
HANDBOOK OF MAGMA FUNCTIONS

Volume 2

Basic Rings and Linear Algebra

John Cannon Wieb Bosma

Claus Fieker Allan Steel

Editors

Version 2.19

Sydney

April 24, 2013

ii

MAGMA
C O M P U T E R • A L G E B R A

HANDBOOK OF MAGMA FUNCTIONS

Editors:

John Cannon Wieb Bosma Claus Fieker Allan Steel

Handbook Contributors:

Geoff Bailey, Wieb Bosma, Gavin Brown, Nils Bruin, John

Cannon, Jon Carlson, Scott Contini, Bruce Cox, Brendan

Creutz, Steve Donnelly, Tim Dokchitser, Willem de Graaf,

Andreas-Stephan Elsenhans, Claus Fieker, Damien Fisher,

Volker Gebhardt, Sergei Haller, Michael Harrison, Florian

Hess, Derek Holt, David Howden, Al Kasprzyk, Markus

Kirschmer, David Kohel, Axel Kohnert, Dimitri Leemans,

Paulette Lieby, Graham Matthews, Scott Murray, Eamonn

O’Brien, Dan Roozemond, Ben Smith, Bernd Souvignier,

William Stein, Allan Steel, Damien Stehlé, Nicole Suther-

land, Don Taylor, Bill Unger, Alexa van der Waall, Paul

van Wamelen, Helena Verrill, John Voight, Mark Watkins,

Greg White

Production Editors:

Wieb Bosma Claus Fieker Allan Steel Nicole Sutherland

HTML Production:

Claus Fieker Allan Steel

VOLUME 2: OVERVIEW

III BASIC RINGS 255
17 INTRODUCTION TO RINGS 257
18 RING OF INTEGERS 277
19 INTEGER RESIDUE CLASS RINGS 329
20 RATIONAL FIELD 349
21 FINITE FIELDS 361
22 NEARFIELDS 389
23 UNIVARIATE POLYNOMIAL RINGS 407
24 MULTIVARIATE POLYNOMIAL RINGS 441
25 REAL AND COMPLEX FIELDS 469

IV MATRICES AND LINEAR ALGEBRA 515
26 MATRICES 517
27 SPARSE MATRICES 557
28 VECTOR SPACES 583
29 POLAR SPACES 607

vi VOLUME 2: CONTENTS

VOLUME 2: CONTENTS

III BASIC RINGS 255

17 INTRODUCTION TO RINGS 257

17.1 Overview 259
17.2 The World of Rings 260
17.2.1 New Rings from Existing Ones 260
17.2.2 Attributes 261
17.3 Coercion 261
17.3.1 Automatic Coercion 262
17.3.2 Forced Coercion 264
17.4 Generic Ring Functions 266
17.4.1 Related Structures 266
17.4.2 Numerical Invariants 266
17.4.3 Predicates and Boolean Operations 267
17.5 Generic Element Functions 268
17.5.1 Parent and Category 268
17.5.2 Creation of Elements 269
17.5.3 Arithmetic Operations 269
17.5.4 Equality and Membership 270
17.5.5 Predicates on Ring Elements 271
17.5.6 Comparison of Ring Elements 272
17.6 Ideals and Quotient Rings 273
17.6.1 Defining Ideals and Quotient Rings 273
17.6.2 Arithmetic Operations on Ideals 273
17.6.3 Boolean Operators on Ideals 274
17.7 Other Ring Constructions 274
17.7.1 Residue Class Fields 274
17.7.2 Localization 274
17.7.3 Completion 275
17.7.4 Transcendental Extension 275

18 RING OF INTEGERS 277

18.1 Introduction 281
18.1.1 Representation 281
18.1.2 Coercion 281
18.1.3 Homomorphisms 281
18.2 Creation Functions 282
18.2.1 Creation of Structures 282
18.2.2 Creation of Elements 282
18.2.3 Printing of Elements 283
18.2.4 Element Conversions 284
18.3 Structure Operations 285
18.3.1 Related Structures 285
18.3.2 Numerical Invariants 286
18.3.3 Ring Predicates and Booleans 286
18.4 Element Operations 286
18.4.1 Arithmetic Operations 286
18.4.2 Bit Operations 287
18.4.3 Equality and Membership 287

VOLUME 2: CONTENTS vii

18.4.4 Parent and Category 287
18.4.5 Predicates on Ring Elements 288
18.4.6 Comparison of Ring Elements 289
18.4.7 Conjugates, Norm and Trace 289
18.4.8 Other Elementary Functions 290
18.5 Random Numbers 291
18.6 Common Divisors and Common Multiples 292
18.7 Arithmetic Functions 293
18.8 Combinatorial Functions 296
18.9 Primes and Primality Testing 297
18.9.1 Primality 297
18.9.2 Other Functions Relating to Primes 300
18.10 Factorization 301
18.10.1 General Factorization 302
18.10.2 Storing Potential Factors 304
18.10.3 Specific Factorization Algorithms 304
18.10.4 Factorization Related Functions 308
18.11 Factorization Sequences 310
18.11.1 Creation and Conversion 310
18.11.2 Arithmetic 311
18.11.3 Divisors 311
18.11.4 Predicates 311
18.12 Modular Arithmetic 311
18.12.1 Arithmetic Operations 311
18.12.2 The Solution of Modular Equations 312
18.13 Infinities 313
18.13.1 Creation 314
18.13.2 Arithmetic 314
18.13.3 Comparison 314
18.13.4 Miscellaneous 314
18.14 Advanced Factorization Techniques: The Number Field Sieve 315
18.14.1 The Magma Number Field Sieve Implementation 315
18.14.2 Naive NFS 316
18.14.3 Factoring with NFS Processes 316
18.14.4 Data files 321
18.14.5 Distributing NFS Factorizations 322
18.14.6 Magma and CWI NFS Interoperability 323
18.14.7 Tools for Finding a Suitable Polynomial 324
18.15 Bibliography 326

19 INTEGER RESIDUE CLASS RINGS 329

19.1 Introduction 331
19.2 Ideals of Z 331
19.3 Z as a Number Field Order 332
19.4 Residue Class Rings 333
19.4.1 Creation 333
19.4.2 Coercion 334
19.4.3 Elementary Invariants 335
19.4.4 Structure Operations 335
19.4.5 Ring Predicates and Booleans 336
19.4.6 Homomorphisms 336
19.5 Elements of Residue Class Rings 336
19.5.1 Creation 336
19.5.2 Arithmetic Operators 337
19.5.3 Equality and Membership 337

viii VOLUME 2: CONTENTS

19.5.4 Parent and Category 337
19.5.5 Predicates on Ring Elements 337
19.5.6 Solving Equations over Z/mZ 337
19.6 Ideal Operations 339
19.7 The Unit Group 340
19.8 Dirichlet Characters 341
19.8.1 Creation 342
19.8.2 Element Creation 342
19.8.3 Properties of Dirichlet Groups 343
19.8.4 Properties of Elements 344
19.8.5 Evaluation 345
19.8.6 Arithmetic 346
19.8.7 Example 346

20 RATIONAL FIELD . 349

20.1 Introduction 351
20.1.1 Representation 351
20.1.2 Coercion 351
20.1.3 Homomorphisms 352
20.2 Creation Functions 353
20.2.1 Creation of Structures 353
20.2.2 Creation of Elements 353
20.3 Structure Operations 354
20.3.1 Related Structures 354
20.3.2 Numerical Invariants 356
20.3.3 Ring Predicates and Booleans 356
20.4 Element Operations 357
20.4.1 Parent and Category 357
20.4.2 Arithmetic Operators 357
20.4.3 Numerator and Denominator 357
20.4.4 Equality and Membership 357
20.4.5 Predicates on Ring Elements 358
20.4.6 Comparison 358
20.4.7 Conjugates, Norm and Trace 358
20.4.8 Absolute Value and Sign 359
20.4.9 Rounding and Truncating 359
20.4.10 Rational Reconstruction 360
20.4.11 Valuation 360
20.4.12 Sequence Conversions 360

21 FINITE FIELDS . 361

21.1 Introduction 363
21.1.1 Representation of Finite Fields 363
21.1.2 Conway Polynomials 363
21.1.3 Ground Field and Relationships 364
21.2 Creation Functions 364
21.2.1 Creation of Structures 364
21.2.2 Creating Relations 368
21.2.3 Special Options 368
21.2.4 Homomorphisms 370
21.2.5 Creation of Elements 370
21.2.6 Special Elements 371
21.2.7 Sequence Conversions 372
21.3 Structure Operations 372
21.3.1 Related Structures 373

VOLUME 2: CONTENTS ix

21.3.2 Numerical Invariants 375
21.3.3 Defining Polynomial 375
21.3.4 Ring Predicates and Booleans 375
21.3.5 Roots 376
21.4 Element Operations 377
21.4.1 Arithmetic Operators 377
21.4.2 Equality and Membership 377
21.4.3 Parent and Category 377
21.4.4 Predicates on Ring Elements 378
21.4.5 Minimal and Characteristic Polynomial 378
21.4.6 Norm, Trace and Frobenius 379
21.4.7 Order and Roots 380
21.5 Polynomials for Finite Fields 382
21.6 Discrete Logarithms 383
21.7 Permutation Polynomials 386
21.8 Bibliography 387

22 NEARFIELDS . 389

22.1 Introduction 391
22.2 Nearfield Properties 391
22.2.1 Sharply Doubly Transitive Groups 392
22.3 Constructing Nearfields 393
22.3.1 Dickson Nearfields 393
22.3.2 Zassenhaus Nearfields 396
22.4 Operations on Elements 397
22.4.1 Nearfield Arithmetic 397
22.4.2 Equality and Membership 397
22.4.3 Parent and Category 397
22.4.4 Predicates on Nearfield Elements 397
22.5 Operations on Nearfields 399
22.6 The Group of Units 400
22.7 Automorphisms 401
22.8 Nearfield Planes 402
22.8.1 Hughes Planes 403
22.9 Bibliography 404

23 UNIVARIATE POLYNOMIAL RINGS 407

23.1 Introduction 411
23.1.1 Representation 411
23.2 Creation Functions 411
23.2.1 Creation of Structures 411
23.2.2 Print Options 412
23.2.3 Creation of Elements 413
23.3 Structure Operations 415
23.3.1 Related Structures 415
23.3.2 Changing Rings 415
23.3.3 Numerical Invariants 416
23.3.4 Ring Predicates and Booleans 416
23.3.5 Homomorphisms 416
23.4 Element Operations 417
23.4.1 Parent and Category 417
23.4.2 Arithmetic Operators 417
23.4.3 Equality and Membership 417
23.4.4 Predicates on Ring Elements 418

x VOLUME 2: CONTENTS

23.4.5 Coefficients and Terms 418
23.4.6 Degree 419
23.4.7 Roots 420
23.4.8 Derivative, Integral 422
23.4.9 Evaluation, Interpolation 422
23.4.10 Quotient and Remainder 422
23.4.11 Modular Arithmetic 424
23.4.12 Other Operations 424
23.5 Common Divisors and Common Multiples 424
23.5.1 Common Divisors and Common Multiples 425
23.5.2 Content and Primitive Part 426
23.6 Polynomials over the Integers 427
23.7 Polynomials over Finite Fields 427
23.8 Factorization 428
23.8.1 Factorization and Irreducibility 428
23.8.2 Resultant and Discriminant 432
23.8.3 Hensel Lifting 433
23.9 Ideals and Quotient Rings 434
23.9.1 Creation of Ideals and Quotients 434
23.9.2 Ideal Arithmetic 434
23.9.3 Other Functions on Ideals 435
23.9.4 Other Functions on Quotients 436
23.10 Special Families of Polynomials 436
23.10.1 Orthogonal Polynomials 436
23.10.2 Permutation Polynomials 437
23.10.3 The Bernoulli Polynomial 438
23.10.4 Swinnerton-Dyer Polynomials 438
23.11 Bibliography 438

24 MULTIVARIATE POLYNOMIAL RINGS 441

24.1 Introduction 443
24.1.1 Representation 443
24.2 Polynomial Rings and Polynomials 444
24.2.1 Creation of Polynomial Rings 444
24.2.2 Print Names 446
24.2.3 Graded Polynomial Rings 446
24.2.4 Creation of Polynomials 447
24.3 Structure Operations 447
24.3.1 Related Structures 447
24.3.2 Numerical Invariants 448
24.3.3 Ring Predicates and Booleans 448
24.3.4 Changing Coefficient Ring 448
24.3.5 Homomorphisms 448
24.4 Element Operations 449
24.4.1 Arithmetic Operators 449
24.4.2 Equality and Membership 449
24.4.3 Predicates on Ring Elements 450
24.4.4 Coefficients, Monomials and Terms 450
24.4.5 Degrees 455
24.4.6 Univariate Polynomials 456
24.4.7 Derivative, Integral 457
24.4.8 Evaluation, Interpolation 458
24.4.9 Quotient and Reductum 459
24.4.10 Diagonalizing a Polynomial of Degree 2 460
24.5 Greatest Common Divisors 461
24.5.1 Common Divisors and Common Multiples 461

VOLUME 2: CONTENTS xi

24.5.2 Content and Primitive Part 462
24.6 Factorization and Irreducibility 463
24.7 Resultants and Discriminants 467
24.8 Polynomials over the Integers 467
24.9 Bibliography 468

25 REAL AND COMPLEX FIELDS 469

25.1 Introduction 473
25.1.1 Overview of Real Numbers in Magma 473
25.1.2 Coercion 474
25.1.3 Homomorphisms 475
25.1.4 Special Options 475
25.1.5 Version Functions 476
25.2 Creation Functions 476
25.2.1 Creation of Structures 476
25.2.2 Creation of Elements 478
25.3 Structure Operations 479
25.3.1 Related Structures 479
25.3.2 Numerical Invariants 479
25.3.3 Ring Predicates and Booleans 480
25.3.4 Other Structure Functions 480
25.4 Element Operations 480
25.4.1 Generic Element Functions and Predicates 480
25.4.2 Comparison of and Membership 481
25.4.3 Other Predicates 481
25.4.4 Arithmetic 481
25.4.5 Conversions 481
25.4.6 Rounding 482
25.4.7 Precision 483
25.4.8 Constants 483
25.4.9 Simple Element Functions 484
25.4.10 Roots 485
25.4.11 Continued Fractions 490
25.4.12 Algebraic Dependencies 491
25.5 Transcendental Functions 491
25.5.1 Exponential, Logarithmic and Polylogarithmic Functions 491
25.5.2 Trigonometric Functions 493
25.5.3 Inverse Trigonometric Functions 495
25.5.4 Hyperbolic Functions 497
25.5.5 Inverse Hyperbolic Functions 498
25.6 Elliptic and Modular Functions 499
25.6.1 Eisenstein Series 499
25.6.2 Weierstrass Series 501
25.6.3 The Jacobi θ and Dedekind η-functions 502
25.6.4 The j-invariant and the Discriminant 503
25.6.5 Weber’s Functions 504
25.7 Theta Functions 505
25.8 Gamma, Bessel and Associated Functions 506
25.9 The Hypergeometric Function 508
25.10 Other Special Functions 509
25.11 Numerical Functions 511
25.11.1 Summation of Infinite Series 511
25.11.2 Integration 511
25.11.3 Numerical Derivatives 512
25.12 Bibliography 512

xii VOLUME 2: CONTENTS

IV MATRICES AND LINEAR ALGEBRA 515

26 MATRICES . 517

26.1 Introduction 521
26.2 Creation of Matrices 521
26.2.1 General Matrix Construction 521
26.2.2 Shortcuts 523
26.2.3 Construction of Structured Matrices 525
26.2.4 Construction of Random Matrices 528
26.2.5 Creating Vectors 529
26.3 Elementary Properties 529
26.4 Accessing or Modifying Entries 530
26.4.1 Indexing 530
26.4.2 Extracting and Inserting Blocks 531
26.4.3 Row and Column Operations 534
26.5 Building Block Matrices 537
26.6 Changing Ring 538
26.7 Elementary Arithmetic 539
26.8 Nullspaces and Solutions of Systems 540
26.9 Predicates 543
26.10 Determinant and Other Properties 544
26.11 Minimal and Characteristic Polynomials and Eigenvalues 546
26.12 Canonical Forms 548
26.12.1 Canonical Forms over General Rings 548
26.12.2 Canonical Forms over Fields 548
26.12.3 Canonical Forms over Euclidean Domains 551
26.13 Orders of Invertible Matrices 554
26.14 Miscellaneous Operations on Matrices 555
26.15 Bibliography 555

27 SPARSE MATRICES 557

27.1 Introduction 559
27.2 Creation of Sparse Matrices 559
27.2.1 Construction of Initialized Sparse Matrices 559
27.2.2 Construction of Trivial Sparse Matrices 560
27.2.3 Construction of Structured Matrices 562
27.2.4 Parents of Sparse Matrices 562
27.3 Accessing Sparse Matrices 563
27.3.1 Elementary Properties 563
27.3.2 Weights 564
27.4 Accessing or Modifying Entries 564
27.4.1 Extracting and Inserting Blocks 566
27.4.2 Row and Column Operations 568
27.5 Building Block Matrices 569
27.6 Conversion to and from Dense Matrices 570
27.7 Changing Ring 570
27.8 Predicates 571
27.9 Elementary Arithmetic 572
27.10 Multiplying Vectors or Matrices by Sparse Matrices 573
27.11 Non-trivial Properties 573
27.11.1 Nullspace and Rowspace 573
27.11.2 Rank 574
27.12 Determinant and Other Properties 574

VOLUME 2: CONTENTS xiii

27.12.1 Elementary Divisors (Smith Form) 575
27.12.2 Verbosity 575
27.13 Linear Systems (Structured Gaussian Elimination) 575
27.14 Bibliography 582

28 VECTOR SPACES . 583

28.1 Introduction 585
28.1.1 Vector Space Categories 585
28.1.2 The Construction of a Vector Space 585
28.2 Creation of Vector Spaces and Arithmetic with Vectors 586
28.2.1 Construction of a Vector Space 586
28.2.2 Construction of a Vector Space with Inner Product Matrix 587
28.2.3 Construction of a Vector 587
28.2.4 Deconstruction of a Vector 589
28.2.5 Arithmetic with Vectors 589
28.2.6 Indexing Vectors and Matrices 592
28.3 Subspaces, Quotient Spaces and Homomorphisms 594
28.3.1 Construction of Subspaces 594
28.3.2 Construction of Quotient Vector Spaces 596
28.4 Changing the Coefficient Field 598
28.5 Basic Operations 599
28.5.1 Accessing Vector Space Invariants 599
28.5.2 Membership and Equality 600
28.5.3 Operations on Subspaces 601
28.6 Reducing Vectors Relative to a Subspace 601
28.7 Bases 602
28.8 Operations with Linear Transformations 604

29 POLAR SPACES . 607

29.1 Introduction 609
29.2 Reflexive Forms 609
29.2.1 Quadratic Forms 610
29.3 Inner Products 611
29.3.1 Orthogonality 613
29.4 Isotropic and Singular Vectors and Subspaces 614
29.5 The Standard Forms 617
29.6 Constructing Polar Spaces 620
29.6.1 Symplectic Spaces 621
29.6.2 Unitary Spaces 621
29.6.3 Quadratic Spaces 622
29.7 Isometries and Similarities 625
29.7.1 Isometries 625
29.7.2 Similarities 628
29.8 Wall Forms 629
29.9 Invariant Forms 630
29.9.1 Semi-invariant Forms 633
29.10 Bibliography 635

PART III
BASIC RINGS

17 INTRODUCTION TO RINGS 257

18 RING OF INTEGERS 277

19 INTEGER RESIDUE CLASS RINGS 329

20 RATIONAL FIELD 349

21 FINITE FIELDS 361

22 NEARFIELDS 389

23 UNIVARIATE POLYNOMIAL RINGS 407

24 MULTIVARIATE POLYNOMIAL RINGS 441

25 REAL AND COMPLEX FIELDS 469

17 INTRODUCTION TO RINGS
17.1 Overview 259

17.2 The World of Rings 260

17.2.1 New Rings from Existing Ones . . 260

17.2.2 Attributes 261

17.3 Coercion 261

17.3.1 Automatic Coercion 262

17.3.2 Forced Coercion 264

17.4 Generic Ring Functions . . . 266

17.4.1 Related Structures 266

Parent(R) 266
Category(R) 266
Type(R) 266
PrimeField(F) 266
PrimeRing(R) 266
Centre(R) 266
Center(R) 266

17.4.2 Numerical Invariants 266

Characteristic(R) 266
266

17.4.3 Predicates and Boolean Operations 267

IsCommutative(R) 267
IsUnitary(R) 267
IsFinite(R) 267
IsOrdered(R) 267
IsField(R) 267
IsDivisionRing(R) 267
IsEuclideanDomain(R) 267
IsEuclideanRing(R) 267
IsMagmaEuclideanRing(R) 267
IsPID(R) 267
IsPrincipalIdealDomain(R) 267
IsPIR(R) 268
IsPrincipalIdealRing(R) 268
IsUFD(R) 268
IsUniqueFactorizationDomain(R) 268
IsDomain(R) 268
IsIntegralDomain(R) 268
HasGCD(R) 268
eq 268
ne 268

17.5 Generic Element Functions . . 268

17.5.1 Parent and Category 268

Parent(r) 268
Category(r) 268
Type(r) 268

17.5.2 Creation of Elements 269

Zero(R) 269

One(R) 269
Id(R) 269
! 269
Random(R) 269
Representative(R) 269
Rep(R) 269

17.5.3 Arithmetic Operations 269

+ 269
- 269
+ 269
- 269
* 269
^ 270
^ 270
/ 270
+:= 270
-:= 270
*:= 270
/:= 270
^:= 270

17.5.4 Equality and Membership 270

eq 270
ne 270
eq 270
ne 270
in 270
notin 270

17.5.5 Predicates on Ring Elements . . . 271

IsZero(a) 271
IsOne(a) 271
IsMinusOne(a) 271
IsUnit(a) 271
IsIdempotent(x) 271
IsNilpotent(x) 271
IsZeroDivisor(x) 271
IsIrreducible(x) 271
IsPrime(x) 271

17.5.6 Comparison of Ring Elements . . . 272

gt 272
ge 272
lt 272
le 272
Maximum(a, b) 272
Maximum(Q) 272
Minimum(a, b) 272
Minimum(Q) 272

17.6 Ideals and Quotient Rings . . 273

17.6.1 Defining Ideals and Quotient Rings 273

ideal< > 273
quo< > 273
/ 273

258 BASIC RINGS Part IV

PowerIdeal(R) 273

17.6.2 Arithmetic Operations on Ideals . . 273

+ 273
* 273
meet 273

17.6.3 Boolean Operators on Ideals . . . 274

in 274
notin 274
eq 274
ne 274
subset 274
notsubset 274

17.7 Other Ring Constructions . . 274

17.7.1 Residue Class Fields 274

ResidueClassField(I) 274

17.7.2 Localization 274

loc< > 274
Localization(R, P) 274

17.7.3 Completion 275

comp< > 275
Completion(R, P) 275

17.7.4 Transcendental Extension 275

ext< > 275
ext< > 275

Chapter 17

INTRODUCTION TO RINGS

17.1 Overview

Rings of various kinds form the richest source of algebraic structures in Magma. Tables
1 and 2 list the most important types.

symbol description Category Ch

Z ring of integers RngInt 18
Z/mZ ring of residue classes RngIntRes 18
R[x] univariate polynomial ring RngUPol 23
F [x]/f(x) polynomial factor ring RngUPolRes 23
R[x1, · · · , xm] multivariate polynomial ring RngMPol 24
R[x1, · · · , xm]G invariant ring RngInvar 110
R[[x]] power series ring RngSer 49
O order in a number field RngOrd 37
O order in a function field RngFunOrd 42
Zp p-adic ring RngPad 47
Rm local ring RngLoc 47
V valuation ring RngVal 45

Table 1: The main types of Ring in Magma.

symbol description Category Ch

Q rational field FldRat 20
Fq finite field FldFin 21
F (x1, · · · , xm) rational function field FldFunRat 41
F ((x)) field of Laurent series RngSerLaur 49
Q(
√
D) quadratic number field FldQuad 35

Q(ζn) cyclotomic number field FldCyc 36
Q(α) number field FldNum 34
F (x)(α) function field FldFun 42
Qp p-adic field FldPad 47
Qp(α) local field FldLoc 47
R real field FldRe 25
C complex field FldCom 25

Table 2: The main types of Field in Magma.

260 BASIC RINGS Part IV

The list of rings in Table 1 is not exhaustive, for two reasons. In the first place, some
rings have been categorized differently, because their module structure or algebra struc-
ture seems pre-eminent; thus matrix rings and finitely presented algebras appear (more
or less arbitrarily) in the Part on Algebras, and vector spaces and their generalizations
appear in the Module Part. (Also, rings of class functions appear in the Part on Groups.)
Furthermore, certain general constructions (such as sub) allow the user to define rings that
do not appear in the above list, most notably subrings of Z.

Looking at the table it may seem that all rings in Magma are commutative and unital.
This is not the case (even though it would have made life much easier); since polynomial
rings and the like can be defined over any coefficient ring, the matrix rings and finitely
presented algebras not listed here that are not generally commutative, allow the construc-
tion of non-commutative rings. Furthermore, the sub constructor allows the creation of
rings without 1; certain functions for the construction of new rings from old ones do not
allow such non-unital coefficient rings.

In this Chapter we give an overview of the various types and the relations between
them. Moreover, we describe the important principles underlying the rules for coercion
of elements of one ring into another. This Chapter also describes the common functions
for all types of rings (and their elements), and subsequent Chapters deal with particular
categories of rings, as indicated by the table.

17.2 The World of Rings

There are various ways in which to order the families of rings appearing in Table 1. We
look at some in this section.

17.2.1 New Rings from Existing Ones
It is important to realize at the outset that to work comfortably with a ring, it should be
finitely generated (over some subring); indeed, the only violations of this rule occur for real
and complex fields, and p-adic and power series type structures, in which we necessarily
have to cope with approximations. All other rings we will label as exact.

All rings in Table 1 can be obtained from the ring of rational integers Z by repeated
application of a handful of fundamental mathematical constructions. The first such con-
struction is forming fractions: the rational field Q can be obtained as the field of fractions
of Z. The second construction is that of forming quotients: in this way the rings Z/mZ are
obtained from Z. The third important construction is that of transcendental extension: by
adjoining an element that satisfies no relation over the coefficient ring, a polynomial ring
is obtained. An algebraic extension can be obtained by a combination of a transcendental
extension and a quotient. Finally, completion of a ring at a prime leads in general to the
rings that were labelled above as not exact. Some other constructions are: tensoring, tak-
ing direct products (leading to tuple modules), and taking valuation rings (an operation
inverse to taking fields of fractions).

Most of these constructions are supported by Magma. In many situations the quo and
ext constructors will perform the quotient and algebraic extension operations, just like

Ch. 17 INTRODUCTION TO RINGS 261

sub creates sub-structures. Note an important distinction: usually sub creates structures
of exactly the same type as the original structure—this is precisely why the construction
of sub-object does not appear as an important construction for creating new objects in the
previous paragraph.

Care should be taken not to confuse the mathematical properties of rings (or objects
in Magma in general) and the properties of the object that Magma is aware of. For
example, if one creates the ring of residue classes Z/pZ for a prime number p, using
the command IntegerRing(p), the Magma object created is a residue class ring (whose
modulus happens to be prime) and not a finite field; the functions applicable are the
residue class ring functions, and it is, for instance, not possible to create a field extension
over this object. If the intention was to create a finite field, the FiniteField(p) command
should have been used, and for that object it is possible to create a field extension.

Similarly, a convenient way of thinking about a number field K = Q(α) is to regard it as
a quotient of the polynomial ring Q[X] and the ideal generated by the minimal polynomial
f of the primitive element α:

K = Q(α) ∼= Q[X]/(f).

This is, however, not the way to create number fields in Magma. The quotient ring of a
polynomial ring will be an object to which only the generic ring functions apply, whereas to
obtain the number field with all the machinery to manipulate it one has to use a command
like NumberField(f).

17.2.2 Attributes

17.3 Coercion

A ring element can often be coerced into a ring other than its parent. The need for this
occurs for example when one wants to perform a binary ring operation on elements of
different structures, or when an intrinsic function is invoked on elements for which it has
not been defined.

The basic principle is that such an operation may be performed whenever it makes sense
mathematically. Before the operation can be performed however, an element may need to
be coerced into some structure in which the operation can legally be performed. There are
two types of coercion: automatic and forced coercion. Automatic coercion occurs when
Magma can figure out for itself what the target structure should be, and how elements of
the originating structure can be coerced into that structure. In other cases Magma may
still be able to perform the coercion, provided the target structure has been specified; for
this type of coercion R ! x instructs Magma to execute the coercion of element x into
ring R.

The precise rules for automatic and forced coercion between rings are explained in
the next two subsections. It is good to keep an important general distinction between
automatic and forced coercion in mind: whether or not automatic coercion will succeed
depends on the originating and the target structure alone, while for forced coercion success

262 BASIC RINGS Part IV

may depend on the particular element as well. Thus, integers can be lifted automatically
to the rationals if necessary, but conversely, only the integer elements of Q can be coerced
into Z by using !.

The subsections below will describe for specific rings R and S in Magma whether
or not an element r of R can be lifted automatically or by force into S. Suppose that
the unary Magma function Function takes elements of the type of S as argument and
one is interested in the result of that function when applied to r. If R can be coerced
automatically into a unique structure S of the desired type, then Function(r) will produce
the required result. If R cannot be coerced automatically into such S, but forced coercion
on r is possible, then Function(S ! r) will yield the desired effect. If, finally, neither
automatic nor forced coercion is possible, it may be possible to define a map m from R to
S, and then Function(m(r)) will give the answer.

For example, the function Order is defined for elements of residue class rings (among
others). But Order(3) has no obvious interpretation (and an error will arise) because
there is not a unique residue class ring in which this should be evaluated.

If a binary operation ◦ : C×C → C on members C of a category of rings C is applied to
elements r and s of members R and S from C, the same rules for coercion will be used to
determine the legality of r ◦ s. If s can be coerced automatically into R, then this will take
place and r ◦ s will be evaluated in R; otherwise, if r can be coerced automatically into S,
then r ◦ s will be evaluated in S. If neither succeeds, then, in certain cases, Magma will
try to find an existing common overstructure T for R and S, that is, an object T from C
such that ⊂ T ⊃ S; then both r and s will be coerced into T and the result t = r ◦ s will
be returned as an element of T . If none of these cases apply, an error results. It may still
be possible to evaluate by forced coercion of r into S or s into R, using (S ! r) o s or
using r o (R ! s).

17.3.1 Automatic Coercion
We will first deal with the easier of the two cases: automatic coercion. A simple demon-
stration of the desirability of automatic coercion is given by the following example:

print 1 + (1/2);

It is obvious that one wants the result to be 3/2: we want to identify the integer 1 with
the rational number 1 and perform the addition in Q, that is, we clearly wish to have
automatic coercion from Z to Q.

The basic rule for automatic coercion is:

automatic coercion will only take place when there exists a unique target
structure and an obvious homomorphism from the parent structure to the
target structure

In particular, if one structure is naturally contained in the other (and Magma knows about
it!), automatic coercion will take place. (The provision that Magma must know about
the embedding is in particular relevant for finite fields and number fields; in these cases it
is possible to create subrings, or even isomorphic rings/fields, for which the embedding is
not known.)

Ch. 17 INTRODUCTION TO RINGS 263

Also, for any ring R there is a natural ring homomorphism Z → R, hence any integer
can be coerced automatically into any ring.

Table 3 gives a summary for all cases in which Magma will apply automatic coercion:
if a ring operation is attempted on an element from one of the structures in the first row,
and the specifications for the operation require that the argument is an element from a
structure in the first column, the element will be coerced into the structure indicated by
the table.

Automatic Coercion (Ring Elements)

Fps Z/nZ Z Q Q(

√
∆2) Q(ζn) L OL Rn Cn

Fpr ⊂ − Fpr − − − − − − −
Z/mZ − = Z/mZ − − − − − − −

Z Fps Z/nZ Z Q Q(

√
∆2) Q(ζn) L OL Rn Cn

Q − − Q Q Q(

√
∆2) Q(ζn) L − Rn Cn

Q(

√
∆1) − − Q(

√
∆1) Q(

√
∆1) = − − − − −

Q(ζm) − − Q(ζm) Q(ζm) − Q(ζlcm(m,n)) − − − −
K − − K K − − = K = L − −

OK − − OK − − − K = L = − −
Qp − − Qp Qp − − − − − −
Zp − − Zp− − − − − − − −
Rm − − Rm Rm − − − − Rmax(m,n) Cmax(m,n)

Cm − − Cm Cm − − − − Cmax(m,n) Cmax(m,n)

Table 3.

The symbols in the table have the following meaning:
− indicates that automatic coercion will not take place; as the table shows for instance,

automatic coercion will not take place when we try to add a finite field element and an
element of Z/nZ (not even when n is prime and of the same characteristic as the field).

⊂ indicates that automatic coercion will only take place if one structure is contained in
the other, or Magma can find a common overstructure to both structures. Thus the
top-left entry in the table indicates that two finite field elements can be added if they
are members of finite fields F1 and F2 such that F1 ⊂ F2 or F2 ⊂ F1, or both fields
have been created inside a field F , so F1 ⊂ F ⊃ F2.

= The = is used to denote that automatic coercion only takes place if both structures are
the same. The entry K = L is used to indicate that an element of an order OK will
only be coerced into the number field L if K = L.

In addition to these rules, general rules apply to polynomial and matrix algebras. The
rules for polynomial rings are as follows. An element s from a ring S can be automatically
coerced into R[X1, . . . , Xn] if either S equals R[X1, . . . , Xi] for some 1 ≤ i ≤ n, or S = R.
Note that in the latter case the element s must be an element of the coefficient ring R,
and that it is not sufficient for it to be coercible into R.

264 BASIC RINGS Part IV

So, for example, we can add an integer and a polynomial over the integers, we can
add an element f of Z[X] and g of Z[X,Y], but not an integer and a polynomial over the
rationals.

An element s can be coerced automatically in the matrix ring Mn,n(R) if it is coercible
automatically into the coefficient ring R, in which case s will be identified with the diagonal
matrix that has each diagonal entry equal to s.

So we can add an integer and a matrix ring element over the rationals, but we cannot
automatically add elements of Mn,n(Z) and Mn,n(Q), nor elements from M2,2(Z) and
M3,3(Z).

17.3.2 Forced Coercion
In certain cases where automatic coercion will not take place, one can cast an element into
the ring in which the operation should take place.

If, for example, one is working in a ring Z/pZ, and p happens to be prime, it may occur
that one wishes to perform some finite field operations on an element in the ring; if F is a
finite field of characteristic p an element x of Z/pZ can be cast into an element of F using
F ! x;
Table 4 describes the possibilities for using ! for coercion in rings. It shows when it is
possible to coerce an element from a structure in the first row into a structure in the first
column.

! Non-Automatic Coercion (Ring Elements)

↙ Fps Z/nZ Z Q Q(

√
∆2) Q(ζn) L OL Rn Cn

Fpr s|r or 3 n = p + − − − − − − −
Z/mZ m = p, s = 1 m|n + − − − − − − −

Z s = 1 or 3 + + 3 3 3 3 3 − −
Q − − + + 3 3 3 3 − −

Q(

√
∆1) − − + + ∆1 = ∆2 or 3 3 − − − −

Q(ζm) − − + + ⊃ or 3 n|m or 3 − − − −
K − − + + − − K = L K = L − −

OK − − + 3 − − K = L,3 K = L − −
Qp s = 1 n = p + 3 − − − − − −
Zp s = 1 n = p + − − − − − − −
Rm − − + + ∆2 > 0 or 3 3 − − + 3
Cm − − + + + + − − + +

Table 4.
The symbols are the same as those in Table 3 except:

+ indicates that coercion can take place without restrictions (sometimes it will be done
automatically if necessary);

|, = (In)equalities on parameters of the structures indicate the restrictions for ! to work;
thus, an element from Fps can only be coerced into Z/mZ if s = 1 and m = p;

Ch. 17 INTRODUCTION TO RINGS 265

3 The 3 symbols in this table indicates that coercion only applies to certain elements
of the domain; thus only those elements of Q can be coerced into Z that are in fact
integers.

or In some cases coercion may either take place if some condition on parameters is
satisfied or on a subset of the domain; thus the entry s|r or 3 for coercion of Fps

into Fpr indicates that such coercion is always possible if s divides r, and only on
a subset of Fps (like Fp) in general (note that the characteristics have to be the
same).

The rules for coercion from and to polynomial rings and matrix rings are as follows.
If an attempt is made to forcibly coerce s into P = R[X1, . . . , Xn], the following steps

are executed successively:

(a) if s is an element of P it remains unchanged;

(b)if s is a sequence, then the zero element of P is returned if s is empty, and if it is
non-empty but the elements of the sequence can be coerced into P [X1, . . . , Xn−1] then
the polynomial

∑
j s[j]X

j−1
n is returned;

(c) if s can be coerced into the coefficient ring R, then the constant polynomial s is returned;

(d)if s is a polynomial in R[X1, . . . , Xk] for some 1 ≤ k ≤ n, then it is lifted in the obvious
way into P ;

(e) if s is a polynomial in R[X1, . . . , Xk] for some k > n, but constant in the indeterminates
Xn+1, . . . , Xk, then s is projected down in the obvious way to P .

If none of these steps successfully coerces s into P , an error occurs.
The ring element s can be coerced into Mn,n(R) if either it can be coerced into R

(in which case s will be identified with the diagonal matrix with s on the diagonal), or
s ∈ S = Mn,n(R′), where R′ can be coerced into R. Also a sequence of n2 elements
coercible into R can be coerced into the matrix ring Mn,n(R).

Elements from a matrix ring Mn,n(R) can only be coerced into rings other than a
matrix ring if n = 1; in that case the usual rules for the coefficient ring R apply.

Note that in some cases it is possible to go from (a subset of) some structure to another
in two steps, but not directly: it is possible to go

> y := L ! (Q ! x)

to coerce a rational element of one number field into another via the rationals.
Finally we note that the binary Boolean operator in returns true if and only if forced

coercion will be successful.

266 BASIC RINGS Part IV

17.4 Generic Ring Functions
The generic functions described in this Chapter apply in principle to every type of ring.
For certain rings these are the only applicable functions. The qualification ‘in principle’
in the first sentence is made because for some classes of rings an algorithm to compute
certain of these functions does not exist, or has not been implemented. In that case an
error will result.

This general list is provided primarily to avoid duplication of common descriptions. In
the following Chapters the generic functions will be listed merely without further descrip-
tion, and the emphasis can be on the functions specific to a particular type of ring.

17.4.1 Related Structures

Parent(R)

The parent of ring R. Currently this returns the power structure of the ring.

Category(R)

Type(R)

The ‘type’ of R, that is, the Magma category to which the ring R belongs. The
procedure call ListCategories() gives a list of all the categories, as does the Ap-
pendix.

PrimeField(F)

For a field F , this returns either Fp, if the characteristic p of F is positive, or Q, if
the characteristic of F is 0. If F is an extension field then it will return the field at
the bottom of the extension tower.

PrimeRing(R)

For a unitary ring R, this returns either Z/nZ, if the characteristic n of R is positive,
or Z, if the characteristic of R is 0. If R is an extension ring then it will return the
ring at the bottom of the extension tower.

Centre(R)

Center(R)

Given a ring R, return its centre, consisting of the subring of elements commuting
with all other elements of R.

17.4.2 Numerical Invariants

Characteristic(R)

The characteristic of the ring R, which is the smallest positive integer m such that
m · r = 0 for every r ∈ R, or zero if such m does not exist.

#R

The cardinality of the ring R; here R must be finite.

Ch. 17 INTRODUCTION TO RINGS 267

17.4.3 Predicates and Boolean Operations

IsCommutative(R)

Returns true if it is known that the ring R is commutative, false if it is known
that R is not commutative. An error results if the answer is not known.

IsUnitary(R)

Returns true if the ring R is known to be unitary (that is, if R has a multiplicative
identity), false if R has no 1.

IsFinite(R)

Returns true if the ring R is known to be a finite ring, false if it is known to be
infinite. An error results if the answer is not known.

IsOrdered(R)

Returns true if the ring R has a total ordering defined on the set of its elements,
false otherwise.

IsField(R)

Returns true if the ring R is known to be a field, false if it is known to not be a
field. An error results if the answer is not known.

IsDivisionRing(R)

Returns true if the ring R is known to be a division ring (that is, every non-zero
element is invertible), false if it is known that R is not a division ring. An error
results if the answer is not known.

IsEuclideanDomain(R)

Returns true if the ring R is known to be a euclidean domain, false if it is known
that R is not a euclidean domain. An error results if the answer is not known.

IsEuclideanRing(R)

Returns true if the ring R is known to be euclidean, false if it is known that R is
not euclidean. An error results if the answer is not known.

IsMagmaEuclideanRing(R)

Returns true iff the ring R is a computable euclidean ring within Magma (i.e., iff the
necessary euclidean operations are defined for R so algorithms requiring a euclidean
ring will work).

IsPID(R)

IsPrincipalIdealDomain(R)

Returns true if the ring R is known to be a principal ideal domain, false if it is
known that R is not a principal ideal domain. An error results if the answer is not
known.

268 BASIC RINGS Part IV

IsPIR(R)

IsPrincipalIdealRing(R)

Returns true if the ring R is known to be a principal ideal ring, false if it is known
that R has non-principal ideals. An error results if the answer is not known.

IsUFD(R)

IsUniqueFactorizationDomain(R)

Returns true if the ring R is known to be a unique factorization domain, false if it
is known that R is not a unique factorization domain. An error results if the answer
is not known.

IsDomain(R)

IsIntegralDomain(R)

Returns true if it is known that R is an integral domain (i. e., R has no zero
divisors), false if R is known to have zero divisors. An error results if the answer
is not known.

HasGCD(R)

Returns true iff there is a GCD algorithm for elements of ring R in Magma.

R eq S

For certain pairs R,S of rings, this returns true if R and S refer to the same ring,
and false otherwise. However, if R and S belong to different categories an error
may result.

R ne S

For certain pairs R,S of rings, this returns true if R and S refer to different rings,
and false otherwise. However, if R and S belong to different categories an error
may result.

17.5 Generic Element Functions

17.5.1 Parent and Category

Parent(r)

The (default) parent ring of ring element r. Usually the parent of r has been created
explicitly before, but in certain cases, such as literal integers, rationals, reals, and
values returned by certain functions a default parent is created in the background.

Category(r)

Type(r)

The ‘type’ of r, that is, the Magma category to which the ring element r belongs.
The procedure call ListCategories() gives a list of all the categories, as does the
Appendix.

Ch. 17 INTRODUCTION TO RINGS 269

17.5.2 Creation of Elements

Zero(R)

The zero element of ring R; this is equivalent to R ! 0.

One(R)

Id(R)

The multiplicative identity 1 of ring R; this is equivalent to R ! 1.

R ! a

Coerce the element a of some ring into the ring R. (The rules on coercion are
explained earlier in this Chapter.) If a is an integer, the coercion will always succeed:
the element a · 1R will be returned, where 1R is the unit element of R.

Random(R)

A random element of the finite ring R (every element of R has the same probability
of being returned).

Representative(R)

Rep(R)

A representative element of the finite ring R.

17.5.3 Arithmetic Operations

+a

Element a.

-a

The negation (additive inverse) of element a.

a + b

The sum of the ring elements a and b; if a and b do not belong to the same ring R,
an attempt will be made to find a common overstructure in which the sum can be
taken.

a - b

The difference of the ring elements a and b; if a and b do not belong to the same ring
R, an attempt will be made to find a common overstructure in which the difference
can be taken.

a * b

The product of the ring elements a and b; if a and b do not belong to the same ring
R, an attempt will be made to find a common overstructure in which the product
can be taken.

270 BASIC RINGS Part IV

a ^ k

Form the k-th power of the ring element a, for small, non-negative, k. If a = 0 then
we must have k > 0.

a ^ -k

Form the k-th power of the multiplicative inverse of the unit a.

a / b

Given an element a of R and a unit b of R, form the quotient of the elements a and
b. If b is not invertible in R, an error results, unless both a and b are integers, in
which case a / b returns the rational number a/b. If a and b do not belong to the
same ring R, an attempt will be made to find a common overstructure in which the
quotient can be taken.

a +:= b

Mutation assignment: change a into the sum of a and b.

a -:= b

Mutation assignment: change a into the difference of a and b.

a *:= b

Mutation assignment: change a into the product of a and b.

a /:= b

Mutation assignment: change a into the quotient of a and b.

a ^:= k

Mutation assignment: change a into the power ak.

17.5.4 Equality and Membership

a eq b

Returns true if the elements a and b of R are the same, otherwise false.

a ne b

Returns true if the elements a and b of R are distinct, otherwise false.

R eq S

Returns true if the rings R and S are the same, otherwise false.

R ne S

Returns true if the rings R and S are distinct, otherwise false.

a in R

Returns true if and only if a is an element of R.

a notin R

Returns true if and only if a is not an element of R.

Ch. 17 INTRODUCTION TO RINGS 271

17.5.5 Predicates on Ring Elements

IsZero(a)

Returns true if and only if the element a of R equals 0R.

IsOne(a)

Returns true if and only if the element a of R equals 1R.

IsMinusOne(a)

Returns true if and only if the element a of R equals the element −1 of R.

IsUnit(a)

Returns true if a is a unit in its parent R, false otherwise.

IsIdempotent(x)

Returns true if and only if x2 equals x.

IsNilpotent(x)

Returns true if and only if some integer power xi of x is zero.

IsZeroDivisor(x)

Returns true if and only if x is a zero-divisor, that is, there exists an element y in
the parent R of x such that xy = 0.

IsIrreducible(x)

Returns true if and only if the parent R of the element x is a domain and x is
irreducible in R, that is, x is a non-unit of R and whenever a product ab of elements
of R divides x then a or b is a unit of R.

IsPrime(x)

Returns true if and only if the parent R of the element x is a domain and x is a
prime element of R, that is, x is neither 0 nor a unit and whenever x divides the
product ab of two elements of R it divides a or b.

272 BASIC RINGS Part IV

17.5.6 Comparison of Ring Elements

The comparison operations are only defined on types of ring that are ordered.

a gt b

Returns true if the ring element a is greater than the ring element b, otherwise
false.

a ge b

Returns true if the ring element a is greater than or equal to the ring element b,
otherwise false.

a lt b

Returns true if the ring element a is less than the ring element b, otherwise false.

a le b

Returns true if the ring element a is less than or equal to the ring element b,
otherwise false.

Maximum(a, b)

The maximum of the ring elements a and b; if a and b do not belong to the same ring
R, an attempt will be made to find a common overstructure in which the maximum
can be taken.

Maximum(Q)

The maximum of the sequence Q of ring elements.

Minimum(a, b)

The minimum of the ring elements a and b; if a and b do not belong to the same ring
R, an attempt will be made to find a common overstructure in which the minimum
can be taken.

Minimum(Q)

The minimum of the sequence Q of ring elements.

Ch. 17 INTRODUCTION TO RINGS 273

17.6 Ideals and Quotient Rings

The following entries describe the operations on ideals in a commutative ring R. Cer-
tain operations on left and right ideals in non-commutative rings will be described in the
Chapters for the corresponding rings.

17.6.1 Defining Ideals and Quotient Rings

ideal< R | a1, ..., ar >

Given a ring R and elements a1, . . . , ar of R, create the ideal I of R generated by
a1, . . . , ar.

quo< R | ar, ..., ar >

Given a ring R and elements a1, . . . , ar of R, construct the quotient ring Q = R/I,
where I is the ideal of R generated by a1, . . . , ar.

R / I

Given a ring R and an ideal I of R, construct the quotient ring Q = R/I, as well
as the canonical map R→ R/I.

PowerIdeal(R)

The set of ideals of R. This is the parent of all ideals of R.

17.6.2 Arithmetic Operations on Ideals

I + J

The sum of the ideals I and J of the ring R. This ideal consists of elements a+ b,
with a ∈ I and b ∈ J . If I is generated by {a1, . . . , ak} and J is generated by
{b1, . . . , bm}, then I + J is generated by {a1, . . . , ak, b1, . . . , bm}.

I * J

The product of the ideals I and J of the ring R. This is the ideal generated by
elements a · b, with a ∈ I and b ∈ J , and it consists of elements a1b1 + · · · + anbn,
with ai ∈ I and bj ∈ J .

I meet J

The intersection of the ideals I and J of the ring R.

274 BASIC RINGS Part IV

17.6.3 Boolean Operators on Ideals
Throughout this subsection I and J are ideals belonging to the same integer ring R, while
a is an element of R.

a in I

Returns true if and only if the element a is a member of the ideal I.

a notin I

Returns true if and only if the element a is not a member of the ideal I.

I eq J

Returns true if and only if the ideals I and J are equal.

I ne J

Returns true if and only if the ideals I and J are distinct.

I subset J

Returns true if and only if the ideal I is contained in the ideal J .

I notsubset J

Returns true if and only if the ideal I is not contained in the ideal J .

17.7 Other Ring Constructions
Magma allows the construction of residue fields, localization of rings, and completion of
rings. These constructions really just create appropriate rings of different categories within
Magma.

17.7.1 Residue Class Fields

ResidueClassField(I)

Given a maximal ideal I of a ring R, create the residue class field K of the quotient
ring R/I, together with a map sending an element of R to the corresponding element
of K.

17.7.2 Localization

loc< R | a1, ..., ar >

Given a ring R and elements a1, . . . , ar of R, which generate a prime ideal P of R,
create the localization L of R at P , together with a map sending an element of R
to the corresponding element of L.

Localization(R, P)

Given a ring R and a prime ideal P of R, create the localization L of R at P ,
together with a map sending an element of R to the corresponding element of L.

Ch. 17 INTRODUCTION TO RINGS 275

17.7.3 Completion

comp< R | a1, ..., ar >

Given a ring R and elements a1, . . . , ar of R, which generate a prime ideal or zero
ideal P of R, create the completion C of R at P , together with a map sending an
element of R to the corresponding element of C.

Completion(R, P)

Given a ring R and a prime ideal or zero ideal P of R, create the completion C of
R at P , together with a map sending an element of R to the corresponding element
of C.

17.7.4 Transcendental Extension

ext< R | >

Given a ring R create the univariate transcendental extension R[x] of R. This is
equivalent to PolynomialRing(R).

ext< R, n | >

Given a ring R and an integer n ≥ 1, create the multivariate transcendental exten-
sion R[x1, . . . , xn] of R. This is equivalent to PolynomialRing(R, n).

18 RING OF INTEGERS
18.1 Introduction 281

18.1.1 Representation 281

18.1.2 Coercion 281

18.1.3 Homomorphisms 281

hom< > 281

18.2 Creation Functions 282

18.2.1 Creation of Structures 282

IntegerRing() 282
Integers() 282
IntegerRing(Q) 282
RingOfIntegers(Q) 282

18.2.2 Creation of Elements 282

a1a2...ar 282
0xa1a2...ar 282
elt< > 282
elt< > 283
! 283
! 283
One Identity 283
Zero Representative 283

18.2.3 Printing of Elements 283

18.2.4 Element Conversions 284

FactorizationToInteger(s) 284
FactorisationToInteger(s) 284
Facint(s) 284
IntegerToSequence(n, b) 284
Intseq(n, b) 284
SequenceToInteger(s, b) 284
Seqint(s, b) 284
IntegerToString(n) 284
IntegerToString(n, b) 285
Eltseq(n) 285
Denominator(n) 285

18.3 Structure Operations 285

18.3.1 Related Structures 285

Category Parent PrimeRing Center 285
AdditiveGroup(Z) 285
MultiplicativeGroup(Z) 285
UnitGroup(Z) 285
ClassGroup(Z) 285
FieldOfFractions(Z) 285
sub< > 285

18.3.2 Numerical Invariants 286

Characteristic 286
Signature(Z) 286

18.3.3 Ring Predicates and Booleans . . . 286

IsCommutative IsUnitary 286
IsFinite IsOrdered 286

IsField IsEuclideanDomain 286
IsPID IsUFD 286
IsDivisionRing IsEuclideanRing 286
IsPrincipalIdealRing IsDomain 286
eq ne 286

18.4 Element Operations 286

18.4.1 Arithmetic Operations 286

+ - 287
+ - * ^ / 287
+:= -:= *:= /:= ^:= 287
div 287
mod 287
ExactQuotient(n, d) 287
div:= mod:= 287

18.4.2 Bit Operations 287

ShiftLeft(n, b) 287
ShiftRight(n, b) 287
ModByPowerOf2(n, b) 287

18.4.3 Equality and Membership 287

eq ne 287
in notin 287

18.4.4 Parent and Category 287

Parent Category 287

18.4.5 Predicates on Ring Elements . . . 288

IsEven(n) 288
IsOdd(n) 288
IsDivisibleBy(n, d) 288
IsSquare(n) 288
IsSquarefree(n) 288
IsPower(n) 288
IsPower(n, k) 288
IsPrime(n) 288
IsIntegral(n) 289
IsSinglePrecision(n) 289
IsZero IsOne IsMinusOne 289
IsNilpotent IsIdempotent 289
IsUnit IsZeroDivisor IsRegular 289
IsIrreducible IsPrime 289

18.4.6 Comparison of Ring Elements . . . 289

gt ge lt le 289
Maximum Maximum 289
Minimum Minimum 289

18.4.7 Conjugates, Norm and Trace . . . 289

ComplexConjugate(n) 289
Conjugate(n) 289
Norm(n) 289
EuclideanNorm(n) 289
Trace(n) 289
MinimalPolynomial(n) 289

18.4.8 Other Elementary Functions . . . 290

278 BASIC RINGS Part IV

AbsoluteValue(n) 290
Abs(n) 290
Ilog2(n) 290
Ilog(b, n) 290
Quotrem(m, n) 290
Valuation(x, p) 290
Iroot(a, n) 290
Sign(n) 290
Ceiling(n) 290
Floor(n) 290
Round(n) 290
Truncate(n) 290
SquarefreeFactorization(n) 291
Isqrt(n) 291

18.5 Random Numbers 291

Random(a, b) 291
Random(b) 291
RandomBits(n) 291
RandomPrime(n: parameter) 291
RandomPrime(n, a, b, x: parameter) 291
RandomConsecutiveBits(n, a, b) 292

18.6 Common Divisors and Common
Multiples 292

GreatestCommonDivisor(m, n) 292
Gcd(m, n) 292
GCD(m, n) 292
GreatestCommonDivisor(s) 292
Gcd(s) 292
GCD(s) 292
ExtendedGreatestCommonDivisor(m, n) 292
Xgcd(m, n) 292
XGCD(m, n) 292
ExtendedGreatestCommonDivisor(s) 293
Xgcd(s) 293
XGCD(s) 293
LeastCommonMultiple(m, n) 293
Lcm(m, n) 293
LCM(m, n) 293
LeastCommonMultiple(s) 293
Lcm(s) 293
LCM(s) 293

18.7 Arithmetic Functions 293

CarmichaelLambda(n) 293
CarmichaelLambda(Q) 293
CarmichaelLambda(Q) 293
DickmanRho(u) 293
FactoredCarmichaelLambda(n) 293
FactoredCarmichaelLambda(Q) 293
FactoredCarmichaelLambda(Q) 293
DivisorSigma(i, n) 293
DivisorSigma(i, Q) 293
NumberOfDivisors(n) 294
NumberOfDivisors(Q) 294
SumOfDivisors(n) 294
SumOfDivisors(Q) 294

EulerPhi(n) 294
EulerPhi(Q) 294
EulerPhi(Q) 294
FactoredEulerPhi(n) 294
FactoredEulerPhi(Q) 294
FactoredEulerPhi(Q) 294
EulerPhiInverse(m) 294
EulerPhiInverse(Q) 294
FactoredEulerPhiInverse(n) 294
FactoredEulerPhiInverse(Q) 294
LegendreSymbol(n, m) 294
JacobiSymbol(n, m) 295
KroneckerSymbol(n, m) 295
MoebiusMu(n) 295
MoebiusMu(Q) 295

18.8 Combinatorial Functions . . . 296

Binomial(n, r) 296
Multinomial(n, [a1, ... an]) 296
Factorial(n) 296
IsFactorial(n) 296
Partitions(n) 296
NumberOfPartitions(n) 296
RestrictedPartitions(n, Q) 296
RestrictedPartitions(n, k, M) 296
StirlingFirst(n, k) 296
StirlingSecond(n, k) 296
Bell(n) 296
Fibonacci(n) 297
Lucas(n) 297
Generalized

FibonacciNumber(g0, g1, n) 297

18.9 Primes and Primality Testing . 297

18.9.1 Primality 297

IsPrime(n) 298
IsPrime(n: parameter) 298
SetVerbose("ECPP", v) 298
PrimalityCertificate(n) 298
IsPrimeCertificate(cert) 298
IsProbablePrime(n: parameter) 299
IsProbablyPrime(n: parameter) 299
IsPrimePower(n) 299

18.9.2 Other Functions Relating to
Primes 300

NextPrime(n) 300
NextPrime(n: parameter) 300
PreviousPrime(n) 300
PreviousPrime(n: parameter) 300
PrimesUpTo(B) 300
PrimesInInterval(b, e) 300
NthPrime(n) 300
RandomPrime(n: parameter) 301
RandomPrime(n, a, b, x: parameter) 301
PrimeBasis(n) 301
PrimeDivisors(n) 301

18.10 Factorization 301

Ch. 18 RING OF INTEGERS 279

18.10.1 General Factorization 302

SetVerbose("Factorization", v) 302
Factorization(n) 303
Factorisation(n) 303
Factorization(n: -) 303
Factorisation(n: -) 303

18.10.2 Storing Potential Factors 304

StoreFactor(n) 304
StoreFactor(S) 304
GetStoredFactors() 304

18.10.3 Specific Factorization Algorithms 304

SetVerbose("Cunningham", b) 305
SetVerbose("ECM", b) 305
SetVerbose("MPQS", b) 305
Cunningham(b, k, c) 305
AssertAttribute(RngInt,

"CunninghamStorageLimit", l) 305
TrialDivision(n) 305
TrialDivision(n, B) 305
PollardRho(n) 306
PollardRho(n, c, s, k) 306
pMinus1(n, B1) 306
pPlus1(n, B1) 306
SQUFOF(n) 307
SQUFOF(n, k) 307
ECM(n, B1) 307
ECMSteps(n, L, U) 308
MPQS(n) 308
MPQS(n, D) 308

18.10.4 Factorization Related Functions . 308

ECMOrder(p, s) 308
ECMFactoredOrder(p, s) 308
PrimeBasis(n) 308
PrimeDivisors(n) 308
Divisors(n) 309
Divisors(f) 309
CoprimeBasis(S) 309
PartialFactorization(S) 309

18.11 Factorization Sequences . . 310

18.11.1 Creation and Conversion 310

Facint(f) 310
FactorizationToInteger(f) 310
SeqFact(s) 310
SequenceToFactorization(s) 310
Eltseq(f) 310
ElementToSequence(f) 310

18.11.2 Arithmetic 311

+ - * / ^ 311

18.11.3 Divisors 311

Lcm Gcd 311
SquarefreeFactorization 311
MoebiusMu Divisors PrimeDivisors 311
NumberOfDivisors SumOfDivisors 311

18.11.4 Predicates 311

IsOne IsOdd IsEven IsUnit 311
IsPrime IsPrimePower IsSquare 311
IsSquarefree 311

18.12 Modular Arithmetic 311

18.12.1 Arithmetic Operations 311

Modexp(n, k, m) 311
mod 311
Modinv(n, m) 312
InverseMod(n, m) 312
Modsqrt(n, m) 312
Modorder(n, m) 312
IsPrimitive(n, m) 312
PrimitiveRoot(m) 312

18.12.2 The Solution of Modular Equations312

Solution(a, b, m) 312
ChineseRemainderTheorem(X, N) 312
CRT(X, N) 312
Solution(A, B, N) 313
NormEquation(d, m) 313
NormEquation(d, m: -) 313

18.13 Infinities 313

18.13.1 Creation 314

Infinity() 314
MinusInfinity() 314

18.13.2 Arithmetic 314

- 314
+ - * / ^ 314

18.13.3 Comparison 314

eq ne lt le gt ge 314
Maximum Minimum 314

18.13.4 Miscellaneous 314

Sign(x) 314
Abs(x) 314
AbsoluteValue(x) 314
Round(x) 314
Floor(x) 314
Ceiling(x) 314
IsFinite(x) 314

18.14 Advanced Factorization
Techniques: The Number Field
Sieve 315

18.14.1 The Magma Number Field Sieve
Implementation 315

SetVerbose("NFS", v) 315

18.14.2 Naive NFS 316

NumberFieldSieve(n, F, m1, m2) 316
NFS(n, F, m1, m2) 316

18.14.3 Factoring with NFS Processes . . 316

NFSProcess(n, F, m1, m2) 316
NumberOfRelationsRequired(P) 319
FindRelations(P) 319

280 BASIC RINGS Part IV

CreateCycleFile(P) 320
CycleCount(P) 320
CycleCount(fn) 320
CreateCharacterFile(P) 320
CreateCharacterFile(P, cc) 320
FindDependencies(P) 320
Factor(P) 320
Factor(P,k) 320

18.14.4 Data files 321

RemoveFiles(P) 321
MergeFiles(S, fn) 321

18.14.5 Distributing NFS Factorizations . 322

18.14.6 Magma and CWI NFS Interoper-
ability 323

FindRelationsInCWIFormat(P) 323
ConvertToCWIFormat(P, pb) 323

18.14.7 Tools for Finding a Suitable Polyno-
mial 324

BaseMPolynomial(n, m, d) 324
MurphyAlphaApproximation(F, b) 324
OptimalSkewness(F) 324
BestTranslation(F, m, a) 326
PolynomialSieve(F, m, J0, J1,

MaxAlpha) 326

18.15 Bibliography 326

Chapter 18

RING OF INTEGERS

18.1 Introduction

This Chapter describes the operators and functions for working with the ring of rational
integers Z.

