEquation, 10-4264
CheckPolynomial, 13-5083
CheckWeilPolynomial, 10-4285
ChernNumber, 9-3765
ChevalleyBasis, 8-3021, 3022
ChevalleyGroup, 5-1880
ChevalleyGroupOrder, 5-1882
ChevalleyOrderPolynomial, 5-1881
chi, 2-345
ChiefFactors, 5-1589, 5-1693
ChiefSeries, 5-1589, 5-1693, 5-1833
ChienChoyCode, 13-5110
ChineseRemainderTheorem, 2-312, 2-332,

2-424, 3-946, 3-1143
Cholesky, 3-700
ChromaticIndex, 12-4967
ChromaticNumber, 12-4967
ChromaticPolynomial, 12-4967
cInvariants, 10-3951, 10-4113
Class, 5-1496, 5-1502, 5-1541, 5-1664,

5-1815
ClassCentraliser, 5-1544, 5-1665
Classes, 5-1497, 5-1541, 5-1664, 5-1815,

12-4989
ClassField, 4-1309
ClassFunctionSpace, 7-2759
ClassGroup, 2-285, 2-355, 3-758, 3-801,

3-838, 3-914, 3-1123, 3-1172, 9-3714
ClassGroupAbelianInvariants, 3-1123,

3-1172, 9-3716
ClassGroupCyclicFactorGenerators, 3-916
ClassGroupExactSequence, 3-1123, 3-1174
ClassGroupGenerationBound, 3-1171
ClassGroupGetUseMemory, 3-920
ClassGroupPRank, 3-1125, 3-1175, 9-3716
ClassGroupPrimeRepresentatives, 3-915
ClassGroupSetUseMemory, 3-920
ClassGroupStructure, 3-758
ClassicalChangeOfBasis, 5-1734
ClassicalConstructiveRecognition, 5-1733
ClassicalCovariantsOfCubicSurface, 9-3820
ClassicalForms, 5-1899
ClassicalIntersection, 7-2676
ClassicalMaximals, 5-1921
ClassicalModularPolynomial, 11-4295
ClassicalPeriod, 11-4470
ClassicalRewrite, 5-1734
ClassicalRewriteNatural, 5-1735
ClassicalStandardGenerators, 5-1733
ClassicalStandardPresentation (type, d, q :

-), 5-1735
ClassicalSylow, 5-1923
ClassicalSylowConjugation, 5-1923
ClassicalSylowNormaliser, 5-1923
ClassicalSylowToPC, 5-1923

ClassicalType, 5-1904
ClassifyRationalSurface, 9-3794
ClassInvariants, 5-1666
ClassMap, 5-1496, 5-1544, 5-1664, 5-1815
ClassNumber, 3-757, 3-802, 3-839, 3-915,

3-1124, 3-1173, 9-3715
ClassNumberApproximation, 3-1171
ClassNumberApproximationBound, 3-1172
ClassPowerCharacter, 7-2767
ClassRepresentative, 2-332, 3-947,

5-1498, 5-1543, 5-1665, 5-1815
ClassRepresentativeFromInvariants, 5-1666
ClassTwo, 5-1850
CleanCompositionTree, 5-1742
ClearDenominator, 11-4574
ClearDenominators, 2-462
ClearPrevious, 1-76
ClearVerbose, 1-103
ClebschGraph, 12-4950
ClebschInvariants, 10-4133, 4134
ClebschSalmonInvariants, 9-3819
ClebschToIgusaClebsch, 10-4135
CliffordAlgebra, 7-2681, 2682
CliffordIndexOne, 9-3731
CliqueComplex, 12-4694
CliqueNumber, 12-4970
ClockCycles, 1-27
ClosestVectors, 3-684
ClosestVectorsMatrix, 3-684
CloseVectors, 3-686
CloseVectorsMatrix, 3-687
CloseVectorsProcess, 3-691
Closure, 8-3167
ClosureGraph, 12-4948
Cluster, 9-3495, 9-3510
cmpeq, 1-12
cmpne, 1-12
CMPoints, 11-4382
CMTwists, 11-4533
CO, 5-1885
CoblesRadicand, 9-3818
CoboundaryMapImage, 5-2022
CocycleMap, 5-2034
CodeComplement, 13-5114, 13-5229
CodeToString, 1-67
Codifferent, 3-947, 3-1149
Codimension, 9-3516, 9-3843
Codomain, 1-252, 1-254, 2-604, 4-1416,

5-1530, 5-1649, 6-2102, 6-2333,
7-2591, 8-3128, 9-3315, 9-3540,
9-3611, 10-4148, 11-4574, 11-4585

Coefficient, 2-418, 2-451, 4-1284,
4-1295, 4-1330, 4-1355, 7-2556,
9-3434, 11-4400, 12-4859

CoefficientField, 2-599, 3-783, 3-885,
3-1018, 3-1097, 1098, 3-1185, 4-1275,
4-1399, 7-2764, 9-3356, 9-3500,
11-4657, 11-4673, 13-5213



INDEX OF INTRINSICS xi

CoefficientHeight, 3-797, 3-909, 3-935,
3-1140

CoefficientIdeals, 3-898, 3-937, 3-1102,
3-1149, 4-1438

CoefficientLength, 3-797, 3-909, 3-935,
3-1140

CoefficientMap, 9-3577
CoefficientRing, 2-415, 2-447, 2-530,

2-563, 3-660, 3-783, 3-885, 3-976,
3-1018, 3-1061, 3-1097, 1098, 4-1275,
4-1327, 4-1341, 4-1350, 4-1366,
4-1399, 4-1426, 5-1647, 7-2424,
7-2454, 7-2471, 7-2487, 7-2512,
7-2553, 2554, 7-2570, 7-2689, 7-2717,
7-2791, 7-2793, 8-2982, 8-2991,
8-3016, 8-3043, 8-3066, 8-3081,
8-3109, 8-3111, 9-3289, 9-3309,
9-3356, 9-3430, 9-3500, 9-3653,
9-3884, 10-3953, 10-3956, 10-4138,
10-4153, 10-4203, 10-4209, 11-4405,
11-4657, 11-4673, 12-4854

Coefficients, 2-418, 2-450, 4-1284,
4-1330, 4-1344, 4-1355, 7-2474,
7-2556, 8-3045, 8-3083, 9-3312,
9-3434, 10-3950

CoefficientsAndMonomials, 2-452, 9-3312
CoefficientsNonSpiral, 4-1357
CoefficientSpace, 9-3577
Coercion, 1-251
Cofactor, 2-545
Cofactors, 2-545
CohenCoxeterName, 8-2957
CohomologicalDimension, 5-1509, 5-1606,

5-2016, 2017, 7-2755
CohomologicalDimensions, 5-2016, 7-2755
Cohomology, 5-2034
CohomologyClass, 5-2033
CohomologyDimension, 9-3347, 9-3619
CohomologyElementToChainMap, 7-2609
CohomologyElementToCompactChainMap, 7-2609
CohomologyGeneratorToChainMap, 7-2601
CohomologyGroup, 5-2016
CohomologyLeftModuleGenerators, 7-2601
CohomologyModule, 3-1016, 5-2014, 2015
CohomologyRightModuleGenerators, 7-2600
CohomologyRing, 7-2610
CohomologyRingGenerators, 7-2600
CohomologyRingQuotient, 7-2616
CohomologyToChainmap, 7-2616
CoisogenyGroup, 8-2870, 8-2913, 8-2961,

8-3114
Cokernel, 2-605, 4-1416, 4-1450, 7-2591,

9-3316, 9-3612, 11-4567, 11-4597
Collect, 6-2235, 8-3153
CollectRelations, 6-2233
CollineationGroup, 12-4739
CollineationGroupStabilizer, 12-4739
CollineationSubgroup, 12-4739

Colon, 7-2462
ColonIdeal, 3-943, 3-1143, 9-3227, 9-3324
ColonIdealEquivalent, 9-3227
ColonModule, 9-3324
Column, 9-3312, 12-4831
ColumnLength, 12-4832
Columns, 12-4831
ColumnSkewLength, 12-4831
ColumnSubmatrix, 2-532, 533, 2-567
ColumnSubmatrixRange, 2-533, 2-567
ColumnWeight, 2-564
ColumnWeights, 2-564, 9-3309
ColumnWord, 12-4833
CombineIdealFactorisation, 9-3582
CombineInvariants, 3-978
COMinus, 5-1887
CommonComplement, 2-627
CommonEigenspaces, 7-2532
CommonModularStructure, 11-4542
CommonOverfield, 2-367
CommonZeros, 3-1137, 9-3704
Commutator, 8-3118
CommutatorGraph, 8-2991
CommutatorIdeal, 7-2446, 7-2646
CommutatorModule, 7-2445
CommutatorSubgroup, 5-1490, 5-1552,

5-1585, 5-1670, 5-1690, 5-1821,
5-1832, 6-2058, 6-2141, 6-2272

comp, 2-275, 3-786, 3-891
CompactInjectiveResolution, 7-2597
CompactPart, 12-4789
CompactPresentation, 5-1864
CompactProjectiveResolution, 7-2593,

7-2608
CompactProjectiveResolutionPGroup, 7-2608
CompactProjectiveResolutionsOfSimpleModules,

7-2593
CompanionMatrix, 2-433, 7-2510, 9-3446
Complement, 2-601, 9-3577, 11-4450,

11-4606, 12-4881, 12-4943
ComplementaryDivisor, 3-1170, 9-3713
ComplementaryErrorFunction, 2-510
ComplementBasis, 5-1825
ComplementOfImage, 11-4606
Complements, 5-1597, 5-1836, 7-2704
Complete, 6-2107, 6-2328
CompleteClassGroup, 3-920
CompleteDigraph, 12-4931
CompleteGraph, 12-4930
CompleteKArc, 12-4734
CompleteTheSquare, 10-4105
CompleteUnion, 12-4946
CompleteWeightEnumerator, 13-5101,

13-5195, 13-5225, 5226
Completion, 2-275, 2-353, 3-786, 3-891,

3-1159, 4-1306, 9-3420, 9-3441,
9-3693

Complex, 4-1443



xii INDEX OF INTRINSICS

ComplexCartanMatrix, 8-2957
ComplexConjugate, 2-289, 2-358, 2-484,

3-792, 3-843, 3-852, 3-902
ComplexEmbeddings, 11-4418
ComplexField, 2-477
ComplexReflectionGroup, 8-2953, 2954
ComplexRootDatum, 8-2959
ComplexRootMatrices, 8-2956
ComplexToPolar, 2-482
ComplexValue, 11-4347, 11-4372
Component, 1-216, 9-3750, 12-4956, 4957,

12-5034
ComponentGroup, 9-3728
ComponentGroupOfIntersection, 11-4595
ComponentGroupOfKernel, 11-4564
ComponentGroupOrder, 11-4474, 11-4646
Components, 1-251, 3-1017, 9-3536,

12-4956, 12-5034
ComposeTransformations, 10-4113
Composite, 4-1274
CompositeFields, 3-778, 3-866
Composition, 3-755, 3-1117, 4-1332,

7-2773
CompositionFactors, 5-1495, 5-1590,

5-1693, 5-1833, 7-2426, 7-2699,
8-3029

CompositionSeries, 5-1585, 5-1833,
6-2067, 7-2426, 7-2699, 8-3029

CompositionTree, 5-1739
CompositionTreeCBM, 5-1741
CompositionTreeElementToWord, 5-1741
CompositionTreeFactorNumber, 5-1741
CompositionTreeFastVerification, 5-1740
CompositionTreeNiceGroup, 5-1740
CompositionTreeNiceToUser, 5-1740
CompositionTreeOrder, 5-1741
CompositionTreeReductionInfo, 5-1741
CompositionTreeSeries, 5-1741
CompositionTreeSLPGroup, 5-1740
CompositionTreeVerify, 5-1740
Compositum, 3-778, 3-866
ComputePrimeFactorisation, 9-3583
ComputeReducedFactorisation, 9-3582
Comultiplication, 8-3087
ConcatenatedCode, 13-5118
CondensationMatrices, 7-2540
CondensedAlgebra, 7-2536
ConditionalClassGroup, 3-802, 3-915
ConditionedGroup, 5-1860
Conductor, 2-344, 2-356, 3-755, 3-812,

3-821, 3-838, 3-852, 3-896, 3-1018,
3-1196, 1197, 3-1219, 7-2643, 10-4005,
10-4062, 10-4078, 10-4087, 10-4269,
11-4489, 11-4495, 11-4532, 11-4682

ConductorRange, 10-4059
Cone, 9-3872, 12-4703, 12-4779
ConeIndices, 9-3873
ConeInSublattice, 12-4780

ConeIntersection, 9-3873
ConeQuotientByLinearSubspace, 12-4780
Cones, 9-3872
ConesOfCodimension, 9-3872
ConesOfMaximalDimension, 9-3873
ConeToPolyhedron, 12-4781
ConeWithInequalities, 12-4779
ConformalHamiltonianLieAlgebra, 8-3006
ConformalOrthogonalGroup, 5-1885
ConformalOrthogonalGroupMinus, 5-1887
ConformalOrthogonalGroupPlus, 5-1886
ConformalSpecialLieAlgebra, 8-3005
ConformalSymplecticGroup, 5-1884
ConformalUnitaryGroup, 5-1883
CongruenceGroup, 11-4419, 11-4467
CongruenceGroupAnemic, 11-4420
CongruenceImage, 5-1762
CongruenceModulus, 11-4472, 11-4613
CongruenceSubgroup, 11-4339
Conic, 9-3651, 10-3914, 10-3928, 12-4734
ConjecturalRegulator, 10-4053, 10-4077
ConjecturalSha, 10-4077
ConjugacyClasses, 5-1497, 5-1541, 5-1664,

5-1815, 7-2649, 8-2912
Conjugate, 2-289, 2-358, 2-484, 3-755,

3-797, 3-843, 3-845, 3-853, 3-908,
5-1490, 5-1552, 5-1669, 5-1821,
6-2161, 6-2272, 7-2465, 7-2633,
7-2651, 12-4835

ConjugateIntoBorel, 8-3119
ConjugateIntoTorus, 8-3119
ConjugatePartition, 12-4830
Conjugates, 3-796, 3-908, 3-1049, 5-1496,

5-1502, 5-1541, 5-1664, 5-1815
ConjugatesToPowerSums, 3-990
ConjugateTranspose, 2-622
ConjugationClassLength, 8-3171
Connect, 9-3750
ConnectedKernel, 11-4564
ConnectingHomomorphism, 4-1454
ConnectionNumber, 12-4890
ConnectionPolynomial, 13-5275
Consistency, 6-2233
ConstaCyclicCode, 13-5107
ConstantCoefficient, 2-418, 3-1204
ConstantField, 3-1097, 9-3407
ConstantFieldExtension, 3-1101, 9-3419,

9-3440
ConstantMap, 9-3533
ConstantRing, 9-3407, 9-3430
ConstantWords, 13-5104
Constituent, 1-236
Constituents, 3-737, 7-2700
ConstituentsWithMultiplicities, 7-2700
Constraint, 13-5289
Construction, 5-1974–1977
ConstructionX, 13-5119
ConstructionX3, 13-5119



INDEX OF INTRINSICS xiii

ConstructionX3u, 13-5119
ConstructionXChain, 13-5119
ConstructionXX, 13-5120
ConstructionY1, 13-5122
ConstructTable, 7-2553
ContactLieAlgebra, 8-3007
ContainsQuadrangle, 12-4733
Content, 2-426, 2-462, 3-658, 3-845,

3-936, 3-943, 12-4817, 12-4820,
12-4833

ContentAndPrimitivePart, 2-426, 2-462
Contents, 4-1427
Continuations, 4-1305
ContinuedFraction, 2-490
ContinueEnumeration, 6-2217
Contpp, 2-426, 2-462
Contract, 12-4944, 12-5025
Contraction, 12-4881
Contravariants, 10-4114
ContravariantsOfCubicSurface, 9-3820
ControlledNot, 13-5269
Convergents, 2-490
Converse, 12-4949, 12-5027
ConvertFromManinSymbol, 11-4437
ConvertToCWIFormat, 2-323
Convolution, 4-1332
ConwayPolynomial, 2-382
Coordelt, 3-653
Coordinate, 9-3493, 9-3662
CoordinateLattice, 3-647
CoordinateMatrix, 9-3200
CoordinateRing, 3-660, 9-3490, 9-3501,

9-3648, 9-3653
Coordinates, 2-602, 3-655, 656, 4-1405,

7-2437, 7-2524, 7-2554, 7-2633,
8-3036, 9-3200, 9-3312, 9-3493,
9-3648, 9-3662, 12-4731, 13-5086,
13-5203, 13-5217

CoordinateSpace, 3-657
CoordinatesToElement, 3-653
CoordinateVector, 3-656
cop, 1-235
COPlus, 5-1886
CoprimeBasis, 2-309, 3-945
CoprimeBasisInsert, 3-946
CoprimeRepresentative, 3-947
CordaroWagnerCode, 13-5076
Core, 5-1491, 5-1553, 5-1670, 5-1821,

6-2058, 6-2161, 6-2273
CoreflectionGroup, 8-2931
CoreflectionMatrices, 8-2841, 8-2881,

8-2926, 8-2968
CoreflectionMatrix, 8-2841, 8-2881,

8-2926, 8-2968
CorestrictCocycle, 5-2022
CorestrictionMapImage, 5-2022
Coroot, 8-2839, 8-2876, 8-2919, 8-2966,

8-3121

CorootAction, 8-2931
CorootGSet, 8-2930
CorootHeight, 8-2843, 8-2884, 8-2923,

8-3124
CorootLattice, 8-2874
CorootNorm, 8-2844, 8-2884, 8-2923,

8-3124
CorootNorms, 8-2843, 8-2884, 8-2923,

8-3124
CorootPosition, 8-2839, 8-2876, 8-2919,

8-2966, 8-3121
Coroots, 8-2839, 8-2876, 8-2919, 8-2965,

8-3121
CorootSpace, 8-2838, 8-2874, 8-2918,

8-2965, 8-3121
Correlation, 13-5190
CorrelationGroup, 12-4764
Cos, 2-494, 4-1336
Cosec, 2-494, 495
Cosech, 2-497
CosetAction, 5-1479, 5-1490, 5-1582,

5-1688, 5-1837, 6-2180, 6-2228,
6-2270

CosetDistanceDistribution, 13-5105
CosetEnumerationProcess, 6-2211
CosetGeometry, 12-4756, 12-4761
CosetImage, 5-1479, 5-1490, 5-1582,

5-1688, 5-1837, 6-2180, 2181, 6-2228,
6-2271

CosetKernel, 5-1479, 5-1490, 5-1582,
5-1688, 5-1837, 6-2181, 6-2228,
6-2271

CosetLeaders, 13-5088
CosetRepresentatives, 11-4341, 11-4350
CosetSatisfying, 6-2179, 6-2218
CosetSpace, 6-2173, 6-2229
CosetsSatisfying, 6-2179, 6-2218
CosetTable, 5-1489, 5-1601, 5-1695,

5-1837, 6-2170, 6-2219, 6-2269
CosetTableToPermutationGroup, 6-2171
CosetTableToRepresentation, 6-2171
Cosh, 2-497, 4-1336
Cot, 2-494
Coth, 2-497
Counit, 8-3087
CountPGroups, 5-1950
Covalence, 12-4887
CoverAlgebra, 7-2578
CoveringCovariants, 10-4114
CoveringRadius, 3-697, 13-5105
CoveringStructure, 1-29
CoweightLattice, 8-2886, 8-2924, 8-2969,

8-3125
CoxeterDiagram, 8-2821, 8-2835, 8-2865,

8-2911, 8-2960, 8-3113
CoxeterElement, 8-2917, 8-2962, 8-3116
CoxeterForm, 8-2841, 8-2881, 8-2921



xiv INDEX OF INTRINSICS

CoxeterGraph, 8-2807, 8-2816, 8-2835,
8-2865, 8-2912, 8-2960, 8-3113

CoxeterGroup, 6-2094, 6-2096, 8-2824,
8-2848, 8-2899, 8-2904–2909, 8-2938,
8-2971

CoxeterGroupFactoredOrder, 8-2806, 2807,
8-2811, 8-2813, 8-2819

CoxeterGroupOrder, 8-2806, 2807, 8-2811,
8-2813, 8-2819, 8-2836, 8-2869

CoxeterLength, 8-2916, 8-2969
CoxeterMatrix, 8-2806, 8-2816, 8-2835,

8-2865, 8-2912, 8-2960, 8-3113
CoxeterNumber, 8-2917, 8-2962, 8-3113
CoxMonomialLattice, 9-3880, 9-3886
CoxRing, 9-3882, 9-3884
Cputime, 1-26
CreateCharacterFile, 2-320
CreateCycleFile, 2-320
CreateK3Data, 9-3855
CremonaDatabase, 10-4058
CremonaReference, 10-4060
CriticalStrip, 11-4641
CrossCorrelation, 13-5279
CrossPolytope, 12-4778
CRT, 2-312, 2-424, 3-946, 3-1143
CryptographicCurve, 10-3987
CrystalGraph, 8-3092
CSp, 5-1884
CSSCode, 13-5242
CU, 5-1883
CubicFromPoint, 10-4105
CubicSurfaceByHexahedralCoefficients,

9-3818
CubicSurfaceFromClebschSalmon, 9-3819
Cunningham, 2-305
Current, 5-1946, 5-1965, 5-1970, 5-1984
CurrentLabel, 5-1946, 5-1965, 5-1970,

5-1984
Curve, 9-3501, 9-3507, 9-3649, 3650,

9-3661, 3662, 9-3683, 9-3692, 9-3698,
3699, 9-3702, 9-3705, 9-3707,
9-3839, 10-3956, 10-3959, 10-3969,
10-4108, 10-4153, 13-5151

CurveDifferential, 9-3697
CurveDivisor, 9-3697
CurvePlace, 9-3697
CurveQuotient, 9-3687
Curves, 9-3841
Cusp, 11-4322
CuspForms, 11-4393
CuspidalInducingDatum, 11-4683
CuspidalProjection, 11-4407
CuspidalSubgroup, 11-4634
CuspidalSubspace, 11-4407, 11-4449,

11-4491, 11-4502
CuspIsSingular, 11-4322
CuspPlaces, 11-4322
Cusps, 11-4342, 11-4350

CuspWidth, 11-4342
CutVertices, 12-4957, 12-5034
Cycle, 5-1569, 6-2313
CycleCount, 2-320
CycleDecomposition, 5-1569
CycleStructure, 5-1537
CyclicCode, 13-5077, 13-5106, 13-5173
CyclicGroup, 5-1475, 5-1532, 5-1794,

6-2097, 6-2263
CyclicPolytope, 12-4779
CyclicSubgroups, 5-1501, 5-1562, 5-1826
CyclicToRadical, 3-987
CyclotomicAutomorphismGroup, 3-852
CyclotomicData, 10-4228
CyclotomicFactors, 13-5173
CyclotomicField, 3-849
CyclotomicOrder, 3-852
CyclotomicPolynomial, 3-850
CyclotomicRelativeField, 3-852
CyclotomicUnramifiedExtension, 4-1270
Cylinder, 12-4704
D), 10-4159
Darstellungsgruppe, 6-2098
Data, 5-1948
DawsonIntegral, 2-509
Decimation, 13-5279
Decode, 13-5135
DecodingAttack, 13-5124
DecomposeAutomorphism, 8-3129
DecomposeCharacter, 8-3151
DecomposeUsing, 11-4600
DecomposeVector, 2-601
Decomposition, 2-332, 2-345, 2-355,

3-807, 808, 3-812, 3-913, 3-944,
3-955, 3-1147, 3-1153, 3-1220,
7-2704, 7-2773, 9-3709, 11-4445,
11-4491, 11-4502, 11-4598

DecompositionField, 3-966, 3-1018
DecompositionGroup, 3-810, 3-958, 3-965,

3-1018, 1019, 4-1370
DecompositionMatrix, 7-2754
DecompositionMultiset, 8-3162, 8-3166
DecompositionType, 3-944, 3-1019, 3-1147,

3-1153, 3-1198
DecompositionTypeFrequency, 3-1019
Decycle, 6-2314
DedekindEta, 2-502
DedekindTest, 2-427
DeepHoles, 3-697
DefinesAbelianSubvariety, 11-4527
DefinesHomomorphism, 6-2107
DefiningConstantField, 3-1097
DefiningEquations, 9-3540, 10-4107
DefiningIdeal, 9-3501, 9-3653, 10-3915
DefiningMap, 4-1275
DefiningMatrix, 12-4800
DefiningModularSymbolsSpace, 11-4682
DefiningMonomial, 9-3893



INDEX OF INTRINSICS xv

DefiningPoints, 4-1238
DefiningPolynomial, 2-356, 2-375, 3-789,

3-895, 3-1102, 3-1220, 4-1275,
4-1342, 4-1366, 4-1383, 9-3501,
9-3653, 10-3915, 10-3954, 10-4141,
10-4203

DefiningPolynomials, 3-1102, 9-3501,
9-3540, 10-4228

DefiningSubschemePolynomial, 10-3956
DefiniteGramMatrix, 11-4366
DefiniteNorm, 11-4366
DefRing, 8-3109
DegeneracyMap, 11-4443
DegeneracyMatrix, 11-4444
DegeneracyOperator, 11-4660
Degree, 2-332, 2-356, 2-375, 2-419,

2-455, 2-599, 3-658, 3-788, 3-810,
3-828, 3-893, 3-935, 3-957, 3-992,
3-1018, 3-1045, 3-1064, 3-1101,
3-1136, 3-1152, 3-1157, 3-1164,
3-1185, 3-1198, 3-1204, 3-1219,
4-1275, 4-1317, 4-1331, 4-1366,
4-1426, 4-1450, 5-1526, 5-1537,
5-1567, 5-1629, 5-1647, 5-1654,
7-2437, 7-2454, 7-2512, 7-2767,
8-3036, 8-3045, 8-3083, 9-3188,
9-3309, 9-3312, 9-3317, 9-3435,
9-3511, 9-3516, 9-3575, 9-3585,
9-3611, 9-3653, 9-3678, 9-3694,
9-3706, 9-3711, 9-3754, 9-3839,
9-3843, 10-3965, 10-4107, 10-4132,
10-4228, 11-4405, 11-4489, 11-4504,
11-4574, 11-4620, 12-4859, 12-4953,
12-4955, 12-5031, 5032

Degree6DelPezzoType2 1, 9-3809
Degree6DelPezzoType2 2, 9-3809
Degree6DelPezzoType2 3, 9-3809
Degree6DelPezzoType3, 9-3809
Degree6DelPezzoType4, 9-3809
Degree6DelPezzoType6, 9-3809
DegreeMap, 11-4604
DegreeOfExactConstantField, 3-1103, 3-1197
DegreeOfFieldExtension, 5-1718
DegreeOnePrimeIdeals, 3-914
DegreeRange, 12-4912
DegreeReduction, 5-1583
Degrees, 4-1444, 12-4912
DegreeSequence, 12-4954, 12-4956, 12-5031,

12-5033
DegreesOfCohomologyGenerators, 7-2601
Delaunay, 10-4218
delete, 1-10, 1-243, 5-1941
DeleteCapacities, 12-5015
DeleteCapacity, 12-5015
DeleteData, 5-1601
DeleteEdgeLabels, 12-5015
DeleteGenerator, 6-2206, 6-2396
DeleteHeckePrecomputation, 11-4661

DeleteLabel, 12-5011, 12-5015
DeleteLabels, 12-5012, 12-5015
DeleteRelation, 6-2206, 2207, 6-2396
DeleteVertexLabels, 12-5012
DeleteWeight, 12-5015
DeleteWeights, 12-5015
DelPezzoSurface, 9-3804, 3805
DelsarteGoethalsCode, 13-5179
Delta, 2-503, 504
DeltaPreimage (G, g), 5-1910
Demazure, 8-3157
Denominator, 2-285, 2-357, 3-794, 3-906,

3-934, 3-1064, 3-1135, 3-1148,
3-1165, 7-2462, 9-3296, 9-3504,
9-3711, 11-4574

Density, 2-530, 2-563, 3-682
DensityEvolutionBinarySymmetric, 13-5163
DensityEvolutionGaussian, 13-5165
Depth, 2-589, 4-1404, 5-1861, 6-2253,

9-3378
DepthFirstSearchTree, 12-4966, 12-5038
Derivation, 9-3409, 9-3430
Derivative, 2-422, 2-457, 458, 3-976,

3-1065, 4-1295, 4-1331, 4-1359,
9-3417

DerivedGroup, 5-1493, 5-1585, 5-1690,
5-1832, 6-2141, 6-2277

DerivedGroupMonteCarlo, 5-1714
DerivedLength, 5-1493, 5-1585, 5-1690,

5-1833, 6-2276
DerivedSeries, 5-1493, 5-1585, 5-1690,

5-1833, 6-2277, 8-3030
DerivedSubgroup, 5-1493, 5-1585, 5-1690,

5-1832, 6-2058, 6-2141, 6-2277
DerksenIdeal, 9-3387, 9-3393
Descendants, 5-1848
DescentInformation, 10-4010, 10-4063
DescentMaps, 10-4066
Design, 12-4746, 12-4876, 12-4897
Detach, 1-47
DetachSpec, 1-49
Determinant, 2-544, 2-574, 3-658, 3-702,

3-704, 3-1218, 4-1427, 5-1656,
7-2521, 9-3752

Development, 12-4885
DFSTree, 12-4966, 12-5038
DiagonalAutomorphism, 8-3038, 8-3128
DiagonalForm, 2-460
Diagonalisation, 7-2533
Diagonalization, 3-699, 7-2533
DiagonalJoin, 2-538, 2-570, 7-2526, 2527
DiagonalMatrix, 2-525, 7-2510, 8-3010
DiagonalModel, 10-4105
DiagonalSparseMatrix, 2-562
DiagonalSum, 12-4835
Diagram, 12-4767
DiagramAutomorphism, 8-3038, 8-3089,

8-3128



xvi INDEX OF INTRINSICS

Diameter, 2-485, 12-4963, 13-5105
DiameterPath, 12-4963
DickmanRho, 2-293
DicksonFirst, 2-386, 2-437
DicksonInvariant, 2-624
DicksonNearfield, 2-395
DicksonPairs, 2-393
DicksonSecond, 2-386, 2-437
DicksonTriples, 2-393
DicyclicGroup, 5-1475
diff, 1-185
Difference, 9-3496
DifferenceSet, 12-4884
Different, 3-896, 3-913, 3-947, 3-1106,

3-1140, 3-1149
DifferentDivisor, 3-1160
Differential, 3-1176, 9-3409, 9-3417,

9-3430, 9-3698
DifferentialBasis, 3-1170, 3-1177,

9-3698, 9-3717
DifferentialFieldExtension, 9-3421
DifferentialIdeal, 9-3426
DifferentialLaurentSeriesRing, 9-3405
DifferentialOperator, 9-3454
DifferentialOperatorRing, 9-3428
DifferentialRing, 9-3404
DifferentialRingExtension, 9-3421
DifferentialSpace, 3-1099, 3-1171, 3-1176,

1177, 9-3698, 9-3717
Differentiation, 3-1139
DifferentiationSequence, 3-1139
Digraph, 12-4926
DihedralForms, 11-4413
DihedralGroup, 5-1475, 5-1532, 5-1794,

6-2097, 6-2263
DihedralSubspace, 11-4407
Dilog, 2-492
Dimension, 2-599, 2-602, 3-658, 3-704,

3-1165, 4-1427, 4-1438, 5-2015,
7-2424, 7-2454, 7-2488, 7-2524,
7-2570, 7-2585, 7-2708, 7-2718,
7-2791, 8-2836, 8-2867, 8-2912,
8-2992, 8-3016, 8-3066, 8-3112,
9-3244, 9-3284, 9-3292, 9-3516,
9-3575, 9-3717, 9-3837, 9-3840,
9-3843, 10-4153, 10-4209, 11-4405,
11-4489, 11-4504, 11-4529, 11-4554,
11-4586, 11-4657, 11-4673, 12-4694,
12-4793, 12-4795, 13-5079, 13-5214,
13-5262

DimensionByFormula, 11-4405
DimensionCuspForms, 11-4479
DimensionCuspFormsGamma0, 11-4479
DimensionCuspFormsGamma1, 11-4479
DimensionNewCuspFormsGamma0, 11-4479
DimensionNewCuspFormsGamma1, 11-4479
DimensionOfCentreOfEndomorphismRing,

3-731, 5-1782

DimensionOfEndomorphismRing, 3-731, 5-1782
DimensionOfExactConstantField, 3-1103
DimensionOfFieldOfGeometricIrreducibility,

9-3695
DimensionOfGlobalSections, 9-3619
DimensionOfHomology, 4-1445
DimensionOfKernelZ2, 13-5189
DimensionOfSpanZ2, 13-5189
DimensionsEstimate, 8-2998
DimensionsOfHomology, 4-1445
DimensionsOfInjectiveModules, 7-2571
DimensionsOfProjectiveModules, 7-2571
DimensionsOfTerms, 4-1445
DirectProduct, 5-1477, 5-1534, 5-1650,

5-1804, 6-2098, 6-2262, 6-2395,
8-2929, 8-3126, 9-3488, 9-3647,
11-4592, 13-5114, 13-5200, 13-5229

DirectSum, 3-664, 4-1400, 4-1445, 6-2058,
7-2435, 7-2515, 7-2517, 7-2692,
7-2718, 7-2737, 7-2791, 8-2846,
8-2889, 8-3025, 8-3163, 8-3166,
9-3323, 9-3609, 11-4592, 12-4795,
13-5114, 13-5199, 13-5229, 13-5255

DirectSumDecomposition, 7-2449, 7-2704,
8-2847, 8-2890, 8-3025, 8-3163,
8-3166

DirichletCharacter, 3-816, 3-1221,
11-4406, 11-4529, 11-4657

DirichletCharacterOverNF, 3-818
DirichletCharacterOverQ, 3-818
DirichletCharacters, 11-4405, 11-4530
DirichletGroup, 2-342, 3-811
DirichletRestriction, 3-815
Disconnect, 9-3750
Discriminant, 2-356, 2-432, 2-467, 2-623,

3-754, 3-788, 3-838, 3-845, 3-894,
3-1017, 3-1103, 4-1276, 4-1368,
7-2454, 7-2635, 7-2642, 10-3919,
10-3951, 10-4114, 10-4132, 11-4489,
11-4495, 11-4585

DiscriminantDivisor, 3-1197
DiscriminantFromShiodaInvariants, 10-4137
DiscriminantOfHeckeAlgebra, 11-4457
DiscriminantRange, 3-828
DiscToPlane, 11-4375
Display, 6-2234
DisplayBurnsideMatrix, 5-1827
DisplayCompTreeNodes, 5-1740
DisplayFareySymbolDomain, 11-4353
DisplayPolygons, 11-4351
Distance, 2-485, 4-1302, 11-4348,

11-4374, 12-4963, 12-5042, 13-5085,
13-5203, 13-5217

DistanceMatrix, 12-4965
DistancePartition, 12-4964
Distances, 12-5042
DistinctDegreeFactorization, 2-432
DistinctExtensions, 5-2026



INDEX OF INTRINSICS xvii

DistinguishedOrbitsOnSimples, 8-2867
div, 2-287, 2-337, 2-417, 2-423, 2-449,

2-459, 3-654, 3-808, 3-905, 3-942,
3-956, 3-1132, 3-1156, 3-1161,
4-1230, 4-1285, 4-1295, 4-1318,
4-1328, 4-1344, 7-2459, 7-2473,
9-3311, 9-3414, 9-3705, 9-3711

div:=, 2-287, 2-449, 4-1286, 7-2473
DivideOutIntegers, 11-4560
DivisionPoints, 10-3970
DivisionPolynomial, 10-3954
Divisor, 3-808, 3-955, 956, 3-1136,

3-1149, 3-1159, 3-1179, 9-3580,
9-3699, 9-3707–3709, 9-3888, 13-5151

DivisorClassGroup, 9-3887
DivisorClassLattice, 9-3880, 9-3887
DivisorGroup, 3-807, 3-954, 3-1099,