Integers are the most commonly used objects in Magma. They can be created by
just typing in the literal (decimal) digits. Integers thus created are elements of the ring
of integers which is automatically created when Magma is started up. There is just one
single object ‘integer ring’ around, but references to it (new ‘names’ for it) can be created
using the IntegerRing function.

18.1.1 Representation
Since large integers occur so frequently, the first requirement for a computer algebra system
is to support fast arithmetic for integers of arbitrary size. Indeed, within the bounds set
by the available memory, it is possible to operate reasonably efficiently with integers of
any number of decimal digits.

Although it is well possible to use the integer facilities without being aware of the
internal representation of (large) integers, it is sometimes useful to know how integers
are stored. The most important fact is that integers smaller than 230 = 1073741824 in
absolute value are ‘single precision’, and in many circumstances such ‘small integers’ allow
considerably faster arithmetic (they are treated slightly differently internally and escape
the overhead of memory management used to deal with multi-precision integers).

18.1.2 Coercion
Integers will be automatically coerced into almost every unitary ring R using the identi-
fication of 1 and 1R. This means that integer arguments are allowed for almost any ring
element function, and that it is not necessary to convert an integer before applying binary
operators (such as +) on a combination of arguments consisting of an integer and another
ring element.

For more on coercion we refer to Chapter 17.

18.1.3 Homomorphisms
Ring homomorphisms are required to be unitary. Therefore, to specify a homomorphism
with the integers as its domain requires merely the specification of the codomain.
hom< Z -> R | >

The natural homomorphism from Z to the ring R.

282 BASIC RINGS Part IV

Example H18E1

> h := hom< Integers() -> MatrixRing(RealField(12), 3) | >;

> h(2)^-1;

[0.5 0 0]

[0 0.5 0]

[0 0 0.5]

18.2 Creation Functions

18.2.1 Creation of Structures
The ring of integers is automatically created when Magma is first loaded. The ring may be
formally created (and, if desired, assigned to a variable) using the function IntegerRing().
Subrings of Z are always ideals; see the section on ideals for details.

IntegerRing()

Integers()

IntegerRing(Q)

RingOfIntegers(Q)

Create the ring of integers Z. Analogous to the creation of the ring of integers of
any number field, there is a version of IntegerRing that creates Z as the ring of
integers of Q.

18.2.2 Creation of Elements
Since the ring of integers is present when Magma is started up, integers typed into Magma
without any explicit context will be regarded as elements of the ring of integers. Integers
can be specified using both decimal and hexadecimal notation.

a1a2...ar

Given a succession of decimal digits a1, . . . , ar, create the corresponding integer.
Leading zeros will be ignored.

0xa1a2...ar

Given a succession of hexadecimal digits a1, . . . , ar, create the corresponding integer.
Leading zeros will be ignored.

elt< Z | a1a2...ar >

Given a succession of decimal digits a1, . . . , ar, create the corresponding integer as
an element of Z.

Ch. 18 RING OF INTEGERS 283

elt< Z | 0xa1a2...ar >

Given a succession of hexadecimal digits a1, . . . , ar, create the corresponding integer
as an element of Z.

Z ! a

Z ! [a]

Coerce the ring element a into the ring of integers Z. The element a is allowed to
be an element of the ring of integers modulo m (in which case the result r satisfies
0 ≤ r < m), or an element of a finite field (in which case the result r satisfies
0 ≤ r < p if a is in the prime field, of characteristic p, and an error otherwise), or an
element of the integers, rationals, a quadratic field, a cyclotomic field or a number
field (in which cases the result is the obvious integer if a is integral and an error
otherwise).

Example H18E2

> Z := IntegerRing();

> n := 1234567890;

> n in Z;

true

> m := elt< Z | 1234567890 >;

> m eq n;

true

> l := Z ! elt< QuadraticField(3) | 1234567890, 0>;

> l;

1234567890

> k := elt< Z | 0x499602D2 >;

1234567890

One(Z) Identity(Z)

Zero(Z) Representative(Z)

These generic functions (cf. Chapter 17) create 1, 1, 0, and 0 respectively, in the
integer ring Z.

18.2.3 Printing of Elements
Magma supports the printing of integers in both decimal and hexadecimal form. The
default print method is to print integers in base 10; base 16 printing is performed using
the Hex print level.

284 BASIC RINGS Part IV

Example H18E3

> n := 1234567890;

> n;

1234567890

> n:Hex;

0x499602D2

18.2.4 Element Conversions

FactorizationToInteger(s)

FactorisationToInteger(s)

Facint(s)

Given a sequence of two-element tuples s = [< p1, k1 >, ..., < pr, kr >] containing
pairs of integers < pi, ki >, 1 ≤ i ≤ r, with ki non-negative, this function returns
the integer pk1

1 · · · pkr
r . It is normally used for converting a factorization sequence to

the corresponding integer.

IntegerToSequence(n, b)

Intseq(n, b)

Given a non-negative integer n and a positive integer b ≥ 2, return the unique base
b representation of n in the form of a sequence Q. That is, if n = a0b

0 +a1b
1 + . . .+

ak−1b
k−1 with 0 ≤ ai < b and ak−1 > 0, then Q = [a0, a1, . . . , ak−1]. (If n = 0, then

Q = [].)

SequenceToInteger(s, b)

Seqint(s, b)

Given a positive integer b ≥ 2 and a sequence Q = [a0, . . . , ak−1] of non-negative
integers such that 0 ≤ ai < b, return the integer n = a0b

0 + a1b
1 + . . .+ ak−1b

k−1.
If Q is the empty sequence, the integer zero is returned. This function performs the
inverse operation of the base b representation.

IntegerToString(n)

Create the string consisting of the decimal digits of the integer n. In the case in
which n is negative the first character will be the minus sign.

Ch. 18 RING OF INTEGERS 285

IntegerToString(n, b)

Create the string consisting of the digits of the integer n in base b. In the case in
which n is negative the first character will be the minus sign. The base b can be
between 2 and 36. For b ≤ 10, the digits are represented numerically. For b > 10,
the digits are represented both numerically and alphabetically, so that, 10 is ‘A’, 11
is ‘B’, et cetera.

Eltseq(n)

The sequence [n] which can be coerced back into Z.

Denominator(n)

The denominator of n, ie. 1.

18.3 Structure Operations

The following generic ring functions are applicable to the ring of integers and its elements.

18.3.1 Related Structures

Category(Z) Parent(Z) PrimeRing(Z) Center(Z)

AdditiveGroup(Z)

Create the abelian group of integers under addition. This returns an infinite (addi-
tive) abelian group A of rank 1 together with a map from A to the ring of integers
Z, sending A.1 to 1.

MultiplicativeGroup(Z)

UnitGroup(Z)

Create the abelian group of invertible integers, that is, an abelian group isomorphic
to the multiplicative subgroup 〈−1〉. This returns an (additive) abelian group A of
order 2 together with a map from A to the ring of integers Z, sending A.1 to −1.

ClassGroup(Z)

The class group of the ring of Z (which is trivial).

FieldOfFractions(Z)

Create the field of fractions Q of the ring of rational integers.

sub< Z | n >

Given Z, the ring of integers or an ideal of it, and an element n of Z, create the ideal
aZ ∩ Z of the ring of integers. Note that this creates an ideal, not just a subring.

286 BASIC RINGS Part IV

18.3.2 Numerical Invariants

Characteristic(Z)

Signature(Z)

The signature of Z as an order of Q, i.e. 1, 0.

18.3.3 Ring Predicates and Booleans

IsCommutative(Z) IsUnitary(Z)

IsFinite(Z) IsOrdered(Z)

IsField(Z) IsEuclideanDomain(Z)

IsPID(Z) IsUFD(Z)

IsDivisionRing(Z) IsEuclideanRing(Z)

IsPrincipalIdealRing(Z) IsDomain(Z)

Z eq R Z ne R

18.4 Element Operations

18.4.1 Arithmetic Operations
Magma includes both the Karatsuba algorithm and the Schönhage-Strassen FFT-based
algorithm for the multiplication of integers ([AHU74, Chap. 7], [vzGG99, Sec. 8.3]). The
crossover point (where the FFT method beats the Karatsuba method) is currently 215 bits
(approx. 10000 decimal digits) on Sun SPARC workstations and 217 bits (approx. 40000
decimal digits) on Digital Alpha workstations. Assembler macros are used for critical
operations and 64-bit operations are used on DEC-Alpha machines.

Magma also contains an asymptotically-fast integer (and polynomial) division algo-
rithm which reduces division to multiplication with a constant scale factor that is in the
practical range. Thus division of integers and polynomials are based on the Karatsuba
and Schönhage-Strassen (FFT) methods when applicable. The crossover point for integer
division (when the new method outperforms the classical method) is currently at the point
of dividing a 212 bit (approx. 1200 decimal digit) integer by a 211 (approx. 600 decimal
digit) integer on Sun SPARC workstations.

Ch. 18 RING OF INTEGERS 287

+ n - n

m + n m - n m * n n ^ k m / n

m +:= n m -:= n m *:= n m /:= n m ^:= k

n div m

The quotient q of the division with remainder n = qm + r, where 0 ≤ r < m or
m < r ≤ 0 (depending on the sign of m), for integers n and m 6= 0.

n mod m

The remainder r of the division with remainder n = qm + r, where 0 ≤ r < m or
m < r ≤ 0 (depending on the sign of m), for integers n and m 6= 0.

ExactQuotient(n, d)

Assuming that the integer n is exactly divisible by the integer d, return the exact
quotient of n by d (as an integer). An error results if d does not divide n exactly.

n div:= m n mod:= m

18.4.2 Bit Operations
The following functions use bit operations on the internal representation, so are in general
quicker than using the usual arithmetic operators.

ShiftLeft(n, b)

Given integers n and b, with b ≥ 0, return n× 2b.

ShiftRight(n, b)

Given integers n and b, with b ≥ 0, return n div 2b.

ModByPowerOf2(n, b)

Given integers n and b, with b ≥ 0, return n mod 2b (so the result is always non-
negative).

18.4.3 Equality and Membership

m eq n m ne n

n in R n notin R

18.4.4 Parent and Category

Parent(n) Category(n)

288 BASIC RINGS Part IV

18.4.5 Predicates on Ring Elements

IsEven(n)

Returns true if the integer n is even, otherwise false.

IsOdd(n)

Returns true if the integer n is odd, otherwise false.

IsDivisibleBy(n, d)

Returns true if and only if the integer n is divisible by the integer d; if true, the
quotient of n by d is also returned.

IsSquare(n)

Returns true if the non-negative integer n is the square of an integer, false other-
wise. If n is a square, its positive square root is also returned.

IsSquarefree(n)

Returns true if the non-zero integer n is not divisible by the square of any prime,
false otherwise.

IsPower(n)

If the integer n > 1 is a power n = bk of an integer b, with k > 1, this function
returns true, the minimal positive b and its associated k; if it is not such integer
power the function returns false.

IsPower(n, k)

If the integer n > 1 is k-th power, with k > 1, of some integer b, so that n = bk, this
function returns true, and b; if it is not a k-th integer power the function returns
false.

IsPrime(n)

Proof BoolElt Default : true

Returns true if and only if the integer n is a prime. A rigorous primality test which
returns a proven result will be used unless the parameter Proof is false. The reader
is referred to the section 18.9 for a complete description of this function.

Example H18E4

In this example we find some 10-digit primes that are congruent to 3 modulo 4 such that (p−1)/2
is also prime.

> { p : p in [10^10+3..10^10+1000 by 4] |

> IsPrime(p) and IsPrime((p-1) div 2)};
{ 10000000259, 10000000643 }

Ch. 18 RING OF INTEGERS 289

IsIntegral(n)

Returns true if and only if a is integral, which is of course true for every integer n.

IsSinglePrecision(n)

Returns true if n fits in a single word in the internal representation of integers in
Magma, that is, if |n| < 230, false otherwise.

IsZero(n) IsOne(n) IsMinusOne(n)

IsNilpotent(n) IsIdempotent(n)

IsUnit(n) IsZeroDivisor(n) IsRegular(n)

IsIrreducible(n) IsPrime(n)

18.4.6 Comparison of Ring Elements

m gt n m ge n m lt n m le n

Maximum(m, n) Maximum(Q)

Minimum(m, n) Minimum(Q)

18.4.7 Conjugates, Norm and Trace

ComplexConjugate(n)

The complex conjugate of n, which will be the integer n itself.

Conjugate(n)

The conjugate of n, which will be the integer n itself.

Norm(n)

The norm in Q of n, which will be the integer n itself.

EuclideanNorm(n)

The Euclidean norm (length) of n, which will equal the absolute value of n.

Trace(n)

The trace (in Q) of n, which will be the integer n itself.

MinimalPolynomial(n)

Returns the minimal polynomial of the integer n, which is the monic linear polyno-
mial with constant coefficient n in a univariate polynomial ring R over the integers.

290 BASIC RINGS Part IV

18.4.8 Other Elementary Functions

AbsoluteValue(n)

Abs(n)

Absolute value of the integer n.

Ilog2(n)

The integral part of the logarithm to the base two of the positive integer n.

Ilog(b, n)

The integral part of the logarithm to the base b of the positive integer n i.e., the
largest integer k such that bk ≤ n. The integer b must be greater than or equal to
two.

Quotrem(m, n)

Returns both the quotient q and remainder r obtained upon dividing the integer m
by the integer n, that is, m = q · n + r, where 0 ≤ r < n if n > 0 and n < r ≤ 0 if
n < 0.

Valuation(x, p)

The valuation of the integer x at the prime p. This is the largest integer v for which
pv divides x. If x = 0 then v = ∞. The optional second return value is the integer
u such that x = pvu.

Iroot(a, n)

Given a positive integer a, return the integer b = b n
√
ac, i.e. the integral part of the

n-th root of a. To obtain the actual root (as a real number), a must e coerced into
a real field and the function Root applied.

Sign(n)

Returns −1, 0 or 1 depending upon whether the integer n is negative, zero or
positive, respectively.

Ceiling(n)

The ceiling of the integer n, that is, n itself.

Floor(n)

The floor of the integer n, that is, n itself.

Round(n)

This function rounds the integer n to itself.

Truncate(n)

This function returns the integer truncation of the integer n, that is, n itself.

Ch. 18 RING OF INTEGERS 291

SquarefreeFactorization(n)

Given a non-negative integer n, return a squarefree integer x as well as a positive
integer y, such that n = xy2.

Isqrt(n)

Given a positive integer n, return the integer b√nc, i.e., the integral part of the
square root of the integer n.

18.5 Random Numbers
Pseudo-random integers in Magma are generated using the Monster random number

generator of G. Marsaglia [Mar00]. The period of this generator is 229430−227382 (approx-
imately 108859), and the generator passes all of the stringent tests in Marsaglia’s Diehard
test suite [Mar95]. Throughout the following text, the word ‘random’ is used to mean
‘pseudo-random’.

Random(a, b)

A random integer lying in the interval [a, b], where a ≤ b.

Random(b)

A random integer lying in the interval [0, b], where b is a non-negative integer. Be-
cause of the good properties of the underlying Monster generator, calling Random(1)
is a good safe way of producing a sequence of random bits.

RandomBits(n)

A random integer m such that 0 ≤ m < 2n, where n is a small non-negative integer.
Thus, m has n random bits with a probability of 1/2 for each bit. The function
always returns 0 when n = 0.

RandomPrime(n: parameter)

Proof BoolElt Default : true

A random prime integer m such that 0 < m < 2n, where n is a small non-negative
integer. The function always returns 0 for n = 0 or n = 1. A rigorous method will
be used to check primality, unless m > 34 · 1013 and the optional parameter Proof
is set to Proof := false, in which case the result indicates that m is a probable
prime (of order 20).

RandomPrime(n, a, b, x: parameter)

Proof BoolElt Default : true

Tries up to x iterations to find a random prime integer m congruent to a modulo b
such that 0 < m < 2n. If successful, the function returns true and the integer m,
otherwise false. The integer n must be larger than 0, a must lie between 0 and b− 1
and b must be larger than 0. A rigorous method will be used to establish primality,
unless m > 34 · 1013 and the optional parameter Proof is set to Proof := false,
in which case the result indicates that m is a probable prime (of order 20).

292 BASIC RINGS Part IV

RandomConsecutiveBits(n, a, b)

A integer m such that 0 ≤ m < 2n, and the binary expansion of n consists of
consecutive strings of zeros or ones each of random length in the range [a . . . b].

18.6 Common Divisors and Common Multiples

This section deals with computing greatest common divisors and related computations.
Within the classical range, Magma uses the fast classical Accelerated GCD algorithm

of Kenneth Weber [Web95] to compute the GCD of two integers, and the fast classical
Lehmer extended GCD (‘XGCD’) algorithm [Knu97, pp. 345–348] (which is about 5 times
faster than the Euclidean XGCD algorithm) to compute the extended GCD of two integers.

For larger integers, Magma uses the asymptotically fast Schönhage recursive (“half-
GCD”) algorithm ([Sch71]; see also [Mon92, Sec. 3.8] for the basic idea, applied to poly-
nomials). On a Sun SPARC workstation, the crossover point for the Schönhage GCD
algorithm (where it beats the classical Accelerated GCD algorithm) is 32768 bits (about
10000 decimal digits), while the crossover point for the Schönhage XGCD algorithm (when
it beats the Lehmer XGCD algorithm) is 6000 bits (about 2000 decimal digits).

GreatestCommonDivisor(m, n)

Gcd(m, n)

GCD(m, n)

The greatest common divisor of m and n, normalized to be non-negative. If either
of the inputs is zero, then the result is the absolute value of the other input, while
if m and n are both zero the result is zero.

GreatestCommonDivisor(s)

Gcd(s)

GCD(s)

The GCD of the entries of the sequence s. If all entries of the sequence are zero,
the result is zero. An error results if the sequence is the null sequence.

ExtendedGreatestCommonDivisor(m, n)

Xgcd(m, n)

XGCD(m, n)

The extended GCD ofm and n; returns integers g, x and y such that g is the greatest
common divisor of the integers m and n, and g = x ·m+ y · n. If m and n are both
zero, g is zero; otherwise g is always positive. If m and m are both non-zero, the
multipliers x and y are unique.

Ch. 18 RING OF INTEGERS 293

ExtendedGreatestCommonDivisor(s)

Xgcd(s)

XGCD(s)

Given a sequence of integers s = [s1, . . . , sr], return the non-negative integer g and a
sequence X = (x1, . . . , xr) such that g is the greatest common divisor of the integers
si and g =

∑r
i=1 xi · si.

LeastCommonMultiple(m, n)

Lcm(m, n)

LCM(m, n)

The smallest non-negative integer divisible by both m and n. If m or n equals zero,
the result is zero; this ensures that lcm(m,n)gcd(m,n) = m · n.

LeastCommonMultiple(s)

Lcm(s)

LCM(s)

Least common multiple of the sequence of integers s.

18.7 Arithmetic Functions

Each of the functions in this section may take an integer or the factorization of that integer.

CarmichaelLambda(n)

CarmichaelLambda(Q)

CarmichaelLambda(Q)

The Carmichael function λ(n); its value equals the exponent of (Z/nZ)∗.

DickmanRho(u)

Computes ρ(u) where ρ is Dickman’s rho function.

FactoredCarmichaelLambda(n)

FactoredCarmichaelLambda(Q)

FactoredCarmichaelLambda(Q)

The Carmichael function λ(n), returned as a factorization sequence.

DivisorSigma(i, n)

DivisorSigma(i, Q)

The divisor function σi(n) =
∑

d|n d
i for integer n and small non-negative integer i.

294 BASIC RINGS Part IV

NumberOfDivisors(n)

NumberOfDivisors(Q)

The number of divisors of the positive integer n. This is a special case of
DivisorSigma.

SumOfDivisors(n)

SumOfDivisors(Q)

The sum of the divisors of the positive integer n. This is a special case of
DivisorSigma.

EulerPhi(n)

EulerPhi(Q)

EulerPhi(Q)

The Euler totient function φ(n); its value equals the order of (Z/nZ)∗.

FactoredEulerPhi(n)

FactoredEulerPhi(Q)

FactoredEulerPhi(Q)

The Euler totient function φ(n), returned as a factorization sequence.

EulerPhiInverse(m)

EulerPhiInverse(Q)

The inverse of the Euler totient function φ(n); that is, the sorted sequence of all
integers n such that φ(n) = m.

FactoredEulerPhiInverse(n)

FactoredEulerPhiInverse(Q)

The factored inverse of the Euler totient function φ(n); that is, the sorted sequence
of the factorizations of all integers n such that φ(n) = m.

LegendreSymbol(n, m)

The Legendre symbol
(

n
m

)
: for prime m this checks whether or not n is a quadratic

residue modulo m. The function returns 0 if m divides n, −1 if n is not a quadratic
residue, and 1 if n is a quadratic residue modulo m. A fast probabilistic primality
test is performed on m. If m fails the test (and is therefore composite), an error
results; if it passes the test the Jacobi symbol is computed.

Ch. 18 RING OF INTEGERS 295

JacobiSymbol(n, m)

The Jacobi symbol
(

n
m

)
. For odd m > 1 this is defined (but not calculated!) as the

product of the Legendre symbols
(

n
pi

)
, where the product is taken over all primes

pi dividing m including multiplicities. Quadratic reciprocity is used to calculate this
symbol, which has the values −1, 0 or 1.

KroneckerSymbol(n, m)

The Kronecker symbol
(

n
m

)
. This is the extension of the Jacobi symbol to all integers

m, by multiplicativity, and by defining
(

n
2

)
= (−1)(n

2−1)/8 for odd n (and 0 for even

n) and
(

n
−1

)
= ±1 according to the sign of n for n 6= 0 (and 1 for n = 0).

MoebiusMu(n)

MoebiusMu(Q)

The Möbius function µ(n). This is a multiplicative function characterized by µ(1) =
1, µ(p) = −1, and µ(pk) = 0 for k ≥ 2, where p is a prime number.

Example H18E5

A pair of positive integers (m, n) is called amicable if the sum of the proper divisors (that is:
excluding m itself) of m equals n, and vice versa. The following function finds such pairs. Note
that it also finds perfect numbers: amicable pairs of the form (m, m).

> d := func< m | DivisorSigma(1, m)-m >;

> z := func< m | d(d(m)) eq m >;

> for m := 2 to 10000 do

> if z(m) then

> m, d(m);

> end if;

> end for;

6 6

28 28

220 284

284 220

496 496

1184 1210

1210 1184

2620 2924

2924 2620

5020 5564

5564 5020

6232 6368

6368 6232

8128 8128

296 BASIC RINGS Part IV

18.8 Combinatorial Functions

Binomial(n, r)

The binomial coefficient
(
n
r

)
.

Multinomial(n, [a1, ... an])

Given a sequence Q = [r1, . . . , rk] of positive integers such that n = r1 + ... + rk,
return the multinomial coefficient

(
n

r1,...,rk

)
.

Factorial(n)

The factorial n! for positive small integer n.

IsFactorial(n)

Tests if n = k! for some k. If so, return true and k, false otherwise.

Partitions(n)

The unrestricted partitions of the positive integer n. This function returns a se-
quence of integer sequences, each of which is a different sequence of positive integers
(in descending order) adding up to n. The integer n must be small.

NumberOfPartitions(n)

The number of unrestricted partitions of the non-negative integer n. The integer n
must be small.

RestrictedPartitions(n, Q)

The partitions of the positive integer n, restricted to elements of the positive integer
sequence Q.

RestrictedPartitions(n, k, M)

The partitions of the positive integer n into k parts, restricted to elements of the
positive integer sequence Q.

StirlingFirst(n, k)

The Stirling number of the first type, [n
k], where n and k are non-negative integers.

StirlingSecond(n, k)

The Stirling number of the second type, {n
k }, where n and k are non-negative

integers.

Bell(n)

The nth Bell number, giving the number of partitions of a set of size n. (Not to
be confused with NumberOfPartitions(n), which gives the number of partitions of
the integer n.) This is equal to the sum of StirlingSecond(n,k) for k between 0
and n (inclusive).

Ch. 18 RING OF INTEGERS 297

Fibonacci(n)

Given an integer n, this function returns the n-th Fibonacci number Fn, which can
be defined via the recursion F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for all integers
n. Note that n is allowed to be negative, and that F−n = (−1)n+1Fn.

Lucas(n)

Given an integer n, this function returns the n-th Lucas number Ln, which can be
defined via the recursion L0 = 2, L1 = 1 and Ln = Ln−1 + Ln−2 for all integers n.
Note that n is allowed to be negative, and that L−n = (−1)nLn.

GeneralizedFibonacciNumber(g0, g1, n)

The nth member of the generalized Fibonacci sequence defined by G0 = g0, G1 = g1
and Gn = Gn−1 + Gn−2 for all integers n. Note that n is allowed to be negative.
The Fibonacci and Lucas numbers are special cases where (g0, g1) = (0, 1) or (2, 1)
respectively.

18.9 Primes and Primality Testing

Primality testing algorithms enable the user to certify the primality of prime integers.
Proving the primality of very big integers can be time consuming and therefore in some of
the algorithms using primes and factorization of integers the user can speed up the algo-
rithm by explicitly allowing Magma to use probable primes rather than certified primes.

A probable prime is an integer that has failed some compositeness test; if an integer
passes a compositeness test it will be composite, but there is a (small) probability that a
composite number will fail the test and is hence called a probable prime. Each Miller-Rabin
test for instance, has a probability of less than 1/4 of declaring a composite number prob-
ably prime; in practice that means that numbers that fail several such cheap independent
Miller-Rabin compositeness tests will be prime.

Unless specifically asked otherwise, Magma will use rigorous primality proofs.

18.9.1 Primality
If a positive integer n is composite, this can be shown quickly by exhibiting a witness to
this fact. A witness for the compositeness of n is an integer 1 < a < n with the property
that

ar 6≡ 1 mod n and ar2i 6≡ −1 mod n for i = 0, 1, . . . , k − 1

where r odd, and k are such that n − 1 = r · 2k. A witness never falsely claims that n is
composite, because for prime n it must hold that an−1 ≡ 1 mod n and only ±1 are square
roots of 1 modulo prime n. Moreover, it has been shown that a fraction of at least 3/4 of
all a in the range 2 . . . n− 1 will witness the compositeness of n. Thus randomly choosing
a will usually quickly expose compositeness. Unless more than 3/4 of all possibilities for a
are checked though (which in practice will be impossible for reasonable n) the procedure of
checking k bases a at random for being a witness (often referred to as ‘Miller-Rabin’) will
not suffice to prove the primality of n; it does however lend credibility to the claim that n

298 BASIC RINGS Part IV

is most likely prime if among k (say 20) random choices for a no witness for compositeness
has been found. In such cases n is called probably prime of order k, and in some sense the
probability that n is composite is less than 4−k.

A slight adaptation of this compositeness test can be used for primality proofs in a
bounded range. There are no composites smaller than 34 · 1013 for which a witness does
not exist among a = 2, 3, 5, 7, 11, 13, 17 ([Jae93]). Using these values of a for candidate
witnesses it is certain that for any number n less than 34 · 1013 the test will either find a
witness or correctly declare n prime.

But even for large integers it is thus usually easy to identify composites without finding
a factor; to be certain that a large probable prime is truly prime, a primality proving
algorithm is invoked. Magma uses the ECPP (Elliptic Curve Primality Proving) method,
as implemented by François Morain (Ecole Polytechnique and INRIA). The ECPP program
in turn uses the BigNum package developed jointly by INRIA and Digital PRL. This ECPP

method is both fast and rigorous, but for large integers (of say more than 100 decimal digits)
it will be still be much slower than the Miller-Rabin compositeness test. The method is
too involved to be explained here; we refer the reader to the literature ([AM93]).

The IsPrime function invokes ECPP, unless a Boolean flag is used to indicate that only
‘probable primality’ is required. The latter is equivalent to a call to IsProbablePrime.

IsPrime(n)

IsPrime(n: parameter)

Proof BoolElt Default : true

Returns true iff the integer n is prime. A rigorous method will be used, unless
n > 34 · 1013 and the optional parameter Proof is set to Proof := false, in which
case the result indicates that n is a probable prime (a strong pseudoprime to 20
bases).

SetVerbose("ECPP", v)

Sets the verbose level for output when the ECPP algorithm is used in the above
primality tests. The legal values are true, false, 0, 1 and 2 (false and true are
the same as 0 and 1 respectively). Level 1 outputs only basic information about the
times for the top-level stages (downrun and uprun). Level 2 outputs full information
about every step : this level is very verbose!

PrimalityCertificate(n)

IsPrimeCertificate(cert)

ShowCertificate BoolElt Default : true

Trust RngIntElt Default : 0
PrimalityCertificate is a variant on IsPrime which uses ECPP and outputs a
certificate of primality at the conclusion. If the number n is actually proven to be
composite or the test fails, then a runtime error occurs. The certificate is a Magma
list with data in the format described in [AM93].

Ch. 18 RING OF INTEGERS 299

To verify that a given number is prime from its primality certificate, the func-
tion IsPrimeCertificate is used. By default, this outputs only the result of the
verification : true or false. If the user wishes to see the stages of the verification,
the parameter ShowCertificate should be set to true. This is rather verbose as
it shows the verification of primality of all small factors that need to be shown to
be prime at each substage of the algorithm. It is usually more convenient to set
the parameter Trust to a positive integer N which means that asserted primes less
than N are not checked. This slightly reduces the time for the verification, but more
importantly, it greatly reduces the output of ShowCertificate.

IsProbablePrime(n: parameter)

IsProbablyPrime(n: parameter)

Bases RngIntElt Default : 20
Returns true if and only if the integer n is a probable prime. More precisely, the
function returns true if and only if either n is prime for n < 34 · 1013, or n is a
strong pseudoprime for 20 random bases b with 1 < b < n. By setting the optional
parameter Bases to some value B, the number of random bases used is B instead
of 20.

IsPrimePower(n)

Returns true if and only if the integer n is a prime power; that is, if n equals pk for
some prime p and exponent k ≥ 1. If this is the case, the prime p and the exponent
k are also returned, Note that the primality of p is rigorously proven.

Example H18E6

This piece of code uses 5 Miller-Rabin tests to find the next probable repunit-prime (consisting
of all 1’s as decimal digits), using the fact that primes of this form consist of a prime number of
digits:

> NextPPRepunit := function(nn)

> n := nn;

> repeat

> n := NextPrime(n);

> until IsProbablePrime((10^n-1) div 9 : Bases := 5);

> return n;

> end function;

The first few cases are easy:

> NextPPRepunit(1);

2

> NextPPRepunit(2);

19

> NextPPRepunit(19);

23

> NextPPRepunit(23);

300 BASIC RINGS Part IV

317

So we found a 317 digit prime (although we should check genuine primality, using IsPrime)! We
leave it to the reader to find the next (it has more than 1000 decimal digits).

18.9.2 Other Functions Relating to Primes
The functions NextPrime and PreviousPrime can be used to find primes in the neigh-
bourhood of a given integer. After sieving out only multiples of very small primes, the
remaining integers are tested for primality in order. Again, a rigorous method is used
unless the user flags that probable primes suffice.

The PrimeDivisors function is different from all other functions in this section since
it requires the factorization of its argument.

NextPrime(n)

NextPrime(n: parameter)

Proof BoolElt Default : true

The least prime number greater than n, where n is a non-negative integer. The
primality is proved. The optional boolean parameter ‘Proof’ (Proof := true by
default) can be set to Proof := false, to indicate that the next probable prime
(of order 20) may be returned.

PreviousPrime(n)

PreviousPrime(n: parameter)

Proof BoolElt Default : true

The greatest prime number less than n, where n ≥ 3 is an integer. The primality is
proved. The optional boolean parameter ‘Proof’ (Proof := true by default) can
be set to Proof := false, to indicate that the previous probable prime (of order
20) may be returned.

PrimesUpTo(B)

This function lists the primes up to (and including) the (positive) bound B. The
algorithm is not super-optimised, but is reasonable.

PrimesInInterval(b, e)

This function lists the primes in the interval from b to e, including the endpoints.
The algorithm is not very optimised.

NthPrime(n)

Given a number n, this function returns the nth prime. This is implemented for
primes up to 1010.

Ch. 18 RING OF INTEGERS 301

RandomPrime(n: parameter)

Proof BoolElt Default : true

A random prime integer m such that 0 < m < 2n, where n is a small non-negative
integer. The function always returns 0 for n = 0 or n = 1. A rigorous method will
be used to check primality, unless m > 34 · 1013 and the optional parameter ‘Proof’
is set to Proof := false, in which case the result indicates that m is a probable
prime (of order 20).

RandomPrime(n, a, b, x: parameter)

Proof BoolElt Default : true

Tries up to x iterations to find a random prime integer m congruent to a modulo
b such that 0 < m < 2n. Returns true, m if found, or false if not found. n must
be larger than 0. a must be between 0 and b − 1 and b must be larger than 0. A
rigorous method will be used to check primality, unlessm > 34·1013 and the optional
parameter ‘Proof’ is set to Proof := false, in which case the result indicates that
m is a probable prime (of order 20).

PrimeBasis(n)

PrimeDivisors(n)

A sequence containing the distinct prime divisors of the positive integer |n|.

18.10 Factorization

This section contains a description of most of the machinery provided in Magma for the
factorization of integers. An account of the Number Field Sieve is deferred until later in
the chapter.

In the first subsection the general-purpose Factorization function is described. It
employs a combination of methods in an attempt to find the complete prime factorization
of a given integer. Some control is possible over each of the methods, but in general default
choices for the parameters would give good results for a wide range of arguments.

In the second subsection we describe functions that enable access to each of the fac-
torization methods available in Magma. The user has control over parameters for these
methods.

Factorization functions in Magma return a factorization sequence. This is a sequence
of two-element tuples [< p1, k1 >, . . . , < pr, kr >], with p1 < p2 < · · · < pr distinct prime
numbers and ki positive, which is used to represent integers in factored form: n =

∏r
i=1 p

ki
i .

Although such sequences are printed like ordinary sequences, they form a separate category
RngIntEltFact. Operations on such factorization sequences are described in the next
section.

302 BASIC RINGS Part IV

18.10.1 General Factorization
The general Factorization function is designed to give close to optimal performance for
the factorization of integers that may be encountered in the course of daily computations.
The strategy employed is as follows (the next subsection gives a more detailed description
of the individual methods). First of all a compositeness test is used to ensure that the
argument is composite; if not the primality proving algorithm is invoked (unless a flag is
set to avoid this — see below). See the previous section for compositeness testing and
primality proving. This operation is repeated for any non-trivial factor (and cofactor)
found along the way. Before any of the general factorization techniques is employed, it is
checked whether |n| is of the special form bk±1, in which case an intelligent database look-
up is used which is likely to be successful if b and k are not too large. This is equivalent
to the Cunningham function on b, k,±1, described in the next subsection. In the first true
stage of factorization trial division is used to find powers of 2 and other small primes (by
default up to 10000). After this it is checked whether the remaining composite number
is the power of a positive integer; if so the appropriate root is used henceforth. After
this Pollard’s ρ method is applied (using 8191 iterations by default). The bound on trial
division factors and the number of iterations for ρ can be set by the optional parameters
TrialDivisionLimit and PollardRhoLimit. It is possible, from this point on, that several
composite factors still need factorization. The description below applies to each of these.

The final two algorithms deployed are usually indicated by ECM (for Elliptic Curve
Method) and MPQS (for Multiple Polynomial Quadratic Sieve). By default, ECM (which is
likely to find ‘smaller’ factors if they exist) is used with parameters that depend on the size
of the remaining (composite) factors. After that, if a composite factor of at least 25 digits
remains, MPQS is used; it is the best method available for factoring integers of more than
about 40 decimal digits especially for products of two primes of roughly equal size. If the
remaining composite is smaller than 25 digits, ECM is again invoked, now in an indefinite
loop until a factor is found. The latter will also occur if the user, via a flag MPQSLimit
indicates that MPQS should not be applied to numbers of the given size, and provided the
user has not limited the number of ECM trials by setting the ECMLimit. Thus, unless both
MPQSLimit and ECMLimit are set as optional parameters by the users, the algorithm will
continue until the complete factorization has been completed.

Besides the limiting parameters just mentioned it also possible to avoid the use of
primality proofs and receive probable primes, with a flag similar to that used on IsPrime;
see the previous section.

A verbose flag can be set to obtain informative printing on progress in the various
stages of factorization. Specific flags for ECM and MPQS may be used as well; they are
described in the next subsection.

SetVerbose("Factorization", v)

(Procedure.) Set the verbose printing level for all of the factorization algorithms to
be v. Currently the legal values for v are true, false, 0 or 1 (false is the same as
0, and true is the same as 1). If the level is 1, information is printed at each stage
of the algorithm as a number is factored.

Ch. 18 RING OF INTEGERS 303

Factorization(n)

Factorisation(n)

Factorization(n: parameters)

Factorisation(n: parameters)

A combination of algorithms (Cunningham, trial division, SQUFOF, Pollard ρ, ECM

and MPQS) is used to attempt to find the complete factorization of |n|, where n is a
non-zero integer. A factorization sequence is returned, representing the completely
factored part of |n| (which is usually all of |n|). The second return value is 1 or
−1, reflecting the sign of n. If the factorization could not be completed, a third
sequence is returned, containing composite factors that could not be decomposed
with the given values of the parameters; this can only happen if both ECMLimit and
MPQSLimit have been set. (Note that the third variable will remain unassigned if
the full factorization is found.)

When a very large prime (more than 200 decimal digits say), appears in the
factorization, proving its primality may dominate the running time.

There are 6 optional parameters.
Proof BoolElt Default : true

Bases RngIntElt Default : 20
The parameter Proof (Proof := true by default) can be set to false to indicate that
the first sequence may contain probable primes (see also the previous section), in
which case the parameter Bases indicates the number of tests used by Miller-Rabin
(Bases := 20 by default).

TrialDivisionLimit RngIntElt Default : 10000
The parameter TrialDivisionLimit can be used to specify an upper bound for the
primes used in the trial division stage (default TrialDivisionLimit := 10000).

SQUFOFLimit RngIntElt Default : 24
The parameter SQUFOFLimit can be used specify the maximum number of decimal
digits for an integer to which SQUFOF should be applied; this is Shank’s square form
factorization method (default SQUFOFLimit := 24).

PollardRhoLimit RngIntElt Default : 8191
The parameter PollardRhoLimit can be used to specify an upper bound on the
number of iterations in the ρ method (default PollardRhoLimit := 8191).

ECMLimit RngIntElt Default :

This optional parameter can be used to limit the number of curves used by the ECM

part of the factorization attempt. Setting ECMLimit := 0 prevents the use of ECM.
The default value depends on the size of the input, and ranges from 2 for n with less
than 37 digits to around 500 for n with 80 digits. The smoothness is incremented in
each step to grow by default from 500 to 600 (for 37 digits and less), and from 500
to about 10000 for n having 80 digits. For the indefinite case of ECM (which applies

304 BASIC RINGS Part IV

when MPQS is disallowed) the initial smoothness is 500, the number of curves is
infinite and the smoothness is incremented by 100 in each step.

MPQSLimit RngIntElt Default : ∞
The parameter MPQSLimit can be used specify the maximum number of decimal
digits for an integer to which MPQS should still be applied; MPQS will not be invoked
on integers having less than (or sometimes equal) 25 decimal digits. Setting the
parameter to anything less than 25 will therefore prevent MPQS from being used.
Unless ECMLimit has been set, this will imply that ECM will be applied until the
full factorization has been obtained.

Note that progress can be monitored by use of Verbose("Factorization",
true).

18.10.2 Storing Potential Factors
As of V2.14 (October 2007), Magma now internally stores a list of factors found by
the ECM and MPQS algorithms. Subsequently, when either of those algorithms are to
be invoked by the Factorization function, the integers in the list are first tried to see
whether factors can be easily found. One may also give prime factors to Magma to store
in this list via the following procedure.

StoreFactor(n)

StoreFactor(S)

(Procedure.) Store the single integer n or the integers in the set/sequence S in the
list of factors to be tried by the Factorization function. Each integer must be a
positive prime.

GetStoredFactors()

Return a sequence containing the currently stored integers.

18.10.3 Specific Factorization Algorithms
In this subsection we discuss how various factorization algorithms can be accessed individ-
ually. Generally these function should not be used for ordinary factorization (for that use
Factorization discussed in the previous subsection), but they can be used for experimen-
tation, or to build a personal factorization function with control over each of the methods
used.

On some functions a little preprocessing is done to ensure that the argument is compos-
ite, that powers of 2 (and sometimes 3) are taken out and that the integer to be factored
is not the power of an integer.

For each of these functions the Proof (default true) and Bases parameters can be used
to indicate that primality of prime factors need not be rigorously proved, and how many
bases should be used in the compositeness test, as discussed in the subsection on IsPrime.

Ch. 18 RING OF INTEGERS 305

SetVerbose("Cunningham", b)

SetVerbose("ECM", b)

SetVerbose("MPQS", b)

Using this procedure to set either of the verbose flags "Cunningham", "ECM" or
"MPQS", (which are false by default) enables the user to obtain progress information
on attempts to factor integers using the ‘Cunningham’ method, ECM or MPQS.

Cunningham(b, k, c)

This function attempts to factor n = bk + c, where c ∈ {±1} and b and k are not
too big. This function uses R. Brent’s factor algorithm [BtR92], which employs a
combination of table-lookups and attempts at ‘algebraic’ factorization (Aurifeuillian
techniques). An error results if the tables, containing most of the known factors for
numbers of this form (including the ‘Cunningham tables’), cannot be located by the
system. The function will always return the complete prime factorization (in the
form of a factorization sequence) of the number n (but it may take very long before
it completes); it should be pointed out, however, that the primes appearing in the
factorization are only probable primes and a rigorous primality prover has not been
applied.

AssertAttribute(RngInt, "CunninghamStorageLimit", l)

This attribute is used to change the number of Cunningham factorizations which
are stored in Magma. Normally, Magma stores a certain number of factorizations
computed by the Cunningham intrinsic function so that commonly needed factoriza-
tions can be recalled quickly. When the stored list fills up, the factorization least
recently accessed is removed from the list. Setting this attribute to zero ensures
that no storage is done. The default value is 20.

TrialDivision(n)

TrialDivision(n, B)

Proof BoolElt Default : true

Bases RngIntElt Default : 20

The integer n 6= 0 is subjected to trial division by primes up to a certain bound
B (the sign of n is ignored). If only the argument n is given, B is taken to be
10000. The function returns a factorization sequence and a sequence containing an
unfactored composite that remains.

306 BASIC RINGS Part IV

PollardRho(n)

PollardRho(n, c, s, k)

Proof BoolElt Default : true

Bases RngIntElt Default : 20
The ρ-method of Pollard is invoked by this function to find the factorization of an
integer n > 1. For this method a quadratic function x2 + c is iterated k times, with
starting value x = s. If only n is used as argument to the function, the default values
c = 1, s = 1, and k = 8191 are selected. A speed-up to the original algorithm, due to
R.P. Brent [Bre80], is implemented. The function returns two values: a factorization
sequence and a sequence containing unfactored composite factors.

pMinus1(n, B1)

x0 RngIntElt Default :

B2 RngIntElt Default :

k RngIntElt Default :

Given an integer n > 1, an attempt to find a factor is made using Paul Zimmer-
mann’s GMP-ECM implementation of Pollard’s p − 1 method. If a factor f with
1 < f < n is found, then f is returned; otherwise 0 is returned.

The Step 1 bound B1 is given as the second argument B1. By default, the
Step 2 bound B2 is optimally chosen, but may be given with the parameter B2
instead. By default, an optimal number of blocks is chosen for Step 2, but this may
be overridden via the parameter k (see the function ECM). The base x0 is chosen
randomly by default, but may instead be supplied via the parameter x0.

This method will return a prime factor p of n if p − 1 has all its prime factors
less than or equal to the Step 1 bound B1, except for one factor which may be less
than or equal to the Step 2 bound B2.

pPlus1(n, B1)

x0 RngIntElt Default :

B2 RngIntElt Default :

k RngIntElt Default :

Given an integer n > 1, an attempt to find a factor is made using Paul Zimmer-
mann’s GMP-ECM implementation of Williams’ p + 1 method. If a factor f with
1 < f < n is found, then f is returned; otherwise 0 is returned.

The Step 1 bound B1 is given as the second argument B1. By default, the
Step 2 bound B2 is optimally chosen, but may be given with the parameter B2
instead. By default, an optimal number of blocks is chosen for Step 2, but this may
be overridden via the parameter k (see the function ECM). The base x0 is chosen
randomly by default, but may instead be supplied via the parameter x0.

This method may return a prime factor p of n if p + 1 has all its prime factors
less than or equal to the Step 1 bound B1, except for one factor which may be

Ch. 18 RING OF INTEGERS 307

less than or equal to the Step 2 bound B2. A base x0 is used, and not all bases
will succeed: only half of the bases work (namely those where the Jacobi symbol of
x2

0 − 4 and p is -1.) Unfortunately, since p is usually not known in advance, there is
no way to ensure that this holds. However, if the base is chosen randomly, there is
a probability of about 1/2 that it will give a Jacobi symbol of -1 (so that the factor
p would be found assuming that p+1 is smooth enough). A rule of thumb is to run
pPlus1 three times with different random bases.

SQUFOF(n)

SQUFOF(n, k)

Proof BoolElt Default : true

Bases RngIntElt Default : 20
This is a fast implementation of Shanks’s square form factorization method that will
only work for integers n > 1 less than 22b−2, where b is the number of bits in a long
(which is either 32 or 64). The argument k may be used to specify the maximum
number of iterations used to find the square; by default it is 200000. The expected
number of iterations is O(N1/4).

ECM(n, B1)

Sigma RngIntElt Default :

x0 RngIntElt Default :

B2 RngIntElt Default :

k RngIntElt Default : 2
Given an integer n > 1, an attempt is made to find a factor using the GMP-ECM
implementation of the Elliptic Curve Method (ECM). If a factor f with 1 < f < n
is found, then f is returned together with the corresponding successful σ seed;
otherwise 0 is returned.

The Step 1 bound B1 is given as the second argument B1. By default, the Step
2 bound B2 is optimally chosen, but may be given with the parameter B2 instead.

The elliptic curve used is defined by Suyama’s parametrization and is determined
by a parameter σ. By default, σ is chosen randomly with 0 < σ < 232, but an
alternative positive integer may be supplied instead via the parameter Sigma. Let
u = σ2 − 5, v = 4σ and a = (v − u)3(3u + v)/(4u3v) − 2. The starting point used
is (x0 : 1), where by default x0 = u3/v3, but x0 may instead be supplied via the
parameter x0. Finally, the curve used is by2 = x3 +ax2 +x, where b = x3

0 +ax2
0 +x0.

Step 1 uses very little memory, but Step 2 may use a large amount of memory,
especially for large B2, since its efficient algorithms use some large tables. To reduce
the memory usage of Step 2, one may increase the parameter k, which controls the
number of “blocks” used. Multiplying the default value of k by 4 will decrease the
memory usage by a factor of 2. For example, with B2 = 1010 and a 155-digit number
n, Step 2 requires about 96MB with the default k = 2, but only 42MB with k = 8.
Increasing k does, however, slightly increase the time required for Step 2.

308 BASIC RINGS Part IV

ECMSteps(n, L, U)

Given an integer n > 1, an attempt to find a factor of n is made by repeated calls to
ECM. The initial B1 bound is taken to be L, and subsequently B1 is replaced with
B1 + b√B1c at each step. If a factor is found at any point, then this is returned
with the corresponding successful σ seed; otherwise, if B1 becomes greater than the
upper bound U , then 0 is returned.

MPQS(n)

MPQS(n, D)

Proof BoolElt Default : true

Bases RngIntElt Default : 20

This function can be used to drive Arjen Lenstra’s implementation of the multiple
polynomial quadratic sieve MPQS. Given an integer n > 5 · 1024 an attempt is made
to find the prime factorization of n using MPQS. The name of a directory (which
should not yet exist) may be specified as a string D where files used by MPQS

will be stored. By default, the directory indicated by the environment variable
MAGMA QS DIR will be used, and if that has not been set, the directory /tmp. It is
possible to assist the master running the main Magma job by generating relations
on other machines (slaves), starting an auxiliary process on such machine, in the
directory D, by typing magma -q D machine where machine is the name of the
machine. The function returns two values: a factorization sequence and a sequence
containing unfactored composite factors.

18.10.4 Factorization Related Functions

ECMOrder(p, s)

ECMFactoredOrder(p, s)

Suppose p is a prime factor found by the ECM algorithm and such that the σ value
determining the successful curve was s. These functions compute the order of the
corresponding elliptic curve. The first function returns the order as an integer, while
the second function returns the factorization of the order. In general, this order will
have been smooth with respect to the relevant bounds for the ECM algorithm to
have worked, and these functions allow one to examine how small the prime divisors
of the curve order really are.

PrimeBasis(n)

PrimeDivisors(n)

A sequence containing the distinct prime divisors of the positive integer |n|, given
in increasing order.

Ch. 18 RING OF INTEGERS 309

Divisors(n)

Divisors(f)

Returns a sequence containing all divisors of the positive integer, including 1 and
the integer itself, given in increasing order. The argument given must be either the
integer n itself, or a factorization sequence f representing it.

CoprimeBasis(S)

Given a set or sequence S of integers, return a coprime basis of S in the form of
a factorization sequence Q whose integer value is the same as the product of the
elements of S but Q has coprime bases (i.e., the first components of tuples from Q
are coprime).

Example H18E7

In this example we use the Divisors function together with the &+ reduction of sequences to find
the first few perfect numbers, that is, numbers n such that the sum of the divisors less than n
equals n.

> { x : x in [2..1000] | &+Divisors(x) eq 2*x };
{ 6, 28, 496 }
> f := Factorization(496);

> f;

[<2, 4>, <31, 1>]

> Divisors(f);

[1, 2, 4, 8, 16, 31, 62, 124, 248, 496]

PartialFactorization(S)

Given a sequence of non-zero integers S, return, for each integer S[i], two factor-
ization lists Fi and Gi, such that S[i] = Facint(Fi)∗Facint(Gi). All the divisors
in Fi are square factors, and, for any i and j, the divisors in Gi and Gj are either
equal or are pairwise coprime. In other terms, PartialFactorization(S) provides
a partial decomposition of the integers in S in square and coprime factors. The
interesting fact is that this factorization uses only gcd and exact integer division.
This algorithm is due to J.E. Cremona.

Example H18E8

A partial factorization is shown.

> PartialFactorization([1380, 675, 3408, 654]);

[

[

[<2, 2>],

[<115, 1>, <3, 1>]

],

[

310 BASIC RINGS Part IV

[<5, 2>, <3, 2>],

[<3, 1>]

],

[

[<2, 4>],

[<71, 1>, <3, 1>]

],

[

[],

[<218, 1>, <3, 1>]

]

]

18.11 Factorization Sequences
The factorization of integers results in a factorization sequence, consisting of a sequence
of pairs of prime and exponent. It is sometimes convenient to perform operations on such
sequences without converting back to the integers they represent — it would, for example,
be very inefficient to factor the product of two integers that have both been factored
already. In this section we briefly list the operations that are allowed on such factorization
sequences — note that these factorization sequences now have their own special type:
RngIntEltFact. Conversion functions are supplied as well.

18.11.1 Creation and Conversion
Factorization sequence usually arise as the result of the Factorization of an integer,
possibly via functions like FactoredOrder. The functions below allow conversion from
and to ordinary sequences, and the inverse operation to factorization, creating an integer
from a factorization.

Facint(f)

FactorizationToInteger(f)

Create the integer corresponding to the factorization sequence f .

SeqFact(s)

SequenceToFactorization(s)

Given a sequence of tuples, each consisting of pairs of prime integers and positive
integer exponents, create the corresponding factorization sequence. The pairs must
be ordered with strictly increasing primes as first components.

Eltseq(f)

ElementToSequence(f)

Given a factorization sequence f , create the enumerated sequence containing the
same pairs of primes and exponents.

Ch. 18 RING OF INTEGERS 311

18.11.2 Arithmetic
The difference of two factorization sequences is only permitted when the first integer repre-
sented is greater than the second integer represented. An error results from division when
the quotient does not correspond to an integer.

s + t s - t s * t s / t s ^ k

18.11.3 Divisors
The functions listed below can be applied to factorization sequences; their behaviour will
be clear, and all of them are documented elsewhere when the argument is the corresponding
positive integer.

Lcm(s, t) Gcd(s, t) SquarefreeFactorization(f)

MoebiusMu(f) Divisors(f) PrimeDivisors(f)

NumberOfDivisors(f) SumOfDivisors(f)

18.11.4 Predicates
All predicates listed below are applicable both to factorization sequences and to the positive
integers these represent, and have been documented for integer arguments elsewhere.

IsOne(s) IsOdd(s) IsEven(s) IsUnit(s)

IsPrime(s) IsPrimePower(s) IsSquare(s) IsSquarefree(s)

18.12 Modular Arithmetic

In this section we describe some functions that make it possible to perform modular arith-
metic without conversions to residue class rings.

18.12.1 Arithmetic Operations

Modexp(n, k, m)

The modular power nk mod m, where n is an integer, k is an integer and m is an
integer greater than one. If k is negative, n must have an inverse i modulo m, and
the result is then i−k mod m. The result is always an integer r with 0 ≤ r < m.

n mod m

Remainder upon dividing the integer n by the integer m. The result always has the
same sign as m. An error results if m is zero.

312 BASIC RINGS Part IV

Modinv(n, m)

InverseMod(n, m)

Given an integer n and a positive integer m, such that n and m are coprime, return
an inverse u of n modulo m, that is, return an integer 1 ≤ u < m such that
u · n ≡ 1 mod m.

Modsqrt(n, m)

Given an integer n and an integer m ≥ 2, this function returns an integer b such
that 0 ≤ b < m and b2 ≡ n mod m if such b exists; an error results if no such root
exists.

Modorder(n, m)

For integers n and m, m > 1, the function returns the least integer k ≥ 1 such that
nk ≡ 1 mod m, or zero if gcd(n,m) 6= 1.

IsPrimitive(n, m)

Returns true if n is a primitive root for m, false otherwise (0 < n < m).

PrimitiveRoot(m)

Given an integer m > 1, this function returns an integer value defined as follows:
If Z/mZ has a primitive root and the function is successful in finding it, the root
a is returned. If Z/mZ has a primitive root but the algorithm does not succeed in
finding it, or Z/mZ does not possess a primitive root, then zero is returned.

18.12.2 The Solution of Modular Equations
The functions described here can be used if an occasional modular operation is required;
the results are integers again. For more extensive modular arithmetic it is preferable to
convert to residue class ring arithmetic. See section 19.4 for details.

Solution(a, b, m)

If a solution exists to the linear congruence ax ≡ b mod m, then returns x0, k such
that x = x0 + i ∗ k represents the complete set of solutions, where i can be any
integer. Otherwise, returns -1.

ChineseRemainderTheorem(X, N)

CRT(X, N)

Apply the Chinese Remainder Theorem to the integer sequences X and N . The
sequences must have the same length, k say. The function returns the unique integer
x in the range 0 ≤ x < LCM(N [1] · . . . · N [k]) such that x ≡ X[i] mod N [i]. The
elements of N must all be positive integers greater than one. If there is no solution,
then -1 is returned.

Ch. 18 RING OF INTEGERS 313

Solution(A, B, N)

Return a solution x to the system of simultaneous linear congruences defined by
the integer sequences A, B and N . Each of these sequences must have the same
number of terms, k say. The elements of N must all be positive integers greater
than one. The i-th congruence is A[i] ·x ≡ B[i] mod N [i]. The solution x will satisfy
0 ≤ x < LCM(N [1] · . . . ·N [k]). If no solution exists, -1 is returned.

NormEquation(d, m)

NormEquation(d, m: parameters)

Factorization [<RngIntElt, RngIntElt>]

Given a positive integer d and a non-negative integer m, return true and two non-
negative integers x and y, such that x2 + y2d = m, if such a solution exists. If such
a solution does not exists only the value false is returned. If the factorization of m
is known, it may be supplied as the value of the parameter Factorization to speed
up the computation.

Example H18E9

> d := 957440000095744000002277749760;

> m := 5102197760510219776012138128480644;

> time NormEquation(d, m);

true 98 73

Time: 2.990

> time f := Factorization(m);

Time: 4.670

> f;

[<2, 2>, <19, 1>, <67134181059344997052791291164219, 1>]

> time NormEquation(d, m: Factorization := f);

true 98 73

Time: 0.420

18.13 Infinities
Occasionally it is convenient to work with infinite quantities (for example, when working
with valuations or cardinalities). Magma provides two such objects, the positive and
negative infinities. This section describes the Magma facilities for dealing with such
objects.

The infinities are compatible with certain finite quantities: integers, rationals and real
numbers. In contexts where a common universe is needed to contain both finite and
infinite quantities (for example, if creating a sequence of valuations) the extended reals
(type ExtRe) are used. The extended reals are a coproduct-like object that can contain
both infinities and compatible finite objects. When viewed as members of the extended
reals, the elements are of type ExtReElt.

314 BASIC RINGS Part IV

18.13.1 Creation
Certain system intrinsics such as Valuation which normally return an integer may return
an infinite object for appropriate exceptional cases. Two special intrinsics are also provided
to create infinite objects.

Infinity()

The positive infinity object.

MinusInfinity()

The negative infinity object.

18.13.2 Arithmetic
Only basic arithmetic operations are provided for infinite objects. The operations described
below may freely mix infinite and finite quantities, but note that certain forms (such as
∞−∞ or ∞∗ 0) are not well defined and will cause an error.

- x

x + y x - y x * y x / y x ^ n

18.13.3 Comparison
Infinite objects may be compared with themselves and finite quantities.

x eq y x ne y x lt y x le y x gt y x ge y

Maximum(x, y) Minimum(x, y)

18.13.4 Miscellaneous

Sign(x)

Returns 1 if x is the positive infinite object, −1 if x is the negative infinite object.

Abs(x)

AbsoluteValue(x)

Returns the positive infinite object.

Round(x)

Floor(x)

Ceiling(x)

Returns the infinite object x again; these functions are for convenience when dealing
with objects which could be either finite numeric types or infinite objects.

IsFinite(x)

Returns true if x is finite, otherwise false. This is more convenient than checking
the type of x.

Ch. 18 RING OF INTEGERS 315

18.14 Advanced Factorization Techniques: The Number Field
Sieve
Magma provides an experimental implementation of the fastest general purpose factoring
algorithm known: the Number Field Sieve (NFS). The implementation may be used both
as a General Number Field Sieve and a Special Number Field Sieve – the only difference
is in the selection of a suitable polynomial.

18.14.1 The Magma Number Field Sieve Implementation
In order to make use of the Magma NFS, the user should have some knowledge of the
algorithm. The Magma NFS implementation also requires a significant amount of mem-
ory and disk space to be available for the duration of the factorization. For example,
factorization of an 80-digit number may require at least 64 megabytes of RAM and half a
gigabyte of disk space.

Magma’s NFS implementation uses one linear polynomial (the “rational side”) and
one polynomial of higher degree (the “algebraic side”). At the time of writing this is not
a major restriction, since the best methods for selecting polynomials for factorization of
numbers of more than 100 digits involve one linear and one non-linear polynomial. Magma
provides a number of functions to assist in choosing a good algebraic-side polynomial for
the factorization of a particular number, following the ideas of Montgomery and Murphy
in [Mur99].

Magma provides two methods for using the NFS implementation. The first is the
one-step function NFS, which provides a naive NFS factorization attempt using default
algorithm parameters.

The second, more powerful method is to work with an NFS process object, splitting the
algorithm into four stages: Sieving, Auxiliary data, Linear algebra and Final factorization.
This approach allows greater control over the algorithm, as the user may supply their
own algorithm parameter values. It also allows the user to distribute the computationally
intensive sieving and final factorization stages over several machines or processors.

Some functions are included to allow Magma users to co-operate in factorization at-
tempts using CWI tools.

A verbose flag may be set to obtain informative printing on progress in the various
stages of the NFS algorithm.

SetVerbose("NFS", v)

Set the verbose printing level for the NFS algorithms to the integer v. Currently
the legal values for v are 0, 1, 2 and 3.