3-1155, 3-1159, 9-3580, 9-3707,
9-3888

DivisorIdeal, 7-2487, 9-3289
DivisorMap, 9-3612, 9-3718
DivisorOfDegreeOne, 3-1160, 9-3696
Divisors, 2-309, 2-311, 3-913, 3-944
DivisorSigma, 2-293
DivisorToSheaf, 9-3613
Dodecacode, 13-5242
Domain, 1-252, 1-254, 2-604, 3-812,

4-1383, 4-1416, 5-1530, 5-1648,
6-2102, 6-2333, 7-2591, 8-3128,
9-3315, 9-3540, 9-3611, 10-4148,
11-4574, 11-4585

DominantCharacter, 8-3152
DominantDiagonalForm, 3-726
DominantLSPath, 8-3090
DominantWeight, 8-2887, 8-2924, 8-2970,

8-3125
DotProduct, 2-611
DotProductMatrix, 2-611
Double, 10-4205
DoubleCoset, 5-1600, 6-2178
DoubleCosetRepresentatives, 5-1600
DoubleCosets, 6-2178
DoubleGenusOneModel, 10-4111
DoublePlotkinSum, 13-5188
DoublyCirculantQRCode, 13-5111
DoublyCirculantQRCodeGF4, 13-5112
Dual, 3-662, 4-1431, 4-1444, 6-2072,

7-2596, 7-2738, 8-2847, 8-2891,
8-2929, 8-2964, 8-3126, 9-3609,
11-4607, 12-4725, 12-4780, 12-4794,
12-4881, 13-5081, 13-5091, 13-5198,
13-5215, 13-5220

DualAtkinLehner, 11-4454
DualBasisLattice, 3-663
DualCoxeterForm, 8-2841, 8-2881, 8-2921
DualEuclideanWeightDistribution, 13-5194
DualFaceInDualFan, 9-3874
DualFan, 9-3870

DualHeckeOperator, 11-4453
DualIsogeny, 10-3964
DualityAutomorphism, 8-3129
DualKroneckerZ4, 13-5188
DualLeeWeightDistribution, 13-5193
DualMorphism, 8-2895
DualQuotient, 3-663
DualStarInvolution, 11-4454
DualVectorSpace, 11-4442
DualWeightDistribution, 13-5100, 13-5192,

13-5225
DuvalPuiseuxExpansion, 4-1251
DynkinDiagram, 8-2821, 8-2835, 8-2865,

8-2911, 8-2960, 8-3112
DynkinDigraph, 8-2813, 8-2817, 8-2835,

8-2865, 8-2912, 8-2960, 8-3113
E, 2-478
e, 2-478
E . i, 12-5009
E2NForm, 11-4324
E4Form, 11-4324
E6Form, 11-4324
Ealpha, 8-3090, 3091
EARNS, 5-1592
EasyBasis, 9-3199
EasyIdeal, 9-3199
EchelonForm, 2-548, 7-2527
EcheloniseWord, 6-2235
ECM, 2-307
ECMFactoredOrder, 2-308
ECMOrder, 2-308
ECMSteps, 2-308
EdgeCapacities, 12-5015
EdgeConnectivity, 12-4961, 12-5036
EdgeDeterminant, 9-3754
EdgeGroup, 12-4980
EdgeIndices, 12-4786, 12-5008
EdgeLabels, 9-3754, 12-5015
EdgeMultiplicity, 12-5008
Edges, 12-4785, 12-4934, 12-5008
EdgeSeparator, 12-4961, 12-5036
EdgeSet, 12-4934
EdgeUnion, 12-4946, 12-5026
EdgeWeights, 12-5015
EFAModuleMaps, 6-2281
EFAModules, 6-2282
EFASeries, 6-2277
EffectiveSubcanonicalCurves, 9-3846
EhrhartCoefficient, 12-4787
EhrhartCoefficients, 12-4787
EhrhartPolynomial, 12-4787
EhrhartSeries, 12-4787
EichlerInvariant, 7-2644
Eigenform, 11-4424, 11-4459, 11-4664
Eigenforms, 11-4664
Eigenspace, 2-547, 7-2523, 9-3837
Eigenvalues, 2-547, 7-2523
EightDescent, 10-4030



xviii INDEX OF INTRINSICS

Eisenstein, 2-499, 500, 3-761
EisensteinData, 11-4411
EisensteinProjection, 11-4407
EisensteinSeries, 11-4411
EisensteinSubspace, 11-4407, 11-4449,

11-4491, 11-4502
EisensteinTwo, 10-4020
Element, 2-397, 11-4624
ElementaryAbelianGroup, 6-2263
ElementaryAbelianNormalSubgroup, 5-1599
ElementaryAbelianQuotient, 5-1564, 5-1676,

5-1831, 6-2062, 6-2125, 6-2280
ElementaryAbelianSeries, 5-1596, 5-1692,

5-1833
ElementaryAbelianSeriesCanonical, 5-1596,

5-1692, 5-1834
ElementaryAbelianSubgroups, 5-1501,

5-1562, 5-1826
ElementaryDivisors, 2-552, 2-575, 4-1431,

7-2528
ElementaryPhiModule, 7-2791
ElementarySymmetricPolynomial, 9-3264,

9-3396
ElementaryToHomogeneousMatrix, 12-4870
ElementaryToMonomialMatrix, 12-4869
ElementaryToPowerSumMatrix, 12-4870
ElementaryToSchurMatrix, 12-4869
Elements, 2-342, 6-2327, 11-4627,

12-4759
ElementSequence, 5-1855
ElementSet, 5-1539
ElementToSequence, 1-67, 2-310, 2-344,

2-360, 2-372, 2-397, 2-418, 2-530,
2-563, 2-589, 3-655, 3-756, 3-800,
3-912, 3-952, 3-1131, 4-1284,
4-1315, 4-1330, 4-1344, 4-1402,
4-1437, 5-1524, 5-1644, 5-1808,
6-2053, 6-2083, 6-2252, 6-2305,
6-2352, 6-2370, 6-2397, 6-2411,
7-2437, 7-2459, 7-2525, 7-2556,
7-2633, 7-2693, 8-3036, 10-3950,
10-3969, 10-4143, 10-4162, 10-4205,
12-4731, 12-4817

ElementType, 1-29
EliasAsymptoticBound, 13-5128
EliasBound, 13-5126
Eliminate, 6-2186, 6-2208, 6-2397
EliminateGenerators, 6-2186
EliminateRedundancy, 6-2234
Elimination, 9-3534
EliminationIdeal, 9-3236
EllipticCurve, 9-3675, 10-3940–3942,

10-4059, 10-4231, 11-4424, 11-4477,
11-4648

EllipticCurveDatabase, 10-4058
EllipticCurveFromjInvariant, 10-3940
EllipticCurveFromPeriods, 10-4050
EllipticCurves, 10-4061

EllipticCurveSearch, 10-4077, 10-4088
EllipticCurveWithGoodReductionSearch,

10-4077
EllipticCurveWithjInvariant, 10-3940
EllipticExponential, 10-4051
EllipticInvariants, 11-4369, 11-4649
EllipticLogarithm, 10-4051
EllipticPeriods, 11-4649
EllipticPoints, 11-4342
elt, 1-216, 2-282, 283, 2-336, 2-354,

2-370, 371, 2-413, 2-447, 2-478,
2-587, 3-653, 3-754, 3-780, 3-877,
878, 3-1061, 3-1129, 1130, 4-1281,
1282, 4-1326, 4-1352, 4-1401,
5-1464, 5-1523, 5-1643, 7-2434,
7-2471, 7-2509, 7-2549, 7-2682,
7-2692, 7-2759, 8-3010, 8-3067,
8-3115, 10-4141, 10-4158, 13-5084,
13-5202, 13-5216

elt< >, 10-3967
Eltlist, 8-3116
Eltseq, 1-67, 1-200, 2-285, 2-310,

2-360, 2-372, 2-418, 2-530, 2-563,
2-589, 3-655, 3-756, 3-800, 3-912,
3-952, 3-1131, 3-1199, 3-1205,
4-1284, 4-1315, 4-1330, 4-1344,
4-1372, 4-1402, 4-1437, 5-1524,
5-1644, 5-1808, 6-2053, 6-2083,
6-2252, 6-2305, 6-2352, 6-2370,
6-2397, 6-2411, 7-2437, 7-2459,
7-2525, 7-2556, 7-2633, 7-2693,
8-3036, 9-3311, 9-3415, 9-3434,
10-3950, 10-3969, 10-4108, 10-4143,
10-4162, 10-4205, 11-4344, 11-4406,
11-4488, 11-4504, 11-4568, 11-4624,
12-4731, 12-4817

EltTup, 8-3068
Embed, 2-368, 3-784, 3-889, 3-1099,

7-2465, 7-2638, 2639
Embedding, 12-4974, 12-5039
EmbeddingMap, 3-784, 3-889, 3-992
EmbeddingMatrix, 7-2642
Embeddings, 11-4547
EmbeddingSpace, 4-1427
EmbedPlaneCurveInP3, 9-3566
EModule, 9-3307, 3308
EmptyBasket, 9-3841
EmptyDigraph, 12-4931
EmptyGraph, 12-4930
EmptyPolyhedron, 12-4781
EmptyScheme, 9-3496
EmptySubscheme, 9-3496
End, 11-4578
EndomorphismAlgebra, 4-1411, 5-1782,

7-2714
EndomorphismRing, 3-730, 5-1782, 7-2714,

10-4213
Endomorphisms, 3-730, 5-1782



INDEX OF INTRINSICS xix

EndpointWeight, 8-3091
EndVertices, 4-1241, 12-4937, 12-5009
Enumerate, 7-2465, 7-2654
EnumerationCost, 3-694
EnumerationCostArray, 3-694
eq, 1-11, 1-68, 1-183, 184, 1-209, 1-218,

2-268, 2-270, 2-274, 2-286, 287,
2-314, 2-336, 337, 2-339, 2-344,
2-356, 357, 2-376, 377, 2-397, 2-399,
2-416, 417, 2-435, 2-448, 449, 2-480,
481, 2-571, 2-600, 3-655, 3-659,
3-703, 704, 3-737, 3-756, 3-792,
3-794, 3-807, 3-901, 3-906, 3-939,
3-942, 3-952, 3-954, 3-992, 3-1014,
3-1046, 3-1048, 3-1062, 1063, 3-1126,
3-1132, 3-1145, 3-1156, 1157, 3-1160,
1161, 3-1178, 1179, 3-1198, 1199,
3-1202, 3-1204, 3-1222, 4-1230,
4-1279, 4-1286, 4-1317, 1318, 4-1328,
1329, 4-1342, 4-1344, 4-1350,
4-1358, 4-1371, 4-1385, 4-1406,
4-1428, 4-1437, 4-1439, 5-1466,
5-1485, 5-1508, 5-1538, 5-1551,
5-1601, 5-1654, 5-1659, 5-1811,
5-1820, 5-1872, 5-2004, 6-2061,
6-2064, 6-2086, 6-2166, 6-2174,
6-2254, 6-2268, 6-2316, 6-2352,
6-2370, 6-2383, 6-2391, 6-2411,
7-2428, 7-2430, 7-2456, 7-2459,
7-2462, 7-2473, 7-2483, 7-2488,
7-2520, 7-2525, 7-2633, 7-2696,
7-2708, 7-2765, 8-2835, 8-2864,
8-3013, 8-3068, 8-3091, 8-3110,
8-3148, 9-3229, 9-3281, 9-3289,
9-3313, 9-3323, 9-3410, 9-3414,
9-3431, 9-3434, 9-3487, 9-3502,
9-3504, 9-3507, 9-3541, 9-3574,
9-3580, 9-3584, 9-3662, 9-3672,
9-3682, 9-3699, 9-3702, 9-3705,
9-3707, 9-3712, 9-3745, 9-3753,
9-3837, 9-3840, 9-3844, 9-3871,
9-3884, 9-3888, 10-3953, 10-3956,
10-3959, 10-3965, 10-3974, 10-4007,
10-4143, 10-4147, 10-4161, 10-4205,
10-4229, 11-4340, 11-4344, 11-4347,
11-4372, 11-4487, 11-4506, 11-4541,
11-4577, 11-4590, 11-4621, 11-4633,
12-4698, 12-4727, 12-4729, 4730,
12-4782, 12-4796, 12-4798, 12-4817,
12-4820, 12-4835, 12-4855, 12-4858,
12-4897, 12-4936, 12-4952, 12-5009,
12-5029, 13-5087, 13-5092, 13-5205,
13-5218, 13-5221, 13-5262, 13-5265

EqualDegreeFactorization, 2-432
Equality, 3-1116
EqualizeDegrees, 4-1447
EquationOrder, 3-836, 3-868, 3-1016,

3-1092

EquationOrderFinite, 3-1091
EquationOrderInfinite, 3-1092
Equations, 10-4107
EquidimensionalDecomposition, 9-3254
EquidimensionalPart, 9-3254
EquitablePartition, 12-4964
EquivalentPoint, 11-4347
Erf, 2-509
Erfc, 2-510
Error, 1-19
ErrorFunction, 2-509
EstimateOrbit, 5-1682
Eta, 7-2549
EtaqPairing, 10-3991
EtaTPairing, 10-3991
EuclideanDistance, 13-5194
EuclideanLeftDivision, 9-3443
EuclideanNorm, 2-289, 2-423, 4-1231
EuclideanRightDivision, 9-3443
EuclideanWeight, 13-5194
EuclideanWeightDistribution, 13-5194
EuclideanWeightEnumerator, 13-5196
EulerCharacteristic, 9-3755, 12-4706
EulerFactor, 3-1221, 10-4169, 4170,

10-4229, 10-4269
EulerFactorModChar, 10-4169
EulerFactorsByDeformation, 10-4170
EulerGamma, 2-484
EulerianGraphDatabase, 12-4991
EulerianNumber, 12-4808
EulerPhi, 2-294
EulerPhiInverse, 2-294
EulerProduct, 3-919
Evaluate, 2-345, 2-422, 2-458, 3-809,

3-930, 3-956, 3-1064, 3-1136,
3-1157, 4-1295, 4-1332, 4-1359,
6-2381, 7-2476, 9-3493, 9-3693,
9-3706, 10-4147, 10-4257, 11-4560,
11-4643

EvaluateAt, 13-5288
EvaluateByPowerSeries, 9-3677
EvaluateClassGroup, 3-920
EvaluatePolynomial, 10-4141
EvaluationPowerSeries, 4-1379
EvenSublattice, 3-663
EvenWeightCode, 13-5076
EvenWeightSubcode, 13-5076
ExactConstantField, 3-1097, 9-3408
ExactExtension, 4-1447
ExactQuotient, 2-287, 2-423, 2-459
ExactValue, 11-4347, 11-4372
ExceptionalUnitOrbit, 3-924
ExceptionalUnits, 3-924
Exclude, 1-180, 1-200
ExcludedConjugate, 6-2220
ExcludedConjugates, 6-2175, 6-2220
ExistsConwayPolynomial, 2-382
ExistsCosetSatisfying, 6-2220



xx INDEX OF INTRINSICS

ExistsCoveringStructure, 1-29
ExistsExcludedConjugate, 6-2220
ExistsGroupData, 5-1960
ExistsModularCurveDatabase, 11-4296
ExistsNormalisingCoset, 6-2221
ExistsNormalizingCoset, 6-2221
Exp, 2-491, 492, 3-1209, 4-1290, 4-1334
Expand, 3-1136, 4-1289, 4-1383, 9-3537,

9-3612, 9-3693
ExpandBasis, 3-712
ExpandToPrecision, 4-1247
ExplicitCoset, 6-2174
Explode, 1-200, 1-218
Exponent, 2-343, 5-1498, 5-1545, 5-1666,

5-1800, 6-2063, 11-4631
ExponentDenominator, 4-1331
ExponentialFieldExtension, 9-3423
ExponentialIntegral, 2-510
ExponentialIntegralE1, 2-510
ExponentLattice, 4-1383
ExponentLaw, 6-2233
Exponents, 2-454, 8-3170, 9-3415
ExponentSum, 6-2083
ExpurgateCode, 13-5115
ExpurgateWeightCode, 13-5115
Ext, 7-2750, 9-3343
ext, 2-275, 2-365, 366, 3-661, 3-775,

3-864, 3-869, 3-1088, 3-1093,
4-1269, 4-1271, 1272, 9-3422

ExtAlgebra, 7-2605
Extend, 3-813, 814, 3-821, 3-1207, 9-3537
ExtendBasis, 2-602, 7-2425, 8-3017
ExtendCode, 13-5115, 13-5200, 13-5229,

13-5255
ExtendedCategory, 1-28
ExtendedCohomologyClass, 5-2034
ExtendedGreatestCommonDivisor, 2-292, 293,

2-425, 4-1231
ExtendedGreatestCommonLeftDivisor, 9-3444
ExtendedGreatestCommonRightDivisor, 9-3444
ExtendedLeastCommonLeftMultiple, 9-3445
ExtendedOneCocycle, 5-2033
ExtendedPerfectCodeZ4, 13-5180
ExtendedType, 1-28, 3-782, 3-793
ExtendedUnitGroup, 2-401
ExtendField, 2-598, 5-1646, 13-5117
ExtendGaloisCocycle, 8-3106
ExtendGeodesic, 11-4349
ExtendIsometry, 2-627
Extends, 3-809, 3-957
Extension, 5-1510, 5-1606, 5-1804, 1805,

5-2023, 7-2750, 9-3243, 9-3263
ExtensionClasses, 5-1957
ExtensionExponents, 5-1956
ExtensionField, 2-366
ExtensionNumbers, 5-1956
ExtensionPrimes, 5-1956
ExtensionProcess, 5-1509, 5-1606

ExtensionsOfElementaryAbelianGroup, 5-2027
ExtensionsOfSolubleGroup, 5-2027
Exterior, 12-4735
ExteriorAlgebra, 7-2470
ExteriorPower, 7-2517, 8-3144, 8-3164
ExteriorSquare, 3-664, 7-2517, 7-2737
ExternalLines, 12-4735
ExtGenerators, 5-1855
ExtraAutomorphism, 11-4318
ExtractBlock, 2-531, 2-566, 7-2526
ExtractBlockRange, 2-532, 2-566
ExtractGenerators, 6-2157
ExtractGroup, 6-2157, 6-2235
ExtractRep, 1-179
ExtraSpecialAction, 5-1724
ExtraSpecialBasis, 5-1725
ExtraSpecialGroup, 5-1476, 5-1533,

5-1724, 5-1794, 6-2097, 6-2263
ExtraSpecialNormaliser, 5-1724
ExtraspecialPair, 8-2896
ExtraspecialPairs, 8-2896
ExtraSpecialParameters, 5-1724
ExtraspecialSigns, 8-2896
ExtremalLieAlgebra, 8-2990
ExtremalRayContraction, 9-3898
ExtremalRayContractionDivisor, 9-3898
ExtremalRayContractions, 9-3898
ExtremalRays, 9-3898
f, 9-3493, 9-3542, 9-3544, 9-3684,

9-3693
Face, 9-3873, 12-4974, 12-5039
FaceFunction, 4-1244
FaceIndices, 12-4785
Faces, 4-1239, 12-4695, 12-4785, 12-4974,

12-5038
FacesContaining, 4-1242
FaceSupportedBy, 12-4786
FacetIndices, 12-4785
Facets, 12-4695, 12-4785
Facint, 2-284, 2-310
Facpol, 2-429
Factor, 2-320
FactorBasis, 3-916
FactorBasisCreate, 3-919
FactorBasisVerify, 3-920
FactoredCarmichaelLambda, 2-293
FactoredCharacteristicPolynomial, 2-547,

11-4573
FactoredChevalleyGroupOrder, 5-1881
FactoredDefiningPolynomials, 9-3540
FactoredDiscriminant, 7-2454, 7-2635,

7-2643
FactoredEulerPhi, 2-294
FactoredEulerPhiInverse, 2-294
FactoredHeckePolynomial, 11-4640
FactoredIndex, 5-1484, 5-1551, 5-1669,

5-1822, 6-2068, 6-2143, 6-2267
FactoredInverseDefiningPolynomials, 9-3540



INDEX OF INTRINSICS xxi

FactoredMCPolynomials, 2-547
FactoredMinimalAndCharacteristicPolynom-

ials, 2-547
FactoredMinimalPolynomial, 2-547
FactoredModulus, 2-335
FactoredOrder, 2-380, 2-554, 5-1483,

5-1528, 5-1655, 5-1658, 5-1756,
5-1800, 5-1999, 6-2063, 6-2144,
6-2235, 6-2267, 7-2522, 8-3112,
9-3683, 10-3956, 10-3973, 10-3980,
10-4169

FactoredProjectiveOrder, 2-555, 5-1656,
7-2522

Factorial, 2-296, 12-4807
Factorisation, 2-303, 2-428, 3-843,

3-944, 3-1147, 9-3456, 10-4270,
11-4599

FactorisationOverSplittingField, 2-376
FactorisationToInteger, 2-284
FactorisationToPolynomial, 2-429
Factorization, 2-303, 2-428, 2-463,

3-843, 3-944, 3-1147, 4-1301,
4-1337, 4-1373, 7-2651, 9-3456,
10-4270, 11-4599

FactorizationOverSplittingField, 2-376
FactorizationToInteger, 2-284, 2-310
FakeIsogenySelmerSet, 10-4040
FakeProjectiveSpace, 9-3880
Falpha, 8-3090, 3091
FaltingsHeight, 10-4008
Fan, 9-3869, 9-3871, 9-3880, 9-3886
Fano, 9-3853, 3854
FanoBaseGenus, 9-3853
FanoDatabase, 9-3854
FanOfAffineSpace, 9-3870
FanOfFakeProjectiveSpace, 9-3870
FanOfWPS, 9-3870
FanoGenus, 9-3853
FanoIndex, 9-3853
FareySymbol, 11-4350
FewGenerators, 5-1526
Fibonacci, 2-297, 12-4807
Field, 3-1219, 12-4725, 13-5080, 13-5213,

13-5262
FieldAutomorphism, 8-3128
FieldMorphism, 3-1116
FieldOfDefinition, 11-4530, 11-4574,

11-4585, 11-4620, 11-4631
FieldOfFractions, 2-285, 2-353, 2-373,

3-869, 3-1045, 3-1060, 3-1098,
4-1230, 4-1273, 4-1316, 4-1327,
4-1340, 9-3296, 9-3405

FieldOfGeometricIrreducibility, 9-3694
FindCommonEmbeddings, 11-4594
FindDependencies, 2-320
FindFirstGenerators, 9-3834
FindGenerators, 3-1033
FindN, 9-3854

FindRelations, 2-319
FindRelationsInCWIFormat, 2-323
FindWord, 11-4341
FineEquidimensionalDecomposition, 9-3254
FiniteAffinePlane, 12-4716, 4717, 12-4728,

12-4746
FiniteDivisor, 3-1165
FiniteField, 2-364, 365
FiniteLieAlgebra, 8-3066
FiniteProjectivePlane, 12-4715, 4716,

12-4746
FiniteSplit, 3-1165
FireCode, 13-5111
FirstIndexOfColumn, 12-4832
FirstIndexOfRow, 12-4831
FirstWeights, 9-3844
FittingGroup, 5-1832, 6-2277
FittingIdeal, 9-3325
FittingIdeals, 9-3325
FittingLength, 6-2277
FittingSeries, 6-2277
FittingSubgroup, 5-1493, 5-1586, 5-1832,

6-2277
Fix, 5-1569, 7-2739, 13-5138
FixedArc, 11-4348
FixedField, 3-966, 3-1016, 4-1370, 7-2793
FixedGroup, 3-966
FixedPoints, 11-4347, 11-4375
FixedSubspaceToPolyhedron, 12-4781
FlagComplex, 12-4694
Flat, 1-215, 1-217, 1-237, 3-800, 3-912,

3-1131
Flexes, 9-3672
Flip, 9-3899
FlipCoordinates, 9-3676
Floor, 2-290, 2-314, 2-359, 2-483
Flow, 12-5062
Flush, 1-81
Form, 12-4796
FormalGroupHomomorphism, 10-3958
FormalGroupLaw, 10-3957
FormalLog, 10-3958
FormalPoint, 9-3662
FormalSet, 1-175
Format, 1-243
FormType, 5-1900
forward, 1-41
FourCoverPullback, 10-4029
FourDescent, 10-4026
FourToTwoCovering, 10-4111
FPAlgebra, 7-2486
FPGroup, 5-1480, 5-1603, 5-1695, 5-1859,

5-2001, 5-2015, 6-2058, 6-2092,
6-2095, 6-2265, 6-2366

FPGroupStrong, 5-1603, 5-1695, 6-2093
FPQuotient, 5-1603
FractionalPart, 9-3582



xxii INDEX OF INTRINSICS

FrattiniSubgroup, 5-1493, 5-1586, 5-1707,
5-1832, 6-2066

FreeAbelianGroup, 6-2043, 6-2263
FreeAbelianQuotient, 6-2062, 6-2280
FreeAlgebra, 7-2470, 7-2496
FreefValues, 8-2997
FreeGroup, 6-2082
FreeLieAlgebra, 8-2982
FreeMonoid, 6-2389
FreeNilpotentGroup, 6-2263
FreeProduct, 6-2098, 6-2395
FreeResolution, 9-3328, 9-3378
FreeSemigroup, 6-2389
Frobenius, 2-379, 380, 10-4096, 10-4145,

10-4163, 12-4861
FrobeniusActionOnPoints, 10-4096
FrobeniusActionOnReducibleFiber, 10-4096
FrobeniusActionOnTrivialLattice, 10-4096
FrobeniusAutomorphism, 3-1020, 4-1370
FrobeniusAutomorphisms, 5-1718
FrobeniusElement, 3-970
FrobeniusFormAlternating, 2-549
FrobeniusImage, 2-555, 3-1200
FrobeniusMap, 3-1200, 8-3129, 10-3966
FrobeniusMatrix, 7-2791
FrobeniusPolynomial, 11-4642
FrobeniusTraceDirect, 10-4006
FrobeniusTracesToWeilPolynomials, 10-4284
FromAnalyticJacobian, 10-4209
FromLiE, 8-3170
FuchsianGroup, 11-4363, 4364
FuchsianMatrixRepresentation, 11-4366
FullCone, 12-4779
FullCorootLattice, 8-2874
FullDirichletGroup, 2-342
FullModule, 9-3607
FullRootLattice, 8-2874
Function, 1-252
FunctionDegree, 9-3541
FunctionField, 3-1059, 1060, 3-1088, 1089,

3-1098, 3-1155, 3-1157, 3-1160,
3-1164, 3-1177, 3-1195, 3-1201,
9-3393, 9-3490, 9-3648, 9-3692,
10-4141, 11-4300

FunctionFieldDatabase, 3-1185
FunctionFieldDifferential, 9-3697
FunctionFieldDivisor, 9-3697
FunctionFieldPlace, 9-3697
FunctionFields, 3-1185
FundamentalClosure, 8-3167
FundamentalCoweights, 8-2886, 8-2924,

8-2969, 8-3125
FundamentalDiscriminant, 3-755
FundamentalDomain, 11-4341, 11-4350,

11-4378
FundamentalElement, 6-2299
FundamentalGroup, 8-2811, 8-2813, 8-2820,

8-2870, 8-2912, 8-2961, 8-3114

FundamentalInvariants, 9-3368, 9-3387,
9-3393

FundamentalQuotient, 3-760
FundamentalUnit, 3-838
FundamentalUnits, 3-1125
FundamentalWeights, 8-2886, 8-2924,

8-2969, 8-3125
fValue, 8-2997
fValueProof, 8-2997
fVector, 12-4785
G2Invariants, 10-4135
G2ToIgusaInvariants, 10-4136
GabidulinCode, 13-5111
GallagerCode, 13-5157
GaloisCohomology, 8-3106
GaloisConjugacyRepresentatives, 2-345
GaloisConjugate, 7-2767
GaloisField, 2-364, 365
GaloisGroup, 2-374, 3-803, 3-971, 972,

3-1107
GaloisGroupInvariant, 3-977
GaloisImage, 4-1292
GaloisOrbit, 7-2767
GaloisProof, 3-972
GaloisQuotient, 3-979
GaloisRepresentation, 11-4684
GaloisRing, 4-1313, 1314
GaloisRoot, 3-973
GaloisSplittingField, 3-981
GaloisSubfieldTower, 3-980
GaloisSubgroup, 3-979
Gamma, 2-506
Gamma0, 11-4339
Gamma1, 11-4339
GammaAction, 5-2032, 8-2866
GammaActionOnSimples, 8-2867
GammaArray, 10-4229
GammaCorootSpace, 8-2866
GammaD, 2-507
GammaFactors, 10-4269
GammaGroup, 5-2031, 5-2034, 8-3105, 3106
GammaList, 10-4229
GammaOrbitOnRoots, 8-2866
GammaOrbitsOnRoots, 8-2867
GammaOrbitsRepresentatives, 8-2879
GammaRootSpace, 8-2866
GammaUpper0, 11-4339
GammaUpper1, 11-4339
GapNumbers, 3-1105, 3-1167, 9-3695,

9-3706, 9-3717
GaussianBinomial, 8-3079
GaussianFactorial, 8-3079
GaussNumber, 8-3079
GaussReduce, 3-679
GaussReduceGram, 3-679
GCD, 2-292, 2-339, 2-425, 2-461, 3-842,

3-942, 3-1161, 3-1204, 4-1231,
4-1295, 4-1318, 6-2320, 9-3712



INDEX OF INTRINSICS xxiii

Gcd, 2-292, 2-311, 2-339, 2-425, 2-461,
3-842, 3-942, 3-1147, 3-1161,
4-1231, 4-1295, 6-2320, 9-3712

GCLD, 9-3444
GCRD, 9-3444
ge, 1-69, 1-210, 2-272, 2-289, 2-314,

2-358, 2-416, 2-481, 3-1161, 5-1508,
6-2086, 6-2317, 6-2391, 9-3712

GegenbauerPolynomial, 2-437
GeneralisedRowReduction, 8-3135, 8-3166
GeneralizedFibonacciNumber, 2-297,

12-4807
GeneralizedSrivastavaCode, 13-5111
GeneralLinearGroup, 5-1642, 5-1882
GeneralOrthogonalGroup, 5-1885
GeneralOrthogonalGroupMinus, 5-1887
GeneralOrthogonalGroupPlus, 5-1886
GeneralUnitaryGroup, 5-1884
GenerateGraphs, 12-4992
GeneratepGroups (p, d, c : -), 5-1847
GeneratingWords, 6-2161
Generator, 2-332, 2-371, 4-1315
GeneratorMatrix, 13-5080, 13-5175,

13-5215
GeneratorNumber, 6-2084
GeneratorOrder, 6-2366
GeneratorPolynomial, 13-5083
Generators, 2-343, 2-599, 3-795, 796,

3-907, 3-938, 3-1017, 3-1149,
4-1399, 5-1482, 5-1526, 5-1647,
5-1799, 5-1872, 5-1998, 6-2046,
6-2050, 6-2100, 6-2266, 6-2299,
6-2348, 6-2365, 6-2380, 6-2393,
6-2407, 7-2455, 7-2461, 7-2512,
7-2570, 7-2689, 8-3111, 9-3408,
9-3683, 10-3989, 10-4013, 10-4091,
11-4341, 11-4350, 11-4586, 11-4627,
13-5080, 13-5175, 13-5215

GeneratorsOverBaseRing, 3-796
GeneratorsSequence, 3-796, 5-1526
GeneratorsSequenceOverBaseRing, 3-796
GeneratorStructure, 6-2234
Generic, 2-600, 4-1400, 5-1482, 5-1526,

5-1648, 7-2483, 7-2512, 8-3037,
9-3227, 9-3281, 9-3309, 10-3956,
13-5080, 13-5175, 13-5214

GenericAbelianGroup, 6-2047
GenericGroup, 3-1032
GenericModel, 10-4105
GenericPoint, 9-3505
Genus, 3-702, 3-1103, 3-1197, 9-3671,

9-3694, 9-3847, 10-4132, 10-4209,
11-4294, 11-4341

Genus2GonalMap, 9-3732
Genus3GonalMap, 9-3732
Genus4GonalMap, 9-3733
Genus5GonalMap, 9-3733
Genus5PlaneCurveModel, 9-3736

Genus6GonalMap, 9-3734
Genus6PlaneCurveModel, 9-3736
GenusAndCanonicalMap, 9-3730
GenusContribution, 9-3752
GenusField, 3-1015
GenusOneModel, 10-4104, 4105
GenusRepresentatives, 3-705
Geodesic, 11-4374, 12-4963, 12-5043
GeodesicExists, 12-5043
Geodesics, 12-5043
GeodesicsIntersection, 11-4349, 11-4351,

11-4375
GeometricAutomorphismGroup, 10-4150
GeometricAutomorphismGroupFromShiodaInvariants,

10-4151
GeometricAutomorphismGroupGenus2Classification,

10-4152
GeometricAutomorphismGroupGenus3Classification,

10-4152
GeometricGenus, 9-3671, 9-3764
GeometricGenusOfDesingularization, 9-3791
GeometricMordellWeilLattice, 10-4091
GeometricSupport, 13-5151
GeometricTorsionBound, 10-4090
GetAssertions, 1-98
GetAttributes, 1-53
GetAutoColumns, 1-98
GetAutoCompact, 1-98
GetBeep, 1-98
Getc, 1-81
GetCells, 8-2936
GetColumns, 1-98
GetCurrentDirectory, 1-90, 1-99
GetDefaultRealField, 2-475
GetEchoInput, 1-99
GetElementPrintFormat, 6-2298
GetEnv, 1-99
GetEnvironmentValue, 1-99
GetEvaluationComparison, 3-976
GetForceCFP, 6-2298
GetGMPVersion, 2-476
GetHelpExternalBrowser, 1-113
GetHelpExternalSystem, 1-113
GetHelpUseExternal, 1-113
GetHistorySize, 1-99
GetIgnorePrompt, 1-99
GetIgnoreSpaces, 1-99
GetIndent, 1-99
GetLibraries, 1-100
GetLibraryRoot, 1-100
GetLineEditor, 1-100
GetMaximumMemoryUsage, 1-90
GetMemoryLimit, 1-100
GetMemoryUsage, 1-90
GetMPCVersion, 2-476
GetMPFRVersion, 2-476
GetNthreads, 1-100
GetPath, 1-101



xxiv INDEX OF INTRINSICS

Getpid, 1-91
GetPrecision, 4-1328, 4-1341
GetPresentation, 6-2298
GetPreviousSize, 1-77
GetPrintLevel, 1-101
GetPrompt, 1-101
GetRep, 5-1600
GetRows, 1-101
Gets, 1-81
GetSeed, 1-31, 1-102
GetStoredFactors, 2-304
GetTempDir, 1-102
GetTraceback, 1-102
Getuid, 1-91
Getvecs, 5-1983
GetVerbose, 1-102
GetVersion, 1-102
GetViMode, 1-102
GewirtzGraph, 12-4950
GF, 2-364, 365
GHomOverCentralizingField, 7-2711
GilbertVarshamovAsymptoticBound, 13-5128
GilbertVarshamovBound, 13-5127
GilbertVarshamovLinearBound, 13-5127
Girth, 12-4964
GirthCycle, 12-4964
GL, 5-1642, 5-1882
GlobalSectionSubmodule, 9-3608
GlobalUnitGroup, 3-1124, 3-1174, 9-3715
Glue, 12-4701
GModule, 5-1511, 5-1609, 5-1648, 5-1689,

5-1700, 5-1852, 6-2195, 6-2282,
7-2608, 7-2689, 7-2723, 7-2725, 2726,
7-2729, 9-3363

GModuleAction, 7-2730
GModulePrimes, 6-2194, 2195, 6-2283
GO, 5-1885
GoethalsCode, 13-5178
GoethalsDelsarteCode, 13-5179
GolayCode, 13-5111
GolayCodeZ4, 13-5179
GOMinus, 5-1887
GoodBasePoints, 5-1702, 5-1931
GoodLDPCEnsemble, 13-5165
GOPlus, 5-1886
GoppaCode, 13-5109
GoppaDesignedDistance, 13-5151
GorensteinClosure, 7-2630
GorensteinIndex, 9-3877
GPCGroup, 5-1479, 5-1859, 6-2265
GR, 4-1313, 1314
GradedAutomorphismGroup, 7-2581
GradedAutomorphismGroupMatchingIdempotents,

7-2581
GradedCapHomomorphism, 7-2579
GradedCone, 9-3893
GradedCoverAlgebra, 7-2578
GradedModule, 9-3308, 9-3319

GradientVector, 4-1242
GradientVectors, 4-1242
Grading, 9-3188, 9-3309
Gradings, 9-3491, 9-3884
GramMatrix, 2-611, 3-658, 3-745, 3-761,

7-2652, 11-4489
Graph, 12-4761, 12-4786, 12-4923,

12-4990, 12-4992
GraphAutomorphism, 8-3038, 8-3089, 8-3128
Graphs, 12-4989
GraphSizeInBytes, 12-4922
GrayMap, 13-5176
GrayMapImage, 13-5177
GreatestCommonDivisor, 2-292, 2-339,

2-425, 2-461, 3-842, 3-942, 3-1161,
4-1231, 4-1295, 6-2320, 9-3712

GreatestCommonLeftDivisor, 9-3444
GreatestCommonRightDivisor, 9-3444
GriesmerBound, 13-5126
GriesmerLengthBound, 13-5128
GriesmerMinimumWeightBound, 13-5128
Groebner, 7-2478, 9-3194, 9-3319
GroebnerBasis, 7-2479, 9-3198, 9-3214,

9-3501
GroebnerBasisUnreduced, 9-3198
Grossencharacter, 3-820, 821
GrossenTwist, 3-821
GroundField, 2-367, 3-783, 3-885
Group, 3-729, 3-1219, 5-1469, 5-1508,

5-1567, 5-1942, 5-1955, 5-1972–1975,
5-1977, 5-1980, 5-1998, 5-2015,
5-2032, 6-2091, 6-2174, 6-2187,
6-2221, 7-2553, 7-2608, 7-2690,
7-2764, 9-3356, 9-3393, 11-4350,
11-4369, 12-4760

GroupAlgebra, 7-2422, 7-2547, 7-2553
GroupAlgebraAsStarAlgebra, 7-2669
GroupData, 5-1960
GroupIdeal, 9-3386, 9-3393
GroupOfLieType, 8-2825, 8-2899, 8-2938,

8-2971, 8-3103–3105
GroupOfLieTypeFactoredOrder, 8-2869
GroupOfLieTypeHomomorphism, 8-2899, 8-3130
GroupOfLieTypeOrder, 8-2869
GrowthFunction, 6-2374
GRSCode, 13-5113
GSet, 5-1526, 5-1567
GSetFromIndexed, 5-1566
gt, 1-69, 1-210, 2-272, 2-289, 2-314,

2-358, 2-416, 2-481, 3-1161, 6-2086,
6-2391, 9-3712, 11-4493

GU, 5-1884
GuessAltsymDegree, 5-1613, 5-1894
H2 G A, 3-1015
H2 G QmodZ, 6-2072
HadamardAutomorphismGroup, 12-4912
HadamardCanonicalForm, 12-4909
HadamardCodeZ4, 13-5180



INDEX OF INTRINSICS xxv

HadamardColumnDesign, 12-4911
HadamardDatabase, 12-4912
HadamardDatabaseInformation, 12-4914
HadamardDatabaseInformationEmpty, 12-4914
HadamardGraph, 12-4949
HadamardInvariant, 12-4909
HadamardMatrixFromInteger, 12-4910
HadamardMatrixToInteger, 12-4910
HadamardNormalize, 12-4909
HadamardRowDesign, 12-4911
HadamardTrasformation, 13-5269
HalfIntegralWeightForms, 11-4395
HalfspaceToPolyhedron, 12-4780
HallSubgroup, 5-1825
HamiltonianLieAlgebra, 8-3006
HammingAsymptoticBound, 13-5128
HammingCode, 13-5078
HammingWeightEnumerator, 13-5196
HarmonicNumber, 12-4808
HasAdditionAlgorithm, 10-4171
HasAffinePatch, 9-3522
HasAllPQuotientsMetacyclic (G), 5-1952
HasAllPQuotientsMetacyclic (G, p), 5-1952
HasAllRootsOnUnitCircle, 10-4284
HasAttribute, 2-369, 4-1325, 5-1703,

5-1705, 5-1838, 1839, 5-2006, 8-3067
HasClique, 12-4969
HasClosedCosetTable, 6-2219
HasCM, 11-4603
HasComplement, 5-1598, 6-2069, 7-2704
HasCompleteCosetTable, 6-2219
HasComplexConjugate, 3-792, 3-902
HasComplexMultiplication, 10-4008,

10-4063
HasCompositionTree, 5-1742
HasComputableAbelianQuotient, 6-2126
HasComputableLCS, 6-2277
HasDefinedModuleMap, 4-1451
HasDefiningMap, 4-1275
HasDenseAndSparseRep, 12-4933
HasDenseRep, 12-4933
HasDenseRepOnly, 12-4933
HasElementaryBasis, 12-4855
HasEmbedding, 7-2638
HasFiniteDimension, 9-3292
HasFiniteKernel, 11-4576
HasFiniteOrder, 2-554, 5-1655
HasFiniteOrder (g : -), 5-1769
HasFunctionField, 9-3490, 9-3692
HasGCD, 2-268
HasGNB, 4-1270
HasGrevlexOrder, 9-3230
HasGroebnerBasis, 9-3199
Hash, 1-180
HasHomogeneousBasis, 12-4855
HasIndexOne, 10-4180
HasIndexOneEverywhereLocally, 10-4180

HasInfiniteComputableAbelianQuotient,
6-2127

HasInfinitePSL2Quotient:, 6-2120
HasIntersectionProperty, 12-4766
HasIntersectionPropertyN, 12-4766
HasInverse, 3-1117
HasIrregularFibres, 9-3754
HasIsotropicVector, 2-614
HasKnownInverse, 9-3535
HasLeviSubalgebra, 8-3033
HasLinearGrayMapImage, 13-5177
HasMonomialBasis, 12-4855
HasMultiplicityOne, 11-4536
HasNegativeWeightCycle, 12-5043, 5044
HasNonsingularPoint, 9-3509
HasOddDegreeModel, 10-4126
HasOnlyOrdinarySingularities, 9-3658
HasOnlyOrdinarySingularitiesMonteCarlo,

9-3658
HasOnlySimpleSingularities, 9-3767
HasOrder, 10-4163
HasOutputFile, 1-80
HasParallelClass, 12-4894
HasParallelism, 12-4893
HasPlace, 3-1121, 3-1154, 9-3703
HasPoint, 10-4195
HasPointsEverywhereLocally, 10-4196
HasPointsOverExtension, 9-3511
HasPolynomial, 4-1244
HasPolynomialFactorization, 2-429
HasPowerSumBasis, 12-4855
HasPreimage, 1-253
HasProjectiveDerivation, 9-3411, 9-3431
HasPRoot, 4-1276
HasRandomPlace, 3-1121, 3-1154
HasRationalPoint, 10-3924
HasRationalSolutions, 9-3450
HasResolution, 12-4893
HasRoot, 2-420, 4-1259, 4-1299
HasRootOfUnity, 4-1276
HasSchurBasis, 12-4855
HasseMinkowskiInvariant, 3-746
HasseMinkowskiInvariants, 3-747
HasseWittInvariant, 3-1125, 3-1175,

9-3716
HasSingularPointsOverExtension, 9-3672
HasSingularVector, 2-614
HasSparseRep, 12-4933
HasSparseRepOnly, 12-4933
HasSquareSha, 10-4179
HasSupplement, 5-1598
HasTwistedHopfStructure, 8-3087
HasValidCosetTable, 6-2219
HasValidIndex, 6-2221
HasWeakIntersectionProperty, 12-4766
HasZeroDerivation, 9-3411, 9-3431
HBinomial, 8-3044
HeckeAlgebra, 11-4457, 11-4579



xxvi INDEX OF INTRINSICS

HeckeBound, 11-4457
HeckeCharacter, 3-816
HeckeCharacterGroup, 3-811
HeckeEigenvalue, 11-4495, 11-4664
HeckeEigenvalueBound, 11-4664
HeckeEigenvalueField, 11-4457, 11-4664
HeckeEigenvalueRing, 11-4457
HeckeEigenvectors, 11-4495
HeckeLift, 3-815
HeckeOperator, 11-4409, 11-4453, 11-4493,

11-4495, 11-4509, 11-4638, 11-4659,
11-4675

HeckePolynomial, 11-4409, 11-4453,
11-4639

HeegnerDiscriminants, 10-4045
HeegnerForms, 10-4045, 4046
HeegnerPoint, 10-4043, 4044
HeegnerPoints, 10-4046
HeegnerTorsionElement, 10-4046
Height, 2-359, 5-1629, 10-4015, 10-4064,

10-4089, 10-4175
HeightConstant, 10-4175
HeightOnAmbient, 9-3524
HeightPairing, 10-4016, 10-4089, 10-4175
HeightPairingLattice, 10-4089
HeightPairingMatrix, 10-4016, 10-4064,

10-4089, 10-4176
HenselLift, 2-433, 2-490, 4-1297, 4-1300,

4-1337
HermiteConstant, 3-681
HermiteForm, 2-551, 4-1439, 7-2528
HermiteNumber, 3-682
HermitePolynomial, 2-437
HermitianAutomorphismGroup, 3-712
HermitianCode, 13-5148
HermitianFunctionField, 3-1089
HermitianTranspose, 3-712
HesseCovariants, 10-4114
HesseModel, 10-4105
HessenbergForm, 2-549, 7-2522
HessePolynomials, 10-4115
Hessian, 10-4114
HessianMatrix, 9-3502, 9-3654
Hexacode, 13-5242
HighestCoroot, 8-2840, 8-2878
HighestLongCoroot, 8-2840, 8-2878
HighestLongRoot, 8-2840, 8-2878, 8-2920,

8-3122
HighestRoot, 8-2840, 8-2878, 8-2920,

8-3122
HighestShortCoroot, 8-2840, 8-2878
HighestShortRoot, 8-2840, 8-2878, 8-2921,

8-3123
HighestWeightModule, 8-3084, 8-3144
HighestWeightRepresentation, 8-3084,

8-3134, 8-3143, 8-3147
HighestWeights, 8-3166
HighestWeightsAndVectors, 8-3085, 8-3163

HighestWeightVectors, 8-3166
HighMap, 7-2615
HighProduct, 7-2615
Hilbert90, 2-380, 3-994
HilbertClassField, 3-1012, 3-1194
HilbertClassPolynomial, 3-762, 11-4301
HilbertCoefficient, 9-3895
HilbertCoefficients, 9-3895
HilbertCuspForms, 11-4655
HilbertDenominator, 9-3260, 9-3327
HilbertFunction, 9-3832
HilbertGroebnerBasis, 9-3218
HilbertIdeal, 9-3387
HilbertNumerator, 9-3260, 9-3327, 9-3833,

9-3843
HilbertPolynomial, 9-3260, 9-3327, 9-3894
HilbertPolynomialOfCurve, 9-3845
HilbertSeries, 9-3260, 9-3326, 9-3378,

9-3832, 9-3844, 9-3894
HilbertSeriesApproximation, 9-3378
HilbertSeriesMultipliedByMinimalDenomina-

tor, 9-3833
HilbertSpace, 13-5262
HilbertSymbol, 7-2636, 10-3922
HirschNumber, 6-2267
HKZ, 3-678, 679
HKZGram, 3-678
HodgeNumber, 9-3765
Holes, 3-697
Holomorph, 5-2009
Hom, 2-586, 4-1408, 1409, 4-1434, 6-2070,

7-2711, 9-3342, 11-4578
hom, 1-250, 251, 2-281, 2-336, 2-370,

2-416, 2-448, 3-781, 3-879, 3-881,
3-1063, 3-1127, 1128, 4-1370, 4-1434,
5-1464, 1465, 5-1530, 5-1648, 5-1801,
6-2072, 6-2101, 6-2262, 6-2332,
6-2355, 6-2372, 6-2381, 6-2412,
7-2437, 7-2472, 7-2518, 7-2575,
7-2711, 8-2894, 8-2988, 8-3037,
12-4800

hom< >, 2-352, 2-475
HomAdjoints, 9-3790
HomGenerators, 5-1855, 6-2070
HomogeneousComponent, 9-3189
HomogeneousComponents, 9-3189
HomogeneousModuleTest, 9-3266, 9-3380
HomogeneousModuleTestBasis, 9-3267
HomogeneousToElementaryMatrix, 12-4867
HomogeneousToMonomialMatrix, 12-4867
HomogeneousToPowerSumMatrix, 12-4867
HomogeneousToSchurMatrix, 12-4867
Homogenization, 9-3243
HomologicalDimension, 9-3333, 9-3378
Homology, 4-1445, 11-4553, 12-4705
HomologyBasis, 10-4208
HomologyGenerators, 12-4707
HomologyGroup, 12-4706



INDEX OF INTRINSICS xxvii

HomologyOfChainComplex, 4-1445
Homomorphism, 6-2073, 6-2107, 9-3315
Homomorphisms, 5-1802, 6-2070, 6-2104,

2105, 6-2107
HomomorphismsProcess, 6-2106
HookLength, 12-4833
HorizontalJoin, 2-537, 2-569, 7-2526
HorrocksMumfordBundle, 9-3606
HughesPlane, 2-403
Hull, 13-5081
HyperbolicBasis, 2-624
HyperbolicCoxeterGraph, 8-2822
HyperbolicCoxeterMatrix, 8-2822
HyperbolicPair, 2-614
HyperbolicSplitting, 2-615
Hypercenter, 5-1493, 5-1586, 5-1832
Hypercentre, 5-1493, 5-1586, 5-1832
HyperellipticCurve, 10-4108, 10-4123,

4124, 10-4231
HyperellipticCurveFromG2Invariants,

10-4139
HyperellipticCurveFromIgusaClebsch,

10-4139
HyperellipticCurveFromShiodaInvariants,

10-4139
HyperellipticCurveOfGenus, 10-4124
HyperellipticPolynomial, 10-4208
HyperellipticPolynomialFromShiodaInvariants,

10-4139
HyperellipticPolynomials, 10-3951,

10-4132
HyperellipticPolynomialsFromShiodaInvariants,

10-4130
HypergeometricData, 10-4227
HypergeometricMotiveClearTable, 10-4232
HypergeometricMotiveSaveLimit, 10-4232
HypergeometricSeries, 2-508, 4-1337
HypergeometricSeries2F1, 11-4380
HypergeometricU, 2-508
HyperplaneAtInfinity, 9-3523
HyperplaneSectionDivisor, 9-3581
HyperplaneToPolyhedron, 12-4780
HypersurfaceSingularityExpandFunction,

9-3514
HypersurfaceSingularityExpandFurther,

9-3514
Id, 2-269, 3-1159, 3-1176, 5-1464,

5-1524, 5-1644, 5-1809, 5-1871,
5-2003, 6-2052, 6-2083, 6-2252,
6-2299, 6-2350, 6-2368, 6-2380,
6-2390, 6-2410, 7-2760, 8-3115,
8-3127, 9-3681, 9-3707, 10-3967,
10-4158, 12-4816, 12-4819

IdDataNLAC, 8-3051
IdDataSLAC, 8-3050
Ideal, 3-757, 3-809, 3-845, 3-956,

3-1046, 3-1142, 3-1158, 9-3191,
9-3277, 9-3582, 9-3703, 9-3713

ideal, 2-273, 2-331, 2-339, 2-434,
3-933, 3-1142, 6-2394, 7-2424,
7-2460, 7-2477, 7-2514, 7-2551,
7-2577, 7-2645, 8-3011, 9-3191,
9-3277

IdealFactorisation, 9-3582
Idealiser, 7-2445, 7-2554
Idealizer, 7-2445, 7-2554
IdealOfSupport, 9-3582
IdealQuotient, 3-943, 3-1143, 9-3227
Ideals, 3-1142, 3-1165, 11-4490, 11-4495
IdealWithFixedBasis, 9-3191
Idempotent, 13-5083
IdempotentActionGenerators, 7-2584
IdempotentGenerators, 7-2570
IdempotentPositions, 7-2571
Idempotents, 3-946
IdentificationNumber, 5-1955
Identify, 10-4231
IdentifyAlmostSimpleGroup, 5-1960
IdentifyGroup, 5-1947, 6-2198
IdentifyOneCocycle, 5-2019
IdentifyTwoCocycle, 5-2019
IdentifyZeroCocycle, 5-2018
Identity, 2-283, 2-336, 2-354, 2-371,

2-399, 2-414, 2-447, 2-479, 3-754,
3-781, 3-878, 3-1039, 3-1061,
3-1130, 3-1159, 3-1176, 4-1315,
4-1327, 5-1464, 5-1524, 5-1644,
5-1809, 5-1871, 5-2003, 6-2052,
6-2083, 6-2252, 6-2299, 6-2350,
6-2368, 6-2380, 6-2410, 7-2471,
7-2760, 8-3115, 9-3406, 9-3681,
9-3698, 9-3707, 10-3967, 10-4158,
11-4340

IdentityAutomorphism, 8-2895, 8-3038,
8-3127, 9-3549, 9-3676

IdentityFieldMorphism, 3-1116
IdentityHomomorphism, 5-1465, 5-1802
IdentityIsogeny, 10-3966
IdentityMap, 8-2895, 9-3533, 9-3549,

9-3896, 10-3966, 11-4559, 12-4800
IdentitySparseMatrix, 2-562
IgusaClebschInvariants, 10-4134
IgusaClebschToIgusa, 10-4135
IgusaInvariants, 10-4134, 4135
IgusaToG2Invariants, 10-4136
IharaBound, 3-1120, 9-3696
Ilog, 2-290
Ilog2, 2-290
Im, 2-482, 11-4372
Image, 1-252, 2-604, 4-1416, 4-1450,

5-1530, 5-1569, 5-1649, 6-2102,
6-2333, 7-2523, 7-2576, 9-3316,
9-3544, 9-3612, 11-4566, 12-4740,
12-4800, 12-4901, 12-4984

ImageBasis, 12-4801
ImageFan, 9-3892



xxviii INDEX OF INTRINSICS

ImageSystem, 9-3569
ImageWithBasis, 7-2695
Imaginary, 2-482, 11-4346, 11-4372
ImplicitFunction, 4-1247, 4-1379
Implicitization, 9-3263
ImprimitiveAction, 5-1716
ImprimitiveBasis, 5-1716
ImprimitiveReflectionGroup, 8-2955
ImproveAutomorphismGroup, 3-1021
in, 1-68, 1-174, 1-183, 1-197, 1-208,

2-270, 2-274, 2-287, 2-337, 2-339,
2-357, 2-377, 2-397, 2-417, 2-435,
2-449, 2-481, 2-600, 3-655, 3-756,
3-794, 3-906, 3-939, 3-942, 3-1048,
3-1063, 3-1132, 3-1145, 3-1157,
3-1161, 3-1179, 3-1199, 4-1230,
4-1287, 4-1318, 4-1329, 4-1406,
4-1428, 5-1484, 5-1550, 5-1601,
5-1659, 5-1756, 5-1818, 5-1873,
6-2063, 6-2166, 6-2173, 6-2267,
6-2315, 6-2328, 6-2383, 7-2430,
7-2456, 7-2462, 7-2473, 7-2484,
7-2524, 7-2633, 7-2696, 7-2765,
9-3231, 9-3283, 9-3313, 9-3357,
9-3507, 3508, 9-3578, 9-3662, 9-3683,
9-3699, 9-3705, 9-3712, 9-3872,
10-3974, 10-4147, 11-4296, 11-4344,
11-4488, 11-4577, 11-4621, 12-4730,
12-4797, 12-4889, 12-4936, 12-4952,
12-5029, 13-5092, 13-5205, 13-5221

IncidenceDigraph, 12-4927
IncidenceGeometry, 12-4752, 12-4761
IncidenceGraph, 12-4747, 12-4760, 12-4903,

12-4924, 12-4948, 4949
IncidenceMatrix, 12-4725, 12-4887,

12-4965
IncidenceStructure, 12-4874, 12-4896,

12-4903
IncidentEdges, 12-4937, 12-4954, 12-4956,

12-5008, 12-5031, 12-5033
Include, 1-180, 1-201
IncludeAutomorphism, 13-5100
IncludeWeight, 9-3845, 9-3847
InclusionMap, 5-1820, 6-2260
IndecomposableSummands, 7-2449, 7-2704,

8-2847, 8-2890, 8-3025, 8-3163,
8-3166

InDegree, 12-4954, 12-5032
IndentPop, 1-78
IndentPush, 1-78
IndependenceNumber, 12-4971
IndependentGenerators, 10-4089
IndependentUnits, 3-923, 3-1125
IndeterminacyLocus, 9-3897
Index, 1-67, 1-176, 1-199, 1-236, 3-661,

3-895, 3-913, 3-934, 3-1106, 4-1357,
5-1484, 5-1551, 5-1669, 5-1822,
6-2068, 6-2143, 6-2221, 6-2267,

9-3745, 9-3753, 9-3837, 9-3840,
9-3850, 11-4340, 11-4350, 11-4583,
12-4730, 12-4793, 12-4935, 12-5009

IndexCalculus, 9-3720
IndexCalculusMatrix, 9-3720
IndexedCoset, 6-2174
IndexedSetToSequence, 1-182
IndexedSetToSet, 1-182
IndexFormEquation, 3-931
IndexOfPartition, 12-4814
IndexOfSpeciality, 3-1165, 9-3717
Indicator, 7-2768
Indices, 11-4294, 12-5008
IndicialPolynomial, 9-3449
IndivisibleSubdatum, 8-2891
IndivisibleSubsystem, 8-2847
InducedAutomorphism, 3-1008
InducedGammaGroup, 5-2031
InducedMap, 3-1008
InducedMapOnHomology, 4-1454
InducedOneCocycle, 5-2033
InducedPermutation, 6-2306
InduceWG, 8-2937
InduceWGtable, 8-2937
Induction, 7-2738, 7-2771
IneffectiveSubcanonicalCurves, 9-3846
Inequalities, 12-4784
InertiaDegree, 3-810, 3-935, 3-957,

3-1152, 3-1157, 4-1274, 4-1342,
4-1367

InertiaField, 3-966
InertiaGroup, 3-965, 4-1370
InertialElement, 4-1371
Infimum, 6-2306
InfiniteDivisor, 3-1165
InfinitePart, 12-4790
InfinitePlaces, 3-808, 3-955, 3-1154
InfiniteSum, 2-511
Infinity, 2-314
InflationMap, 7-2611
InflationMapImage, 5-2022
InflectionPoints, 9-3672
InformationRate, 13-5079, 13-5176,

13-5215
InformationSet, 13-5082
InformationSpace, 13-5082
InitialCoefficients, 9-3844
InitialiseProspector, 5-1488
InitialVertex, 12-4937, 12-5009
Injection, 7-2584
Injections, 1-236
InjectiveHull, 7-2597
InjectiveModule, 7-2597
InjectiveResolution, 7-2597
InjectiveSyzygyModule, 7-2598
InNeighbors, 12-4956, 12-5033
InNeighbours, 12-4956, 12-5033
InnerAutomorphism, 8-3038, 8-3128



INDEX OF INTRINSICS xxix

InnerAutomorphismGroup, 8-3038
InnerFaces, 4-1239
InnerGenerators, 5-1998
InnerProduct, 2-590, 3-654, 4-1404,

7-2437, 7-2767, 8-3036, 11-4488,
12-4862, 13-5086, 13-5203, 13-5217,
13-5266

InnerProductMatrix, 2-612, 3-658, 11-4489,
11-4495

InnerShape, 12-4830
InnerSlopes, 4-1243
InnerTwists, 11-4533, 11-4603
InnerVertices, 4-1240
Insert, 1-201, 1-224
InsertBlock, 2-532, 2-567, 7-2526
InsertVertex, 12-4944, 12-5025
Instance, 8-2995
InstancesForDimensions, 8-2999
IntegerRing, 2-282, 2-333, 2-353, 3-780,

3-836, 3-868, 3-873, 3-1061, 4-1273,
4-1327, 4-1342, 9-3503

Integers, 2-282, 2-333, 2-353, 3-780,
3-868, 3-873, 4-1273, 4-1327,
4-1342, 9-3503

IntegerSolutionVariables, 13-5289
IntegerToSequence, 2-284
IntegerToString, 1-68, 2-284, 285
Integral, 2-422, 2-458, 4-1331, 4-1359
IntegralBasis, 2-354, 3-790, 3-897,

4-1369, 11-4439
IntegralBasisLattice, 3-665
IntegralClosure, 3-1092
IntegralGroup, 5-1783
IntegralHeckeOperator, 11-4453
IntegralHomology, 11-4554
IntegralMapping, 11-4470
IntegralMatrix, 11-4568
IntegralMatrixGroupDatabase, 5-1973
IntegralMatrixOverQ, 11-4568
IntegralModel, 10-3945, 10-4127
IntegralMultiple, 9-3582
IntegralNormEquation, 3-928
IntegralPart, 12-4789
IntegralPoints, 10-4055
IntegralQuarticPoints, 10-4057
IntegralSplit, 3-943, 3-1135, 3-1148,

9-3504
IntegralUEA, 8-3042
IntegralUEAlgebra, 8-3042
IntegralUniversalEnvelopingAlgebra, 8-3042
Interior, 12-4735
InteriorPoints, 12-4786
InternalEdges, 11-4350
Interpolation, 2-422, 2-459, 2-511
Intersection, 9-3496, 9-3578, 11-4339,

11-4595
IntersectionArray, 12-4988
IntersectionForm, 9-3892

IntersectionGroup, 11-4467, 4468
IntersectionMatrix, 9-3727, 12-4965
IntersectionNumber, 9-3585, 9-3669,

12-4887
IntersectionNumbers, 9-3669
IntersectionOfImages, 11-4595
IntersectionPairing, 9-3619, 11-4458,

11-4609
IntersectionPairingIntegral, 11-4609
IntersectionWithNormalSubgroup, 5-1552
intrinsic , 1-43
Intseq, 2-284
InvariantBilinearForms, 2-630
InvariantFactors, 2-549, 7-2530
InvariantField, 9-3392
InvariantFormBases, 2-633
InvariantForms, 3-712, 3-729, 5-1781
InvariantQuadraticForms, 2-631
InvariantRing, 9-3356, 9-3386
Invariants, 5-1496, 5-1707, 5-1833,

5-2015, 6-2062, 10-4114, 11-4631
InvariantSesquilinearForms, 2-632
InvariantsMetacyclicPGroup (P), 5-1952
InvariantsOfDegree, 9-3360, 9-3386
Inverse, 1-252, 2-397, 6-2312, 6-2352,

6-2370, 8-3118, 8-3135, 9-3535,
9-3682, 10-4147, 11-4570

InverseDefiningPolynomials, 9-3540
InverseJeuDeTaquin, 12-4835
InverseKrawchouk, 13-5137
InverseMattsonSolomonTransform, 13-5136
InverseMod, 2-312, 3-943
InverseRoot, 4-1294
InverseRowInsert, 12-4836
InverseRSKCorrespondenceDoubleWord,

12-4839
InverseRSKCorrespondenceMatrix, 12-4840
InverseRSKCorrespondenceSingleWord,

12-4839
InverseSqrt, 4-1293, 1294
InverseSquareRoot, 4-1293, 1294
InverseWordMap, 5-1604, 5-1696
Involution, 7-2556, 10-4143
InvolutionClassicalGroupEven, 5-1712
Iroot, 2-290
IrreducibleCartanMatrix, 8-2818
IrreducibleCoxeterGraph, 8-2818
IrreducibleCoxeterGroup, 8-2904
IrreducibleCoxeterMatrix, 8-2818
IrreducibleDynkinDigraph, 8-2818
IrreducibleLowTermGF2Polynomial, 2-382
IrreducibleMatrixGroup, 5-1978
IrreducibleModule, 7-2584
IrreducibleModules, 7-2740, 7-2744,

7-2747
IrreducibleModulesBurnside, 7-2743
IrreducibleModulesInit, 7-2746
IrreducibleModulesSchur, 5-1853, 7-2745



xxx INDEX OF INTRINSICS

IrreduciblePolynomial, 2-382
IrreducibleReflectionGroup, 8-2949
IrreducibleRepresentationsInit, 7-2746
IrreducibleRepresentationsSchur, 5-1853
IrreducibleRootDatum, 8-2861
IrreducibleRootSystem, 8-2834
IrreducibleSecondaryInvariants, 9-3367
IrreducibleSimpleSubalgebrasOfSU, 8-3174
IrreducibleSimpleSubalgebraTreeSU, 8-3174
IrreducibleSolubleSubgroups, 5-1928
IrreducibleSparseGF2Polynomial, 2-382
IrreducibleSubgroups, 5-1928
Irregularity, 9-3764
IrregularLDPCEnsemble, 13-5157
IrrelevantComponents, 9-3884
IrrelevantGenerators, 9-3884
IrrelevantIdeal, 9-3880, 9-3884
Is2T1, 12-4767
ISA, 1-28
ISABaseField, 3-1097
IsAbelian, 3-793, 3-903, 3-1015, 4-1305,

5-1491, 5-1528, 5-1662, 5-1800,
6-2273, 8-3033, 8-3114

IsAbelianByFinite, 5-1767
IsAbelianVariety, 11-4536
IsAbsoluteField, 3-793, 3-903
IsAbsolutelyIrreducible, 5-1689, 7-2698,

8-2871, 9-3694
IsAbsoluteOrder, 3-902, 3-1126
IsAdditiveOrder, 8-2845, 8-2885
IsAdditiveProjective, 13-5222
IsAdjoint, 8-2872, 8-3114
IsAffine, 5-1592, 8-2915, 9-3498, 9-3500
IsAffineLinear, 9-3541, 12-4792
IsAlgebraHomomorphism, 7-2576
IsAlgebraic, 8-3129
IsAlgebraicallyDependent, 2-450
IsAlgebraicallyIsomorphic, 8-3111
IsAlgebraicDifferentialField, 9-3410
IsAlgebraicField, 3-792, 3-901
IsAlgebraicGeometric, 13-5150
IsAlternating, 5-1610
IsAltsym, 5-1611
IsAmbient, 9-3309, 9-3499, 11-4489
IsAmbientSpace, 11-4403, 11-4506
IsAmple, 9-3891
IsAnalyticallyIrreducible, 9-3663
IsAnisotropic, 8-2873
IsAnticanonical, 9-3584
IsArc, 12-4734
IsArithmeticallyCohenMacaulay, 9-3517,

9-3618
IsArithmeticallyGorenstein, 9-3517
IsAssociative, 7-2435
IsAttachedToModularSymbols, 11-4536,

11-4556
IsAttachedToNewform, 11-4536
IsAutomaticGroup, 6-2360, 2361

IsAutomorphism, 9-3549
IsBalanced, 12-4892
IsBasePointFree, 9-3574, 9-3585
IsBiconnected, 12-4956, 12-5034
IsBig, 9-3891
IsBijective, 4-1417, 9-3317
IsBipartite, 12-4952, 12-5029
IsBlock, 5-1577, 12-4890
IsBlockTransitive, 12-4902
IsBogomolovUnstable, 9-3853
IsBoundary, 4-1244
IsBravaisEquivalent, 5-1784
IsCanonical, 3-1161, 3-1176, 9-3584,

9-3712, 9-3838, 9-3840, 3841, 9-3875,
9-3877, 9-3881

IsCanonicalWithTwist, 9-3584
IsCapacitated, 12-5013
IsCartanEquivalent, 8-2811, 8-2819,

8-2835, 8-2864, 8-2910, 8-2959,
8-3111

IsCartanMatrix, 8-2809
IsCartanSubalgebra, 8-3027
IsCartier, 9-3891
IsCentral, 3-1015, 5-1491, 5-1551,

5-1669, 5-1823, 6-2274, 7-2575,
8-3033, 3034, 8-3120

IsCentralByFinite, 5-1767
IsCentralCollineation, 12-4744
IsChainMap, 4-1451
IsCharacter, 7-2765
IsChevalleyBasis, 8-3022
IsClassicalType, 8-3033
IsCluster, 9-3499
IsCM, 11-4603
IsCoercible, 1-13, 9-3508, 12-4852
IsCohenMacaulay, 9-3378, 9-3517
IsCokernelTorsionFree, 12-4801
IsCollinear, 12-4733
IsCommutative, 2-267, 2-286, 2-336,

2-356, 2-375, 2-416, 2-448, 2-480,
3-792, 3-901, 3-1046, 3-1062,
4-1317, 4-1328, 7-2435, 7-2487,
7-2575, 11-4589, 12-4855

IsCompactHyperbolic, 8-2915
IsComplete, 1-208, 6-2174, 9-3574,

9-3874, 9-3881, 12-4734, 12-4892,
12-4952, 12-5030

IsCompletelyReducible, 5-1768
IsComplex, 3-809, 3-957
IsConcurrent, 12-4733
IsConditioned, 5-1860
IsConfluent, 6-2349, 6-2408
IsCongruence, 11-4340
IsConic, 9-3499, 10-3914
IsConjugate, 5-1492, 5-1498, 5-1544,

5-1570, 5-1666, 5-1811, 5-1815,
5-1823, 6-2167, 6-2274, 6-2280,
6-2317, 7-2655



INDEX OF INTRINSICS xxxi

IsConnected, 12-4956, 12-5034
IsConsistent, 2-540, 541, 5-1798, 6-2259,

7-2534
IsConstant, 3-1133, 10-3965
IsConstantCurve, 10-4088
IsConway, 2-375
IsCorootSpace, 8-2875
IsCoxeterAffine, 8-2816
IsCoxeterCompactHyperbolic, 8-2822
IsCoxeterFinite, 8-2816
IsCoxeterGraph, 8-2807
IsCoxeterHyperbolic, 8-2822
IsCoxeterIrreducible, 8-2806, 8-2812
IsCoxeterIsomorphic, 8-2806, 8-2810,

8-2819, 8-2910, 8-2959
IsCoxeterMatrix, 8-2805
IsCrystallographic, 8-2812, 8-2837,

8-2871, 8-2915, 8-2963
IsCurve, 9-3499, 9-3650
IsCusp, 9-3663, 11-4346
IsCuspidal, 11-4403, 11-4449, 11-4492,

11-4657
IsCyclic, 3-793, 3-903, 5-1491, 5-1528,

5-1662, 5-1800, 6-2067, 6-2273,
13-5093, 13-5205

IsDecomposable, 7-2704
IsDefault, 2-375
IsDeficient, 10-4180
IsDefined, 1-208, 1-225, 1-229
IsDefinite, 7-2639, 11-4658
IsDegenerate, 4-1245
IsDelPezzo, 9-3805
IsDenselyRepresented, 13-5262
IsDesarguesian, 12-4727
IsDesign, 12-4892
IsDiagonal, 2-543, 2-571, 7-2520
IsDifferenceSet, 12-4885
IsDifferentialField, 9-3410
IsDifferentialIdeal, 9-3427
IsDifferentialLaurentSeriesRing, 9-3410
IsDifferentialOperatorRing, 9-3431
IsDifferentialSeriesRing, 9-3410
IsDimensionCompatible, 7-2575
IsDirected, 12-5030
IsDirectSum, 12-4798
IsDirectSummand, 7-2704
IsDiscriminant, 3-754
IsDisjoint, 1-184
IsDistanceRegular, 12-4987
IsDistanceTransitive, 12-4987
IsDivisible, 9-3583
IsDivisibleBy, 2-288, 2-423, 2-450,

3-1132, 10-3970
IsDivisionRing, 2-267, 2-286, 2-336,

2-356, 2-376, 2-416, 2-448, 2-480,
3-1046, 3-1062, 3-1126, 4-1317,
4-1328, 12-4855

IsDivisiorialContraction, 9-3899

IsDomain, 2-268, 2-286, 2-336, 2-356,
2-376, 2-416, 2-448, 2-480, 3-792,
3-902, 3-1046, 3-1062, 3-1126,
4-1317, 4-1328, 9-3410, 12-4855