If the level is 0, no verbose output is produced.
If the level is 1, NFS will produce basic information about its progress, and will

also print information on NFS algorithm parameters.
If the level is 2, NFS will provide more detailed information about progress and

parameters.
If the level is 3, NFS will print out extremely detailed information about progress

and data. This level will only be useful for experts and developers.

316 BASIC RINGS Part IV

18.14.2 Naive NFS
Magma’s Number Field Sieve implementation provides a one-step black-box function NFS.
Here, the user provides the integer n to be factored, a homogeneous bivariate integer
polynomial F and integers m1 and m2 such that F (m1,m2) ≡ 0 mod n. Magma will
attempt to factor n using F , m1 and m2, automatically selecting the other parameters
(see below) for the algorithm.

The automatically chosen parameters are NOT optimal in general, and therefore no
conclusions should be drawn about the speed of the implementation or the algorithm itself
based on the use of this function.

For example, note that the default algebraic factor base size of NFS is chosen to be
rather large to decrease the likelihood of running out of useful relations. This slows the
algorithm considerably, since it increases the size of the matrix to be reduced – but it also
means that the algorithm should succeed in finding a factor unless one chooses a really
bad polynomial.

NumberFieldSieve(n, F, m1, m2)

NFS(n, F, m1, m2)

Performs the factorization of an integer n using the Number Field Sieve with alge-
braic polynomial F , where the integers m1 and m2 satisfy F (m1,m2) ≡ 0 mod n.
Returns a nontrivial factor of n if one is found, or 0 otherwise.

18.14.3 Factoring with NFS Processes
An NFS Process (an object of category NFSProc) encapsulates the data of a Magma NFS
factorization. It contains the number n to be factored, the algebraic polynomial F and the
integersm1 andm2. It also provides access to a number of NFS algorithm parameters (such
as approximate factor base sizes). These parameters are attributes of the NFS process. If
any of the parameters are not set, sensible (but not necessarily optimal) defaults will be
provided by Magma.

The NFS algorithm is divided into four stages:

1. Sieving

2. Auxiliary data gathering

3. Linear algebra

4. Factorization
The stages are described in detail below.
After creating an NFS process for the factorization attempt, the user should proceed

through each of the four stages in the above order.

NFSProcess(n, F, m1, m2)

Given a (composite) integer n, a bivariate homogeneous integer polynomial F , and
nonzero integers m1 and m2 such that F (m1,m2) ≡ 0 mod n, this function creates
an NFS process object for an NFS factorization of n.

Ch. 18 RING OF INTEGERS 317

Example H18E10

The attributes associated with an NFS process are:

> ListAttributes(NFSProc);

AlgebraicError OutputFilename

AlgebraicFBBound RationalError

AlgebraicLargePrimeBound RationalFBBound

CacheSize RationalLargePrimeBound

F m1

Firstb m2

Lastb n

Maximuma

OutputFilename is the base name for NFS-generated data files. These files (and their actual
names) are discussed below.
AlgebraicFBBound is the upper bound for smooth primes in the algebraic-side factor base, and
RationalFBBound, the upper bound for smooth primes in rational-side factor base.
Maximuma bounds the sieve interval for a: NFS will sieve for relations with |a| ≤ Maximuma.
Firstb is the first value of b to sieve on, and Lastb is the last.
AlgebraicLargePrimeBound gives the upper bound for “large” (non-smooth) primes in the
algebraic-side factor base. Similarly, RationalLargePrimeBound is the upper bound for the ratio-
nal side.
AlgebraicError defines an “error” tolerance for logarithm arithmetic on algebraic side. Similarly,
RationalError defines an “error” tolerance for the rational side.
CacheSize is a flag reflecting the computer cache memory size, for optimisation.

18.14.3.1 Attribute Selection
As a guideline for the selection of attributes, we include here a few examples of attributes
that we have determined to be good for the Magma NFS implementation.

Example H18E11

Sample attributes for a 70-digit number:

> n := 5235869680233366295366904510725458053043111241035678897933802235060927;

> R<X,Y> := PolynomialRing(Integers(), 2);

> F := 2379600*X^4 - 12052850016*X^3*Y - 13804671642407*X^2*Y^2 +

> 11449640164912254*X*Y^3 + 7965530070546332840*Y^4 ;

> m1 := 6848906180202117;

> m2 := 1;

> P := NFSProcess(n,F,m1,m2);

> P‘AlgebraicFBBound := 8*10^5;

> P‘RationalFBBound := 6*10^5;

> P‘OutputFilename := "/tmp/nfs_70_digit";

> P‘Maximuma := 4194280;

> P‘AlgebraicError := 16;

> P‘RationalError := 14;

318 BASIC RINGS Part IV

Example H18E12

Sample attributes for an 80-digit number:

> n := 1871831866357686493451122722951040222063279350383738650253906933489072\

> 2483083589;

> P<X,Y> := PolynomialRing(Integers(),2);

> F := 15901200*X^4 + 9933631795*X^3*Y - 112425819157429*X^2*Y^2 -

> 231659214929438137*X*Y^3 - 73799500175565303965*Y^4;

> m1 := 1041619817688573426;

> m2 := 1;

> P := NFSProcess(n, F, m1, m2);

> P‘AlgebraicFBBound := 8*10^5;

> P‘RationalFBBound := 6*10^5;

> P‘OutputFilename := "/tmp/nfs_80_dgit";

> P‘Maximuma := 10485760;

> P‘AlgebraicError := 16;

> P‘RationalError := 14;

Example H18E13

Sample attributes for an 87-digit number:

> n := 12118618732463427472219179104631767765107839384219612469780841876821498\

> 2402918637227743;

> P<X,Y> := PolynomialRing(Integers(),2);

> F := 190512000*X^4 - 450872401242*X^3*Y +

> 1869594915648551*X^2*Y^2 + 2568544235742498*X*Y^3 -

> 9322965583419801010104*Y^4;

> m1 := 28241170741195273211;

> m2 := 1;

> P := NFSProcess(n, F, m1, m2);

> P‘AlgebraicFBBound := 16*10^5;

> P‘RationalFBBound := 10^6;

> P‘OutputFilename := "/tmp/nfs_87_digit";

> P‘Maximuma := 2^24;

> P‘AlgebraicError := 24;

> P‘RationalError := 18;

The best choice for the factor base size depends on many variables, including the
average log size and the Murphy α parameter (defined in [Mur99]) for the polynomial F .
Our polynomials above are quite good: if the user does not know much about determining
the quality of polynomials, then he or she should use much larger factor bases.

Ch. 18 RING OF INTEGERS 319

18.14.3.2 The Sieving stage
Magma’s NFS uses a “line-by-line” (or “classical”) sieving algorithm. Future versions
may include lattice sieving.

The line-by-line siever sieves values of F (a, b) on the algebraic side and corresponding
values a ·m2 − b ·m1 on the rational side. This is done by fixing a value of b (beginning
with the parameter Firstb, if supplied), then sieving all values of a between −a0 and a0,
where a0 is approximately equal to the parameter Maximuma (some rounding off is done to
make sure that the sieve interval length is divisible by a high power of 2). When this is
completed b is incremented, and the next value of b is processed.

The sieving continues until either the maximum value of b (specified by the param-
eter Lastb) has been reached, or until enough relations are obtained to complete the
factorization. If Lastb is not defined, the sieve simply continues until enough rela-
tions are found. The number of relations required may be determined by the function
NumberOfRelationsRequired.

“Cycles” among partial relations are counted after every 256 iterations.
The sieve implementation uses (rounded natural) logarithms of primes to mark the sieve

interval. Moreover, the implementation does not sieve with prime powers. Therefore, we
must allow for some error in scanning the sieve arrays for useful relations; the acceptable
sieve threshold errors for each side are defined by the AlgebraicError and RationalError
parameters. If, in addition, the user wants to take advantage of large prime relations
(recommended), then larger error terms should be used. The implementation will keep
relations having up to 2 large primes on each side, but will only find such relations if
the user selects large enough sieve threshold error bounds. The user should be cautious
when sieving for (and subsequently using) relations with large primes, as they greatly
increase overall disk space requirements. Some experimentation may be required in order
to determine the best error bounds for speed or disk space optimization purposes.

The CacheSize parameter may be used to take advantage of the cache memory size of
the computer: a value of 1 indicates a small cache size, 2 a medium cache size, and 3 a for
large cache size.

NumberOfRelationsRequired(P)

The minimum number of relations required for an NFS factor attempt with NFS
process P .

FindRelations(P)

Given an NFS process P for factoring an integer n, generates relations to factor n
with the Number Field Sieve algorithm. Returns the number of full relations plus
the number of cycles found.

18.14.3.3 The Auxiliary data stage
In this stage of the algorithm, “cycles”[LD95] are detected in the partial relations from
the sieving stage, and quadratic characters are calculated for the relations. This greatly
improves the efficiency of the NFS.

In a typical factorization, the user should call the procedures CreateCycleFile and
CreateCharacterFile in succession.

320 BASIC RINGS Part IV

CreateCycleFile(P)

Creates a file with all the cycle information that the NFS algorithm requires to
complete the matrix reduction and final factorization stages for the NFS process P .

CycleCount(P)

Returns the number of cycles in the partial relations of the NFS process P . This
function is mainly intended for factoring with multiple processors.

CycleCount(fn)

Returns the number of cycles in the partial data file corresponding to the base file
name fn. This function is mainly intended for factoring with multiple processors.

CreateCharacterFile(P)

Creates a file with the quadratic character data for the full relations and cycles in
the NFS process P .

CreateCharacterFile(P, cc)

Creates a file with the quadratic character data for the full relations and cycles in
the NFS process P . There are cc sets of 32 quadratic character columns created.

18.14.3.4 Finding dependencies: the Linear algebra stage
In this stage, the relations are collected together to form a matrix, and then block Lanczos
reduction is applied to find linear dependencies among the relations. These dependencies
become candidates for factorization.

FindDependencies(P)

Finds dependencies between relations in the NFS process P .

18.14.3.5 The Factorization stage
In this stage, number field square roots are extracted and we attempt to factor the depen-
dencies found in the linear algebra stage.

Factor(P)

Try to factor with each dependency in the NFS process P until a proper factor is
found. Returns the factor, or 0 if no factor is found.

Factor(P,k)

Attempt to factor with the k-th dependency in the NFS process P . Returns a proper
factor if found, 0 otherwise.

Ch. 18 RING OF INTEGERS 321

18.14.4 Data files
Many data files are ued for an NFS factorization. The user can control the names and
location of the files by specifying the OutputFilename parameter; then all output files will
have names beginning with the OutputFilename string, with a range of suffixes depending
on their purpose.

In general, all files are appended to rather than overwritten; so to avoid inconsistencies
(and to save disk space) the user should call RemoveFiles after a successful factorization.

When distributing factorizations, or collecting results from sieving stages that have
been broken up into several runs for some reason (for example, if a process has been
interrupted), Magma provides the function MergeFiles. This takes a sequence of base
filenames (which are treated as if they were the value for OutputFilename), and reads
in the corresponding relation and partial relation files; it then combines the contents of
these files, removing duplicates and corrupted lines of data, and places the results into new
relation and partial relation files.

RemoveFiles(P)

Deletes any data files created by the NFS process P .

MergeFiles(S, fn)

Merges the NFS relation files named in the sequence S (and their associated partial
relation files) into a pair of new relation and partial relation files, while removing du-
plicate and corrupted lines of data; returns the number of relations and the number
of partial relations in the new output files. The combined full relations are stored
in a file named fn, and the partial relations in a file named fn partials.

18.14.4.1 Magma native NFS data files
Here we describe the files used in a typical Magma NFS factorization. These files all use
formats peculiar to Magma’s NFS.

The first kind of file created by NFS stores the relations generated in the sieving stage
by the FindRelations procedure. The name of the file is precisely the OutputFilename
string.

NFS also stores partial relations generated in the sieving stage; these are stored in a
file named OutputFilename partials.

Whenever cycles [LD95] are counted (for example, in CycleCount, a file named
OutputFilename cycles is created to store them in. Some other files are also created
and then deleted during the cycle counting process.

The quadratic characters calculated in CreateCharacterFile are stored in a file named
OutputFilename cc.

The linear algebra stage creates a file named OutputFilename null space, which lists
relations making up null space vectors for the NFS matrix.

322 BASIC RINGS Part IV

18.14.5 Distributing NFS Factorizations
Magma provides a number of tools for distributing the sieving and final factoring stages
over a number of computers.

To distribute the sieving stage, each processor should get a unique range of b-values
to sieve and unique data file names. During the sieving, the user must manually check
when the combined data has enough relations to factor the number. To do this, the data
files must first be merged using MergeFiles, and then the cycles can be counted with
CycleCount. If the combined number of full relations plus the number of cycles exceeds
the size of both factor bases combined, then the user can proceed to the other stages of
the factorization attempt using the merged data file name.

To distribute the factorization stage, the user may choose a dependency for each process
to factor, then call Factor(P,k) where P is the NFS process and k the number specifying
the dependency to factor, with a different value of k for each process.

Example H18E14

Here we demonstrate a distributed NFS factorization (of a very small n) over two processes, A
and B – which may be on different machines, or different magma processes on the same machine,
or even in the same magma process.
We begin with process A:

> R<X,Y> := PolynomialRing(Integers(),2);

> n := 70478782497479747987234958341;

> F := 814*X^4 + 3172*X^3*Y - 49218*X^2*Y^2 - 142775*X*Y^3

> - 65862*Y^4;

> m1 := 3050411;

> m2 := 1;

> A := NFSProcess(n,F,m1,m2);

> A‘Firstb := 0;

> A‘Lastb := 99;

> A‘OutputFilename := "/tmp/nfs-distrib-A";

> FindRelations(A);

3852

Now, process B, with n, F , m1 and m2 as above:

> B := NFSProcess(n,F,m1,m2);

> B‘Firstb := 99;

> B‘Lastb := 199;

> B‘OutputFilename := "/tmp/nfs-distrib-B";

> FindRelations(B);

2455

Then later, on a single machine,

> input_files := ["/tmp/nfs-distrib-A","/tmp/nfs-distrib-B"];

> P := NFSProcess(n,F,m1,m2);

> P‘OutputFilename := "/tmp/nfs-distrib-all";

> MergeFiles(input_files, P‘OutputFilename);

Ch. 18 RING OF INTEGERS 323

4162 25925

> CycleCount(P);

4368

> CreateCycleFile(P);

> CreateCharacterFile(P);

> FindDependencies(P);

Now, the final factorization stage may be distributed over more than one processor also. We
attempt to factor a relation on A:

> A‘OutputFilename := "/tmp/nfs-distrib-all";

> Factor(A,9); // factor dependency 9

0

No factor was found on machine A, but meantime on B:

> B‘OutputFilename := "/tmp/nfs-distrib-all";

> Factor(P,1); // factor dependency 1

94899629

> n mod $1, n div $1;

0 742666575624650207929

We have a successful factorisation.

18.14.6 Magma and CWI NFS Interoperability
At the time of writing, the record NFS factorizations were lead by the CWI group and
by people using CWI’s or Arjen Lenstra’s code. The CWI tools use a different data file
format to Magma’s native format, but Magma supplies some tools to allow users to assist
in CWI factorization attempts.

The user may generate relations in CWI relation format, rather than Magma native
format, by using FindRelationsInCWIFormat. The user should note that relations in CWI
format cannot at present be used in the Auxiliary data, Linear algebra or Factorization
stages of the Magma NFS.

Alternatively, assuming some Magma NFS relations have already been computed for a
process, then the user may use the procedure ConvertToCWIFormat to convert the relation
data files from Magma native format to CWI format. The resulting data file is named
OutputFilename CWI format, and will contain both the full and partial relations of the
process.

FindRelationsInCWIFormat(P)

Given an NFS process P for factoring an integer n, generates relations to factor n
with the Number Field Sieve algorithm, in a file format suitable for use with CWI’s
NFS tools. Returns the number of relations found.

ConvertToCWIFormat(P, pb)

Converts the relation files of the NFS process P to CWI format, storing primes only
greater than or equal to the prime printing bound pb. The resulting data file name
will be named P‘OutputFilename CWI format.

324 BASIC RINGS Part IV

18.14.7 Tools for Finding a Suitable Polynomial
Magma does not provide a function to select an optimal polynomial for the factorization
of a given number. However, Magma does provide some functions that are useful for the
implementation of the polynomial selection algorithms developed by Peter Montgomery
and Brian Murphy in [Mur99].

The functions BaseMPolynomial, MurphyAlphaApproximation, OptimalSkewness,
BestTranslation, PolynomialSieve, and DickmanRho, will be useful for those wanting
to implement polynomial selection routines within the Magma interpreter language.

BaseMPolynomial(n, m, d)

Given integers n, m and d, returns a homogeneous bivariate polynomial F =∑d
i=0 ciX

iY d−i such that the coefficients ci give a base m representation of n: that
is,

∑d
i=0 cim

i = n. The coefficients also satisfy |ci| ≤ m/2.
This polynomial F may be used to factorize n using the number field sieve (with

m1 := m and m2 := 1).
This function requires that d ≥ 2 and n ≥ md.

MurphyAlphaApproximation(F, b)

Given a univariate or homogeneous bivariate polynomial F , return an approximation
of the α value of F , using primes less than the positive integer bound b.

The α value of a polynomial is defined in [Mur99].
Since random sampling is used for primes dividing the discriminant, successive

calls to this function will give slightly different results.

OptimalSkewness(F)

Given a univariate or homogeneous bivariate polynomial F , return its optimal skew-
ness and corresponding average log size.

The optimal skewness and average log size values are defined in [Mur99].

Example H18E15

This example illustrates an effective (though not optimal) method for finding a “good” polynomial
for use in NFS factorizations.
Here we search for a degree d = 4 polynomial to use in factoring a 52-digit integer n.
We define the rating of a polynomial to be the sum of the α value and corresponding “average
log size” (see [Mur99]).
We then proceed by iterating over base m polynomials with successive leading coefficients (with
the values of m near (m1/dm1/d+1)1/2, and chosen to minimize the second-to-leading coefficient),
and choosing as a result the polynomial with the smallest rating.

> n := RandomPrime(90)*RandomPrime(90);

> n;

3596354707256253204076739374167770148715218949803889

> d := 4;

> approx_m := Iroot(Iroot(n, d+1) * Iroot(n, d) , 2);

> leading_coeff := n div approx_m^d;

Ch. 18 RING OF INTEGERS 325

> leading_coeff;

143082

> m := Iroot(n div leading_coeff, d);

> P<X,Y> := PolynomialRing(Integers(), 2);

> F<X,Y> := BaseMPolynomial(n,m,d);

> F;

143082*X^4 + 463535*X^3*Y - 173869838910*X^2*Y^2 + 167201617413*X*Y^3 +

159859288415*Y^4

> skew, als := OptimalSkewness(F);

> alpha := MurphyAlphaApproximation(F, 2000);

> rating := als + alpha;

> rating;

23.143714548914575193314917

>

> best_rating := rating;

> best_m := m;

> for i in [1..100] do

> leading_coeff := leading_coeff + 1;

> m := Iroot(n div leading_coeff, d);

> F<X,Y> := BaseMPolynomial(n,m,d);

> skew, als := OptimalSkewness(F);

> alpha := MurphyAlphaApproximation(F, 2000);

> rating := als + alpha;

> if rating lt best_rating then

> best_rating := rating;

> best_m := m;

> end if;

> end for;

> best_rating;

20.899568473033257031950385

> best_m;

398116527578

> F<X,Y> := BaseMPolynomial(n,best_m,d);

> F;

143160*X^4 + 199085*X^3*Y - 9094377652*X^2*Y^2 - 93898749030*X*Y^3 -

169859083883*Y^4

> OptimalSkewness(F);

165.514255523681640625 20.969934467920612180646408

> MurphyAlphaApproximation(F, 2000);

-0.0542716157630141449500150842

> time NFS(n, F, best_m, 1);

...

326 BASIC RINGS Part IV

BestTranslation(F, m, a)

Given a univariate or homogeneous bivariate polynomial F , an integer m, and real
value a (which should be the average log size of F for some optimal skewness),
returns a polynomial G and an integer m′ such that G(m′) = F (m), together with
the average log size and optimal skewness of G. The translation G is selected such
that the average log size is a local minimum.

PolynomialSieve(F, m, J0, J1,MaxAlpha)

PrimeBound RngIntElt Default : 1000
Given a homogeneous bivariate integer polynomial F of degree d, together with
integers m, J0 and J1 and a real value MaxAlpha, returns a list of tuples, each of
which contains a polynomial G = F+j1x2yd−2−(|j0|+j1m)xyd−1+(j0m)yd, where
|j0| ≤ J0 and |j1| ≤ J1 such that the α value (see [Mur99]) of G is “better” (that is,
lower) than MaxAlpha.

Each tuple contains the data <average log size + α, skewness, α, G, m, j0, j1 >.
If the optional parameter PrimeBound is set, it is used as an upper bound for

primes used to calculate α.

18.15 Bibliography
[AHU74] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, Reading, MA, 1974.
[AM93] A. O. L. Atkin and F. Morain. Elliptic curves and primality proving. Math.

Comp., 61:29 – 68, 1993.
[Bre80] R. P. Brent. An improved Monte Carlo factorization algorithm. BIT, 20:176–

184, 1980.
[BtR92] R. P. Brent and H. J. J te Riele. Factorizations of an ± 1, 13 ≤ a < 100.

Technical report, Centrum voor Wiskunde en Informatica, Amsterdam, 1992. URL:
ftp://nimbus.anu.edu.au/pub/Brent.

[Jae93] G. Jaeschke. On strong pseudoprimes to several bases. Math. Comp., 61:915
– 926, 1993.

[Knu97] Donald E. Knuth. The Art of Computer Programming, volume 2. Addison
Wesley, Reading, Massachusetts, 3rd edition, 1997.

[LD95] Arjen K. Lenstra and Bruce Dodson. NFS with four large primes: An explosive
experiment. In Don Coppersmith, editor, Advances in cryptology—CRYPTO 1995,
volume 963 of LNCS, pages 372–385, Berlin, 1995. Springer.

[Mar95] G. Marsaglia. DIEHARD: a battery of tests of randomness.
URL:http://stat.fsu.edu/pub/diehard/, 1995.

[Mar00] G. Marsaglia. The Monster, a random number generator with period 102857

times as long as the previously touted longest-period one. Preprint, 2000.
[Mon92] Peter Lawrence Montgomery. An FFT Extension of the Elliptic Curve Method

of Factorization. PhD thesis, University of California, Los Angeles, 1992.

Ch. 18 RING OF INTEGERS 327

[Mur99] Brian Murphy. Polynomial selection for the number field sieve integer factori-
sation algorithm. PhD thesis, Oxford University, 1999.
URL:http://web.comlab.ox.ac.uk/oucl/work/richard.brent/ftp/Murphy-thesis.ps.gz.

[Sch71] Arnold Schönhage. Schnelle Berechnung von Kettenbruchentwicklungen. Acta
Informatica, 1:139–144, 1971.

[vzGG99] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra.
Cambridge University Press, Cambridge, 1999.

[Web95] Kenneth Weber. The Accelerated Integer GCD Algorithm. ACM Transactions
on Mathematical Software, 21(1):111–122, 1995.

19 INTEGER RESIDUE CLASS RINGS
19.1 Introduction 331

19.2 Ideals of Z 331

ideal< > 331

19.3 Z as a Number Field Order . . 332

Decomposition(R, p) 332
Generator(I) 332
RamificationIndex(I, p) 332
RamificationIndex(I) 332
Degree(I) 332
TwoElementNormal(I) 332
ChineseRemainderTheorem(I, J, a, b) 332
Valuation(x, I) 332
ClassRepresentative(I) 332

19.4 Residue Class Rings 333

19.4.1 Creation 333

quo< > 333
quo< > 333
ResidueClassRing(m) 333
IntegerRing(m) 333
Integers(m) 333
RingOfIntegers(m) 333
ResidueClassRing(Q) 333
IntegerRing(Q) 333
Integers(Q) 333

19.4.2 Coercion 334

19.4.3 Elementary Invariants 335

Characteristic # 335
Modulus(R) 335
FactoredModulus(R) 335

19.4.4 Structure Operations 335

AdditiveGroup(R) 335
MultiplicativeGroup(R) 335
UnitGroup(R) 335
sub< > 335
Set(R) 335
Category Parent PrimeRing 335
Center 335

19.4.5 Ring Predicates and Booleans . . . 336

IsCommutative IsUnitary 336
IsFinite IsOrdered 336
IsField IsEuclideanDomain 336
IsPID IsUFD 336
IsDivisionRing IsEuclideanRing 336
IsPrincipalIdealRing IsDomain 336
eq ne 336

19.4.6 Homomorphisms 336

hom< > 336

19.5 Elements of Residue Class Rings 336

19.5.1 Creation 336

elt< > 336
! 336
One Identity 336
Zero Representative 336
Random(R) 336

19.5.2 Arithmetic Operators 337

+ - 337
+ - * ^ / div 337
+:= -:= *:= /:= ^:= 337

19.5.3 Equality and Membership 337

eq ne 337
in notin 337

19.5.4 Parent and Category 337

Parent Category 337

19.5.5 Predicates on Ring Elements . . . 337

IsZero IsOne IsMinusOne 337
IsNilpotent IsIdempotent 337
IsUnit IsZeroDivisor IsRegular 337
IsIrreducible IsPrime 337

19.5.6 Solving Equations over Z/mZ . . . 337

Solution(a, b) 337
IsSquare(n) 337
Sqrt(a) 338
SquareRoot(a) 338
AllSquareRoots(a) 338
AllSqrts(a) 338

19.6 Ideal Operations 339

ideal< > 339
GreatestCommonDivisor(a, b) 339
Gcd(a, b) 339
GCD(a, b) 339
GreatestCommonDivisor(Q) 339
Gcd(Q) 339
GCD(Q) 339
LeastCommonMultiple(a, b) 339
Lcm(a, b) 339
LCM(a, b) 339
LeastCommonMultiple(Q) 339
Lcm(Q) 339
LCM(Q) 339
+ * meet 339
in notin 339
eq ne 339
subset notsubset 339

19.7 The Unit Group 340

UnitGroup(R) 340
IsPrimitive(n) 340
PrimitiveElement(R) 340
PrimitiveRoot(R) 340

330 BASIC RINGS Part IV

Order(a) 340
Normalize(x) 340
Normalise(x) 340

19.8 Dirichlet Characters 341

19.8.1 Creation 342

DirichletGroup(N) 342
DirichletGroup(N,R) 342
DirichletGroup(N,R,z,r) 342
FullDirichletGroup(N) 342
BaseExtend(G, R) 342
BaseExtend(G, R, z) 342
AssignNames(~G, S) 342

19.8.2 Element Creation 342

Elements(G) 342
Random(G) 342
. 342
! 342
KroneckerCharacter(D) 343
KroneckerCharacter(D, R) 343

19.8.3 Properties of Dirichlet Groups . . 343

BaseRing(G) 343
Modulus(G) 343
Order(G) 343
Exponent(G) 343
AbelianGroup(G) 343
NumberOfGenerators(G) 343
Generators(G) 343
. 343
UnitGenerators(G) 343

19.8.4 Properties of Elements 344

BaseRing(chi) 344
Modulus(chi) 344
Conductor(chi) 344
ElementToSequence(chi) 344
eq 344
Order(chi) 344
IsTrivial(chi) 344
IsPrimitive(chi) 344
AssociatedPrimitiveCharacter(chi) 344
IsEven(chi) 344
IsOdd(chi) 344
IsTotallyEven(chi) 345
Decomposition(chi) 345
GaloisConjugacyRepresentatives(G) 345
GaloisConjugacyRepresentatives(seq) 345
MinimalBaseRingCharacter(chi) 345

19.8.5 Evaluation 345

Evaluate(chi,n) 345
chi(n) 345
ValueList(chi) 345
ValuesOnUnitGenerators(chi) 345
OrderOfRootOfUnity(r, n) 345

19.8.6 Arithmetic 346

* 346
/ 346
^ 346
^ 346
Sqrt(x) 346

19.8.7 Example 346

Chapter 19

INTEGER RESIDUE CLASS RINGS

19.1 Introduction
This chapter presents the machinery provided in Magma for computing in quotient rings
of the ring of integers Z, that is, integer residue class rings. The first half of the chapter
describes operations with ideals of Z and their quotient rings while the second half provides
an introduction to computing with Dirichlet characters.

19.2 Ideals of Z
The theory of ideals of Z is very elementary but for completeness the general machinery
for ring ideals applies. Such ideals will have type RngInt, that is, the same type as the
ring of integers itself (ideal<Integers() | 1>).

In the case of Z any subring is an ideal so that the sub-constructor creates the same
object as does the ideal-constructor.

ideal< R | a >

Given the ring of integers Z and an integer a, return the ideal of Z generated by a.

Example H19E1

We construct some ideals of Z.

> Z := IntegerRing();

> I13 := ideal< Z | 13 >;

> I13;

Ideal of Integer Ring generated by 13

> 1 in I13;

false

> 0 in I13;

true

> -13 in I13;

true

> I0 := ideal< Z | 0 >;

> 0 in I0;

true

> 1 in I0;

false

We check that that Z is regarded as an ideal.

> I1 := ideal< Z | 1 >;

332 BASIC RINGS Part IV

> I1 eq Z;

true

19.3 Z as a Number Field Order

A collection of functions are provided that make Z behave like an order of a number field.
Note however, that Z is not of type RngOrd. If complete compatibility is necessary, the
user should create the maximal order of a degree 1 extension of Q.

Decomposition(R, p)

Returns the ideal decomposition of the prime p, i.e. a list [< ideal<Z|p>, 1>]
as in the number field case.

Generator(I)

A generator for the given ideal.

RamificationIndex(I, p)

RamificationIndex(I)

The ramification index of I over Z which is always 1.

Degree(I)

The inertia degree of the ideal I, which is always 1.

TwoElementNormal(I)

Two integers that generate the ideal I. In this case the generator is returned twice.

ChineseRemainderTheorem(I, J, a, b)

The Chinese remainder theorem for ideals. Given ideals I and J of Z together with
integers a and b, an integer x such that x− a ∈ I and x− b ∈ J is returned.

Valuation(x, I)

The valuation of the integer x at the prime ideal I.

ClassRepresentative(I)

The representative of the ideal I of Z in the basis of the class group.

Ch. 19 INTEGER RESIDUE CLASS RINGS 333

19.4 Residue Class Rings

The ring Z/mZ consists of representatives for the residue classes of integers modulo m > 1.
This Section describes the operations in Magma for such rings and their elements.

At any stage during a session, Magma will have at most one copy of Z/mZ present, for
any m > 1. In other words, different names for the same residue class ring will in fact be
different references to the same structure. This saves memory and avoids confusion about
different but isomorphic structures.

If m is a prime number, the ring Z/mZ forms a field; however, Magma has special
functions for dealing with finite fields. The operations described here should not be used
for finite field calculations: the implementation of finite field arithmetic in Magma as
described in Chapter 21 takes full advantage of the special structure of finite fields and
leads to superior performance.

19.4.1 Creation
In addition to the general quotient constructor, a number of abbreviations are provided
for computing residue class rings.

quo< Z | I >

Given the ring of integers Z, and an ideal I, create the residue class ring modulo
the ideal.

quo< Z | m >

Given the ring of integers Z, and an integer m 6= 0, create the residue class ring
Z/mZ.

ResidueClassRing(m)

IntegerRing(m)

Integers(m)

RingOfIntegers(m)

Given an integer greater than zero, create the residue class ring Z/mZ.

ResidueClassRing(Q)

IntegerRing(Q)

Integers(Q)

Create the residue class ring Z/mZ, where m is the integer corresponding to the
factorization sequence Q. This is more efficient than creating the ring by m alone,
since the factorization Q will be stored so it can be reused later.

334 BASIC RINGS Part IV

Example H19E2

We construct a residue ring having modulus the largest prime not exceeding 216.

> p := PreviousPrime(2^16);

> p;

65521

> R := ResidueClassRing(p);

Residue class ring of integers modulo 65521

Now we try to find an element x in R such that x3 = 23.

> exists(t){x : x in R | x^3 eq 23};

true

> t;

12697

19.4.2 Coercion
As can be seen from the tables in Chapter 17, automatic coercion takes place between
Z/mZ and Z so that a binary operation like + applied to an element of Z/mZ and an
integer will result in a residue class from Z/mZ.

Using !, elements from a prime field Fp can be coerced into Z/pZ, and elements from
Z/pZ can be coerced into Fpr . Also, transitions between Z/mZ and Z/nZ can be made
using ! provided that m divides n or n divides m. In cases where there is a choice – such
as when an element r from Z/mZ is coerced into Z/nZ with m dividing n – the result will
be the residue class containing the representative for r.

Example H19E3

> r := ResidueClassRing(3) ! 5;

> r;

2

> ResidueClassRing(6) ! r;

2

So the representative 2 of 5 mod 3 is mapped to the residue class 2 mod 6, and not to 5 mod 6.

Ch. 19 INTEGER RESIDUE CLASS RINGS 335

19.4.3 Elementary Invariants

Characteristic(R) # R

Modulus(R)

Given a residue class ring R = Z/mZ, this function returns the common modulus
m for the elements of R.

FactoredModulus(R)

Given a residue class ring R = Z/mZ, this function returns the factorization of the
common modulus m for the elements of R.

19.4.4 Structure Operations

AdditiveGroup(R)

Given R = Z/mZ, create the abelian group of integers modulo m under addition.
This returns the finite additive abelian group A (of order m) together with a map
from A to the ring Z/mZ, sending A.1 to 1.

MultiplicativeGroup(R)

UnitGroup(R)

Given R = Z/mZ, create the multiplicative group of R as an abelian group. This
returns an (additive) abelian group A of order φ(m), together with a map from A
to R.

sub< R | n >

Given R, the ring of integers modulo m or an ideal of it, and an element n of R
create the ideal of R generated by n.

Set(R)

Create the enumerated set consisting of the elements of the residue class ring R.

Category(R) Parent(R) PrimeRing(R)

Center(R)

336 BASIC RINGS Part IV

19.4.5 Ring Predicates and Booleans

IsCommutative(R) IsUnitary(R)

IsFinite(R) IsOrdered(R)

IsField(R) IsEuclideanDomain(R)

IsPID(R) IsUFD(R)

IsDivisionRing(R) IsEuclideanRing(R)

IsPrincipalIdealRing(R) IsDomain(R)

R eq R R ne R

19.4.6 Homomorphisms
Ring homomorphisms with domain Z/mZ are completely determined by the image of 1.
As usual (see Chapter 18), we require our homomorphisms to map 1 to 1. Therefore, the
general homomorphism constructor with domain Z/mZ needs no arguments.

hom< R -> S | >

Given a residue class ring R, and a ring S, create a homomorphism from R to S,
determined by f(1R) = 1S . Note that it is the responsibility of the user that the
map defines a homomorphism!

19.5 Elements of Residue Class Rings

19.5.1 Creation

elt< R | k >

Create the residue class containing the integer k in residue class ring R.

R ! k

Create the residue class containing k in the residue class ring R. Here k is allowed
to be either an integer, or an element of the finite field Fp in the case R = Z/pZ,
or an element of S = Z/nZ for a multiple or divisor n of m (with R = Z/mZ).

One(R) Identity(R)

Zero(R) Representative(R)

These generic functions (cf. Chapter 17) create 1, 1, 0, and 0 respectively, in any
Z/mZ.

Random(R)

Create a “random” residue class in R.

Ch. 19 INTEGER RESIDUE CLASS RINGS 337

19.5.2 Arithmetic Operators

+ n - n

m + n m - n m * n n ^ k m / n m div n

m +:= n m -:= n m *:= n m /:= n m ^:= k

19.5.3 Equality and Membership

m eq n m ne n

n in R n notin R

19.5.4 Parent and Category

Parent(n) Category(n)

19.5.5 Predicates on Ring Elements

IsZero(n) IsOne(n) IsMinusOne(n)

IsNilpotent(n) IsIdempotent(n)

IsUnit(n) IsZeroDivisor(n) IsRegular(n)

IsIrreducible(n) IsPrime(n)

19.5.6 Solving Equations over Z/mZ

Solution(a, b)

Given elements a and b of Z/mZ, return a solution x to the linear congruence
a · x = b ∈ Z/mZ. An error is signalled if no solution exists.

IsSquare(n)

Factorization [<RngIntElt, RngIntElt>]

Given an element n ∈ Z/mZ this function returns true if there exists a ∈ Z/mZ
such that a2 = n ∈ Z/mZ, false otherwise. If n is a square, a square root a is
also returned. If m is large and its prime factorization is known, the computation
may be speeded up by assigning the factorization sequence for m to the optional
argument Factorization.

338 BASIC RINGS Part IV

Sqrt(a)

SquareRoot(a)

Factorization [<RngIntElt, RngIntElt>]

Given an element a of the ring Z/mZ, this function returns an element b of Z/mZ
such that b2 = a ∈ Z/mZ, if such an element exists, and an error otherwise. If m is
large and its prime factorization is known, the computation may be speeded up by
assigning the factorization sequence for m to the optional argument Factorization.

AllSquareRoots(a)

AllSqrts(a)

Factorization [<RngIntElt, RngIntElt>]

Return a sequence containing all square roots of the element a in a residue class
ring Z/mZ. If the modulus m is large and its prime factorization is known, the
computation may be speeded up by assigning the factorization sequence for m to
the optional argument Factorization.

Example H19E4

We construct the residue class ring having modulus 2340 and find all the square roots of 1404.

> R := ResidueClassRing(2340);

Residue class ring of integers modulo 2340

> x := R!1404;

> sqrts := AllSquareRoots(x);

> sqrts;

[78, 312, 468, 702, 858, 1092, 1248, 1482, 1638,

1872, 2028, 2262]

> [y^2 : y in sqrts];

[1404, 1404, 1404, 1404, 1404, 1404, 1404, 1404,

1404, 1404, 1404, 1404]

So 1404 has 12 square roots!

Ch. 19 INTEGER RESIDUE CLASS RINGS 339

19.6 Ideal Operations

ideal< R | a1, ..., ar >

The ideal of the residue ring R generated by the greatest common divisor of the
elements ai and the modulus of R.

GreatestCommonDivisor(a, b)

Gcd(a, b)

GCD(a, b)

Greatest common divisor of the elements a and b of R, that is, a generator for the
R-ideal (a) + (b).

GreatestCommonDivisor(Q)

Gcd(Q)

GCD(Q)

Greatest common divisor of the sequence of elements Q, that is, a generator for the
R-ideal generated by the elements in Q.

LeastCommonMultiple(a, b)

Lcm(a, b)

LCM(a, b)

Least common multiple of the elements a and b of R, that is, a generator for the
R-ideal (a) ∩ (b).

LeastCommonMultiple(Q)

Lcm(Q)

LCM(Q)

Least common multiple of the sequence of elements Q, that is, a generator for the
R-ideal formed by the intersection of the principal ideals generated by elements of
Q.

I + J I * J I meet J

a in I a notin I

I eq J I ne J

I subset J I notsubset J

340 BASIC RINGS Part IV

19.7 The Unit Group

UnitGroup(R)

Given R = Z/mZ, construct the unit group of R as an abelian group. This returns
an (additive) abelian group A of order φ(m), together with a map from A to R.

IsPrimitive(n)

Returns true if the element n ∈ Z/mZ is primitive, that is, if it generates the
multiplicative group of Z/mZ, false otherwise.

PrimitiveElement(R)

PrimitiveRoot(R)

Given R = Z/mZ, this function returns a generator for the group of units of R if
this group is cyclic, and returns 0 otherwise. Thus a valid generator is only returned
if m = 2, 4, pt or 2pt, with p an odd prime and t ≥ 1.

Order(a)

Given an element a belonging to Z/mZ, return the multiplicative order k ≥ 1 of a
if a is in the unit group (Z/mZ)∗, and zero if a is not a unit.

Normalize(x)

Normalise(x)

Given an element x ∈ R = Z/mZ, this function returns the unique canonical asso-
ciate y ∈ R of x and a unit u ∈ R such that u · x = y. The canonical associate of x
is the GCD of x and m, considered as natural integers (unless x is 0, in which case
it is 0).

Example H19E5

We determine the unit group of the ring with modulus 735 and then verify its order by comparing
it with φ(m).

> m := 735;

> R := ResidueClassRing(m);

Residue class ring of integers modulo 735

> U, psi := UnitGroup(R);

> U;

Abelian Group isomorphic to Z/2 + Z/2 + Z/84

Defined on 3 generators

Relations:

2*U.1 = 0

4*U.2 = 0

42*U.3 = 0

> #U;

336

> EulerPhi(735);

Ch. 19 INTEGER RESIDUE CLASS RINGS 341

336

So the order of U is equal to φ(m) as it should be. Finally, we look for three elements of R that
generate the unit group.

> gens := [psi(U.i) : i in [1..3]]; gens;

> [Order(x) : x in gens];

[2, 4, 42]

Example H19E6

We construct a residue class ring R = Z/mZ having cyclic unit group. By a theorem of Gauss,
the ring R has cyclic unit group precisely when n = 4, n = pe, or n = 2pe, and p is an odd prime.

> R := IntegerRing(50);

> U, psi := UnitGroup(R);

Abelian Group isomorphic to Z/20

Defined on 1 generator

Relations:

20*U.1 = 0

> w := PrimitiveElement(R);

> w;

3

> Order(w);

20

We verify that the powers of w are precisely the elements of the unit group U .

> powers := { w^i : i in [0..19] };

> powers;

{ 29, 1, 31, 3, 33, 7, 37, 9, 39, 11, 41, 13, 43, 17, 47, 19, 49, 21, 23, 27 }

> powers eq { psi(u) : u in U };

true

19.8 Dirichlet Characters

Let R be a ring. Then a Dirichlet character over R of modulus N is a homomorphism

ε : (Z/NZ)∗ → R∗,

where R∗ is the group of invertible elements of R. We extend ε to a set theoretic map on
the whole of Z by defining ε(x) = 0 if gcd(x,N) 6= 1. The conductor of ε is the smallest
positive integer M such that the homomorphism (Z/NZ)∗ → R∗ factors through (Z/MZ)∗

via the natural map (Z/NZ)∗ → (Z/MZ)∗.

342 BASIC RINGS Part IV

19.8.1 Creation

DirichletGroup(N)

The group of Dirichlet characters modulo N with image in RationalField(). Note
that this is a group of exponent at most 2.

DirichletGroup(N,R)

The group of Dirichlet characters modulo N with image in the ring R. Here R can
be the integers, rationals, a number field or a finite field.

DirichletGroup(N,R,z,r)

The group of Dirichlet characters mod N with image in the order-r cyclic subgroup
of the ring R generated by the root of unity z. Here z must be an element of R of
exact order r.

FullDirichletGroup(N)

The group of Dirichlet characters modulo N taking values in the mth cyclotomic
field, where m is the exponent of the unit group modulo N . (This is a shortcut for
the previous command.)

BaseExtend(G, R)

BaseExtend(G, R, z)

The group of Dirichlet characters corresponding to G with values in the ring R. In
the second form, the distinguished root of unity of the base ring of G is identified
with the given element z.

AssignNames(~G, S)

Assign names to the generators of the Dirichlet group G.

19.8.2 Element Creation

Elements(G)

A sequence containing all Dirichlet characters in the Dirichlet group G.

Random(G)

A random element of the Dirichlet group G.

G . i

The ith generator of the group G.

G ! x

This coerces the given element x into the Dirichlet group G. Here x may be a
Dirichlet character belonging to a different group, or a sequence of integers specifying
an element of the AbelianGroup of G.

Ch. 19 INTEGER RESIDUE CLASS RINGS 343

KroneckerCharacter(D)

KroneckerCharacter(D, R)

The Kronecker character n 7→ (d/n), where d is the fundamental discriminant asso-
ciated to the integer D.

When a ring R is given, this is returned as a character with values in R.

19.8.3 Properties of Dirichlet Groups

BaseRing(G)

The ring in which characters in G take values.

Modulus(G)

The integer N such that G is a group of Dirichlet characters on Z/N .

Order(G)

The order of the Dirichlet group G.

Exponent(G)

The exponent of the Dirichlet group G.

AbelianGroup(G)

This returns a finite abelian group isomorphic to the given group G of Dirichlet
characters (as an abstract group), and secondly returns a map from the abstract
group to G.

It is necessary to use this function in order to make group theoretic constructions
involving G.

NumberOfGenerators(G)

The number of generators of the Dirichlet group G.

Generators(G)

A sequence containing generators for the Dirichlet group G.

G . i

The ith generator of the group G.

UnitGenerators(G)

This returns an ordered sequence of integers that reduce to “canonical” generators
of the unit group of Z/N , where N is the modulus of G.

344 BASIC RINGS Part IV

19.8.4 Properties of Elements

BaseRing(chi)

The ring in which the Dirichlet character χ takes values.

Modulus(chi)

The modulus of the group of Dirichlet characters that contains χ.

Conductor(chi)

The minimal conductor of the Dirichlet character χ. (That is, the smallest integerM
such that chi is well-defined on the unit group of Z/M .)

ElementToSequence(chi)

A sequence of integers specifying the Dirichlet character χ (in terms of generators
of the group containing χ).

x eq y

Return true iff the given characters have the same modulus and values.

Order(chi)

The order of the given element χ in a group of Dirichlet characters.

IsTrivial(chi)

Returns true if and only if the Dirichlet character χ has order 1.

IsPrimitive(chi)

Returns true iff the Dirichlet character χ is primitive (equivalently, if its conductor
equals its modulus).

AssociatedPrimitiveCharacter(chi)

The primitive character modulo the conductor of χ which takes the same values (on
units) as χ.

IsEven(chi)

Returns true if and only if Evaluate(chi,-1) is equal to 1. Note that in charac-
teristic 0, the space of modular forms of weight k and character χ is zero if χ is even
and k is odd.

IsOdd(chi)

Returns true if and only if Evaluate(chi,-1) is equal to −1. Note that in char-
acteristic 0, the space of modular forms of weight k and character χ is zero if χ is
odd and k is even.

Ch. 19 INTEGER RESIDUE CLASS RINGS 345

IsTotallyEven(chi)

For a Dirichlet character χ, this is true if and only if every character in the
Decomposition of χ (into prime power components) is even.

Decomposition(chi)

This decomposes the Dirichlet character χ as a product of characters with prime
power moduli. The function returns a list (not a sequence) containing these char-
acters (which do not belong to the same group).

GaloisConjugacyRepresentatives(G)

GaloisConjugacyRepresentatives(seq)

This returns a sequence containing one representative from each Galois conjugacy
class (over Q) of characters corresponding to a character in the given group or the
given sequence.

MinimalBaseRingCharacter(chi)

The returns a character which is the same as χ, except which takes values in the
smallest possible subring of the base ring of χ.

19.8.5 Evaluation

Evaluate(chi,n)

chi(n)

The value of the Dirichlet character χ at the integer n.

ValueList(chi)

A sequence containing the values [χ(1), .., χ(N)] of the given character χ, where N
is the modulus of χ.

The list of values is stored; then in later calls to Evaluate, the stored value is
returned.

ValuesOnUnitGenerators(chi)

A sequence containing the values of χ on the ordered sequence of elements of Z/m
given by UnitGenerators(Parent(chi)), where m is the modulus of χ.

OrderOfRootOfUnity(r, n)

Given an element r of some ring which is assumed to satisfy rn = 1, this returns the
smallest integer m such that rm = 1.

(This provides a convenient way to calculate the order of values of non-real
characters.)

346 BASIC RINGS Part IV

19.8.6 Arithmetic

x * y

x / y

The product or quotient (respectively) of the Dirichlet characters x and y. This is
a Dirichlet character of modulus equal to the least common multiple of the moduli
of x and y. The base rings and chosen roots of unity of the parents of x and y are
equal.

x ^ n

The Dirichlet character x raised to the power of n, where n is any integer.

x ^ phi

The image of the Dirichlet character x under the automorphism φ.

Sqrt(x)

Given a Dirichlet character x of odd order, this returns a square root of x (in the
same group).

19.8.7 Example

Example H19E7

We begin by constructing the group of characters (Z/5Z)∗ → Q∗.

> G<a> := DirichletGroup(5); G; // The default base field is Q.

Group of Dirichlet characters of modulus 5 over Rational Field

> #G;

2

> [Evaluate(a, n) : n in [1..5]];

[1, -1, -1, 1, 0]

> Eltseq(a);

[2]

> a eq G![2];

true

> IsEven(a);

true

> IsOdd(a);

false

> IsTrivial(a);

false

Next we create a character by building it up “locally”.

> G1<a4> := DirichletGroup(4);

> Conductor(a4);

4

> G2<a5> := DirichletGroup(25);

Ch. 19 INTEGER RESIDUE CLASS RINGS 347

> Conductor(a5);

5

> eps := a4*a5;

> Modulus(eps);

100

> Conductor(eps);

20

> Evaluate(eps,7) eq Evaluate(a4,7)*Evaluate(a5,7);

true

Characters can be constructed over various fields.

> G<a> := DirichletGroup(7,GF(7));

> #G;

6

> Evaluate(a,2);

2

>

> G<a3,a5> := DirichletGroup(15,CyclotomicField(EulerPhi(15)));

> G;

Group of Dirichlet characters of modulus 15 over Cyclotomic Field of

order 8 and degree 4

> #G;

8

> Conductor(a3);

3

> Conductor(a5);

5

> Order(a5);

4

> Evaluate(a5,2);

zeta_8^2

If D is a fundamental discriminant, then KroneckerCharacter(D) is the quadratic Dirich-
let character corresponding to the quadratic field Q(

√
D). The following code verifies that

KroneckerCharacter and KroneckerSymbol agree in the case D = 209.

> chi := KroneckerCharacter(209);

> for n in [1..209] do

> assert Evaluate(chi,n) eq KroneckerSymbol(209,n);

> end for;

If E is an elliptic curve with newform fE , then the twist ED corresponds to fE twisted by this
character, as illustrated below.

> E := EllipticCurve(CremonaDatabase(),"11A");

> f := qEigenform(E,8); f;

q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 + O(q^8)

> chi := KroneckerCharacter(-7);

> qEigenform(QuadraticTwist(E,-7),8);

q - 2*q^2 + q^3 + 2*q^4 - q^5 - 2*q^6 + O(q^8)

348 BASIC RINGS Part IV

> R<q> := Parent(f);

> &+[Evaluate(chi,n)*Coefficient(f,n)*q^n : n in [1..7]] + O(q^8);

q - 2*q^2 + q^3 + 2*q^4 - q^5 - 2*q^6 + O(q^8)

20 RATIONAL FIELD
20.1 Introduction 351

20.1.1 Representation 351

20.1.2 Coercion 351

20.1.3 Homomorphisms 352

hom 352

20.2 Creation Functions 353

20.2.1 Creation of Structures 353

Rationals() 353
RationalField() 353
MaximalOrder(Q) 353
IntegerRing(Q) 353
IntegerRing() 353
Integers() 353
RingOfIntegers(Q) 353
FieldOfFractions(Z) 353
Completion(Q, P) 353

20.2.2 Creation of Elements 353

/ 353
! 353
! 354
elt< > 354
! 354
One Identity 354
Zero Representative 354
RootOfUnity(n, Q) 354
Random(Q, m) 354

20.3 Structure Operations 354

20.3.1 Related Structures 354

Category 354
Parent PrimeField 354
IntegralBasis(Q) 354
MinimalField(q) 354
MinimalField(S) 355
BaseField(Q) 355
Basis(Q) 355
AbsoluteBasis(Q) 355
UnitGroup(Q) 355
ClassGroup(Q) 355
AutomorphismGroup(Q) 355
AutomorphismGroup(Q, Q) 355
Algebra(Q, Q) 355
VectorSpace(Q, Q) 355
Decomposition(Q, p) 355

20.3.2 Numerical Invariants 356

Characteristic 356
Conductor(Q) 356
Degree(Q) 356
AbsoluteDegree(Q) 356
Discriminant(Q) 356

AbsoluteDiscriminant(Q) 356
DefiningPolynomial(Q) 356
Signature(Q) 356

20.3.3 Ring Predicates and Booleans . . . 356

IsCommutative IsUnitary 356
IsFinite IsOrdered 356
IsField IsEuclideanDomain 356
IsPID IsUFD 356
IsDivisionRing IsEuclideanRing 356
IsPrincipalIdealRing IsDomain 356
eq ne 356

20.4 Element Operations 357

20.4.1 Parent and Category 357

Parent Category 357

20.4.2 Arithmetic Operators 357

+ - 357
+ - * ^ / 357
+:= -:= *:= /:= ^:= 357

20.4.3 Numerator and Denominator . . . 357

Numerator(q) 357
Denominator(q) 357

20.4.4 Equality and Membership 357

eq ne 357
in notin 357

20.4.5 Predicates on Ring Elements . . . 358

IsIntegral(q) 358
IsZero IsOne IsMinusOne 358
IsNilpotent IsIdempotent 358
IsUnit IsZeroDivisor IsRegular 358
IsIrreducible IsPrime 358

20.4.6 Comparison 358

gt ge lt le 358
Maximum Maximum 358
Minimum Minimum 358

20.4.7 Conjugates, Norm and Trace . . . 358

ComplexConjugate(q) 358
Conjugate(q) 358
Norm(q) 358
Norm(q) 358
Trace(q) 358
MinimalPolynomial(q) 358

20.4.8 Absolute Value and Sign 359

AbsoluteValue(q) 359
Abs(q) 359
Sign(q) 359
Height(q) 359

20.4.9 Rounding and Truncating 359

Ceiling(q) 359

350 BASIC RINGS Part IV

Floor(q) 359
Round(q) 359
Truncate(q) 359
Qround(q, M) 359

20.4.10 Rational Reconstruction 360

RationalReconstruction(s) 360

20.4.11 Valuation 360

Valuation(x, p) 360

Valuation(x, I) 360

20.4.12 Sequence Conversions 360

ElementToSequence(a) 360
Eltseq(a) 360

Chapter 20

RATIONAL FIELD

20.1 Introduction

This Chapter describes functions relating to the field of rational numbers Q. Note that
most functions for rational integers can be found in Chapter 18.

The rational field Q is automatically created when Magma is started up. That means
that in Q, unlike most other structures, arithmetic can be done without the need to create
the structure explicitly first. The same is true for the ring of integers.

In order to be compatible with the other rings and fields, Q.1 will return 1.

20.1.1 Representation
Rational numbers are stored as pairs of numerator and denominator. Whenever a rational
number is created, it will be put in reduced form (coprime numerator and denominator,
positive denominator). It is well possible that a rational number has denominator 1, and
thus represents a rational integer; in such cases it will however never automatically be
converted into an integer (that is, its type will not be changed).

20.1.2 Coercion
The tables in Chapter 17 describe which coercions of rational numbers are allowed, and
which will take place automatically when necessary. As a general rule, automatic coercion
occurs between elements of Q and elements of any ring R of characteristic 0. That means,
for example, that addition of any rational number and an element r of such ring can be
performed without the need to coerce the elements first; the result will be in the larger of
Q and R (usually R, unless R is a subring of Q such as Z). The most important exceptions
to the above rule are those cases where the result would lie in a structure strictly larger
than both Q and R. Examples of this are R = Z[x], and the result would generally be in
Q(x), and R = OK , an order in a number field (and the result could be in K).

Example H20E1

We give three examples of successful automatic coercion, and one where it does not work. Note
that in the third case the result, although being integral, is still in the rational field.

> 1/2 + elt< CyclotomicField(3) | 1,2>;

1/2*(4*zeta_3 + 3)

> 1/2 - 0.12345;

0.37655

> 1/2 * 2;

1

> Parent(1/2 * 2);

352 BASIC RINGS Part IV

Rational Field

> R<x> := PolynomialRing(Integers());

> // The following produces an error:

> 1/2 + x;

>> 1/2 + x;

^

Runtime error in ’+’: Bad argument types

20.1.3 Homomorphisms

Since homomorphisms are generally only allowed to be unitary, the specification of ring
homomorphisms from Q = Q to a ring R is particularly simple: the image is completely
determined by the image of 1, which we require to be 1 in R, so

hom< Q -> R | >

suffices.
Note that Magma allows the user to define maps with hom that are not proper homo-

morphisms; this is sometimes useful, as the example below shows.

Example H20E2

Suppose we wish to coerce rational numbers with denominator not divisible by 11 into the ring
Z/11Z in the obvious way by sending r/s to rs−1 mod 11. The coercion rules do not allow you
to do so using !, but a simple ‘homomorphism’ will work.

> Z11 := Integers(11);

> Q := RationalField();

> h := hom< Q -> Z11 | >;

> h(1/2);

6

Ch. 20 RATIONAL FIELD 353

20.2 Creation Functions

20.2.1 Creation of Structures
The rational field Q is automatically created when Magma is started up. Nevertheless,
it may be necessary to formally create the rational field, for instance if it is to be used
as the coefficient ring for a polynomial ring. There is a unique rational field structure in
Magma, that is, multiple calls to the creation function RationalField() will return the
same object (and not an isomorphic copy), so no memory will be wasted.

Rationals()

RationalField()

Create the field Q of rational numbers.

MaximalOrder(Q)

IntegerRing(Q)

IntegerRing()

Integers()

RingOfIntegers(Q)

Create the field Z of rational integers.

FieldOfFractions(Z)

The function FieldOfFractions returns the field Q when R is either the ring Z of
rational integers, or the field Q itself.

Completion(Q, P)

Precision RngIntElt Default : ∞
Computes the completion of Q at the integral prime ideal P together with the injec-
tion into the completion.

The parameter Precision may be used to specify a particular precision.

20.2.2 Creation of Elements
Unlike elements of other structures, rational numbers and integers can be created as literals
without the need to define the parent field Q or the parent ring Z first, since these structures
are loaded whenever Magma is started up.

a / b

Given integers a and b 6= 0, form the rational number a/b (in reduced form). Of
course a and be are allowed to be given as expressions defining integers.

Q ! [a]

The inverse function to Eltseq, returns Q!a.

354 BASIC RINGS Part IV

Q ! [a, b]

elt< Q | a, b >

Given the rational field Q, and integers a, b (with b 6= 0), construct the rational
number a/b, in reduced form.

Q ! a

Given the rational field Q, and an integer a, create the rational number a = a/1 in
Q. Also, any element from a quadratic, cyclotomic or number field (or an order of
such) that is rational can be coerced into the rational field this way.

One(Q) Identity(Q)

Zero(Q) Representative(Q)

These generic functions (cf. Chapter 17) create 1, 1, 0, and 0 respectively, in the
rational field Q.

RootOfUnity(n, Q)

This function returns, in general, for a positive integer n and a cyclotomic field Q
a primitive n-th root of unity in Q; if Q is the rational field, n must be 1 or 2, and
the result will be 1 or −1 in Q accordingly.

Random(Q, m)

This function returns a random rational number with random numerator in [−u..u]
and random denominator in [1..u], where u is the absolute value of m.

20.3 Structure Operations

20.3.1 Related Structures

Category(Q)

Parent(Q) PrimeField(Q)

IntegralBasis(Q)

An integral basis for Q as a number field as a sequence of elements of Q (giving the
sequence containing 1 for the rational field).

MinimalField(q)

Return the least cyclotomic field containing the cyclotomic field element q; if q is
rational this returns the rational field.

Ch. 20 RATIONAL FIELD 355

MinimalField(S)

Returns the minimal cyclotomic field containing the cyclotomic field elements in the
enumerated set S; this will return the rational field if all elements of S are rational
numbers.

BaseField(Q)

In analogy to the number fields, returns the coefficient field of Q which will be Q.

Basis(Q)

AbsoluteBasis(Q)

A basis for Q as a Q-vector space, i.e. [1].

UnitGroup(Q)

The unit group of the maximal order of Q (i.e. of Z).

ClassGroup(Q)

The class group of the ring of integers Z of Q (which is trivial).

AutomorphismGroup(Q)

AutomorphismGroup(Q, Q)

The group of Q automorphisms of Q, ie. a trivial finitely presented group, the
parent structure for Q-automorphisms and a map from the group to actual field
automorphisms. In this case, of course the only Q-automorphism will be the identity.

Algebra(Q, Q)

The field of the rational number form canonically an algebra. This function returns
an associative Q-algebra isomorphic to Q and the map from the algebra to Q.

VectorSpace(Q, Q)

The field of the rational number form canonically a vector space. This function
returns a Q-vector space isomorphic to Q and the map from the vector space to Q.

Decomposition(Q, p)

For a prime p or for the “infinite prime” Infinity() compute the decomposition
in Q as a number field. This returns a list of length one containing a 2-tuple
describing the splitting behaviour: the first component contains p and the second
it’s ramification degree, ie. 1.

356 BASIC RINGS Part IV

20.3.2 Numerical Invariants
The functions below are defined for the rational field Q mainly because it often arises as
a degenerate case of quadratic or cyclotomic field constructions. See the corresponding
Chapters 35 and 36 for more.

Characteristic(Q)

Conductor(Q)

The smallest positive integer n such that Q is contained in the cyclotomic field
Q(ζn). For the rational field this is 1.

Degree(Q)

AbsoluteDegree(Q)

The degree of Q as a number field (which is 1 for the rational field).

Discriminant(Q)

AbsoluteDiscriminant(Q)

The field discriminant of Q (which is 1 for the rational field).

DefiningPolynomial(Q)

An irreducible polynomial over Q a root of which generates Q as a number field (for
the rational field this returns the linear polynomial x− 1).

Signature(Q)

The signature (number of real embeddings and pairs of complex embeddings) of Q.

20.3.3 Ring Predicates and Booleans

IsCommutative(Q) IsUnitary(Q)

IsFinite(Q) IsOrdered(Q)

IsField(Q) IsEuclideanDomain(Q)

IsPID(Q) IsUFD(Q)

IsDivisionRing(Q) IsEuclideanRing(Q)

IsPrincipalIdealRing(Q) IsDomain(Q)

Q eq R Q ne R

Ch. 20 RATIONAL FIELD 357

20.4 Element Operations

A variety of different types of operations are provided for rational elements including
arithmetic operations, comparison and predicates and converting to a sequence.

20.4.1 Parent and Category

Parent(r) Category(r)

20.4.2 Arithmetic Operators

+ a - a

a + b a - b a * b a ^ k a / b

a +:= b a -:= b a *:= b a /:= b a ^:= k

20.4.3 Numerator and Denominator

Numerator(q)

The (integer) numerator of the rational number q in reduced form.

Denominator(q)

The (integer) denominator of the rational number q in reduced form. This will
always be a positive integer.

Example H20E3

Rational numbers are always immediately put in reduced form, that is, the greatest common
divisor of numerator and denominator is taken out, and the denominator will be positive.

> Numerator(10/-4);

-5

> Denominator(10/-4);

2

20.4.4 Equality and Membership

a eq b a ne b

a in R a notin R

358 BASIC RINGS Part IV

20.4.5 Predicates on Ring Elements

IsIntegral(q)

Returns true if the rational number q is an element of the ring of integers, false
otherwise.

IsZero(a) IsOne(a) IsMinusOne(a)

IsNilpotent(a) IsIdempotent(a)

IsUnit(a) IsZeroDivisor(a) IsRegular(a)

IsIrreducible(a) IsPrime(a)

20.4.6 Comparison

a gt b a ge b a lt b a le b

Maximum(a, b) Maximum(Q)

Minimum(a, b) Minimum(Q)

20.4.7 Conjugates, Norm and Trace

ComplexConjugate(q)

The complex conjugate of q, which will be the rational number q itself.

Conjugate(q)

The conjugate of q, which will be the rational number q itself.

Norm(q)

Norm(q)

The norm (in Q) of q, which will be the rational number q itself.

Trace(q)

The trace (in Q) of q, which will be the rational number q itself.

MinimalPolynomial(q)

Returns the minimal polynomial of the rational number q, which is the monic linear
polynomial with constant coefficient q in a univariate polynomial ring R over the
rational field. (If R has not been created before with a name for its indeterminate,
$.1-q will be returned.)

Ch. 20 RATIONAL FIELD 359

20.4.8 Absolute Value and Sign

AbsoluteValue(q)

Abs(q)

The absolute value |q| of a rational number q.

Sign(q)

Returns the sign of the rational number q, which is one of the integers −1, 0, 1,
corresponding to the cases q < 0, q = 0, and q > 0.

Height(q)

The height of q = r/s. For r and s coprime, the height is defined as the maximum
of the absolute value of r and s.

20.4.9 Rounding and Truncating

Ceiling(q)

The ceiling of the rational number q, that is, the least integer greater than or equal
to q.

Floor(q)

The floor of the rational number q, that is, the largest integer less than or equal to
q.

Round(q)

This function returns the integer value of the rational number q rounded to the
nearest integer. In the case of a tie, rounding is done away from zero (that is, i+ 1

2
is rounded to i + 1, for non-negative integers i and i − 1

2 is rounded to i − 1, for
non-positive integers i).

Truncate(q)

This function returns the integer truncation of the rational number q, that is the
integral part of q. Thus the effect is that of rounding towards 0.

Qround(q, M)

ContFrac BoolElt Default : false

Finds an rational approximation d of q such that the denominator of d is bounded
by M . If ContFrac is given then an optimal approximation is computed using the
continued fraction process. By default d is obtained by some rounding procedure
which is faster but gives worse results.

360 BASIC RINGS Part IV

20.4.10 Rational Reconstruction
Under certain circumstances it is useful to have a partial inverse of the function ψm :
Q → Z/mZ of taking residues modulo m (where the obvious value of ψm is only defined
for rational numbers with denominator in smallest terms coprime to m); the partial inverse
of the function is sometimes referred to as ‘rational reconstruction’. For s ∈ Z/mZ the
value of ψ−1(s) is the rational number r for which ψm(r) = s and, in addition, the absolute
values of both the numerator and denominator of r are at most

√
m/2; such r does not

always exist, but if r exists it is unique.

RationalReconstruction(s)

Given an element s of a ring S of m elements, return a Boolean flag indicating
whether or not a rational number r exists such that for the representation r = n/d
in minimal terms it holds that n ·d−1 ≡ s mod m, |n| ≤

√
m/2 and 0 < d ≤

√
m/2.

If the flag is true, the element r is also returned. The ring S is allowed to be a residue
class ring Integers(m) or a finite field of prime cardinality p = m: FiniteField(p).

In addition, s is allowed to be a matrix over a prime finite field, in which case
the existence (and, if possible, value) of a rational reconstruction of the matrix is
determined.

20.4.11 Valuation

Valuation(x, p)

Valuation(x, I)

The valuation v of the rational number x at the prime p (the prime ideal I). This
is the difference of the valuations of the numerator and denominator of x. The
optional second return value is the rational u such that x = pvu.

20.4.12 Sequence Conversions

ElementToSequence(a)

Eltseq(a)

The sequence [a] for compatibility with the other field types.

21 FINITE FIELDS
21.1 Introduction 363

21.1.1 Representation of Finite Fields . . 363

21.1.2 Conway Polynomials 363

21.1.3 Ground Field and Relationships . . 364

21.2 Creation Functions 364

21.2.1 Creation of Structures 364

FiniteField(q) 364
GaloisField(q) 364
GF(q) 364
FiniteField(p, n) 365
GaloisField(p, n) 365
GF(p, n) 365
ext< > 365
ext< > 366
ExtensionField< > 366
RandomExtension(F, n) 366
SplittingField(P) 366
SplittingField(S) 366
sub< > 366
sub< > 367
GroundField(F) 367
BaseField(F) 367
PrimeField(F) 367
IsPrimeField(F) 367
meet 367
CommonOverfield(K, L) 367

21.2.2 Creating Relations 368

Embed(E, F) 368
Embed(E, F, x) 368

21.2.3 Special Options 368

AssertAttribute(FldFin,
"PowerPrinting", l) 369

SetPowerPrinting(F, l) 369
AssertAttribute(F,

"PowerPrinting", l) 369
HasAttribute(FldFin,

"PowerPrinting", l) 369
HasAttribute(F, "PowerPrinting") 369
AssignNames(∼F, [f]) 369
Name(F, 1) 370

21.2.4 Homomorphisms 370

hom< > 370

21.2.5 Creation of Elements 370

. 370
elt< > 370
! 370
elt< > 371
One Identity 371
Zero Representative 371

Random(F) 371

21.2.6 Special Elements 371

. 371
Generator(F) 371
Generator(F, E) 371
PrimitiveElement(F) 371
SetPrimitiveElement(F, x) 371
NormalElement(F) 372
NormalElement(F, E) 372

21.2.7 Sequence Conversions 372

SequenceToElement(s, F) 372
Seqelt(s, F) 372
ElementToSequence(a) 372
Eltseq(a) 372
ElementToSequence(a, E) 372
Eltseq(a, E) 372

21.3 Structure Operations 372

21.3.1 Related Structures 373

Category Parent Centre 373
PrimeRing PrimeField 373
FieldOfFractions 373
AdditiveGroup(F) 373
MultiplicativeGroup(F) 373
UnitGroup(F) 373
Set(F) 373
VectorSpace(F, E) 373
VectorSpace(F, E, B) 373
MatrixAlgebra(F, E) 374
MatrixAlgebra(A, E) 374
GaloisGroup(K, k) 374
AutomorphismGroup(K, k) 375

21.3.2 Numerical Invariants 375

Characteristic # 375
Degree(F) 375
Degree(F, E) 375

21.3.3 Defining Polynomial 375

DefiningPolynomial(F) 375
DefiningPolynomial(F, E) 375

21.3.4 Ring Predicates and Booleans . . . 375

IsConway(F) 375
IsDefault(F) 375
IsCommutative IsUnitary 375
IsFinite IsOrdered 375
IsField IsEuclideanDomain 375
IsPID IsUFD 375
IsDivisionRing IsEuclideanRing 376
IsPrincipalIdealRing IsDomain 376
eq ne 376

21.3.5 Roots 376

Roots(f) 376

362 BASIC RINGS Part IV

RootsInSplittingField(f) 376
FactorizationOverSplittingField(f) 376
RootOfUnity(n, K) 376

21.4 Element Operations 377

21.4.1 Arithmetic Operators 377

+ - 377
+ - * / ^ 377
+:= -:= *:= 377

21.4.2 Equality and Membership 377

eq ne 377
in notin 377

21.4.3 Parent and Category 377

Parent Category 377

21.4.4 Predicates on Ring Elements . . . 378

IsZero IsOne IsMinusOne 378
IsNilpotent IsIdempotent 378
IsUnit IsZeroDivisor IsRegular 378
IsIrreducible IsPrime 378
IsPrimitive(a) 378
IsPrimitive(f) 378
IsNormal(a) 378
IsNormal(a, E) 378
IsSquare(a) 378

21.4.5 Minimal and Characteristic Polyno-
mial 378

MinimalPolynomial(a) 378
MinimalPolynomial(a, E) 378
CharacteristicPolynomial(a) 379
CharacteristicPolynomial(a, E) 379

21.4.6 Norm, Trace and Frobenius 379

Norm(a) 379
Norm(a, E) 379
AbsoluteNorm(a) 379
NormAbs(a) 379
Trace(a) 379
Trace(a, E) 379
AbsoluteTrace(a) 379

TraceAbs(a) 379
Frobenius(a) 379
Frobenius(a, r) 380
Frobenius(a, E) 380
Frobenius(a, E, r) 380
NormEquation(K, y) 380
Hilbert90(a, q) 380
AdditiveHilbert90(a, q) 380

21.4.7 Order and Roots 380

Order(a) 380
FactoredOrder(a) 380
SquareRoot(a) 380
Sqrt(a) 380
Root(a, n) 380
IsPower(a, n) 381
AllRoots(a, n) 381

21.5 Polynomials for Finite Fields . 382

IrreduciblePolynomial(F, n) 382
RandomIrreduciblePolynomial(F, n) 382
IrreducibleLowTermGF2Polynomial(n) 382
IrreducibleSparseGF2Polynomial(n) 382
PrimitivePolynomial(F, m) 382
AllIrreduciblePolynomials(F, m) 382
ConwayPolynomial(p, n) 382
ExistsConwayPolynomial(p, n) 382

21.6 Discrete Logarithms 383

Log(x) 384
Log(b, x) 384
ZechLog(K, n) 384
Sieve(K) 384
SetVerbose("FFLog", v) 384

21.7 Permutation Polynomials . . . 386

DicksonFirst(n, a) 386
DicksonSecond(n, a) 386
IsProbablyPermutationPolynomial(p) 386

21.8 Bibliography 387

Chapter 21

FINITE FIELDS

21.1 Introduction
Magma provides a powerful environment for computing with lattices of finite fields. Com-
plete freedom in the manner in which fields are constructed is allowed, while assuring
compatibility. Finite fields of various kinds are supported, with optimized representations
for each kind. For a detailed description of how finite fields are presented in Magma, see
[BCS97].

21.1.1 Representation of Finite Fields
In Magma, arithmetic in small non-prime finite fields is carried out using tables of Zech
logarithms. While this ensures that finite field arithmetic is fast, its use is limited to finite
fields of small cardinality.

Larger finite fields are internally represented as polynomial rings over a small finite field.
It is possible for the user to specify his own irreducible polynomial (although internally an
alternative representation may well be used).

Although two finite fields of the same cardinality are isomorphic, in practical appli-
cations it is often important to be guaranteed to work in a field defined by a specific
polynomial. Moreover, in passing between fields and subfields, choices regarding the em-
beddings have to be made, so that these embeddings are compatible (so that ‘diagrams
commute’). The scheme implemented in Magma and described in [BCS97] ensures that
this is so.

21.1.2 Conway Polynomials
To avoid ambiguities when talking about (small) finite fields, Conway polynomials have
been defined and calculated by R. Parker. The Conway polynomial Cp,n is the lexicograph-
ically first monic irreducible, primitive polynomial of degree n over Fp with the property
that it is consistent with all Cp,m for m dividing n. Consistency of Cp,n and Cp,m for m

dividing nmeans that for a root α of Cp,n it holds that β = α
pn−1
pm−1 is a root of Cp,m. Lexico-

graphically first is with respect to the system of representatives −p−1
2 , . . . ,−1, 0, 1, . . . , p−1

2

for the residue classes modulo p, ordered via 0 < −1 < 1 < −2 < · · · p−1
2 (and we only

need to compare polynomials of the same degree).
To compute the Conway polynomial Cp,n one needs to know all Conway polynomials

Cp,m for m dividing n, and as far as we know, no essentially better method is known than
enumerating and testing the primitive polynomials of degree n in lexicographical order.

Conway polynomials are used in Magma by default for the construction of Fpn using
FiniteField(p, n) or its synonyms, whenever the Conway polynomial is available. How-
ever, it must be stressed that Conway polynomials are only used in Magma to provide

364 BASIC RINGS Part IV

standard defining polynomials for Fpn – the special properties of Conway polynomials are
never used because they are totally irrelevant in the scheme implemented in Magma!

21.1.3 Ground Field and Relationships
Throughout this Chapter we will use the notions of ground field and prime field in the
following way. The prime field of a finite field F is the unique field of cardinality p, the
characteristic of F . Here we mean unique not just in the mathematical sense, but in
the sense that all prime fields of the same cardinality are identical in Magma, and their
elements are denoted 0, 1, . . . , p − 1. The ground field of F is the field over which F is
created as an extension. If F was not explicitly created as an extension of a finite field
E by using ext, its ground field will be the prime field. Printing in Magma always takes
place with respect to the ground field, that is, elements of F are expressed as polynomials
in the generator F.1 of the field with coefficients in the ground field; there is one exception
to this rule: if the field F is small enough to be represented by means of Zech logarithms,
the printing of elements is in the form of powers of the primitive element (see the option
on AssertAttribute below for ways of changing that).

It should be kept in mind that finite fields may be related mathematically without
Magma being aware of the relation between them. This happens for example when two
fields of dividing degrees are created as extensions of one field; although an isomorphic
image of the smaller field will be contained in the larger, Magma will not establish this
relation (unless the user explicitly asks for it, using the Embed function). However, all
subfields of one common overfield in Magma will have their inclusion relations set up
automatically.

21.2 Creation Functions

Since V2.13, a database of low-term irreducible polynomials over F2 is available for all
degrees up to 90000 (see the function IrreducibleLowTermGF2Polynomial below). Thus
one can create the finite field F2k for k within this range and compute within the field
without any delay in the creation. Advantage is also taken of the special form of the
defining polynomial.

Previous to V2.11, sparse trinomial/pentanomial irreducible polynomials (see the func-
tion IrreducibleSparseGF2Polynomial) were used by default for constructing GF (2k)
when k is beyond the Conway range. To enable compatibility with older versions, one may
select these sparse polynomials with the parameter Sparse in the creation functions.

21.2.1 Creation of Structures

FiniteField(q)

GaloisField(q)

GF(q)

Optimize BoolElt Default : true

Ch. 21 FINITE FIELDS 365

Sparse BoolElt Default : false

Given q = pn, where p is a prime, create the finite field Fq. If p is very big, it
is advised to use the form FiniteField(p, n) described below instead, because
Magma will first attempt to factor q completely.

The primitive polynomial used to construct Fq when n > 1 will be a Conway
polynomial, if it is available. If the parameter Optimize is false, then no optimized
representation (i.e., by using Zech logarithm tables or internal multi-step extensions)
will be constructed for the new field which means that the time to create the field
will be trivial but arithmetic operations in the field may be slower – this is useful
if say one wishes to just compute a few trivial operations on a few elements of the
field alone.

If q = 2k and k is beyond the Conway range, then a low-term irreducible
is used (see IrreducibleLowTermGF2Polynomial below). Setting the parameter
Sparse to true will cause a sparse polynomial to be used instead if possible (see
IrreducibleSparseGF2Polynomial below).

FiniteField(p, n)

GaloisField(p, n)

GF(p, n)

Check BoolElt Default : true

Optimize BoolElt Default : true

Sparse BoolElt Default : false

Given a prime p and an exponent n ≥ 1, create the finite field Fpn . The primitive
polynomial used to construct Fq when n > 1 will be a Conway polynomial, if it is
available.

By default p is checked to be a strong pseudoprime for 20 random bases b with
1 < b < p; if the parameter Check is false, then no check is done on p at all (this is
useful when p is very large and one does not wish to perform an expensive primality
test on p).

The parameters are as above.

ext< F | n >

Optimize BoolElt Default : true

Sparse BoolElt Default : false

Given a finite field F and a positive integer n, create an extension G of degree n
of F , as well as the embedding map φ : F → G. The parameter Optimize has the
same behaviour as that for the FiniteField function. If F is a default field, then
G will also be a default field (so its ground field will be the prime field). Otherwise,
the ground field of G will be F .

The parameters are as above.

366 BASIC RINGS Part IV

ext< F | P >

Optimize BoolElt Default : true

Given a finite field F and a polynomial P of degree n over F , create an extension
G = F [α] of degree n of F , as well as the natural embedding map φ : F → G;
the polynomial P must be irreducible over F , and α is one of its roots. Thus the
defining polynomial of G over F will be P . The parameter Optimize has the same
behaviour as that for the FiniteField function. The ground field of G will be F .

The parameter is as above.

ExtensionField< F, x | P >

Given a finite field F , a literal identifier x, and a polynomial P of degree n over F
presented as a (polynomial) expression in x, create an extension G = F [x] of degree
n of F , as well as the natural embedding map φ : F → G; the polynomial P must
be irreducible over F , and x is one of its roots. Thus the defining polynomial of
G over F will be P . The parameter Optimize has the same behaviour as in the
FiniteField function.

RandomExtension(F, n)

Given a finite field F and a degree n, return the extension of F by a random degree-n
irreducible polynomial over F .

SplittingField(P)

Given a univariate polynomial P over a finite field F , create the minimal splitting
field of P , that is, the smallest-degree extension field G of F such that P factors
completely into linear factors over G.

SplittingField(S)

Given a set S of univariate polynomials each over a finite field F , create the minimal
splitting field of S, that is, the smallest-degree extension field G of F such that for
every polynomial P of S, P factors completely into linear factors over G.

sub< F | d >

Optimize BoolElt Default : true

Sparse BoolElt Default : false

Given a finite field F of cardinality pn and a positive divisor d of n, create a subfield
E of F of degree d, as well as the embedding map φ : E → F .

The parameters are as above.

Ch. 21 FINITE FIELDS 367

sub< F | f >

Optimize BoolElt Default : true

Sparse BoolElt Default : false

Given a finite field F and an element f of F , create the subfield E of F generated by
f , together with the embedding map φ : E → F . The map and field are constructed
so that φ(w) = f , where w is the generator of E (that is, E.1).

The parameters are as above.

GroundField(F)

BaseField(F)

Given a finite field F , return its ground field. If F was constructed as an extension
of the field E, this function returns E; if F was not explicitly constructed as an
extension then the prime field is returned.

PrimeField(F)

The subfield of F of prime cardinality.

IsPrimeField(F)

Returns whether field F is a prime field.

F meet G

Given finite fields F and G of the same characteristic p, return the finite field that
forms the intersection F ∩G.

CommonOverfield(K, L)

Given finite fields K and L, both of characteristic p, return the smallest field which
contains both of them.

Example H21E1

To define the field of 7 elements, use

> F7 := FiniteField(7);

We can define the field of 74 elements in several different ways. We can use the Conway polynomial:

> F<z> := FiniteField(7^4);

> F;

Finite field of size 7^4

We can define it as an extension of the field of 7 elements, using the internal polynomial:

> F<z> := ext< F7 | 4 >;

> F;

Finite field of size 7^4

We can supply our own polynomial, say x4 + 4x3 + 2x + 3:

> P<x> := PolynomialRing(F7);

368 BASIC RINGS Part IV

> p := x^4+4*x^3+2*x+3;

> F<z> := ext< F7 | p >;

> F;

Finite field of size 7^4

We can define it as an extension of the field of 72 elements:

> F49<w> := ext< F7 | 2 >;

> F<z> := ext< F49 | 2 >;

> F;

Finite field of size 7^4

21.2.2 Creating Relations

Embed(E, F)

Given finite fields E and F of cardinality pd and pn, such that d divides n, assert the
embedding relation between E and F . That is, an isomorphism between E and the
subfield of F of cardinality pd is chosen and set up, and can be used from then on
to move between the fields E and F . See [BCS97] for details as to how this is done.
If both E and F have been defined with Conway polynomials then the isomorphism

will be such that the generator β of F is mapped to α
pn−1
pd−1 , where α is the generator

of F .

Embed(E, F, x)

Given finite fields E and F of cardinality pd and pn such that d divides n, as well
as an element x ∈ F , assert the embedding relation between E and F mapping
the generator of E to x. The element x must be a root of the polynomial defining
E over the prime field. Thus an isomorphism between E and the subfield of F of
cardinality pd is set up, and can be used from then on to move between the fields
E and F .

21.2.3 Special Options
For finite fields for which the complete table of Zech logarithms is stored (and which must
therefore be small), printing of elements can be done in two ways: either as powers of the
primitive element or as polynomials in the generating element.

Note that power printing is not available in all cases where the logarithm table is stored
however (the defining polynomial may not be primitive); for convenience element of a prime
field are always printed as integers, and therefore power printing on prime fields will not
work. Also, if a field is created with a generator that is not primitive, then power printing
will be impossible.

Ch. 21 FINITE FIELDS 369

AssertAttribute(FldFin, "PowerPrinting", l)

This attribute is used to change the default printing for all (small) finite fields
created after the AssertAttribute command is executed. If l is true all elements
of finite fields small enough for the Zech logarithms to be stored will be printed by
default as a power of the primitive element – see PrimitiveElement). If l is false
every finite field element is printed by default as a polynomial in the generator F.1
of degree less than n over the ground field. The default can be overruled for a
particular finite field by use of the AssertAttribute option listed below. The value
of this attribute is obtained by use of HasAttribute(FldFin, "PowerPrinting").

SetPowerPrinting(F, l)

AssertAttribute(F, "PowerPrinting", l)

Given a finite field F , the Boolean value l can be used to control the printing of
elements of F , provided that F is small enough for the table of Zech logarithms
to be stored. If l is true all elements will be printed as a power of the primitive
element – see PrimitiveElement). If l is false (which is the only possibility for
big fields), every element of F is printed as a polynomial in the generator F.1 of
degree less than n over the ground field of F , where n is the degree of F over its
ground field. The function HasAttribute(F, "PowerPrinting") may be used to
obtain the current value of this flag.

HasAttribute(FldFin, "PowerPrinting", l)

This function is used to find the current default printing style for all (small) finite
fields. It returns true (since this attribute is always defined for FldFin), and also re-
turns the current value of the attribute. The procedure AssertAttribute(FldFin,
"PowerPrinting", l) may be used to control the value of this flag.

HasAttribute(F, "PowerPrinting")

Given a finite field F that is small enough for the table of Zech logarithms to be
stored, returns true if the attribute "PowerPrinting" is defined, else returns false.
If the attribute is defined, the function also returns the value of the attribute. The
procedure AssertAttribute(F, "PowerPrinting", l) may be used to control the
value of this flag.

AssignNames(∼F, [f])

Procedure to change the name of the generating element in the finite field F to the
contents of the string f . When F is created, the name will be F.1.

This procedure only changes the name used in printing the elements of F . It
does not assign to an identifier called f the value of the generator in F ; to do this,
use an assignment statement, or use angle brackets when creating the field.

Note that since this is a procedure that modifies F , it is necessary to have a
reference ∼F to F in the call to this function.

370 BASIC RINGS Part IV

Name(F, 1)

Given a finite field F , return the element which has the name attached to it, that
is, return the element F.1 of F .

21.2.4 Homomorphisms

hom< F -> G | x >

Given a finite field F , create a homomorphism with F as its domain and G as its
codomain. If F is a prime field, then the right hand side in the constructor must
be empty; in this case the ring homomorphism is completely determined by the rule
that the map must be unitary, that is, 1 of F is mapped to 1 of G. If F is not
of prime cardinality, then the homomorphism must be specified by supplying one
element x in the codomain, which serves as the image of the generator of the field
F over its prime field. Note that it is the responsibility of the user that the map
defines a homomorphism.

21.2.5 Creation of Elements

F . 1

The generator for F as an algebra over its ground field. Thus, if F was defined by
the polynomial P = P (X) over E, so F ∼= E[X]/P (X), then F.1 is the image of X
in F .

If F is a prime field, then 1 = 1F will be returned.

elt< F | a >

F ! a

Given a finite field F create the element specified by a; here a is allowed to be an
element coercible into F , which means that a may be

(i) an element of F ;

(ii)an element of a subfield of F ;

(iii)an element of an overfield of F that lies in F ;

(iv)an integer, to be identified with a modulo the characteristic of F ;

(v)a sequence of elements of the ground field E of F , of length equal to the degree
of F over E. In this case the element a0 +a1w+ · · ·+an−1w

n−1 is created, where
a = [a0, . . . an−1] and w is the generator F.1 of F over E.

Ch. 21 FINITE FIELDS 371

elt< F | a0, ..., an−1 >

Given a finite field F with generator w of degree n over the ground field E, create
the element a0 +a1w+ · · ·+an−1w

n−1 ∈ F , where ai ∈ E (0 ≤ i ≤ n− 1). If the ai

are in some subfield of E or the ai are integers, they will be coerced into the ground
field.

One(F) Identity(F)

Zero(F) Representative(F)

These generic functions (cf. Chapter 17) create 1, 1, 0, and 0 respectively, in any
finite field.

Random(F)

Create a ‘random’ element of finite field F .

21.2.6 Special Elements

F . 1

Generator(F)

Given a finite field F , this function returns the element f of F that generates F
over its ground field E, so F = E[f]. This is the same as the element F.1.

Generator(F, E)

Given a finite field F and a subfield E of F , this function returns an element f of
F that generates F over E, so F = E[f]. Note that this element may be different
from the element F.1, but if F.1 works it will be returned.

PrimitiveElement(F)

Given a finite field F , this function returns a primitive element for F , that is, a
generator for the multiplicative group F ∗ of F . Note that this may be an element
different from the generator F.1 for the field as an algebra. This function will return
the same element upon different calls with the same field; the primitive element that
is returned is the one that is used as basis for the Log function.

SetPrimitiveElement(F, x)

(Procedure.) Given a finite field F and a primitive element x of F , set the internal
primitive element p of F to be x. If the internal primitive element p of F has already
been computed or set, x must equal it. The function Log (given one argument)
returns the logarithm of its argument with respect to the base p; this function thus
allows one to specify which base should be used. (One can also use Log(x, b) for a
given base but setting the primitive element and using Log(x) will be faster if many
logarithms are to be computed.)

372 BASIC RINGS Part IV

NormalElement(F)

Given a finite field F = Fpn , this function returns a normal element for F over the
ground field G, that is, an element α ∈ F such that α, αq, . . . , αqn−1

forms a basis
for F over G, where q is the cardinality of G, and n the degree for F over G. Two
calls to this function with the same field may result in different normal elements.

NormalElement(F, E)

Given a finite field F = Fqn and a subfield E = Fq, this function returns a normal
element for F over E, that is, an element α ∈ F such that α, αq, . . . , αqn−1

forms a
basis for F over E.

21.2.7 Sequence Conversions

SequenceToElement(s, F)

Seqelt(s, F)

Given a sequence s = [s0, . . . , sn−1] of elements of a finite field E, of length equal to
the degree of the field F over its subfield E, construct the element s = s0 + s1w +
· · ·+ sn−1w

n−1 of F , where w is the generator F.1 of F over E.

ElementToSequence(a)

Eltseq(a)

Given an element a of the finite field F , return the sequence of coefficients
[a0, . . . , an−1] in the ground field E of F such that a = a0 + a1w+ · · ·+ an−1w

n−1,
with w the generator of F over E, and n the degree of F over E.

ElementToSequence(a, E)

Eltseq(a, E)

Given an element a of the finite field F , return the sequence of coefficients
[a0, . . . , an−1] in the subfield E of F such that a = a0 + a1w + · · · + an−1w

n−1,
with w the generator of F over E, and n the degree of F over E.

21.3 Structure Operations

Ch. 21 FINITE FIELDS 373

21.3.1 Related Structures

Category(F) Parent(F) Centre(F)

PrimeRing(F) PrimeField(F)

FieldOfFractions(F)

AdditiveGroup(F)

Given F = Fq, create the finite additive abelian group A of order q = pr that is the
direct sum of r copies of the cyclic group of order p, together with the corresponding
isomorphism from the group A to the field F .

MultiplicativeGroup(F)

UnitGroup(F)

Given F = Fq, create the multiplicative group of R as an abelian group. This
returns the (additive) cyclic group A of order q− 1, together with a map from A to
F \ 0, sending 1 to a primitive element of F .

Set(F)

Create the enumerated set consisting of the elements of finite field F .

VectorSpace(F, E)

Given a finite field F that is an extension of degree n of E, define the natural
isomorphism between F and the n-dimensional vector space En. The function
returns two values:
(a)A vector space V ∼= En;
(b)The isomorphism φ : F → V .
The basis of V is chosen to correspond with the power basis α0, α1, . . ., αn−1 of F ,
where α is the generator returned by Generator(F, E), so that V = E · 1×E ·α×
· · · × E · αn−1 and φ : αi → ei+1, (for i = 0, . . . , n− 1), where ei is the basis vector
of V having all components zero, except the i-th, which is one.

VectorSpace(F, E, B)

Given a finite field F that is an extension of degree n of E, define the isomorphism
between F and the n-dimensional vector space En defined by the basis B for F over
E. The function returns two values:
(a)A vector space V ∼= En;
(b)The isomorphism φ : F → V .
The basis of V is chosen to correspond with the basis B = β1, β2, . . . , βn of F over
E, as specified by the user, so that V = E ·β1×E ·β2×· · ·×E ·βn. φ : βi → ei, (for
i = 1, . . . , n), where ei is the basis vector of V having all components zero, except
the i-th, which is one.

374 BASIC RINGS Part IV

MatrixAlgebra(F, E)

Let F be a finite field that is an extension of degree n of E. The function returns
two values:

(a)A matrix algebra A of degree n, such that A is isomorphic to F ;

(b)An isomorphism φ : F → A.

The matrix algebra A will be the subalgebra of the full algebra of n × n matrices
over E generated by the companion matrix C of the defining polynomial of F over
E. The generator Generator(F, E) of F over E is thus mapped to C.

MatrixAlgebra(A, E)

Let F be a finite field. Let A be a matrix algebra over F , and E be a subfield of F .
The function returns two values:

(a)A matrix algebra N over E isomorphic to A, obtained from A by expanding each
component of an element of A into the block matrix associated with it;

(b)An E-isomorphism φ : A→ N .

N is A considered as an E-matrix algebra.

Example H21E2

Given the field F of 74 elements defined as an extension of the field F49 of 72 elements as above,
we can construct two vector spaces, one of dimension 2, and the other of dimension 4:

> F7 := FiniteField(7);

> F49<w> := ext< F7 | 2 >;

> F<z> := ext< F49 | 2 >;

> v2, i2 := VectorSpace(F, F49);

> v2;

Full Vector space of degree 2 over GF(7^2)

> i2(z^12);

(w w^28)

> v4, i4 := VectorSpace(F, PrimeField(F));

> v4;

Full Vector space of degree 4 over GF(7)

> i4(z^12);

(5 3 6 4)

GaloisGroup(K, k)

Compute the Galois group (which is of course cyclic) of K/k as a permutation group.
The group is returned as well as the roots of the defining polynomial of K/k in a
compatible ordering.

Ch. 21 FINITE FIELDS 375

AutomorphismGroup(K, k)

Computes the (cyclic) group of k-automorphisms ofK. The group is returned as well
as a sequence of all automorphisms and a map sending an element of the abstract
automorphism group to an explicit automorphism.

21.3.2 Numerical Invariants

Characteristic(F) # F

Degree(F)

The absolute degree of F , that is, the degree over its prime subfield.

Degree(F, E)

Given a finite field F that has been constructed as an extension of a field E, return
the degree of F over E.

21.3.3 Defining Polynomial

DefiningPolynomial(F)

Given a finite field F that has been constructed as an extension of a field E, return
the polynomial with coefficients in E that was used to define F as an extension of
E. This is the minimum polynomial of F.1.

DefiningPolynomial(F, E)

Given a finite field F and a subfield E, return the polynomial with coefficients in E
used to define F as an extension of E. This is the same as the minimum polynomial
of the generator Generator(F, E) over E.

21.3.4 Ring Predicates and Booleans

IsConway(F)

Given a finite field F , this function returns true iff F is defined over its prime field
using a Conway polynomial.

IsDefault(F)

Given a finite field F , this function returns true iff F is a default field.

IsCommutative(F) IsUnitary(F)

IsFinite(F) IsOrdered(F)

IsField(F) IsEuclideanDomain(F)

IsPID(F) IsUFD(F)

376 BASIC RINGS Part IV

IsDivisionRing(F) IsEuclideanRing(F)

IsPrincipalIdealRing(F) IsDomain(F)

F eq G F ne G

21.3.5 Roots

Roots(f)

Given a polynomial f over a finite field F , this function finds all roots of f in F ,
and returns a sorted sequence of tuples (pairs), each consisting of a root of f in F
and its multiplicity.

RootsInSplittingField(f)

Given a univariate polynomial f over a finite field K, compute the minimal splitting
field S of f as an extension field of K, and return the roots of f in S, together with
S. Using this function will be faster than computing the roots of f anew over the
splitting field.

FactorizationOverSplittingField(f)

Given a univariate polynomial f over a finite field K, compute the minimal splitting
field S of f as an extension field of K, and return the factorization (into linears)
of f over S, together with S. Using this function will be faster than factorizing f
anew over the splitting field.

RootOfUnity(n, K)

Return a primitive n-th root of unity in the smallest possible extension field of K.

Example H21E3

We compute the roots of a certain degree-20 polynomial f in its minimal splitting field.

> K := GF(2);

> P<x> := PolynomialRing(GF(2));

> f := x^20 + x^11 + 1;

> Factorization(f);

[

<x^3 + x^2 + 1, 1>,

<x^8 + x^7 + x^3 + x^2 + 1, 1>,

<x^9 + x^7 + x^6 + x^4 + 1, 1>

]

> time r, S<w> := RootsInSplittingField(f);

Time: 0.040

We note that the splitting field S has degree 72 and there are 20 roots of f in S of course. We
check that the evaluation of f at each root is zero.

> S;

Ch. 21 FINITE FIELDS 377

Finite field of size 2^72

> DefiningPolynomial(S);

x^72 + x^48 + x^47 + x^44 + x^38 + x^35 + x^32 + x^31 + x^30 +

x^29 + x^27 + x^25 + x^23 + x^22 + x^21 + x^18 + x^15 +

x^12 + x^8 + x^4 + 1

> #r;

20

> r[1];

<w^68 + w^67 + w^64 + w^62 + w^60 + w^59 + w^56 + w^50 + w^49 +

w^48 + w^47 + w^44 + w^43 + w^39 + w^37 + w^35 + w^33 + w^32

+ w^30 + w^29 + w^28 + w^25 + w^21 + w^19 + w^18 + w^16 +

w^15 + w^14 + w^12 + w^10 + w^6 + w, 1>

> [IsZero(Evaluate(f, t[1])): t in r];

[true, true, true, true, true, true, true, true, true, true, true, true,

true, true, true, true, true, true, true, true]

21.4 Element Operations

See also Section 17.5.

21.4.1 Arithmetic Operators

+ a - a

a + b a - b a * b a / b

a ^ k

a +:= b a -:= b a *:= b

21.4.2 Equality and Membership

a eq b a ne b

a in F a notin F

21.4.3 Parent and Category

Parent(a) Category(a)

378 BASIC RINGS Part IV

21.4.4 Predicates on Ring Elements

IsZero(a) IsOne(a) IsMinusOne(a)

IsNilpotent(a) IsIdempotent(a)

IsUnit(a) IsZeroDivisor(a) IsRegular(a)

IsIrreducible(a) IsPrime(a)

IsPrimitive(a)

Returns true if and only if the element a of F is a primitive element for F (i.e., if
and only if the multiplicative order of a is #F − 1).

IsPrimitive(f)

Given a univariate polynomial f ∈ F [x], over a finite field F , such that the degree
of f is greater than or equal to 1, this function returns true if and only if f defines
a primitive extension G = F [x]/f of F (that is, x is primitive in G).

IsNormal(a)

Returns true if and only if the element a of F generates a normal basis for the field
over the ground field, that is, if and only if a, aq, . . . , aqn−1

form a basis for F over
the ground field G = Fq.

IsNormal(a, E)

Returns true if and only if the element a of the finite field F with qn elements gen-
erates a normal basis for F over its subfield E, that is, if and only if a, aq, . . . , aqn−1

form a basis for F over E for q = #E.

IsSquare(a)

Given a finite field element a ∈ F , this function returns either true and an element
b ∈ F such that b2 = a, or it returns false in the case that such an element does
not exist.

21.4.5 Minimal and Characteristic Polynomial

MinimalPolynomial(a)

The minimal polynomial of the element a of the field F , relative to the ground field
of F . This is the unique minimal-degree monic polynomial with coefficients in the
ground field, having a as a root.

MinimalPolynomial(a, E)

The minimal polynomial of the element a of the field F , relative to the subfield E
of F . This is the unique minimal-degree monic polynomial with coefficients in E,
having a as a root.

Ch. 21 FINITE FIELDS 379

CharacteristicPolynomial(a)

Given an element a of a finite field F , return the characteristic polynomial of a with
respect to the ground field of F . (This polynomial is the characteristic polynomial
of the companion matrix of a written as a polynomial over the ground field, and is
a power of the minimal polynomial.)

CharacteristicPolynomial(a, E)

Given an element a of a finite field F , return the characteristic polynomial of a with
respect to the subfield E of F . (This polynomial is the characteristic polynomial of
the companion matrix of a written as a polynomial over E, and is a power of the
minimal polynomial over E.)

21.4.6 Norm, Trace and Frobenius

Norm(a)

The norm of the element a from the field F to the ground field of F .

Norm(a, E)

The relative norm of the element a from the field F , with respect to the subfield E
of F . The result is an element of E.

AbsoluteNorm(a)

NormAbs(a)

The absolute norm of the element a, that is, the norm to the prime subfield of the
parent field F of a.

Trace(a)

The trace of the element a from the field F to the ground field of F .

Trace(a, E)

The relative trace of the element a from field F , with respect to the subfield E of
F . The result is an element of E.

AbsoluteTrace(a)

TraceAbs(a)

The trace of the element a, that is, the trace to the prime subfield of the parent
field F of a.

Frobenius(a)

The Frobenius image of a w.r.t. the ground field of K; i.e., a#G, where G is the
ground field of the parent of a.

380 BASIC RINGS Part IV

Frobenius(a, r)

The r-th Frobenius image of a w.r.t. the ground field of K; i.e., a(#G)r

, where G is
the ground field of the parent of a.

Frobenius(a, E)

The Frobenius image of x w.r.t. E; i.e., x#E .

Frobenius(a, E, r)

The Frobenius image of x w.r.t. E; i.e., x(#E)r

.

NormEquation(K, y)

Given a finite field K and an element y of a subfield S of K, return whether an
element x ∈ K exists such that Norm(x, S) = y, and, if so, such an element x (in
K).

Hilbert90(a, q)

Given an element a of some finite field k and a power q of the characteristic of k,
return a solution of the Hilbert 90 equation xqx−1 = a. Note that the solution may
be in an finite-degree extension of k.

AdditiveHilbert90(a, q)

Given an element a of some finite field k and a power q of the characteristic of k,
return a solution of the additive Hilbert 90 equation xq − x = a. Note that the
solution may be in an finite-degree extension of k.

21.4.7 Order and Roots

Order(a)

The multiplicative order of the non-zero element a of the field F .

FactoredOrder(a)

The multiplicative order of the non-zero element a of the field F as a factorization
sequence.

SquareRoot(a)

Sqrt(a)

The square root of the non-zero element a from the field F , i.e., an element y of F
such that y2 = a. An error results if a is not a square.

Root(a, n)

The n-th root of the non-zero element a from the field F , i.e., an element y of F
such that yn = a. An error results if no such root exists.

Ch. 21 FINITE FIELDS 381

IsPower(a, n)

Given a finite field element a ∈ F , and an integer n > 0, this function returns either
true and an element b ∈ F such that bn = a, or it returns false in the case that
such an element does not exist.

AllRoots(a, n)

Given a finite field element a ∈ F , and an integer n > 0, return a sequence containing
all of the n-th roots of a which lie in the same field F .

Example H21E4

Given the fields F and F49 defined above, we can use the following functions:

> F7 := FiniteField(7);

> F49<w> := ext< F7 | 2 >;

> F<z> := ext< F49 | 2 >;

> Root(z^73, 7);

z^1039

> Trace(z^73);

0

> Trace(z^73, F49);

w^44

> Norm(z^73);

3

> Norm(z^73, F49);

w^37

> Norm(w^37);

3

> MinimalPolynomial(z^73);

x^2 + w^20*x + w^43

> MinimalPolynomial(z^73, F7);

x^4 + 4*x^2 + 4*x + 3

We now demonstrate the NormEquation function.

> Norm(z);

3

> NormEquation(F, F7!3);

true z

> Norm(z^30, F49);

w^30

> Parent(z) eq F;

true

> NormEquation(F, w^30);

true z^30

382 BASIC RINGS Part IV

21.5 Polynomials for Finite Fields

IrreduciblePolynomial(F, n)

Given a finite field F and a positive integer n > 1, return a polynomial of degree
n that is irreducible over F . If a Conway polynomial or a sparse polynomial is
available, then it is returned.

RandomIrreduciblePolynomial(F, n)

Given a finite field F and a positive integer n > 1, return a random irreducible
polynomial of degree n that is irreducible over F . The polynomial will be dense in
general (that is, a Conway or stored sparse polynomial is not used).

IrreducibleLowTermGF2Polynomial(n)

Given an integer n in the range 1 ≤ n ≤ 100000, return the irreducible polynomial f
of the form xn+g where the degree of g is minimal and g is the first such polynomial
in lexicographical order.

This uses a database of low-term irreducible polynomials over F2, constructed by
Allan Steel in 2004 (thanks are expressed to William Stein for providing machines
for some of the computations).

IrreducibleSparseGF2Polynomial(n)

Given an integer n in the range 4 ≤ n ≤ 12800, return the irreducible polynomial f
of the form xn + g where g has 2 non-zero terms if possible and 4 non-zero terms if
not; g is the first such polynomial in lexicographical order in either case.

This uses a database of sparse irreducible polynomials over F2 constructed by
Allan Steel in 1998.

PrimitivePolynomial(F, m)

Given a finite field F and a positive integer m > 1, construct a polynomial f of
degree m that is primitive over F . Thus, f is irreducible over F , and it has a
primitive root of the degree m extension field of F as a root.

AllIrreduciblePolynomials(F, m)

Given a finite field F and a positive integer m > 1, construct the set of all monic
polynomials of degree m that are irreducible over F .

ConwayPolynomial(p, n)

Given a prime p and an exponent n ≥ 1, return the Conway polynomial of degree
n over Fp. The Conway polynomial is defined in the introduction. Note that this
polynomial is read in from a table containing Conway polynomials for a limited
range of p, n only.

ExistsConwayPolynomial(p, n)

Given a prime p and an exponent n > 1, return true and the Conway polynomial
if it is known for the field Fp, false otherwise.

Ch. 21 FINITE FIELDS 383

21.6 Discrete Logarithms

Let K be a field of cardinality q = pk, with p prime. Magma contains several advanced
algorithms for computing discrete logarithms of elements of K. The two main kinds of
algorithms used are as follows: (1) Pohlig-Hellman [PH78]: The running time is usually
proportional to the square root of the largest prime l dividing q − 1; this is combined
with the Shanks baby-step/giant-step algorithm (when l is very small) or the Pollard-ρ
algorithm. (2) Index-Calculus: There is first a precomputation stage which computes and
stores all the logarithms of a factor base (all the elements of the field corresponding to
irreducible polynomials up to some bound) and then each subsequent individual logarithm
is computed by expressing the given element in terms of the factor base.

The different kinds of finite fields in Magma are handled as follows (in this order):
(a)Small Fields (any characteristic):

If the largest prime l dividing q − 1 is reasonably small (typically, less than 236), the
Pohlig-Hellman algorithm is used (the characteristic p is irrelevant).

(b)Large Prime :
Suppose K is a prime field (so q = p). Then the Gaussian integer sieve [COS86, LO91a]
is used if p has at least 4 bits but no more than 400 bits, p− 1 is not a square, and one
of the following is a quadratic residue modulo p: -1, -2, -3, -7, or -11. If the Gaussian
integer sieve cannot be used and if p is no more than 300-bits, then the linear sieve
[COS86, LO91a] is used. The precomputation stage always takes place and typically
requires a lot more time than for computing individual logarithms (and may also require
a lot of memory for large fields). Thus, the first call to the function Log below may take
much more time than for subsequent calls. Also, for large prime fields, in comparison
to the Gaussian method the linear sieve requires much more time and memory than
the Gaussian method for the precomputation stage, and therefore it is only used when
the Gaussian integer algorithm cannot be used. See the example H27E3 in the chapter
on sparse matrices for an explanation of the basic linear sieve algorithm and for more
information on the sparse linear algebra techniques employed.

(c) Small Characteristic, Non-prime :
Since V2.19, if K is a finite field of characteristic p, where p is less than 230, then
an implementation by Allan Steel of Coppersmith’s index-calculus algorithm [Cop84,
GM93, Tho01] is used. (Strictly speaking, Coppersmith’s algorithm is for the case
p = 2 only, but a straightforward generalization is used when p > 2.) A suite of
external auxiliary tables boost the algorithm so that the precomputation stage com-
putation to determine the logarithms of a factor base can be avoided for a large
number of fields of very small characteristic. This means that logarithms of in-
dividual elements can be computed immediately if a relevant table is present for
the specific field. By default, tables are included in the standard Magma distribu-
tion at least for all fields of characteristic 2, 3, 5 or 7 with cardinality up to 2200.
The user can optionally download a much larger suite of tables from the Magma
optional downloads page http://magma.maths.usyd.edu.au/magma/download/db/
(files FldFinLog 2.tar.gz, etc.; about 5GB total).

384 BASIC RINGS Part IV

(d)Large Characteristic, Non-prime :

In all other cases, the Pohlig-Hellman algorithm is used.

Log(x)

The discrete logarithm of the non-zero element x from the field F , i.e., the unique
integer k such that x = wk and 0 ≤ k < (#F − 1), where w is the primitive element
of F (as returned by PrimitiveElement). Default parameters are automatically
chosen if an index-calculus method is used (use Sieve below to set parameters).
See also the procedure SetPrimitiveElement.

Log(b, x)

The discrete logarithm to the base b of the non-zero element x from the field F ,
i.e., the unique integer k such that x = bk and 0 ≤ k < (#F − 1). If b is not a
primitive element, then in some unusual cases the algorithm may take much longer
than normal.

ZechLog(K, n)

The Zech logarithm Z(n) of the integer n for the field field F , which equals the
logarithm to base w of wn + 1, where w is the primitive element of F . If wn is the
minus one element of K, then -1 is returned.

Sieve(K)

Lanczos BoolElt Default : false

(Procedure.) Call the Gaussian integer sieve on the prime finite field K if possible;
otherwise call the linear sieve on K (assuming K is not too small).

If the parameter Lanczos is set to true, then the Lanczos algorithm [LO91b,
Sec. 3] will be used for the linear algebra phase. This is generally very much slower
than the default method (often 10 to 50 times slower), but it will take considerably
less memory, so may be preferable for extremely large fields. See also the function
ModularSolution in the chapter on sparse matrices for more information.

SetVerbose("FFLog", v)

(Procedure.) Set the verbose printing level for the finite field logarithm algorithm
to be v. Currently the legal values for v are 0, 1, and 2. If the level is 1, information
is printed whenever the logarithm of an element is computed (unless the field is very
small, in which case a lookup table is used). The value of 2 will print a very large
amount of information.

Ch. 21 FINITE FIELDS 385

Example H21E5

We demonstrate the Log function.

> F<z> := FiniteField(7^4);

> PrimitiveElement(F);

z;

> Log(z);

1

> Log(z^2);

2

> Log(z + 1);

419

> z^419 eq z + 1;

true

> b := z + 1;

> b;

z^419

> Log(b, b);

1

> Log(b, z);

779

> b^779 eq z;

true

We now do similar things for a larger field of characteristic 2, which will use Coppersmith’s
algorithm to compute the logarithms.

> F<z> := GF(2, 73);

> Factorization(#F-1);

[<439, 1>, <2298041, 1>, <9361973132609, 1>]

> PrimitiveElement(F);

z

> time Log(z + 1);

4295700317032218908392

Time: 5.400

> z^4295700317032218908392;

z + 1

> time Log(z + 1);

4295700317032218908392

Time: 0.000

> time Log(z^2);

2

Time: 0.000

> time Log(z^2134914112412412);

2134914112412412

Time: 0.000

> b := z + 1;

> b;

z + 1

386 BASIC RINGS Part IV

> time Log(b, b);

1

Time: 0.010

> time Log(b, z);

2260630912967574270198

Time: 0.000

> b^2260630912967574270198;

z

21.7 Permutation Polynomials

Let K be a finite field. A polynomial representing (by the evaluation map) a bijection of
K into itself is known as a permutation polynomial. The Dickson polynomials of the first
and second kind are permutation polynomials when certain conditions are satisfied.

DicksonFirst(n, a)

Given a positive integer n, this function constructs the Dickson polynomial of the
first kind Dn(x, a) of degree n, where Dn(x, a) is defined by

Dn(x, a) =
bn/2c∑

i=0

n

n− i

(
n− i

i

)
(−a)ixn−2i.

DicksonSecond(n, a)

Given a positive integer n, this function constructs the Dickson polynomial of the
second kind En(x, a) of degree n, where En(x, a) is defined by

En(x, a) =
bn/2c∑

i=0

(
n− i

i

)
(−a)ixn−2i.

IsProbablyPermutationPolynomial(p)

NumAttempts RngIntElt Default : 100

Let p denote a polynomial defined over a finite field K. A probabilistic test is
applied to determine whether the mapping on K defined by p is a bijection. The
function returns true if the test succeeds for each of n attempts, otherwise false.
By default, n is taken to be 100; a different value for n can be specified by use of
the parameter NumAttempts.

Ch. 21 FINITE FIELDS 387

Example H21E6

Let K be a finite field of cardinality q. By a theorem of Nöbauer, the Dickson polynomial of the
first kind of degree n is a permutation polynomial for K if and only if (n, q2 − 1) = 1. Consider
K = F16.

> Factorization(16^2 - 1);

[<3, 1>, <5, 1>, <17, 1>]

Thus, Dn(x, a) will be a permutation polynomial for K providing that n is coprime to 3, 5 and
17.

> K<w> := GF(16);

> R<x> := PolynomialRing(K);

> a := w^5;

> p1 := DicksonFirst(3, a);

> p1;

x^3 + w^5*x

> #{ Evaluate(p1, x) : x in K };

11

> IsProbablyPermutationPolynomial(p1);

false

So D3(x, a) is not a permutation polynomial. However, D4(x, a) is a permutation polynomial:

> p1 := DicksonFirst(4, a);

> p1;

x^7 + w^5*x^5 + x

> #{ Evaluate(p1, x) : x in K };

16

> IsProbablyPermutationPolynomial(p1);

true

21.8 Bibliography

[BCS97] Wieb Bosma, John Cannon, and Allan Steel. Lattices of Compatibly Embedded
Finite Fields. J. Symbolic Comp., 24(3):351–369, 1997.

[Cop84] D. Coppersmith. Fast evaluation of logarithms in fields of characteristic two.
IEEE Trans. Inform. Theory, IT–30(4):587–594, July 1984.

[COS86] D. Coppersmith, A. M. Odlyzko, and R. Schroeppel. Discrete logarithms in
GF(p). Algorithmica, 1:1–15, 1986.

[GM93] D. M. Gordon and K. S. McCurley. Massively parallel computation of discrete
logarithms. In Ernest F. Brickell, editor, Advances in Cryptology—CRYPTO 1992,
volume 740 of LNCS, pages 312–323. Springer-Verlag, 1993. Proc. 12th Annual
International Cryptology Conference, Santa Barbara, Ca, USA, August 16–20, 1992.

388 BASIC RINGS Part IV

[LO91a] B. A. LaMacchia and A. M. Odlyzko. Computation of Discrete Logarithms in
Prime Fields. In A.J. Menezes and S. Vanstone, editors, Advances in Cryptology—
CRYPTO 1990, volume 537 of INCS, pages 616–618. Springer-Verlag, 1991.

[LO91b] B. A. LaMacchia and A. M. Odlyzko. Solving Large Sparse Linear Systems
over Finite Fields. In A.J. Menezes and S. Vanstone, editors, Advances in Cryptology—
CRYPTO 1990, volume 537 of LNCS, pages 109–133. Springer-Verlag, 1991.

[PH78] S. C. Pohlig and M. E. Hellman. An Improved Algorithm for Computing
Logarithms over GF(p) and Its Cryptographic Significance. IEEE Trans. Inform.
Theory, 24:106–110, 1978.

[Tho01] Emmanuel Thomé. Computation of discrete logarithms in F2607 . In Colin
Boyd and Ed Dawson, editors, Advances in Cryptology—AsiaCrypt 2001, volume 2248
of LNCS, pages 107–124. Springer-Verlag, 2001. Proc. 7th International Conference
on the Theory and Applications of Cryptology and Information Security, Dec. 9–13,
2001, Gold Coast, Queensland, Australia.

22 NEARFIELDS
22.1 Introduction 391

22.2 Nearfield Properties 391

22.2.1 Sharply Doubly Transitive Groups . 392

22.3 Constructing Nearfields . . . 393

22.3.1 Dickson Nearfields 393

DicksonPairs(p, hlo, hhi, vlo, vhi) 393
DicksonPairs(p, h1, v1) 393
DicksonTriples(p, hb, vb) 393
NumberOfVariants(q, v) 394
NumberOfVariants(N) 394
VariantRepresentatives(q, v) 395
DicksonNearfield(q, v : -) 395

22.3.2 Zassenhaus Nearfields 396

ZassenhausNearfield(n) 396

22.4 Operations on Elements . . . 397

22.4.1 Nearfield Arithmetic 397

+ - 397
+ - * / ^ 397
+:= -:= *:= 397
Inverse(a) 397

22.4.2 Equality and Membership 397

eq ne 397
in notin 397

22.4.3 Parent and Category 397

Parent Category 397
! 397
Element(N, x) 397
ElementToSequence(x) 397

22.4.4 Predicates on Nearfield Elements . 397

IsZero IsUnit IsIdentity 397

22.5 Operations on Nearfields . . . 399

eq ne 399
#N 399
Cardinality(N) 399
Random(N) 399
Identity(N) 399
Zero(N) 399
PrimeField(N) 399
Kernel(N) 399

22.6 The Group of Units 400

UnitGroup(N) 400
UnitGroup(GrpPerm, N) 400
UnitGroup(GrpPC, N) 400
Order(x) 401
AffineGroup(N) 401
AffineGroup(GrpPerm, N) 401
AffineGroup(GrpPC, N) 401
ExtendedUnitGroup(D) 401

22.7 Automorphisms 401

IsIsomorphic(N1, N2) 401
AutomorphismGroup(N) 401

22.8 Nearfield Planes 402

ProjectivePlane(N : -) 402

22.8.1 Hughes Planes 403

HughesPlane(N : -) 403

22.9 Bibliography 404

Chapter 22

NEARFIELDS

22.1 Introduction
In 1905, in the course of proving the independence of the field postulates, L. E. Dickson
[Dic05a] (p. 203) introduced the first example of a nearfield. His example is a set of 9
elements with operations of addition and multiplication which satisfy all the axioms of
a field except for the commutative law of multiplication and the right distributive law.
Later that year Dickson [Dic05b] published a more extensive collection of examples: an
infinite series obtained by twisting the multiplication of a Galois field and seven “irregular”
examples.

The terminology ‘nearfield’ seems to have introduced by Zassenhaus in his 1935 paper
[Zas35] where he showed that the only finite nearfields (endliche Fastkörper) are those due
to Dickson.

The irregular nearfields are often referred to as Zassenhaus nearfields and the nearfields
in the infinite series are called Dickson nearfields.

In the papers of Dickson and Zassenhaus the nearfields are left-distributive but for the
purposes of the Magma implementation we consider only right-distributive nearfields.

Nearfields are important in group theory, geometry and a combination of these two
fields. On the one hand, the finite sharply doubly transitive permutation groups are in
one-to-one correspondence with the finite nearfields and on the other hand, nearfields
coordinatise a class of translation planes [Hal59, L6̈9] and they are the starting point
for the construction of the Hughes planes [Dem71, Hug57]. Furthermore, every sharply
transitive collineation group of projective space over a finite field is a quotient of the group
of units of a nearfield [EK63] (see also, [Dem68, §1.4, no 17]).

22.2 Nearfield Properties
A (right-distributive) nearfield is a set N containing elements 0 and 1 and with binary
operations + and ◦ such that

NF1: (N,+) is an abelian group and 0 is its identity element. Let N× denote the set
of non-zero elements of N .
NF2: (N×, ◦) is a group and 1 is its identity element.
NF3: a ◦ 0 = 0 ◦ a = 0 for all a ∈ N .
NF4: (a+ b) ◦ c = a ◦ c+ b ◦ c for all a, b, c ∈ N .

A subset S of a nearfield N is a sub-nearfield if (S,+) and (S \ {0}, ◦) are groups. The
sub-nearfield generated by a subset X is the intersection of all sub-nearfields containing
X. The prime field P(N) of N is the sub-nearfield generated by 1.

392 BASIC RINGS Part IV

The inverse of x ∈ N× is written x[−1]. But where no confusion is possible we write
multiplication of nearfield elements x and y as xy rather than x◦y and we write the inverse
of x as x−1. (In the Magma code we use “*” as the symbol for multiplication.)

If N is a finite nearfield, the prime field of N is a Galois field Fp for some prime p and
p is the characteristic of N .

A nearfield of characteristic p is a vector space over its prime field and therefore its
cardinality is pn for some n. Every field is a nearfield.

If N is a nearfield, the centre of N is the set

Z(N) = {x ∈ N | xy = yx for all y ∈ N }

and the kernel of N is the subfield

K(N) = {x ∈ N | x(y + z) = xy + xz for all y, z ∈ N }.

It is clear that Z(N) ⊆ K(N) but equality need not hold because, in general, Z(N) need
not be closed under addition. Furthermore, the prime field P(N) need not be contained
in Z(N). However, for the Dickson nearfields Z(N) = K(N).

If N is a nearfield, then Z(N) =
⋂{K(N)x | x ∈ N, x 6= 0}.

22.2.1 Sharply Doubly Transitive Groups
A group G acting on a set Ω is sharply doubly transitive if G is doubly transitive on Ω and
only the identity element fixes two points.

If G is a finite sharply doubly transitive group on Ω then
1. The set M consisting of the identity element and the elements of G without fixed points

is an elementary abelian normal subgroup of G of order pn for some n and some prime p.
2. Addition and multiplication between elements of Ω can be defined so that Ω becomes a

nearfield and so that the group G is isomorphic to the group of all affine transformations
v 7→ va+ b of Ω, where a ∈ Ω× and b ∈ Ω.

There is a converse to this theorem, namely if N is a nearfield, the group of all trans-
formations v 7→ va+ b acts sharply doubly transitively on N .

Let F be the prime field of N , regard N as a vector space over F and define µ : N× →
GL(N) by vµ(a) = va. Then for all a ∈ N×, a 6= 1, the linear transformation µ(a) is
fixed-point-free. Furthermore, µ defines an isomorphism between the multiplicative group
N× and its image in GL(N).

Suppose that G = H ×M is a sharply doubly transitive group of degree pn, as above.
The centre of G is trivial and M is a minimal normal subgroup. Thus if Ω′ is a minimal
permutation representation we may suppose that it is primitive. Then M is transitive on
Ω′ and since M is abelian, it acts regularly on Ω′. Thus pn is the minimal degree of a
faithful permutation representation of G.

Ch. 22 NEARFIELDS 393

22.3 Constructing Nearfields
There are two types of finite nearfield: the regular nearfields of Dickson and the irregular
nearfields of Zassenhaus. In order to accommodate both types Magma has a ‘virtual type’
Nfd and types NfdDck and NfdZss which inherit from Nfd.