IsDominant, 8-2887, 8-2924, 8-2970,
9-3541

IsDoublePoint, 9-3663
IsDoublyEven, 13-5093
IsDualComputable, 11-4607
IsDynkinDigraph, 8-2813
IsEdgeCapacitated, 12-5013
IsEdgeLabelled, 12-5013
IsEdgeTransitive, 12-4987
IsEdgeWeighted, 12-5014
IsEffective, 3-1161, 9-3583, 9-3711,

9-3845
IsEichler, 7-2643
IsEisenstein, 4-1271, 11-4403, 11-4449,

11-4492
IsEisensteinSeries, 11-4403, 11-4411
IsElementaryAbelian, 5-1491, 5-1528,

5-1662, 5-1800, 6-2067, 6-2273
IsEllipticCurve, 10-3943, 3944, 10-4131
IsEllipticWeierstrass, 9-3674
IsEmbedded, 9-3309
IsEmpty, 1-183, 1-208, 1-224, 3-692,

5-1856, 5-1946, 5-1965, 5-1970,
5-1984, 6-2107, 6-2157, 6-2327,
9-3516, 9-3525, 12-4790, 12-4953,
12-5030

IsEmptySimpleQuotientProcess, 6-2110
IsEmptyWord, 6-2316
IsEndomorphism, 9-3549, 11-4576
IsEof, 1-81
IsEquationOrder, 3-902, 3-1126
IsEquidistant, 13-5093
IsEquitable, 12-4964
IsEquivalent, 3-757, 10-4024, 10-4107,

11-4344, 11-4347, 13-5142
IsEtale, 7-2791
Isetseq, 1-182
Isetset, 1-182
IsEuclideanDomain, 2-267, 2-286, 2-336,

2-356, 2-375, 2-416, 2-448, 2-480,
3-792, 3-901, 3-1046, 3-1062,
3-1126, 4-1317, 4-1328, 12-4855

IsEuclideanRing, 2-267, 2-286, 2-336,
2-356, 2-376, 2-416, 2-448, 2-480,
3-1046, 3-1062, 3-1126, 4-1317,
4-1328, 12-4855

IsEulerian, 12-4952
IsEven, 2-288, 2-311, 2-344, 3-659,

3-814, 5-1537, 5-1611, 10-4179,
13-5093

IsExact, 3-659, 3-1179, 4-1447, 1448,
9-3699, 11-4347, 11-4372, 11-4621

IsExactlyDivisible, 4-1286
IsExceptionalUnit, 3-924



xxxii INDEX OF INTRINSICS

IsExtension, 5-1805
IsExtensionOf, 5-2029, 2030
IsExtraSpecial, 5-1492, 5-1528, 5-1707,

5-1801
IsExtraSpecialNormaliser, 5-1724
IsFace, 4-1243
IsFactorial, 2-296
IsFactorisationPrime, 9-3583
IsFaithful, 5-1574, 7-2766
IsFakeWeightedProjectiveSpace, 9-3881
IsFanMap, 9-3876
IsFano, 9-3877, 9-3881
IsField, 2-267, 2-286, 2-336, 2-356,

2-375, 2-416, 2-448, 2-480, 3-792,
3-901, 3-1046, 3-1062, 3-1126,
4-1317, 4-1328, 9-3410, 11-4589,
12-4855

IsFinite, 2-267, 2-286, 2-314, 2-336,
2-356, 2-375, 2-416, 2-448, 2-480,
3-792, 3-809, 3-901, 3-957, 3-1046,
3-1062, 3-1157, 4-1317, 4-1328,
5-1658, 5-1763, 6-2063, 6-2273,
6-2349, 6-2366, 6-2408, 8-2871,
8-2915, 8-3114, 11-4632, 12-4855

IsFiniteOrder, 3-1126
IsFirm, 12-4764
IsFlex, 9-3662
IsFlipping, 9-3899
IsForest, 12-4953
IsFree, 6-2067, 9-3323, 9-3574
IsFrobenius, 5-1572
IsFTGeometry, 12-4764
IsFuchsianOperator, 9-3448
IsFundamental, 3-755
IsFundamentalDiscriminant, 3-755
IsGamma0, 11-4340, 11-4403
IsGamma1, 11-4340, 11-4403
IsGE, 6-2317
IsGe, 6-2317
IsGeneralizedCartanMatrix, 8-3064
IsGeneralizedCharacter, 7-2766
IsGenuineWeightedDynkinDiagram, 8-3056
IsGenus, 3-702
IsGenusOneModel, 10-4107
IsGeometricallyHyperelliptic, 9-3675
IsGL2Equivalent, 10-4148
IsGLattice, 3-729
IsGLConjugate, 5-1666, 5-1927
IsGlobal, 3-1126
IsGloballySplit, 3-994
IsGlobalUnit, 3-1133, 3-1174
IsGlobalUnitWithPreimage, 3-1133, 3-1174
IsGLQConjugate, 5-1785
IsGLZConjugate, 5-1784, 1785
IsGorenstein, 7-2644, 9-3517, 9-3875,

3876, 9-3881
IsGorensteinSurface, 9-3838, 9-3841
IsGraded, 9-3310, 9-3317

IsGradedIsomorphic, 7-2581
IsGraph, 12-4765
IsGroebner, 9-3199
IsHadamard, 12-4909
IsHadamardEquivalent, 12-4909
IsHeckeAlgebra, 11-4589
IsHeckeOperator, 11-4576
IsHereditary, 7-2644
IsHomeomorphic, 12-4974, 12-5038
IsHomogeneous, 9-3189, 9-3229, 9-3310,

9-3312, 9-3317, 9-3491, 12-4858
IsHomomorphism, 5-1530, 5-1649, 5-1802
IsHyperbolic, 8-2915
IsHyperelliptic, 9-3675
IsHyperellipticCurve, 9-3499, 10-4124
IsHyperellipticCurveOfGenus, 10-4124
IsHyperellipticWeierstrass, 9-3675
IsHypersurface, 9-3501
IsHypersurfaceDivisor, 9-3714
IsHypersurfaceSingularity, 9-3513
IsId, 5-1467, 5-1538, 5-1654, 5-1811,

6-2061, 6-2255, 6-2316, 6-2352,
6-2370, 6-2411, 10-3973

IsIdeal, 7-2554, 7-2577
IsIdempotent, 2-271, 2-289, 2-337, 2-358,

2-378, 2-418, 2-450, 2-480, 3-795,
3-907, 3-1048, 3-1064, 3-1132,
4-1231, 4-1318, 4-1329, 7-2430,
7-2473

IsIdentical, 4-1329, 9-3410, 9-3431
IsIdenticalPresentation, 5-1844, 6-2259
IsIdentity, 2-397, 3-756, 3-1116, 5-1467,

5-1538, 5-1654, 5-1811, 6-2061,
6-2255, 6-2316, 6-2352, 6-2370,
6-2411, 10-3973, 10-4161

IsInArtinSchreierRepresentation, 3-1127
IsInCorootSpace, 8-2878
IsIndecomposable, 11-4492
IsIndefinite, 7-2639
IsIndependent, 2-602, 603, 7-2425, 8-3017
IsIndivisibleRoot, 8-2844, 8-2884
IsInduced, 5-2032
IsInert, 3-941, 3-1145
IsInertial, 4-1269
IsInfinite, 3-809, 3-957, 6-2063,

11-4346
IsInflectionPoint, 9-3662
IsInImage, 9-3263
IsInjective, 4-1417, 4-1451, 7-2588,

9-3317, 11-4576
IsInKummerRepresentation, 3-1127
IsInner, 5-2004, 8-2873
IsInRadical, 9-3232
IsInRootSpace, 8-2875, 8-2878
IsInSecantVariety, 9-3565
IsInSmallGroupDatabase, 5-1941
IsInSmallModularCurveDatabase, 11-4315
IsInSupport, 9-3871



INDEX OF INTRINSICS xxxiii

IsInt, 3-974
IsInTangentVariety, 9-3563
IsInteger, 11-4576
IsIntegral, 2-289, 2-358, 2-481, 3-659,

3-795, 3-906, 3-939, 3-1145, 4-1288,
4-1369, 9-3583, 10-3974, 10-4128,
12-4797

IsIntegralDomain, 2-268
IsIntegralModel, 10-3946, 3947
IsInterior, 4-1244
IsIntersection, 9-3669
IsIntrinsic, 1-32
IsInTwistedForm, 8-3106
IsInvariant, 3-978, 9-3357
IsInvertible, 9-3535, 9-3561
IsIrreducible, 2-271, 2-289, 2-337,

2-358, 2-378, 2-418, 2-432, 2-450,
2-464, 2-480, 3-795, 3-907, 3-1048,
3-1133, 3-1220, 4-1300, 4-1329,
5-1689, 7-2473, 7-2698, 7-2766,
8-2837, 8-2871, 8-2915, 9-3517,
9-3655, 11-4446

IsIrreducibleFiniteNilpotent, 5-1770
IsIrregularSingularPlace, 9-3448
IsIsogenous, 8-2864, 8-3111, 10-3953,

10-4212, 11-4536
IsIsogenousPeriodMatrices, 10-4212
IsIsogeny, 8-2895, 11-4576
IsIsolated, 9-3838, 9-3841
IsIsometric, 2-625, 3-724, 725, 3-727
IsIsometry, 2-625
IsIsomorphic, 2-401, 3-724, 725, 3-793,

3-903, 3-1115, 4-1302, 4-1305,
5-1604, 5-1698, 5-1844, 7-2465,
7-2582, 7-2654–2656, 7-2714, 8-2835,
8-2864, 8-2910, 8-3014, 9-3618,
9-3681, 10-3953, 10-4148, 10-4212,
11-4537, 12-4727, 12-4898, 12-4904,
12-4980, 13-5142

IsIsomorphicBigPeriodMatrices, 10-4212
IsIsomorphicCubicSurface, 9-3817
IsIsomorphicOverQt, 3-1113
IsIsomorphicSmallPeriodMatrices, 10-4212
IsIsomorphicSolubleGroup, 5-1842
IsIsomorphicWithTwist, 9-3618
IsIsomorphism, 4-1451, 8-3014, 9-3541,

10-3962, 11-4576
IsKEdgeConnected, 12-4961, 12-5036
IsKnownIsomorphic, 8-3014
IsKnuthEquivalent, 12-4817
IsKVertexConnected, 12-4961, 12-5036
IsLabelled, 12-5011, 12-5013
IsLargeReeGroup, 5-1920
IsLDPC, 13-5158
IsLE, 6-2317
IsLe, 6-2317
IsLeaf, 8-2983
IsLeftIdeal, 7-2462, 7-2554, 7-2578

IsLeftIsomorphic, 7-2465, 7-2656
IsLeftModule, 7-2718
IsLexicographicallyOrdered, 12-4838
IsLie, 7-2435
IsLinear, 7-2766, 9-3502, 9-3541
IsLinearGroup, 5-1903
IsLinearlyDependent, 10-4089
IsLinearlyEquivalent, 9-3585, 9-3714,

9-3893
IsLinearlyEquivalentToCartier, 9-3893
IsLinearlyIndependent, 10-3975, 10-4018,

10-4089
IsLinearSpace, 12-4892
IsLinearSystemNonEmpty, 9-3587
IsLineRegular, 12-4892
IsLineTransitive, 12-4745
IsLittlewoodRichardson, 12-4833
IsLocallyFree, 9-3616
IsLocallySolvable, 9-3527
IsLocallyTwoTransitive, 12-4767
IsLocalNorm, 3-1023
IsLongRoot, 8-2844, 8-2884, 8-2923,

8-3124
IsLowerTriangular, 2-543, 2-571
IsMagmaEuclideanRing, 2-267
IsMatrixRing, 7-2640
IsMaximal, 3-902, 3-1126, 5-1492, 5-1555,

5-1669, 5-1823, 6-2068, 6-2167,
7-2465, 7-2643, 9-3230

IsMaximalDimension, 12-4792
IsMaximisingFunction, 13-5289
IsMaximumDistanceSeparable, 13-5093
IsMDS, 13-5093
IsMemberBasicOrbit, 5-1619
IsMetacyclicPGroup (P), 5-1952
IsMinimal, 11-4682
IsMinimalModel, 10-3946
IsMinimalTwist, 11-4451
IsMinusOne, 2-271, 2-289, 2-337, 2-358,

2-378, 2-418, 2-450, 2-480, 2-543,
2-571, 3-795, 3-907, 3-952, 3-1047,
3-1064, 3-1132, 4-1231, 4-1288,
4-1318, 4-1329, 4-1344, 4-1358,
4-1371, 7-2430, 7-2473, 7-2520,
7-2766, 9-3504, 12-4858

IsMixed, 6-2067
IsMobile, 9-3585
IsModularCurve, 9-3499
IsModuleHomomorphism, 7-2591, 7-2711
IsMonic, 2-418, 9-3434
IsMoriFibreSpace, 9-3898
IsMorphism, 3-1116, 11-4575
IsNearLinearSpace, 12-4892
IsNearlyPerfect, 13-5093
IsNeat, 6-2068
IsNef, 9-3585, 9-3891
IsNefAndBig, 9-3586
IsNegative, 8-2843, 8-2883, 8-2921



xxxiv INDEX OF INTRINSICS

IsNegativeDefinite, 3-701
IsNegativeSemiDefinite, 3-701
IsNew, 11-4403, 11-4449, 11-4657
IsNewform, 11-4403
IsNewtonPolygonOf, 4-1244
IsNilpotent, 2-271, 2-289, 2-337, 2-358,

2-378, 2-418, 2-450, 2-480, 3-795,
3-907, 3-1048, 3-1064, 3-1132,
4-1231, 4-1318, 4-1329, 5-1492,
5-1528, 5-1662, 5-1769, 5-1800,
6-2273, 7-2430, 7-2473, 7-2489,
7-2520, 8-3033, 9-3293

IsNilpotentByFinite, 5-1766
IsNodalCurve, 9-3655
IsNode, 9-3663
IsNondegenerate, 2-613
IsNonsingular, 2-613, 9-3512, 9-3516,

9-3655, 9-3662, 9-3874, 9-3876,
9-3881

IsNorm, 3-1023
IsNormal, 2-378, 3-793, 3-903, 3-1015,

4-1304, 1305, 5-1492, 5-1551, 5-1669,
5-1823, 6-2167, 6-2274, 9-3767

IsNormalised, 5-2032
IsNormalising, 8-3105
IsNull, 1-183, 1-208, 12-4953, 12-5030
IsNullHomotopy, 7-2616
IsNumberField, 3-792, 3-901
Iso, 1-254, 10-4146
iso, 6-2073, 9-3531
IsOdd, 2-288, 2-311, 2-344, 3-814
IsogenousCurves, 10-4008
Isogeny, 11-4297, 11-4326
IsogenyFromKernel, 10-3963, 3964
IsogenyFromKernelFactored, 10-3963, 3964
IsogenyGroup, 8-2870, 8-2913, 8-2961,

8-3114
IsogenyMapOmega, 10-3965
IsogenyMapPhi, 10-3965
IsogenyMapPhiMulti, 10-3965
IsogenyMapPsi, 10-3965
IsogenyMapPsiMulti, 10-3965
IsogenyMapPsiSquared, 10-3965
IsolatedPointsFinder, 9-3588
IsolatedPointsLifter, 9-3588
IsolatedPointsLiftToMinimalPolynomials,

9-3589
IsolGroup, 5-1980
IsolGroupDatabase, 5-1980
IsolGroupOfDegreeFieldSatisfying, 5-1982
IsolGroupOfDegreeSatisfying, 5-1982
IsolGroupSatisfying, 5-1982
IsolGroupsOfDegreeFieldSatisfying, 5-1982
IsolGroupsOfDegreeSatisfying, 5-1982
IsolGroupsSatisfying, 5-1982
IsolGuardian, 5-1981
IsolInfo, 5-1981
IsolIsPrimitive, 5-1981

IsolMinBlockSize, 5-1981
IsolNumberOfDegreeField, 5-1980
IsolOrder, 5-1981
IsolProcess, 5-1983
IsolProcessOfDegree, 5-1983
IsolProcessOfDegreeField, 5-1984
IsolProcessOfField, 5-1983
IsometricCircle, 11-4375
IsometryGroup, 2-627, 7-2666, 7-2676
IsomorphicCopy, 5-1764
IsomorphicProjectionToSubspace, 9-3566
Isomorphism, 6-2073, 7-2655, 10-3961
IsomorphismData, 10-3961
Isomorphisms, 3-1114, 1115, 9-3681
IsomorphismToIsogeny, 10-3962
IsomorphismToStandardCopy, 5-1930
IsomorphismTypesOfBasicAlgebraSequence,

7-2585
IsomorphismTypesOfRadicalLayers, 7-2585
IsomorphismTypesOfSocleLayers, 7-2585
IsOne, 2-271, 2-289, 2-311, 2-337,

2-358, 2-378, 2-418, 2-450, 2-480,
2-543, 2-571, 3-795, 3-907, 3-939,
3-952, 3-1047, 3-1064, 3-1132,
3-1145, 4-1231, 4-1288, 4-1318,
4-1329, 4-1344, 4-1358, 4-1371,
6-2391, 7-2430, 7-2473, 7-2520,
7-2766, 9-3414, 9-3434, 9-3504,
12-4858

IsOneCoboundary, 5-2019
IsOneCocycle, 5-2033
IsOnlyMotivic, 11-4537
IsOptimal, 11-4576
IsOrbit, 5-1575
IsOrder, 10-3974
IsOrdered, 2-267, 2-286, 2-336, 2-356,

2-375, 2-416, 2-448, 2-480, 3-792,
3-901, 3-1046, 3-1062, 4-1317,
4-1328, 12-4855

IsOrderTerm, 9-3414
IsOrdinary, 10-3980
IsOrdinaryProjective, 9-3500
IsOrdinaryProjectiveSpace, 9-3498
IsOrdinarySingularity, 9-3512, 9-3663
IsOrthogonalGroup, 5-1903
IsotropicSubspace, 3-747
IsOuter, 8-2873
IsOverQ, 11-4590
IsOverSmallerField, 5-1726
IsParabolicSubgroup, 8-2927
IsParallel, 12-4733
IsParallelClass, 12-4894
IsParallelism, 12-4894
IsPartialRoot, 4-1249
IsPartition, 12-4813
IsPartitionRefined, 12-4979
IsPath, 12-4953
IsPathTree, 7-2575



INDEX OF INTRINSICS xxxv

IsPerfect, 3-1101, 5-1492, 5-1528,
5-1662, 5-1800, 6-2127, 6-2273,
13-5093, 13-5221

IsPermutationModule, 7-2699
IspGroup, 6-2067
IsPID, 2-267, 2-286, 2-336, 2-356,

2-375, 2-416, 2-448, 2-480, 3-792,
3-902, 3-1046, 3-1062, 3-1126,
4-1317, 4-1328, 12-4855

IspIntegral, 10-4128
IsPIR, 2-268
IsPlanar, 9-3500, 12-4973, 12-5038
IsPlaneCurve, 9-3499
IspLieAlgebra, 8-3039
IspMaximal, 7-2465, 7-2643
IspMinimal, 10-4129
IspNormal, 10-4128
IsPoint, 4-1244, 10-3968, 3969, 10-4142,

10-4204
IsPointRegular, 12-4892
IsPointTransitive, 12-4745, 12-4902
IsPolarSpace, 2-620
IsPolycyclic, 5-1769
IsPolycyclicByFinite, 5-1766
IsPolygon, 12-4953
IsPolynomial, 4-1385, 9-3541
IsPositive, 3-1161, 8-2843, 8-2883,

8-2921, 9-3711
IsPositiveDefinite, 3-701
IsPositiveSemiDefinite, 3-701
IsPower, 2-288, 2-381, 3-794, 3-905, 906,

3-944, 3-1040, 3-1143, 4-1294
IsPRI, 12-4766
IsPrimary, 9-3229, 9-3290
IsPrime, 2-271, 2-288, 289, 2-298, 2-311,

2-337, 2-358, 2-378, 2-418, 2-450,
2-480, 3-795, 3-907, 3-939, 3-1048,
3-1133, 3-1145, 4-1329, 7-2473,
9-3230, 9-3290, 9-3583

IsPrimeCertificate, 2-298
IsPrimeField, 2-367
IsPrimePower, 2-299, 2-311
IsPrimitive, 2-312, 2-340, 2-344, 2-378,

3-795, 3-814, 3-821, 3-906, 5-1571,
5-1577, 5-1716, 10-4229, 12-4766,
12-4797, 12-4987

IsPrimitiveFiniteNilpotent, 5-1770
IsPrincipal, 3-939, 3-1145, 3-1161,

7-2465, 7-2656, 9-3229, 9-3585,
9-3714, 9-3893

IsPrincipalIdealDomain, 2-267
IsPrincipalIdealRing, 2-268, 2-286,

2-336, 2-356, 2-376, 2-416, 2-448,
2-480, 3-792, 3-902, 3-1046, 3-1062,
3-1126, 4-1317, 4-1328, 12-4855

IsPrincipalSeries, 11-4683
IsProbablePrime, 2-299
IsProbablyMaximal, 5-1556

IsProbablyPerfect, 5-1714
IsProbablyPermutationPolynomial, 2-386
IsProbablyPrime, 2-299
IsProbablySupersingular, 10-3980
IsProductOfParallelDescendingCycles,

6-2301
IsProjective, 7-2588, 9-3498, 9-3500,

9-3881, 13-5093, 13-5206, 13-5221
IsProjectivelyIrreducible, 8-2837, 8-2871
IsProper, 7-2488, 9-3229, 9-3282, 9-3290
IsProperChainMap, 4-1451
IsProportional, 5-1720
IsPseudoReflection, 8-2944
IsPseudoSymplecticSpace, 2-621
IspSubalgebra, 8-3040
IsPure, 6-2068, 13-5254
IsQCartier, 9-3890
IsQFactorial, 9-3875, 9-3877, 9-3881
IsQGorenstein, 9-3875, 9-3877, 9-3881
IsQPrincipal, 9-3893
Isqrt, 2-291
IsQuadratic, 3-836, 3-904
IsQuadraticTwist, 10-3948, 10-4129
IsQuadricIntersection, 10-4028
IsQuasisplit, 8-2873
IsQuaternionAlgebra, 7-2640
IsQuaternionic, 11-4537
IsQuotient, 12-4799
IsRadical, 9-3230, 9-3290
IsRamified, 3-940, 3-1145, 3-1220,

4-1280, 4-1369, 7-2636
IsRational, 9-3793
IsRationalCurve, 9-3499, 10-3914
IsRationalFunctionField, 3-1126
IsRC, 12-4765
IsReal, 2-481, 3-809, 3-852, 3-957,

7-2766, 11-4346
IsRealisableOverSmallerField, 7-2733
IsRealisableOverSubfield, 7-2733
IsRealReflectionGroup, 8-2963
IsReduced, 3-756, 8-2837, 8-2871, 8-2873,

9-3309, 9-3517, 9-3655, 9-3754,
10-3925

IsReductive, 8-3033
IsReeGroup, 5-1917
IsReflection, 8-2925, 8-2944
IsReflectionGroup, 8-2944, 8-2963
IsReflectionSubgroup, 8-2927
IsReflexive, 9-3876
IsRegular, 2-289, 2-337, 2-358, 2-378,

2-418, 2-450, 3-795, 3-907, 3-1048,
3-1064, 3-1133, 4-1231, 4-1329,
5-1571, 7-2430, 7-2473, 9-3541,
9-3754, 9-3897, 12-4953, 12-5030

IsRegularLDPC, 13-5159
IsRegularPlace, 9-3448
IsRegularSingularOperator, 9-3448
IsRegularSingularPlace, 9-3448



xxxvi INDEX OF INTRINSICS

IsResiduallyConnected, 12-4765
IsResiduallyPrimitive, 12-4766
IsResiduallyWeaklyPrimitive, 12-4766
IsResiduallyWealyPrimitive, 12-4766
IsResolution, 12-4893
IsRestrictable, 8-3039
IsRestricted, 8-3039
IsRestrictedSubalgebra, 8-3040
IsReverseLatticeWord, 12-4817
IsRightIdeal, 7-2462, 7-2554, 7-2578
IsRightIsomorphic, 7-2465, 7-2656
IsRightModule, 7-2718
IsRing, 11-4589
IsRingHomomorphism, 3-881, 3-1127
IsRingOfAllModularForms, 11-4403
IsRoot, 9-3309, 12-4966
IsRootedTree, 12-4966
IsRootSpace, 8-2875
IsRPRI, 12-4766
IsRWP, 12-4766
IsRWPRI, 12-4766
IsSatisfied, 6-2101
IsSaturated, 9-3500, 11-4590
IsScalar, 2-543, 2-571, 5-1654, 7-2447,

7-2459, 7-2520
IsSelfDual, 11-4537, 12-4727, 12-4891,

13-5093, 13-5205, 13-5221
IsSelfNormalising, 5-1492, 5-1552, 6-2274
IsSelfNormalizing, 5-1492, 5-1552,

5-1823, 6-2167, 6-2274
IsSelfOrthogonal, 13-5093, 13-5205,

13-5221
IsSemiLinear, 5-1718
IsSemiregular, 5-1572
IsSemisimple, 7-2427, 7-2587, 7-2702,

8-2837, 8-2871, 8-2915, 8-3033,
8-3114, 8-3120

IsSeparable, 2-432, 12-4956, 12-5034
IsSeparating, 3-1133
IsServerSocket, 1-86
IsSharplyTransitive, 5-1571
IsShellable, 12-4793
IsShortExactSequence, 4-1448, 4-1451
IsShortRoot, 8-2844, 8-2884, 8-2923,

8-3124
IsSimilar, 2-549, 7-2530
IsSimilarity, 2-628, 629
IsSimple, 3-792, 3-902, 5-1492, 5-1529,

5-1662, 5-1800, 6-2273, 6-2316,
7-2427, 8-3033, 8-3114, 11-4537,
12-4792, 12-4891, 12-5030

IsSimpleStarAlgebra, 7-2673
IsSimpleSurfaceSingularity, 9-3767
IsSimplex, 12-4792
IsSimplicial, 9-3877, 12-4792
IsSimplifiedModel, 10-3946, 10-4128
IsSimplyConnected, 8-2872, 8-3115

IsSimplyLaced, 8-2806, 8-2808, 8-2812,
2813, 8-2819, 8-2837, 8-2872,
8-2915, 8-2964, 8-3114

IsSinglePrecision, 2-289
IsSingular, 2-544, 9-3512, 9-3516,

9-3655, 9-3662, 9-3874, 9-3876,
9-3881

IsSIntegral, 10-3974
IsSkew, 12-4833
IsSLZConjugate, 5-1785
IsSmooth, 9-3876
IsSoluble, 5-1492, 5-1528, 5-1662,

5-1769, 5-1800, 5-1942, 5-1999,
6-2274, 8-3033

IsSolubleAutomorphismGroupPGroup, 5-1999
IsSolubleByFinite, 5-1765
IsSolvable, 5-1492, 5-1528, 5-1662,

5-1800, 5-1942, 5-1999, 6-2274,
8-3033

IsSolvableAutomorphismGroupPGroup, 5-1999
IsSpecial, 3-1161, 5-1493, 5-1528,

5-1707, 5-1801, 9-3717
IsSpinorGenus, 3-702
IsSpinorNorm, 3-703
IsSplit, 3-941, 3-1145, 8-2873, 8-3115
IsSplitAsIdealAt, 3-995
IsSplittingCartanSubalgebra, 8-3028
IsSplittingField, 7-2638
IsSplitToralSubalgebra, 8-3028
IsSPrincipal, 3-1175
IsSquare, 2-288, 2-311, 2-337, 2-378,

3-794, 3-905, 3-944, 3-1040, 3-1143,
4-1293, 4-1361

IsSquarefree, 2-288, 2-311
IsStandard, 12-4833
IsStandardAffinePatch, 9-3522
IsStandardParabolicSubgroup, 8-2927
IsStarAlgebra, 7-2667
IsSteiner, 12-4892
IsStrictlyConvex, 12-4792
IsStronglyAG, 13-5151
IsStronglyConnected, 12-4957, 12-5034
IsSubcanonicalCurve, 9-3845
IsSubfield, 3-793, 3-903, 3-1113
IsSubgraph, 12-4952, 12-5029
IsSublattice, 12-4798
IsSubmodule, 4-1434
IsSubnormal, 5-1493, 5-1552, 5-1669,

5-1823
IsSubscheme, 9-3502, 9-3672
IsSubsequence, 1-209
IsSubsystem, 9-3578
IsSUnit, 3-1174
IsSUnitWithPreimage, 3-1174
IsSupercuspidal, 11-4683
IsSuperlattice, 12-4798
IsSupersingular, 10-3979
IsSuperSummitRepresentative, 6-2316



INDEX OF INTRINSICS xxxvii

IsSupportingHyperplane, 12-4786
IsSurjective, 4-1417, 4-1451, 9-3263,

9-3317, 11-4576
IsSuzukiGroup, 5-1911
IsSymmetric, 2-543, 2-571, 5-1610,

7-2520, 9-3264, 9-3396, 12-4892,
12-4987

IsSymplecticGroup, 5-1903
IsSymplecticMatrix, 2-544
IsSymplecticSelfDual, 13-5251
IsSymplecticSelfOrthogonal, 13-5251
IsSymplecticSpace, 2-621
IsTamelyRamified, 3-903, 904, 3-940,

3-1126, 3-1146, 4-1280, 4-1369
IsTangent, 9-3663
IsTensor, 5-1720
IsTensorInduced, 5-1722
IsTerminal, 9-3875, 9-3877, 9-3881
IsTerminalThreefold, 9-3838, 9-3841
IsThick, 12-4765
IsThin, 12-4765
IsTorsionUnit, 3-906
IsTotallyEven, 2-345, 3-814
IsTotallyIsotropic, 2-616
IsTotallyPositive, 3-795, 3-907
IsTotallyRamified, 3-940, 3-1126, 3-1146,

4-1280, 4-1369
IsTotallyReal, 3-904
IsTotallySingular, 2-616
IsTotallySplit, 3-941, 3-1146
IsTransformation, 10-4112
IsTransitive, 5-1571, 12-4745, 12-4987
IsTransvection, 8-2944
IsTransverse, 9-3669
IsTree, 12-4953
IsTriangleGroup, 11-4380
IsTriconnected, 12-4958, 12-5035
IsTrivial, 2-344, 3-814, 5-1493, 5-1800,

12-4891
IsTrivialOnUnits, 3-814
IsTwist, 10-3948, 11-4451
IsTwisted, 8-2873, 8-3115
IsTwoCoboundary, 5-2019
IsTwoSidedIdeal, 7-2462
IsUFD, 2-268, 2-286, 2-336, 2-356,

2-375, 2-416, 2-448, 2-480, 3-792,
3-902, 3-1046, 3-1062, 3-1126,
4-1317, 4-1328, 12-4855

IsUltraSummitRepresentative, 6-2316
IsUndirected, 12-5030
IsUniform, 12-4891
IsUnipotent, 5-1684, 5-1768, 7-2521,

8-3120
IsUniqueFactorizationDomain, 2-268
IsUniquePartialRoot, 4-1249
IsUnit, 2-271, 2-289, 2-311, 2-337,

2-358, 2-378, 2-397, 2-418, 2-450,
2-480, 2-543, 3-795, 3-907, 3-952,

3-1048, 3-1064, 3-1133, 4-1231,
4-1288, 4-1318, 4-1329, 4-1344,
4-1358, 7-2430, 7-2459, 7-2473,
7-2489, 7-2520, 9-3293, 9-3504

IsUnital, 12-4737
IsUnitary, 2-267, 2-286, 2-336, 2-356,

2-375, 2-416, 2-448, 2-480, 3-792,
3-901, 3-1046, 3-1062, 4-1317,
4-1328, 12-4855

IsUnitaryGroup, 5-1903
IsUnitarySpace, 2-621
IsUnitWithPreimage, 3-1133
IsUnivariate, 2-456
IsUnramified, 3-903, 904, 3-940, 941,

3-1127, 3-1146, 4-1280, 4-1369,
7-2636

IsUpperTriangular, 2-543, 2-571
IsValid, 6-2107, 6-2157
IsVerbose, 1-103
IsVertex, 4-1244, 9-3745
IsVertexLabelled, 12-5011
IsVertexTransitive, 12-4987
IsWeaklyAdjoint, 8-2872, 8-3114
IsWeaklyAG, 13-5150
IsWeaklyAGDual, 13-5150
IsWeaklyConnected, 12-4957, 12-5034
IsWeaklyEqual, 4-1329, 4-1359, 9-3414,

9-3434
IsWeaklyMonic, 9-3434
IsWeaklyPrimitive, 12-4766
IsWeaklySimplyConnected, 8-2872, 8-3115
IsWeaklyZero, 4-1329, 4-1359, 4-1371,

9-3414, 9-3434
IsWeierstrassModel, 10-3946
IsWeierstrassPlace, 3-1157, 3-1170,

9-3706
IsWeighted, 12-5014
IsWeightedProjectiveSpace, 9-3881
IsWeil, 9-3891
IsWGsymmetric, 8-2937
IsWildlyRamified, 3-903, 904, 3-940,

3-1127, 3-1146, 3-1221, 4-1280,
4-1369

IsWPRI, 12-4766
IsWreathProduct, 5-1529
IsZero, 2-271, 2-289, 2-337, 2-358,

2-378, 2-397, 2-418, 2-450, 2-480,
2-543, 2-571, 2-590, 3-655, 3-795,
3-907, 3-939, 3-952, 3-1047, 3-1064,
3-1132, 3-1145, 3-1161, 3-1179,
3-1204, 4-1231, 4-1288, 4-1318,
4-1329, 4-1344, 4-1358, 4-1371,
4-1385, 4-1404, 4-1451, 7-2428,
7-2430, 7-2459, 7-2473, 7-2483,
7-2488, 7-2520, 7-2694, 7-2766,
8-3068, 8-3091, 9-3229, 9-3281,
9-3290, 9-3313, 9-3316, 9-3323,
9-3414, 9-3434, 9-3504, 9-3699,



xxxviii INDEX OF INTRINSICS

9-3712, 10-3965, 10-3973, 10-4161,
11-4576, 11-4622, 12-4792, 12-4797,
12-4858, 13-5087, 13-5206, 13-5218

IsZeroAt, 11-4643
IsZeroComplex, 4-1448
IsZeroDimensional, 9-3230, 9-3282
IsZeroDivisor, 2-271, 2-289, 2-337,

2-358, 2-378, 2-418, 2-450, 2-480,
3-795, 3-907, 3-1048, 3-1064,
3-1133, 4-1231, 4-1318, 4-1329,
7-2430, 7-2473, 9-3583

IsZeroMap, 4-1448
IsZeroTerm, 4-1448
Jacobi, 6-2235
Jacobian, 10-4036, 10-4111, 10-4153
JacobianIdeal, 9-3232, 9-3501, 9-3654
JacobianMatrix, 2-458, 9-3502, 9-3654
JacobianOrdersByDeformation, 10-4170
JacobiSymbol, 2-295, 2-427
JacobiTheta, 2-502
JacobiThetaNullK, 2-502
JacobsonRadical, 7-2426, 7-2448, 7-2585,

7-2702, 7-2708
JBessel, 2-508
JellyfishConstruction, 5-1584
JellyfishImage, 5-1584
JellyfishPreimage, 5-1584
JenningsLieAlgebra, 8-3040
JenningsSeries, 5-1494, 5-1586, 5-1707,

5-1835
JeuDeTaquin, 12-4835
jFunction, 11-4300, 11-4324
JH, 11-4522, 4523
jInvariant, 2-503, 3-761, 10-3951,

11-4324
JInvariants, 10-4134, 4135
jNInvariant, 11-4324
JohnsonBound, 13-5126
Join, 12-4700
join, 1-184, 8-2846, 8-2889, 9-3496,

12-4945, 12-5025, 5026
JOne, 11-4522
JordanForm, 2-548, 7-2529
jParameter, 11-4381
Js, 11-4522
JustesenCode, 13-5113
Juxtaposition, 13-5118, 13-5230
JZero, 11-4521
K3Copy, 9-3846
K3Database, 9-3850
K3Surface, 9-3846, 9-3851, 3852, 9-3855,