22.3.1 Dickson Nearfields
In order to begin exploring Nfd types in Magma we need a way to create instances of
nearfields and their elements. As already mentioned there is a large class of nearfields first
described by L. E. Dickson [Dic05a, Dic05b] in 1905 and in this section we describe how
to construct them in Magma.

The nearfields resulting from this construction will be called Dickson (or regular)
nearfields.

If p is a prime and if the positive integers h and v satisfy
• if r is a prime or 4 and if r divides v, then r divides ph − 1

then (p, h, v) is a Dickson triple.

If we write q = ph, the condition above is equivalent to
• All prime factors of v divide q − 1 and q ≡ 3 mod 4 implies v 6≡ 0 mod 4.

We call (q, v) a Dickson pair.

DicksonPairs(p, hlo, hhi, vlo, vhi)

The list of Dickson pairs (q, v) for prime p, where hlo and hhi are the lower and
upper bounds on h and where vlo and vhi are the lower and upper bounds on v.

DicksonPairs(p, h1, v1)

The list of Dickson pairs (ph, v) for the prime p, where h1 and v1 are upper bounds
on h and v.

DicksonTriples(p, hb, vb)

The list of Dickson triples (p, h, v) for the prime p, where hb and vb are bounds on
h and v.

Example H22E1

For each Dickson pair (equivalently Dickson triple), there is at least one Dickson nearfield.

> DicksonPairs(5,3,4,4,5);

[

[125, 4],

[625, 4]

]

> DicksonPairs(5,4,5);

[

[5, 1],

[5, 2],

394 BASIC RINGS Part IV

[5, 4],

[25, 1],

[25, 2],

[25, 3],

[25, 4],

[125, 1],

[125, 2],

[125, 4],

[625, 1],

[625, 2],

[625, 3],

[625, 4]

]

> DicksonTriples(5,4,5);

[

[5, 1, 1],

[5, 1, 2],

[5, 1, 4],

[5, 2, 1],

[5, 2, 2],

[5, 2, 3],

[5, 2, 4],

[5, 3, 1],

[5, 3, 2],

[5, 3, 4],

[5, 4, 1],

[5, 4, 2],

[5, 4, 3],

[5, 4, 4]

]

The isomorphism type of a Dickson nearfield depends on the choice of primitive element
of the underlying Galois field. It has been shown by Lüneburg [L7̈1] that if φ is the Euler
phi-function and g is the order of p modulo v, there are φ(v)/g isomorphism classes of
Dickson nearfields with the same Dickson triple (p, h, v).

The default nearfield will use the ‘standard’ primitive element of the field. The other
variants with the same Dickson pair can be obtained by providing an integer s coprime to
v. Internally this is converted to a suitable integer e coprime to qv − 1 such that s ≡ e
(mod v).

NumberOfVariants(q, v)

The number of non-isomorphic nearfields with Dickson pair (q, v).

NumberOfVariants(N)

The number of variants of the Dickson nearfield N .

Ch. 22 NEARFIELDS 395

VariantRepresentatives(q, v)

Representatives for the variant parameter of nearfields with Dickson pair (q, v).

Example H22E2

For each Dickson pair there can be several variants. The variant representative can be used when
constructing the corresponding Dickson nearfield.

> NumberOfVariants(625,4);

2

> VariantRepresentatives(625,4);

[1, 3]

DicksonNearfield(q, v : parameters)

Variant RngIntElt Default : 1
LargeMatrices BoolElt Default : false

Create a Dickson nearfield from the Dickson pair (q, v). The Variant parameter is
an integer s which can be used to specify the choice of primitive element (see the
discussion following the intrinsic DicksonTriples). The parameter LargeMatrices
is used only when the group of units of the nearfield is requested. The default is
to represent the group of units as a matrix group defined over the kernel of the
nearfield. But if LargeMatrices is true, the matrices are defined over the prime
field.

Example H22E3

As indicated in the previous example, up to isomorphism, there are two Dickson nearfields with
Dickson pair (625, 4).

> D := DicksonNearfield(625,4);

> D3 := DicksonNearfield(625,4 : Variant := 3);

> D5 := DicksonNearfield(625,4 : Variant := 5);

> D eq D3;

false

> D3 eq D5;

false

> D eq D5;

true

> D;

Nearfield D of Dickson type defined by the pair (625, 4)

Order = 152587890625

396 BASIC RINGS Part IV

22.3.2 Zassenhaus Nearfields

It was shown by Zassenhaus [Zas35] that in addition to the regular nearfields there are seven
irregular nearfields. Zassenhaus gave constructions but did not prove their uniqueness.
The proofs in [Zas35] are known to contain gaps. Perhaps the most reliable account of
the existence and uniqueness of the irregular nearfields is the PhD thesis of Dancs-Groves
[Gro74].

The seven finite nearfields which are not Dickson nearfields are the Zassenhaus
nearfields.

Zassenhaus nearfields can be distinguished from regular nearfields by the fact that the
multiplicative group of a finite nearfield N is metacyclic if and only if N is regular.

As a consequence, a Zassenhaus nearfield cannot occur as a subfield of a Dickson
nearfield.

ZassenhausNearfield(n)

Creates the nth Zassenhaus nearfield.

Example H22E4

The orders of the Zassenhaus nearfields are 52, 112, 72, 232, 112, 292 and 592.

> for n := 1 to 7 do ZassenhausNearfield(n); end for;

Irregular nearfield Z with Zassenhaus number 1

Order = 25

Irregular nearfield Z with Zassenhaus number 2

Order = 121

Irregular nearfield Z with Zassenhaus number 3

Order = 49

Irregular nearfield Z with Zassenhaus number 4

Order = 529

Irregular nearfield Z with Zassenhaus number 5

Order = 121

Irregular nearfield Z with Zassenhaus number 6

Order = 841

Irregular nearfield Z with Zassenhaus number 7

Order = 3481

Ch. 22 NEARFIELDS 397

22.4 Operations on Elements

22.4.1 Nearfield Arithmetic
The operations of addition, subtraction and negation are inherited from the underlying
Galois field.

The operation of multiplication distinguishes a nearfield from a field. In a nearfield,
multiplication is not commutative and the left distributive law fails.

+ a - a

a + b a - b a * b a / b

a ^ k

a +:= b a -:= b a *:= b

Inverse(a)

The inverse of a.

22.4.2 Equality and Membership

a eq b a ne b

a in N a notin N

22.4.3 Parent and Category

Parent(a) Category(a)

N ! x

Element(N, x)

Create a nearfield element from a finite field element.

ElementToSequence(x)

Create a sequence from an element x of a nearfield.

22.4.4 Predicates on Nearfield Elements

IsZero(a) IsUnit(a) IsIdentity(a)

398 BASIC RINGS Part IV

Example H22E5

This example illustrates some of the basic operations available on nearfields and their elements.
There is a strong connection with the arithmetic of the underlying Galois field of a nearfield D,
which is available as the attribute D‘gf.

> D := DicksonNearfield(3^2,2);

> K := D‘gf;

> x := Element(D,K.1);

> x;

$.1

> Parent(x);

Nearfield D of Dickson type defined by the pair (9, 2)

Order = 81

> x^2;

$.1^10

> Identity(D);

1

> assert x ne Identity(D);

> assert x eq x;

> Zero(D);

0

> Parent(Zero(D));

Nearfield D of Dickson type defined by the pair (9, 2)

Order = 81

> assert not IsZero(D!1);

> assert not IsZero(x);

> assert IsZero(Zero(D));

> K<z> := GF(3,4);

> x := Element(D,z^61);

> y := Element(D,z^54);

> assert x + y eq Element(D,z^61+z^54);

> assert x - y eq Element(D,z^61-z^54);

> x*y;

z^35

> x/y;

z^7

> x^y;

z^29

Example H22E6

A nearfield is right-distributive, but unlike a Galois field, multiplication is not commutative and
the left-distributive law may fail.

> N := DicksonNearfield(3^2,4);

> F<a> := N‘gf;

> x := Element(N,a^5215);

> y := Element(N,a^5140);

Ch. 22 NEARFIELDS 399

> z := Element(N,a^5819);

> x*y eq y*x;

false

> x*(y+z) eq x*y+x*z;

false

> (y+z)*x eq y*x+z*x;

true

22.5 Operations on Nearfields

N eq M N ne M

#N

Cardinality(N)

The cardinality of the nearfield N .

Random(N)

A random element of the nearfield N .

Identity(N)

The multiplicative identity of the nearfield N .

Zero(N)

The additive identity of the nearfield N .

PrimeField(N)

The prime field of the nearfield N .

Kernel(N)

Return the kernel of the nearfield N as a finite field.

400 BASIC RINGS Part IV

22.6 The Group of Units

If N is a nearfield and F = K(N) is its kernel, N is a vector space over F and for all
u ∈ N×, the map x 7→ x ◦ u is an F -linear transformation. This action of N× on the
non-zero elements of the vector space is transitive and fixed-point-free.

Similarly, we may regard N as a vector space over its prime field and again the elements
of N× act as linear transformations. In the following code the vector space E could be
either a vector space over the kernel or a vector space of the prime field. The default
setting is to use the kernel. But if the parameter LargeMatrices is set to true when a
regular nearfield is first defined, the prime field will be used. For irregular nearfields the
kernel coincides with the prime field.

Let (p, h, v) be the Dickson triple for N , let ζ be a primitive element of K = Fqv

and put A = 〈ζv〉. Then A is a group of order m = (qv − 1)/v and the elements si =
ζ(qi−1)/(q−1) (1 ≤ i ≤ v) are coset representatives for A in K×. Let Φ denote the Frobenius
automorphism x 7→ xq of K and define ρ : K× → Gal(K/Fp) by ρ(u) = Φi if u ∈ siA; that
is, letting automorphisms of K act on the right, we have xρ(u) = xqi

. The map ρ is not a
homomorphism. However, its image is the cyclic group of order v generated by Φ = ρ(ζ)
and the fixed field of imρ is Fq; thus imρ may be identified with Gal(K/Fq).

The underlying set of N is identified with K and multiplication in N is defined to be
w ◦ u = wρ(u)u.

The group U of units of the Dickson nearfield D = D(p, h, v, ζ) has generators a and
b and relations am = 1, bv = at and b−1ab = aq, where q = ph, m = (qv − 1)/v and t =
m/(q− 1). Furthermore, Ellers and Karzel [EK64] show that gcd(v, t) = gcd(q− 1, t) ≤ 2.
Equality holds if and only if v ≡ 2 (mod 4) and q ≡ 3 (mod 4) and this in turn is
equivalent to the Sylow 2-subgroup of U being a generalised quaternion group.

The centre of D is Fq and its group of units is generated by ζvt.

UnitGroup(N)

UnitGroup(GrpPerm, N)

UnitGroup(GrpPC, N)

The unit group of the nearfield N .

Example H22E7

In this example we construct the group of units of a subnearfield.

> N := DicksonNearfield(3^3,13);

> zeta := N‘prim;

> x := N!(zeta^((3^39-1) div (3^13-1)));

> S := sub< N | x >;

> U := UnitGroup(S);

> IsAbelian(U);

true

> Factorisation(#N);

[<3, 39>]

Ch. 22 NEARFIELDS 401

> Factorisation(#S);

[<3, 13>]

> Factorisation(#Kernel(N));

[<3, 3>]

> S;

Nearfield S of Dickson type defined by the pair (1594323, 1)

Order = 1594323

Order(x)

The order of the unit x of a nearfield.

As a matrix group, the unit group U of a nearfield acts regularly on the non-zero
vectors of the underlying vector space E and consequently the affine group E ·U is sharply
two-transitive. All sharply two-transitive groups occur in this way.

AffineGroup(N)

AffineGroup(GrpPerm, N)

AffineGroup(GrpPC, N)

The sharply two-transitive affine group associated with a nearfield, returned as a
matrix group.

If Γ = Gal(K/Fp) and S = Γ × K× is the semidirect product of Γ and K×, then
D× → S : w 7→ ρ(w)w is an embedding of the multiplicative group D× of D = D(p, h, v, ζ)
in S, where multiplication in S is defined by

(γ1a1)(γ2a2) = γ1γ2a
γ2
1 a2.

If U is the image of D× in S, then Γ ∩ U = 1, ΓU = S and K× ∩ U = A = 〈ζv〉. In fact,
from the definition of ρ, we have UK× = Γ0 × K×, where Γ0 = Gal(K/Fq). This is the
extended unit group of the Dickson nearfield D.

ExtendedUnitGroup(D)

The extended unit group of a Dickson nearfield.

22.7 Automorphisms

IsIsomorphic(N1, N2)

Test whether the regular nearfields N1 and N2 are isomorphic. If they are, return
an isomorphism.

AutomorphismGroup(N)

The automorphism group A of the regular nearfield N and a map giving the action
of A on N .

402 BASIC RINGS Part IV

22.8 Nearfield Planes

A nearfield N is said to be planar if the mapping x 7→ −xa + xb is a permutation of N
whenever a 6= b. Every finite nearfield is planar.

Given a finite nearfield N , there is an affine plane A with point set N × N and lines
given by the equations

y = xm+ b

x = c

Let P be the corresponding projective plane, obtained from A by adjoining a line L∞
called the line at infinity. We label the points of P with triples of elements of N as follows.
(1)For every point (x, y) of A there is a point [1, x, y] of P.
(2)For every m there is an “ideal” point [0, 1,m] of P which lies on every line y = xm+ b

(b ∈ N) and on L∞.
(3)There is a point [0, 0, 1] of P which lies on every line x = c and on L∞.

The lines of P may also be labelled by triples of elements of N : the line y = xm + b
corresponds to the triple [−b,−m, 1] and the line x = c corresponds to [−c, 1, 0]. The line
L∞ is labelled [1, 0, 0]. A point π = [w, x, y] is incident with a line L = [a, b, c] if and only
if wa+ xb+ yc = 0.

Every collineation of A extends to a collineation of P.

ProjectivePlane(N : parameters)

Check BoolElt Default : false

The finite projective plane coordinatised by the nearfield N . The points of the
nearfield plane are represented as triples of Galois field elements.

Example H22E8

> N := DicksonNearfield(3,2);

> pl := ProjectivePlane(N);

> A := AutomorphismGroup(pl);

> #A;

311040

> CompositionFactors(A);

G

| Cyclic(2)

*

| Alternating(5)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

Ch. 22 NEARFIELDS 403

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

1

22.8.1 Hughes Planes
In 1957 Hughes [Hug57] discovered a class of finite projective planes constructed from the
Dickson nearfields which have rank 2 over their kernel. Neither these planes nor their
duals are translation planes and therefore they cannot be obtained by the coordinatisation
method of the previous section. Hughes’ methods required the kernel to be central but
in 1960 the construction was generalised by Rosati [Ros60] to include the Zassenhaus
nearfields (see also Dembowski [Dem68, §5.4] and [Dem71]). For simplicity of notation we
shall use the term ‘Hughes plane’ to include both Hughes planes and generalised Hughes
planes.

HughesPlane(N : parameters)

Check BoolElt Default : false

The Hughes plane based on the nearfield N .

Example H22E9

We construct the Desarguesian projective plane PG(2,49) and then, using nearfields of order 49,
we construct three non-Desarguesian projective planes. These four planes can be distinguished
by the orders of their collineation groups.

> DP := FiniteProjectivePlane(49); // Desarguesian plane

> DP;

Projective Plane PG(2, 49)

> CD := CollineationGroup(DP);

> FactoredOrder(CD);

[<2, 10>, <3, 3>, <5, 2>, <7, 6>, <19, 1>, <43, 1>]

> N := DicksonNearfield(7,2);

> NP := ProjectivePlane(N);

> NP;

Projective Plane of order 49

> CN := CollineationGroup(NP);

> FactoredOrder(CN);

404 BASIC RINGS Part IV

[<2, 10>, <3, 2>, <7, 4>]

> Z := ZassenhausNearfield(3);

> #Z;

49

> ZP := ProjectivePlane(Z);

> CZ := CollineationGroup(ZP);

> FactoredOrder(CZ);

[<2, 9>, <3, 3>, <7, 4>]

> HP := HughesPlane(N);

> HP;

Projective Plane of order 49

> CH := CollineationGroup(HP);

> FactoredOrder(CH);

[<2, 6>, <3, 3>, <7, 3>, <19, 1>]

> CompositionFactors(CH);

G

| Cyclic(3)

*

| A(2, 7) = L(3, 7)

*

| Cyclic(2)

1

22.9 Bibliography

[Dem68] Peter Dembowski. Finite geometries. Ergebnisse der Mathematik und ihrer
Grenzgebiete, Band 44. Springer-Verlag, Berlin, 1968.

[Dem71] Peter Dembowski. Generalized Hughes planes. Canad. J. Math., 23:481–494,
1971.

[Dic05a] Leonard Eugene Dickson. Definitions of a group and a field by independent
postulates. Trans. Amer. Math. Soc., 6(2):198–204, 1905.

[Dic05b] Leonard Eugene Dickson. On finite algebras. Nachr. Kgl. Ges. Wiss.
Göttingen, Math.-phy. Klasse, pages 358–393, 1905.

[EK63] Erich Ellers and Helmut Karzel. Kennzeichnung elliptischer Gruppenräume.
Abh. Math. Sem. Univ. Hamburg, 26:55–77, 1963.

[EK64] Erich Ellers and Helmut Karzel. Endliche Inzidenzgruppen. Abh. Math. Sem.
Univ. Hamburg, 27:250–264, 1964.

[Gro74] Susan Dancs Groves. Locally finite near-fields. PhD thesis, Australian National
University, 1974.

[Hal59] Marshall Hall, Jr. The theory of groups. The Macmillan Co., New York, N.Y.,
1959.

Ch. 22 NEARFIELDS 405

[Hug57] D. R. Hughes. A class of non-Desarguesian projective planes. Canad. J. Math.,
9:378–388, 1957.

[L6̈9] Heinz Lüneburg. Lectures on projective planes. University of Illinois, Chicago,
1969.

[L7̈1] Heinz Lüneburg. Über die Anzahl der Dickson’schen Fastkörper gegebener
Ordnung. In Atti del Convegno di Geometria Combinatoria e sue Applicazioni (Univ.
Perugia, Perugia, 1970), pages 319–322. Ist. Mat., Univ. Perugia, Perugia, 1971.

[Ros60] Luigi Antonio Rosati. Su una generalizzazione dei piani di Hughes. Atti Accad.
Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 29:303–308 (1961), 1960.

[Zas35] Hans Zassenhaus. Über endliche Fastkörper. Abh. Math. Sem. Univ. Ham-
burg, 11:187–220, 1935.

23 UNIVARIATE POLYNOMIAL RINGS
23.1 Introduction 411

23.1.1 Representation 411

23.2 Creation Functions 411

23.2.1 Creation of Structures 411

PolynomialAlgebra(R) 411
PolynomialRing(R) 411

23.2.2 Print Options 412

AssignNames(∼P, s) 413
Name(P, i) 413

23.2.3 Creation of Elements 413

. 413
elt< > 413
! 413
elt< > 413
Polynomial(Q) 414
Polynomial(R, Q) 414
Polynomial(R, f) 414
One Identity 414
Zero Representative 414

23.3 Structure Operations 415

23.3.1 Related Structures 415

BaseRing(P) 415
CoefficientRing(P) 415
CoefficientRing(f) 415
Category Parent PrimeRing 415

23.3.2 Changing Rings 415

ChangeRing(P, S) 415
ChangeRing(P, S, f) 415

23.3.3 Numerical Invariants 416

Rank(P) 416
416
Characteristic 416

23.3.4 Ring Predicates and Booleans . . . 416

IsCommutative IsUnitary 416
IsFinite IsOrdered 416
IsField IsEuclideanDomain 416
IsPID IsUFD 416
IsDivisionRing IsEuclideanRing 416
IsDomain 416
IsPrincipalIdealRing 416
eq ne lt 416
gt le ge 416

23.3.5 Homomorphisms 416

hom< > 416
hom< > 416

23.4 Element Operations 417

23.4.1 Parent and Category 417

Parent Category 417

23.4.2 Arithmetic Operators 417

+ - 417
+ - * ^ / div mod 417
+:= -:= *:= 417

23.4.3 Equality and Membership 417

eq ne 417
in notin 417

23.4.4 Predicates on Ring Elements . . . 418

IsZero IsOne IsMinusOne 418
IsNilpotent IsIdempotent 418
IsUnit IsZeroDivisor IsRegular 418
IsIrreducible IsPrime IsMonic 418

23.4.5 Coefficients and Terms 418

Coefficients(p) 418
ElementToSequence(p) 418
Eltseq(p) 418
Coefficient(p, i) 418
MonomialCoefficient(p, m) 418
LeadingCoefficient(p) 418
TrailingCoefficient(p) 418
ConstantCoefficient(p) 418
Terms(p) 419
LeadingTerm(p) 419
TrailingTerm(p) 419
Monomials(p) 419
Support(p) 419
Round(p) 419
Valuation(p) 419

23.4.6 Degree 419

Degree(p) 419

23.4.7 Roots 420

Roots(p) 420
Roots(p, S) 420
HasRoot(p) 420
HasRoot(p, S) 420
SmallRoots(p, N, X) 420
SetVerbose("SmallRoots", v) 422

23.4.8 Derivative, Integral 422

Derivative(p) 422
Derivative(p, n) 422
Integral(p) 422

23.4.9 Evaluation, Interpolation 422

Evaluate(p, r) 422
Interpolation(I, V) 422

23.4.10 Quotient and Remainder 422

Quotrem(f, g) 422
div 423
IsDivisibleBy(a, b) 423

408 BASIC RINGS Part IV

ExactQuotient(f, g) 423
mod 423
Valuation(f, g) 423
Reductum(f) 423
PseudoRemainder(f, g) 423
EuclideanNorm(p) 423

23.4.11 Modular Arithmetic 424

Modexp(f, n, g) 424
ChineseRemainderTheorem(X, M) 424
CRT(X, M) 424

23.4.12 Other Operations 424

ReciprocalPolynomial(f) 424
PowerPolynomial(f,n) 424
^ 424

23.5 Common Divisors and Common
Multiples 424

23.5.1 Common Divisors and Common Mul-
tiples 425

GreatestCommonDivisor(f, g) 425
Gcd(f, g) 425
GCD(f, g) 425
ExtendedGreatestCommonDivisor(f, g) 425
Xgcd(f, g) 425
XGCD(f, g) 425
LeastCommonMultiple(f, g) 426
Lcm(f, g) 426
LCM(f, g) 426
Normalize(f) 426

23.5.2 Content and Primitive Part 426

Content(p) 426
PrimitivePart(p) 426
ContentAndPrimitivePart(p) 426
Contpp(p) 426

23.6 Polynomials over the Integers . 427

Sign(p) 427
AbsoluteValue(p) 427
Abs(p) 427
MaxNorm(p) 427
SumNorm(p) 427
DedekindTest(p, m) 427

23.7 Polynomials over Finite Fields 427

PrimePolynomials(R, d) 427
PrimePolynomials(R, d, n) 427
RandomPrimePolynomial(R, d) 427
NumberOfPrimePolynomials(q, d) 427
NumberOfPrimePolynomials(K, d) 427
NumberOfPrimePolynomials(R, d) 427
JacobiSymbol(a,b) 427

23.8 Factorization 428

23.8.1 Factorization and Irreducibility . . 428

Factorization(f) 428
Factorisation(f) 428

HasPolynomialFactorization(R) 429
SetVerbose("PolyFact", v) 429
FactorisationToPolynomial(f) 429
Facpol(f) 429
SquarefreeFactorization(f) 431
DistinctDegreeFactorization(f) 432
EqualDegreeFactorization(f, d, g) 432
IsIrreducible(f) 432
IsSeparable(f) 432
QMatrix(f) 432

23.8.2 Resultant and Discriminant 432

Discriminant(f) 432
Resultant(f, g) 432
CompanionMatrix(f) 433

23.8.3 Hensel Lifting 433

HenselLift(f, s, P) 433

23.9 Ideals and Quotient Rings . . 434

23.9.1 Creation of Ideals and Quotients . 434

ideal< > 434
quo< > 434
quo< > 434

23.9.2 Ideal Arithmetic 434

+ 434
* 434
meet 434
in 435
notin 435
eq 435
ne 435
subset 435
notsubset 435

23.9.3 Other Functions on Ideals 435

. 435

23.9.4 Other Functions on Quotients . . . 436

Modulus(Q) 436
PreimageRing(Q) 436

23.10 Special Families of Polynomials 436

23.10.1 Orthogonal Polynomials 436

ChebyshevFirst(n) 436
ChebyshevT(n) 436
ChebyshevSecond(n) 436
ChebyshevU(n) 436
LegendrePolynomial(n) 436
LaguerrePolynomial(n) 436
LaguerrePolynomial(n, m) 437
HermitePolynomial(n) 437
GegenbauerPolynomial(n, m) 437

23.10.2 Permutation Polynomials 437

DicksonFirst(n, a) 437
DicksonSecond(n, a) 437

23.10.3 The Bernoulli Polynomial . . . 438

Ch. 23 UNIVARIATE POLYNOMIAL RINGS 409

BernoulliPolynomial(n) 438

23.10.4 Swinnerton-Dyer Polynomials . . 438

SwinnertonDyerPolynomial(n) 438

23.11 Bibliography 438

Chapter 23

UNIVARIATE POLYNOMIAL RINGS

23.1 Introduction
Univariate polynomial rings may be defined over any ring R. Let us denote the univariate
polynomial ring in indeterminate x over the coefficient ring R by P = R[x].

There are two kinds of polynomials in Magma: univariate polynomials, represented as
vectors of coefficients; and multivariate polynomials represented in distributive form (linear
sums of coefficient-monomial pairs). In this chapter we discuss univariate polynomials.

23.1.1 Representation
The vector representation enables fast arithmetic on univariate polynomials, but it

requires considerable amounts of memory for multivariate polynomials; therefore, only
univariate polynomial rings using the vector representation can be created directly (but, if
one insists, it is possible to create univariate polynomial rings over univariate polynomial
rings, etc.). Multivariate polynomials can be stored efficiently in distributive form, but the
arithmetic operations on polynomials of one variable stored in this way may be considerably
slower.

23.2 Creation Functions

23.2.1 Creation of Structures
There are two different ways to create polynomial rings, corresponding to the differ-
ent internal representations (vector versus distributive — see the introductory section):
PolynomialRing(R) and PolynomialRing(R, n). The latter should be used to create
multivariate polynomials; the former should be used for univariate polynomials.

PolynomialAlgebra(R)

PolynomialRing(R)

Global BoolElt Default : true

Create a univariate polynomial ring over the ring R. The ring is regarded as an R-
algebra via the usual identification of elements of R and the constant polynomials.
The polynomials are stored in vector form, which allows fast arithmetic. It is not
recommended to use this function recursively to build multivariate polynomial rings.
The angle bracket notation can be used to assign names to the indeterminate, e.g.:
P<x> := PolynomialRing(R).

By default, the unique global univariate polynomial ring over R will be returned;
if the parameter Global is set to false, then a non-global univariate polynomial
ring over R will be returned (to which a separate name for the indeterminate can
be assigned).

412 BASIC RINGS Part IV

Example H23E1

We demonstrate the difference between global and non-global rings. We first create the global
univariate polynomial ring over Q twice.

> Q := RationalField();

> P<x> := PolynomialRing(Q);

> PP := PolynomialRing(Q);

> P;

Univariate Polynomial Ring in x over Rational Field

> PP;

Univariate Polynomial Ring in x over Rational Field

> PP.1;

x

PP is identical to P . We now create non-global univariate polynomial rings (which are also
different to the global polynomial ring P). Note that elements of all the rings are mathematically
equal by automatic coercion.

> Pa<a> := PolynomialRing(Q: Global := false);

> Pb := PolynomialRing(Q: Global := false);

> Pa;

Univariate Polynomial Ring in a over Rational Field

> Pb;

Univariate Polynomial Ring in b over Rational Field

> a;

a

> b;

b

> P;

Univariate Polynomial Ring in x over Rational Field

> x;

x

> x eq a; // Automatic coercion

true

> x + a;

2*x

23.2.2 Print Options
The AssignNames and Name functions can be used to associate a name with the indeter-
minate of a polynomial ring after creation.

Ch. 23 UNIVARIATE POLYNOMIAL RINGS 413

AssignNames(∼P, s)

Procedure to change the name of the indeterminate of a polynomial ring P . The
indeterminate will be given the name of the string in the sequence s.

This procedure only changes the name used in printing the elements of P . It
does not assign to identifiers corresponding to the strings the indeterminates in P ;
to do this, use an assignment statement, or use angle brackets when creating the
field.

Note that since this is a procedure that modifies P , it is necessary to have a
reference ∼P to P in the call to this function.

Name(P, i)

Given a polynomial ring P , return the i-th indeterminate of P (as an element of P).

23.2.3 Creation of Elements
The easiest way to create polynomials in a given ring is to use the angle bracket construction
to attach names to the indeterminates, and to use these names to express polynomials (see
the examples). Below we list other options.

P . 1

Return the indeterminate for the polynomial ring P , as an element of P .

elt< P | a0, ..., ad >

Given a polynomial ring P = R[x] and elements a0, . . . , ad coercible into the co-
efficient ring R, return the polynomial a0 + a1xn + · · · + adx

d
n as an element of

P .

P ! s

elt< P | s >

Coerce the element s into the polynomial ring P = R[x]. The following possibilities
for s exist.

(a) s is an element of P : it is returned unchanged;

(b)s is an element of a ring that can be coerced into the coefficient ring R of P : the
constant polynomial s is returned;

(c) s =
∑

j sjy
j is an element of a univariate polynomial ring whose coefficient ring

elements sj can be coerced into R: the polynomial
∑

j rjx
j is returned, where

rj is the result of coercing sj into R;

(c) s is a sequence: if s is empty then the zero element of P is returned, and if it
is non-empty but the elements of the sequence can be coerced into R then the
polynomial

∑
j s[j]x

j−1
n is returned.

Note that constant polynomials may be coerced into their coefficient rings.

414 BASIC RINGS Part IV

Polynomial(Q)

Given a sequence Q of elements from a ring R, create the polynomial over R whose
coefficients are given by Q. This is equivalent to PolynomialRing(Universe(Q))!Q.

Polynomial(R, Q)

Given a ring R and sequence Q of elements from a ring S, create the polynomial
over R whose coefficients are given by the elements of Q, coerced into S. This is
equivalent to PolynomialRing(R)!ChangeUniverse(Q, R).

Polynomial(R, f)

Given a ring R and a polynomial f over a ring S, create the polynomial over
R obtained from f by coercing its coefficients into S. This is equivalent to
PolynomialRing(R)!f.

One(P) Identity(P) Zero(P) Representative(P)

Example H23E2

The easiest way to create the polynomial x3 + 3x + 1 (over the integers) is as follows.

> P<x> := PolynomialRing(Integers());

> f := x^3+3*x+1;

> f;

x^3 + 3*x + 1

Alternative ways to create polynomials are given by the element constructor (rarely used) and the
! operator:

> P<x> := PolynomialAlgebra(Integers());

> f := elt< P | 2, 3, 0, 1 >;

> f;

x^3 + 3*x + 2

> P ! [2, 3, 0, 1];

x^3 + 3*x + 2

Note that it is important to realize that a sequence is coerced into a polynomial ring by coercing
its entries into the coefficient ring, and it is not attempted first to coerce the sequence as a whole
into the coefficient ring:

> Q := RationalField();

> Q ! [1, 2];

1/2

> P<x> := PolynomialRing(Q);

> P ! [1,2];

2*x + 1

> P ! Q ! [1,2];

1/2

> P ! [[1,2], [2,3]];

2/3*x + 1/2

Ch. 23 UNIVARIATE POLYNOMIAL RINGS 415

23.3 Structure Operations

23.3.1 Related Structures
The main structure related to a polynomial ring is its coefficient ring. Univariate polyno-
mial rings belong to the Magma category RngUPol.

BaseRing(P)

CoefficientRing(P)

CoefficientRing(f)

Return the coefficient ring of polynomial ring P (the parent of f).

Category(P) Parent(P) PrimeRing(P)

23.3.2 Changing Rings
The ChangeRing function enables changing coefficient rings on a polynomial ring.

ChangeRing(P, S)

Given a polynomial ring P = R[x], together with a ring S, construct the polynomial
ring Q = S[y], together with the homomorphism h from P to Q. It is necessary that
all elements of the old coefficient ring R can be automatically coerced into the new
coefficient ring S. The homomorphism h will apply this coercion to the coefficients
of elements in P to return elements of Q. The usual angle bracket notation can be
used for indeterminate names on the result.

ChangeRing(P, S, f)

Given a polynomial ring P = R[x], together with a ring S and a map f : R → S,
construct the polynomial ring Q = S[y] together with the homomorphism h from P
to Q obtained by applying h to the coefficients of elements of P . The usual angle
bracket notation can be used for indeterminate names on the result.

Example H23E3

In the first example of ChangeRing below we use automatic coercion of integers to rationals to go
from Z[x] to Q[y]. In fact ! can be used for this as well. In the second example we use a map to
obtain a non-standard embedding (not mapping 1 to 1) of Z in Q.

> Z := Integers();

> Q := RationalField();

> P<x> := PolynomialRing(Z);

> S<y>, h := ChangeRing(P, Q);

> h(x^3-2*x+5);

y^3 - 2*y + 5

> S ! (x^3-2*x+5);

y^3 - 2*y + 5

> m := hom< Z -> Q | x :-> 3*x >;

416 BASIC RINGS Part IV

> S<y>, h := ChangeRing(P, Q, m);

> h(x^3-2*x+5);

3*y^3 - 6*y + 15

23.3.3 Numerical Invariants
The characteristic can be obtained for any polynomial ring, the rank for free polynomial
rings and the cardinality only for finite quotients.

Rank(P)

Return the rank of the polynomial ring P , defined as the maximal number of in-
dependent indeterminates in P over its coefficient ring; for univariate polynomial
rings this will therefore always return 1.

#P

Return the number of elements of P ; this will only return an integer value if P is
finite, which for polynomial rings can only happen for quotients of polynomial rings
over finite coefficient rings.

Characteristic(P)

23.3.4 Ring Predicates and Booleans
The usual ring functions returning Boolean values are available on polynomial rings.

IsCommutative(P) IsUnitary(P) IsFinite(P) IsOrdered(P)

IsField(P) IsEuclideanDomain(P) IsPID(P) IsUFD(P)

IsDivisionRing(P) IsEuclideanRing(P) IsDomain(P)

IsPrincipalIdealRing(P) P eq Q P ne Q P lt Q

P gt Q P le Q P ge Q

23.3.5 Homomorphisms
A ring homomorphism taking a polynomial ring R[x] as its domain requires 2 pieces of
information, namely, a map (homomorphism) telling how to map the coefficient ring R,
together with the image of the indeterminate x. The map may be omitted.

hom< P -> S | f, y >

hom< P -> S | y >

Given a polynomial ring P = R[x], a ring S, a map f : R → S and an element
y ∈ S, create the homomorphism g : P → S given by that g(

∑
six

i) =
∑
f(si)yi.

The coefficient ring map may be omitted, in which case the coefficients are
mapped into S by the unitary homomorphism sending 1R to 1S . Also, the image y
is allowed to be from a structure that allows automatic coercion into S.

Ch. 23 UNIVARIATE POLYNOMIAL RINGS 417

Example H23E4

In this example we map Z[x] into the reals by sending x to 1/2. Note that we do not have a choice
for the coefficient map (since we require it to be unitary), and also that we give the image of x as
a rational number that is automatically coerced into the reals.

> Z := Integers();

> P<x> := PolynomialRing(Z);

> Re := RealField(20);

> half := hom< P -> Re | 1/2 >;

> half(x^3-3*x+5);

3.625

23.4 Element Operations
The categories for elements in univariate polynomial rings and their quotients are are
RngUPolElt and RngUPolResElt

23.4.1 Parent and Category

Parent(p) Category(p)

23.4.2 Arithmetic Operators
The usual unary and binary ring operations are available for univariate polynomials, with
the following notable restrictions.

Since inverses cannot generally be obtained in polynomial rings, division (using /) of
polynomials is not allowed, and neither are negative powers. For polynomial rings over
fields division by elements of the coefficient field are allowed.

The operators div and mod give results corresponding to the quotient and the remainder
of division of the arguments. See the section on quotient and remainder for details.

+ a - a

a + b a - b a * b a ^ k a / b

a div b a mod b

a +:= b a -:= b a *:= b

23.4.3 Equality and Membership

a eq b a ne b

a in R a notin R

418 BASIC RINGS Part IV

23.4.4 Predicates on Ring Elements
The list belows contains the general ring element predicates. Note that not all functions
are available for every coefficient ring.

IsZero(a) IsOne(a) IsMinusOne(a)

IsNilpotent(a) IsIdempotent(a)

IsUnit(a) IsZeroDivisor(a) IsRegular(a)

IsIrreducible(a) IsPrime(a) IsMonic(a)

23.4.5 Coefficients and Terms

Coefficients(p)

ElementToSequence(p)

Eltseq(p)

The coefficients of the polynomial p ∈ R[x] in ascending order, as a sequence of
elements of R.

Coefficient(p, i)

Given a polynomial p ∈ R[x] and an integer i ≥ 0, return the coefficient of the i-th
power of x in f . (If i exceeds the degree of f then zero is returned.) The return
value is an element of R.

MonomialCoefficient(p, m)

Given elements p and m of a polynomial ring P = R[x], where m is a monomial
(that is, has exactly one non-zero base coefficient, which must be 1), return the
coefficient of m in p, as an element of the coefficient ring R.

LeadingCoefficient(p)

Return the coefficient of the highest occurring power of x in p ∈ R[x], as an element
of the coefficient ring R.

TrailingCoefficient(p)

Return the coefficient of the lowest occurring power of x in p ∈ R[x], as an element
of the coefficient ring R.

ConstantCoefficient(p)

Return the constant term, ie. the coefficient of x0 as an element of the coefficient
ring R.

Ch. 23 UNIVARIATE POLYNOMIAL RINGS 419

Terms(p)

Return the non-zero terms of the polynomial p ∈ P = R[x] in ascending order with
respect to the degree, as a sequence of elements of P with ascending degrees.

LeadingTerm(p)

Return the term of p ∈ P = R[x] with the highest occurring power of x, as an
element of P . The coefficient of the result will be the leading coefficient of p.

TrailingTerm(p)

Return the term of p ∈ P = R[x] with the lowest occurring power of x, as an element
of P . The coefficient of the result will be the trailing coefficient of p.

Monomials(p)

The monomials of the univariate p, matching up with Coefficients(p), that is a
sequence of powers of the indeterminate up to the degree of p.

Support(p)

Given a polynomial p ∈ R[x], return the positions in p for which there are non-zero
coefficients, and the corresponding coefficients.

Round(p)

Given a polynomial p ∈ P = R[x] where R is a subring of the real field (the ring
of integers Z, the rational field Q, or a real field), return the polynomial in Z[x]
obtained from p by rounding all the coefficients of p.

Valuation(p)

The valuation of a polynomial p ∈ R[x], that is, the exponent of the largest power
of x which divides p. Note that the zero polynomial has valuation ∞.

23.4.6 Degree

Degree(p)

The degree of a polynomial p ∈ R[x], that is, the exponent of the largest power of x
that occurs with non-zero coefficient. Note that the zero polynomial has degree −1.

420 BASIC RINGS Part IV

23.4.7 Roots

Roots(p)

Max RngIntElt Default :

Given a polynomial p over one of a certain collection of coefficient rings, this function
returns a sorted sequence of pairs of coefficient ring element and integer, where the
ring element is a root of p in the coefficient ring, and the integer its multiplicity.
Currently the coefficient rings that are allowed comprise complex and real fields,
integers and rationals, finite fields and residue class rings with prime modulus. If
the parameter Max is set to a non-negative number m, at most m roots are returned.

Roots(p, S)

Given a polynomial p over one of a certain collection of coefficient rings as well as
a ring S into which the coefficients of p can be coerced automatically, this function
returns a sorted sequence of pairs of ring element and integer, where the ring element
is a root of p in the ring S, and the integer its multiplicity. Currently the coefficient
rings that are allowed comprise complex and real fields, integers and rationals, finite
fields and residue class rings with prime modulus.

HasRoot(p)

Given a polynomial p over the coefficient ring R this function returns true iff p has
a root in R. If the result is true, the function also returns a root of p as a second
return value. Currently the coefficient rings that are allowed comprise complex and
real fields, integers and rationals, finite fields and residue class rings with prime
modulus. Note that particularly for finite fields, this method may be much faster
than the computation of all roots of the polynomial.

HasRoot(p, S)

Given a polynomial p over the coefficient ring R and a ring S which contains R, this
function returns true iff p has a root in S. If the result is true, the function also
returns a root of p in S as a second return value. Currently the coefficient rings that
are allowed comprise complex and real fields, integers and rationals, finite fields and
residue class rings with prime modulus. Note that particularly for finite fields, this
method may be much faster than the computation of all roots of the polynomial.

SmallRoots(p, N, X)

Bits BoolElt Default : false

Beta RngElt Default : 1.0

Exponent RngElt Default :

Finalshifts RngElt Default :

Direct BoolElt Default : false

Ch. 23 UNIVARIATE POLYNOMIAL RINGS 421

Given a monic non-zero univariate integer polynomial p and two positive integers
N and X, this function returns all x0’s such that |x0| ≤ X and P (x0) = 0 [N], as
long as X ≤ 0.5 ·N1/d, where d is the degree of p.

This function implements Coppersmith’s algorithm to compute the small roots
of a univariate polynomial modulo an integer [Cop96], as described in Alexander
May’s PhD thesis [May03]. It relies upon the LLL algorithm for reducing euclidean
lattices [LLL82]. It is frequently used for cryptanalysing public-key cryptosystems
(see the example below).

When Bits is set to true, the input X is read as 2X .
The parameter Beta can be set to any value in (0.0, 1.0]. The routine will then

find all x0’s such that |x0| ≤ X and P (x0) = 0 ∼= N ′, as long as X ≤ 0.5 · Nβ2/d,
where d is the degree of p and N ′ ≥ Nβ is any divisor of N .

The Exponent and Finalshifts specify the shape of the lattice basis to be
reduced. If Exponent is m, then pm will be the highest power of p used to build the
lattice basis, and if Finalshifts is t, t shifts of pm will be used. Unless requested
by the user, these parameters are chosen automatically.

Finally, the Direct option allows the user to require the lattice basis to be
reduced at once, and not progressively while constructed. This is can be slower.

Example H23E5

We show how to use the SmallRoots routine to factor an RSA modulus when some most significant
bits of one of the factors is known. We first generate an RSA modulus.

> SetSeed(1);

> F<x> := PolynomialRing (Integers());

> length := 1024;

> p:=NextPrime (2^(Round(length/2)): Proof:=false);

> pi:=Pi(RealField());

> q:=NextPrime (Round (pi*p): Proof:=false);

> N := p*q;

Suppose that N is known, as well as an approximation of the factor q:

> hidden:=220;

> approxq := q+Random(2^hidden-1);

Our goal is to recover q from our knowledge of approxq. We are therefore interested in the small
roots of the polynomial x− approxq modulo q, whose multiple N is known.

> A:=x-approxq;

> time perturb:=SmallRoots (A, N, hidden : Bits, Beta:=0.5)[1];

Time 0.050

> q eq approxq-perturb;

true

422 BASIC RINGS Part IV

SetVerbose("SmallRoots", v)

(Procedure.) Set the verbose printing level for the SmallRoots routine to be v.
Currently the legal values for v are true, false, 0, 1 or 2 (false is the same as 0,
and true is the same as 1).

23.4.8 Derivative, Integral

Derivative(p)

Given a polynomial p ∈ P , return the derivative of p as an element of P .

Derivative(p, n)

Given a polynomial p ∈ P and an integer n ≥ 0, return the n-th derivative of p as
an element of P .

Integral(p)

Given a polynomial p ∈ P over a field of characteristic zero, return the formal
integral of p as an element of P .

23.4.9 Evaluation, Interpolation

Evaluate(p, r)

Given an element p of a polynomial ring P and an element r of a ring S, return the
value of p evaluated at r. If r can be coerced into the coefficient ring R of P , the
result will be an element of R. If r cannot be coerced to the coefficient ring, then
an attempt is made to do a generic evaluation of p at r. In this case, the result will
be an element of S.

Interpolation(I, V)

This function finds a univariate polynomial that evaluates to the values V in the
interpolation points I. Let K be a field and n > 0 an integer; given sequences I and
V , both consisting of n elements of K, return the unique univariate polynomial p
over K of degree less than n such that p(I[i]) = V [i] for each 1 ≤ i ≤ n.

23.4.10 Quotient and Remainder

Quotrem(f, g)

Given elements f and g of the polynomial ring P = R[x], this function returns
polynomials q (quotient) and r (remainder) in P such that f = q · g + r, and the
degree of r is minimal. The leading coefficient of g has to be a non-zero divisor in
R. If the leading coefficient of g is a unit, then the degree of r will be strictly less
than that of g (taking the degree of 0 to be −1). Over the integers (R = Z) this
will be true in general when the leading coefficient of g divides that of f .

Ch. 23 UNIVARIATE POLYNOMIAL RINGS 423

f div g

The quotient of the polynomial f by g, which is the first return value of Quotrem
described above.

IsDivisibleBy(a, b)

Return whether the polynomial f is exactly divisible by the polynomial g; that is,
whether there exists q with f = qg. If so, return also the exact divisor q.

ExactQuotient(f, g)

Assuming that the polynomial f is exactly divisible by the polynomial g, return the
exact quotient of f by g (as a polynomial in the same polynomial ring). An error
results if g does not divide f exactly.

f mod g

The remainder of division of the polynomial f by g, which is the second return value
of Quotrem described above.

Valuation(f, g)

The exponent of the highest power of the polynomial g which divides the polynomial
f .

Reductum(f)

The reductum of a polynomial f , which is the polynomial obtained by removing the
leading term of f .

PseudoRemainder(f, g)

Given polynomials f, g in P = R[x], where R is an integral domain, this function
returns the pseudo-remainder r of f and g defined as follows. Let d be the maximum
of 0 and deg(f) − deg(g) + 1, and let c be the leading coefficient of g; then r will
be the unique polynomial in P such that cd · f = q · g+ r and the degree of r is less
than that of g (possibly −1 for r = 0).

EuclideanNorm(p)

Return the Euclidean norm of the univariate polynomial p ∈ P , where the Euclidean
norm is the function that makes P into a Euclidean ring, which is the degree function.

424 BASIC RINGS Part IV

23.4.11 Modular Arithmetic
The following functions allow modular arithmetic for univariate polynomials over a field
without the need to move into the quotient ring. See also the description of mod in the
section on quotient and remainder.

Modexp(f, n, g)

Given univariate polynomials f and g in K[x] over a field K, return fn mod g as
an element of K[x]. Here n must be a non-negative integer, and g is allowed to be
a constant polynomial.

ChineseRemainderTheorem(X, M)

CRT(X, M)

Given two sequences X and M of polynomials where the elements in M are assumed
to be pairwise coprime, find a single polynomial t that solve the modular equation
Xi = t modulo Mi.

23.4.12 Other Operations

ReciprocalPolynomial(f)

The reciprocal of the given univariate polynomial.

PowerPolynomial(f,n)

The polynomial whose roots are the nth powers of the roots of the given polynomial
(which should have coefficients in some field).

f ^ M

The transformation of the univariate polynomial f under the linear fractional trans-
formation given by the 2 by 2 matrix M (obtained by homogenizing f and making
a linear substitution).

23.5 Common Divisors and Common Multiples

The functions in this section are restricted to univariate polynomials over a field, over the
integers, or over a residue class ring of integers with prime modulus, or any polynomial
ring over these.

Ch. 23 UNIVARIATE POLYNOMIAL RINGS 425

23.5.1 Common Divisors and Common Multiples

GreatestCommonDivisor(f, g)

Gcd(f, g)

GCD(f, g)

Given univariate polynomials f and g over the ring R, this function returns the
greatest common divisor (GCD) of f and g. The valid coefficient rings are those
which themselves have a GCD algorithm for their elements (which includes most
commutative rings in Magma).

If either of the inputs is zero, then the result is the other input (and if the inputs
are both zero then the result is zero). The result is normalized (see the function
Normalize), so the result is always unique.

For polynomials over finite fields, the simple Euclidean algorithm is used, since
this is efficient (there is no intermediate coefficient blowup).

For polynomials over the integers or rationals, a combination of two algorithms
is used: (1) the heuristic evaluation ‘GCDHEU’ algorithm of Char et al. ([CGG89]
and [GCL92, section 7.7]), suitable for small to moderate-degree dense polynomials;
(2) a modular algorithm similar to that presented in [vzGG99, Algorithm 6.38] or
[GCL92, section 7.4] (although lifting all the way up to a bound is not used since it
is completely unnecessary for correctness in this algorithm!).

For polynomials over an algebraic number field, quadratic field, or cyclotomic
field, a fast modular algorithm is used, which maps the field to a residue class
polynomial ring modulo a small prime.

Since V2.10, for polynomials over an algebraic function field or polynomial quo-
tient ring over a function field, a new fast modular algorithm of Allan Steel (to be
published) is used, which evaluates and interpolates for each base transcendental
variable.

For polynomials over another polynomial ring or function field, the polynomi-
als are first “flattened” to be inside a multivariate polynomial ring over the base
coefficient ring, then the appropriate (multivariate) algorithm is used for that base
coefficient ring.

For polynomials over any other ring, the generic subresultant algorithm [Coh93,
section 3.3] is used.

ExtendedGreatestCommonDivisor(f, g)

Xgcd(f, g)

XGCD(f, g)

The extended greatest common divisor of polynomials f and g in a univariate poly-
nomial ring P : the function returns polynomials c, a and b in P with deg(a) < deg(g)
and deg(b) < deg(f) such that c is the monic GCD of f and g, and c = a · f + b · g.
The multipliers a and b are unique if f and g are both non-zero. The coefficient
ring must be a field.

426 BASIC RINGS Part IV

For polynomials over the rational field, a modular algorithm due to Allan Steel
(unpublished) is used; over other fields the basic Euclidean algorithm is used.

LeastCommonMultiple(f, g)

Lcm(f, g)

LCM(f, g)

The least common multiple of polynomials f and g in a univariate polynomial ring
P . The LCM of zero and anything else is zero. The result is normalized (see the
function Normalize), so the result is always unique. The valid coefficient rings are
as for the function GCD, above.

The LCM is effectively computed as Normalize((F div GCD(F, G)) * G), for
non-zero inputs.

Normalize(f)

Given a univariate polynomial f over the ring R, this function returns the unique
normalized polynomial g which is associate to f (so g = uf for some unit in R). This
is chosen so that if R is a field then g is monic, if R is Z then the leading coefficient
of g is positive, if R is a polynomial ring itself, then the leading coefficient of g is
recursively normalized, and so on for other rings.

23.5.2 Content and Primitive Part

Content(p)

The content of p, that is, the greatest common divisor of the coefficients of p as an
element of the coefficient ring.

PrimitivePart(p)

The primitive part of p, being p divided by the content of p.

ContentAndPrimitivePart(p)

Contpp(p)

The content (the greatest common divisor of the coefficients) of p, as an element of
the coefficient ring, as well as the primitive part (p divided by the content) of p.

Ch. 23 UNIVARIATE POLYNOMIAL RINGS 427

23.6 Polynomials over the Integers
The functions in this section are available for univariate polynomials over the integers only.

Sign(p)

The sign of the leading coefficient of p.

AbsoluteValue(p)

Abs(p)

Returns either p or −p according to which one has non-negative leading coefficient.

MaxNorm(p)

The maximum of the absolute values of the coefficients of p.

SumNorm(p)

The sum of the coefficients of p.

DedekindTest(p, m)

Given a monic polynomial p (univariate or multivariate in one variable) and a prime
number m, this returns true if p satisfies the Dedekind criterion at m, and false
otherwise. The Dedekind criterion is satisfied at m if and only if the equation order
corresponding to p is locally maximal at m [PZ89, p. 295].

23.7 Polynomials over Finite Fields
The functions in this section are available for univariate polynomials over finite fields only.

PrimePolynomials(R, d)

PrimePolynomials(R, d, n)

A sequence of all monic prime polynomials of R of degree d, resp. a sequence of n
monic prime polynomials of R of degree d.

RandomPrimePolynomial(R, d)

A random monic prime polynomial of R of degree d.

NumberOfPrimePolynomials(q, d)

NumberOfPrimePolynomials(K, d)

NumberOfPrimePolynomials(R, d)

The number of monic prime polynomials of degree d over the respective finite field.

JacobiSymbol(a,b)

The Jacobi symbol (a/b) of the two polynomials a, b ∈ Fq[x] where q must be odd.
If b is irreducible, the symbol equals 0 if b divides a. It equals 1 if a is a square mod
b and −1 otherwise. The symbol then extends multiplicatively to all non-constant
polynomials b.

428 BASIC RINGS Part IV

23.8 Factorization
This section describes the functions for polynomial factorization and associated computa-
tions. These are available for several kinds of coefficient rings.

23.8.1 Factorization and Irreducibility

Factorization(f)

Factorisation(f)

Al MonStgElt Default : “Default”
Given a univariate polynomial f over the ring R, this function returns the factoriza-
tion of f as a factorization sequence Q, that is, a sequence of pairs, each consisting
of an irreducible factor qi a positive integer ki (its multiplicity). Each irreducible
factor is normalized (see the function Normalize), so the expansion of the factor-
ization sequence is the unique canonical associate of f . The function also returns
the unit u of R giving the normalization, so f = u ·∏i q

ki
i .

The coefficient ring R must be one of the following: a finite field Fq, the ring of
integers Z, the field of rationals Q, an algebraic number field Q(α), a local ring, or
a polynomial ring, function field (rational or algebraic) or finite-dimensional affine
algebra (which is a field) over any of the above.

For factorization over very small finite fields, the Berlekamp algorithm is used
by default, which depends on fast linear algebra (see, for example, [Knu97, section
4.6.2] or [vzGG99, section 14.8]). For medium to large finite fields, the von zur
Gathen/Kaltofen/Shoup algorithm ([vzGS92, KS95, Sho95]) is used by default. The
parameter Al may be used to specify the factorization algorithm over finite fields.
The possible values are:
(1)"Default": The default strategy, whereby an appropriate choice will be made.
(2)"BerlekampSmall" or "BerlekampLarge" for the Berlekamp algorithm (see

[Knu97, pp. 446–447] for the difference between these two variants).
(3)"GKS" for the von zur Gathen/Kaltofen/Shoup algorithm.

Since V2.8 (July 2001), Magma uses the algorithm of Mark van Hoeij [vH02,
vH01] to factor polynomials over the integers or rationals. First a factorization of
f is found modulo a suitable small prime, then Hensel lifting is applied, as in the
standard Berlekamp-Zassenhaus (BZ) algorithm [Knu97, p. 452]. The Hensel lifting
is performed using Victor Shoup’s ‘tree lifting’ algorithm, as described in [vzGG99,
Sec. 15.5]. Easy factors are also detected at various stages, if possible, using heuris-
tics developed by Allan Steel. But the final search for the correct combination
of modular factors (which has exponential worst-case complexity in the standard
BZ algorithm) is now performed by van Hoeij’s algorithm, which efficiently finds
the correct combinations by solving a Knapsack problem via the LLL lattice-basis
reduction algorithm [LLL82].

van Hoeij’s new algorithm is much more efficient in practice than the original
lattice-based factoring algorithm proposed in [LLL82]: the lattice constructed in

Ch. 23 UNIVARIATE POLYNOMIAL RINGS 429

van Hoeij’s algorithm has dimension equal to the number of modular factors (not
the degree of the input polynomial), and the entries of the lattice are very much
smaller. Many polynomials can now be easily factored which were out of reach for
any previous algorithm (see the examples below).

For polynomials over algebraic number fields, algebraic function fields and affine
algebras, the norm-based algorithm of Trager [Tra76] is used, which performs a suit-
able substitution and resultant computation, and then factors the resulting poly-
nomial with one less variable. In characteristic zero, the difficult case (where there
are very many factors of this integral polynomial modulo any prime) is now easily
handled by van Hoeij’s combination algorithm above. In small characteristic, where
inseparable field extensions may occur, an algorithm of Allan Steel ([Ste05]) is used.

HasPolynomialFactorization(R)

Given a ring R, return whether factorization of polynomials over R is allowed in
Magma.

SetVerbose("PolyFact", v)

(Procedure.) Change the verbose printing level for all polynomial factorization
algorithms to be v. Currently the legal levels are 0, 1, 2 or 3.

FactorisationToPolynomial(f)

Facpol(f)

Given a sequence of tuples, each consisting of pairs of irreducible polynomials and
positive integer exponents, return the product polynomial.

Example H23E6

To demonstrate the power of the van Hoeij combination algorithm, in this example we factor
Swinnerton-Dyer polynomials, which are worse-case inputs for the Berlekamp-Zassenhaus factor-
ization algorithm for polynomials over Z.

The n-th Swinnerton-Dyer polynomial is defined to be

∏
(x±

√
2±

√
3±

√
5± · · · ± √pn),

where pi is the i-th prime and the product runs over all 2n possible combinations of + and − signs.
This polynomial lies in Z[x], has degree 2n, is irreducible over Z, and has at least 2n−1 factors
modulo any prime. This last fact is easy to see, since, given any finite field K, the polynomial must
split into linear factors over a quadratic extension of K, so it will have only linear or quadratic
factors over K. See also [vzGG99, section 15.3] for further discussion.

In this example, we use the function SwinnertonDyerPolynomial to construct the polynomials
(see Example H40E2 in the chapter on algebraically closed fields for an explanation of how this
function works).

First we display the first 4 polynomials.

> P<x> := PolynomialRing(IntegerRing());

430 BASIC RINGS Part IV

> SwinnertonDyerPolynomial(1);

x^2 - 2

> SwinnertonDyerPolynomial(2);

x^4 - 10*x^2 + 1

> SwinnertonDyerPolynomial(3);

x^8 - 40*x^6 + 352*x^4 - 960*x^2 + 576

> SwinnertonDyerPolynomial(4);

x^16 - 136*x^14 + 6476*x^12 - 141912*x^10 + 1513334*x^8 - 7453176*x^6 +

13950764*x^4 - 5596840*x^2 + 46225

> IsIrreducible($1);

true

We note the degree patterns of the factorizations of the first eight Swinnerton-Dyer polynomials
over the three finite fields F3, F23 and F503. There are only linear or quadratic factors, as
expected.

> for i := 1 to 8 do

> f := SwinnertonDyerPolynomial(i);

> printf "%o:", i;

> for p in [3, 23, 503] do

> L := Factorization(PolynomialRing(GF(p)) ! f);

> printf " %o", {* Degree(t[1])^^t[2]: t in L *};

> end for;

> "";

> end for;

1: {* 2 *} {* 1^^2 *} {* 1^^2 *}

2: {* 2^^2 *} {* 1^^4 *} {* 1^^4 *}

3: {* 1^^4, 2^^2 *} {* 2^^4 *} {* 2^^4 *}

4: {* 1^^8, 2^^4 *} {* 2^^8 *} {* 2^^8 *}

5: {* 1^^8, 2^^12 *} {* 2^^16 *} {* 2^^16 *}

6: {* 1^^16, 2^^24 *} {* 2^^32 *} {* 2^^32 *}

7: {* 1^^48, 2^^40 *} {* 2^^64 *} {* 2^^64 *}

8: {* 1^^96, 2^^80 *} {* 1^^16, 2^^120 *} {* 2^^128 *}

We now construct the 6-th polynomial, note its largest coefficient, and then factor it; it takes only
a second to prove that it is irreducible, even though there are 32 modular factors.

> sd6 := SwinnertonDyerPolynomial(6);

> Degree(sd6);

64

> Max([Abs(x): x in Coefficients(sd6)]);

1771080720430629161685158978892152599456 11

> time L := Factorization(sd6);

Time: 1.009

> #L;

1

Now we factor the 7-th polynomial!

> sd7 := SwinnertonDyerPolynomial(7);

> Degree(sd7);

Ch. 23 UNIVARIATE POLYNOMIAL RINGS 431

128

> Max([Abs(x): x in Coefficients(sd7)]);

8578344714036018778166274416336425267466563380359649680696924587\

44011458425706833248256 19

> time L := Factorization(sd7);

Time: 11.670

> #L;

1

We now factor the product of the 6-th and 7-th polynomials. This has degree 192 and has at least
96 factors modulo any prime! But the van Hoeij algorithms easily finds the correct factors over
the integers.

> p := sd6*sd7;

> Degree(p);

192

> Max([Abs(x): x in Coefficients(p)]);

4617807523303144159751988353619837233948679680057885997820625979\

481789171112550210109817070112666284891955285248592492005163008

31

> time L := Factorization(p);

Time: 16.840

> #L;

2

> L[1,1] eq sd6;

true

> L[2,1] eq sd7;

true

See also Example H40E2 in the chapter on algebraically closed fields for a generalization of the
Swinnerton-Dyer polynomials.

SquarefreeFactorization(f)

Given a univariate polynomial f over the ring R, this function returns the square-
free factorization of f as a sequence of pairs, each consisting of a (not necessarily
irreducible) factor and an integer indicating the multiplicity. The factors do not
contain the square of any non-constant polynomial.

The coefficient ring R must be the integer ring or any field. The algorithm works
by computing the GCD of f with its derivative and repeating as necessary (special
considerations are also necessary for characteristic p).

432 BASIC RINGS Part IV

DistinctDegreeFactorization(f)

Degree RngIntElt Default : 0
Given a squarefree univariate polynomial f ∈ F [x] with F a finite field, this function
returns the distinct-degree factorization of f as a sequence of pairs, each consisting
of a degree d, together with the product of the degree-d irreducible factors of f .

If the optional parameter Degree is given a value L > 0, then only (products of)
factors up to degree L are returned.

EqualDegreeFactorization(f, d, g)

Given a squarefree univariate polynomial f ∈ F [x] with F a finite field, and integer
d and another polynomial g ∈ F [x] such that F is known to be the product of
distinct degree-d irreducible polynomials alone, and g is xq mod f , where q is the
cardinality of F , this function returns the irreducible factors of f as a sequence of
polynomials (no multiplicities are needed).

If the conditions are not satisfied, the result is unpredictable. This function
allows one to split f , assuming that one has computed f in some special way.

IsIrreducible(f)

Given a univariate polynomial f over the ring R, this function returns returns true
if and only f is irreducible over R. The conditions on R are the same as for the
function Factorization above.

IsSeparable(f)

Given a polynomial f ∈ K[x] such that f is a polynomial of degree ≥ 1 and K is a
field allowing polynomial factorization, this function returns true iff f is separable.

QMatrix(f)

Given a univariate polynomial f of degree d over a finite field F this function returns
the Berlekamp Q-matrix associated with f , which is an element of the degree d− 1
matrix algebra over F .

23.8.2 Resultant and Discriminant

Discriminant(f)

The discriminant D of f ∈ R[x] is returned. The discriminant is an element of R
that can be defined by D = c2n−2

n

∏
i 6=j(αi −αj), where cn is the leading coefficient

of f and the αi are the zeros of f (in some algebraic closure of R). The coefficient
ring R must be a domain.

Resultant(f, g)

The resultant of univariate polynomials f and g (of degree m and n) in R[x], which
is by definition the determinant of the Sylvester matrix for f and g (a matrix of
rank m+n containing coefficients of f and g as entries). The resultant is an element
of R. The coefficient ring R must be a domain.

Ch. 23 UNIVARIATE POLYNOMIAL RINGS 433

CompanionMatrix(f)

Given a monic univariate polynomial f of degree d over some ring R, return the
companion matrix of f as an element of the full matrix algebra of degree d− 1 over
R. The companion matrix for f = a0 + a1x+ · · ·+ ad−1x

d−1 + xd is given by



0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...
−a0 −a1 −a2 · · · − ad−2 −ad−1


 .

23.8.3 Hensel Lifting

HenselLift(f, s, P)

Given the sequence of irreducible factors s modulo some prime p of the univariate
integer polynomial f , return the Hensel lifting into the polynomial ring P , which
must be the univariate polynomial ring over a residue class ring modulo some power
of p. Thus given f ≡ ∏

i si mod p, this returns f ≡ ∏
i ti mod pk for some k ≥ 1,

as a sequence of polynomials in Z/pkZ. The factorization of f modulo p must be
squarefree, that is, s should not contain repeated factors.

Example H23E7

> R<x> := PolynomialRing(Integers());

> b := x^5 - x^3 + 2*x^2 - 2;

> F<f> := PolynomialRing(GF(5));

> s := [w[1] : w in Factorization(F ! b)];

> s;

[

f + 1,

f + 3,

f + 4,

f^2 + 2*f + 4

]

> T<t> := PolynomialRing(Integers(5^3));

> h := HenselLift(b, s, T);

> h;

[

t + 1,

t + 53,

t + 124,

t^2 + 72*t + 59

]

> &*h;

t^5 + 124*t^3 + 2*t^2 + 123

434 BASIC RINGS Part IV

23.9 Ideals and Quotient Rings

Currently it is only possible to create ideals and quotient rings in univariate polynomial
rings over fields. Note that these are principal ideal domains: all ideals can be generated
by a single element.

23.9.1 Creation of Ideals and Quotients

ideal< R | a1, ..., ar >

Given a univariate polynomial ring R over a fieldK, this function returns the ideal of
R generated by the elements a1, . . . , ar ∈ R. This is the same as the ideal generated
by the greatest common divisor of the elements ai in R. The function returns the
ideal as a subring of R, generated by a single element.

quo< R | I >

quo< R | a1, ..., ar >

Given an ideal I in the univariate polynomial ring R (over a field), return the
quotient R/I, as well as the projection map h : R → R/I. The ideal I may either
be specified as an ideal or by a list a1, a2, . . ., ar, of generators. The angle bracket
notation can be used to assign names to the indeterminates: Q<q> := quo< I | I
>;.

23.9.2 Ideal Arithmetic
Since ideals of R are regarded as subrings of R, the ring R itself is a valid ideal as well.

I + J

Given ideals I and J in the same polynomial ring R, this function returns the sum
of the ideals I and J , which is the ideal generated by the generators of I and those
of J . Since we require R to be a principal ideal domain, the resulting ideal will be
simply generated by the greatest common divisor of I.1 and J.1.

I * J

Given ideals I and J in the same polynomial ring R, this function returns the
product of the ideals I and J , which is the ideal generated by the products of the
generators of I and those of J . Since we require R to be a principal ideal domain,
the resulting ideal will be simply generated by I.1 * J.1.

I meet J

Given ideals I and J in the same polynomial ring R, this function returns the
intersection of the ideals I and J . Since we require R to be a principal ideal domain,
the resulting ideal will equal the product of I and J and be simply generated by
I.1 * J.1.

Ch. 23 UNIVARIATE POLYNOMIAL RINGS 435

a in I

Given an element a of a polynomial ring P as well as an ideal I of P , this function
returns true if and only if a is contained in I, and false otherwise.

a notin I

Given an element a of a polynomial ring P as well as an ideal I of P , this function
returns false if and only if a is contained in I, and true otherwise.

I eq J

Given two ideals I and J in the same polynomial ring R this returns true if and
only if I and J are the same, and false otherwise.

I ne J

Given two ideals I and J in the same polynomial ring R this returns false if and
only if I and J are the same, and true otherwise.

I subset J

Given two ideals I and J in the same polynomial ring R this returns true if and
only if I is contained in J , and false otherwise.

I notsubset J

Given two ideals I and J in the same polynomial ring R this returns false if and
only if I is contained in J , and true otherwise.

23.9.3 Other Functions on Ideals

Since ideals are considered as subrings of polynomial rings, and in particular are in the
same Magma category as polynomial rings, most of the function listed in this chapter
for polynomial rings do also apply to ideals, but some restrictions apply. Thus it will be
possible to get the coefficient ring but it will not be possible to use ChangeRing to change
it. We list some functions here that additional comments.

I . 1

Given an ideal I in a univariate polynomial ring R, return the generator of I in R
as an element of I.

436 BASIC RINGS Part IV

23.9.4 Other Functions on Quotients
Contrary to ideals, quotient rings form a separate Magma category. Only very few func-
tions are available on these rings; however most element functions for polynomial rings
apply to elements of quotients as well, in particular the coefficient, term and degree func-
tions.

Modulus(Q)

Given a quotient ring Q = R[x]/I of the univariate polynomial ring R[x] obtained
by factoring out by the ideal I, return the generator for I as an element of R.

PreimageRing(Q)

If Q is the quotient Q = R/I for some univariate polynomial ring R, this function
returns R.

23.10 Special Families of Polynomials

23.10.1 Orthogonal Polynomials

ChebyshevFirst(n)

ChebyshevT(n)

Given a positive integer n, this function constructs the Chebyshev polynomial of
the first kind Tn(x), where Tn(x) is defined by Tn(x) = cosnθ with x = cos θ.

ChebyshevSecond(n)

ChebyshevU(n)

Given a positive integer n, this function constructs the Chebyshev polynomial of
the second kind, Un(x), of degree n− 1. The polynomial is defined by

Un(x) =
1
n
T ′n(x) =

sinnθ
sin θ

where x = cos θ.

LegendrePolynomial(n)

Given a positive integer n, this function constructs the Legendre polynomial Pn(x)
of degree n, where Pn(x) is defined by

P0(x) = 1, P1(x) = x,

Pn(x) =
1
n

((2n− 1)xPn−1(x)− (n− 1)Pn−2(x)).

LaguerrePolynomial(n)

Ch. 23 UNIVARIATE POLYNOMIAL RINGS 437

LaguerrePolynomial(n, m)

Given a positive integer n, this function constructs the Laguerre polynomial Lm
n (x)

of degree n with parameter m. If m is omitted, it is assumed to be zero if it is not
specified. The polynomial satisfies the recurrence relation

L0(x) = 1, L1(x) = 1 +m− x,

Ln(x) =
1
n

(((2n+m− 1)− x)Lm
n−1(x)− (n− 1 +m)Lm

n−2(x)).

HermitePolynomial(n)

Given a positive integer n, this function constructs the Hermite polynomial Hn(x)
of degree n, where Hn(x) is defined by

H0(x) = 1, H1(x) = 2x,
Hn(x) = 2xHn−1(x)− 2nHn−2(x).

GegenbauerPolynomial(n, m)

Given a positive integer n and an integer m, this function constructs the Gegenbauer
polynomial Cm

n (x) of degree n with parameter m, where Cm
n (x) is defined by

Cm
0 (x) = 1, Cm

1 (x) = 2mx,

Cm
n (x) =

1
n

(2(n− 1 +m)xCm
n−1(x)− (n+ 2m− 2)Cm

n−2(x)).

23.10.2 Permutation Polynomials

DicksonFirst(n, a)

Given a positive integer n, this function constructs the Dickson polynomial of the
first kind Dn(x, a) of degree n, where Dn(x, a) is defined by

Dn(x, a) =
bn/2c∑

i=0

n

n− i

(
n− i

i

)
(−a)ixn−2i.

DicksonSecond(n, a)

Given a positive integer n, this function constructs the Dickson polynomial of the
second kind En(x, a) of degree n, where En(x, a) is defined by

En(x, a) =
bn/2c∑

i=0

(
n− i

i

)
(−a)ixn−2i.

438 BASIC RINGS Part IV

23.10.3 The Bernoulli Polynomial

BernoulliPolynomial(n)

Given a positive integer n, this function constructs the n-th Bernoulli polynomial.

23.10.4 Swinnerton-Dyer Polynomials

SwinnertonDyerPolynomial(n)

Given a positive integer n, this function constructs the n-th Swinnerton-Dyer poly-
nomial, which is defined to be

∏
(x±

√
2±

√
3±

√
5± · · · ± √pn),

where pi is the i-th prime and the product runs over all 2n possible combinations of
+ and − signs. This polynomial lies in Z[x], has degree 2n, and is irreducible over
Z.

See Example H23E6 above which explains more about this class of polynomials,
and see also Example H40E2 in the chapter on algebraically closed fields to see how
these polynomials are constructed and also for a generalization.

23.11 Bibliography

[CGG89] Bruce W. Char, Keith O. Geddes, and Gaston H. Gonnet. GCDHEU: Heuristic
Polynomial GCD Algorithm Based on Integer GCD Computation. J. Symbolic Comp.,
7(1):31–48, 1989.

[Coh93] Henri Cohen. A Course in Computational Algebraic Number Theory, volume
138 of Graduate Texts in Mathematics. Springer, Berlin–Heidelberg–New York, 1993.

[Cop96] Don Coppersmith. Finding a small root of a univariate modular equation.
In Advances in Cryptology—EuroCrypt 1996, volume 1070 of LNCS, pages 155–165.
Springer, 1996.

[GCL92] Keith O. Geddes, Stephen R. Czapor, and George Labahn. Algorithms for
Computer Algebra. Kluwer, Boston/Dordrecht/London, 1992.

[Knu97] Donald E. Knuth. The Art of Computer Programming, volume 2. Addison
Wesley, Reading, Massachusetts, 3rd edition, 1997.

[KS95] Erich Kaltofen and Victor Shoup. Subquadratic-time factoring of polynomials
over finite fields. In Proceedings of the Twenty-Seventh Annual ACM Symposium on
Theory of Computing, pages 398–406. ACM, 1995.

[LLL82] Arjen K. Lenstra, Hendrik W. Lenstra, and László Lovász. Factoring polyno-
mials with rational coefficients. Mathematische Annalen, 261:515–534, 1982.

[May03] Alexander May. New RSA Vulnerabilities Using Lattice Reduction Methods.
Dissertation, University of Paderborn, 2003.

Ch. 23 UNIVARIATE POLYNOMIAL RINGS 439

[PZ89] Michael E. Pohst and Hans Zassenhaus. Algorithmic Algebraic Number Theory.
Encyclopaedia of mathematics and its applications. Cambridge University Press, Cam-
bridge, 1989.

[Sho95] Victor Shoup. A New Polynomial Factorization Algorithm and its Implemen-
tation. J. Symbolic Comp., 20(4):363–397, 1995.

[Ste05] Allan Steel. Conquering Inseparability: Primary Decomposition and Mul-
tivariate Factorization over Algebraic Function Fields of Positive Characteristic. J.
Symbolic Comp., 40(3):1053–1075, 2005.

[Tra76] Barry M. Trager. Algebraic factoring and rational function integration. In
R.D. Jenks, editor, Proc. SYMSAC ’76, pages 196–208. ACM press, 1976.

[vH01] Mark van Hoeij. Factoring Polynomials and 0-1 vectors. In Proceedings of the
Cryptography and Lattices Conference (CaLC 2001), Brown University, Providence,
RI, USA, March 29-30, 2001, pages 142–146. Springer, 2001.

[vH02] Mark van Hoeij. Factoring Polynomials and the knapsack problem. J. Number
Th., 95(2):167–189, 2002.
URL:http://www.math.fsu.edu/∼hoeij/paper/knapsack.ps.

[vzGG99] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra.
Cambridge University Press, Cambridge, 1999.

[vzGS92] Joachim von zur Gathen and Victor Shoup. Computing Frobenius Maps And
Factoring Polynomials. Computational Complexity, 2:187–224, 1992.

24 MULTIVARIATE POLYNOMIAL RINGS
24.1 Introduction 443

24.1.1 Representation 443

24.2 Polynomial Rings and Polynomi-
als 444

24.2.1 Creation of Polynomial Rings . . . 444

PolynomialRing(R, n) 444
PolynomialAlgebra(R, n) 444
PolynomialRing(R, n, order) 444
PolynomialAlgebra(R, n, order) 444

24.2.2 Print Names 446

AssignNames(∼P, s) 446
Name(P, i) 446

24.2.3 Graded Polynomial Rings 446

24.2.4 Creation of Polynomials 447

. 447
elt< > 447
! 447
elt< > 447
MultivariatePolynomial(P, f, i) 447
MultivariatePolynomial(P, f, v) 447
One Identity 447
Zero Representative 447

24.3 Structure Operations 447

24.3.1 Related Structures 447

BaseRing(P) 447
CoefficientRing(P) 447
Category Parent PrimeRing 447

24.3.2 Numerical Invariants 448

Rank(P) 448
Characteristic # 448

24.3.3 Ring Predicates and Booleans . . . 448

IsCommutative IsUnitary 448
IsFinite IsOrdered 448
IsField IsEuclideanDomain 448
IsPID IsUFD 448
IsDivisionRing IsEuclideanRing 448
IsDomain 448
IsPrincipalIdealRing 448
eq ne 448

24.3.4 Changing Coefficient Ring 448

ChangeRing(P, S) 448

24.3.5 Homomorphisms 448

hom< > 448
hom< > 448

24.4 Element Operations 449

24.4.1 Arithmetic Operators 449

+ - 449
+ - * ^ / div 449
+:= -:= *:= div:= 449

24.4.2 Equality and Membership 449

eq ne 449
in notin 449

24.4.3 Predicates on Ring Elements . . . 450

IsDivisibleBy(a, b) 450
IsAlgebraicallyDependent(S) 450
IsZero IsOne IsMinusOne 450
IsNilpotent IsIdempotent 450
IsUnit IsZeroDivisor IsRegular 450
IsIrreducible IsPrime 450

24.4.4 Coefficients, Monomials and Terms 450

Coefficients(f) 450
Coefficients(f, i) 450
Coefficients(f, v) 450
Coefficient(f, i, k) 451
Coefficient(f, v, k) 451
LeadingCoefficient(f) 451
LeadingCoefficient(f, i) 451
LeadingCoefficient(f, v) 451
Length(f) 451
TrailingCoefficient(f) 451
TrailingCoefficient(f, i) 452
TrailingCoefficient(f, v) 452
MonomialCoefficient(f, m) 452
Monomials(f) 452
CoefficientsAndMonomials(f) 452
LeadingMonomial(f) 452
Terms(f) 452
Terms(f, i) 453
Terms(f, v) 453
Term(f, i, k) 453
Term(f, v, k) 453
LeadingTerm(f) 453
LeadingTerm(f, i) 453
LeadingTerm(f, v) 453
TrailingTerm(f) 453
TrailingTerm(f, i) 454
TrailingTerm(f, v) 454
Exponents(f) 454
Monomial(P, E) 454
Polynomial(C, M) 454

24.4.5 Degrees 455

Degree(f, i) 455
Degree(f, v) 455
TotalDegree(f) 456
LeadingTotalDegree(f) 456

24.4.6 Univariate Polynomials 456

IsUnivariate(f) 456
IsUnivariate(f, i) 456

442 BASIC RINGS Part IV

IsUnivariate(f, v) 456
UnivariatePolynomial(f) 456

24.4.7 Derivative, Integral 457

Derivative(f, i) 457
Derivative(f, v) 457
Derivative(f, k, i) 458
Derivative(f, k, v) 458
Integral(f, i) 458
Integral(f, v) 458
JacobianMatrix([f]) 458

24.4.8 Evaluation, Interpolation 458

Evaluate(f, s) 458
Evaluate(f, i, r) 458
Evaluate(f, v, r) 458
Interpolation(I, V, i) 459
Interpolation(I, V, v) 459

24.4.9 Quotient and Reductum 459

div 459
ExactQuotient(f, g) 459
Reductum(f) 459
Reductum(f, i) 460
Reductum(f, v) 460

24.4.10 Diagonalizing a Polynomial of De-
gree 2 460

SymmetricBilinearForm(f) 460
DiagonalForm(f) 460

24.5 Greatest Common Divisors . . 461
24.5.1 Common Divisors and Common Mul-

tiples 461

GreatestCommonDivisor(f, g) 461
Gcd(f, g) 461
GCD(f, g) 461

GCD(Q) 461
LeastCommonMultiple(f, g) 462
Lcm(f, g) 462
LCM(f, g) 462
LCM(Q) 462
Normalize(f) 462
ClearDenominators(f) 462
ClearDenominators(Q) 462

24.5.2 Content and Primitive Part 462

Content(f) 462
PrimitivePart(f) 462
ContentAndPrimitivePart(f) 462
Contpp(f) 462

24.6 Factorization and Irreducibility 463

Factorization(f) 463
SquarefreeFactorization(f) 463
SquarefreePart(f) 463
IsIrreducible(f) 464
SetVerbose("PolyFact", v) 464

24.7 Resultants and Discriminants . 467

Resultant(f, g, i) 467
Resultant(f, g, v) 467
Discriminant(f, i) 467
Discriminant(f, v) 467

24.8 Polynomials over the Integers . 467

Sign(f) 467
AbsoluteValue(f) 467
Abs(f) 467
MaxNorm(f) 467
SumNorm(f) 467

24.9 Bibliography 468

Chapter 24

MULTIVARIATE POLYNOMIAL RINGS

24.1 Introduction

This chapter describes multivariate polynomial rings in Magma. A multivariate polyno-
mial ring in any number of variables n ≥ 1 can be created over an arbitrary coefficient
ring R, and we will denote it by P = R[x1, . . . , xn]. Certain functions, however, will only
apply for coefficient rings satisfying certain conditions.

Magma contains a powerful system for computing with ideals of multivariate polyno-
mial rings. This is based on the construction of Gröbner bases of such ideals. This chapter
only deals with polynomial rings and operations on their elements; see Chapter 105 for the
details concerning ideals and Gröbner bases.

Permutation and matrix groups have a natural action on multivariate polynomial rings.
This leads to the subject of invariant rings of finite groups, which is covered in Chapter 110.
See also the chapters on affine algebras (Chapter 108) and on modules over affine algebras
(Chapter 109).

24.1.1 Representation
Let P be the polynomial ring R[x1, . . . , xn] of rank n over a ring R. A monomial (or
power product) of P is a product of powers of the variables of P , that is, an expression
of the form xe1

1 · · ·xen
n with ei ≥ 0 for 1 ≤ i ≤ n. Multivariate polynomials in Magma

are stored efficiently in distributive form, using arrays of coefficient-monomial pairs, where
the coefficient is in the base ring R. The word ‘term’ will always refer to a coefficient
multiplied by a monomial.

Various orders can be applied to the monomials, and these are of great importance
when dealing with Gröbner bases. A polynomial ring in Magma may defined with a
certain monomial order, but as this does not affect the basic arithmetic operations in
the polynomial ring, these orders are not described here but in the chapter dealing with
Gröbner bases (see Section 105.2).

Since V2.7 (June 2000), a new generalized monomial representation has been developed,
which uses differing byte sizes for monomials depending on the size of the monomials
encountered. Monomial overflow is rigorously detected, and the system automatically
extends the byte size of the monomials in the background if possible. Thus there is no
need for the user to know beforehand the maximum degree which may occur, and much
memory is also saved for low- to medium-degree computations. The total degree of any
monomial may now be anything up to 230 − 1 = 1073741823.

It is possible but not advised to use distributive ‘multivariate’ polynomials in one single
variable. (See Chapter 23 which devoted to univariate polynomial rings.)

444 BASIC RINGS Part IV

24.2 Polynomial Rings and Polynomials

24.2.1 Creation of Polynomial Rings
Multivariate polynomial rings are created from a coefficient ring, the number of indeter-
minates, and a monomial order. If no order is specified, the monomial order is taken to be
the lexicographical order (see Section 105.2 for details).

PolynomialRing(R, n)

PolynomialAlgebra(R, n)

Global BoolElt Default : false

Create a multivariate polynomial ring in n > 0 indeterminates over the ring R. The
ring is regarded as an R-algebra via the usual identification of elements of R and
the constant polynomials. The lexicographical ordering on the monomials is used
for this default construction (see Section 105.2). The angle bracket notation can be
used to assign names to the indeterminates; e.g.: P<x, y> := PolynomialRing(R,
2); etc.

By default, a non-global polynomial ring will be returned; if the parameter
Global is set to true, then the unique global polynomial ring over R with n variables
will be returned. This may be useful in some contexts, but a non-global result is
returned by default since one often wishes to have several rings with the same num-
bers of variables but with different variable names (and create mappings between
them, for example). Explicit coercion is always allowed between polynomial rings
having the same number of variables (and suitable base rings), whether they are
global or not, and the coercion maps the i-variable of one ring to the i-th variable
of the other ring.

PolynomialRing(R, n, order)

PolynomialAlgebra(R, n, order)

Create a multivariate polynomial ring in n > 0 indeterminates over the ring R with
the given order order on the monomials. See Section 105.2 for details.

Example H24E1

We show the use of angle brackets for generator names.

> Z := IntegerRing();

> S := PolynomialRing(Z, 2);

If we define S this way, we can only refer to the indeterminates by S.1 and S.2 (see below). So
we could assign these generators to variables, say x and y, as follows:

> x := S.1;

> y := S.2;

In this case it is easy to construct polynomials, but printing is slightly awkward:

> f := x^3*y +3*y^2;

Ch. 24 MULTIVARIATE POLYNOMIAL RINGS 445

> f;

$.1^3*$.2 + 3*$.2^2

To overcome that, it is possible to assign names to the indeterminates that are used in the printing
routines, using the AssignNames function, before assigning to x and y.

> AssignNames(~S, ["x", "y"]);

> x := S.1; y := S.2;

> f := x^3*y +3*y^2;

> f;

x^3*y + 3*y^2

Alternatively, we use the angle brackets to assign generator names that will be used in printing
as well:

> S<x, y> := PolynomialRing(Z, 2);

> f := x^3*y +3*y^2;

> f;

x^3*y + 3*y^2

Example H24E2

We demonstrate the difference between global and non-global rings. We first create the global
multivariate polynomial ring over Q with 3 variables twice.

> Q := RationalField();

> P<x,y,z> := PolynomialRing(Q, 3: Global);

> PP := PolynomialRing(Q, 3: Global);

> P;

Polynomial ring of rank 3 over Rational Field

Lexicographical Order

Variables: x, y, z

> PP;

Polynomial ring of rank 3 over Rational Field

Lexicographical Order

Variables: x, y, z

> PP.1;

x

PP is identical to P . We now create default (non-global) multivariate polynomial rings (which
are also different to the global polynomial ring P). Explicit coercion is allowed, and maps the
i-variable of one ring to the i-th variable of the other ring.

> P1<a,b,c> := PolynomialRing(Q, 3);

> P2<d,e,f> := PolynomialRing(Q, 3);

> P1;

Polynomial ring of rank 3 over Rational Field

Lexicographical Order

Variables: a, b, c

> P2;

Polynomial ring of rank 3 over Rational Field

446 BASIC RINGS Part IV

Lexicographical Order

Variables: d, e, f

> a;

a

> d;

d

> P1 ! d;

a

> P ! e;

y

24.2.2 Print Names
The AssignNames and Name functions can be used to associate names with the indetermi-
nates of polynomial rings after creation.

AssignNames(∼P, s)

Procedure to change the name of the indeterminates of a polynomial ring P . The
i-th indeterminate will be given the name of the i-th element of the sequence of
strings s (for 1 ≤ i ≤ #s); the sequence may have length less than the number
of indeterminates of P , in which case the remaining indeterminate names remain
unchanged.

This procedure only changes the name used in printing the elements of P . It
does not assign to identifiers corresponding to the strings the indeterminates in P ;
to do this, use an assignment statement, or use angle brackets when creating the
polynomial ring.

Note that since this is a procedure that modifies P , it is necessary to have a
reference ∼P to P in the call to this function.

Name(P, i)

Given a polynomial ring P , return the i-th indeterminate of P (as an element of P).

24.2.3 Graded Polynomial Rings
It is possible within Magma to assign weights to the variables of a multivariate polynomial
ring. This means that monomials of the ring then have a weighted degree with respect to the
weights of the variables. Such a multivariate polynomial ring is called graded or weighted.
Since this subject is intimately related to ideals, it is covered in the chapter on ideals and
Gröbner bases (see Subsection 105.3.2).

Ch. 24 MULTIVARIATE POLYNOMIAL RINGS 447

24.2.4 Creation of Polynomials
The easiest way to create polynomials in a given ring is to use the angle bracket construc-
tion to attach variables to the indeterminates, and then to use these variables to create
polynomials (see the examples). Below we list other options.

P . i

Return the i-th indeterminate for the polynomial ring P in n variables (1 ≤ i ≤ n)
as an element of P .

elt< R | a >

R ! s

elt< R | s >

This element constructor can only be used for trivial purposes in multivariate poly-
nomial rings: given a polynomial ring P = R[x1, . . . , xn] and an element a that can
be coerced into the coefficient ring R, the constant polynomial a is returned; if a is
in P already it will be returned unchanged.

MultivariatePolynomial(P, f, i)

MultivariatePolynomial(P, f, v)

Given a multivariate polynomial ring P = R[x1, . . . , xn], as well as a polynomial
f in a univariate polynomial ring R[x] over the same coefficient ring R, return an
element q of P corresponding to f in the indeterminate v = xi; that is, q ∈ P is
defined by q =

∑
j fjx

j
i where f =

∑
j fjx

j . The indeterminate xi can either be
specified as a polynomial v = xi in P , or by simply providing the integer i with
1 ≤ i ≤ n.

The inverse operation is performed by the UnivariatePolynomial function.

One(P) Identity(P) Zero(P) Representative(P)

24.3 Structure Operations

24.3.1 Related Structures
The main structure related to a polynomial ring is its coefficient ring. Multivariate poly-
nomial rings belong to the Magma category RngMPol.

BaseRing(P)

CoefficientRing(P)

Return the coefficient ring of polynomial ring P .

Category(P) Parent(P) PrimeRing(P)

448 BASIC RINGS Part IV

24.3.2 Numerical Invariants
Note that the # operator only returns a value for finite (quotients of) polynomial rings.

Rank(P)

Return the number of indeterminates of polynomial ring P over its coefficient ring.

Characteristic(P) # P

24.3.3 Ring Predicates and Booleans
The usual ring functions returning Boolean values are available on polynomial rings.

IsCommutative(P) IsUnitary(P) IsFinite(P) IsOrdered(P)

IsField(P) IsEuclideanDomain(P) IsPID(P) IsUFD(P)

IsDivisionRing(P) IsEuclideanRing(P) IsDomain(P)

IsPrincipalIdealRing(P) P eq Q P ne Q

24.3.4 Changing Coefficient Ring
The ChangeRing function enables the changing of the coefficient ring of a polynomial ring.

ChangeRing(P, S)

Given a polynomial ring P = R[x1, . . . , xn] of rank n with coefficient ring R, together
with a ring S, construct the polynomial ring Q = S[x1, . . . , xn]. It is necessary that
all elements of the old coefficient ring R can be automatically coerced into the new
coefficient ring S.

24.3.5 Homomorphisms
In its general form, a ring homomorphism taking a polynomial ring R[x1, . . . , xn] as domain
requires n+ 1 pieces of information, namely, a map (homomorphism) telling how to map
the coefficient ring R together with the images of the n indeterminates.

hom< P -> S | f, y1, ..., yn >

hom< P -> S | y1, ..., yn >

Given a polynomial ring P = R[x1, . . . , xn], a ring S, a map f : R → S and n
elements y1, . . . , yn ∈ S, create the homomorphism g : P → S by applying the
rules that g(rxa1

1 · · ·xan
n) = f(r)ya1

1 · · · yan
n for monomials and linearity, that is,

g(M +N) = g(M) + g(N).
The coefficient ring map may be omitted, in which case the coefficients are

mapped into S by the unitary homomorphism sending 1R to 1S . Also, the images
yi are allowed to be from a structure that allows automatic coercion into S.

Ch. 24 MULTIVARIATE POLYNOMIAL RINGS 449

Example H24E3

In this example we map Q[x, y] into the number field Q(3
√

2,
√

5) by sending x to 3
√

2 and y to√
5 and the identity map on the coefficients (which we omit).

> Q := RationalField();

> R<x, y> := PolynomialRing(Q, 2);

> A<a> := PolynomialRing(IntegerRing());

> N<z, w> := NumberField([a^3-2, a^2+5]);

> h := hom< R -> N | z, w >;

> h(x^11*y^3-x+4/5*y-13/4);

-40*w*z^2 - z + 4/5*w - 13/4

24.4 Element Operations

24.4.1 Arithmetic Operators
The usual unary and binary ring operations are available for multivariate polynomials.

For polynomial rings over fields division by elements of the coefficient field are allowed
(with the result in the original polynomial ring). The operator div has slightly different
semantics from the univariate case: if b divides a, that is, if there exists a polynomial q ∈ P
such that a = b · q ∈ P then q will be the result of a div b, but if such polynomial does
not exist an error results.

+ a - a

a + b a - b a * b a ^ k a / b a div b

a +:= b a -:= b a *:= b a div:= b

24.4.2 Equality and Membership

a eq b a ne b

a in R a notin R

450 BASIC RINGS Part IV

24.4.3 Predicates on Ring Elements
The list belows contains the general ring element predicates. Also, the IsDivisibleBy
function allows a divisibility test, and the IsAlgebraicallyDependent function deter-
mines if a set of ring elements is algebraically dependent. Note that not all functions are
available for every coefficient ring.

IsDivisibleBy(a, b)

Given elements a, b in a multivariate polynomial ring P , this function returns
whether the polynomial a is divisible by b in P , that is, if and only if there ex-
ists q ∈ P such that a = q · b. If true is returned, the quotient polynomial q is also
returned.

IsAlgebraicallyDependent(S)

Returns true iff the set S of multivariate polynomials is algebraically dependent.

IsZero(f) IsOne(f) IsMinusOne(f)

IsNilpotent(f) IsIdempotent(f)

IsUnit(f) IsZeroDivisor(f) IsRegular(f)

IsIrreducible(f) IsPrime(f)

24.4.4 Coefficients, Monomials and Terms
Many of the functions in this subsection come in three different forms: one in which no
variable is specified, which usually returns values in the coefficient ring, and two in which
a particular variable is referred, either by name or by number, and these usually return
values in the polynomial ring itself.

Coefficients(f)

Given a multivariate polynomial f with coefficients in R, this function returns a
sequence of ‘base’ coefficients, that is, a sequence of elements of R occurring as co-
efficients of the monomials in f . Note that the monomials are ordered, and that the
sequence of coefficients corresponds exactly to the sequence of monomials returned
by Monomials(f).

Coefficients(f, i)

Coefficients(f, v)

Given a multivariate polynomial f ∈ P = R[x1, . . . , xn], this function returns a
sequence of coefficients with respect to a given variable v = xi, that is, the function
returns a sequence of elements of P that form the coefficients of the powers of v
(in ascending order) when f is regarded as a polynomial

∑
j cjx

j
i ; note that the

variable xi itself will not occur in the coefficients. There are two ways to indicate
with respect to which variable the coefficients are to be taken: either one specifies

Ch. 24 MULTIVARIATE POLYNOMIAL RINGS 451

i, the integer 1 ≤ i ≤ n that is the number of the variable (upon creation of P ,
corresponding to P.i) or the variable v itself (as an element of P).

Coefficient(f, i, k)

Coefficient(f, v, k)

Given a multivariate polynomial f ∈ P = R[x1, . . . , xn], this function returns the
coefficient of vk = xk

i , that is, the function returns the element of P that forms the
coefficient of the k-th power of xi, when f is regarded as a polynomial

∑
j cjx

j
i ;

note that the variable xi itself will not occur in the coefficient. There are two ways
to indicate with respect to which variable the coefficient is to be taken: either one
specifies i, the integer 1 ≤ i ≤ n that is the number of the variable (upon creation
of P , corresponding to P.i) or the variable v itself (as an element of P).

LeadingCoefficient(f)

Given a multivariate polynomial f with coefficients in R, this function returns the
leading coefficient of f as an element of R; this is the coefficient of the leading
monomial of f , that is, the first among the monomials occurring in f with respect
to the ordering of monomials used in P .

LeadingCoefficient(f, i)

LeadingCoefficient(f, v)

Given a multivariate polynomial f ∈ P = R[x1, . . . , xn], this function returns the
element of P that forms the coefficient of the largest power of v = xi that occurs
with non-zero coefficient in f , when f is regarded as a polynomial

∑
j cjx

j
i ; note

that the variable xi itself will not occur in the coefficient. There are two ways to
indicate with respect to which variable the leading coefficient is to be taken: either
one specifies i, the integer 1 ≤ i ≤ n that is the number of the variable (upon
creation of P , corresponding to P.i) or the variable v itself (as an element of P).

Length(f)

Given a multivariate polynomial f , return the length of f , i.e., the number of terms
of f .

TrailingCoefficient(f)

Given a multivariate polynomial f with coefficients in R, this function returns the
trailing coefficient of f as an element of R; this is the coefficient of the trailing
monomial of f , that is, the last among the monomials occurring in f with respect
to the ordering of monomials used in P .

452 BASIC RINGS Part IV

TrailingCoefficient(f, i)

TrailingCoefficient(f, v)

Given a multivariate polynomial f ∈ P = R[x1, . . . , xn], this function returns the
element of P that forms the coefficient of the least power of v = xi that occurs
with non-zero coefficient in f , when f is regarded as a polynomial

∑
j cjx

j
i ; note

that the variable xi itself will not occur in the coefficient. There are two ways to
indicate with respect to which variable the leading coefficient is to be taken: either
one specifies i, the integer 1 ≤ i ≤ n that is the number of the variable (upon
creation of P , corresponding to P.i) or the variable v itself (as an element of P).

MonomialCoefficient(f, m)

Given a multivariate polynomial f and a monomial m, both in P ∈ R[x1, . . . , xn],
this function returns the coefficient with which m occurs in f as an element of R.

Monomials(f)

Given a multivariate polynomial f ∈ P , this function returns a sequence of mono-
mials, that is, a sequence of monomial elements of P occurring in f . Note that
the monomials in P are ordered, and that the sequence of monomials corresponds
exactly to the sequence of coefficients returned by Coefficients(f).

CoefficientsAndMonomials(f)

Given a multivariate polynomial f ∈ P , this function returns parallel sequences C
and M of the coefficients and monomials, respectively, of f . Thus this function is
equivalent to calling Coefficients and Monomials separately, but is more efficient
(particularly for large polynomials) since only one scan of the polynomial needs to
be done.

LeadingMonomial(f)

Given a multivariate polynomial f ∈ P this function returns the leading monomial
of f , that is, the first monomial element of P that occurs in f , with respect to the
ordering of monomials used in P .

Terms(f)

Given a multivariate polynomial f ∈ P , this function returns the sequence of (non-
zero) terms of f as elements of P . The terms are ordered according to the ordering
on the monomials in P . Consequently the i-th element of this sequence of terms
will be equal to the product of the i-th element of the sequence of coefficients and
the i-th element of the sequence of monomials.

Ch. 24 MULTIVARIATE POLYNOMIAL RINGS 453

Terms(f, i)

Terms(f, v)

Given a multivariate polynomial f ∈ P = R[x1, . . . , xn], this function returns a
sequence of terms with respect to a given variable v = xi, that is, the function
returns a sequence of elements of P that form the terms (ascending order) of f
regarded as a polynomial

∑
j cjx

j
i . There are two ways to indicate with respect

to which variable the terms are to be ordered: either one specifies i, the integer
1 ≤ i ≤ n that is the number of the variable (upon creation of P , corresponding to
P.i) or the variable v itself (as an element of P).

Term(f, i, k)

Term(f, v, k)

Given a multivariate polynomial f ∈ P = R[x1, . . . , xn], this function returns the
k-th term of f (with k ≥ 0), that is, the function returns the term of f involving
the k-th power of xi, when f is regarded as a polynomial

∑
j cjx

j
i . There are two

ways to indicate with respect to which variable the term is to be taken: either one
specifies i, the integer 1 ≤ i ≤ n that is the number of the variable (upon creation
of P , corresponding to P.i) or the variable v itself (as an element of P).

LeadingTerm(f)

Given a multivariate polynomial f ∈ P , this function returns the leading term of
f as an element of P ; this is the product of the leading monomial and the leading
coefficient that is, the first among the monomial terms occurring in f with respect
to the ordering of monomials used in P .

LeadingTerm(f, i)

LeadingTerm(f, v)

Given a multivariate polynomial f ∈ P = R[x1, . . . , xn], this function returns the
element of P that forms the leading term of f when f is regarded as a polynomial∑

j cjx
j
i . Thus it is the term involving the largest power of xi that occurs with

non-zero coefficient. There are two ways to indicate with respect to which variable
the leading coefficient is to be taken: either one specifies i, the integer 1 ≤ i ≤ n
that is the number of the variable (upon creation of P , corresponding to P.i) or the
variable v itself (as an element of P).

TrailingTerm(f)

Given a multivariate polynomial f ∈ P , this function returns the trailing term of f
as an element of P ; this is the last among the monomial terms occurring in f with
respect to the ordering of monomials used in P .

454 BASIC RINGS Part IV

TrailingTerm(f, i)

TrailingTerm(f, v)

Given a multivariate polynomial f ∈ P = R[x1, . . . , xn], this function returns the
element of P that forms the trailing term of f when f is regarded as a polynomial∑

j cjx
j
i . Thus it is the term involving the least power of xi that occurs with non-

zero coefficient. There are two ways to indicate with respect to which variable the
leading coefficient is to be taken: either one specifies i, the integer 1 ≤ i ≤ n that
is the number of the variable (upon creation of P , corresponding to P.i) or the
variable v itself (as an element of P).

Exponents(f)

Given a single term f (a polynomial having exactly one term) in a polynomial ring
of rank n, return the exponents of the monomial of f , as a sequence of length n of
integers. (The coefficient of f is ignored; it need not be 1.)

Monomial(P, E)

Given a multivariate polynomial ring P = R[x1, . . . , xn], and a sequence E of non-
negative integers, return the monomial x1

E[1] . . . xn
E[n] in P . This function is a

semi-inverse of Exponents.

Polynomial(C, M)

Given a length-k sequence C of coefficients in a ring R and a length-k sequence
M of monomials of a polynomial ring R, return the multivariate polynomial
f ∈ R whose coefficients are C and monomials are M . (Thus for any f ∈ R,
Polynomial(Coefficients(f), Monomials)) equals f .)

Example H24E4

In this and the next example we illustrate the coefficient and term functions, using the polynomial
in three variables x, y, z over the rational field that is given by f = (2x + y)z3 + 11xyz + x2y2.

> R<x, y, z> := PolynomialAlgebra(RationalField(), 3);

> f := (2*x+y)*z^3+11*x*y*z+x^2*y^2;

> f;

x^2*y^2 + 11*x*y*z + 2*x*z^3 + y*z^3

> Coefficients(f);

[1, 11, 2, 1]

> Monomials(f);

[

x^2*y^2,

x*y*z,

x*z^3,

y*z^3

]

> CoefficientsAndMonomials(f);

[1, 11, 2, 1]

Ch. 24 MULTIVARIATE POLYNOMIAL RINGS 455

[

x^2*y^2,

x*y*z,

x*z^3,

y*z^3

]

> Terms(f);

[

x^2*y^2,

11*x*y*z,

2*x*z^3,

y*z^3

]

> Coefficients(f, y);

[

2*x*z^3,

11*x*z + z^3,

x^2

]

> Terms(f, 2);

[

2*x*z^3,

11*x*y*z + y*z^3,

x^2*y^2

]

> MonomialCoefficient(f, x*y*z);

11

> LeadingTerm(f);

x^2*y^2

> LeadingTerm(f, z);

2*x*z^3 + y*z^3

> LeadingCoefficient(f, z);

2*x + y

> Polynomial([1, 2, 3], [x*y, y, z^2]);

x*y + 2*y + 3*z^2

24.4.5 Degrees

Degree(f, i)

Degree(f, v)

Given a multivariate polynomial f ∈ P = R[x1, . . . , xn], this function returns the
degree of f in vk = xk

i , that is, the function returns the degree of f when it is
regarded as a polynomial

∑
j cjx

j
i . The resulting integer is thus the largest power of

xi occurring in any monomial of f . There are two ways to indicate with respect to

456 BASIC RINGS Part IV

which variable the degree is to be taken: either one specifies i, the integer 1 ≤ i ≤ n
that is the number of the variable (upon creation of P , corresponding to P.i) or the
variable v itself (as an element of P). If f is the zero polynomial, the return value
is always −1.

TotalDegree(f)

Given a multivariate polynomial f ∈ P = R[x1, . . . , xn], this function returns the
total degree of f , which is the maximum of the total degrees of all monomials that
occur in f . The total degree of a monomial m is the sum of the exponents of the
indeterminates that make up m. Note that this ignores the weights on the variables
if there are any (see the section on graded polynomial rings below). If f is the zero
polynomial, the return value is −1.

LeadingTotalDegree(f)

Given a multivariate polynomial f ∈ P = R[x1, . . . , xn], this function returns the
leading total degree of f , which is the total degree of the leading monomial of f . If
f is the zero polynomial, the return value is −1.

24.4.6 Univariate Polynomials

IsUnivariate(f)

Given a multivariate polynomial f ∈ R[x1, . . . , xn], this function returns whether f
is in fact a univariate polynomial in one of its indeterminates x1, . . . , xn. If true is
returned, then the function also returns a univariate version u of f and (the first)
i such that f is univariate in xi. Note that there will only be ambiguity about i if
f is a constant polynomial. The univariate polynomial u will be an element of R[x]
with the same coefficients as f .

IsUnivariate(f, i)

IsUnivariate(f, v)

Given a multivariate polynomial f ∈ R[x1, . . . , xn], this function returns whether
f is in fact a univariate polynomial in xi. If true is returned, then the function
also returns a univariate version u of f , which will be an element of the univariate
polynomial ring R[x] with the same coefficients as f . The indeterminate xi should
either be specified as a (polynomial) argument v or as an integer i.

UnivariatePolynomial(f)

Given a multivariate polynomial f ∈ R[x1, . . . , xn], which is known to be a univariate
polynomial in xi for some i with 1 ≤ i ≤ n, return a univariate version u of f , which
will be an element of the univariate polynomial ring R[x] with the same coefficients
as f .

Ch. 24 MULTIVARIATE POLYNOMIAL RINGS 457

Example H24E5

Suppose we have two bivariate polynomials f and g over some ring.

> P<x,y> := PolynomialRing(GF(5), 2);

> f := x^2 - y + 3;

> g := y^3 - x*y + x;

If we compute the resultant in either variable of the two polynomials, then we can apply
UnivariatePolynomial to this to obtain a univariate version of it, from which we can compute
the roots.

> ry := Resultant(f, g, y);

> ry;

4*x^6 + x^4 + x^3 + 3*x^2 + 2*x + 3

> Roots(UnivariatePolynomial(ry));

[<3, 1>]

> Evaluate(f, x, 3);

4*y + 2

> Evaluate(g, x, 3);

y^3 + 2*y + 3

> GCD($1, $2);

y + 3

> rx := Resultant(f, g, x);

> rx;

y^6 + 4*y^3 + 3*y + 3

> Roots(UnivariatePolynomial(rx));

[<2, 1>]

> Evaluate(f, y, 2);

x^2 + 1

> Evaluate(g, y, 2);

4*x + 3

> GCD($1, $2);

x + 2

24.4.7 Derivative, Integral

Derivative(f, i)

Derivative(f, v)

Given a multivariate polynomial f ∈ P , return the derivative of f with respect to
the variable v = xi, as an element of P . There are two ways to indicate with respect
to which variable the derivative is to be taken: either one specifies i, the integer
1 ≤ i ≤ n that is the number of the variable (upon creation of P , corresponding to
P.i) or the variable v itself (as an element of P).

458 BASIC RINGS Part IV

Derivative(f, k, i)

Derivative(f, k, v)

Given a multivariate polynomial f ∈ P and an integer k > 0, return the k-th
derivative of f with respect to the variable v = xi, as an element of P . There are
two ways to indicate with respect to which variable the derivative is to be taken:
either one specifies i, the integer 1 ≤ i ≤ n that is the number of the variable (upon
creation of P , corresponding to P.i) or the variable v itself (as an element of P).

Integral(f, i)

Integral(f, v)

Given a multivariate polynomial f ∈ P over a field of characteristic zero, return the
formal integral of f with respect to v = xi as an element of P . There are two ways
to indicate with respect to which variable the integral is to be taken: either one
specifies i, the integer 1 ≤ i ≤ n that is the number of the variable (upon creation
of P , corresponding to P.i) or the variable v itself (as an element of P).

JacobianMatrix([f])

Creates the matrix with (i, j)’th entry the partial derivative of the i’th polynomial
in the list with the j’th indeterminate of its parent ring.

24.4.8 Evaluation, Interpolation

Evaluate(f, s)

Given an element f of a polynomial ring P = R[x1, . . . , xn] and a sequence or tuple
s of ring elements of length n, return the value of f at s, that is, obtained by
substituting xi = s[i]. If the elements of s can be lifted into the coefficient ring R,
then the result will be an element of R. If the elements of s cannot be lifted to the
coefficient ring, then an attempt is made to do a generic evaluation of f at s. In
this case, the result will be of the same type as the elements of s.

Evaluate(f, i, r)

Evaluate(f, v, r)

Given an element f of a multivariate polynomial ring P and a ring element r return
the value of f when the variable v = xi is evaluated at r. If r can be coerced into
the coefficient ring of P , the result will be an element in P again. Otherwise the
other variables of P must be coercible into the parent of r, and the result will have
the same parent as r.

Ch. 24 MULTIVARIATE POLYNOMIAL RINGS 459

Interpolation(I, V, i)

Interpolation(I, V, v)

Let K be a field, and P = K[x1, . . . , xn] a multivariate polynomial ring over K; let
v = xi be the i-th indeterminate of P . Given a sequence I of elements of K (the
interpolation points) and a sequence V of elements of P (the interpolation values),
both sequences of length k > 0, return the unique polynomial f ∈ P of degree less
than k in the variable xi such that f(I[j]) = V [j], for j = 1, . . . , k. The variable
xi may not occur anywhere in the values V . There are two ways to indicate with
respect to which variable to interpolate: either one specifies i, the integer 1 ≤ i ≤ n
that is the number of the variable or the variable v itself (as a polynomial).

Example H24E6

We define P = Q[x, y, z], and give an example of interpolation. We find a polynomial which,
when evaluated in the first variable x in the rational points 1, 2, 3, yields y, z, y + z respectively.
We check the result by evaluating.

> Q := RationalField();

> P<x, y, z> := PolynomialRing(Q, 3);

> f := Interpolation([Q | 1, 2, 3], [y, z, y + z], 1);

> f;

x^2*y - 1/2*x^2*z - 4*x*y + 5/2*x*z + 4*y - 2*z

> [Evaluate(f, 1, v) : v in [1, 2, 3]];

[

y,

z,

y + z

]

24.4.9 Quotient and Reductum

f div g

ExactQuotient(f, g)

The quotient of the multivariate polynomial f by g in R[x1, . . . , xn], provided the
result lies in P again. Here R must be a domain. If a polynomial q in P exists such
that f = q · g then it will be returned, but if does not exist an error results.

Reductum(f)

The reductum of a polynomial f , which is the polynomial obtained by removing the
leading term of f .

460 BASIC RINGS Part IV

Reductum(f, i)

Reductum(f, v)

The reductum of a multivariate polynomial f ∈ R[x1, . . . , xn] obtained by removing
the leading term with respect to the variable v = xi. Here either v must be specified
as a polynomial, or xi must be specified by providing the integer i, with 1 ≤ i ≤ n.

24.4.10 Diagonalizing a Polynomial of Degree 2
We provide two basic tools that deal with polynomial diagonalization.

SymmetricBilinearForm(f)

The symmetric bilinear form (as a matrix) of a multivariate polynomial of degree 2.

DiagonalForm(f)

The diagonal form of the multivariate polynomial of degree 2. Also returns the
transformation matrix.

Example H24E7

> Q := RationalField();

> PR<x, y, z> := PolynomialRing(Q, 3);

> g := 119/44*x^2 - 93759/41440*x*y + 390935/91427*x*z

> + 212/243*x - 3/17*y^2 + 52808/172227*y*z

> - 287/227*y + 537/934*z^2 - 127/422*z;

> SymmetricBilinearForm(g);

[119/44 -93759/82880 390935/182854 106/243]

[-93759/82880 -3/17 26404/172227 -287/454]

[390935/182854 26404/172227 537/934 -127/844]

[106/243 -287/454 -127/844 0]

> DiagonalForm(g);

119/44*x^2 - 15798558582429/4*y^2 +

34932799628335074761085292707227419544217/934*z^2 -

176588732861018934524371210556883645619275217398116147234837710457404146371/2

>

> bl := SymmetricBilinearForm(g);

> NBL := Matrix(PR, bl);

> D, T := OrthogonalizeGram(bl);

> NT := Matrix(PR, T);

> C := Matrix(PR, [[x,y,z,1]]);

> NC := C * NT;

> NCT := Transpose(NC);

> (NC * NBL * NCT)[1][1] eq DiagonalForm(g);

true

The last few statements demonstrate how the polynomial’s diagonal form is obtained from its
symmetric bilinear form. Note also that since the polynomial g is not homogeneous its symmetric
bilinear form is given on four variables, the fourth variable being a homogenizing variable.

Ch. 24 MULTIVARIATE POLYNOMIAL RINGS 461

24.5 Greatest Common Divisors

The functions in this section can be applied to multivariate polynomials over any ring
which has a GCD algorithm.

24.5.1 Common Divisors and Common Multiples

GreatestCommonDivisor(f, g)

Gcd(f, g)

GCD(f, g)

The greatest common divisor of f and g in a multivariate polynomial ring P . If
either of the inputs is zero, then the result is the other input (and if the inputs
are both zero then the result is zero). The result is normalized (see the function
Normalize), so the result is always unique.

The valid coefficient rings are those which themselves have a GCD algorithm for
their elements (which includes most commutative rings in Magma).

For polynomials over the integers or rationals, a combination of three algorithms
is used: (1) the heuristic evaluation ‘GCDHEU’ algorithm of Char et al. ([CGG89]
and [GCL92, section 7.7]), suitable for moderate-degree dense polynomials with sev-
eral variables; (2) the EEZ-GCD algorithm of Wang ([Wan80, MY73] and [GCL92,
section 7.6]), based on evaluation and sparse ideal-adic multivariate Hensel lifting
([Wan78] and [GCL92, section 6.8]), suitable for sparse polynomials; (3) a recursive
multivariate evaluation-interpolation algorithm (similar to that in [GCL92, section
7.4]), which in fact works generically over Z or most fields.

For polynomials over any finite field or any field of characteristic zero be-
sides Q, the generic recursive multivariate evaluation-interpolation algorithm (3)
above is used, which effectively takes advantage of any fast modular algorithm
for the base univariate polynomials (e.g., for number fields). See the function
GreatestCommonDivisor in the univariate polynomials chapter for details of uni-
variate GCD algorithms.

For polynomials over another polynomial ring or rational function field, the poly-
nomials are first “flattened” to be inside a multivariate polynomial ring over the base
coefficient ring, then the appropriate algorithm is used for that base coefficient ring.

For polynomials over any other ring, the generic subresultant algorithm [Coh93,
section 3.3] is called recursively on a subring with one less variable.

GCD(Q)

Given a sequence Q of polynomials, return the GCD of the elements of Q. If Q has
length 0 and universe P , then the zero element of P is returned.

462 BASIC RINGS Part IV

LeastCommonMultiple(f, g)

Lcm(f, g)

LCM(f, g)

The least common multiple of f and g in a multivariate polynomial ring P . The
LCM of zero and anything else is zero. The result is normalized (see the function
Normalize), so the result is always unique. The valid coefficient rings are as for the
function GCD, above.

The LCM is effectively computed as Normalize((F div GCD(F, G)) * G), for
non-zero inputs.

LCM(Q)

Given a sequence Q of polynomials, return the LCM of the elements of Q. If Q has
length 0 and universe P , then the one element of P is returned.

Normalize(f)

Given a polynomial f over the base ring R, this function returns the unique nor-
malized polynomial g which is associate to f (so g = uf for some unit in R). This
is chosen so that if R is a field then g is monic, if R is Z then the leading coefficient
of g is positive, if R is a polynomial ring itself, then the leading coefficient of g is
recursively normalized, and so on for other rings.

ClearDenominators(f)

ClearDenominators(Q)

Given a polynomial f over a field K such that K is the field of fractions of a domain
D, the first function computes the lowest common denominator L of the coefficients
of f and returns the polynomial g = L ·f over D with cleared denominators, and L.
The second function returns the sequence of polynomials derived from independently
clearing the denominators in each polynomial in the given sequence Q.

24.5.2 Content and Primitive Part

Content(f)

The content of f , that is, the greatest common divisor of the coefficients of f as an
element of the coefficient ring.

PrimitivePart(f)

The primitive part of f , being f divided by the content of f .

ContentAndPrimitivePart(f)

Contpp(f)

The content (the greatest common divisor of the coefficients) of f , as an element of
the coefficient ring, as well as the primitive part (f divided by the content) of f .

Ch. 24 MULTIVARIATE POLYNOMIAL RINGS 463

24.6 Factorization and Irreducibility

We describe the functions for multivariate polynomial factorization and associated com-
putations.

Factorization(f)

Given a multivariate polynomial f over the ring R, this function returns the fac-
torization of f as a factorization sequence Q, that is, a sequence of pairs, each
consisting of an irreducible factor qi a positive integer ki (its multiplicity). Each
irreducible factor is normalized (see the function Normalize), so the expansion of
the factorization sequence is the unique canonical associate of f . The function also
returns the unit u of R giving the normalization, so f = u ·∏i q

ki
i .

The coefficient ring R must be one of the following: a finite field Fq, the ring of
integers Z, the field of rationals Q, an algebraic number field Q(α), or a polynomial
ring, function field (rational or algebraic) or finite-dimensional affine algebra (which
is a field) over any of the above.

For bivariate polynomials, a polynomial-time algorithm in the same spirit as van
Hoeij’s Knapsack factoring algorithm [vH02] is used.

For polynomials over the integers or rationals, an algorithm similar to that pre-
sented in [Wan78] and [GCL92, section 6.8], based on evaluation and sparse ideal-
adic multivariate Hensel lifting, is used.

For polynomials over any finite field, a similar algorithm is used, with a few
special modifications for non-zero characteristic (see, for example, [BM97]).

For polynomials over algebraic number fields and affine algebras, a multivariate
version of the norm-based algorithm of Trager [Tra76] is used, which performs a
suitable substitution and multivariate resultant computation, and then factors the
resulting integral multivariate polynomial.

Each of these algorithms reduces to univariate factorization over the base ring; for
details of how this factorization is done in each case, see the function Factorization
in the univariate polynomial rings chapter.

For polynomials over another polynomial ring or function field, the polynomi-
als are first “flattened” to be inside a multivariate polynomial ring over the base
coefficient ring, then the appropriate algorithm is used for that base coefficient ring.

SquarefreeFactorization(f)

Return the squarefree factorization of the multivariate polynomial f as a sequence
of tuples of length 2, each consisting of a (not necessarily irreducible) factor and
an integer indicating the multiplicity. The factors do not contain the square of any
polynomial of degree greater than 0. The allowable coefficient rings are the same as
those allowable for the function Factorization.

SquarefreePart(f)

Return the squarefree part of the multivariate polynomial f , which is the largest
(normalized) divisor g of f which is squarefree.

464 BASIC RINGS Part IV

IsIrreducible(f)

Given a multivariate polynomial f over a ring R, this function returns whether f is
irreducible over R. The allowable coefficient rings are the same as those allowable
for the function Factorization.

SetVerbose("PolyFact", v)

(Procedure.) Change the verbose printing level for all polynomial factorization
algorithms to be v. Currently the legal levels are 0, 1, 2 or 3.

Example H24E8

We create a polynomial f in the polynomial ring in three indeterminates over the ring of integers
by multiplying together various trinomials. The resulting product f has 461 terms and total
degree 15. We then factorize f to recover the trinomials.

> P<x, y, z> := PolynomialRing(IntegerRing(), 3);

> f := &*[x^i+y^j+z^k: i,j,k in [1..2]];

> #Terms(f);

461

> TotalDegree(f);

15

> time Factorization(f);

[

<x + y + z, 1>,

<x + y + z^2, 1>,

<x + y^2 + z, 1>,

<x + y^2 + z^2, 1>,

<x^2 + y + z, 1>,

<x^2 + y + z^2, 1>,

<x^2 + y^2 + z, 1>,

<x^2 + y^2 + z^2, 1>

]

Time: 0.290

Example H24E9

We construct a Vandermonde matrix of rank 6, find its determinant, and factorize that determi-
nant.

> // Create polynomial ring over R of rank n

> PRing := function(R, n)

> P := PolynomialRing(R, n);

> AssignNames(~P, ["x" cat IntegerToString(i): i in [1..n]]);

> return P;

> end function;

>

> // Create Vandermonde matrix of rank n

> Vandermonde := function(n)

Ch. 24 MULTIVARIATE POLYNOMIAL RINGS 465

> P := PRing(IntegerRing(), n);

> return MatrixRing(P, n) ! [P.i^(j - 1): i, j in [1 .. n]];

> end function;

>

> V := Vandermonde(6);

> V;

[1 x1 x1^2 x1^3 x1^4 x1^5]

[1 x2 x2^2 x2^3 x2^4 x2^5]

[1 x3 x3^2 x3^3 x3^4 x3^5]

[1 x4 x4^2 x4^3 x4^4 x4^5]

[1 x5 x5^2 x5^3 x5^4 x5^5]

[1 x6 x6^2 x6^3 x6^4 x6^5]

> D := Determinant(V);

> #Terms(D);

720

> TotalDegree(D);

15

> time Factorization(D);

[

<x5 - x6, 1>,

<x4 - x6, 1>,

<x4 - x5, 1>,

<x3 - x6, 1>,

<x3 - x5, 1>,

<x3 - x4, 1>,

<x2 - x6, 1>,

<x2 - x5, 1>,

<x2 - x4, 1>,

<x2 - x3, 1>,

<x1 - x6, 1>,

<x1 - x5, 1>,

<x1 - x4, 1>,

<x1 - x3, 1>,

<x1 - x2, 1>

]

Time: 0.030

Example H24E10

We construct a polynomial A2 in three indeterminates a, b, and c over the rational field such that
A2 is the square of the area of the triangle with side lengths a, b, c. Using elementary trigonometry
one can derive the expression (4 ∗ a2 ∗ b2 − (a2 + b2 − c2)2)/16 for A2. Factorizing A2 gives a nice
formulation of the square of the area which is similar to that given by Heron’s formula.