3856
K3SurfaceRaw, 9-3856
K3SurfaceToRecord, 9-3855
KacMoodyClass, 8-3064
KacMoodyClasses, 8-3064
kArc, 12-4734
KBessel, 2-508

KBessel2, 2-508
KBinomial, 8-3082
KCubeGraph, 12-4930
KDegree, 8-3083
KerdockCode, 13-5178
Kernel, 1-252, 2-399, 2-540, 2-573,

2-605, 3-1220, 4-1417, 4-1450,
5-1530, 5-1649, 5-1802, 6-2102,
7-2523, 7-2576, 7-2591, 7-2765,
8-3037, 9-3316, 9-3611, 10-3965,
11-4450, 11-4502, 11-4564, 12-4760

KernelBasis, 12-4801
KernelEmbedding, 12-4801
KernelMatrix, 2-540, 2-574
Kernels, 12-4760
KernelZ2CodeZ4, 13-5189
Keys, 1-230
KillingMatrix, 8-3032
KissingNumber, 3-682
KleinBottle, 12-4704
KLPolynomial, 8-3168
KMatrixSpace, 2-586, 2-599
KMatrixSpaceWithBasis, 4-1411
KModule, 2-586, 2-599
KModuleWithBasis, 2-602
Knot, 3-1023, 12-4735
KnownAutomorphismSubgroup, 13-5100
KnownIrreducibles, 7-2761
KodairaEnriquesDimension, 9-3770
KodairaEnriquesType, 9-3769
KodairaSymbol, 10-4007
KodairaSymbols, 10-4007, 10-4087
KostkaNumber, 12-4843
KrawchoukPolynomial, 13-5137
KrawchoukTransform, 13-5137
KroneckerCharacter, 2-343
KroneckerProduct, 2-538
KroneckerSymbol, 2-295
KSpace, 2-586, 587, 2-599, 3-786, 3-892,

7-2570
KSpaceWithBasis, 2-602
KummerSurface, 10-4203
KummerSurfaceScheme, 9-3762
L, 9-3437, 11-4643
L2Generators, 6-2112
L2Ideals, 6-2112
L2Quotients, 6-2112
L2Type, 6-2112
Label, 12-5011, 12-5014
Labelling, 5-1567
Labels, 11-4350, 12-5011, 12-5014
LaguerrePolynomial, 2-436, 437
Lang, 8-3120
Laplace, 4-1332
LargeReeElementToWord, 5-1920
LargeReeGroup, 5-1891
LargeReeSylow, 5-1926
LargestConductor, 10-4059



INDEX OF INTRINSICS xxxix

LargestDimension, 3-709, 5-1971, 5-1973,
5-1975, 5-1977

LastIndexOfColumn, 12-4832
LastIndexOfRow, 12-4831
Lattice, 3-645, 3-649, 650, 3-652, 3-710,

3-728, 3-738, 3-761, 3-891, 3-947,
5-1972–1977, 11-4442, 11-4554,
11-4587, 11-4630

LatticeCoordinates, 11-4624
LatticeData, 3-710
LatticeDatabase, 3-709
LatticeElementToMonomial, 9-3893
LatticeMap, 12-4800
LatticeName, 3-709
LatticeVector, 12-4795
LatticeWithBasis, 3-646, 3-728
LatticeWithGram, 3-647, 3-728
LaurentSeriesRing, 4-1324, 8-3066
LayerBoundary, 5-1862
LayerLength, 5-1862
LazyPowerSeriesRing, 4-1350
LazySeries, 4-1352
LCfRequired, 10-4268
LCLM, 9-3445
LCM, 2-293, 2-339, 2-426, 2-462, 3-842,

3-942, 3-1161, 4-1318, 6-2321,
9-3712

Lcm, 2-293, 2-311, 2-339, 2-426, 2-462,
3-842, 3-942, 3-1147, 3-1161,
6-2321, 9-3712

LCT, 9-3666
LDPCBinarySymmetricThreshold, 13-5163
LDPCCode, 13-5157
LDPCDecode, 13-5160
LDPCDensity, 13-5159
LDPCEnsembleRate, 13-5159
LDPCGaussianThreshold, 13-5164
LDPCGirth, 13-5159
LDPCMatrix, 13-5159
LDPCSimulate, 13-5162
le, 1-69, 1-209, 2-272, 2-289, 2-314,

2-358, 2-416, 2-481, 3-1161, 5-1508,
6-2086, 6-2317, 6-2391, 9-3712

LeadingCoefficient, 2-418, 2-451, 3-1204,
4-1295, 4-1330, 4-1356, 7-2474,
9-3312, 9-3434, 11-4645

LeadingExponent, 5-1861, 6-2253
LeadingGenerator, 5-1861, 6-2084, 6-2253
LeadingMonomial, 2-452, 7-2474, 9-3312
LeadingMonomialIdeal, 9-3227, 9-3281
LeadingTerm, 2-419, 2-453, 4-1330,

4-1356, 5-1860, 6-2253, 7-2475,
9-3312, 9-3435

LeadingTotalDegree, 2-456, 7-2475
LeadingWeightedDegree, 9-3188
LeastCommonLeftMultiple, 9-3445

LeastCommonMultiple, 2-293, 2-339, 2-426,
2-462, 3-842, 3-942, 3-1161, 4-1295,
6-2321, 9-3712

LeeBrickellsAttack, 13-5123
LeeDistance, 13-5193
LeeWeight, 13-5085, 13-5192, 5193
LeeWeightDistribution, 13-5193
LeeWeightEnumerator, 13-5196
LeftAnnihilator, 7-2446, 7-2554, 7-2577
LeftConjugate, 6-2313
LeftCosetSpace, 6-2173, 6-2229
LeftDescentSet, 8-2917, 8-2962
LeftDiv, 6-2313
LeftExactExtension, 4-1446
LeftGCD, 6-2320
LeftGcd, 6-2320
LeftGreatestCommonDivisor, 6-2320
LeftIdeal, 7-2645
LeftIdealClasses, 7-2465, 7-2648
LeftInverse, 11-4611
LeftInverseMorphism, 11-4611
LeftIsomorphism, 7-2656
LeftLCM, 6-2321
LeftLcm, 6-2321
LeftLeastCommonMultiple, 6-2321
LeftMixedCanonicalForm, 6-2309
LeftNormalForm, 6-2309
LeftOrder, 7-2461, 7-2647
LeftRepresentationMatrix, 7-2459
LeftString, 8-2844, 8-2883, 8-2922
LeftStringLength, 8-2844, 8-2883, 8-2922
LeftZeroExtension, 4-1447
LegendreModel, 10-3920
LegendrePolynomial, 2-436, 10-3919
LegendreSymbol, 2-294
Length, 2-451, 3-655, 3-797, 3-908,

3-1199, 4-1438, 5-1509, 7-2475,
8-2916, 8-2969, 9-3491, 9-3884,
12-4817, 12-4820, 12-4859, 13-5079,
13-5175, 13-5214

LengthenCode, 13-5115
Lengths, 9-3491
LensSpace, 12-4704
LeonsAttack, 13-5123
Level, 3-658, 3-737, 7-2643, 11-4294,

11-4340, 11-4406, 11-4488, 11-4495,
11-4504, 11-4530, 11-4657, 11-4673

Levels, 3-737
LevenshteinBound, 13-5126
LexicographicalOrdering, 12-4838
LexProduct, 12-4946
LFSRSequence, 13-5275
LFSRStep, 13-5275
LFunction, 10-4093, 4094
LGetCoefficients, 10-4268
LHS, 6-2044, 6-2087, 6-2392
lideal, 6-2394, 7-2423, 7-2460, 7-2477,

7-2514, 7-2550, 7-2645



xl INDEX OF INTRINSICS

LieAlgebra, 7-2422, 7-2445, 8-2825,
8-2848, 8-2899, 8-2938, 8-2971,
8-2978, 2979, 8-2981, 8-2984, 8-3000,
8-3002, 8-3134, 8-3147

LieAlgebraHomorphism, 8-2899
LieAlgebraOfDerivations, 8-3031
LieBracket, 7-2447
LieCharacteristic, 5-1895
LieConstant C, 8-2897
LieConstant epsilon, 8-2897
LieConstant eta, 8-2897
LieConstant M, 8-2897
LieConstant N, 8-2897
LieConstant p, 8-2897
LieConstant q, 8-2897
LiEMaximalSubgroups, 8-3173
LieRepresentationDecomposition, 8-3141
LieType, 5-1896
Lift, 3-1136, 3-1158, 9-3706
LiftCharacter, 7-2771
LiftCharacters, 7-2772
LiftCocycle, 5-2022
LiftDescendant, 10-4023
LiftHomomorphism, 7-2590, 2591
LiftMap, 9-3438
LiftPoint, 9-3527
LiftToChainmap, 7-2616
Line, 9-3651, 12-4890
LinearCharacters, 5-1699, 7-2762
LinearCode, 12-4748, 12-4903, 13-5074,

5075, 13-5117, 13-5169, 5170
LinearCovariants, 9-3820
LinearElimination, 9-3588
LinearRelation, 2-491
LinearRelations, 3-988
LinearSpace, 12-4875, 12-4897
LinearSpanEquations, 12-4783
LinearSpanGenerators, 12-4783
LinearSubspaceGenerators, 12-4783
LinearSystem, 9-3569, 9-3571, 3572, 9-3574
LinearSystemTrace, 9-3573
LineAtInfinity, 9-3673
LineGraph, 12-4747, 12-4944, 12-4949
LineGroup, 12-4739
LineOrbits, 5-1678
Lines, 12-4722
LineSet, 12-4718
Linking, 9-3754
LinkingNumbers, 9-3754
ListAttributes, 1-53
ListCategories, 1-104
ListSignatures, 1-103, 104
ListTypes, 1-104
ListVerbose, 1-103
LittlewoodRichardsonTensor, 8-3158
LLL, 3-668, 3-673, 3-886
LLLBasisMatrix, 3-672
LLLGram, 3-672

LLLGramMatrix, 3-673
LMGCenter, 5-1750
LMGCentraliser, 5-1754
LMGCentralizer, 5-1754
LMGCentre, 5-1750
LMGChiefFactors, 5-1750
LMGChiefSeries, 5-1750
LMGClasses, 5-1754
LMGCommutatorSubgroup, 5-1749
LMGCompositionFactors, 5-1749
LMGCompositionSeries, 5-1749
LMGConjugacyClasses, 5-1754
LMGDerivedGroup, 5-1749
LMGEqual, 5-1749
LMGFactoredOrder, 5-1748
LMGFittingSubgroup, 5-1750
LMGIndex, 5-1749
LMGInitialise, 5-1748
LMGInitialize, 5-1748
LMGIsConjugate, 5-1754
LMGIsIn, 5-1748
LMGIsNilpotent, 5-1749
LMGIsNormal, 5-1749
LMGIsSoluble, 5-1749
LMGIsSolvable, 5-1749
LMGIsSubgroup, 5-1748
LMGMaximalSubgroups, 5-1754
LMGNormalClosure, 5-1749
LMGNormaliser, 5-1754
LMGNormalizer, 5-1754
LMGOrder, 5-1748
LMGRadicalQuotient, 5-1754
LMGSocleStar, 5-1750
LMGSocleStarAction, 5-1751
LMGSocleStarActionKernel, 5-1751
LMGSocleStarFactors, 5-1750
LMGSocleStarQuotient, 5-1751
LMGSolubleRadical, 5-1750
LMGSolvableRadical, 5-1750
LMGSylow, 5-1750
LMGUnipotentRadical, 5-1750
loc, 2-274
LocalComponent, 11-4682
LocalCoxeterGroup, 8-2928
LocalDegree, 3-810, 3-958
LocalFactorization, 4-1301
LocalField, 4-1365
LocalGenera, 3-703
LocalHeight, 10-4015, 10-4064, 10-4089
LocalInformation, 10-4006, 10-4062,

10-4079, 10-4087
Localization, 2-274, 9-3275, 9-3308,

9-3441
LocalPolynomialAlgebra, 9-3275
LocalPolynomialRing, 9-3275
LocalRing, 3-891, 3-1200, 4-1306
LocalTwoSelmerMap, 10-4075
LocalUniformizer, 3-1158



INDEX OF INTRINSICS xli

Log, 2-384, 2-492, 3-760, 4-1290,
4-1334, 6-2060, 10-3998

LogarithmicFieldExtension, 9-3423
LogCanonicalThreshold, 9-3666
LogCanonicalThresholdAtOrigin, 9-3666
LogCanonicalThresholdOverExtension, 9-3666
LogDerivative, 2-507
LogGamma, 2-507
LogIntegral, 2-510
Logs, 3-797, 3-909
LongestElement, 8-2916, 8-2962
LongExactSequenceOnHomology, 4-1454
LowerCentralSeries, 5-1494, 5-1585,

5-1690, 5-1834, 6-2277, 8-3030
LowerFaces, 4-1239
LowerSlopes, 4-1243
LowerTriangularMatrix, 2-525, 526
LowerVertices, 4-1240
LowIndexNormalSubgroups, 6-2160
LowIndexProcess, 6-2156
LowIndexSubgroups, 5-1559, 5-1671, 6-2152
LPolynomial, 3-1120, 9-3696
LPProcess, 13-5288
LRatio, 11-4463, 11-4643
LRatioOddPart, 11-4463
LSeries, 10-4230, 10-4246, 10-4249–4255,

10-4262, 11-4462, 11-4640
LSeriesData, 10-4269
LSeriesLeadingCoefficient, 11-4463
LSetCoefficients, 10-4266
LSetPrecision, 10-4271
LStar, 10-4257
lt, 1-69, 1-209, 2-272, 2-289, 2-314,

2-358, 2-416, 2-481, 3-1161, 5-1508,
6-2086, 6-2391, 9-3313, 9-3712,
11-4446, 11-4492

LTaylor, 10-4257
Lucas, 2-297, 12-4807
MacWilliamsTransform, 13-5102, 5103,

13-5226
MaedaInvariants, 10-4138
MagicNumber, 9-3840
MakeBasket, 9-3841
MakeCoprime, 3-947
MakeDirected, 8-2937
MakePCMap, 9-3548
MakeProjectiveClosureMap, 9-3548
MakeResolutionGraph, 9-3749
MakeSpliceDiagram, 9-3753
MakeType, 1-29
Manifold, 5-1989
ManifoldDatabase, 5-1989
ManinConstant, 10-4046
ManinSymbol, 11-4438
MantissaExponent, 2-481
map, 1-249, 9-3530, 9-3533
Mapping, 8-3127
Maps, 1-254

MargulisCode, 13-5157
MarkGroebner, 7-2480, 9-3199
Mass, 7-2648
MasseyProduct, 7-2615
Match, 6-2209, 6-2397
MatRep, 5-1987
MatRepCharacteristics, 5-1986
MatRepDegrees, 5-1986
MatRepFieldSizes, 5-1986
MatRepKeys, 5-1986
Matrices, 10-4108, 12-4912
Matrix, 2-521, 2-523–525, 2-538, 2-570,

4-1438, 9-3316, 9-3555, 10-4107,
11-4375, 11-4568, 12-4912

MatrixAlgebra, 2-374, 7-2422, 7-2448,
7-2488, 7-2509, 7-2511, 7-2640,
9-3293, 11-4587

MatrixGroup, 5-1468, 5-1645, 5-1987,
7-2690

MatrixLieAlgebra, 8-2825, 8-2848, 8-2980,
2981, 8-3000

MatrixOfElement, 5-2016
MatrixOfIsomorphism, 8-3051
MatrixRepresentation, 7-2642, 9-3683
MatrixRing, 7-2509, 7-2511, 7-2640
MatrixUnit, 7-2510
MattsonSolomonTransform, 13-5136
Max, 1-180, 1-199
Maxdeg, 12-4953, 12-4955, 12-5031, 5032
MaximalAbelianSubfield, 3-1012, 3-1194
MaximalCommutativeSubalgebra, 7-2577
MaximalExtension, 7-2750
MaximalIdeals, 7-2426, 8-3030
MaximalIdempotent, 7-2577
MaximalIncreasingSequence, 12-4817
MaximalIncreasingSequences, 12-4818
MaximalIntegerSolution, 13-5286
MaximalLeftIdeals, 7-2426, 7-2646
MaximalNormalSubgroup, 5-1588
MaximalNumberOfCosets, 6-2221
MaximalOrder, 2-353, 3-780, 3-836, 3-873,

3-1017, 3-1092, 7-2453, 7-2465,
7-2628, 2629

MaximalOrderFinite, 3-1091, 3-1195
MaximalOrderInfinite, 3-1092, 3-1195
MaximalOvergroup, 6-2162
MaximalParabolics, 12-4760
MaximalPartition, 5-1577
MaximalRightIdeals, 7-2426, 7-2646
MaximalSolution, 13-5286
MaximalSubfields, 3-992
MaximalSubgroups, 5-1509, 5-1556, 5-1674,

5-1826, 5-1930, 6-2068, 8-3173
MaximalSubgroupsData (str : -), 5-1931
MaximalSublattices, 3-738
MaximalSubmodules, 7-2702, 7-2708
MaximalTotallyIsotropicSubspace, 2-616
MaximalTotallySingularSubspace, 2-616



xlii INDEX OF INTRINSICS

MaximalZeroOneSolution, 13-5286
Maximum, 1-180, 1-199, 2-272, 2-289,

2-314, 2-358, 2-481
MaximumBettiDegree, 9-3333
MaximumClique, 12-4970
MaximumDegree, 3-1068, 12-4953, 12-4955,

12-5031, 5032
MaximumFlow, 12-5062
MaximumInDegree, 12-4955, 12-5032
MaximumIndependentSet, 12-4971
MaximumMatching, 12-4959, 12-5035
MaximumOutDegree, 12-4955, 12-5032
Maxindeg, 12-4955, 12-5032
MaxNorm, 2-427, 2-467
Maxoutdeg, 12-4955, 12-5032
MaxParabolics, 12-4760
McElieceEtAlAsymptoticBound, 13-5128
McEliecesAttack, 13-5123
MCPolynomials, 2-546
MDSCode, 13-5114
MEANS, 5-1600
Meataxe, 7-2698
meet, 1-185, 2-273, 2-339, 2-367, 2-434,

2-601, 3-664, 3-737, 3-871, 3-943,
3-992, 3-1014, 3-1095, 3-1147, 1148,
3-1198, 4-1407, 4-1431, 4-1439,
5-1490, 5-1552, 5-1669, 5-1821,
6-2066, 6-2161, 6-2272, 7-2428,
7-2457, 7-2524, 7-2644, 7-2651,
7-2696, 7-2708, 8-3013, 9-3228,
9-3281, 9-3290, 9-3322, 9-3496,
9-3578, 11-4339, 11-4491, 11-4507,
11-4582, 11-4595, 11-4628, 12-4730,
12-4782, 13-5091, 13-5198, 13-5220

meet:=, 2-601, 5-1821, 6-2066, 6-2272
MelikianLieAlgebra, 8-3008
MergeFields, 3-778, 3-866
MergeFiles, 2-321
MergeUnits, 3-923
MetacyclicPGroups, 5-1951
Mij2EltRootTable, 8-2934
MilnorNumber, 9-3235
Min, 1-180, 1-199, 3-681, 3-934, 3-1135
Mindeg, 12-4954, 4955, 12-5031, 12-5033
MinimalAlgebraGenerators, 9-3265, 9-3380
MinimalAndCharacteristicPolynomials, 2-546
MinimalBaseRingCharacter, 2-345
MinimalBasis, 9-3324, 9-3501
MinimalChernNumber, 9-3765
MinimalCyclotomicField, 3-850
MinimalDecomposition, 9-3247
MinimalDegreeModel, 10-4088
MinimalElementConjugatingToPositive,

6-2330
MinimalElementConjugatingToSuperSummit,

6-2330
MinimalElementConjugatingToUltraSummit,

6-2330

MinimalField, 2-354, 355, 3-850, 5-1689,
7-2699

MinimalFreeResolution, 9-3378
MinimalGeneratorForm, 7-2579
MinimalGeneratorFormAlgebra, 7-2579
MinimalHeckePolynomial, 11-4640
MinimalIdeals, 7-2426, 8-3029
MinimalIdentity, 7-2577
MinimalInequalities, 12-4784
MinimalInteger, 3-934
MinimalIntegerSolution, 13-5286
MinimalLeftIdeals, 7-2426
MinimalModel, 10-3920, 10-3946, 10-4088
MinimalModelGeneralType, 9-3776
MinimalModelKodairaDimensionOne, 9-3776
MinimalModelKodairaDimensionZero, 9-3773
MinimalModelRationalSurface, 9-3771
MinimalModelRuledSurface, 9-3773
MinimalNormalSubgroup, 5-1835
MinimalNormalSubgroups, 5-1588, 5-1832
MinimalOverfields, 3-992
MinimalOvergroup, 6-2162
MinimalOvergroups, 5-1509
MinimalParabolics, 12-4760
MinimalPartition, 5-1577
MinimalPartitions, 5-1577
MinimalPolynomial, 2-289, 2-358, 2-378,

2-546, 3-798, 3-910, 3-1048, 3-1133,
1134, 4-1291, 5-1657, 7-2429,
7-2460, 7-2489, 7-2522, 7-2633,
9-3293, 9-3416, 11-4573

MinimalQuadraticTwist, 10-3950
MinimalRelations, 7-2610
MinimalRGenerators, 12-4788
MinimalRightIdeals, 7-2426
MinimalSolution, 13-5286
MinimalSubmodule, 7-2702
MinimalSubmodules, 7-2702
MinimalSuperlattices, 3-738
MinimalSupermodules, 7-2708
MinimalSyzygyModule, 9-3325
MinimalVectorSequence, 3-1070
MinimalWeierstrassModel, 10-4127
MinimalZeroOneSolution, 13-5286
Minimise, 3-851, 10-4109
MinimiseWeights, 9-3845
Minimize, 3-851, 3-1220, 7-2734
MinimizeCubicSurface, 9-3814
MinimizeDeg4delPezzo, 9-3815
MinimizeGenerators, 9-3394
MinimizePlaneQuartic, 9-3729
MinimizeReduce, 9-3815
MinimizeReduceCubicSurface, 9-3814
MinimizeReduceDeg4delPezzo, 9-3815
MinimizeReducePlaneQuartic, 9-3729
Minimum, 1-180, 1-199, 2-272, 2-289,

2-314, 2-358, 2-481, 3-681, 3-934,
3-1135, 3-1148, 3-1157



INDEX OF INTRINSICS xliii

MinimumCut, 12-5061
MinimumDegree, 12-4954, 4955, 12-5031,

12-5033
MinimumDistance, 13-5095, 13-5192,

13-5222
MinimumDominatingSet, 12-4954
MinimumEuclideanDistance, 13-5194
MinimumEuclideanWeight, 13-5194
MinimumInDegree, 12-4955, 12-5032
MinimumLeeDistance, 13-5193
MinimumLeeWeight, 13-5193
MinimumOutDegree, 12-4955, 12-5032
MinimumWeight, 13-5095, 13-5192, 13-5222,

13-5253
MinimumWeightBounds, 13-5097
MinimumWeightTree, 12-5044
MinimumWord, 13-5098
MinimumWords, 13-5098
Minindeg, 12-4955, 12-5032
MinkowskiBound, 3-802, 3-916
MinkowskiLattice, 3-650, 3-891, 3-947
MinkowskiSpace, 3-651, 3-785, 3-891
Minor, 2-545
MinorBoundary, 5-1862
MinorLength, 5-1862
Minors, 2-545
Minoutdeg, 12-4955, 12-5032
MinParabolics, 12-4760
MinusInfinity, 2-314
MinusTamagawaNumber, 11-4475
MinusVolume, 11-4463
MixedCanonicalForm, 6-2309
MMP, 9-3901
mod, 2-287, 2-311, 2-417, 2-423, 3-842,

3-943, 3-952, 3-1132, 3-1156,
3-1161, 4-1295, 4-1318, 9-3705,
9-3711

mod:=, 2-287
ModByPowerOf2, 2-287
ModelToString, 10-4108
ModelType, 11-4294
Modexp, 2-311, 2-424, 3-842, 3-905,

3-1132
ModifySelfintersection, 9-3751
ModifyTransverseIntersection, 9-3751
Modinv, 2-312, 3-943, 3-1132
Modorder, 2-312
Modsqrt, 2-312
ModularAbelianVariety, 11-4524, 11-4526,

11-4529, 11-4641, 11-4648
ModularCurve, 11-4293
ModularCurveDatabase, 11-4296
ModularCurveQuotient, 11-4302
ModularDegree, 10-4054, 11-4472, 11-4613
ModularEmbedding, 11-4542
ModularEquation, 11-4504
ModularForm, 11-4397, 11-4424
ModularForms, 11-4393

ModularHyperellipticCurve, 11-4305, 4306
ModularKernel, 11-4467
ModularNonHyperellipticCurveGenus3,

11-4307
ModularParameterization, 11-4542
ModularParametrisation, 10-4045
ModularParametrization, 10-4045
ModularPolarization, 11-4607
ModularSolution, 2-575
ModularSymbols, 11-4425, 11-4432, 11-4435,

11-4444, 11-4477, 11-4505, 11-4526,
11-4557

ModularSymbolToIntegralHomology, 11-4546
ModularSymbolToRationalHomology, 11-4546
Module, 3-938, 3-1138, 3-1180, 4-1422,

4-1439, 5-2015, 7-2437, 7-2454,
7-2553, 7-2708, 7-2716, 8-3036,
9-3373, 9-3607, 9-3694, 9-3699

ModuleHomomorphism, 9-3611
ModuleMap, 4-1450
ModuleOverSmallerField, 7-2734
ModulesOverCommonField, 7-2735
ModulesOverSmallerField, 7-2734
ModuleWithBasis, 7-2718
Moduli, 4-1400, 8-3016
ModuliPoints, 11-4293
Modulus, 2-335, 2-343, 344, 2-436, 2-482,

3-811, 3-821, 3-951
MoebiusMu, 2-295, 2-311
MoebiusStrip, 12-4704
MolienSeries, 9-3364
MolienSeriesApproximation, 9-3364
MonicDifferentialOperator, 9-3436
MonodromyPairing, 11-4510
MonodromyWeights, 11-4510
Monoid, 6-2393
Monomial, 2-454
MonomialBasis, 9-3293
MonomialCoefficient, 2-418, 2-452, 7-2474
MonomialGroup, 13-5139
MonomialGroupStabilizer, 13-5140
MonomialLattice, 9-3880, 9-3887
MonomialOrder, 9-3186, 9-3275
MonomialOrderWeightVectors, 9-3186, 9-3275
Monomials, 2-419, 2-452, 7-2474, 8-3045,

8-3082, 9-3312
MonomialsOfDegree, 9-3189
MonomialsOfWeightedDegree, 9-3189, 9-3569
MonomialSubgroup, 13-5139
MonomialToElementaryMatrix, 12-4866
MonomialToHomogeneousMatrix, 12-4866
MonomialToPowerSumMatrix, 12-4866
MonomialToSchurMatrix, 12-4866
MooreDeterminant, 3-712
MordellWeilGroup, 10-4012, 10-4091
MordellWeilLattice, 10-4091
MordellWeilRank, 10-4012
MordellWeilRankBounds, 10-4012



xliv INDEX OF INTRINSICS

MordellWeilShaInformation, 10-4010,
10-4063

MoriCone, 9-3898
Morphism, 2-594, 3-738, 4-1417, 4-1434,

6-2065, 7-2428, 7-2695, 7-2697,
7-2708, 8-2894, 2895, 8-3014, 9-3319

MovablePart, 9-3891
MPQS, 2-308
Multidegree, 9-3491
MultiDigraph, 12-5005
MultiGraph, 12-5004
Multinomial, 2-296, 12-4807
MultipartiteGraph, 12-4930
MultiplicationByMMap, 10-3966
MultiplicationTable, 3-900, 7-2454,

8-2993, 2994
MultiplicativeGroup, 2-285, 2-335, 2-373,

3-802, 3-922, 3-951, 7-2465, 7-2660
MultiplicativeJordanDecomposition, 8-3119
MultiplicativeOrder, 11-4368
MultiplicatorRing, 3-875, 3-1096, 3-1147,

7-2462
Multiplicities, 1-185, 9-3751
Multiplicity, 1-185, 8-3148, 9-3513,

9-3577, 9-3583, 9-3663, 12-5008
Multiplier, 5-1986
MultiplyByTranspose, 2-573
MultiplyColumn, 2-535, 2-569, 7-2527
MultiplyDivisor, 9-3720
MultiplyFrobenius, 3-1183
MultiplyRow, 2-535, 2-568, 7-2527
Multiset, 8-3148
Multisets, 1-186, 12-4809
MultisetToSet, 1-182
MultivariatePolynomial, 2-447
MurphyAlphaApproximation, 2-324
MValue, 10-4229
NagataAutomorphism, 9-3553
Nagens, 3-729, 7-2731
NaiveHeight, 10-4015, 10-4064, 10-4089,

10-4175
Nalggens, 8-3111
Name, 2-370, 2-413, 2-446, 2-476, 3-782,

3-838, 3-884, 3-976, 3-1060, 3-1129,
4-1278, 4-1314, 4-1326, 4-1368,
7-2471, 7-2632, 9-3406, 9-3429,
9-3486, 9-3498, 9-3885, 13-5175

Name2Mij, 8-2934
Names, 1-243
NameSimple, 5-1610
NaturalActionGenerator, 3-729
NaturalBlackBoxGroup, 5-1871
NaturalFreeAlgebraCover, 7-2535, 2536
NaturalGroup, 3-729
NaturalMap, 11-4615
NaturalMaps, 11-4615
ncl, 5-1472, 5-1549, 5-1668, 5-1818,

6-2140, 2141, 6-2259, 6-2272

Nclasses, 5-1498, 5-1545, 5-1666, 5-1815
Ncols, 2-529, 2-563, 2-589, 7-2519,

11-4568
nCovering, 10-4111
ne, 1-12, 1-68, 1-183, 184, 1-209, 1-218,

2-268, 2-270, 2-274, 2-286, 287,
2-314, 2-336, 337, 2-339, 2-356, 357,
2-376, 377, 2-397, 2-399, 2-416, 417,
2-435, 2-448, 449, 2-480, 481, 2-600,
3-655, 3-659, 3-792, 3-794, 3-902,
3-906, 3-939, 3-952, 3-1046, 3-1048,
3-1062, 1063, 3-1126, 3-1132, 3-1145,
3-1156, 1157, 3-1160, 1161, 3-1222,
4-1230, 4-1279, 4-1287, 4-1317, 1318,
4-1328, 1329, 4-1407, 5-1467, 5-1485,
5-1538, 5-1551, 5-1601, 5-1654,
5-1659, 5-1811, 5-1820, 5-1872,
5-2004, 6-2061, 6-2064, 6-2086,
6-2166, 6-2174, 6-2254, 6-2268,
6-2317, 6-2352, 6-2370, 6-2383,
6-2391, 6-2411, 7-2428, 7-2430,
7-2459, 7-2473, 7-2483, 7-2520,
7-2525, 7-2633, 7-2765, 8-3013,
9-3229, 9-3281, 9-3682, 9-3702,
9-3705, 9-3707, 9-3712, 10-3953,
10-3956, 10-3959, 10-3974, 10-4007,
10-4143, 10-4161, 10-4205, 10-4229,
12-4727, 12-4729, 4730, 12-4855,
12-4858, 12-4897, 12-4936, 13-5087,
13-5092, 13-5205, 13-5218, 13-5221,
13-5262, 13-5265

NearLinearSpace, 12-4874, 12-4896
NefCone, 9-3898
NegationMap, 10-3966
Negative, 8-2843, 8-2883, 8-2922
NegativeGammaOrbitsOnRoots, 8-2867
NegativePrimeDivisors, 9-3586
NegativeRelativeRoots, 8-2878
Neighbor, 3-704
NeighborClosure, 3-704
Neighbors, 3-704, 12-4954, 12-5031
Neighbour, 3-704
NeighbourClosure, 3-704
Neighbours, 3-704, 12-4954, 12-5031
Network, 12-5050
New, 1-57
Newform, 11-4414, 11-4424, 11-4524
NewformDecomposition, 11-4446, 11-4664
Newforms, 11-4414, 11-4416
NewformsOfDegree1, 11-4664
NewLevel, 11-4657
NewModularHyperellipticCurve, 11-4305
NewModularHyperellipticCurves, 11-4304
NewModularNonHyperellipticCurveGenus3,

11-4306
NewModularNonHyperellipticCurvesGenus3,

11-4306
NewQuotient, 11-4616



INDEX OF INTRINSICS xlv

NewSubspace, 11-4407, 11-4449, 11-4661
NewSubvariety, 11-4616
NewtonPolygon, 4-1237, 1238, 4-1296,

9-3451
NewtonPolynomial, 9-3451
NewtonPolynomials, 9-3451
NextClass, 6-2232
NextElement, 6-2106, 6-2328
NextExtension, 5-1856
NextGraph, 12-4993
NextModule, 7-2746
NextPrime, 2-300
NextRepresentation, 7-2746
NextSimpleQuotient, 6-2110
NextSubgroup, 6-2157
NextVector, 3-691
NFaces, 12-4974, 12-5039
NFS, 2-316
NFSProcess, 2-316
Ngens, 2-600, 4-1426, 5-1482, 5-1526,

5-1647, 5-1799, 5-1872, 5-1998,
6-2046, 6-2050, 6-2100, 6-2187,
6-2266, 6-2299, 6-2348, 6-2365,
6-2380, 6-2393, 6-2407, 7-2512,
7-2571, 7-2690, 8-2991, 8-3111,
9-3409, 9-3683, 10-3989, 10-4013,
11-4586, 11-4627, 13-5176, 13-5215

NGrad, 9-3491
NilpotencyClass, 5-1494, 5-1585, 5-1690,

5-1834, 6-2277
NilpotentBoundary, 5-1862
NilpotentLength, 5-1862
NilpotentLieAlgebra, 8-3050
NilpotentOrbit, 8-3056
NilpotentOrbits, 8-3057
NilpotentPresentation, 6-2278
NilpotentQuotient, 5-1564, 5-1676,

6-2132, 8-2987
NilpotentSubgroups, 5-1501, 5-1562,

5-1826
Nilradical, 8-3026
NineDescent, 10-4038
NineSelmerSet, 10-4039
nIsogeny, 11-4559
NNZEntries, 2-529, 2-563
NoetherNormalisation, 9-3255, 9-3843
NoetherNormalization, 9-3255
NoetherNumerator, 9-3843
NoetherWeights, 9-3843
NonCuspidalQRationalPoints, 11-4322
NonIdempotentActionGenerators, 7-2584
NonIdempotentGenerators, 7-2571
NonNilpotentElement, 8-3034
NonPrimitiveAlternantCode, 13-5110
NonsolvableSubgroups, 5-1502, 5-1562
NonSpecialDivisor, 3-1212
Norm, 2-289, 2-358, 2-379, 2-484, 2-590,

3-654, 3-798, 3-910, 3-934, 3-1048,

3-1133, 1134, 3-1148, 3-1158, 3-1165,
4-1291, 4-1309, 4-1404, 7-2459,
7-2463, 7-2633, 7-2651, 7-2768,
11-4488

NormAbs, 2-379, 3-798, 3-910, 3-935
NormalClosure, 5-1491, 5-1494, 5-1553,

5-1670, 5-1690, 5-1821, 6-2162,
6-2272

NormalClosureMonteCarlo, 5-1713
NormalComplements, 5-1836
NormalElement, 2-372
NormalFan, 9-3870
NormalForm, 6-2309, 7-2484, 9-3200,

9-3283, 9-3312
Normalisation, 9-3256, 9-3537, 13-5265
NormalisationCoefficient, 13-5265
Normalise, 2-340, 2-590, 4-1403, 8-3118
NormalisedCone, 12-4780
Normaliser, 5-1491, 5-1508, 5-1554,

5-1821, 6-2162, 6-2273, 8-3026
NormaliserCode, 13-5247
NormaliserMatrix, 13-5247
Normalization, 9-3256, 9-3537, 12-4696,