> P<a, b, c> := PolynomialRing(RationalField(), 3);

> A2 := 1/16 * (4*a^2*b^2 - (a^2 + b^2 - c^2)^2);

> A2;

-1/16*a^4 + 1/8*a^2*b^2 + 1/8*a^2*c^2 - 1/16*b^4 + 1/8*b^2*c^2 - 1/16*c^4

466 BASIC RINGS Part IV

> F, u := Factorization(A2);

> F;

[

<a - b - c, 1>,

<a - b + c, 1>,

<a + b - c, 1>,

<a + b + c, 1>

]

> u;

-1/16

Example H24E11

We factorize a multivariate polynomial over a finite field.

> Frob := function(G)

> n := #G;

> I := {@ g: g in G @};

> P := PolynomialRing(GF(2), n);

> AssignNames(~P, [CodeToString(96 + i): i in [1 .. n]]);

> M := MatrixRing(P, n);

> return M ! &cat[

> [P.Index(I, I[i] * I[j]): j in [1 .. n]]: i in [1 .. n]

>];

> end function;

> A := Frob(Sym(3));

> A;

[a b c d e f]

[b c a f d e]

[c a b e f d]

[d e f a b c]

[e f d c a b]

[f d e b c a]

> Determinant(A);

a^6 + a^4*d^2 + a^4*e^2 + a^4*f^2 + a^2*b^2*c^2 +

a^2*b^2*d^2 + a^2*b^2*e^2 + a^2*b^2*f^2 + a^2*c^2*d^2 +

a^2*c^2*e^2 + a^2*c^2*f^2 + a^2*d^4 + a^2*d^2*e^2 +

a^2*d^2*f^2 + a^2*e^4 + a^2*e^2*f^2 + a^2*f^4 + b^6 +

b^4*d^2 + b^4*e^2 + b^4*f^2 + b^2*c^2*d^2 + b^2*c^2*e^2

+ b^2*c^2*f^2 + b^2*d^4 + b^2*d^2*e^2 + b^2*d^2*f^2 +

b^2*e^4 + b^2*e^2*f^2 + b^2*f^4 + c^6 + c^4*d^2 +

c^4*e^2 + c^4*f^2 + c^2*d^4 + c^2*d^2*e^2 + c^2*d^2*f^2

+ c^2*e^4 + c^2*e^2*f^2 + c^2*f^4 + d^6 + d^2*e^2*f^2 +

e^6 + f^6

> time Factorization(Determinant(A));

[

<a + b + c + d + e + f, 2>,

<a^2 + a*b + a*c + b^2 + b*c + c^2 + d^2 + d*e + d*f +

Ch. 24 MULTIVARIATE POLYNOMIAL RINGS 467

e^2 + e*f + f^2, 2>

]

Time: 0.049

24.7 Resultants and Discriminants

Resultant(f, g, i)

Resultant(f, g, v)

The resultant of multivariate polynomials f and g in P = R[x1, . . . , xn] with respect
to the variable v = xi, which is by definition the determinant of the Sylvester matrix
for f and g when considered as polynomials in the single variable xi. The result
will be an element of P again. The coefficient ring R must be a domain. There
are two ways to indicate with respect to which variable the integral is to be taken:
either one specifies i, the integer 1 ≤ i ≤ n that is the number of the variable (upon
creation of P , corresponding to P.i) or the variable v itself (as an element of P).

The algorithm used is the modular interpolation method, as given in [GCL92,
pp. 412–413].

Discriminant(f, i)

Discriminant(f, v)

The discriminant D of f ∈ R[x1, . . . , xn] is returned, where f is considered as a
polynomial in v = xi. The result will be an element of P again. The coefficient ring
R must be a domain. There are two ways to indicate with respect to which variable
the integral is to be taken: either one specifies i, the integer 1 ≤ i ≤ n that is the
number of the variable (upon creation of P , corresponding to P.i) or the variable
v itself (as an element of P).

24.8 Polynomials over the Integers
The functions in this section are available for multivariate polynomials over the integers
only.

Sign(f)

The sign of the leading coefficient of f .

AbsoluteValue(f)

Abs(f)

Return either f or −f according to which one has non-negative leading coefficient.

MaxNorm(f)

The maximum of the absolute values of the coefficients of f .

SumNorm(f)

The sum of the base coefficients of f .

468 BASIC RINGS Part IV

24.9 Bibliography
[BM97] Laurent Bernardin and Michael B. Monagan. Efficient Multivariate Factor-

ization Over Finite Fields. In Proceedings of AAECC, volume 1255 of LNCS, pages
15–28. Springer-Verlag, 1997.

[CGG89] Bruce W. Char, Keith O. Geddes, and Gaston H. Gonnet. GCDHEU: Heuristic
Polynomial GCD Algorithm Based on Integer GCD Computation. J. Symbolic Comp.,
7(1):31–48, 1989.

[Coh93] Henri Cohen. A Course in Computational Algebraic Number Theory, volume
138 of Graduate Texts in Mathematics. Springer, Berlin–Heidelberg–New York, 1993.

[GCL92] Keith O. Geddes, Stephen R. Czapor, and George Labahn. Algorithms for
Computer Algebra. Kluwer, Boston/Dordrecht/London, 1992.

[MY73] J. Moses and D.Y.Y. Yun. The EZ GCD algorithm. Proc. ACM Annual
Conference, 73(2):159–166, 1973.

[Tra76] Barry M. Trager. Algebraic factoring and rational function integration. In
R.D. Jenks, editor, Proc. SYMSAC ’76, pages 196–208. ACM press, 1976.

[vH02] Mark van Hoeij. Factoring Polynomials and the knapsack problem. J. Number
Th., 95(2):167–189, 2002.
URL:http://www.math.fsu.edu/∼hoeij/paper/knapsack.ps.

[Wan78] Paul S. Wang. An improved multivariate polynomial factoring algorithm.
Math. Comp., 32(144):1215–1231, 1978.

[Wan80] Paul S. Wang. The EEZ-GCD algorithm. SIGSAM Bulletin, 14(2):50–60,
1980.

25 REAL AND COMPLEX FIELDS
25.1 Introduction 473

25.1.1 Overview of Real Numbers in Magma473

25.1.2 Coercion 474

25.1.3 Homomorphisms 475

hom 475

25.1.4 Special Options 475

SetDefaultRealField(R) 475
GetDefaultRealField() 475
AssignNames(∼C, [s]) 476
Name(C, 1) 476

25.1.5 Version Functions 476

GetGMPVersion() 476
GetMPFRVersion() 476
GetMPCVersion() 476

25.2 Creation Functions 476

25.2.1 Creation of Structures 476

RealField(p) 476
RealField() 476
ComplexField(p) 477
ComplexField() 477
ComplexField(R) 477

25.2.2 Creation of Elements 478

. 478

. 478
elt< > 478
elt< > 478
! 478
! 478
! 478
One Identity 479
Zero Representative 479

25.3 Structure Operations 479

25.3.1 Related Structures 479

Category Parent 479
PrimeField 479

25.3.2 Numerical Invariants 479

Characteristic 479

25.3.3 Ring Predicates and Booleans . . . 480

IsCommutative IsUnitary 480
IsFinite IsOrdered 480
IsField IsEuclideanDomain 480
IsPID IsUFD 480
IsDivisionRing IsEuclideanRing 480
IsPrincipalIdealRing IsDomain 480
eq ne 480

25.3.4 Other Structure Functions 480

Precision(R) 480

BitPrecision(R) 480

25.4 Element Operations 480

25.4.1 Generic Element Functions and Pred-
icates 480

Parent Category 480
IsZero IsOne IsMinusOne 480
IsUnit IsZeroDivisor 480
IsIdempotent IsNilpotent 480
IsIrreducible IsPrime 480

25.4.2 Comparison of and Membership . . 481

eq ne 481
in notin 481
gt ge lt le 481
Maximum Minimum 481
Maximum Minimum 481

25.4.3 Other Predicates 481

IsIntegral(c) 481
IsReal(c) 481

25.4.4 Arithmetic 481

+ - 481
+ - * / ^ 481
+:= -:= *:= /:= ^:= 481

25.4.5 Conversions 481

MantissaExponent(r) 481
ComplexToPolar(c) 482
PolarToComplex(m, a) 482
Argument(c) 482
Arg(c) 482
Modulus(c) 482
Real(c) 482
Re(c) 482
Imaginary(c) 482
Im(c) 482

25.4.6 Rounding 482

Round(r) 482
Truncate(r) 482
Ceiling(r) 483
Ceiling(r) 483
Floor(r) 483
Floor(r) 483

25.4.7 Precision 483

Precision(c) 483
BitPrecision(c) 483
Precision(L) 483
Precision(L) 483
ChangePrecision(r, n) 483
ChangePrecision(c, n) 483

25.4.8 Constants 483

Catalan(R) 483
EulerGamma(R) 484

470 BASIC RINGS Part IV

Pi(R) 484

25.4.9 Simple Element Functions 484

AbsoluteValue(r) 484
Abs(r) 484
Sign(r) 484
ComplexConjugate(c) 484
Conjugate(c) 484
Norm(c) 484
Root(r, n) 484
SquareRoot(c) 484
Sqrt(c) 484
Distance(x, L) 485
Distance(x, L) 485
Distance(x, L) 485
Distance(x, L) 485
Diameter(L) 485
Diameter(L) 485

25.4.10 Roots 485

Roots(p) 487
RootsNonExact(p) 489
HenselLift(f, R, k) 490
HenselLift(f, R, k) 490

25.4.11 Continued Fractions 490

ContinuedFraction(r) 490
ContinuedFraction(r) 490
BestApproximation(r, n) 490
Convergents(s) 490

25.4.12 Algebraic Dependencies 491

LinearRelation(q: -) 491
LinearRelation(v: -) 491
AllLinearRelations(q,p) 491
PowerRelation(r, k: -) 491

25.5 Transcendental Functions . . . 491
25.5.1 Exponential, Logarithmic and Poly-

logarithmic Functions 491

Exp(f) 491
Exp(c) 492
Log(f) 492
Log(c) 492
Log(b, r) 492
Dilog(s) 492
Polylog(m, f) 492
Polylog(m, s) 493
PolylogD(m, s) 493
PolylogDold(m, s) 493
PolylogP(m, s) 493

25.5.2 Trigonometric Functions 493

Sin(f) 493
Sin(c) 494
Cos(f) 494
Cos(c) 494
Sincos(f) 494
Sincos(s) 494
Tan(f) 494

Tan(c) 494
Cot(f) 494
Cot(c) 494
Sec(f) 494
Sec(c) 494
Cosec(f) 494
Cosec(c) 495

25.5.3 Inverse Trigonometric Functions . . 495

Arcsin(f) 495
Arcsin(r) 495
Arccos(f) 495
Arccos(r) 495
Arctan(f) 496
Arctan(r) 496
Arctan(x, y) 496
Arctan2(x, y) 496
Arccot(r) 496
Arcsec(r) 496
Arccosec(r) 496

25.5.4 Hyperbolic Functions 497

Sinh(f) 497
Sinh(s) 497
Cosh(f) 497
Cosh(r) 497
Tanh(f) 497
Tanh(r) 497
Coth(r) 497
Sech(r) 497
Cosech(r) 497

25.5.5 Inverse Hyperbolic Functions . . . 498

Argsinh(f) 498
Argsinh(r) 498
Argcosh(f) 498
Argcosh(r) 498
Argtanh(f) 498
Argtanh(s) 498
Argsech(s) 498
Argcosech(s) 498
Argcoth(s) 499

25.6 Elliptic and Modular Functions 499

25.6.1 Eisenstein Series 499

Eisenstein(k, z) 499
Eisenstein(k, t) 499
Eisenstein(k, L) 500
Eisenstein(k, F) 500

25.6.2 Weierstrass Series 501

WeierstrassSeries(z, q) 501
WeierstrassSeries(z, t) 501
WeierstrassSeries(z, L) 501
WeierstrassSeries(z, F) 501

25.6.3 The Jacobi θ and Dedekind η-
functions 502

JacobiTheta(q, z) 502
JacobiTheta(q, z) 502

Ch. 25 REAL AND COMPLEX FIELDS 471

JacobiThetaNullK(q, k) 502
DedekindEta(z) 502
DedekindEta(s) 502

25.6.4 The j-invariant and the Discriminant 503

jInvariant(q) 503
jInvariant(s) 503
jInvariant(L) 503
jInvariant(F) 503
Delta(z) 503
Delta(t) 504
Delta(L) 504

25.6.5 Weber’s Functions 504

WeberF(s) 504
WeberF2(g) 504
WeberF1(s) 504
WeberF2(s) 504

25.7 Theta Functions 505

Theta(char, z, tau) 505
Theta(char, z, A) 505

25.8 Gamma, Bessel and Associated
Functions 506

Gamma(f) 506
Gamma(r) 506
Gamma(r) 506
Gamma(r, s) 506
GammaD(s) 507
LogGamma(f) 507
LogGamma(r) 507
LogDerivative(s) 507
Psi(s) 507
BesselFunction(n, r) 507
BesselFunctionSecondKind(n, r) 508
JBessel(n, s) 508
KBessel(n, s) 508
KBessel2(n, s) 508

25.9 The Hypergeometric Function 508

HypergeometricSeries(a,b,c, z) 508
HypergeometricU(a, b, s) 508

25.10 Other Special Functions . . 509

ArithmeticGeometricMean(x, y) 509
AGM(f, g) 509
ArithmeticGeometricMean(x, y) 509
AGM(x, y) 509
BernoulliNumber(n) 509
BernoulliApproximation(n) 509
DawsonIntegral(r) 509
ErrorFunction(r) 509
Erf(r) 509
ComplementaryErrorFunction(r) 510
Erfc(r) 510
ExponentialIntegral(r) 510
ExponentialIntegralE1(r) 510
LogIntegral(r) 510
ZetaFunction(s) 510
ZetaFunction(R, n) 510

25.11 Numerical Functions 511

25.11.1 Summation of Infinite Series . . 511

InfiniteSum(m, i) 511
PositiveSum(m, i) 511
AlternatingSum(m, i) 511

25.11.2 Integration 511

Interpolation(P, V, x) 511
RombergQuadrature(f, a, b: -) 511
SimpsonQuadrature(f, a, b, n) 512
TrapezoidalQuadrature(f, a, b, n) 512

25.11.3 Numerical Derivatives 512

NumericalDerivative(f, n, z) 512

25.12 Bibliography 512

Chapter 25

REAL AND COMPLEX FIELDS

25.1 Introduction
Real and complex numbers can only be stored in the computer effectively in approxima-
tions. Magma provides a number of facilities for calculating with such approximations.
Most of these facilities are based upon the C libraries MPFR, which provides algorithms
for manipulating real numbers with exact rounding, and MPC, an extension of MPFR to
handle complex numbers. More specifically, the MFPR library extends the semantics of
the ANSI/IEEE-754 standard for double-precision numbers — which are used in virtu-
ally all major programming languages — to handle real numbers of arbitrary precision.
The precise semantics of MPFR give the user fine control over precision loss, which is a
tremendous advantage when working with reals and complexes. Magma currently uses
MPFR 2.4.1 and MPC 0.8. Documentation for algorithms used in MPFR can be found at
mpfr.org.

As MPFR and MPC are works in progress, they do not yet provide a complete frame-
work for working with the reals and complexes. For those functions that these libraries are
missing, Magma falls back to algorithms taken from Pari. The documentation of MFPR
and MPC provide a list of the functions that they provide. Assume that each intrinsic
uses MPFR unless otherwise stated.

Although we use the terms real field and complex field for Magma structures containing
real or complex approximations, it should be noted that such a subset of the real or complex
field may not even form a commutative ring. Never the less, the real and complex fields
are considered to be fields by Magma, they comprise objects of type FldRe and FldCom
with elements of type FldReElt and FldComElt respectively.

25.1.1 Overview of Real Numbers in Magma

Real numbers are stored internally as expansions
∑
bi2i. Complex numbers consist of a

pair of real numbers of identical precision. Each real or complex number is associated
with a corresponding field structure, which has the same precision as all of its elements.
Magma stores a list of real and complex fields that have been created during a session, and
it is guaranteed that any two fields of the same fixed precision are the same. This means in
particular that changing the name of

√−1 (see AssignNames below) on one of the complex
fields of precision r will change the name on every complex field of that same precision. As
a convenience, Magma allows real and complex numbers of differing precisions to be used
in the same expression; internally, Magma implicitly reduces the precision of the higher
precision element to the precision of the lower element.

While internally we store real numbers in base two, when creating real or complex
fields the precision is by default specified in the number of decimal digits, not binary
digits, required. It is possible to specify the precision in binary digits if needed (see the
documentation for RealField for details).

474 BASIC RINGS Part IV

Example H25E1

We show how to create and manipulate real numbers. In particular, note that there is an inherent
loss of precision in the conversion between base 10 and base 2 representations of some real numbers.

> S1 := RealField(20);

> S2 := RealField(10);

> a := S1 ! 0.5;

> a;

0.50000000000000000000

> b := S2 ! 0.05;

> b;

0.05000000000

> a + b;

0.5500000000

> Precision(a + b);

10

A warning is in place here; in the examples above, the real number on the right hand side had to
be constructed in some real field before it could be coerced into S1 and S2. That real field is the
so-called default real field . In these examples it is assumed that the default field has sufficiently
large precision to store the real numbers on the right accurately to the last digit.

25.1.2 Coercion
Automatic coercion ensures that all functions listed below that take an element of some real
field as an argument, will also accept an integer or a rational number as an argument; in
this case the integer or rational number will be coerced automatically into the default real
field. For the binary operations (such as +, *) coercion also takes place: if one argument
is real and the other is integral or rational, automatic coercion will put them both in the
parent field of the real argument. If the arguments are real numbers of different fixed
precision, the result will have the smaller precision of the two.

The same coercion rules apply for functions taking a complex number as an argument;
in that case real numbers will be valid input as well: if necessary reals, rationals or integers
will be coerced into the appropriate complex field.

Elements of quadratic and cyclotomic fields that are real can be coerced into any real
field using !; any quadratic or cyclotomic field element can be coerced by ! into any
complex field. Functions taking real or complex arguments will not automatically coerce
such arguments though.

Ch. 25 REAL AND COMPLEX FIELDS 475

25.1.3 Homomorphisms
The only homomorphisms that have a real field or a complex field as domain are the coer-
cion functions. Therefore, homomorphisms from the reals or complexes may be specified
as follows.

hom< R -> S | >

Here S must be a structure into which all elements of the real or complex field R are
coercible, such as another real or complex field, or a polynomial ring over one of these.
These homomorphisms can also be obtained as map by using the function Coercion, also
called Bang.

Example H25E2

Here are two equivalent ways of creating the embedding function from a real field into a polynomial
ring over some complex field.

> Re := RealField(20);

> PC<x, y> := PolynomialRing(ComplexField(8), 2);

> f := hom< Re -> PC | >;

> bangf := Bang(Re, PC);

> f(Pi(Re));

3.1415927

> f(Pi(Re)) eq bangf(Pi(Re));

true

25.1.4 Special Options
When Magma is started up, real and complex fields of precision 30 are created by default.
They serve (among other things) as a parent for reals that are created as literals, such as
1.2345, in the same way as the default ring of integers is the parent for literal integers. It
is possible to change this default real field with SetDefaultRealField.

Finally, AssignNames can be used to change the name for
√−1 in a complex field.

SetDefaultRealField(R)

Procedure to change the default parent for literal real numbers to the real field R.
This parent is the real field of precision 30 by default.

GetDefaultRealField()

Return the current parent for literal real numbers.

476 BASIC RINGS Part IV

AssignNames(∼C, [s])

Procedure to change the name of the purely imaginary element
√−1 in the complex

field C to the contents of the string s. When C is created, the name is “C.1”;
suitable choices of s might be "i", "I" or "j".

This procedure only changes the name used in printing the elements of C. It
does not assign to an identifier called s the value of

√−1 in C; to do this, use an
assignment statement, or use angle brackets when creating the field.

Note that since this is a procedure that modifies C, it is necessary to have a
reference ∼C to C in the call to this function.

Name(C, 1)

Given a complex field C, return the element which has the name attached to it, that
is, return the purely imaginary element

√−1 of C.

25.1.5 Version Functions
The following intrinsics retrieve the versions of MPFR, MPC and GMP which the current
Magma is using.

GetGMPVersion()

GetMPFRVersion()

GetMPCVersion()

The version of GMP, MPFR or MPC being used.

25.2 Creation Functions

We describe the creation of real and complex fields and their elements.

25.2.1 Creation of Structures
At the time Magma is loaded, a real field is automatically created. This is used as the
default parent for literal reals and real values returned by Magma.

RealField(p)

Bits BoolElt Default : false

Given a positive integer p, create and return a version R of the real field R in which
all calculations are correct to precision p. If the parameter Bits is true, then the
precision p is specified as the number of binary digits. If Bits is false, then the
precision is given as the number of decimal digits — this is translated into a binary
precision of dlog2 10pe.

RealField()

Return the default real field.

Ch. 25 REAL AND COMPLEX FIELDS 477

ComplexField(p)

Bits BoolElt Default : false

Given a positive integer p, create and return a version C of the complex field C in
which all calculations are correct to precision p. If the parameter Bits is true, then
the precision p is specified as the number of binary digits. If Bits is false, then
the precision is given as the number of decimal digits — this is translated into a
binary precision of dlog2 10pe.

By default no name is given to
√−1; this may be changed with AssignNames.

Angle brackets, e.g. C<i> := ComplexField(20), may be used to assign
√−1 to an

identifier.

ComplexField()

Return the default complex field.
By default no name is given to

√−1; this may be changed with AssignNames.
Angle brackets, e.g. C<i> := ComplexField(), may be used to assign

√−1 to an
identifier.

ComplexField(R)

Return the complex field which has real subfield R; in other words, return the
complex field with the same precision as the real field R.

Example H25E3

It is convenient to use i to define elements of a complex field. It is also possible to change the
default printing of i, using AssignNames, as follows. Note that the latter procedure does not assign
to an identifier, it only changes the printing.

> C<i> := ComplexField(20);

> Pi(C)+ 1/4*i;

3.1415926535897932385 + 0.25000000000000000000*i

> AssignNames(~C, ["k"]);

> Pi(C)+ 1/4*i;

3.1415926535897932385 + 0.25000000000000000000*k

> k := Name(C, 1);

> Pi(C)+ 1/4*k;

3.1415926535897932385 + 0.25000000000000000000*k

478 BASIC RINGS Part IV

25.2.2 Creation of Elements

d . eefpg

d . eEfPg

Given a succession of literal decimal digits d, a succession of literal decimal digits e,
a succession of literal decimal digits f , and an integer g, construct the real number
r = d.e × 10f . If specified, the effect of g is to create r as an element of the real
field of precision g.

If g is omitted (together with p or P), the real number will be created as an
element of the default real field.

Both d and f may include a leading sign + or -; leading zeroes in d and f are
ignored. If e consists entirely of zeroes it may be omitted together with the . and
if f is zero it may be omitted together with E (or e). But note that if all of e, f and
g are omitted the result will be an integer.

elt< R | m, n >

Given the real field R, an element m coercible into R and an integer n, construct
the real number m× 2n in R.

elt< C | x, y >

C ! [x, y]

Given the complex field C and elements x and y coercible into the real field under-
lying C, construct the complex number x+ yi.

R ! a

Given an integer, a rational number, a quadratic or cyclotomic number field element
a, this returns an element from the real field R that best approximates a. An error
results if a is a non-real quadratic or cyclotomic field element.

If R is a field of precision r and a is an element of a real field S of precision s
then:

if a is an element of a real field S of precision s ≥ r, then an element of R
approximating a to r digits is returned;

if a is an element of a real field S of precision s < r, then an element of R is
returned approximating a, obtained by padding with zeroes until the required
precision r is reached;

C ! a

Given an integer, a rational number, a quadratic or cyclotomic number field element
a, this returns an element from the complex field C that best approximates a. The
rules of coercion for the real and imaginary parts are the same as those for coercion
into a real field.

Ch. 25 REAL AND COMPLEX FIELDS 479

Example H25E4

We create the real number 1.2345 in many ways. We assume that the default real field has not
been changed.

> x := 1.2345;

> x, Parent(x);

1.23450000000000000000000000000 Real field of precision 30

> SetDefaultRealField(RealField(20));

> x1 := 1.2345;

> x1, Parent(x1);

1.2345000000000000000 Real field of precision 20

> x2 := 12345e-4;

> x2, Parent(x2);

1.2345000000000000000 Real field of precision 20

> x3 := 1.2345p10;

> x3, Parent(x3);

1.234500000 Real field of precision 10

> x4 := 12345e-4p8;

> x4, Parent(x4);

1.2345000 Real field of precision 8

> x5 := RealField(12) ! 1.2345;

> x5, Parent(x5);

1.23450000000 Real field of precision 12

The following generic element constructions are available; they return the 1 and 0 element
of a real or complex field.

One(R) Identity(R)

Zero(R) Representative(R)

25.3 Structure Operations

25.3.1 Related Structures

Category(R) Parent(R)

PrimeField(R)

25.3.2 Numerical Invariants

Characteristic(R)

480 BASIC RINGS Part IV

25.3.3 Ring Predicates and Booleans

IsCommutative(R) IsUnitary(R)

IsFinite(R) IsOrdered(R)

IsField(R) IsEuclideanDomain(R)

IsPID(R) IsUFD(R)

IsDivisionRing(R) IsEuclideanRing(R)

IsPrincipalIdealRing(R) IsDomain(R)

R eq S R ne S

25.3.4 Other Structure Functions

Precision(R)

Return the decimal precision p to which calculations are performed in the real or
complex field R.

BitPrecision(R)

Return the (internally used) bit precision p to which calculations are performed in
the real or complex field R.

25.4 Element Operations

25.4.1 Generic Element Functions and Predicates
All predicates on real or complex numbers that check whether these numbers are equal
to an integer do so within the given precision of the parent field. Thus IsOne(c) for an
element of a complex domain of precision 20 returns true if and only if the real part equals
one and the imaginary part equals 0 up to 20 decimals.

Parent(r) Category(r)

IsZero(r) IsOne(r) IsMinusOne(r)

IsUnit(r) IsZeroDivisor(r)

IsIdempotent(r) IsNilpotent(r)

IsIrreducible(r) IsPrime(r)

Ch. 25 REAL AND COMPLEX FIELDS 481

25.4.2 Comparison of and Membership
The (in)equality test on real numbers of only test for equality up to the given precision.
Equality testing on complex numbers is done by testing the real and imaginary parts.

The comparison functions gt, ge, lt, le are not defined for complex numbers.

a eq b a ne b

a in R a notin R

a gt b a ge b a lt b a le b

Maximum(a, b) Minimum(a, b)

Maximum(Q) Minimum(Q)

25.4.3 Other Predicates

IsIntegral(c)

Returns true if and only if the real or complex number c is a rational integer.

IsReal(c)

Returns true if the complex number c is real, false otherwise. This checks whether
the digits of the imaginary part of c are 0 up to the precision of the parent complex
field.

25.4.4 Arithmetic
The binary operations +, -, *, / allow combinations of arguments from the integers, the
rationals, and real and complex fields; automatic coercion is applied where necessary (see
the Introduction).

+ r - r

r + s r - s r * s r / s r ^ k

r +:= s r -:= s r *:= s r /:= s r ^:= s

25.4.5 Conversions
Here we list various ways to convert between integers, reals of fixed precision, complexes
and their various representations, other than by the creation functions and !. See also the
rounding functions in a later section.

MantissaExponent(r)

Given a real number r, this function returns a real number m (the mantissa of r)
and an integer e (the exponent of r) such that 1 ≤ m < 10 and r = m× 2e.

482 BASIC RINGS Part IV

ComplexToPolar(c)

Given a complex number c, return the modulus m ≥ 0 and the argument a (with
−π ≤ a ≤ π) of c as real numbers to the same precision as c.

PolarToComplex(m, a)

Given real numbers m and a, construct the complex number meia. The result will
have the smaller of the precisions of m and a; each of m and a is allowed to be an
integer or rational number; if both are integral or rational then the result will have
the default precision, otherwise the result will be of the same precision as the real
argument.

Argument(c)

Arg(c)

Given a complex number c, return the real number (to the same precision) that is
the argument (in radians between −π and π) of c.

Modulus(c)

Given a complex number c, return the real number (to the same precision as c) that
is the modulus of c.

Real(c)

Re(c)

Given a complex number c = x + yi, return the real part x of c (as a real number
to the same precision as c).

Imaginary(c)

Im(c)

Given a complex number c = x + yi, return the imaginary part y of c (as a real
number to the same precision as c).

25.4.6 Rounding

Round(r)

Given a real number r, return the integer i for which |r− i| is a minimum. i.e., the
integer closest to r. If there are two such integers, the one of larger magnitude is
chosen (rounding away from zero). Given a (non-real) complex number r, return the
Gaussian integer i for which |r − i| is a minimum, i.e. the Gaussian integer closest
to r.

Truncate(r)

Given a real number r, return brc if r is positive, and return −b−rc + 1 if r is
negative. Thus, the effect of this function is to round towards zero.

Ch. 25 REAL AND COMPLEX FIELDS 483

Ceiling(r)

Ceiling(r)

The ceiling of the real number r, i.e. the smallest integer greater than or equal to r.

Floor(r)

Floor(r)

The floor of the real number r, i.e. the greatest integer less than or equal to r.

25.4.7 Precision

Precision(c)

Given a real or complex number c belonging to the real or complex field C, return
the decimal precision p to which calculations are performed in C.

BitPrecision(c)

Given a real or complex number c belonging to the real or complex field C, return
the (internally used) bit precision p to which calculations are performed in C.

Precision(L)

Precision(L)

Gives a sequence of real or complex numbers, return the precision p of their parent
field.

ChangePrecision(r, n)

ChangePrecision(c, n)

Coerces the real (r) or complex (c) number into a field of precision n.

25.4.8 Constants
Let R denote a real or complex field. The functions described below will return an ap-
proximation of certain constants to the precision associated with a given real or complex
field R. If R is real, a real number is returned; if R is complex, a complex number with
imaginary part zero is returned.

Catalan(R)

The value of Catalan’s constant computed to the accuracy associated with the real
or complex field R. Catalan’s constant is the sum

∞∑

k=0

(−1)k(2k + 1)−2.

MPFR calculates this constant using formula (31) of Victor Adamchik’s document
“33 representations for Catalan’s constant”*, for more information see mpfr.org.

* http://www-2.cs.cmu.edu/∼adamchik/articles/catalan/catalan.htm

484 BASIC RINGS Part IV

EulerGamma(R)

The value of Euler’s constant

γ = lim
n→∞

(1 +
1
2

+
1
3

+ · · ·+ 1
n
− logn) ≈ 0.57721566

computed to the precision of R.

Pi(R)

The value of π computed to the precision of R.

25.4.9 Simple Element Functions

AbsoluteValue(r)

Abs(r)

The absolute value of the real or complex number r.

Sign(r)

Return one of the integer values +1, 0, −1 depending upon whether the real number
r is positive, zero or negative, respectively.

ComplexConjugate(c)

Conjugate(c)

The complex conjugate x− yi of a complex number x+ yi.

Norm(c)

The real norm of a real or complex number c; note that for complex c = x+ yi this
returns x2 +y2, while for elements of real domains it just returns the absolute value.
The result lies in the same field as the argument.

Root(r, n)

Given a real number R and a positive integer n, calculate n
√
r (using Newton’s

method without divisions) with the same precision. If n is even then r must be
non-negative.

SquareRoot(c)

Sqrt(c)

Given a real or complex number c, return the square root of r as an element of the
same field to which r belongs.

Ch. 25 REAL AND COMPLEX FIELDS 485

Distance(x, L)

Distance(x, L)

Distance(x, L)

Distance(x, L)

Given a sequence L of real or complex numbers and an additional number x compute
the distance between x and L, ie. miny∈L |x−y|, that is the shortest distance between
x and any element of L. Furthermore, the index in L of an element realising the
distance is returned as a second argument.

Diameter(L)

Diameter(L)

Given a sequence L of real of complex numbers, compute the diameter of the set
defined by L, ie. the smallest distance between distinct elements of L.

25.4.10 Roots
Magma contains a very powerful algorithm for finding highly accurate approximations to
the complex roots of a polynomial; it is based on Xavier Gourdon’s implementation of
Schönhage’s algorithm, which we will summarize below.

Given a polynomial p = a0 + a1z + · · ·+ anz
n ∈ C[z], define the norm of p, |p|, by

|p| = |a0|+ |a1|+ · · ·+ |an|.
Schönhage’s algorithm (given in his technical report of 1982 [Sch82]) takes as input

a univariate polynomial p in C[z] and a positive real number ε, and finds linear factors
Lj = ujz − vj (j = 1, . . . , n = deg(p)) such that

|p− L1 · · ·Ln| < ε|p|.
The parameter ε may be chosen so as to find the roots of p to within a certain ε′,

and this is how the function Roots described below works (when run with Schönhage’s
algorithm).

The algorithm uses the concept of a ‘splitting circle’ to find polynomials F and G such
that |p− FG| < ε1|p| for some ε1 depending on ε.

This splitting circle method can then be applied recursively to F and G until we have
only linear factors, as required.

The splitting circle method works as follows. For the purposes of this discussion assume
that p is monic. Suppose we know a circle Γ such that, for some integer k with 0 < k < n,
there are k roots of p (say u1, . . . , uk) which lie inside Γ, and the other n − k roots
(uk+1, . . . , un) lie outside Γ. Note that the circle Γ is chosen so that the roots of p are
not too close to it. Then we can write p = FG, where F = (z − u1) . . . (z − uk) and
G = (z − uk+1) . . . (z − un). Through shifts and scalings, we may assume that Γ = {c ∈
C : ‖z‖ = 1}.

486 BASIC RINGS Part IV

For m in {1, . . . , k}, let sm denote the m-th power sum of the roots of p which lie inside
the splitting circle. That is,

sm = um
1 + · · ·+ um

k .

The residue theorem can then be used to calculate sm (1 ≤ m ≤ k):

sm =
1

2πi

∫

Γ

zm p′(z)
p(z)

dz.

where the integration can be computed to the required precision by the discrete sum

sm ≈ 1
N

N−1∑

j=0

p′(ωj)
p(ωj)

ω(m+1)j .

for a large enough integer N , where ω = exp(2πi/N).
The coefficients of the polynomial F can then be computed from the Newton sums sm

(1 ≤ m ≤ k) using the classical Newton formulae. Then set G = p/F .
The integer N above needed to get F and G to the required precision can be quite

large. It is more efficient to use a smaller value of N to give an approximation F0 of F ,
and then use the following refining technique.

Define G0 (an approximation of G) by p = F0G0 +r, where deg(r) < deg(F0). We want
polynomials f and g such that F1 = F0 + f and G1 = G0 + g are better approximations
of F and G. Now

p− F1G1 = p− F0G0 − fG0 − gF0 − fg.

Hence choosing f and g such that

p− F0G0 = fG0 + gF0

will lead to a second order error.
The Euclidean algorithm could be used to find f and g, but this is numerically unstable.

It suffices to find polynomials H (called the auxiliary polynomial) and L such that

1 = HG0 + LF0,

where deg(H) < deg(F0) and deg(L) < deg(G0).
The polynomial H can be calculated using the formula

H(z) =
1

2πi

∫

Γ

1
(F0G0)(t)

F0(z)− F0(t)
z − t

dt.

Again, rather than computing the integral to the required precision directly, we find only
an approximation H0 and then refine it using Newton iteration:

Hm+1 ≡ Hm(2−HmG0) (mod F0).

Ch. 25 REAL AND COMPLEX FIELDS 487

Assuming that |H −H0| is small, the sequence (Hm) converges quadratically to H.
Once H is known to a large enough precision, f can be computed by

f ≡ H(p− F0G0) (mod F0).

This gives us the new approximation F1 of F , and G1 is computed by division of p by
F1. We repeat this process until

|p− FG| < ε1|p|

and we are done.
The problem remains to find the splitting circle.
This relies mainly on the computation of the moduli of the roots of p. Let

r1(p) ≤ r2(p) ≤ · · · ≤ rn(p)

denote the moduli of the roots of p in ascending order. For each k, the computation of
rk(p) with a small number of digits can be achieved in a reliable way using the Graeffe
process. The Graeffe process is a root squaring step transforming any given polynomial p
into a polynomial q of the same degree whose roots are the square of the roots of p.

By the use of a suitable shift, we may assume that the sum of the roots of p is zero.
If p(0) = 0, then we have found a factorization p ≈ FG with F = z and G = p/z. If not,
then the computation of the maximum root modulus rn(p) allows us to scale p so that its
maximum root modulus is now close to 1. For j = 0, 1, 2, 3, set

qj(z) = p(z + 2ij).

Then amongst these four polynomials there exists q such that

rn(q)
r1(q)

= exp(∆),

with ∆ > 0.3. A dichotomic process from the computation of some rj(q) can then be
applied to find k (1 ≤ k ≤ n− 1) such that

rk+1(q)
rk(q)

> exp(
∆

n− 1
).

Then the circle {c : ‖c‖ =
√
rk(q)rk+1(q)} is a suitable splitting circle, with the roots

not too close to it.

Roots(p)

Al MonStgElt Default : “Schonhage”
Digits RngIntElt Default :

488 BASIC RINGS Part IV

Given a univariate polynomial p over a real or complex field, this returns a sequence
of complex approximations to the roots of p. The elements of this sequence are of
the form < r,m >, where r is a root and m its multiplicity.

The algorithm used to find the roots of p may be specified by using the op-
tional argument Al. This must be one of "Schonhage" (which is the default),
"Laguerre", "NewtonRaphson" or "Combination" (a combination of Laguerre and
Newton-Raphson). When using the (default) Schönhage algorithm, the roots given
are correct to within an absolute error of 10−d, where d is the value of Digits. This
algorithm gives correct results in all cases. When using the other algorithms (for
which correct answers are not guaranteed in all cases), the results are found with
Digits significant figures. The default value for Digits is the current precision of
the free real field.

Pari is used here for complex polynomials.
Warning: Beware of the problems of floating point numbers. Because real numbers are
stored in the computer with finite precision, you may not be finding the roots of the
polynomial you want. If you know the polynomial exactly, you should enter it with exact
(that is, integer or rational) coefficients. This is illustrated in the following example.

Example H25E5

> P<z> := PolynomialRing(ComplexField());

> p := (z-1.1)^6;

> p;

z^6 - 6.60000000000000000000000000001*z^5 +

18.1500000000000000000000000000*z^4 -

26.6200000000000000000000000000*z^3 +

21.9615000000000000000000000000*z^2 -

9.66306000000000000000000000003*z +

1.77156100000000000000000000001

> R := Roots(p);

> R;

[<1.10001330596590605421651999857, 1>,

<1.10000665289430860969298668917 +

1.15233044958179825651486651257E-5*i, 1>,

<1.10000665289430860969298668917 -

1.15233044958179825651486651257E-5*i, 1>,

<1.09998669421138030521834731234, 1>,

<1.09999334701704821058957965537 +

1.15231509613269858004669167711E-5*i, 1>,

<1.09999334701704821058957965537 -

1.15231509613269858004669167711E-5*i, 1>]

> P<x> := PolynomialRing(Rationals());

> q := (x-11/10)^6;

> Roots(q);

[<11/10, 6>]

Ch. 25 REAL AND COMPLEX FIELDS 489

The function RootsNonExact (below) is more suitable for non-exact polynomials.

RootsNonExact(p)

Given a polynomial p of degree n defined over a real or complex field, returns a
sequence [v1, . . . , vn] of complex numbers such that

|p− a(z − v1) . . . (z − vn)| < 10−d|p|,
where a is the leading coefficient of p, and d is the precision of the field.

A second sequence [e1, . . . , en] of (free) real numbers may also be returned. Given
any polynomial p̂ such that |p− p̂| < 10−d|p|, we can write p̂ = a(z−u1) . . . (z−un)
with |vi−ui| < ei. In some cases, such error bounds cannot be derived, because the
value d of Digits is too small for the given polynomial. In these cases, this second
sequence is not returned.

This function acknowledges the fact that the polynomial p may not be the exact
polynomial wanted, but only an approximation (to a certain number of decimal
places), and so the roots of the true polynomial can only be found to a limited
number of decimal places. Increasing the precision will decrease the errors on the
‘roots’.

Example H25E6

> P<z> := PolynomialRing(ComplexField());

> p := (z-1.1)^6;

> R, E := RootsNonExact(p);

> R;

[1.10001483296913451410370191006 -

8.56404454142796527111307103383E-6*i,

1.10001483296913451410370191006 +

8.56404454142796527111304767692E-6*i,

1.09998516742199321904393975959 +

8.56336708832137724325720239457E-6*i,

1.09999999960887226685235833026 +

1.71274116266516824685125851069E-5*i,

1.09998516742199321904393771623 -

8.56336708832137723945115457519E-6*i,

1.09999999960887226685236037365 -

1.71274116266516824723187272572E-5*i]

> E;

[0.00482314415421569719910621643066,

0.00482314415421569719910621643066,

0.00482301408919738605618476867676,

0.00482307911261159460991621017456,

0.00482301408919738605618476867676,

0.00482307911261159460991621017456]

490 BASIC RINGS Part IV

HenselLift(f, R, k)

HenselLift(f, R, k)

Let f be a real or complex polynomial and x an approximation to a single zero of f .
This function will apply the Newton-iteration to improve the accuracy of the root
to the precision indicated by k.

25.4.11 Continued Fractions
The following functions use the continued fraction expansion of real numbers to get Dio-
phantine approximations. They were obtained from corresponding Pari implementations.

ContinuedFraction(r)

ContinuedFraction(r)

Bound RngIntElt Default : −1
Given an element r from a real field, return a sequence of integers s that form
the partial quotient for the (regular) continued fraction expansion for r, so r is
approximately equal to

s1 +
1

s2 +
1

s3 + · · ·+ 1
sn

.

The length n of the sequence is determined in such a way that the last significant
partial quotient is obtained (determined by the precision with which r is known),
unless the optional integer argument Bound is used to limit the length.

BestApproximation(r, n)

Given an element r from a real field and a positive integer n, this function determines
a rational approximation to r with denominator not exceeding n. The approximation
is at least as close as the best continued fraction convergent with denominator not
exceeding n. Pari is used here.

Convergents(s)

Given a sequence s of n non-negative integers (forming the partial fractions of a real
number r, say), this function returns a 2× 2 matrix with integer coefficients

(
pn pn−1

qn qn−1

)
;

the quotients pn−1/qn−1 and pn/qn form the last two convergents for r as provided
by s.

Ch. 25 REAL AND COMPLEX FIELDS 491

25.4.12 Algebraic Dependencies

LinearRelation(q: parameters)

LinearRelation(v: parameters)

Al MonStgElt Default : “Hastad”
Given a sequence q or a vector v with entries from a complex field, return an integer
sequence or vector forming the coefficients for a (small) linear dependency among
the entries. The algorithm used may be specified by the optional parameter Al. The
default is "Hastad", which uses a variation of the LLL algorithm due to Hastad,
Lagarias and Schnorr; the alternative is "LLL", which uses a straight LLL algorithm.
Pari is used here. The new version of this function is IntegerRelation.

AllLinearRelations(q,p)

Given a sequence q with entries from a real or complex field, return the lattice of
all (small) integer linear dependencies among the entries. The precision, p, given
as second argument is used for two purposes. First “small” is defined to be any
relation such that the sum of the digits of the coefficients is less than p. Second, a
linear relation must be zero to within 10−p.

PowerRelation(r, k: parameters)

Al MonStgElt Default : “Hastad”
Precision RngIntElt Default :

Given an element r from a real or complex field, and an integer k > 0, return a
univariate integer polynomial of degree at most k having r as an approximate root.
The parameters here have the same usage and meaning as for LinearRelation. Pari

is used here. The new version of this function is MinimalPolynomial.

25.5 Transcendental Functions

25.5.1 Exponential, Logarithmic and Polylogarithmic Functions

In this section the exponential and logarithmic functions to the natural base e are described,
as well as the conversion to the logarithm with respect to any base.

The power series expansions are

ez =
∞∑

n=0

zn

n!
, ln(1 + z) =

∞∑
n=1

(−1)n−1 z
n

n
.

Further information on the Dilog and Polylog functions can be found in Lewin [Lew81].

Exp(f)

Given a power series f defined over a real or complex field, return the exponential
power series of f .

492 BASIC RINGS Part IV

Exp(c)

Given an arbitrary real or complex number c, return the exponential ec of c. Here
c is allowed to be free or of fixed precision, and the result is in the same field as c.

Log(f)

Given a power series f defined over a real or complex field, return the logarithm of
f . The valuation of f must be zero.

Log(c)

Given a non-zero real or complex number c, return the logarithm of c (to the natural
base e). The principal value with imaginary part in (−π, π] is chosen. The result
will be a complex number, unless the argument is real and positive, in which case a
real number is returned.

Log(b, r)

Given non-negative real numbers b and r, return the logarithm logb(r) of a to the
base b. Automatic coercion is applied if necessary.

Dilog(s)

For a given complex s, this returns the value of the principal branch of the diloga-
rithm Li2(s), which can be defined by

Li2(s) = −
∫ s

0

log(1− s)
s

ds,

and forms the analytic continuation of the power series

∞∑
n=1

sn

n2
,

(which is convergent for |s| ≤ 1). For large values of the argument a functional
equation like

Li2(
−1
s

) + Li2(−s) = 2Li2(−1)− 1
2

log2(s)

should be used.

Polylog(m, f)

For an integer m ≥ 2 and power series f defined over a real or complex field, return
the m-th polylogarithm of the series f . The valuation of f must be positive for
m > 1.

Ch. 25 REAL AND COMPLEX FIELDS 493

Polylog(m, s)

For given integer m ≥ 2 and complex s this returns the value of the principal branch
of the polylogarithm Lim(s), defined for m ≥ 3 by

Lim(s) =
∫ s

0

Lim−1(s)
s

ds

(and for m = 2 as the dilogarithm Li2). Then Lim is the analytic continuation of

∞∑
n=1

sn

nm
,

(which is convergent for |s| ≤ 1). For large values of the argument a functional
equation like

(−1)mLim(
−1
s

) + Lim(−s) = − 1
m!

logm(s) + 2
bm/2c∑
r=1

logm−2r(s)
(m− 2r)!

Li2r(−1)

should be used. Pari is used here.

PolylogD(m, s)

PolylogDold(m, s)

PolylogP(m, s)

Given integer m ≥ 2 and complex s, this returns the value of the principal branch
of the modified versions D̃m, Dm and Pm of the polylogarithm Lim(s); all of these
satisfy functional equations of the form fm(1/s) = (−1)mfm(s). For their definition
and main properties, see Zagier [Zag91]. Pari is used here.

25.5.2 Trigonometric Functions
The trigonometric functions may be computed for real and complex arguments or for power
series defined over a real or complex field. The basic power series expansions are

sin(z) =
∞∑

n=0

(−1)n+1z2n+1

(2n+ 1)!
, cos(z) =

∞∑
n=0

(−1)nz2n

(2n)!
.

Euler’s formulas relate these with the exponential functions via

sin(z) =
eiz − e−iz

2i
, cos(z) =

eiz + e−iz

2
.

Sin(f)

Given a power series f defined over a real or complex field, return the power series
sin(f).

494 BASIC RINGS Part IV

Sin(c)

Given a real or complex number c, return the value sin(c).

Cos(f)

Given a power series f defined over a real or complex field, return the power series
cos(f).

Cos(c)

Given a real or complex number c, return the value cos(c).

Sincos(f)

Given a power series f defined over a real or complex field, return the two power
series sin(f) and cos(f).

Sincos(s)

Given a real or complex number s, return the two values sin(s) and cos(s).

Tan(f)

Given a power series f defined over the real or complex field, return the power series
tan(f).

Tan(c)

Given a real or complex number c, return the value tan(c) = sin(c)
cos(c) . Note that c

should not be too close to one of the zeroes (π/2 + n · π) of cos(z).

Cot(f)

Given a power series f defined over a real or complex field having valuation zero,
return the power series cot(f).

Cot(c)

Given a real or complex number c, return the value cot(c) = cos(c)/ sin(c). Note
that c should not be too close to one of the zeroes n · π of sin(z).

Sec(f)

Given a power series f defined over a real or complex field, return the power series
sec(f).

Sec(c)

Given a real or complex number c, return the value sec(c) = 1/ cos(c). Note that c
should not be too close to one of the zeroes (π/2 + n · π) of cos(z).

Cosec(f)

Given a power series f defined over a real or complex field having valuation zero,
return the power series cosec(f).

Ch. 25 REAL AND COMPLEX FIELDS 495

Cosec(c)

Given a real or complex number c, return the value cosec(c) = 1/ sin(c). Note that
c should not be too close to one of the zeroes n · π of sin(z).

25.5.3 Inverse Trigonometric Functions
The inverse trigonometric functions are all available for arbitrary real or complex argu-
ments. The principal values are chosen as indicated.

We mention the power series expansions for the inverse of the sine and tangent functions
(for |z| ≤ 1):

arcsin(z) =
∞∑

n=0

(2n∏

k=1

k(−1)k−1) z2n+1

2n+ 1
,

arctan(z) =
∞∑

n=1

(−1)n z
2n+1

2n+ 1
.

The important relations with the logarithmic function include

arcsin(z) =
1
i

log(iz +
√

1− z2),

arccos(z) =
1
i

log(z +
√
z2 − 1),

arctan(z) =
1
2i

log(
1 + iz
1− iz

).

Arcsin(f)

Given a power series f defined over a real or complex field. return the inverse sine
of the power series f .

Arcsin(r)

Given a real or complex number s, return a value t such that sin(t) = s. The
principal value with real part in [−π/2, π/2] is chosen. The return value is a complex
number, unless s is real and −1 ≤ s ≤ 1, in which case a free real number is returned.

Arccos(f)

Given a power series f defined over a real or complex field. return the inverse cosine
of the power series f .

Arccos(r)

Given a real or complex number s, return a value t such that cos(t) = s. The
principal value with real part in [0, π] is chosen. The return value is a complex
number, unless s is real and −1 ≤ s ≤ 1, in which case a free real number is
returned.

496 BASIC RINGS Part IV

Arctan(f)

Given a power series f defined over the real or complex field, return the inverse
tangent of the power series f .

Arctan(r)

Given a real or complex number s, return a value t such that tan(t) = s. The
principal value with real part in (−π/2, π/2) is chosen. The return value is a complex
number, unless s is real, in which case a free real number is returned.

Arctan(x, y)

Arctan2(x, y)

Given the real numbers x and y, return the value v of arctan(y/x) determined by
the choice of signs for x and y. That is, the value v is chosen in (−π, π) in such a
way that the signs of x and sin(v) coincide, as well as the signs of y and cos(v). An
error occurs if x and y are both zero; if y is zero and x non-zero, the value returned
is sign(x) · π/2.

The arguments are allowed to be in any real field (automatic coercion is used
whenever necessary).

Arccot(r)

Given a real or complex number s, return a value t such that cot(t) = s. The
principal value with real part in (−π/2, π/2) is chosen. The return value is a complex
number, unless s is real, in which case a real number is returned.

Arcsec(r)

Given a real or complex number s, return a value t such that sec(t) = s. The
principal value with real part in [0, π/2) ∪ (π/2, π] is chosen. The return value is a
complex number, unless s is real, in which case a real number is returned.

Arccosec(r)

Given a real or complex number s, return a value t such that cosec(t) = s. The
principal value with real part in [−π/2, 0) ∪ (0, π/2] is chosen. The return value is
a complex number, unless s is real, in which case a real number is returned.

Ch. 25 REAL AND COMPLEX FIELDS 497

25.5.4 Hyperbolic Functions
The hyperbolic functions are available for real and complex arguments, as specified below.

The hyperbolic functions are defined using

sinh(z) =
ez − e−z

2
,

cosh(z) =
ez + e−z

2
.

Sinh(f)

Given a power series f defined over a real or complex field, return the hyperbolic
sine of the power series f .

Sinh(s)

Given a real or complex number s, return sinh(s). The result will be a real or
complex value, in accordance with the argument.

Cosh(f)

Given a power series f defined over a real or complex field, return the hyperbolic
cosine of the power series f .

Cosh(r)

Given a real or complex number s, return cosh(s). The result will be a real or
complex value, in accordance with the argument.

Tanh(f)

Given a power series f defined over a real or complex field, return the hyperbolic
tangent of the power series f .

Tanh(r)

Given a real or complex number s, return tanh(s) = sinh(s)
cosh(s) . The result will be a

real or complex value, in accordance with the argument.

Coth(r)

Given a real or complex number s, return coth(s) = cosh(s)
sinh(s) . The result will be a

real or complex value, in accordance with the argument.

Sech(r)

Given a real or complex number s, return sech(s) = 1/ cosh(s). The result will be a
real or complex value, in accordance with the argument.

Cosech(r)

Given a real or complex number s, return cosech(s) = 1/ sinh(s). The result will be
a real or complex value, in accordance with the argument.

498 BASIC RINGS Part IV

25.5.5 Inverse Hyperbolic Functions
The inverse hyperbolic functions are available for real or complex arguments. The principal
values are chosen as indicated.

Argsinh(f)

Given a power series f defined over a real or complex field, return the inverse
hyperbolic sine of the power series f .

Argsinh(r)

Given a real or complex number s, return t such that sinh(t) = s; the principal value
with imaginary part in [π/2, π/2] is chosen. The return value is a complex number,
unless the argument is real, in which case a real number is returned.

Argcosh(f)

Given a power series f defined over a real or complex field, return the inverse
hyperbolic cosine of the power series f .

Argcosh(r)

Given a real or complex number s, return t such that cosh(t)) = s; the principal
value with imaginary part in [0, π] is chosen. The return value is a complex number,
unless the argument is real and s ≥ 1, in which case a real number is returned.

Argtanh(f)

Given a power series f defined over a real or complex field, return the inverse
hyperbolic tangent of the power series f .

Argtanh(s)

Given a real or complex number s, return t such that tanh(t) = s; the principal
value with imaginary part in [π/2, π/2] is chosen. The return value is a complex
number, unless the argument is real and −1 < s < 1, in which case a real number
is returned.

Argsech(s)

Given a real or complex number s, return t such that sech(t)) = s; the principal
value with imaginary part in [0, π] is chosen. The return value is a complex number,
unless the argument is real and |s| ≥ 1, in which case a real number is returned.

Argcosech(s)

Given a real or complex number s, return t such that cosech(t)) = s; the principal
value with imaginary part in [−π/2, π/2] is chosen. The return value is a complex
number, unless the argument is real, in which case a real number is returned.

Ch. 25 REAL AND COMPLEX FIELDS 499

Argcoth(s)

Given a real or complex number s, return t such that coth(t)) = s; the principal
value with imaginary part in [−π/2, π/2] is chosen. The return value is a complex
number, unless the argument is real and 0 < s ≤ 1, in which case free real number
is returned.

25.6 Elliptic and Modular Functions

More information on elliptic functions can be found for example in Chandrasekharan
[Cha85], and for modular functions and their use see Koblitz [Kob84].

25.6.1 Eisenstein Series
Let f(z) be a modular function. Then f(z) may be written as a Fourier series

f(z) =
∑

n∈Z

anq
n,

where q = e2πiz, which has at most finitely many nonzero coefficients an with n < 0. Such
a Fourier expansion of a modular function is called its q-expansion. In this and the next
section we present intrinsics for q-expansions of the Eisenstein series and the Weierstrass
℘-function.

Let z be a point in the upper half-plane and let L be a lattice in C. The Eisenstein
series are defined as the coefficients of the Laurent Series expansion of the Weierstrass
℘-function:

℘(z, L) =
1
z2

+
∑

2≤k

Gk(L)(2k − 1)z2k−2

where Gk(L) are the Eisenstein series. The normalization E2n(z) = 1
2ζ(2n)G2n(z) ensures

that E2n(z) has a rational q-expansion.

Eisenstein(k, z)

Precision RngIntElt Default :

Given a positive even integer k = 2n and a complex power series z with positive
valuation, return the q-expansion of the normalized Eisenstein series E2n(z). If z
has finite precision this is the default for Precision otherwise the default precision
of the parent of z is used.

Eisenstein(k, t)

Given a positive even integer k = 2n and a point t in the upper half plane, return
the value of E2n(z) at t.

500 BASIC RINGS Part IV

Eisenstein(k, L)

Given a positive even integer k = 2n and a lattice L = [a, b] in the complex plane,
return the value of the Eisenstein series E2n(z) relative to the lattice L.

Eisenstein(k, F)

Given a positive even integer k = 2n and a binary quadratic form F = ax2 +
bxy + cy2, return the value of the Eisenstein series E2n(z) at the point τ =(−b+

√
b2 − 4ac

)
/(2a) where z is e2π∗i∗τ .

Example H25E7

We compute the q-expansion for the normalized Eisenstein series E4(z).

> C<i> := ComplexField();

> R<z> := PowerSeriesRing(C);

> E4<q> := Eisenstein(4, z);

> E4;

1.00000000000000000000000000000 +

240.000000000000000000000000000*q +

2160.00000000000000000000000000*q^2 +

6720.00000000000000000000000000*q^3 +

17520.0000000000000000000000000*q^4 +

30240.0000000000000000000000000*q^5 +

60480.0000000000000000000000000*q^6 +

82560.0000000000000000000000000*q^7 +

140400.000000000000000000000000*q^8 +

181680.000000000000000000000000*q^9 +

272160.000000000000000000000000*q^10 +

319680.000000000000000000000000*q^11 +

490560.000000000000000000000000*q^12 +

527520.000000000000000000000000*q^13 +

743040.000000000000000000000000*q^14 +

846720.000000000000000000000000*q^15 +

1123440.00000000000000000000000*q^16 +

1179360.00000000000000000000000*q^17 +

1635120.00000000000000000000000*q^18 +

1646400.00000000000000000000000*q^19 + O(q^20)

We now evaluate this series at the point z1 = 2.5 + i. Since the expansion is in terms of q rather
than z we first must calculate the point q1 that corresponds to z1.

> q1 := Exp(2*Pi(RealField())*i*(2.5 +i));

> Evaluate(E4, q1);

0.559302852856190773766762411942 +

3.67329046709782088758389413820E-31*i

If we are interested only in the value of E4 at a single point, then we can compute it directly:

> Eisenstein(4, 2.5 + i);

Ch. 25 REAL AND COMPLEX FIELDS 501

0.559302852856190773766762411942 +

3.67329046709782088758389413820E-31*i

25.6.2 Weierstrass Series

WeierstrassSeries(z, q)

Precision RngIntElt Default :

Return a normalized q-expansion of the Weierstrass ℘-function:

℘(z, L) =
1
z2

+
∑

2≤k

Gk(L)(2k − 1)z2k−2

where Gk(L) are the Eisenstein series and

WeierstrassSeries(z, q) = (2πi)−2℘(q, z/(2πi))

Each term is an Eisenstein series, calculated to precision Precision, which is by
default the precision of q.

WeierstrassSeries(z, t)

Given a complex power series z with positive valuation and a point t = τ in the
upper-half complex plane, return the normalized q-expansion of the Weierstrass ℘-
function. This is equivalent to evaluating the q-series expansion at q = e2πiτ .

WeierstrassSeries(z, L)

Given a complex power series z with positive valuation and a lattice L = [a, b] in
the complex plane, returns the normalized q-expansion of the Weierstrass ℘-function
relative to the lattice L.

WeierstrassSeries(z, F)

Given a complex power series z with positive valuation and a binary quadratic
form F = ax2 + bxy + cy2, this function returns the q-expansion of the Weierstrass
℘-function at τ =

(−b+
√
b2 − 4ac

)
/(2a)

502 BASIC RINGS Part IV

25.6.3 The Jacobi θ and Dedekind η-functions
The first Jacobi θ-function, θ(q, z), is defined by

θ(q, z) =
1
i

∞∑
n=−∞

(−1)nq(n+ 1
2)2e(2n+1)iz = 2

∞∑
n=0

(−1)nq(n+ 1
2)2 sin(2n+ 1)z.

Defined this way, θ satisfies θ(q,−z) = −θ(q, z), it is periodic with period 2π in the
second variable: θ(q, z + 2π) = θ(q, z), and its zeroes are of the form m1π + m2

log x
i for

any integers m1,m2.

JacobiTheta(q, z)

For a real or complex number q satisfying |q| < 1, return the first of Jacobi’s theta
functions θ(q, z) as a power series expansion in z, a series over the complex numbers.
Pari is used here.

JacobiTheta(q, z)

For real or complex numbers q, z satisfying |q| < 1, return the value of θ(q, z), the
first of Jacobi’s theta functions. Pari is used here.

JacobiThetaNullK(q, k)

For integer k ≥ 0, return the k-th derivative θ(k)(q, 0) of θ(q, z) at z = 0. Pari is
used here.

DedekindEta(z)

Given a complex power series z with positive valuation, return the q-expansion of
Dedekind’s η-function. Note that the unnormalized series is returned, that is, the
factor q1/24 is not removed. See [Lan87].