13-5265
NormalizationCoefficient, 13-5265
Normalize, 2-340, 2-426, 2-462, 2-590,

4-1403, 8-3118, 9-3311, 13-5085,
13-5203, 13-5216

Normalizer, 5-1491, 5-1508, 5-1554,
5-1670, 5-1821, 6-2162, 6-2273,
7-2643, 8-3026

NormalizerCode, 13-5247
NormalizerGLZ, 5-1783
NormalizerMatrix, 13-5247
NormalLattice, 5-1494, 5-1588, 5-1835
NormalNumber, 9-3840
NormalSubfields, 3-1015
NormalSubgroups, 5-1494, 5-1562, 5-1588,

5-1835
NormEquation, 2-313, 2-380, 3-804, 805,

3-841, 3-925–927, 3-1023, 4-1308,
1309

NormGroup, 3-1018, 3-1212, 4-1308, 7-2674
NormGroupDiscriminant, 4-1309
NormInduction, 3-815
NormKernel, 4-1309
NormModule, 7-2652
NormOneGroup, 7-2659
NormResidueSymbol, 10-3921
NormSpace, 7-2652
Not, 1-207
not, 1-11
notadj, 12-4951, 12-5029
notin, 1-69, 1-183, 1-208, 2-270, 2-274,

2-287, 2-337, 2-339, 2-357, 2-377,
2-397, 2-417, 2-435, 2-449, 2-481,
2-600, 3-939, 3-1048, 3-1063,
3-1132, 3-1145, 3-1157, 3-1161,



xlvi INDEX OF INTRINSICS

4-1230, 4-1287, 4-1318, 4-1329,
4-1406, 5-1484, 5-1550, 5-1601,
5-1659, 5-1819, 6-2063, 6-2166,
6-2173, 6-2267, 6-2316, 6-2328,
6-2383, 7-2430, 7-2456, 7-2462,
7-2473, 7-2484, 7-2525, 7-2633,
7-2765, 9-3232, 9-3283, 9-3705,
9-3712, 12-4730, 12-4889, 12-4936,
12-4952, 12-5029, 13-5092, 13-5205,
13-5221

notsubset, 1-184, 2-274, 2-339, 2-435,
2-600, 4-1406, 5-1484, 1485, 5-1551,
5-1659, 5-1820, 6-2063, 2064, 6-2167,
6-2268, 6-2383, 7-2428, 7-2483,
7-2525, 8-3013, 9-3229, 9-3281,
12-4730, 12-4889, 12-4936, 13-5092,
13-5205, 13-5221

NPCGenerators, 5-1799, 5-1998
NPCgens, 5-1799, 5-1998, 6-2266
Nqubits, 13-5262
Nrels, 6-2187, 6-2348, 6-2407
Nrows, 2-529, 2-563, 2-590, 7-2519,

11-4568
Nsgens, 5-1620, 5-1706
NthPrime, 2-300
nTorsionSubgroup, 11-4625
NuclearRank, 6-2236
NullGraph, 12-4930
NullHomotopy, 7-2616
Nullity, 11-4574
NullSpace, 2-605, 4-1417, 7-2523
Nullspace, 2-540, 2-573, 8-3037
NullspaceMatrix, 2-540, 2-574
NullspaceOfTranspose, 2-540, 2-574,

7-2523, 8-3037
Number, 9-3850
NumberField, 3-773, 774, 3-807, 3-810,

3-836, 3-863, 864, 3-869, 3-954,
3-957, 3-992, 3-1016

NumberFieldDatabase, 3-827
NumberFields, 3-828, 829
NumberFieldSieve, 2-316
NumberingMap, 5-1485, 5-1539, 5-1660,

5-1812, 6-2064
NumberOfActionGenerators, 3-729, 7-2690,

7-2731
NumberOfAffinePatches, 9-3522
NumberOfAlgebraicGenerators, 8-3111
NumberOfAntisymmetricForms, 3-730, 5-1782
NumberOfBlocks, 12-4886
NumberOfCells, 5-1629
NumberOfClasses, 5-1498, 5-1545, 5-1666,

5-1815, 12-4989
NumberOfColumns, 2-529, 2-563, 2-589,

7-2519
NumberOfComponents, 1-216, 10-4088
NumberOfConstantWords, 13-5104
NumberOfConstraints, 13-5288

NumberOfCoordinates, 9-3491
NumberOfCurves, 10-4059
NumberOfDivisors, 2-294, 2-311
NumberOfEdges, 12-4950, 12-5029
NumberOfExtensions, 4-1310
NumberOfFaces, 12-4974, 12-5039
NumberOfFacets, 12-4785
NumberOfFields, 3-828, 3-1185
NumberOfFixedSpaces, 5-1680
NumberOfGenerators, 2-343, 2-600, 4-1426,

5-1482, 5-1526, 5-1647, 5-1799,
5-1872, 5-1998, 6-2046, 6-2050,
6-2100, 6-2187, 6-2266, 6-2299,
6-2348, 6-2365, 6-2380, 6-2393,
6-2407, 7-2512, 7-2571, 8-2912,
8-2960, 8-2991, 8-3111, 9-3683,
10-3989, 10-4013, 13-5079, 13-5176,
13-5215

NumberOfGradings, 9-3491, 9-3885
NumberOfGraphs, 12-4989
NumberOfGroups, 5-1956, 5-1960, 5-1972,

1973, 5-1975, 5-1977
NumberOfInclusions, 5-1509
NumberOfInvariantForms, 3-730, 5-1782
NumberOfIrreducibleMatrixGroups, 5-1978
NumberOfIsogenyClasses, 10-4059
NumberOfLattices, 3-709, 5-1972, 1973,

5-1975, 5-1977
NumberOfLevels, 3-737
NumberOfLines, 12-4726
NumberOfMatrices, 12-4912
NumberOfMetacyclicPGroups (p, n), 5-1952
NumberOfNewformClasses, 11-4413
NumberOfNonZeroEntries, 2-529, 2-563
NumberOfPartitions, 2-296, 12-4813
NumberOfPCGenerators, 5-1799, 5-1998,

6-2235, 6-2266
NumberOfPermutations, 12-4807
NumberOfPlacesDegECF, 3-1119, 3-1156,

9-3695
NumberOfPlacesOfDegreeOne, 3-1198
NumberOfPlacesOfDegreeOneECF, 3-1119,

3-1156, 9-3696
NumberOfPlacesOfDegreeOneECFBound, 3-1120,

3-1156, 9-3696
NumberOfPlacesOfDegreeOneOverExact-

ConstantField, 3-1119, 3-1156, 9-3696
NumberOfPlacesOfDegreeOneOverExact-

ConstantFieldBound, 3-1120, 3-1156,
9-3696

NumberOfPlacesOfDegreeOverExactConstant-
Field, 3-1119, 3-1156, 9-3695

NumberOfPoints, 12-4726, 12-4786, 12-4886
NumberOfPointsAtInfinity, 10-4144
NumberOfPointsOnCubicSurface, 9-3816
NumberOfPointsOnSurface, 10-4095



INDEX OF INTRINSICS xlvii

NumberOfPositiveRoots, 8-2811, 8-2820,
8-2839, 8-2876, 8-2912, 8-2919,
8-2965, 8-3121

NumberOfPrimePolynomials, 2-427
NumberOfPrimitiveAffineGroups, 5-1967
NumberOfPrimitiveAlmostSimpleGroups,

5-1967
NumberOfPrimitiveDiagonalGroups, 5-1967
NumberOfPrimitiveGroups, 5-1967
NumberOfPrimitiveProductGroups, 5-1967
NumberOfPrimitiveSolubleGroups, 5-1967
NumberOfProjectives, 7-2571
NumberOfPunctures, 9-3672
NumberOfQubits, 13-5262
NumberOfQuotientGradings, 9-3880, 9-3885
NumberOfRationalPoints, 11-4532
NumberOfRelations, 6-2187, 6-2348, 6-2407
NumberOfRelationsRequired, 2-319
NumberOfRepresentations, 5-1955
NumberOfRows, 2-529, 2-563, 2-590,

7-2519, 12-4831
NumberOfSkewRows, 12-4831
NumberOfSmallGroups, 5-1941
NumberOfSmoothDivisors, 3-1160
NumberOfSolubleIrreducibleMatrixGroups,

5-1978
NumberOfStandardTableaux, 12-4842
NumberOfStandardTableauxOnWeight, 12-4842
NumberOfStrings, 6-2299
NumberOfStrongGenerators, 5-1620, 5-1706
NumberOfSubgroupsAbelianPGroup (A), 6-2069
NumberOfSymmetricForms, 3-730, 5-1782
NumberOfTableauxOnAlphabet, 12-4843
NumberOfTransitiveGroups, 5-1962
NumberOfVariables, 13-5288
NumberOfVariants, 2-394
NumberOfVertices, 12-4783, 12-4950,

12-5029
NumberOfWords, 13-5104, 13-5226
NumbersOfPointsOnSurface, 10-4095
Numerator, 2-357, 3-794, 3-906, 3-1064,

3-1135, 3-1164, 9-3296, 9-3504,
9-3711, 9-3843

NumericalDerivative, 2-512
NumericalEigenvectors, 2-555
NumericClebschTransfer, 9-3820
NumExtraspecialPairs, 8-2896
NumPosRoots, 8-2811, 8-2820, 8-2839,

8-2876, 8-2912, 8-2919, 8-2965,
8-3121

O, 4-1282, 4-1327, 9-3415
ObjectiveFunction, 13-5289
Obstruction, 12-4974, 12-5038
ObstructionDescentBuildingBlock, 11-4604
OddGraph, 12-4949
Oddity, 3-746
OldQuotient, 11-4617
OldSubvariety, 11-4617

Omega, 5-1835, 5-1887, 1888, 6-2067
OmegaMinus, 5-1888
OmegaPlus, 5-1888
One, 2-269, 2-283, 2-336, 2-354, 2-371,

2-414, 2-447, 2-479, 3-781, 3-878,
3-1039, 3-1061, 3-1130, 4-1281,
4-1315, 4-1327, 7-2423, 7-2458,
7-2471, 7-2632, 7-2760, 8-3044,
8-3082, 8-3127, 9-3406, 9-3429

OneCocycle, 5-2019, 5-2033
OneCohomology, 5-2034
OneParameterSubgroupsLattice, 9-3880,

9-3887
OnlyUpToIsogeny, 11-4576
Open, 1-80
OpenGraphFile, 12-4995
OpenSmallGroupDatabase, 5-1941
OppositeAlgebra, 7-2566
OptimalEdgeColouring, 12-4967
OptimalSkewness, 2-324
OptimalVertexColouring, 12-4967
OptimisedRepresentation, 3-779, 3-866,

3-871, 4-1345, 7-2465, 7-2654
OptimizedRepresentation, 3-779, 3-866,

3-871, 4-1345, 7-2465, 7-2654
Or, 1-207
or, 1-11
Orbit, 5-1483, 5-1570, 5-1678, 12-4740,

12-4901, 12-4984
OrbitAction, 5-1575, 5-1686
OrbitActionBounded, 5-1686
OrbitalGraph, 12-4948
OrbitBounded, 5-1678
OrbitClosure, 5-1483, 5-1570, 5-1679
OrbitImage, 5-1575, 5-1686
OrbitImageBounded, 5-1686
OrbitKernel, 5-1575, 5-1686
OrbitKernelBounded, 5-1687
OrbitRepresentatives, 5-1570
Orbits, 5-1570, 5-1678, 12-4740, 12-4901,

12-4984
OrbitsOfSpaces, 5-1680
OrbitsOnSimples, 8-2867
OrbitsPartition, 12-4987
Order, 2-340, 2-343, 344, 2-380, 2-401,

2-554, 3-756, 3-812, 3-869, 3-871,
872, 3-934, 3-1094, 3-1098, 3-1148,
4-1383, 4-1438, 5-1467, 5-1483,
5-1509, 5-1528, 5-1537, 5-1655,
5-1658, 5-1756, 5-1765, 5-1800,
5-1811, 5-1872, 5-1986, 5-1999,
5-2004, 6-2059, 2060, 6-2063, 6-2144,
6-2235, 6-2254, 6-2267, 6-2349,
6-2366, 6-2409, 7-2451, 7-2461,
7-2522, 7-2627, 7-2630, 7-2767,
8-3112, 9-3435, 9-3682, 3683, 10-3956,
10-3973, 10-3980, 10-3984, 10-4163,



xlviii INDEX OF INTRINSICS

10-4165, 11-4620, 11-4631, 12-4726,
12-4887, 12-4950, 12-5029

OrderAutomorphismGroupAbelianPGroup (A),
5-1843

OrderedIntegerMonoid, 12-4816
OrderedMonoid, 12-4816, 12-4819, 12-4823
OrderedPartitionStack, 5-1629
OrderedPartitionStackZero, 5-1629
Ordering, 6-2348, 6-2407
OrderOfRootOfUnity, 2-345
OreConditions, 4-1310
OrientatedGraph, 12-4947, 12-5027
Origin, 9-3492, 9-3648
OriginalRing, 7-2487, 9-3289
OrthogonalComplement, 2-613, 11-4491,

11-4502
OrthogonalComponent, 7-2772
OrthogonalComponents, 7-2772
OrthogonalDecomposition, 3-664
Orthogonalize, 3-699
OrthogonalizeGram, 3-699
OrthogonalReflection, 2-624, 8-2946
OrthogonalSum, 2-623, 3-664
Orthonormalize, 3-700
OutDegree, 12-4954, 12-5032
OuterFaces, 4-1240
OuterFPGroup, 5-2001
OuterOrder, 5-1999
OuterShape, 12-4830
OuterVertices, 4-1240
OutNeighbors, 12-4956, 12-5033
OutNeighbours, 12-4956, 12-5033
OvalDerivation, 12-4746
OverconvergentHeckeSeries, 11-4421
OverconvergentHeckeSeriesDegreeBound,

11-4421
Overdatum, 8-2928, 8-2964
OverDimension, 2-600, 4-1399, 1400
Overgroup, 8-2927, 8-2964
P, 2-478
p, 2-478
PackingRadius, 3-681
PadCode, 13-5115, 13-5200, 13-5229
PadeHermiteApproximant, 3-1072, 3-1075
pAdicEllipticLogarithm, 10-4051
pAdicEmbeddings, 11-4418
pAdicField, 4-1267, 1268, 4-1275
pAdicHeight, 10-4019
pAdicLSeries, 11-4477
pAdicQuotientRing, 4-1268
pAdicRegulator, 10-4020
pAdicRing, 4-1267, 1268, 4-1275
PairReduce, 3-675
PairReduceGram, 3-675
PaleyGraph, 12-4948
PaleyTournament, 12-4948
ParallelClass, 12-4733
ParallelClasses, 12-4733

ParallelSort, 1-203
Parameters, 12-4887
Parametrization, 3-1171, 9-3706, 10-3929
ParametrizationMatrix, 10-3928
ParametrizationToPuiseux, 4-1252
ParametrizeDegree5DelPezzo, 9-3812
ParametrizeDegree6DelPezzo, 9-3808
ParametrizeDegree7DelPezzo, 9-3808
ParametrizeDegree8DelPezzo, 9-3806
ParametrizeDegree9DelPezzo, 9-3806
ParametrizeDelPezzo, 9-3803
ParametrizeDelPezzoDeg6, 9-3810
ParametrizeOrdinaryCurve, 10-3930
ParametrizePencil, 9-3803
ParametrizeProjectiveHypersurface, 9-3797
ParametrizeProjectiveSurface, 9-3797
ParametrizeQuadric, 9-3801
ParametrizeRationalNormalCurve, 10-3930
ParametrizeSingularDegree3DelPezzo, 9-3812
ParametrizeSingularDegree4DelPezzo, 9-3812
Parent, 1-176, 1-198, 1-218, 1-254,

2-266, 2-268, 2-285, 2-287, 2-335,
2-337, 2-354, 2-357, 2-373, 2-377,
2-397, 2-415, 2-417, 2-447, 2-479,
480, 2-600, 3-757, 3-782, 3-793,
3-884, 3-905, 3-1045, 3-1047,
3-1062, 3-1097, 3-1130, 3-1142,
3-1156, 4-1230, 4-1288, 4-1316,
4-1318, 4-1327, 1328, 4-1400, 5-1482,
5-1526, 5-1648, 5-1811, 5-1872,
6-2044, 6-2046, 6-2084, 6-2088,
6-2254, 6-2287, 6-2305, 6-2351,
6-2368, 6-2380, 6-2393, 6-2407,
7-2429, 7-2471, 7-2512, 7-2689,
7-2764, 9-3407, 9-3413, 9-3430,
9-3433, 9-3890, 10-3969, 10-4148,
11-4488, 11-4659, 12-4854, 4855,
13-5086, 13-5204, 13-5217

ParentCell, 5-1630
ParentGraph, 12-4936
ParentPlane, 12-4722
ParentRing, 4-1244
ParityCheckMatrix, 13-5081, 13-5176,

13-5215
PartialDual, 3-663
PartialFactorization, 2-309
PartialFractionDecomposition, 3-1065
PartialWeightDistribution, 13-5101
Partition, 1-205, 206, 8-3057
Partition2WGtable, 8-2935
PartitionCovers, 12-4830
Partitions, 2-296, 12-4813
PartitionToWeight, 8-3171
PascalTriangle, 12-4888
Path, 12-5043
PathExists, 12-5043
PathGraph, 12-4930
Paths, 12-5043



INDEX OF INTRINSICS xlix

PathTree, 7-2583
PCClass, 5-1861
pCentralSeries, 5-1494, 5-1586, 5-1706,

5-1834
PCExponents, 6-2267
PCGenerators, 5-1799, 5-1998, 6-2266
PCGroup, 5-1479, 5-1677, 5-1706, 5-1857,

5-1865, 6-2058, 6-2200, 6-2265,
7-2608

PCGroupAutomorphismGroupPGroup, 5-2001
pClass, 5-1835, 6-2236
pClosure, 8-3040
PCMap, 7-2608, 9-3523
pCore, 5-1491, 5-1586, 5-1670, 5-1825,

5-1832
pCoreQuotient, 5-1586
pCover, 5-1509, 5-1606, 5-2023
pCoveringGroup, 6-2234
PCPresentation, 5-1756
PCPrimes, 5-1799
pElementaryAbelianNormalSubgroup, 5-1600
Pencil, 12-4733
PentahedronIdeal, 9-3822
PerfectForms, 5-1783
PerfectGroupDatabase, 5-1954
PerfectSubgroups, 5-1502, 5-1562
PeriodMapping, 11-4470, 11-4646
Periods, 10-4050, 11-4470, 11-4646
PermRep, 5-1987
PermRepDegrees, 5-1987
PermRepKeys, 5-1987
Permutation, 5-1620
PermutationAutomorphism, 9-3552
PermutationCharacter, 3-1218, 5-1510,

1511, 5-1609, 5-1700, 7-2773
PermutationCode, 13-5075, 13-5170
PermutationGroup, 5-1468, 5-1525, 5-1956,

5-1987, 5-2001, 6-2058, 6-2200,
9-3683, 13-5139, 13-5231, 13-5260

PermutationMatrix, 2-527
PermutationModule, 5-1511, 5-1609,

5-1701, 7-2689, 7-2727
PermutationRepresentation, 5-1955, 5-2001,

9-3683
Permutations, 1-186, 12-4809
PermutationSupport, 5-2001
PermuteWeights, 8-3150
pExcess, 3-746
Pfaffian, 2-545
Pfaffians, 2-545
pFundamentalUnits, 3-923
PGammaL, 5-1624
PGammaU, 5-1625
PGL, 5-1623
PGO, 5-1626
PGOMinus, 5-1626
PGOPlus, 5-1626
PGroupStrong, 6-2093

PGroupToForms, 7-2667
PGU, 5-1624
PhaseFlip, 13-5269
Phi, 7-2792
phi, 11-4566, 11-4623
PhiModule, 7-2791
PhiModuleElement, 7-2791
PhiSelmerGroup, 10-4198
PHom, 7-2590
Pi, 2-484
PicardClass, 9-3891
PicardGroup, 3-839, 3-915
PicardNumber, 3-839
pIntegralModel, 10-4127
Pipe, 1-83
pIsogenyDescent, 10-4039, 4040
pIsogneyDescent, 10-4040
Place, 3-807, 3-955, 3-1152, 3-1154,

9-3703
PlaceEnumCopy, 3-1213
PlaceEnumCurrent, 3-1214
PlaceEnumInit, 3-1213
PlaceEnumNext, 3-1214
PlaceEnumPosition, 3-1214
Places, 3-807, 3-954, 3-1099, 3-1121,

3-1153, 1154, 3-1160, 9-3702, 3703
PlacticIntegerMonoid, 12-4819
PlacticMonoid, 12-4819
PlanarDual, 12-4974
PlanarGraphDatabase, 12-4991
PlaneToDisc, 11-4375
Plethysm, 8-3156
PlotkinAsymptoticBound, 13-5128
PlotkinBound, 13-5127
PlotkinSum, 13-5115, 13-5186, 13-5200,

13-5229, 5230
Plurigenus, 9-3764
PlurigenusOfDesingularization, 9-3791
pMap, 8-3039
pmap, 1-250
pMatrixRing, 7-2465, 7-2638
pMaximalOrder, 3-875, 3-1096, 3-1147,

7-2465, 7-2630
pMinimalWeierstrassModel, 10-4127
pMinimise, 10-4109
pMinus1, 2-306
pMultiplicator, 5-1509, 5-1606, 5-2023
pMultiplicatorRank, 6-2236
pNormalModel, 10-4127
Point, 9-3837, 12-4879
PointDegree, 12-4889
PointDegrees, 12-4886
PointGraph, 12-4903, 12-4949
PointGroup, 12-4739, 12-4899
PointOnRegularModel, 9-3728
Points, 9-3508, 9-3841, 10-3924, 10-3956,

10-3968, 10-3988, 10-4093, 10-4142,
10-4144, 10-4159, 10-4165, 10-4172,



l INDEX OF INTRINSICS

10-4204, 10-4206, 12-4722, 12-4759,
12-4786, 12-4788, 12-4886

PointsAtInfinity, 9-3673, 10-3968,
10-4142, 10-4144

PointsCubicModel, 9-3726
PointSearch, 9-3528
PointSet, 9-3506, 10-3958, 12-4718,

12-4879
PointsKnown, 10-4144
PointsOverSplittingField, 9-3511
PointsQI, 10-4028, 10-4093
Polar, 12-4778
Polarisation, 9-3837
PolarisedVariety, 9-3842
PolarSpaceType, 2-620
PolarToComplex, 2-482
PoleDivisor, 3-1165
Poles, 3-1136, 3-1154, 9-3704
PollardRho, 2-306
PolycyclicGenerators, 5-1706
PolycyclicGroup, 5-1469, 5-1796, 6-2256
PolygonGraph, 12-4930
Polyhedron, 9-3893, 12-4780, 4781
PolyhedronInSublattice, 12-4781
Polylog, 2-492, 493
PolylogD, 2-493
PolylogDold, 2-493
PolylogP, 2-493
PolyMapKernel, 9-3263
Polynomial, 2-414, 2-454, 3-1204, 4-1244
PolynomialAlgebra, 2-411, 2-444, 9-3185,

3186, 9-3188
PolynomialCoefficient, 4-1361
PolynomialMap, 9-3577
PolynomialRing, 2-411, 2-444, 9-3185,

3186, 9-3188, 9-3357, 10-4108
PolynomialSieve, 2-326
Polytope, 12-4778
PolyToSeries, 4-1378
POmega, 5-1627
POmegaMinus, 5-1628
POmegaPlus, 5-1627
Pop, 5-1631
POpen, 1-83
Position, 1-67, 1-176, 1-199
PositiveConjugates, 6-2324
PositiveConjugatesProcess, 6-2327
PositiveCoroots, 8-2839, 8-2876, 8-2919,

8-2966, 8-3121
PositiveDefiniteForm, 3-730, 5-1781
PositiveGammaOrbitsOnRoots, 8-2867
PositiveQuadrant, 12-4779
PositiveRelativeRoots, 8-2878
PositiveRoots, 8-2839, 8-2876, 8-2919,

8-2966, 8-3121
PositiveRootsPerm, 8-3081
PositiveSum, 2-511
PossibleCanonicalDissidentPoints, 9-3842

PossibleHypergeometricData, 10-4228
PossibleSimpleCanonicalDissidentPoints,

9-3842
Power, 3-755
PowerFormalSet, 1-174
PowerGroup, 6-2287
PowerIdeal, 2-273
PowerIndexedSet, 1-173
PowerMap, 5-1498, 5-1545, 5-1666, 5-1815
PowerMultiset, 1-174
PowerPolynomial, 2-424
PowerProduct, 3-800, 3-912, 3-946, 3-1139
PowerRelation, 2-491
PowerResidueCode, 13-5112
PowerSequence, 1-197
PowerSeries, 11-4400, 11-4459
PowerSeriesRing, 4-1323
PowerSet, 1-173
PowerSumToElementaryMatrix, 12-4869
PowerSumToElementarySymmetric, 3-990
PowerSumToHomogeneousMatrix, 12-4869
PowerSumToMonomialMatrix, 12-4869
PowerSumToSchurMatrix, 12-4868
pPlus1, 2-306
pPowerTorsion, 10-4063
pPrimaryComponent, 6-2062
pPrimaryInvariants, 6-2062
pQuotient, 5-1478, 5-1564, 5-1676,

5-1831, 5-1858, 6-2129, 8-3040
pQuotientProcess, 6-2231
pRadical, 3-875, 3-1096, 3-1148
pRank, 12-4726, 12-4887
pRanks, 5-1835
Precision, 2-480, 2-483, 4-1276, 4-1288,

4-1328, 4-1341, 4-1367, 11-4400
PrecisionBound, 11-4398
Preimage, 12-4800
PreimageIdeal, 7-2487, 9-3289
PreimageRing, 2-436, 7-2487, 9-3289
PreparataCode, 13-5178
Preprune, 4-1446
Presentation, 7-2540, 8-2938, 9-3310
PresentationIsSmall, 6-2259
PresentationLength, 6-2100, 6-2187
PresentationMatrix, 9-3316
PreviousPrime, 2-300
PrimalityCertificate, 2-298
Primary, 3-843
PrimaryAlgebra, 9-3375
PrimaryComponents, 9-3517
PrimaryDecomposition, 9-3246, 9-3290
PrimaryIdeal, 9-3375
PrimaryInvariantFactors, 2-549, 7-2530
PrimaryInvariants, 6-2062, 9-3365
PrimaryRationalForm, 2-548, 7-2529
Prime, 3-704, 4-1274, 4-1367, 11-4504
PrimeBasis, 2-301, 2-308
PrimeComponents, 9-3517



INDEX OF INTRINSICS li

PrimeDivisors, 2-301, 2-308, 2-311
PrimeFactorisation, 9-3583
PrimeField, 2-266, 2-354, 2-367, 2-373,

2-399, 2-479, 3-784, 3-889, 3-1045,
3-1097, 4-1275, 4-1316

PrimeForm, 3-754
PrimeIdeal, 7-2646
PrimePolynomials, 2-427
PrimePowerRepresentation, 3-1140
PrimeRing, 2-266, 2-285, 2-335, 2-373,

2-415, 2-447, 3-784, 3-889, 3-1045,
3-1062, 3-1097, 4-1230, 4-1275,
4-1316, 7-2471, 12-4854

Primes, 3-737
PrimesInInterval, 2-300
PrimesUpTo, 2-300
PrimitiveData, 10-4228
PrimitiveElement, 2-340, 2-371, 3-795,

3-907, 3-934, 3-1103
PrimitiveGroup, 5-1967, 1968
PrimitiveGroupDatabaseLimit, 5-1967
PrimitiveGroupDescription, 5-1967
PrimitiveGroupIdentification, 5-1971
PrimitiveGroupProcess, 5-1969, 1970
PrimitiveGroups, 5-1968
PrimitiveIdempotentData, 7-2536
PrimitiveIdempotents, 7-2536
PrimitiveLatticeVector, 12-4797
PrimitivePart, 2-426, 2-462
PrimitivePolynomial, 2-382
PrimitiveQuotient, 5-1583
PrimitiveRoot, 2-312, 2-340
PrimitiveWreathProduct, 5-1534
PrincipalCharacter, 7-2760
PrincipalDivisor, 3-1136, 9-3709
PrincipalDivisorMap, 3-1174
PrincipalIdealMap, 3-1122
PrincipalSeriesParameters, 11-4683
PrincipalUnitGroup, 4-1307
PrincipalUnitGroupGenerators, 4-1307
PrintFile, 1-78, 79
PrintFileMagma, 1-79
PrintProbabilityDistribution, 13-5266
PrintSortedProbabilityDistribution,

13-5267
PrintSylowSubgroupStructure, 8-3132
PrintTermsOfDegree, 4-1355
PrintToPrecision, 4-1355
PrintTreesSU, 8-3174
Probability, 13-5266
ProbabilityDistribution, 13-5266
ProbableAutomorphismGroup, 3-1020
ProbableRadicalDecomposition, 9-3247
ProcessLadder, 5-1600
Product, 12-4699
ProductCode, 13-5114
ProductProjectiveSpace, 9-3489

ProductRepresentation, 3-800, 3-912,
3-1139, 8-3149, 3150

ProfileGraph, 1-138
ProfileHTMLOutput, 1-141
ProfilePrintByTotalCount, 1-140
ProfilePrintByTotalTime, 1-140
ProfilePrintChildrenByCount, 1-140
ProfilePrintChildrenByTime, 1-140
ProfileReset, 1-137
Proj, 9-3486, 9-3496, 9-3892
Projection, 9-3533
ProjectionFromNonsingularPoint, 9-3533
ProjectionMap, 11-4315
ProjectionOnto, 11-4610
ProjectionOntoImage, 11-4610
ProjectiveClosure, 9-3521, 9-3547, 9-3673
ProjectiveClosureMap, 9-3523
ProjectiveCover, 7-2592, 7-2755
ProjectiveEmbedding, 12-4728
ProjectiveFunction, 9-3504, 9-3693
ProjectiveGammaLinearGroup, 5-1624
ProjectiveGammaUnitaryGroup, 5-1625
ProjectiveGeneralLinearGroup, 5-1623
ProjectiveGeneralOrthogonalGroup, 5-1626
ProjectiveGeneralOrthogonalGroupMinus,

5-1626
ProjectiveGeneralOrthogonalGroupPlus,

5-1626
ProjectiveGeneralUnitaryGroup, 5-1624
ProjectiveIndecomposableDimensions, 7-2752
ProjectiveIndecomposableModule, 7-2752
ProjectiveIndecomposableModules, 7-2752
ProjectiveMap, 9-3533, 3534
ProjectiveModule, 7-2583, 2584
ProjectiveOmega, 5-1627
ProjectiveOmegaMinus, 5-1628
ProjectiveOmegaPlus, 5-1627
ProjectiveOrder, 2-554, 5-1656, 7-2522
ProjectivePlane, 2-402, 9-3647
ProjectiveRationalFunction, 9-3504
ProjectiveResolution, 7-2592, 7-2609
ProjectiveResolutionPGroup, 7-2609
ProjectiveSigmaLinearGroup, 5-1624
ProjectiveSigmaSymplecticGroup, 5-1626
ProjectiveSigmaUnitaryGroup, 5-1625
ProjectiveSpace, 9-3486, 9-3647, 9-3880
ProjectiveSpecialLinearGroup, 5-1624
ProjectiveSpecialOrthogonalGroup, 5-1626
ProjectiveSpecialOrthogonalGroupMinus,

5-1627
ProjectiveSpecialOrthogonalGroupPlus,

5-1627
ProjectiveSpecialUnitaryGroup, 5-1625
ProjectiveSuzukiGroup, 5-1628
ProjectiveSymplecticGroup, 5-1625
Projectivity, 9-3554
Prospector, 5-1488



lii INDEX OF INTRINSICS

Prune, 1-202, 1-217, 1-224, 3-1050,
4-1445, 9-3537, 12-4701

pSelmerGroup, 3-1006, 4-1308, 10-4075
PseudoAdd, 10-4205
PseudoAddMultiple, 10-4205
PseudoBasis, 4-1431, 7-2455, 7-2461
PseudoDimension, 13-5176
PSeudoGenerators, 4-1431
PseudoMatrix, 4-1438, 7-2455, 7-2461
PseudoRandom, 5-1874
PseudoReflection, 8-2944
PseudoReflectionGroup, 8-2948
PseudoRemainder, 2-423
Psi, 2-507
PSigmaL, 5-1624
PSigmaSp, 5-1626
PSigmaU, 5-1625
pSignature, 3-746
PSL, 5-1624
PSL2, 11-4339
PSO, 5-1626
PSOMinus, 5-1627
PSOPlus, 5-1627
PSp, 5-1625
PSU, 5-1625
pSubalgebra, 8-3039
PSz, 5-1628
PuiseuxExpansion, 4-1246
PuiseuxExponents, 4-1250
PuiseuxExponentsCommon, 4-1250
PuiseuxSeriesRing, 4-1324
PuiseuxToParametrization, 4-1252
Pullback, 6-2195, 6-2331, 7-2591, 9-3542,

9-3544, 9-3579, 9-3678, 10-4147,
11-4582

PunctureCode, 13-5115, 5116, 13-5200,
13-5230, 13-5255

PureBraidGroup, 8-2932
PureLattice, 3-665
PurelyRamifiedExtension, 9-3423, 9-3440
PureRayIndices, 9-3874
PureRays, 9-3874
Pushforward, 9-3678
Pushout, 7-2591
PushThroughIsogeny, 10-3964
Put, 1-81
Puts, 1-81
qCoverDescent, 10-4196
qCoverPartialDescent, 10-4200
QECC, 13-5257
QECCLowerBound, 13-5259
QECCUpperBound, 13-5259
qEigenform, 11-4424, 11-4459
qExpansion, 11-4400
qExpansionBasis, 11-4398, 11-4460,

11-4494
qExpansionExpressions, 11-4329
qExpansionsOfGenerators, 11-4330

qIntegralBasis, 11-4460
QMatrix, 2-432
QNF, 3-774, 3-864
QRCode, 13-5111
QRCodeZ4, 13-5179
Qround, 2-359, 3-794, 3-906
QuadeIdeal, 9-3394
QuadraticClassGroupTwoPart, 3-840
QuadraticField, 3-836
QuadraticForm, 3-659, 3-745, 3-845,

5-1900, 12-4735
QuadraticFormMatrix, 2-622
QuadraticFormPolynomial, 2-623
QuadraticForms, 3-753
QuadraticNorm, 2-622
QuadraticOrder, 3-757
QuadraticSpace, 2-622
QuadraticTransformation, 9-3558
QuadraticTwist, 10-3947, 10-4129
QuadraticTwists, 10-3948, 10-4129
QuadricIntersection, 10-4028, 10-4108
QuantizedUEA, 8-3080
QuantizedUEAlgebra, 8-3080
QuantizedUniversalEnvelopingAlgebra,

8-3080
QuantumBasisElement, 13-5247
QuantumBinaryErrorGroup, 13-5248
QuantumCode, 13-5237, 13-5240, 5241
QuantumCyclicCode, 13-5243–5245
QuantumDimension, 8-3152
QuantumErrorGroup, 13-5248, 5249
QuantumQuasiCyclicCode, 13-5246
QuantumState, 13-5263
QuarticG4Covariant, 10-4023
QuarticG6Covariant, 10-4023
QuarticHSeminvariant, 10-4023
QuarticIInvariant, 10-4023
QuarticJInvariant, 10-4023
QuarticMinimise, 10-4024
QuarticMinimize, 10-4092
QuarticNumberOfRealRoots, 10-4024
QuarticPSeminvariant, 10-4023
QuarticQSeminvariant, 10-4023
QuarticReduce, 10-4024
QuarticRSeminvariant, 10-4023
QuasiCyclicCode, 13-5107
QuasisimpleMatrixGroup, 5-1979
QuasisimpleMatrixGroups, 5-1980
QuasiTwistedCyclicCode, 13-5107
QuaternaryPlotkinSum, 13-5187
Quaternion, 11-4368
QuaternionAlgebra, 7-2422, 7-2622–2625,

7-2642, 10-3932, 11-4366
QuaternionicAutomorphismGroup, 3-712
QuaternionicGModule, 3-712
QuaternionicMatrixGroupDatabase, 5-1975
QuaternionOrder, 7-2627, 7-2631, 11-4366,

11-4495, 11-4658



INDEX OF INTRINSICS liii

QUAToIntegralUEAMap, 8-3095
quo, 2-273, 2-333, 2-434, 2-596, 3-661,

3-778, 3-951, 4-1268, 4-1407,
4-1424, 4-1444, 5-1473, 5-1563,
5-1675, 5-1797, 5-1830, 6-2057,
6-2089, 6-2255, 6-2261, 6-2395,
7-2424, 7-2485, 7-2551, 7-2578,
7-2697, 7-2719, 8-2987, 8-3011,
9-3287, 9-3318, 12-4939

Quotient, 11-4583, 11-4628, 12-4760,
12-4798

QuotientDimension, 9-3226, 9-3281
QuotientGradings, 9-3880, 9-3885
QuotientMap, 3-760
QuotientModule, 7-2496–2500, 9-3319
QuotientModuleAction, 5-1689
QuotientModuleImage, 5-1689
QuotientRepresentation, 4-1367
QuotientRing, 3-1046, 9-3426
QuotientWithPullback, 8-3012
Quotrem, 2-290, 2-422, 3-1156, 3-1161,

3-1204, 4-1231, 4-1318, 9-3705,
9-3711

Radical, 2-613, 5-1494, 5-1595, 5-1692,
8-2891, 9-3245

RadicalDecomposition, 9-3246, 9-3290
RadicalExtension, 3-777, 3-865
RadicalQuotient, 5-1596, 5-1692
RamificationDegree, 3-935, 3-1152,

3-1157, 4-1274, 4-1342, 4-1367
RamificationDivisor, 3-1105, 3-1169,

9-3678, 9-3710, 9-3717
RamificationField, 3-966
RamificationGroup, 3-965, 4-1370
RamificationIndex, 2-332, 3-810, 3-935,

3-958, 3-1152, 3-1157, 4-1274,
4-1342, 4-1367

RamifiedPlaces, 7-2635
RamifiedPrimes, 7-2635
RamifiedRepresentation, 4-1367
Random, 1-11, 1-31, 1-178, 1-200, 1-216,

2-269, 2-291, 2-336, 2-342, 2-354,
2-371, 2-399, 2-588, 3-780, 3-812,
3-878, 3-992, 3-1130, 3-1200,
3-1203, 4-1281, 4-1315, 4-1401,
5-1486, 5-1488, 5-1506, 5-1539, 1540,
5-1630, 5-1660, 5-1812, 1813, 6-2052,
6-2064, 2065, 6-2083, 6-2269, 6-2301,
6-2353, 6-2372, 6-2384, 6-2397,
6-2412, 7-2423, 7-2458, 7-2510,
7-2571, 7-2693, 7-2707, 8-3009,
8-3116, 8-3128, 9-3509, 9-3575,
10-3924, 10-3988, 10-4060, 10-4143,
10-4161, 11-4344, 12-4719, 12-4730,
12-4879, 4880, 12-4937, 12-4992,
13-5084, 13-5176, 13-5216

RandomAbelianSurface d10g6, 9-3781
RandomAdditiveCode, 13-5213

RandomAutomorphism, 8-3128
RandomBaseChange, 7-2792
RandomBits, 2-291
RandomCFP, 6-2301
RandomCompleteIntersection, 9-3761
RandomConsecutiveBits, 2-292
RandomCurveByGenus, 9-3656
RandomDigraph, 12-4931
RandomElementOfNormalClosure, 5-1712
RandomElementOfOrder, 5-1711
RandomEllipticFibration d10g10, 9-3782
RandomEllipticFibration d7g6, 9-3781
RandomEllipticFibration d8g7, 9-3781
RandomEllipticFibration d9g7, 9-3781
RandomEnriquesSurface d9g6, 9-3780
RandomExtension, 2-366
RandomGenusOneModel, 10-4105
RandomGLnZ, 2-528
RandomGraph, 12-4930, 12-4990
RandomHookWalk, 12-4829
RandomIdealGeneratedBy, 7-2578
RandomIrreduciblePolynomial, 2-382
RandomLinearCode, 13-5076, 13-5172
RandomMatrix, 2-528
RandomModel, 10-4105
RandomNodalCurve, 9-3655
RandomOrdinaryPlaneCurve, 9-3656
RandomPartition, 12-4814
RandomPlace, 3-1121, 3-1154, 9-3703
RandomPolytope, 12-4778
RandomPrime, 2-291, 2-301
RandomPrimePolynomial, 2-427
RandomProcess, 5-1487, 5-1539, 5-1660,

5-1812, 6-2064, 6-2268, 6-2384
RandomProcessWithValues, 5-1487
RandomProcessWithWords, 5-1487
RandomProcessWithWordsAndValues, 5-1487
RandomQuantumCode, 13-5241
RandomRationalSurface d10g9, 9-3780
RandomRightIdeal, 7-2460
RandomSchreier, 5-1616, 5-1704
RandomSequenceBlumBlumShub, 13-5277
RandomSequenceRSA, 13-5276, 5277
RandomSLnZ, 2-528
RandomSubcomplex, 4-1444
RandomSubset, 1-186
RandomSymplecticMatrix, 2-528
RandomTableau, 12-4829
RandomTransformation, 10-4113
RandomTree, 12-4930
RandomUnimodularMatrix, 2-528
RandomWord, 6-2301
Rank, 2-416, 2-448, 2-545, 2-574, 2-604,

3-658, 3-976, 3-1045, 3-1062,
4-1350, 4-1405, 4-1417, 7-2471,
7-2487, 7-2521, 8-2836, 8-2867,
8-2912, 8-2960, 8-2982, 8-3113,



liv INDEX OF INTRINSICS

9-3289, 9-3324, 10-4012, 11-4489,
11-4575, 11-4586, 12-4759

RankBound, 10-4064, 10-4090, 10-4181,
10-4198

RankBounds, 10-4012, 10-4090, 10-4181,
10-4198

RanksOfPrimitiveIdempotents, 7-2536
RankZ2, 13-5189
RationalCharacterTable, 7-2748, 7-2763
RationalCurve, 10-3914
RationalCuspidalSubgroup, 11-4635
RationalDifferentialField, 9-3404
RationalExtensionRepresentation, 3-1098
RationalField, 2-353
RationalForm, 2-549, 7-2530
RationalFunction, 3-1139
RationalFunctionField, 3-1059, 1060
RationalHomology, 11-4554
RationalMap, 10-3963
RationalMapping, 11-4470
RationalMatrixGroupDatabase, 5-1971
RationalPoint, 10-3924
RationalPoints, 9-3508, 9-3510, 10-3924,

10-3956, 10-3968, 10-3988, 10-4142,
10-4144, 10-4159, 10-4165, 10-4172,
10-4195, 10-4206

RationalPointsByFibration, 9-3508
RationalPuiseux, 4-1380
RationalReconstruction, 2-360, 3-1140
RationalRuledSurface, 9-3761
Rationals, 2-353
RationalsAsNumberField, 3-774, 3-864
RationalSequence, 8-3091
RationalSolutions, 9-3450
RawBasket, 9-3843
RawEval, 3-820
Ray, 9-3874, 12-4783
RayClassField, 3-1009, 1010
RayClassGroup, 3-1003, 3-1191
RayClassGroupDiscLog, 3-1192
RayLattice, 9-3887
RayLatticeMap, 9-3887
RayResidueRing, 3-1005, 3-1191
Rays, 9-3874, 9-3880, 12-4783
Re, 2-482, 11-4372
Reachable, 12-4963, 12-5042
Read, 1-82, 1-84, 1-87
ReadBinary, 1-82
ReadBytes, 1-84, 1-87
Real, 2-482, 11-4346, 11-4372
RealEmbeddings, 3-809, 3-956
RealField, 2-476
RealHomology, 11-4554
RealInjection, 8-2836
RealMatrix, 11-4568
RealPeriod, 10-4050
RealPlaces, 3-808, 3-956
RealSigns, 3-809, 3-957

RealTamagawaNumber, 11-4475
Realtime, 1-26, 27
RealVectorSpace, 11-4554
RealVolume, 11-4463
rec, 1-242
recformat, 1-241
ReciprocalPolynomial, 2-424
RecogniseAdjoint (G), 5-1909
RecogniseAlternating, 5-1613, 5-1893
RecogniseAlternatingOrSymmetric, 5-1611,

5-1892
RecogniseAlternatingSquare (G), 5-1909
RecogniseClassicalSSA, 7-2672
RecogniseDelta (G), 5-1910
RecogniseExchangeSSA, 7-2672
RecogniseLargeRee, 5-1920
RecogniseRee, 5-1917
RecogniseSL, 5-1908
RecogniseSL3, 5-1906
RecogniseSp4Even, 5-1908
RecogniseSpOdd, 5-1908
RecogniseStarAlgebra, 7-2673
RecogniseSU3, 5-1908
RecogniseSU4, 5-1909
RecogniseSymmetric, 5-1612, 5-1893
RecogniseSymmetricSquare (G), 5-1909
RecogniseSz, 5-1911
RecognizeClassical, 5-1902
RecognizeLargeRee, 5-1920
RecognizeRee, 5-1917
RecognizeSL, 5-1908
RecognizeSL2, 5-1904
RecognizeSp4Even, 5-1908
RecognizeSpOdd, 5-1908
RecognizeSU3, 5-1908
RecognizeSU4, 5-1909
RecognizeSz, 5-1911
Reconstruct, 3-953
ReconstructionEnvironment, 3-953
ReconstructLatticeBasis, 3-680
Rectify, 12-4835
RedoEnumeration, 6-2217
Reduce, 3-1101, 4-1412, 7-2480, 9-3200,

10-4110
ReduceCharacters, 7-2774
ReduceCluster, 9-3728
ReduceCubicSurface, 9-3814
ReducedAteTPairing, 10-3992
ReducedBasis, 7-2465, 7-2652, 2653,

10-4018, 10-4176
ReducedDiscriminant, 3-894
ReducedEtaTPairing, 10-3991
ReducedFactorisation, 9-3582
ReducedForm, 3-756
ReducedForms, 3-757
ReducedGramMatrix, 7-2652, 2653
ReducedLegendreModel, 10-3920
ReducedLegendrePolynomial, 10-3919



INDEX OF INTRINSICS lv

ReducedMinimalWeierstrassModel, 10-4128
ReducedModel, 10-4128
ReducedOrbits, 3-757
ReducedSubscheme, 9-3517
ReducedTatePairing, 10-3990
ReduceGenerators, 5-1622, 6-2183
ReduceGroebnerBasis, 9-3201
ReducePlaneCurve, 9-3728
ReduceQuadrics, 10-4110
ReduceToTriangleVertices, 11-4380
ReduceVector, 2-601
Reduction, 3-756, 3-845, 3-1166, 9-3575,

9-3716, 10-3925, 10-4063
ReductionOrbit, 3-756
Reductions, 11-4418
ReductionStep, 3-756
ReductionType, 10-4006
ReductiveRank, 8-3113
ReductiveType, 8-3018
Reductum, 2-423, 2-459, 460
ReeConjugacyClasses, 5-1928
ReedMullerCode, 13-5078
ReedMullerCodeQRMZ4, 13-5181
ReedMullerCodeRMZ4, 13-5182
ReedMullerCodesLRMZ4, 13-5182
ReedMullerCodesRMZ4, 13-5183
ReedMullerCodeZ4, 13-5178, 13-5181
ReedSolomonCode, 13-5113
ReeElementToWord, 5-1917
ReeGroup, 5-1891
ReeIrreducibleRepresentation, 5-1918
ReeMaximalSubgroups, 5-1922
ReeMaximalSubgroupsConjugacy, 5-1922
ReesIdeal, 9-3228
ReeSylow, 5-1926
ReeSylowConjugacy, 5-1926
RefineSection, 5-1594
Reflection, 8-2925, 8-2944, 8-3123
ReflectionFactors, 2-624
ReflectionGroup, 8-2824, 8-2848, 8-2899,

8-2908, 8-2931, 8-2938, 8-2949, 2950
ReflectionMatrices, 8-2841, 8-2881,

8-2926, 8-2968
ReflectionMatrix, 8-2841, 8-2881, 8-2926,

8-2968
ReflectionPermutation, 8-2842, 8-2882,

8-2925, 8-2968
ReflectionPermutations, 8-2842, 8-2882,

8-2968
Reflections, 8-2925, 8-3123
ReflectionSubgroup, 8-2927
ReflectionWord, 8-2842, 8-2882, 8-2926,

8-2968
ReflectionWords, 8-2842, 8-2882, 8-2926,

8-2968
Regexp, 1-71
Regularity, 9-3333
RegularLDPCEnsemble, 13-5157

RegularModel, 9-3727
RegularRepresentation, 7-2448, 7-2585
RegularSequence, 9-3228
RegularSpliceDiagram, 9-3752
RegularSubgroups, 5-1502
Regulator, 3-788, 3-894, 3-1122, 10-4016,

10-4176
RegulatorLowerBound, 3-788, 3-895
RelationIdeal, 9-3241, 9-3375
RelationMatrix, 3-916, 6-2046, 9-3310
RelationModule, 9-3309
Relations, 3-916, 3-1138, 3-1180, 6-2046,

6-2100, 6-2348, 6-2394, 6-2407,
9-3310, 9-3375, 9-3694, 9-3700,
11-4422

RelativeField, 3-783, 3-885, 4-1368
RelativeInvariant, 3-977
RelativePrecision, 4-1288, 4-1330,

4-1344, 4-1372, 9-3411
RelativePrecisionOfDerivation, 9-3411,

9-3432
RelativeProj, 9-3892
RelativeRank, 8-2867
RelativeRootDatum, 8-2879
RelativeRootElement, 8-3110
RelativeRoots, 8-2878
RelativeRootSpace, 8-2875
Remove, 1-202, 1-229
RemoveColumn, 2-535, 2-569
RemoveConstraint, 13-5289
RemoveEdge, 12-4943, 12-5024
RemoveEdges, 12-4943, 12-5024
RemoveFiles, 2-321
RemoveIrreducibles, 7-2774
RemoveLinearRelations, 9-3497
RemoveRow, 2-535, 2-569
RemoveRowColumn, 2-535, 2-569
RemoveVertex, 12-4941, 12-5021
RemoveVertices, 12-4941, 12-5021
RemoveWeight, 9-3845, 9-3847
RemoveZeroRows, 2-535, 2-569
Rep, 1-178, 1-199, 1-216, 2-269, 3-991,

5-1485, 5-1540, 5-1630, 5-1813,
5-1874, 6-2065, 6-2268, 6-2299,
6-2327, 6-2353, 6-2372, 6-2384,
6-2412, 12-4719, 12-4730, 12-4879,
4880, 12-4937

RepetitionCode, 13-5076, 13-5172
ReplaceRelation, 6-2207, 6-2396
ReplicationNumber, 12-4887
Representation, 6-2053, 7-2730, 9-3386,

9-3393
RepresentationDimension, 8-3152
RepresentationMatrix, 3-799, 3-911,

3-1133, 1134, 4-1372, 7-2448, 7-2460,
7-2489, 9-3293

RepresentationNumber, 3-761
RepresentationType, 7-2553



lvi INDEX OF INTRINSICS

Representative, 1-178, 1-199, 2-269,
2-283, 2-336, 2-354, 2-371, 2-414,
2-447, 2-479, 3-702–704, 3-781,
3-878, 3-991, 3-1039, 3-1061,
3-1130, 4-1281, 4-1315, 4-1327,
5-1485, 5-1540, 5-1630, 5-1813,
6-2268, 6-2299, 6-2327, 6-2353,
6-2372, 6-2412, 7-2471, 8-3058,
9-3889, 12-4719, 12-4730, 12-4879,
4880, 12-4937

RepresentativeCocycles, 5-1855
RepresentativePoint, 9-3705
Representatives, 3-705
Res H2 G QmodZ, 6-2072
ResetMaximumMemoryUsage, 1-90
ResetMinimumWeightBounds, 13-5097
Residual, 12-4882
Residue, 3-1179, 9-3699, 9-3706, 12-4762
ResidueClassDegree, 3-1152, 3-1157
ResidueClassField, 2-274, 3-810, 3-935,

3-958, 3-1152, 3-1157, 4-1276,
4-1327, 4-1342, 4-1368, 9-3706

ResidueClassRing, 2-333
ResidueField, 4-1317
ResidueSystem, 4-1276
Resolution, 9-3898
ResolutionData, 7-2608
ResolutionGraph, 9-3745, 3746, 9-3748
ResolutionGraphVertex, 9-3745
ResolveAffineCurve, 9-3783
ResolveAffineMonicSurface, 9-3786
ResolveFanMap, 9-3876
ResolveLinearSystem, 9-3898
ResolveProjectiveCurve, 9-3785
ResolveProjectiveSurface, 9-3788
Restrict, 3-813, 3-821
RestrictDegree, 12-4863
RestrictedPartitions, 2-296, 12-4813
RestrictedSubalgebra, 8-3039
RestrictEndomorphism, 11-4560
RestrictField, 2-598, 5-1646, 13-5117
Restriction, 5-2021, 7-2585, 7-2738,

7-2772, 9-3505, 9-3537, 9-3609,
11-4560, 12-4882

RestrictionChainMap, 7-2610
RestrictionData, 7-2610
RestrictionMap, 8-3039
RestrictionMatrix, 8-3054, 8-3167, 8-3173
RestrictionOfGenerators, 7-2611
RestrictionOfScalars, 9-3524
RestrictionToImage, 11-4560
RestrictionToPatch, 9-3504, 9-3548
RestrictPartitionLength, 12-4863
RestrictParts, 12-4863
RestrictResolution, 7-2610
Resultant, 2-432, 2-467
ResumeEnumeration, 6-2218
Retrieve, 1-236

Reverse, 1-202, 1-224, 4-1332
ReverseColumns, 2-534, 2-568
ReverseRows, 2-534, 2-568
Reversion, 4-1332
RevertClass, 6-2234
Rewind, 1-81
Rewrite, 6-2149, 2150
ReynoldsOperator, 9-3360
RGenerators, 12-4788
RHS, 6-2044, 6-2088, 6-2392
RichelotIsogenousSurface, 10-4155
RichelotIsogenousSurfaces, 10-4155
rideal, 6-2394, 7-2424, 7-2460, 7-2477,

7-2514, 7-2551, 7-2645
RiemannRochBasis, 9-3586, 9-3613, 9-3893
RiemannRochCoordinates, 9-3587
RiemannRochDimension, 9-3893
RiemannRochPolytope, 9-3893
RiemannRochSpace, 3-1166, 9-3586, 9-3716
RiemannZeta, 10-4246
RightAction, 7-2690
RightActionGenerator, 7-2731
RightAdjointMatrix, 8-3035
RightAnnihilator, 7-2446, 7-2554, 7-2577
RightCosetSpace, 6-2173, 6-2229
RightDescentSet, 8-2917, 8-2962
RightExactExtension, 4-1446
RightGCD, 6-2320
RightGcd, 6-2320
RightGreatestCommonDivisor, 6-2320
RightHandFactors, 9-3462
RightIdeal, 7-2645
RightIdealClasses, 7-2465, 7-2648
RightInverse, 11-4612
RightInverseMorphism, 11-4612
RightIsomorphism, 7-2656
RightLCM, 6-2321, 2322
RightLcm, 6-2321, 2322
RightLeastCommonMultiple, 6-2321, 2322
RightMixedCanonicalForm, 6-2310
RightNormalForm, 6-2309
RightOrder, 7-2461, 7-2647
RightRegularModule, 7-2584
RightRepresentationMatrix, 7-2459
RightString, 8-2844, 8-2883, 8-2922
RightStringLength, 8-2844, 8-2883, 8-2922
RightTransversal, 5-1489, 5-1602, 5-1695,

5-1837, 6-2065, 6-2175, 6-2229,
6-2269

RightZeroExtension, 4-1447
Ring, 5-2015, 9-3507, 10-3959
RingClassGroup, 3-915
RingGeneratedBy, 11-4580
RingMap, 9-3507
RingOfFractions, 9-3296, 9-3405
RingOfIntegers, 2-282, 2-333, 2-353,

3-780, 3-836, 3-868, 3-873, 3-1061,
4-1273, 4-1327, 4-1342



INDEX OF INTRINSICS lvii

RMatrixSpace, 4-1399, 4-1408, 11-4587
RMatrixSpaceWithBasis, 4-1399, 4-1411
RModule, 4-1398, 7-2688, 8-3036, 9-3308,

11-4399
RModuleWithAction, 11-4588
RModuleWithBasis, 4-1399
RombergQuadrature, 2-511
Root, 2-380, 2-484, 3-794, 3-905, 3-944,

3-1040, 3-1143, 4-1294, 8-2839,
8-2876, 8-2919, 8-2966, 8-3121,
12-4966

RootAction, 8-2931
RootClosure, 8-2885
RootDatum, 8-2823, 8-2848, 8-2858,

8-2860, 8-2863, 8-2875, 8-2911,
8-2960, 8-3021, 8-3081, 8-3112,
8-3148

RootGSet, 8-2930
RootHeight, 8-2843, 8-2884, 8-2923,

8-3124
RootImages, 8-2895
RootLattice, 8-2874
RootNorm, 8-2844, 8-2884, 8-2923, 8-3124
RootNorms, 8-2843, 8-2884, 8-2923, 8-3124
RootNumber, 10-4052, 10-4076, 10-4079
RootOfUnity, 2-354, 2-376, 3-850, 851,

3-1039
RootPermutation, 8-2895
RootPosition, 8-2839, 8-2876, 8-2919,

8-2966, 8-3121
Roots, 2-376, 2-420, 2-487, 3-1039,

3-1138, 4-1258, 4-1298, 4-1373,
8-2839, 8-2876, 8-2919, 8-2965,
8-3121

RootsAndCoroots, 8-2963
RootSequence, 2-624
RootSide, 12-4966
RootsInSplittingField, 2-376
RootsNonExact, 2-489
RootSpace, 8-2838, 8-2874, 8-2918,

8-2965, 8-3121
RootSystem, 8-2823, 8-2832, 2833, 8-2899,

8-2911, 8-2960, 8-3020
RootVertex, 9-3753
RosenhainInvariants, 10-4216
Rotate, 1-202, 2-590, 4-1403, 13-5086,

13-5204, 13-5217
RotateWord, 6-2209, 6-2397
Round, 2-290, 2-314, 2-359, 2-419, 2-482
RoundDownDivisor, 9-3581
RoundUpDivisor, 9-3581
Row, 12-4831
RowInsert, 12-4836
RowLength, 12-4831
RowNullSpace, 7-2523, 8-3037
RowReductionHomomorphism, 8-3135
Rows, 11-4568, 12-4831
RowSequence, 2-530

RowSkewLength, 12-4831
RowSpace, 7-2523
Rowspace, 2-574
RowSubmatrix, 2-532, 2-567
RowSubmatrixRange, 2-532, 2-567
RowWeight, 2-564
RowWeights, 2-564
RowWord, 12-4833
RPolynomial, 8-3168
RSAModulus, 13-5277
RSKCorrespondence, 12-4839
RSpace, 4-1398, 5-1648, 11-4399, 11-4505,

13-5080, 13-5176
RSpaceWithBasis, 4-1399
RubinSilverbergPolynomials, 10-4112
RuledSurface, 9-3488, 3489, 9-3647
RWSGroup, 6-2342, 2343
RWSMonoid, 6-2346, 6-2402
SafeUniformizer, 3-1152, 3-1158
SAT, 9-3220
SatisfiesSzPresentation, 5-1912
Saturate, 9-3498
SaturateSheaf, 9-3608
Saturation, 2-552, 9-3227, 10-4013,

11-4580
ScalarLattice, 12-4794
ScalarMatrix, 2-525, 7-2510, 8-3010
ScalarSparseMatrix, 2-562
ScaledIgusaInvariants, 10-4135
ScaledLattice, 3-647
ScaleGenerators, 4-1386
ScalingFactor, 10-4113
Scheme, 9-3494, 3495, 9-3503, 9-3507,

9-3607, 9-3906, 10-3959, 10-3969
SchemeGraphMap, 9-3560
SchemeGraphMapToSchemeMap, 9-3561
SchemeMap, 9-3682
SchreierGenerators, 6-2162
SchreierGraph, 12-4948
SchreierSystem, 6-2162
SchreierVector, 5-1620
SchreierVectors, 5-1620
Schur, 7-2768
SchurIndex, 7-2768
SchurIndexGroup, 7-2771
SchurIndices, 7-2768
SchurToElementaryMatrix, 12-4865
SchurToHomogeneousMatrix, 12-4865
SchurToMonomialMatrix, 12-4864
SchurToPowerSumMatrix, 12-4865
SClassGroup, 3-1175
SClassGroupAbelianInvariants, 3-1175
SClassGroupExactSequence, 3-1175
SClassNumber, 3-1175
sdiff, 1-185
SEA, 10-3980
Search, 6-2187
SearchEqual, 6-2187



lviii INDEX OF INTRINSICS

SearchForDecomposition, 5-1729
SearchForIsomorphism, 6-2123
SearchPGroups, 5-1950
Sec, 2-494
SecantVariety, 9-3564
Sech, 2-497
SecondaryInvariants, 9-3366
SectionCentraliser, 5-1553
SectionCentralizer, 5-1553
Sections, 9-3575
Sections (G), 7-2731
Seek, 1-81
SegreEmbedding, 9-3489
SegreProduct, 9-3489
Self, 1-210
SelfComplementaryGraphDatabase, 12-4991
SelfIntersection, 9-3585
SelfIntersections, 9-3751
SelmerGroup, 10-4067
Semidir, 5-1983
SemidirectProduct, 5-1477
Semigroup, 6-2392
SemiInvariantBilinearForms, 2-634
SemiInvariantQuadraticForms, 2-634
SemiInvariantSesquilinearForms, 2-634
SemilinearDual, 2-632
SemiLinearGroup, 5-1650
SemiOrthogonalBasis, 2-629
SemisimpleDecomposition, 7-2792
SemisimpleEFAModuleMaps, 6-2283
SemisimpleEFAModules, 6-2283
SemisimpleEFASeries, 6-2278
SemisimpleGeneratorData, 7-2538
SemisimpleRank, 8-3113
SemisimpleType, 8-3018
SeparatingElement, 3-1105, 9-3406
SeparationVertices, 12-4958, 12-5035
Seq, 6-2354, 6-2373, 6-2413
Seqelt, 2-372
SeqFact, 2-310
Seqint, 2-284
Seqlist, 1-224
Seqset, 1-206
SequenceOfRadicalGenerators, 7-2540
SequenceToElement, 2-372
SequenceToFactorization, 2-310
SequenceToInteger, 2-284
SequenceToList, 1-224
SequenceToMultiset, 1-182
SequenceToSet, 1-206
SerreBound, 3-1119, 9-3696
Set, 1-175, 2-335, 2-373, 6-2354, 6-2372,

2373, 6-2413, 12-4731, 12-4890
SetAllInvariantsOfDegree, 9-3362
SetAssertions, 1-98
SetAutoColumns, 1-98
SetAutoCompact, 1-98
SetBeep, 1-98

SetBufferSize, 10-4059
SetClassGroupBoundMaps, 3-921
SetClassGroupBounds, 3-921
SetColumns, 1-98
SetDebugOnError, 1-147
SetDefaultRealField, 2-475
SetDisplayLevel, 6-2235
SetEchoInput, 1-90, 1-99
SetElementPrintFormat, 6-2298
SetEntry, 2-565
SetEvaluationComparison, 3-976
SetForceCFP, 6-2298
SetGlobalTCParameters, 6-2147
SetHeckeBound, 11-4457
SetHelpExternalBrowser, 1-113
SetHelpExternalSystem, 1-113
SetHelpUseExternalBrowser, 1-113
SetHelpUseExternalSystem, 1-113
SetHistorySize, 1-99
SetIgnorePrompt, 1-99
SetIgnoreSpaces, 1-99
SetIndent, 1-99
SetIntegerSolutionVariables, 13-5289
SetKantPrecision, 3-883
SetKantPrinting, 3-883
SetLibraries, 1-100
SetLibraryRoot, 1-100
SetLineEditor, 1-100
SetLMGSchreierBound, 5-1748
SetLogFile, 1-90, 1-100
SetLowerBound, 13-5289
SetMaximiseFunction, 13-5289
SetMemoryLimit, 1-100
SetNthreads, 1-100
SetObjectiveFunction, 13-5289
SetOptions, 6-2186
SetOrderMaximal, 3-904, 3-1093
SetOrderTorsionUnit, 3-904
SetOrderUnitsAreFundamental, 3-904
SetOutputFile, 1-80, 1-101
SetPath, 1-101
SetPowerPrinting, 2-369
SetPrecision, 11-4400
SetPresentation, 6-2298
SetPreviousSize, 1-77
SetPrimitiveElement, 2-371
SetPrintKetsInteger, 13-5263
SetPrintLevel, 1-101
SetProcessParameters, 6-2216
SetProfile, 1-137
SetPrompt, 1-101
SetQuitOnError, 1-101
SetRationalBasis, 11-4662
SetRows, 1-101
SetSeed, 1-30, 1-102
Setseq, 1-206
SetsOfSingularPlaces, 9-3448
SetTargetRing, 3-813



INDEX OF INTRINSICS lix

SetToIndexedSet, 1-182
SetToMultiset, 1-182
SetToSequence, 1-206
SetTraceback, 1-102
SetUpperBound, 13-5289
SetVerbose, 1-102, 2-298, 2-302, 2-305,

2-315, 2-384, 2-422, 2-429, 2-464,
2-575, 3-673, 3-679, 3-693, 3-881,
4-1245, 5-1502, 6-2136, 6-2347,
6-2362, 6-2404, 7-2479, 2480, 7-2706,
8-2934, 9-3202, 3203, 9-3219, 9-3247,
9-3329, 9-3359, 9-3806, 10-3984,
10-3987, 10-4128, 10-4165, 10-4284,
11-4304, 12-4915

SetViMode, 1-102, 1-106
Seysen, 3-676
SeysenGram, 3-676
SFA, 12-4850
SFAElementary, 12-4850
SFAHomogeneous, 12-4850
SFAMonomial, 12-4850
SFAPower, 12-4850
SFASchur, 12-4850
Shadow, 12-4763
ShadowSpace, 12-4763
Shape, 8-3091, 12-4830
Sheaf, 9-3586, 9-3604
SheafHomomorphism, 9-3611
SheafHoms, 9-3609
SheafOfDifferentials, 9-3606
SheafToDivisor, 9-3581
ShephardTodd, 8-2952, 8-2955
ShephardToddNumber, 8-2958
Shift, 4-1446, 12-4696
ShiftLeft, 2-287
ShiftRight, 2-287
ShiftToDegreeZero, 4-1446
ShiftValuation, 4-1295
ShimuraConjugates, 11-4381
ShimuraReduceUnit, 11-4379
ShiodaAlgebraicInvariants, 10-4137
ShiodaInvariants, 10-4136
ShiodaInvariantsEqual, 10-4136
ShortBasis, 3-1165, 9-3717
ShortCosets, 5-1602, 5-1837
ShortenCode, 13-5116, 13-5200, 13-5230,

13-5255
ShortestPath, 12-5043
ShortestPaths, 12-5043
ShortestVectors, 3-683, 3-727
ShortestVectorsMatrix, 3-683
ShortVectors, 3-685, 3-728
ShortVectorsMatrix, 3-686
ShortVectorsProcess, 3-691
ShowIdentifiers, 1-103
ShowMemoryUsage, 1-103
ShowOptions, 6-2186
ShowPrevious, 1-76

ShowValues, 1-103
ShrikhandeGraph, 12-4950
ShrinkingGenerator, 13-5276
SiegelTransformation, 2-624
Sieve, 2-384
Sign, 2-290, 2-314, 2-359, 2-427, 2-467,

2-484, 3-1213, 5-1537, 10-4269,
11-4530

Signature, 2-286, 2-356, 3-789, 3-895,
11-4369

SignDecomposition, 9-3582, 9-3711
SiksekBound, 10-4017
SilvermanBound, 10-4017
SimilarityGroup, 2-629, 7-2666
SimNEQ, 3-805, 3-928
SimpleCanonicalDissidentPoints, 9-3842
SimpleCohomologyDimensions, 7-2598
SimpleCoreflectionMatrices, 8-2841,

8-2881, 8-2925, 8-2968
SimpleCoroots, 8-2838, 8-2875, 8-2918,

8-2965, 8-3121
SimpleEpimorphisms, 6-2110
SimpleExtension, 3-783, 3-885
SimpleGroupName, 5-1896
SimpleGroupOfLieType, 8-3104, 3105
SimpleHomologyDimensions, 7-2593
SimpleModule, 7-2584
SimpleOrders, 8-2965
SimpleParameters, 7-2674
SimpleQuotientAlgebras, 7-2535
SimpleQuotientProcess, 6-2110
SimpleQuotients, 6-2109
SimpleReflectionMatrices, 8-2841, 8-2881,

8-2925, 8-2968
SimpleReflectionPermutations, 8-2842,

8-2881, 8-2925, 8-2968
SimpleReflections, 8-2925
SimpleRelativeRoots, 8-2878
SimpleRoots, 8-2838, 8-2875, 8-2918,

8-2965, 8-3121
SimpleStarAlgebra, 7-2670
SimpleSubgroups, 5-1502, 5-1563
Simplex, 9-3493, 12-4704
SimplexAlphaCodeZ4, 13-5179
SimplexBetaCodeZ4, 13-5179
SimplexCode, 13-5078
SimplicialComplex, 12-4693, 4694
SimplicialProjectivePlane, 12-4704
SimplicialSubdivision, 9-3875
SimplifiedModel, 10-3946, 10-4126
Simplify, 3-886, 3-1050, 3-1094, 4-1427,

6-2183, 6-2186, 12-4882
SimplifyLength, 6-2185, 2186
SimplifyPresentation, 6-2186
SimplifyRep, 4-1386
SimplyConnectedVersion, 8-2891
SimpsonQuadrature, 2-512
SimsSchreier, 5-1615



lx INDEX OF INTRINSICS

Sin, 2-493, 494, 4-1336
Sincos, 2-494, 4-1336
SingerDifferenceSet, 12-4884
SingletonAsymptoticBound, 13-5128
SingletonBound, 13-5127
SingularCones, 9-3872
SingularPoints, 9-3672
SingularRadical, 2-613
SingularRank, 9-3847
SingularSubscheme, 9-3517
Sinh, 2-497, 4-1336
SIntegralDesbovesPoints, 10-4058
SIntegralLjunggrenPoints, 10-4058
SIntegralPoints, 10-4055
SIntegralQuarticPoints, 10-4057
SixDescent, 10-4037
Size, 9-3751, 9-3755, 12-4950, 12-5029
Skeleton, 9-3872, 12-4703
SkewHadamardDatabase, 12-4912
SkewInvariant100, 9-3819
SkewShape, 12-4830
SkewWeight, 12-4831
SL, 5-1882
SL2Characteristic, 5-1905
SL2ElementToWord, 5-1905
SL2Triple, 8-3058
SL3ElementToWord (G, g), 5-1907
SL4Invariants, 10-4114
Slope, 12-4733
Slopes, 4-1243, 7-2792
SlopeValuation, 9-3455
SLPGroup, 6-2379
SLPolynomialRing, 3-976
SmallBasis, 9-3199
SmallerField, 5-1726
SmallerFieldBasis, 5-1726
SmallerFieldImage, 5-1726
SmallGraphDatabase, 12-4991
SmallGroup, 5-1942, 1943
SmallGroupDatabase, 5-1941
SmallGroupDatabaseLimit, 5-1941
SmallGroupDecoding, 5-1948
SmallGroupEncoding, 5-1948
SmallGroupIsInsoluble, 5-1943
SmallGroupIsInsolvable, 5-1943
SmallGroupIsSoluble, 5-1942
SmallGroupIsSolvable, 5-1942
SmallGroupProcess, 5-1946
SmallGroups, 5-1943, 1944
SmallModularCurve, 11-4314
SmallPeriodMatrix, 10-4208
SmallRoots, 2-420
SmithForm, 2-552, 7-2528
SO, 5-1886
Socket, 1-85, 86
SocketInformation, 1-86
Socle, 5-1592, 5-1832, 7-2585, 7-2702
SocleAction, 5-1593

SocleFactor, 5-1592
SocleFactors, 5-1592, 7-2703
SocleImage, 5-1593
SocleKernel, 5-1593
SocleQuotient, 5-1593
SocleSeries, 5-1592, 7-2703
SolubleNormalQuotient, 5-1599
SolubleQuotient, 5-1564, 5-1676, 5-1858,

6-2137, 2138, 6-2244
SolubleRadical, 5-1595, 5-1692, 8-3026,

8-3126
SolubleResidual, 5-1494, 5-1585, 5-1690
SolubleSchreier, 5-1616
SolubleSubgroups, 5-1502
Solution, 2-312, 313, 2-337, 2-541,

7-2534, 13-5289
Solutions, 3-930
SolvableLieAlgebra, 8-3049
SolvableQuotient, 5-1564, 5-1676, 5-1858,

6-2137, 2138, 6-2244
SolvableRadical, 5-1595, 5-1692, 8-3026
SolvableResidual, 5-1494, 5-1585, 5-1690
SolvableSchreier, 5-1616
SolvableSubgroups, 5-1502, 5-1562
Solve, 9-3800
SolveByRadicals, 3-986
SOMinus, 5-1887
SOPlus, 5-1886
Sort, 1-203
SortDecomposition, 11-4446, 11-4491
Sp, 5-1885
SpaceOfDifferentialsFirstKind, 3-1177,

9-3698
SpaceOfHolomorphicDifferentials, 3-1177,

9-3698
SpanningFan, 9-3870
SpanningForest, 12-4965, 12-5037
SpanningTree, 12-4965, 12-5037
SpanZ2CodeZ4, 13-5189
SparseIrreducibleRootDatum, 8-2862
SparseMatrix, 2-559, 560, 2-570
SparseMatrixStructure, 2-562
SparseRootDatum, 8-2862, 2863
SparseStandardRootDatum, 8-2862
Spec, 9-3486, 9-3496
SpecialEvaluate, 3-1205
SpecialLieAlgebra, 8-3005
SpecialLinearGroup, 5-1882
SpecialOrthogonalGroup, 5-1885, 1886
SpecialOrthogonalGroupMinus, 5-1887
SpecialOrthogonalGroupPlus, 5-1886
SpecialPresentation, 5-1862
SpecialUnitaryGroup, 5-1884
SpecialWeights, 5-1862
Spectrum, 8-3156, 12-4950
Sphere, 12-4704, 12-4964
SpherePackingBound, 13-5127
Spin, 5-1888



INDEX OF INTRINSICS lxi

SpinMinus, 5-1889
SpinorCharacters, 3-703
SpinorGenera, 3-702
SpinorGenerators, 3-703
SpinorGenus, 3-702
SpinorNorm, 2-624, 5-1902
SpinorRepresentatives, 3-705
SpinPlus, 5-1888
Splice, 4-1446
SpliceDiagram, 9-3752, 3753, 9-3755, 3756
SpliceDiagramVertex, 9-3753
Split, 1-71
SplitAllByValues, 5-1631
SplitCell, 5-1630
SplitCellsByValues, 5-1631
Splitcomponents, 12-4958, 12-5035
SplitExtension, 5-1510, 5-1606, 5-2023
SplitMaximalToralSubalgebra, 8-3028
SplitRealPlace, 11-4366
SplitRootDatum, 8-2893
SplittingCartanSubalgebra, 8-3028
SplittingField, 2-366, 3-777, 3-865,

4-1273
SplitToralSubalgebra, 8-3028
SPolynomial, 9-3200, 9-3311
SPrincipalDivisorMap, 3-1174
Sprint, 1-79
Sprintf, 1-79
Sqrt, 2-338, 2-346, 2-380, 2-484, 3-794,

3-905, 3-944, 3-1040, 3-1143,
4-1293, 4-1332, 4-1360

SquareFreeFactorization, 4-1301
SquarefreeFactorization, 2-291, 2-311,

2-431, 2-463
SquarefreePart, 2-463
SquarefreePartialFractionDecomposition,

3-1065
SquareLatticeGraph, 12-4950
SquareRoot, 2-338, 2-380, 2-484, 3-794,

3-905, 3-944, 3-1040, 3-1143,
4-1293, 4-1332, 4-1360

SQUFOF, 2-307
SrAutomorphism, 11-4318
SRegulator, 3-1174
SrivastavaCode, 13-5111
SSGaloisRepresentation, 7-2792, 2793
Stabiliser, 5-1571
StabiliserCode, 13-5247
StabiliserGroup, 13-5249
StabiliserMatrix, 13-5247
StabiliserOfSpaces, 5-1683
Stabilizer, 5-1571, 5-1679, 11-4347,

12-4740, 12-4901, 12-4984
StabilizerCode, 13-5247
StabilizerGroup, 13-5249
StabilizerLadder, 5-1601
StabilizerMatrix, 13-5247
StandardAction, 8-2932, 8-2964

StandardActionGroup, 8-2932, 8-2964
StandardAlternatingForm, 2-617
StandardBasis, 9-3278
StandardForm, 7-2636, 13-5082, 13-5185
StandardFormConjugationMatrices, 7-2540
StandardGenerators, 5-1929, 8-3066
StandardGraph, 12-4928, 12-5007
StandardGroup, 5-1522
StandardHermitianForm, 2-618
StandardLattice, 3-647
StandardMaximalTorus, 8-3126
StandardMetacyclicPGroup (P), 5-1952
StandardParabolicSubgroup, 8-2927
StandardPresentation, 5-1844, 5-1930
StandardPseudoAlternatingForm, 2-617
StandardQuadraticForm, 2-618
StandardRepresentation, 8-3133, 8-3142,

8-3146
StandardRootDatum, 8-2861
StandardRootSystem, 8-2834
StandardSimplex, 12-4778
StandardSymmetricForm, 2-619
StandardTableaux, 12-4827
StandardTableauxOfWeight, 12-4827
Star, 7-2667
StarInvolution, 11-4454
StarOnGroupAlgebra, 7-2669
StartEnumeration, 6-2216
StartNewClass, 6-2232
Stauduhar, 3-973
SteenrodOperation, 9-3379
SteinitzClass, 4-1431
SteinitzForm, 4-1431
SternsAttack, 13-5124
StirlingFirst, 2-296, 12-4808
StirlingSecond, 2-296, 12-4808
StoreFactor, 2-304
StringToCode, 1-67
StringToInteger, 1-68
StringToIntegerSequence, 1-68
Strip, 5-1621
StrongApproximation, 3-1211
StrongGenerators, 5-1620, 5-1706
StronglyConnectedComponents, 12-4957,

12-5034
StronglyRegularGraphsDatabase, 12-4989
StructureConstant, 7-2768
StructureConstants, 8-2897
StructureSheaf, 9-3604
SU, 5-1884
sub, 2-285, 2-335, 2-366, 367, 2-594,

3-660, 3-778, 3-827, 3-836, 3-865,
3-869, 3-1089, 3-1185, 4-1366,
4-1405, 4-1424, 4-1444, 5-1472,
5-1548, 5-1668, 5-1817, 6-2055, 2056,
6-2140, 6-2259, 6-2394, 7-2423,
7-2513, 7-2550, 7-2576, 7-2694,
7-2719, 8-2846, 8-2888, 8-3011,



lxii INDEX OF INTRINSICS

9-3318, 12-4724, 12-4938, 12-5018,
12-5053, 13-5089, 13-5190, 13-5218

SubalgebraFromBasis, 7-2576
SubalgebraModule, 7-2718
SubalgebrasInclusionGraph, 8-3053
SubcanonicalCurve, 9-3845
Subcode, 13-5089, 5090, 13-5190, 5191,

13-5218, 5219, 13-5242
SubcodeBetweenCode, 13-5090, 13-5219
SubcodeWordsOfWeight, 13-5090, 13-5219
SubfieldCode, 13-5117
SubfieldLattice, 3-991
SubfieldRepresentationCode, 13-5117
SubfieldRepresentationParityCode, 13-5117
Subfields, 3-803, 3-991, 3-1110
SubfieldSubcode, 13-5117
SubfieldSubplane, 12-4724
Subgroup, 6-2174, 6-2222, 11-4579, 4580,

11-4625
SubgroupClasses, 5-1500, 5-1557, 5-1672,

5-1826
SubgroupLattice, 5-1504, 5-1827
SubgroupOfTorus, 11-4465
Subgroups, 5-1500, 5-1557, 5-1672,

5-1826, 5-1930, 6-2068
SubgroupScheme, 10-3955, 11-4297, 11-4325
SubgroupsData, 5-1931
SubgroupsLift, 5-1559, 5-1674
Sublattice, 12-4798, 4799
SublatticeClasses, 3-732
SublatticeLattice, 3-736
Sublattices, 3-731, 732
Submatrix, 2-531, 532, 2-566, 7-2526
SubmatrixRange, 2-532, 2-566
Submodule, 9-3319
SubmoduleAction, 5-1689
SubmoduleImage, 5-1689
SubmoduleLattice, 7-2706
SubmoduleLatticeAbort, 7-2706
Submodules, 7-2706
SubnormalSeries, 5-1494, 5-1586, 5-1691,

5-1834
SubOrder, 3-868, 3-1098
Subring, 11-4580
Subsequences, 1-186, 12-4809
subset, 1-184, 2-274, 2-339, 2-435,

2-600, 3-659, 3-792, 3-902, 3-939,
3-942, 3-992, 3-1014, 3-1126,
3-1198, 4-1406, 4-1428, 5-1484, 1485,
5-1508, 5-1551, 5-1659, 5-1820,
6-2063, 2064, 6-2167, 6-2267, 2268,
6-2383, 7-2428, 7-2462, 7-2483,
7-2488, 7-2524, 7-2696, 7-2708,
8-2846, 8-2889, 8-3013, 8-3110,
9-3229, 9-3281, 9-3290, 9-3323,
9-3508, 9-3578, 9-3683, 11-4340,
11-4492, 11-4506, 11-4541, 11-4590,
11-4633, 12-4728, 12-4730, 12-4782,

12-4889, 12-4936, 13-5092, 13-5205,
13-5221

Subsets, 1-185, 186, 12-4809
Substitute, 6-2209, 6-2397
Substring, 1-67
SubsystemSubgroup, 8-3125
SubWeights, 8-3150
Subword, 6-2209, 6-2397
SuccessiveMinima, 3-692
SuggestedPrecision, 4-1301, 4-1373
Sum, 8-2843, 8-2883, 8-2921, 12-4882
Summands, 12-4799
SumNorm, 2-427, 2-467
SumOf, 11-4594
SumOfBettiNumbersOfSimpleModules, 7-2606
SumOfDivisors, 2-294, 2-311
SumOfImages, 11-4594
SumOfMorphismImages, 11-4594
SUnitAction, 3-949
SUnitCohomologyProcess, 3-994
SUnitDiscLog, 3-949
SUnitGroup, 3-947, 3-1174
Superlattice, 12-4799
SuperScheme, 9-3500
SupersingularEllipticCurve, 10-3942
SupersingularModule, 11-4500
SupersingularPolynomial, 10-3979
SuperSummitCanonicalLength, 6-2307
SuperSummitInfimum, 6-2307
SuperSummitProcess, 6-2327
SuperSummitRepresentative, 6-2324
SuperSummitSet, 6-2324
SuperSummitSupremum, 6-2307
Supplements, 5-1598
Support, 2-419, 2-563, 2-590, 3-655,

3-809, 3-945, 3-956, 3-1154, 3-1164,
4-1404, 5-1568, 7-2437, 7-2556,
7-2694, 8-3036, 9-3582, 9-3709,
12-4723, 12-4859, 12-4886, 12-4890,
12-4928, 12-5007, 13-5086, 13-5203,
13-5217

SupportingCone, 12-4786
Supremum, 6-2306
Surface, 9-3760
SurjectivePart, 11-4561
Suspension, 12-4703
SuzukiGroup, 5-1889
SuzukiIrreducibleRepresentation, 5-1912
SuzukiMaximalSubgroups, 5-1922
SuzukiMaximalSubgroupsConjugacy, 5-1922
SuzukiSylow, 5-1924
SuzukiSylowConjugacy, 5-1925
SVPermutation, 5-1620
SVWord, 5-1621
SwapColumns, 2-534, 2-568, 7-2527
SwapRows, 2-534, 2-568, 7-2527
SwinnertonDyerPolynomial, 2-438
Switch, 12-4944



INDEX OF INTRINSICS lxiii

Sylow, 5-1491, 5-1554, 5-1670, 5-1825,
6-2066, 10-4171

SylowBasis, 5-1825
SylowSubgroup, 5-1491, 5-1554, 5-1670,

5-1825, 6-2066, 8-3132
SylowSystem, 5-1770
Sym, 5-1476, 5-1522, 5-1532, 6-2097
SymmetricBilinearForm, 2-460, 5-1900
SymmetricCharacter, 7-2783, 12-4862
SymmetricCharacterTable, 7-2783
SymmetricCharacterValue, 7-2783
SymmetricComponents, 7-2772
SymmetricElementToWord (G, g), 5-1612,

5-1893
SymmetricForms, 3-729, 730, 5-1781
SymmetricFunctionAlgebra, 12-4850
SymmetricFunctionAlgebraElementary,

12-4850
SymmetricFunctionAlgebraHomogeneous,

12-4850
SymmetricFunctionAlgebraMonomial, 12-4850
SymmetricFunctionAlgebraPower, 12-4850
SymmetricFunctionAlgebraSchur, 12-4850
SymmetricGroup, 5-1476, 5-1522, 5-1532,

6-2097
SymmetricMatrix, 2-526, 3-745
SymmetricNormaliser, 5-1554
SymmetricNormalizer, 5-1554
SymmetricPower, 7-2517, 8-3144, 8-3155,

8-3163, 9-3453, 10-4282
SymmetricRepresentation, 6-2336, 7-2781
SymmetricRepresentationOrthogonal, 7-2782
SymmetricRepresentationSeminormal, 7-2782
SymmetricSquare, 3-665, 7-2517, 7-2737
SymmetricSquarePreimage (G, g), 5-1909
SymmetricToQuadraticForm, 2-622
SymmetricWeightEnumerator, 13-5196
Symmetrization, 7-2772
SymplecticComponent, 7-2772
SymplecticComponents, 7-2773
SymplecticDual, 13-5250
SymplecticForm, 5-1899
SymplecticGroup, 5-1885
SymplecticInnerProduct, 13-5250
SymplecticMatrixGroupDatabase, 5-1977
SymplecticSpace, 2-621
SymplecticTransvection, 8-2946
Syndrome, 13-5085
SyndromeSpace, 13-5083
System, 1-91
SystemNormaliser, 5-1825
SystemNormalizer, 5-1825
SystemOfEigenvalues, 11-4460
SyzygyMatrix, 9-3262
SyzygyModule, 7-2593, 9-3325
SzClassMap, 5-1928
SzClassRepresentative, 5-1928
SzConjugacyClasses, 5-1928

SzElementToWord, 5-1912
SzIsConjugate, 5-1928
SzPresentation, 5-1912
Tableau, 12-4824
TableauIntegerMonoid, 12-4822
TableauMonoid, 12-4822
Tableaux, 12-4862
TableauxOfShape, 12-4827
TableauxOnShapeWithContent, 12-4827
TableauxWithContent, 12-4827
TaftDecomposition, 7-2671
Tails, 6-2232
TamagawaNumber, 10-4005, 11-4474, 11-4647
TamagawaNumbers, 10-4005
TameOrder, 7-2630
Tan, 2-494, 4-1336
Tangent, 12-4735
TangentAngle, 11-4348, 11-4374
TangentCone, 9-3513, 9-3663
TangentLine, 9-3663
TangentSheaf, 9-3606
TangentSpace, 9-3513
TangentVariety, 9-3563
Tanh, 2-497, 4-1336
TannerGraph, 13-5159
TargetRestriction, 3-813
TateLichtenbaumPairing, 3-1175
TatePairing, 10-3990
TeichmuellerLift, 4-1293
TeichmuellerSystem, 3-1200
Tell, 1-81
Tempname, 1-91
TensorBasis, 5-1720
TensorFactors, 5-1720
TensorInducedAction, 5-1722
TensorInducedBasis, 5-1722
TensorInducedPermutations, 5-1722
TensorPower, 7-2737, 8-3154, 9-3609
TensorProduct, 2-590, 2-601, 3-664,

7-2515, 7-2517, 7-2564, 7-2737,
8-3086, 8-3144, 8-3154, 8-3163,
9-3345, 9-3609, 10-4259, 12-4946

TensorWreathProduct, 5-1650
Term, 2-453, 4-1445
TerminalIndex, 9-3838
TerminalPolarisation, 9-3838
TerminalVertex, 12-4937, 12-5009
Terms, 2-419, 2-452, 453, 4-1445, 7-2474,

9-3312, 9-3435
TestHeckeRep, 8-2937
TestWG, 8-2935
Theta, 2-505
ThetaOperator, 11-4454
ThetaSeries, 3-692, 3-761, 11-4494
ThetaSeriesIntegral, 3-693
ThetaSeriesModularForm, 3-696
ThetaSeriesModularFormSpace, 3-696
ThreeDescent, 10-4031



lxiv INDEX OF INTRINSICS

ThreeDescentByIsogeny, 10-4035
ThreeDescentCubic, 10-4033
ThreeIsogenyDescent, 10-4034
ThreeIsogenyDescentCubic, 10-4035
ThreeIsogenySelmerGroups, 10-4034
ThreeSelmerElement, 10-4036
ThreeSelmerGroup, 10-4033
ThreeTorsionMatrices, 10-4037
ThreeTorsionPoints, 10-4037
ThreeTorsionType, 10-4037
Thue, 3-929, 930
TietzeProcess, 6-2185
TjurinaNumber, 9-3235
To2DUpperHalfSpaceFundamentalDomian,

10-4211
ToAnalyticJacobian, 10-4209
ToddCoxeter, 6-2143
ToddCoxeterSchreier, 5-1616, 5-1704
ToLiE, 8-3170
Top, 3-992, 5-1506, 7-2707
TopQuotients, 5-1956
Tor, 9-3345
ToralRootDatum, 8-2862
ToralRootSystem, 8-2834
ToricAffinePatch, 9-3882
ToricCode, 13-5152
ToricLattice, 12-4794, 12-4798
ToricVariety, 9-3879, 3880, 9-3885, 9-3888
ToricVarietyMap, 9-3896
TorsionBound, 10-4063, 10-4090, 10-4172,

11-4472
TorsionCoefficients, 12-4706
TorsionFreeRank, 6-2062, 6-2127
TorsionFreeSubgroup, 6-2062
TorsionInvariants, 6-2062
TorsionLowerBound, 11-4636
TorsionMultiple, 11-4636
TorsionSubgroup, 6-2062, 10-3989, 10-4011,

10-4063, 10-4090, 10-4172, 11-4637
TorsionSubgroupScheme, 10-3955
TorsionUnitGroup, 3-802, 3-922
Torus, 12-4704
TorusTerm, 8-3116
TotalDegree, 2-456, 3-1064, 7-2475
TotalLinking, 9-3754
TotallyRamifiedExtension, 4-1271, 4-1340
TotallySingularComplement, 2-623
TotallyUnitTrivialSubgroup, 3-811
TotalNumberOfCosets, 6-2222
Trace, 2-289, 2-358, 2-379, 2-545,

2-591, 3-798, 3-910, 3-1048, 3-1133,
4-1291, 5-1656, 7-2459, 7-2521,
7-2556, 7-2633, 10-3984, 11-4575,
13-5086, 13-5117, 13-5217

TraceAbs, 2-379, 3-798, 3-910
Traceback, 1-103
TraceInnerProduct, 13-5217
TraceMatrix, 3-900

TraceOfFrobenius, 10-3984, 10-4088
TraceOfProduct, 2-545
TracesOfFrobenius, 10-4006
TraceZeroSubspace, 7-2454
TrailingCoefficient, 2-418, 2-451, 452,

7-2474
TrailingTerm, 2-419, 2-453, 454, 7-2475
Transformation, 10-4146
TransformationMatrix, 3-898, 3-937,

3-1102, 3-1149
TransformForm, 5-1901, 1902
TransitiveGroup, 5-1962, 1963
TransitiveGroupDatabaseLimit, 5-1962
TransitiveGroupDescription, 5-1962
TransitiveGroupIdentification, 5-1966
TransitiveGroupProcess, 5-1965
TransitiveGroups, 5-1963
TransitiveQuotient, 5-1583
Transitivity, 5-1571
Translation, 9-3436, 9-3552, 9-3556,

9-3676
TranslationMap, 9-3438, 10-3963
TranslationOfSimplex, 9-3556
TranslationToInfinity, 9-3676
Transport, 6-2331
Transpose, 2-539, 2-572, 4-1439, 7-2521
TransposePartition, 8-3171
Transvection, 8-2944
Transversal, 2-601, 5-1489, 5-1602,

5-1695, 5-1837, 6-2065, 6-2162, 2163,
6-2175, 6-2229, 6-2269, 8-2928, 2929

TransversalElt, 8-2928, 2929
TransversalProcess, 5-1602
TransversalProcessNext, 5-1602
TransversalProcessRemaining, 5-1602
TransversalWords, 8-2928
TransverseIndex, 9-3840
TransverseIntersections, 9-3752
TransverseType, 9-3839
TrapezoidalQuadrature, 2-512
TrialDivision, 2-305, 3-843
TriangularDecomposition, 9-3252
TriangularGraph, 12-4950
Triangulation, 12-4788
TriangulationOfBoundary, 12-4788
TrivialLieRepresentationDecomposition,

8-3141
TrivialModule, 7-2723
TrivialOneCocycle, 5-2033
TrivialRepresentation, 8-3142, 8-3146
TrivialRootDatum, 8-2862
TrivialRootSystem, 8-2834
Truncate, 2-290, 2-359, 2-482, 4-1331,

9-3415
TruncateCoefficients, 9-3436
TruncatedAlgebra, 7-2578
Truncation, 12-4763
TupleToList, 1-218, 1-224



INDEX OF INTRINSICS lxv

Tuplist, 1-218, 1-224
TwelveDescent, 10-4038
Twist, 9-3323, 9-3605, 10-4227
TwistedBasis, 8-3023
TwistedCartanName, 8-2865
TwistedDual, 2-634
TwistedGroup, 5-2034
TwistedGroupOfLieType, 8-3109
TwistedLieAlgebra, 8-3002
TwistedPolynomials, 3-1201
TwistedQRCode, 13-5112
TwistedRootDatum, 8-2892
TwistedSemilinearDual, 2-634
TwistedTori, 8-3131
TwistedToriOrders, 8-3130
TwistedTorus, 8-3131
TwistedTorusOrder, 8-3130
TwistedWindingElement, 11-4464
TwistedWindingSubmodule, 11-4465
TwistingDegree, 8-2867
Twists, 10-3948, 10-4129
TwoCocycle, 3-1022, 5-2019
TwoCover, 10-4065
TwoCoverDescent, 10-4187
TwoCoverPullback, 10-4028
TwoDescendantsOverTwoIsogenyDescendant,

10-4023
TwoDescent, 10-4021, 10-4065, 10-4092
TwoElement, 3-938, 3-1148
TwoElementNormal, 2-332, 3-938
TwoGenerators, 3-1158, 9-3703
TwoGenus, 9-3847
TwoIsogeny, 10-3963
TwoIsogenyDescent, 10-4023
TwoIsogenySelmerGroups, 10-4093
TwoSelmerGroup, 10-4068, 10-4092, 10-4180
TwoSidedIdealClasses, 7-2465, 7-2649
TwoSidedIdealClassGroup, 7-2465, 7-2649
TwoTorsionPolynomial, 10-3954
TwoTorsionSubgroup, 3-759, 10-4172
TwoTransitiveGroupIdentification, 5-1611
Type, 1-28, 1-176, 2-266, 2-268, 3-657,

3-782, 3-793, 9-3407, 9-3413,
9-3430, 9-3433, 10-3915, 10-3953,
10-3956, 10-3959, 10-3969, 11-4488

TypeOfContraction, 9-3898
TypeOfSequence, 3-1069
Types, 12-4759
TypesOfContractions, 9-3898
UltraSummitProcess, 6-2327
UltraSummitRepresentative, 6-2324
UltraSummitSet, 6-2324
UncapacitatedGraph, 12-5016
Undefine, 1-203
UnderlyingDigraph, 12-4947, 12-5027
UnderlyingElement, 5-1872
UnderlyingField, 3-1099, 9-3407

UnderlyingGraph, 9-3750, 9-3753, 12-4703,
12-4947, 12-5027

UnderlyingMultiDigraph, 12-5028
UnderlyingMultiGraph, 12-5027
UnderlyingNetwork, 12-5028
UnderlyingRing, 3-1099, 9-3407, 9-3884
UnderlyingVertex, 9-3753
Ungetc, 1-81
UniformizingElement, 3-810, 3-934, 3-958,

3-1158, 4-1276, 4-1282, 4-1326,
4-1342, 4-1371

UniformizingParameter, 9-3694, 9-3706
Union, 9-3496, 9-3651, 12-4882, 12-4945,

12-5025, 5026
UnipotentMatrixGroup, 5-1755
UnipotentStabiliser, 5-1684
UnitalFeet, 12-4737
UnitaryForm, 5-1900
UnitaryReflection, 8-2946
UnitarySpace, 2-621
UnitaryTransvection, 8-2946
UnitDisc, 11-4371
UnitEquation, 3-931
UnitGenerators, 2-343
UnitGroup, 2-285, 2-335, 2-340, 2-355,

2-373, 2-400, 3-802, 3-922, 3-951,
3-1122, 4-1308, 7-2465, 7-2660

UnitGroupAsSubgroup, 3-922
UnitGroupGenerators, 4-1308
UnitRank, 3-789, 3-802, 3-895, 3-923,

3-1122
Units, 7-2465, 7-2659
UnitTrivialSubgroup, 3-811
UnitVector, 9-3310
Unity, 3-1199, 3-1202
UnivariateEliminationIdealGenerator,

9-3238
UnivariateEliminationIdealGenerators,

9-3238
UnivariatePolynomial, 2-456
UniversalEnvelopingAlgebra, 8-3042
UniversalMap, 1-237
UniversalPropertyOfCokernel, 11-4561
Universe, 1-176, 1-198, 1-229, 6-2050
UniverseCode, 13-5076, 13-5172
UnlabelledCayleyGraph, 12-4947
UnlabelledGraph, 12-5015
UnlabelledSchreierGraph, 12-4948
UnramifiedExtension, 4-1269, 4-1340
UnramifiedQuotientRing, 4-1269
UnsetBounds, 13-5289
UnsetGlobalTCParameters, 6-2147
UnsetLogFile, 1-90, 1-100
UnsetOutputFile, 1-80, 1-101
UntwistedOvergroup, 8-3109
UntwistedRootDatum, 8-2893
UnweightedGraph, 12-5016
UpdateHadamardDatabase, 12-4914



lxvi INDEX OF INTRINSICS

UpperCentralSeries, 5-1494, 5-1585,
5-1691, 5-1834, 6-2278, 8-3030

UpperHalfPlane, 11-4345
UpperTriangularMatrix, 2-526
UserGenerators, 6-2050
UserRepresentation, 6-2053
UsesBrandt, 11-4506
UsesMestre, 11-4506
UseTwistedHopfStructure, 8-3087
Valence, 12-4954
Valency, 9-3754
ValidateCryptographicCurve, 10-3987
Valuation, 2-290, 2-332, 2-360, 2-419,

2-423, 3-808, 3-912, 3-936, 3-956,
3-1136, 3-1148, 3-1166, 3-1179,
4-1231, 4-1289, 4-1331, 4-1344,
4-1355, 4-1372, 9-3694, 9-3699,
9-3705, 3706, 9-3713

ValuationRing, 3-1062, 4-1229
ValuationsOfRoots, 4-1245, 4-1296
ValueList, 2-345
ValuesOnUnitGenerators, 2-345
VanLintBound, 13-5127
VariableExtension, 9-3242
VariableWeights, 9-3188
VariantRepresentatives, 2-395
Variety, 9-3233, 9-3580, 9-3890
VarietySequence, 9-3233
VarietySizeOverAlgebraicClosure, 9-3234
Vector, 2-529, 9-3311
VectorSpace, 2-355, 2-373, 2-586, 587,

2-599, 3-786, 3-892, 5-1648, 7-2488,
7-2570, 9-3292, 11-4399, 11-4442,
11-4554, 11-4587, 12-4725, 13-5080

VectorSpaceWithBasis, 2-602
Verify, 5-1616, 5-1704
VerifyMinimumDistanceLowerBound, 13-5097
VerifyMinimumDistanceUpperBound, 13-5098
VerifyMinimumWeightUpperBound, 13-5098
VerifyRelation, 3-988
VerschiebungImage, 3-1200
VerschiebungMap, 3-1200
Vertex, 9-3745, 9-3753
VertexConnectivity, 12-4960, 12-5036
VertexLabels, 9-3754, 12-5011
VertexPath, 9-3755, 12-4967
VertexSeparator, 12-4960, 12-5035
VertexSet, 12-4934
VerticalJoin, 2-537, 2-569, 4-1439,

7-2526
Vertices, 4-1240, 9-3753, 12-4783,

12-4934
VirtualDecomposition, 8-3151
VirtualRayIndices, 9-3874
VirtualRays, 9-3874
Voronoi, 10-4218
VoronoiCell, 3-697
VoronoiData, 11-4673

VoronoiGraph, 3-697
VoronoiRelevantVectors, 3-698
WaitForConnection, 1-86
WallDecomposition, 2-629
WallForm, 2-629
WallIsometry, 2-629
WeakDegree, 9-3435
WeakOrder, 9-3435
WeberClassPolynomial, 3-762, 11-4301
WeberF, 2-504
WeberF1, 2-504
WeberF2, 2-504
WeberToHilbertClassPolynomial, 11-4302
WedderburnDecomposition, 7-2671
WeierstrassModel, 10-3945
WeierstrassPlaces, 3-1105, 3-1155,

3-1170, 9-3703, 9-3717
WeierstrassPoints, 9-3717
WeierstrassSeries, 2-501, 3-761
Weight, 2-591, 4-1243, 4-1404, 6-2083,

8-3166, 10-4228, 11-4406, 11-4657,
12-4814, 12-4830, 12-5014, 13-5085,
13-5203, 13-5217

WeightClass, 5-1861
WeightDistribution, 13-5100, 13-5192,

13-5225, 13-5252
WeightedDegree, 3-1064, 9-3188, 9-3312
WeightedDynkinDiagram, 8-3058
WeightEnumerator, 13-5101, 13-5196,

13-5225
WeightLattice, 8-2886, 8-2924, 8-2969,

8-3125
WeightOneHalfData, 11-4406, 11-4413
WeightOrbit, 8-2887, 8-2924, 8-2970
Weights, 7-2793, 8-3148, 8-3162, 8-3166,

9-3843, 11-4530, 12-5014
WeightsAndMultiplicities, 8-3148
WeightsAndVectors, 8-3085, 8-3162, 8-3166
WeightSequence, 8-3091
WeightsOfFlip, 9-3899
WeightToPartition, 8-3171
WeightVectors, 8-3166
Weil, 9-3890
WeilDescent, 3-1182, 10-3996
WeilDescentDegree, 3-1183, 10-3997
WeilDescentGenus, 3-1183, 10-3997
WeilHeight, 10-4015
WeilPairing, 10-3975, 10-3990, 10-4164
WeilPolynomialOverFieldExtension, 10-4284
WeilPolynomialToRankBound, 10-4284
WeilRepresentation, 11-4684
WeilRestriction, 3-1100, 9-3524
WeilToClassGroupsMap, 9-3887
WeilToClassLatticesMap, 9-3887
WeylGroup, 8-3024, 3025, 8-3113
WeylWord, 8-3091
WG2GroupRep, 8-2937
WG2HeckeRep, 8-2937



INDEX OF INTRINSICS lxvii

WGelement2WGtable, 8-2936
WGidealgens2WGtable, 8-2937
WGtable2WG, 8-2935
Widths, 11-4350
WindingElement, 11-4464
WindingLattice, 11-4464
WindingSubmodule, 11-4464
WittDecomposition, 2-616
WittDesign, 12-4884
WittIndex, 2-616
WittInvariant, 3-746
WittInvariants, 3-747
WittLieAlgebra, 8-3005
WittRing, 3-1199
Word, 12-4833
WordAcceptor, 6-2366
WordAcceptorSize, 6-2366
WordDifferenceAutomaton, 6-2366
WordDifferences, 6-2366
WordDifferenceSize, 6-2366
WordGroup, 5-1604, 5-1696
WordInStrongGenerators, 5-1621
WordMap, 5-1755
WordProblem, 7-2542
WordProblemData, 7-2542
Words, 13-5103, 13-5226
WordsOfBoundedLeeWeight, 13-5193
WordsOfBoundedWeight, 13-5104, 13-5227
WordsOfLeeWeight, 13-5193
WordStrip, 5-1621
WordToSequence, 6-2305
WordToTableau, 12-4824
WreathProduct, 5-1535, 5-1650, 5-1805
Write, 1-78, 79, 1-85, 1-87
WriteBinary, 1-79
WriteBytes, 1-85, 1-87
WriteGModuleOver, 7-2735
WriteHadamardDatabase, 12-4914
WriteK3Data, 9-3856
WriteOverLargerField, 5-1718
WriteOverSmallerField, 5-1728, 7-2733
WriteRawHadamardData, 12-4915
WriteRepresentationOver, 7-2735
WriteWG, 8-2938
WronskianDeterminant, 9-3427
WronskianMatrix, 9-3427
WronskianOrders, 3-1105, 3-1170, 9-3695,

9-3717
WZWFusion, 8-3172
X, 9-3506
XGCD, 2-292, 293, 2-425, 4-1231, 4-1318
Xgcd, 2-292, 293, 2-425, 4-1231
Xor, 1-207
xor, 1-11
YoungSubgroup, 5-1533
YoungSubgroupLadder, 5-1601
Z4CodeFromBinaryChain, 13-5184
ZariskiDecomposition, 9-3586

ZassenhausNearfield, 2-396
ZBasis, 7-2455, 7-2461, 8-2992
ZClasses, 5-1784
ZechLog, 2-384
Zero, 2-269, 2-283, 2-336, 2-354, 2-371,

2-399, 2-414, 2-447, 2-479, 2-588,
3-653, 3-781, 3-878, 3-1039, 3-1061,
3-1130, 3-1199, 3-1202, 4-1281,
4-1315, 4-1327, 4-1401, 7-2423,
7-2458, 7-2471, 7-2632, 7-2693,
7-2760, 8-2983, 8-3009, 8-3044,
8-3082, 9-3310, 9-3406, 9-3429,
12-4796

ZeroChainMap, 4-1450
ZeroCocycle, 5-2018
ZeroCode, 13-5076, 13-5172
ZeroComplex, 4-1443
ZeroCone, 12-4779
ZeroDivisor, 3-1164, 9-3581, 9-3889
Zeroes, 3-789, 3-895, 3-1136
ZeroExtension, 4-1447
ZeroFan, 9-3870
ZeroGammaOrbitsOnRoots, 8-2867
ZeroMap, 7-2590, 11-4559, 12-4800
ZeroMatrix, 2-525
ZeroModularAbelianVariety, 11-4527
ZeroModule, 7-2584
ZeroRootLattice, 8-2875
ZeroRootSpace, 8-2875
Zeros, 3-895, 3-1136, 3-1153, 9-3704
ZeroSubgroup, 11-4625
ZeroSubscheme, 9-3619
ZeroSubspace, 11-4407
ZeroSubvariety, 11-4528
ZeroSumCode, 13-5076, 13-5172
ZetaFunction, 2-510, 3-1120, 9-3696,

10-3986, 10-4145
ZetaFunctionsByDeformation, 10-4170
ZGenerators, 12-4788
ZinovievCode, 13-5121