DedekindEta(s)

For complex argument s with positive imaginary part, this returns the actual value
of Dedekind’s η-function which is defined by

η(s) = e
2πis
24

(
1 +

∞∑
n=1

(−1)n(qn(3n−1)/2 + qn(3n+1)/2)

)

where q = e2πis.

Ch. 25 REAL AND COMPLEX FIELDS 503

25.6.4 The j-invariant and the Discriminant
The discriminant of the elliptic curve corresponding to the complex lattice Lτ , spanned by
1 and τ is given by

∆(τ) = q

(
1 +

∞∑
n=1

(−1)n(qn(3n−1)/2 + qn(3n+1)/2)

)

where q = e2πiτ .

jInvariant(q)

Given a power series q over a real or complex field with positive valuation, return
the q-expansion of the elliptic j-invariant. The expansion begins with

j(q) = q−1 + 744 + 196884q + · · · .

Note that:

j(q) =
E4(q)

3

∆(q)

where E4(q) = Eisenstein(4, q) and ∆(q) = Delta(q).

jInvariant(s)

For complex argument s with positive imaginary part, this returns the value of
the elliptic j-invariant at s. This is a modular function of weight 0 whose Fourier
expansion starts with

j(s) = e−2πis + 744 + 196884e2πis + · · · .

jInvariant(L)

Given a lattice L = [a, b] in the complex plane, this function returns the value of
the elliptic j-invariant of L. This is the j-invariant of τ where τ = a/b or τ = b/a,
whichever is in the upper half complex plane.

jInvariant(F)

For a binary quadratic form F = ax2 + bxy + cy2 with negative discriminant,
this returns the elliptic j-invariant of F . This is the j-invariant of τ where
τ =

(−b+
√
b2 − 4ac

)
/(2a).

Delta(z)

Given a complex power series z, this function returns a q-series expansion of the
discriminant ∆(z).

504 BASIC RINGS Part IV

Delta(t)

Given a point t in the upper half plane, return the q-series expansion of the discrim-
inant ∆(q) evaluated at q = e2πit.

Delta(L)

Given a pair L = [a,b] of complex numbers generating a lattice in C, return the
q-series expansion of the discriminant ∆(q) evaluated at q = e2πiτ where τ = a/b or
τ = b/a, whichever is in the upper half complex plane.

25.6.5 Weber’s Functions

WeberF(s)

For complex argument s in the upper half-plane, this returns the value of Weber’s
function f , defined in such a way that

j(s) =
(f(s)24 − 16)3

f(s)24
.

WeberF2(g)

For a complex power series g having positive valuation, this function returns the
q-expansion of Weber’s f2 function

f2(x) =
η(2x)

√
2

η(x)

defined in such a way that

j(s) =
(f2(s)24 + 16)3

f2(s)24
.

WeberF1(s)

WeberF2(s)

For complex number s lying in the upper half-plane, these return the value of We-
ber’s functions f1 and f2, defined in such a way that

j(s) =
(f1/2(s)24 + 16)3

f1/2(s)24
.

In fact, f2 is as defined above and

f1(x) = f2(−1/x) = η(x/2)/η(x)

Ch. 25 REAL AND COMPLEX FIELDS 505

Example H25E8

We compute the q-expansion for the Weber function f2(z).

> C<i> := ComplexField();

> R<x> := PowerSeriesRing(C);

> f2<q> := WeberF2(x);

> f2;

1.41421356237309504880168872421 +

(1.41421356237309504880168872421 +

0.370240244846530520584656749172*i)*q +

(1.36574922765338060759226121771 +

0.370240244846530520584656749172*i)*q^2 +

(2.77996279002647565639394994192 +

0.366010933793292419482272977081*i)*q^3 +

(2.78023959778761313408864734217 +

0.736251178639822940066929726253*i)*q^4 +

(4.14598882544099374168090855987 +

0.736265672260303709036837819528*i)*q^5 +

(5.56020175541059398072755542234 +

1.10227660605359612851911079661*i)*q^6 +

...

25.7 Theta Functions
One of the main tools for working with analytic Jacobians is the theta function. For
instance it is used by FromAnalyticJacobian on page 10-4209 and RosenhainInvariants
on page 10-4216. For c ∈ R2g let c′ be the first g entries and c′′ the second g entries of c.
For such a c, z ∈ Cg and τ an element of Siegel upper half-space the classical multi-variable
theta function is defined by

θ[c](z, τ) =
∑

m∈Zg

exp(πit(m+ c′)τ(m+ c′) + 2πit(m+ c′)(z + c′′)).

The vector c is called the characteristic of the theta function.

Theta(char, z, tau)

This computes the multidimensional theta function with characteristic char (a 2g×1
matrix) at z (a g×1 matrix) and τ (a symmetric g× g matrix with positive definite
imaginary part).

Theta(char, z, A)

This computes the multidimensional theta function with characteristic char (a 2g×1
matrix) at z (a g×1 matrix) and τ , the small period matrix of the analytic Jacobian
A. This function caches the values of theta null values (z = 0) at half-integer
characteristics.

506 BASIC RINGS Part IV

25.8 Gamma, Bessel and Associated Functions
As a general reference to the functions described in this section (and much more), we refer
the reader to Whittaker and Watson [WW15].

Gamma(f)

Return the Gamma function Γ(f) of the series f . f must be defined over the free
real or complex field, the valuation of f must be 0 and the constant term of f must
be 1.

Gamma(r)

Gamma(r)

Given a real or complex number s (not equal to 0,−1,−2, . . .), calculate the value
Γ(s) of the gamma function at s. For s with positive real part this is the value of

Γ(s) =
∫ ∞

0

us−1e−udu.

For other s (not a non-positive integer) the function is defined by analytic contin-
uation, and it satisfies the product formula

1
sΓ(s)

= eγs
∞∏

n=1

(1 +
s

n
)e−s/n.

The function Γ also satisfies

Γ(s)Γ(1− s) =
π

sin(πs)
,

and
Γ(s+ 1) = sΓ(s).

Gamma(r, s)

Complementary BoolElt Default : false

Gamma FldReElt Default :

For real numbers s, t this returns the value of the incomplete gamma function

γ(s, t) =
∫ t

0

us−1e−udu.

The optional argument Complementary can be used to find the complement
∫ ∞

t

us−1e−udu

instead. There is a second optional argument that may be used in the computation
of the incomplete gamma value; the free real value of Gamma should be the value
of Γ(s), in which case γ(s, t) may be computed as the difference between the given
value for Γ(s) and that of the complementary γ at s, t. Pari is used here.

Ch. 25 REAL AND COMPLEX FIELDS 507

GammaD(s)

For free real s (such that s+ 1
2 is not a non-positive integer) this returns the value

of Γ(s + 1
2). For integer values of s this is faster than Gamma(s+(1/2)), because

Legendre’s doubling formula

Γ(s+
1
2
) = 21−2s

√
π

Γ(2s)
Γ(s)

is used. Pari is used here.

LogGamma(f)

Return the Log-Gamma function Log(Γ(f)) of the series f . f must be defined over
a real or complex field, the valuation of f must be 0 and the constant term of f
must be 1.

LogGamma(r)

For real or complex s (not a non-positive integer) return the value of the principal
branch of the logarithm of the gamma function of s.

LogDerivative(s)

Psi(s)

For real or complex s (not a non-positive integer) return the principal value of the
logarithmic derivative

Ψ(s) =
d log Γ(s)

ds
=

Γ′(s)
Γ(s)

,

of the gamma function, which allows the expansion

Ψ(s) = −γ − 1
s

+ s

∞∑
n=1

1
n(s+ n)

;

here γ is Euler’s gamma. Pari is used here.

BesselFunction(n, r)

Given a small integer n and a real number r, calculate the value of the Bessel
function y = Jn(r), of the first kind of order n. Results for negative arguments are
defined by: J−n(r) = Jn(−r) = (−1)nJn(r). The Bessel function of the first kind
of order n is defined by

Jn(x) =
1

2πi

(z
2

)n
∫ 0+

−∞
u−n−1eu− z2

4t du,

508 BASIC RINGS Part IV

and satisfies

Jn(x) =
∞∑

k=0

(−1)kzn+2k

2n+2kk!Γ(n+ k + 1)
.

BesselFunctionSecondKind(n, r)

Given a small integer n and a real number r, calculate the value of the Bessel
function y = Yn(r), of the second kind of order n. Results for negative arguments
are defined by: Y−n(r) = −(−1)nYn(r), Yn(−r) is not a real number. The Bessel
function of the second kind of order n satisfies the Bessel differential equation.

JBessel(n, s)

Given a small integer n and a real number s, calculate the value of the Bessel
function of the first kind of half integral index n+ 1

2 , Jn+ 1
2
, defined as above. Pari

is used here.

KBessel(n, s)

KBessel2(n, s)

Given a complex n and a positive real s, compute the value of the modified Bessel
function of the second kind Kn(s), which may be defined by

Kn(s) =
π

2
(
inJ−n(is)− i−nJn(s)

)
cot(nπ).

The function KBessel2 is an alternative (often faster) implementation of this func-
tion. Pari is used here.

25.9 The Hypergeometric Function
For more information on the Hypergeometric Series, see Husemöller [Hus87], page 176.

HypergeometricSeries(a,b,c, z)

Return the hypergeometric series F (a, b, c; z) defined by

F (a, b, c; z) =
∑

0≤n

(a)n(b)n

n!(c)nzn

where (a)n = a(a+ 1) · · · (a+ n− 1).

HypergeometricU(a, b, s)

For positive real s and complex arguments a and b this function returns the value
of the confluent hypergeometric function U(a, b, s). This can be defined by

U(a, b, s) =
1

Γ(a)

∫ ∞

u=0

e−suua−1(1 + u)b−a−1)du.

Pari is used here.

Ch. 25 REAL AND COMPLEX FIELDS 509

25.10 Other Special Functions

ArithmeticGeometricMean(x, y)

AGM(f, g)

Return the hyperbolic arithmetic-geometric mean of the series f and g defined over
a field. The valuations of f and g must be equal.

ArithmeticGeometricMean(x, y)

AGM(x, y)

Returns the arithmetic-geometric mean of the real or complex numbers x and y,
defined as the limit of either of the sequences xi, yi where x0 = x, y0 = y and
xi+1 = (xi +yi)/2, yi+1 =

√
xiyi. The function calculates both sequences, and when

the numbers are within the desired precision of each other, it returns one of them.

BernoulliNumber(n)

For a non-negative integer n, return the value of the n-th Bernoulli number Bn,
defined by

t

et − 1
=

∞∑
n=0

Bn
tn

n!
.

BernoulliApproximation(n)

For a non-negative integer n, return an approximation in the field of real numbers
to the value of the n-th Bernoulli number Bn, defined by

t

et − 1
=

∞∑
n=0

Bn
tn

n!
.

DawsonIntegral(r)

Given a real number r, compute the value of Dawson’s integral,

e−x2 ·
∫ x

0

eu2
du,

at x = r. The mp real package is used here.

ErrorFunction(r)

Erf(r)

Given a real number r, calculate the value of the error function erf. This is the
value of √

4
π
·
∫ x

0

e−u2
du,

at x = r for r > 0, and for r < 0 it is defined by erf(x) = − erf(−x), while erf(0) = 0.

510 BASIC RINGS Part IV

ComplementaryErrorFunction(r)

Erfc(r)

Given a real number r, calculate the value of the complementary error function.
This is the value of y = erfc(x) = 1 − erf(x). for the error function erf as defined
above.

ExponentialIntegral(r)

Given a real number r, calculate the value of the exponential integral, that is, the
principal value of ∫ x

−∞

eu

u
du

at x = r.

ExponentialIntegralE1(r)

Given a real number r, calculate the value of the exponential integral E1, that is,
the principal value of ∫ ∞

x

eu

u
du

at x = r.

LogIntegral(r)

Given a non-negative real number r that is not equal to 1, evaluate the logarithmic
integral y = li(x) at x = r. This integral is defined to be the principal value of

∫ x

0

1
log(u)

du.

The mp real package is used here.

ZetaFunction(s)

ZetaFunction(R, n)

These functions calculate values of the Riemann ζ-function, which is the analytic
continuation of

ζ(z) =
∞∑

i=1

1
iz

(convergent for Re(z) > 1). The version with one argument takes a real or complex
number r 6= 1 and returns a real or complex number.

The version with two arguments is much more restricted; it takes a real field R
and an integer n 6= 1, and returns ζ(n) in R.

MPFR uses the algorithm of Jean-Luc Rémy and Sapphorain Pétermann [PR06].

Ch. 25 REAL AND COMPLEX FIELDS 511

25.11 Numerical Functions
This section contains some functions for numerical analysis, taken from Pari.

25.11.1 Summation of Infinite Series
There are three functions for evaluating infinite sums of real numbers. The sum should be
specified as a map m from the integers to the real field, such that m(n) is the nth term of
the sum. The summation begins at term i. The precision of the result will be the default
precision of the real field.

InfiniteSum(m, i)

An approximation to the infinite sum m(i)+m(i+1)+m(i+2)+ · · ·. This function
also works for maps to the complex field.

PositiveSum(m, i)

An approximation to the infinite sum m(i)+m(i+1)+m(i+2)+ · · ·. Designed for
series in which every term is positive, it uses van Wijngaarden’s trick for converting
the series into an alternating one. Due to the stopping criterion, terms equal to 0
will create problems and should be removed.

AlternatingSum(m, i)

Al MonStgElt Default : “V illegas”
An approximation to the infinite sum m(i)+m(i+1)+m(i+2)+ · · ·. Designed for
series in which the terms alternate in sign. The optional argument Al can be used
to specify the algorithm used. The possible values are "Villegas" (the default),
and "EulerVanWijngaarden". Due to the stopping criterion, terms equal to 0 will
create problems and should be removed.

25.11.2 Integration
A number of ‘Romberg-like’ integration methods have been taken from Pari. The precision
should not be made too large for this, and singularities are not allowed in the interval of
integration (including its boundaries).

Interpolation(P, V, x)

Using Neville’s algorithm, interpolate the value of x under a polynomial p such that
p(P [i]) = V [i]. An estimate of the error is also returned.

RombergQuadrature(f, a, b: parameters)

Precision FldReElt Default : 1.0e− 6
MaxSteps RngIntElt Default : 20
K RngIntElt Default : 5

Using Romberg’s method of order 2K, approximate the integral of f from a to b.
The desired accuracy may be specified by setting the Precision parameter, and the
order of the algorithm by changing K. The algorithm ceases after MaxSteps iterations
if the desired accuracy has not been achieved.

512 BASIC RINGS Part IV

SimpsonQuadrature(f, a, b, n)

Using Simpson’s rule on n sub-intervals, approximate the integral of f from a to b.

TrapezoidalQuadrature(f, a, b, n)

Using the trapezoidal rule on n sub-intervals, approximate the integral of f from a
to b.

25.11.3 Numerical Derivatives
There is also a function to compute the NumericalDerivative of a function. This works via
computing enough interpolation points and using a Taylor expansion.

NumericalDerivative(f, n, z)

Given a suitably nice function f , compute a numerical approximation to the nth
derivative at the point z.

Example H25E9

> f := func<x|Exp(2*x)>;

> NumericalDerivative(f, 10, ComplexField(30)! 1.0) / f (1.0);

1024.00000000000000000000000000

> NumericalDerivative(func<x|LogGamma(x)>,1,ComplexField()!3.0);

0.922784335098467139393487909918

> Psi(3.0); // Psi is Gamma’/Gamma

0.922784335098467139393487909918

25.12 Bibliography
[Cha85] K. Chandrasekharan. Elliptic Functions, volume 281 of Grundlehren der

mathematischen Wissenschaften. Springer, Berlin, 1985.
[Hus87] Dale Husemöller. Elliptic Curves, volume 111 of Graduate Texts in

Mathematics. Springer, New York, 1987.
[Kob84] Neal Koblitz. Introduction to Elliptic Curves and Modular Forms, volume 97

of Graduate Texts in Mathematics. Springer, New York, 1984.
[Lan87] Serge Lang. Elliptic Functions, volume 112 of Graduate Texts in

Mathematics. Springer, New York, 1987.
[Lew81] Leonard Lewin. Polylogarithms and associated functions. North Holland,

New York, 1981.
[PR06] Y.-F. S. Pétermann and Jean-Luc Rémy. Arbitrary Precision Error Analysis

for computing ζ(s) with the Cohen-Olivier algorithm: Complete description of the real
case and preliminary report on the general case. Research Report 5852, INRIA, 2006.
URL:http://www.inria.fr/rrrt/rr-5852.html.

Ch. 25 REAL AND COMPLEX FIELDS 513

[Sch82] A. Schönhage. The fundamental theorem of algebra in terms of computa-
tional complexity. Technical report, Univ. Tübingen, 1982.

[vdGOS91] G. van der Geer, F. Oort, and J. Steenbrink, editors. Arithmetic Algebraic
Geometry, volume 89 of Progress in Mathematics, Basel, 1991. Birkhäuser Verlag.

[WW15] E. T. Whittaker and G. N. Watson. A course of modern analysis. Cambridge
University Press, Cambridge, 2nd edition, 1915.

[Zag91] Don Zagier. Polylogarithms, Dedekind Zeta Functions, and the Algebraic
K-Theory of Fields. In van der Geer et al. [vdGOS91], pages 377–390.

PART IV
MATRICES AND LINEAR ALGEBRA

26 MATRICES 517

27 SPARSE MATRICES 557

28 VECTOR SPACES 583

29 POLAR SPACES 607

26 MATRICES
26.1 Introduction 521

26.2 Creation of Matrices 521

26.2.1 General Matrix Construction . . . 521

Matrix(R, m, n, Q) 521

26.2.2 Shortcuts 523

Matrix(m, n, Q) 523
Matrix(m, n, Q) 523
Matrix(Q) 523
Matrix(R, n, Q) 523
Matrix(n, Q) 524
Matrix(Q) 524
Matrix(R, Q) 524

26.2.3 Construction of Structured Matrices 525

ZeroMatrix(R, m, n) 525
ScalarMatrix(n, s) 525
ScalarMatrix(R, n, s) 525
DiagonalMatrix(R, n, Q) 525
DiagonalMatrix(R, Q) 525
DiagonalMatrix(Q) 525
Matrix(A) 525
LowerTriangularMatrix(Q) 525
LowerTriangularMatrix(R, Q) 526
UpperTriangularMatrix(Q) 526
UpperTriangularMatrix(R, Q) 526
SymmetricMatrix(Q) 526
SymmetricMatrix(R, Q) 526
AntisymmetricMatrix(Q) 526
AntisymmetricMatrix(R, Q) 527
PermutationMatrix(R, Q) 527
PermutationMatrix(R, x) 527

26.2.4 Construction of Random Matrices . 528

RandomMatrix(R, m, n) 528
RandomUnimodularMatrix(M, n) 528
RandomSLnZ(n, k, l) 528
RandomGLnZ(n, k, l) 528
RandomSymplecticMatrix(g, m) 528

26.2.5 Creating Vectors 529

Vector(n, Q) 529
Vector(Q) 529
Vector(R, n, Q) 529
Vector(R, Q) 529

26.3 Elementary Properties 529

NumberOfRows(A) 529
Nrows(A) 529
NumberOfColumns(A) 529
Ncols(A) 529
NumberOfNonZeroEntries(A) 529
NNZEntries(A) 529
Density(A) 530
BaseRing(A) 530

CoefficientRing(A) 530
ElementToSequence(A) 530
Eltseq(A) 530
RowSequence(A) 530

26.4 Accessing or Modifying Entries 530

26.4.1 Indexing 530

A[i] 530
A[i, j] 530
A[Q] 530
A[i .. j] 530
A[i] := v 531
A[i, j] := x 531

26.4.2 Extracting and Inserting Blocks . . 531

Submatrix(A, i, j, p, q) 531
ExtractBlock(A, i, j, p, q) 531
SubmatrixRange(A, i, j, r, s) 532
ExtractBlockRange(A, i, j, r, s) 532
Submatrix(A, I, J) 532
InsertBlock(A, B, i, j) 532
InsertBlock(∼A, B, i, j) 532
RowSubmatrix(A, i, k) 532
RowSubmatrix(A, i) 532
RowSubmatrixRange(A, i, j) 532
ColumnSubmatrix(A, i, k) 532
ColumnSubmatrix(A, i) 533
ColumnSubmatrixRange(A, i, j) 533

26.4.3 Row and Column Operations . . . 534

SwapRows(A, i, j) 534
SwapRows(∼A, i, j) 534
SwapColumns(A, i, j) 534
SwapColumns(∼A, i, j) 534
ReverseRows(A) 534
ReverseRows(∼A) 534
ReverseColumns(A) 534
ReverseColumns(∼A) 534
AddRow(A, c, i, j) 534
AddRow(∼A, c, i, j) 534
AddColumn(A, c, i, j) 535
AddColumn(∼A, c, i, j) 535
MultiplyRow(A, c, i) 535
MultiplyRow(∼A, c, i) 535
MultiplyColumn(A, c, i) 535
MultiplyColumn(∼A, c, i) 535
RemoveRow(A, i) 535
RemoveRow(∼A, i) 535
RemoveColumn(A, j) 535
RemoveColumn(∼A, j) 535
RemoveRowColumn(A, i, j) 535
RemoveRowColumn(∼A, i, j) 535
RemoveZeroRows(A) 535
RemoveZeroRows(∼A) 535

26.5 Building Block Matrices . . . 537

518 MATRICES AND LINEAR ALGEBRA Part V

BlockMatrix(m, n, blocks) 537
BlockMatrix(m, n, rows) 537
BlockMatrix(rows) 537
HorizontalJoin(X, Y) 537
HorizontalJoin(Q) 537
HorizontalJoin(T) 537
VerticalJoin(X, Y) 537
VerticalJoin(Q) 537
VerticalJoin(T) 537
DiagonalJoin(X, Y) 538
DiagonalJoin(Q) 538
DiagonalJoin(T) 538
KroneckerProduct(A, B) 538

26.6 Changing Ring 538

ChangeRing(A, R) 538
Matrix(R, A) 538
ChangeRing(A, R, f) 538
ChangeRing(A, f) 538

26.7 Elementary Arithmetic 539

+ 539
- 539
* 539
* 539
* 539
- 539
^ 539
^ 539
Transpose(A) 539
AddScaledMatrix(A, s, B) 539
AddScaledMatrix(∼A, s, B) 540

26.8 Nullspaces and Solutions of Sys-
tems 540

Nullspace(A) 540
Kernel(A) 540
NullspaceMatrix(A) 540
KernelMatrix(A) 540
NullspaceOfTranspose(A) 540
IsConsistent(A, W) 540
IsConsistent(A, Q) 541
Solution(A, W) 541
Solution(A, Q) 541

26.9 Predicates 543

IsZero(A) 543
IsOne(A) 543
IsMinusOne(A) 543
IsScalar(A) 543
IsDiagonal(A) 543
IsSymmetric(A) 543
IsUpperTriangular(A) 543
IsLowerTriangular(A) 543
IsUnit(A) 543
IsSingular(A) 544
IsSymplecticMatrix(A) 544

26.10 Determinant and Other Proper-
ties 544

Determinant(A: -) 544
Trace(A) 545
TraceOfProduct(A, B) 545
Rank(A) 545
Minor(M, i, j) 545
Minor(M, I, J) 545
Minors(M, r) 545
Cofactor(M, i, j) 545
Cofactors(M) 545
Cofactors(M, r) 545
Pfaffian(M) 545
Pfaffian(M, I, J) 545
Pfaffians(M, r) 545

26.11 Minimal and Characteristic
Polynomials and Eigenvalues 546

MinimalPolynomial(A: -) 546
CharacteristicPolynomial(A: -) 546
MinimalAndCharacteristic

Polynomials(A: -) 546
MCPolynomials(A) 546
FactoredMinimal

Polynomial(A: -) 547
FactoredCharacteristic

Polynomial(A: -) 547
FactoredMinimalAndCharacteristic

Polynomials(A: -) 547
FactoredMCPolynomials(A: -) 547
Eigenvalues(A) 547
Eigenspace(A, e) 547

26.12 Canonical Forms 548
26.12.1 Canonical Forms over General

Rings 548

EchelonForm(A) 548
Adjoint(A) 548

26.12.2 Canonical Forms over Fields . . 548

PrimaryRationalForm(A) 548
JordanForm(A) 548
RationalForm(A) 549
PrimaryInvariantFactors(A) 549
InvariantFactors(A) 549
IsSimilar(A, B) 549
HessenbergForm(A) 549
FrobeniusFormAlternating(A) 549

26.12.3 Canonical Forms over Euclidean Do-
mains 551

HermiteForm(A) 551
SmithForm(A) 552
ElementaryDivisors(A) 552
Saturation(A) 552

26.13 Orders of Invertible Matrices 554

HasFiniteOrder(A) 554
Order(A) 554

Ch. 26 MATRICES 519

FactoredOrder(A) 554
ProjectiveOrder(A) 554
FactoredProjectiveOrder(A) 555

26.14 Miscellaneous Operations on
Matrices 555

FrobeniusImage(A, e) 555
NumericalEigenvectors(M, e) 555

26.15 Bibliography 555

Chapter 26

MATRICES

26.1 Introduction
This chapter describes all the basic operations available for creating and working with
matrices. Matrices arise in many different contexts and there are several types of matrix
within Magma, but most of the operations listed here apply to all types of matrix.

The parent of any matrix will be one of several types of matrix-structure (module,
matrix algebra, matrix group, etc.), and each of these matrix-structure types are described
in other chapters, together with operations peculiar to their elements.

26.2 Creation of Matrices
This section describes the elementary constructs provided for creating a matrix or vector.
For each of the following functions, the parent of the result will be as follows:
(a) If the result is a vector then its parent will be the appropriate R-space (of type

ModTupRng or ModTupFld).
(b)If the result is a square matrix then its parent will be the appropriate matrix algebra

(of type AlgMatElt).
(c) If the result is a non-square matrix then its parent will be the appropriate R-matrix

space (of type ModMatRng or ModMatFld).

A matrix or a vector may also be created by coercing a sequence of ring elements into
the appropriate parent matrix structure. There is also a virtual type Mtrx and all matrix
types inherit from Mtrx. While writing package intrinsics, an argument should be declared
to be of type Mtrx if it is a general matrix.

26.2.1 General Matrix Construction

Matrix(R, m, n, Q)

Given a ring R, integers m,n ≥ 0 and a sequence Q, return the m× n matrix over
R whose entries are those specified by Q, coerced into R. Either of m and n may
be 0, in which case Q must have length 0 (and may even be null), and the m × n
zero matrix over R is returned. There are several possibilities for Q:
(a)The sequence Q may be a sequence of length mn containing elements of a ring S,

in which case the entries are given in row-major order. In this case, the function
is equivalent to MatrixRing(R, n)!Q if m = n and RMatrixSpace(R, m, n)!Q
otherwise.

(b)The sequence Q may be a sequence of tuples, each of the form <i, j, x>, where
1 ≤ i ≤ m, 1 ≤ j ≤ n, and x ∈ S for some ring S. Such a tuple specifies that

522 MATRICES AND LINEAR ALGEBRA Part V

the (i, j)-th entry of the matrix is x. If an entry position is not given then its
value is zero, while if an entry position is repeated then the last value overrides
any previous value(s). This case is useful for creating sparse matrices.

(c) The sequence Q may be a sequence of m sequences, each of length n and having
entries in a ring S, in which case the rows of the matrix are specified by the inner
sequences.

(d)The sequence Q may be a sequence of m vectors, each of length n and having
entries in a ring S, in which case the rows of the matrix are specified by the
vectors.

Example H26E1

This example demonstrates simple ways of creating matrices using the general Matrix(R, m, n,

Q) function.

(a) Defining a 2× 2 matrix over Z:

> X := Matrix(IntegerRing(), 2, 2, [1,2, 3,4]);

> X;

[1 2]

[3 4]

> Parent(X);

Full Matrix Algebra of degree 2 over Integer Ring

(b) Defining a 2× 3 matrix over F23:

> X := Matrix(GF(23), 2, 3, [1,-2,3, 4,100,-6]);

> X;

[1 21 3]

[4 8 17]

> Parent(X);

Full KMatrixSpace of 2 by 3 matrices over GF(23)

(c) Defining a sparse 5× 10 matrix over Q:

> X := Matrix(RationalField(), 5, 10, [<1,2,23>, <3,7,11>, <5,10,-1>]);

> X;

[0 23 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 11 0 0 0]

[0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 -1]

> Parent(X);

Full KMatrixSpace of 5 by 10 matrices over Rational Field

(c) Defining a sparse 10× 10 matrix over F101:

> X := Matrix(GF(101), 10, 10, [<2*i-1, 2*j-1, i*j>: i, j in [1..5]]);

> X;

[1 0 2 0 3 0 4 0 5 0]

[0 0 0 0 0 0 0 0 0 0]

Ch. 26 MATRICES 523

[2 0 4 0 6 0 8 0 10 0]

[0 0 0 0 0 0 0 0 0 0]

[3 0 6 0 9 0 12 0 15 0]

[0 0 0 0 0 0 0 0 0 0]

[4 0 8 0 12 0 16 0 20 0]

[0 0 0 0 0 0 0 0 0 0]

[5 0 10 0 15 0 20 0 25 0]

[0 0 0 0 0 0 0 0 0 0]

> Parent(X);

Full Matrix Algebra of degree 10 over GF(101)

26.2.2 Shortcuts
The following functions are “shortcut” versions of the previous general creation function,
where some of the arguments are omitted since they can be inferred by Magma.

Matrix(m, n, Q)

Given integers m,n ≥ 0 and a sequence Q of length mn containing elements of
a ring R, return the m × n matrix over R whose entries are the entries of Q, in
row-major order. Either of m and n may be 0, in which case Q must have length
0 and some universe R. This function is equivalent to MatrixRing(Universe(Q),
n)!Q if m = n and RMatrixSpace(Universe(Q), m, n)!Q otherwise.

Matrix(m, n, Q)

Given integers m and n, and a sequence Q consisting of m sequences, each of length
n and having entries in a ring R, return the m × n matrix over R whose rows are
given by the inner sequences of Q.

Matrix(Q)

Given a sequence Q of m vectors, each of length n over a ring R, return the m× n
matrix over R whose rows are the entries of Q.

Matrix(R, n, Q)

Given a ring R, an integer n ≥ 0 and a sequence Q of length l containing elements
of a ring S, such that n divides l, return the (l/n)× n matrix over R whose entries
are the entries of Q, coerced into R, in row-major order. The argument n may be 0,
in which case Q must have length 0 (and may even be null), in which case the 0× 0
matrix over R is returned. This function is equivalent to MatrixRing(R, n)!Q if
l = n2 and RMatrixSpace(R, #Q div n, n)!Q otherwise.

524 MATRICES AND LINEAR ALGEBRA Part V

Matrix(n, Q)

Given an integer n ≥ 0 and a sequence Q of length l containing elements of a ring
R, such that n divides l, return the (l/n) × n matrix over R whose entries are
the entries of Q, in row-major order. The argument n may be 0, in which case Q
must have length 0 and some universe R, in which case the 0 × 0 matrix over R is
returned. This function is equivalent to MatrixRing(Universe(Q), n)!Q if l = n2

and RMatrixSpace(Universe(Q), #Q div n, n)!Q otherwise.

Matrix(Q)

Given a sequence Q consisting of m sequences, each of length n and having entries
in a ring R, return the m × n matrix over R whose rows are given by the inner
sequences of Q.

Matrix(R, Q)

Given a sequence Q consisting of m sequences, each of length n and having entries
in a ring S, return the m × n matrix over R whose rows are given by the inner
sequences of Q, with the entries coerced into R.

Example H26E2

The first matrix in the previous example may be created thus:

> X := Matrix(2, [1,2, 3,4]);

> X;

[1 2]

[3 4]

> X := Matrix([[1,2], [3,4]]);

> X;

[1 2]

[3 4]

The second matrix in the previous example may be created thus:

> X := Matrix(GF(23), 3, [1,-2,3, 4,100,-6]);

> X;

[1 21 3]

[4 8 17]

> Parent(X);

Full KMatrixSpace of 2 by 3 matrices over GF(23)

> X := Matrix(GF(23), [[1,-2,3], [4,100,-6]]);

> X;

[1 21 3]

[4 8 17]

> X := Matrix([[GF(23)|1,-2,3], [4,100,-6]]);

> X;

[1 21 3]

[4 8 17]

Ch. 26 MATRICES 525

26.2.3 Construction of Structured Matrices

ZeroMatrix(R, m, n)

Given a ring R and integers m,n ≥ 0, return the m× n zero matrix over R.

ScalarMatrix(n, s)

Given an integer n ≥ 0 and an element s of a ring R, return the n×n scalar matrix
over R which has s on the diagonal and zeros elsewhere. The argument n may be
0, in which case the 0× 0 matrix over R is returned. This function is equivalent to
MatrixRing(Parent(s), n)!s.

ScalarMatrix(R, n, s)

Given a ring R, an integer n ≥ 0 and an element s of a ring S, return the n×n scalar
matrix over R which has s, coerced into R, on the diagonal and zeros elsewhere. n
may be 0, in which case in which case the 0 × 0 matrix over R is returned. This
function is equivalent to MatrixRing(R, n)!s.

DiagonalMatrix(R, n, Q)

Given a ring R, an integer n ≥ 0 and a sequence Q of n ring elements, return the
n×n diagonal matrix over R whose diagonal entries correspond to the entries of Q,
coerced into R.

DiagonalMatrix(R, Q)

Given a ring R and a sequence Q of n ring elements, return the n × n diagonal
matrix over R whose diagonal entries correspond to the entries of Q, coerced into
R.

DiagonalMatrix(Q)

Given a sequence Q of n elements from a ring R, return the n× n diagonal matrix
over R whose diagonal entries correspond to the entries of Q.

Matrix(A)

Given a matrix A of any type, return the same matrix but having as parent the
appropriate matrix algebra if A is square, or the appropriate R-matrix space other-
wise. This is useful, for example, if it is desired to convert a matrix group element
or a square R-matrix space element to be an element of a general matrix algebra.

LowerTriangularMatrix(Q)

Given a sequence Q of length l containing elements of a ring R, such that l =(
n+1

2

)
= n(n + 1)/2 for some integer n (so l is a triangular number), return the

n×n lower-triangular matrix F over R such that the entries of Q describe the lower
triangular part of F , in row major order.

526 MATRICES AND LINEAR ALGEBRA Part V

LowerTriangularMatrix(R, Q)

Given a ring R and a sequence Q of length l containing elements of a ring S, such
that l =

(
n+1

2

)
= n(n+ 1)/2 for some integer n (so l is a triangular number), return

the n× n lower-triangular matrix F over R such that the entries of Q, coerced into
R, describe the lower triangular part of F , in row major order.

UpperTriangularMatrix(Q)

Given a sequence Q of length l containing elements of a ring R, such that l =(
n+1

2

)
= n(n+1)/2 for some integer n (so l is a triangular number), return the n×n

upper-triangular matrix F over R such that the entries of Q describe the upper
triangular part of F , in row major order.

UpperTriangularMatrix(R, Q)

Given a ring R and a sequence Q of length l containing elements of a ring S, such
that l =

(
n+1

2

)
= n(n+ 1)/2 for some integer n (so l is a triangular number), return

the n×n upper-triangular matrix F over R such that the entries of Q, coerced into
R, describe the upper triangular part of F , in row major order.

SymmetricMatrix(Q)

Given a sequence Q of length l containing elements of a ring R, such that l =(
n+1

2

)
= n(n+1)/2 for some integer n (so l is a triangular number), return the n×n

symmetric matrix F over R such that the entries of Q describe the lower triangular
part of F , in row major order. This function allows the creation of symmetric
matrices without the need to specify the redundant upper triangular part.

SymmetricMatrix(R, Q)

Given a ring R and a sequence Q of length l containing elements of a ring S, such
that l =

(
n+1

2

)
= n(n+ 1)/2 for some integer n (so l is a triangular number), return

the n × n symmetric matrix F over R such that the entries of Q, coerced into R,
describe the lower triangular part of F , in row major order. This function allows
the creation of symmetric matrices without the need to specify the redundant upper
triangular part.

AntisymmetricMatrix(Q)

Given a sequence Q of length l containing elements of a ring R, such that l =(
n
2

)
= n(n− 1)/2 for some integer n (so l is a triangular number), return the n× n

antisymmetric matrix F over R such that the entries of Q describe the proper lower
triangular part of F , in row major order. The diagonal of F is zero and the proper
upper triangular part of F is the negation of the proper lower triangular part of F .

Ch. 26 MATRICES 527

AntisymmetricMatrix(R, Q)

Given a ring R and a sequence Q of length l containing elements of a ring S, such
that l =

(
n
2

)
= n(n − 1)/2 for some integer n (so l is a triangular number), return

the n × n antisymmetric matrix F over R such that the entries of Q, coerced into
R, describe the proper lower triangular part of F , in row major order.

PermutationMatrix(R, Q)

Given a ring R and a sequence Q of length n, such that Q is a permutation of
[1, 2, . . . , n], return the n by n permutation matrix over R corresponding Q.

PermutationMatrix(R, x)

Given a ring R and a permutation x of degree n, return the n by n permutation
matrix over R corresponding x.

Example H26E3

This example demonstrates ways of creating special matrices.
(a) Defining a 3× 3 scalar matrix over Z:

> S := ScalarMatrix(3, -4);

> S;

[-4 0 0]

[0 -4 0]

[0 0 -4]

> Parent(S);

Full Matrix Algebra of degree 3 over Integer Ring

(b) Defining a 3× 3 diagonal matrix over F23:

> D := DiagonalMatrix(GF(23), [1, 2, -3]);

> D;

[1 0 0]

[0 2 0]

[0 0 20]

> Parent(D);

Full Matrix Algebra of degree 3 over GF(23)

(c) Defining a 3× 3 symmetric matrix over Q:

> S := SymmetricMatrix([1, 1/2,3, 1,3,4]);

> S;

[1 1/2 1]

[1/2 3 3]

[1 3 4]

> Parent(S);

Full Matrix Algebra of degree 3 over Rational Field

(d) Defining n× n lower- and upper-triangular matrices for various n:

> low := func<n | LowerTriangularMatrix([i: i in [1 .. Binomial(n + 1, 2)]])>;

528 MATRICES AND LINEAR ALGEBRA Part V

> up := func<n | UpperTriangularMatrix([i: i in [1 .. Binomial(n + 1, 2)]])>;

> sym := func<n | SymmetricMatrix([i: i in [1 .. Binomial(n + 1, 2)]])>;

> low(3);

[1 0 0]

[2 3 0]

[4 5 6]

> up(3);

[1 2 3]

[0 4 5]

[0 0 6]

> sym(3);

[1 2 4]

[2 3 5]

[4 5 6]

> up(6);

[1 2 3 4 5 6]

[0 7 8 9 10 11]

[0 0 12 13 14 15]

[0 0 0 16 17 18]

[0 0 0 0 19 20]

[0 0 0 0 0 21]

26.2.4 Construction of Random Matrices

RandomMatrix(R, m, n)

Given a finite ring R and positive integers m and n, construct a random m × n
matrix over R.

RandomUnimodularMatrix(M, n)

Given positive integers M and n, construct a random integral n× n matrix having
determinant 1 or −1. Most entries will lie in the range [−M,M].

RandomSLnZ(n, k, l)

A random element of SLn(Z), obtained by multiplying l random matrices of the
form I + E, where E has exactly one nonzero entry, which is off the diagonal and
has absolute value at most k.

RandomGLnZ(n, k, l)

A random element of GLn(Z), obtained in a similar way to RandomSLnZ.

RandomSymplecticMatrix(g, m)

Given positive integers n and m, construct a (somewhat) random 2n×2n symplectic
matrix over the integers. The entries will have the same order of magnitude as m.

Ch. 26 MATRICES 529

26.2.5 Creating Vectors

Vector(n, Q)

Given an integer n and a sequence Q of length n containing elements of a ring R,
return the vector of length n whose entries are the entries of Q. The integer n may
be 0, in which case Q must have length 0 and some universe R. This function is
equivalent to RSpace(Universe(Q), n)!Q.

Vector(Q)

Given a sequence Q of length l containing elements of a ring R, return the vector
of length l whose entries are the entries of Q. The argument Q may have length
0 if it has a universe R (i.e., it may not be null). This function is equivalent to
RSpace(Universe(Q), #Q)!Q.

Vector(R, n, Q)

Given a ring R, an integer n, and a sequence Q of length n containing elements of
a ring S, return the vector of length n whose entries are the entries of Q, coerced
into R. The integer n may be 0, in which case Q must have length 0 (and may even
be null). This function is equivalent to RSpace(R, n)!Q.

Vector(R, Q)

Given a ring R and a sequence Q of length l containing elements of a ring S, return
the vector of length l whose entries are the entries of Q, coerced into R. The
argument Q may have length 0 and may be null. This function is equivalent to
RSpace(R, #Q)!Q.

26.3 Elementary Properties

The following functions yield elementary properties of matrices and may be applied to
matrices of any type, including vectors.

NumberOfRows(A)

Nrows(A)

Given an m× n matrix A, return m, the number of rows of A.

NumberOfColumns(A)

Ncols(A)

Given an m× n matrix A, return n, the number of columns of A.

NumberOfNonZeroEntries(A)

NNZEntries(A)

Given a matrix A, return the number of non-zero entries in A.

530 MATRICES AND LINEAR ALGEBRA Part V

Density(A)

Given a matrix A, return the density of A as a real number, which is the number
of non-zero entries in A divided by the product of the number of rows of A and the
number of columns of A (or zero if A has zero rows or columns).

BaseRing(A)

CoefficientRing(A)

Given a matrix A with entries lying in a ring R, return R.

ElementToSequence(A)

Eltseq(A)

Given a matrix A over the ring R having m rows and n columns, return the entries
of A, in row-major order, as a sequence of mn elements of R.

RowSequence(A)

Returns the entries of A as a sequence of rows where a row is represented as a
sequence of entries of A.

26.4 Accessing or Modifying Entries

26.4.1 Indexing
The following functions and operators enable one to access individual entries or rows of
matrices or vectors.

A[i]

Given a matrix A over the ring R having m rows and n columns, and an integer i
such that 1 ≤ i ≤ m, return the i-th row of A, as a vector of length n.

A[i, j]

Given a matrix A over the ring R having m rows and n columns, integers i and j
such that 1 ≤ i ≤ m and 1 ≤ j ≤ n, return the (i, j)-th entry of A, as an element of
the ring R.

A[Q]

A[i .. j]

Given a matrix A over the ring R having m rows and n columns, and a sequence
Q of integers in the range [1..m], return the sequence consisting of the rows of A
specified by Q. This is equivalent to [A[i]: i in Q]]. If Q is a range, then the
second form A[i .. j] may be used to specify the range directly.

Ch. 26 MATRICES 531

A[i] := v

Given a matrix A over the ring R having m rows and n columns, an integer i such
that 1 ≤ i ≤ m, and a vector v over R of length n, modify the i-th row of A to be
v. The integer 0 may also be given for v, indicating the zero vector.

A[i, j] := x

Given a matrix A over the ring R having m rows and n columns, integers i and j
such that 1 ≤ i ≤ m and 1 ≤ j ≤ n, and a ring element x coercible into R, modify
the (i, j)-th entry of A to be x.

Example H26E4

This example demonstrates simple ways of accessing the entries of matrices.

> X := Matrix(4, [1,2,3,4, 5,4,3,2, 1,2,3,4]);

> X;

[1 2 3 4]

[5 4 3 2]

[1 2 3 4]

> X[1];

(1 2 3 4)

> X[1, 2];

2

> X[1, 2] := 23;

> X;

[1 23 3 4]

[5 4 3 2]

[1 2 3 4]

> X[3] := Vector([9,8,7,6]);

> X[2] := 0;

> X;

[1 23 3 4]

[0 0 0 0]

[9 8 7 6]

26.4.2 Extracting and Inserting Blocks
The following functions enable the extraction of certain rows, columns or general subma-
trices, or the replacement of a block by another matrix.

Submatrix(A, i, j, p, q)

ExtractBlock(A, i, j, p, q)

Given an m×n matrix A and integers i, j, p and q such that 1 ≤ i ≤ i+ p ≤ m+ 1
and 1 ≤ j ≤ j + q ≤ n+ 1, return the p× q submatrix of A rooted at (i, j). Either
or both of p and q may be zero, while i may be m+1 if p is zero and j may be n+1
if q is zero.

532 MATRICES AND LINEAR ALGEBRA Part V

SubmatrixRange(A, i, j, r, s)

ExtractBlockRange(A, i, j, r, s)

Given an m× n matrix A and integers i, j, r and s such that 1 ≤ i, i− 1 ≤ r ≤ m,
1 ≤ j, and j − 1 ≤ s ≤ n, return the r − i + 1 × s − j + 1 submatrix of A rooted
at the (i, j)-th entry and extending to the (r, s)-th entry, inclusive. r may equal
i− 1 or s may equal j − 1, in which case a matrix with zero rows or zero columns,
respectively, will be returned.

Submatrix(A, I, J)

Given an m × n matrix A and integer sequences I and J , return the submatrix of
A given by the row indices in I and the column indices in J .

InsertBlock(A, B, i, j)

InsertBlock(∼A, B, i, j)

Given an m×n matrix A over a ring R, a p× q matrix B over R, and integers i and
j such that 1 ≤ i ≤ i + p ≤ m + 1 and 1 ≤ j ≤ j + q ≤ n+ 1, insert B at position
(i, j) in A. In the functional version (A is a value argument), this function returns
the new matrix and leaves A untouched, while in the procedural version (∼ A is a
reference argument), A is modified in place so that the p× q submatrix of A rooted
at (i, j) is now equal to B.

RowSubmatrix(A, i, k)

Given an m × n matrix A and integers i and k such that 1 ≤ i ≤ i + k ≤ m + 1,
return the k × n submatrix of X consisting of rows [i . . . i + k − 1] inclusive. The
integer k may be zero and i may also be m+1 if k is zero, but the result will always
have n columns.

RowSubmatrix(A, i)

Given an m × n matrix A and an integer i such that 0 ≤ i ≤ m, return the i × n
submatrix of X consisting of the first i rows. The integer i may be 0, but the result
will always have n columns.

RowSubmatrixRange(A, i, j)

Given an m× n matrix A and integers i and j such that 1 ≤ i and i− 1 ≤ j ≤ m,
return the j − i + 1 × n submatrix of X consisting of rows [i . . . j] inclusive. The
integer j may equal i− 1, in which case a matrix with zero rows and n columns will
be returned.

ColumnSubmatrix(A, i, k)

Given an m × n matrix A and integers i and k such that 1 ≤ i ≤ i + k ≤ n + 1,
return the m×k submatrix of X consisting of columns [i . . . i+k−1] inclusive. The
integer k may be zero and i may also be n+1 if k is zero, but the result will always
have m rows.

Ch. 26 MATRICES 533

ColumnSubmatrix(A, i)

Given an m × n matrix A and an integer i such that 0 ≤ i ≤ n, return the m × i
submatrix of X consisting of the first i columns. The integer i may be 0, but the
result will always have m rows.

ColumnSubmatrixRange(A, i, j)

Given an m × n matrix A and integers i and j such that 1 ≤ i and i − 1 ≤ j ≤ n,
return the m× j− i+1 submatrix of X consisting of columns [i . . . j] inclusive. The
integer j may equal i− 1, in which case a matrix with zero columns and n rows will
be returned.

Example H26E5

The use of the submatrix operations is illustrated by applying them to a 6 × 6 matrix over the
ring of integers Z.

> A := Matrix(6,

> [9, 1, 7, -3, 2, -1,

> 3, -4, -5, 9, 2, 7,

> 7, 1, 0, 1, 8, 22,

> -3, 3, 3, 8, 8, 37,

> -9, 0, 7, -1, 2, 3,

> 7, 2, -2, 4, 3, 47]);

> A;

[9 1 7 -3 2 -1]

[3 -4 -5 9 2 7]

[7 1 0 1 8 22]

[-3 3 3 8 8 37]

[-9 0 7 -1 2 3]

[7 2 -2 4 3 47]

> Submatrix(A, 2,2, 3,3);

[-4 -5 9]

[1 0 1]

[3 3 8]

> SubmatrixRange(A, 2,2, 3,3);

[-4 -5]

[1 0]

> S := $1;

> InsertBlock(~A, S, 5,5);

> A;

[9 1 7 -3 2 -1]

[3 -4 -5 9 2 7]

[7 1 0 1 8 22]

[-3 3 3 8 8 37]

[-9 0 7 -1 -4 -5]

[7 2 -2 4 1 0]

> RowSubmatrix(A, 5, 2);

534 MATRICES AND LINEAR ALGEBRA Part V

[-9 0 7 -1 -4 -5]

[7 2 -2 4 1 0]

> RowSubmatrixRange(A, 2, 3);

[3 -4 -5 9 2 7]

[7 1 0 1 8 22]

> RowSubmatrix(A, 2, 0);

Matrix with 0 rows and 6 columns

26.4.3 Row and Column Operations
The following functions and procedures provide elementary row or column operations on
matrices. For each operation, there is a corresponding function which creates a new matrix
for the result (leaving the input matrix unchanged), and a corresponding procedure which
modifies the input matrix in place.

SwapRows(A, i, j)

SwapRows(∼A, i, j)

Given an m× n matrix A and integers i and j such that 1 ≤ i ≤ m and 1 ≤ j ≤ m,
swap the i-th and j-th rows of A.

SwapColumns(A, i, j)

SwapColumns(∼A, i, j)

Given an m× n matrix A and integers i and j such that 1 ≤ i ≤ n and 1 ≤ j ≤ n,
swap the i-th and j-th columns of A.

ReverseRows(A)

ReverseRows(∼A)
Given a matrix A, reverse all the rows of A.

ReverseColumns(A)

ReverseColumns(∼A)
Given a matrix A, reverse all the columns of A.

AddRow(A, c, i, j)

AddRow(∼A, c, i, j)

Given an m × n matrix A over a ring R, a ring element c coercible into R, and
integers i and j such that 1 ≤ i ≤ m and 1 ≤ j ≤ m, add c times row i of A to row
j of A.

Ch. 26 MATRICES 535

AddColumn(A, c, i, j)

AddColumn(∼A, c, i, j)

Given an m × n matrix A over a ring R, a ring element c coercible into R, and
integers i and j such that 1 ≤ i ≤ n and 1 ≤ j ≤ n, add c times column i of A to
column j.

MultiplyRow(A, c, i)

MultiplyRow(∼A, c, i)

Given an m × n matrix A over a ring R, a ring element c coercible into R, and an
integer i such that 1 ≤ i ≤ m, multiply row i of A by c (on the left).

MultiplyColumn(A, c, i)

MultiplyColumn(∼A, c, i)

Given an m × n matrix A over a ring R, a ring element c coercible into R, and an
integer i such that 1 ≤ i ≤ n, multiply column i of A by c (on the left).

RemoveRow(A, i)

RemoveRow(∼A, i)

Given an m× n matrix A and an integer i such that 1 ≤ i ≤ m, remove row i from
A (leaving an (m− 1)× n matrix).

RemoveColumn(A, j)

RemoveColumn(∼A, j)

Given an m × n matrix A and an integer j such that 1 ≤ j ≤ n, remove column j
from A (leaving an m× (n− 1) matrix).

RemoveRowColumn(A, i, j)

RemoveRowColumn(∼A, i, j)

Given an m× n matrix A and integers i and j such that 1 ≤ i ≤ m and 1 ≤ j ≤ n,
remove row i and column j from A (leaving an (m− 1)× (n− 1) matrix).

RemoveZeroRows(A)

RemoveZeroRows(∼A)
Given a matrix A, remove all the zero rows of A.

536 MATRICES AND LINEAR ALGEBRA Part V

Example H26E6

The use of row and column operations is illustrated by applying them to a 5× 6 matrix over the
ring of integers Z.

> A := Matrix(5, 6,

> [3, 1, 0, -4, 2, -12,

> 2, -4, -5, 5, 23, 6,

> 8, 0, 0, 1, 5, 12,

> -2, -6, 3, 8, 9, 17,

> 11, 12, -6, 4, 2, 27]);

> A;

[3 1 0 -4 2 -12]

[2 -4 -5 5 23 6]

[8 0 0 1 5 12]

[-2 -6 3 8 9 17]

[11 12 -6 4 2 27]

> SwapColumns(~A, 1, 2);

> A;

[1 3 0 -4 2 -12]

[-4 2 -5 5 23 6]

[0 8 0 1 5 12]

[-6 -2 3 8 9 17]

[12 11 -6 4 2 27]

> AddRow(~A, 4, 1, 2);

> AddRow(~A, 6, 1, 4);

> AddRow(~A, -12, 1, 5);

> A;

[1 3 0 -4 2 -12]

[0 14 -5 -11 31 -42]

[0 8 0 1 5 12]

[0 16 3 -16 21 -55]

[0 -25 -6 52 -22 171]

> RemoveRow(~A, 1);

> A;

[2 -4 -5 5 23 6]

[8 0 0 1 5 12]

[-2 -6 3 8 9 17]

[11 12 -6 4 2 27]

> RemoveRowColumn(~A, 4, 6);

> A;

[2 -4 -5 5 23]

[8 0 0 1 5]

[-2 -6 3 8 9]

Ch. 26 MATRICES 537

26.5 Building Block Matrices

Block matrices can be constructed either by listing the blocks, or by joining together
smaller matrices horizontally, vertically or diagonally.

BlockMatrix(m, n, blocks)

The matrix constructed from the given block matrices, which should all have the
same dimensions, and should be given as a sequence of m · n block matrices (given
in row major order, in other words listed across rows).

BlockMatrix(m, n, rows)

BlockMatrix(rows)

The matrix constructed from the given block matrices, which should all have the
same dimensions, and should be given as a sequence of m rows, each containing n
block matrices.

HorizontalJoin(X, Y)

Given a matrix X with r rows and c columns, and a matrix Y with r rows and d
columns, both over the same coefficient ring R, return the matrix over R with r
rows and (c + d) columns obtained by joining X and Y horizontally (placing Y to
the right of X).

HorizontalJoin(Q)

HorizontalJoin(T)

Given a sequence Q or tuple T of matrices, each having the same number of rows
and being over the same coefficient ring R, return the matrix over R obtained by
joining the elements of Q or T horizontally in order.

VerticalJoin(X, Y)

Given a matrix X with r rows and c columns, and a matrix Y with s rows and c
columns, both over the same coefficient ring R, return the matrix with (r+ s) rows
and c columns over R obtained by joining X and Y vertically (placing Y underneath
X).

VerticalJoin(Q)

VerticalJoin(T)

Given a sequence Q or tuple T of matrices, each having the same number of columns
and being over the same coefficient ring R, return the matrix over R obtained by
joining the elements of Q or T vertically in order.

538 MATRICES AND LINEAR ALGEBRA Part V

DiagonalJoin(X, Y)

Given matrices X with a rows and b columns and Y with c rows and d columns,
both over the same coefficient ring R, return the matrix with (a+c) rows and (b+d)
columns over R obtained by joining X and Y diagonally (placing Y diagonally to
the right of and underneath X, with zero blocks above and below the diagonal).

DiagonalJoin(Q)

DiagonalJoin(T)

Given a sequence Q or tuple T of matrices, each being over the same coefficient ring
R, return the matrix over R obtained by joining the elements of Q or T diagonally
in order.

KroneckerProduct(A, B)

Given an m × n matrix A and a p × q matrix B, both over a ring R, return the
Kronecker product of A and B, which is the mp×nq matrix C over R such that the
((i− 1)p+ r, (j − 1)q+ s)-th entry of C is the (i, j)-th entry of A times the (r, s)-th
entry of B, for 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ r ≤ p and 1 ≤ s ≤ q.

26.6 Changing Ring

ChangeRing(A, R)

Matrix(R, A)

Given a matrix A over a ring S having m rows and n columns, and another ring
R, return the m × n matrix over R obtained by coercing the entries of A from S
into R. The argument order to ChangeRing(A, R) here is consistent with other
forms of ChangeRing, while the Matrix(R, A) form of this function is provided to
be consistent with the matrix creation functions above, for which the destination
ring is the first argument, if supplied.

ChangeRing(A, R, f)

ChangeRing(A, f)

Given a matrix A over a ring S having m rows and n columns, another ring R, and
a map f : S → R, return the m× n matrix over R obtained by applying f to each
of the entries of A. R may be omitted, in which case it is taken to be the codomain
of f .

Ch. 26 MATRICES 539

26.7 Elementary Arithmetic

A + B

Given m× n matrices A and B over a ring R, return A+B.

A - B

Given m× n matrices A and B over a ring R, return A−B.

A * B

Given an m× n matrix A over a ring R and an n× p matrix B over R, return the
m×p matrix A ·B over R. This function attempts to preserve the maximal amount
of information in the choice of parent for the product. For example, if A and B are
both square and have the same matrix algebra M as parent, then the product will
also have M as parent. Similarly, if the parents of A and B are R-matrix spaces such
that the codomain of B equals the domain A, then the product will have domain
equal to that of A and codomain equal to that of B.

x * A

A * x

Given an m×n matrix A over a ring R and a ring element x coercible into R, return
the scalar product x ·A.

-A

Given a matrix A, return −A.

A ^ -1

Given a invertible square matrix A over a ring R, return the inverse B of A so that
A ·B = B ·A = 1. The coefficient ring R must be either a field, a Euclidean domain,
or a ring with an exact division algorithm and having characteristic equal to zero
or greater than m (this includes most commutative rings).

A ^ n

Given a square matrix A over a ring R and an integer n, return the matrix power
An. A0 is defined to be the identity matrix for any square matrix A (even if A is
zero). If n is negative, A must be invertible (see the previous function), and the
result is (A−1)−n.

Transpose(A)

Given an m× n matrix A over a ring R, return the transpose of A, which is simply
the n×m matrix over R whose (i, j)-th entry is the (j, i)-th entry of A.

AddScaledMatrix(A, s, B)

Given a matrix A over a ring R, a scalar s coercible into R, and a matrix B over R
with the same shape as A, return A+ s ·B. This is generally quicker than the call
A + s*B.

540 MATRICES AND LINEAR ALGEBRA Part V

AddScaledMatrix(∼A, s, B)

Given a matrix A over a ring R, a scalar s coercible into R, and a matrix B over
R with the same shape as A, set A to A+ s ·B. This is generally quicker than the
statement A := A + s*B;.

26.8 Nullspaces and Solutions of Systems
The following functions compute nullspaces of matrices (solving equations of the form
V ·A = 0), or solve systems of the form V ·A = W , for given A and W .

Magma possesses a very rich suite of internal algorithms for computing nullspaces of
matrices efficiently, including a fast p-adic algorithm for matrices over Z and Q, and also
algorithms which take advantage of sparsity if it is present.

Nullspace(A)

Kernel(A)

Given an m× n matrix A over a ring R, return the nullspace of A (or the kernel of
A, considered as a linear transformation or map), which is the R-space consisting
of all vectors v of length m such that v · A = 0. If the parent of A is an R-matrix
space, then the result will be the appropriate submodule of the domain of A. The
function Kernel(A) also returns the inclusion map from the kernel into the domain
of A, to be consistent with other forms of the Kernel function.

NullspaceMatrix(A)

KernelMatrix(A)

Given an m×n matrix A over a ring R, return a basis matrix of the nullspace of A.
This is a matrix N having m columns and the maximal number of independent rows
subject to the condition that N · A = 0. This function has the advantage that the
nullspace is not returned as a R-space, so echelonization of the resulting nullspace
may be avoided.

NullspaceOfTranspose(A)

This function is equivalent to Nullspace(Transpose(A)), but may be more effi-
cient in space for large matrices, since the transpose may not have to be explicitly
constructed to compute the nullspace.

IsConsistent(A, W)

Given an m × n matrix A over a ring R, and a vector W of length n over R or a
r × n matrix W over R, return true iff and only if the system of linear equations
V · A = W is consistent. If the system is consistent, then the function will also
return:
(a)A particular solution V so that V ·A = W ;
(b)The nullspace N of A so that adding any elements of N to any rows of V will

yield other solutions to the system.

Ch. 26 MATRICES 541

IsConsistent(A, Q)

Given an m × n matrix A over a ring R, and a sequence Q of vectors of length n
over R, return true if and only if the system of linear equations V [i] ∗A = Q[i] for
all i is consistent. If the system is consistent, then the function will also return:

(a)A particular solution sequence V ;

(b)The nullspace N of A so that (V [i] + u) ∗A = Q[i] for u ∈ N for all i.

Solution(A, W)

Given an m × n matrix A over a ring R, and a vector W of length n over R or a
r× n matrix W over R, solve the system of linear equations V ·A = W and return:

(a)A particular solution V so that V ·A = W ;

(b)The nullspace N of A so that adding any elements of N to any rows of V will
yield other solutions to the system.
If there is no solution, an error results.

Solution(A, Q)

Given an m × n matrix A over a ring R, and a sequence Q of vectors of length n
over R, solve the system of linear equations V [i] ∗A = Q[i] for each i and return:

(a)A particular solution sequence V ;

(b)The nullspace N of A so that (V [i] + u) ∗A = Q[i] for u ∈ N for all i.
If there is no solution, an error results.

Example H26E7

We compute the nullspace of a 301× 300 matrix over Z with random entries in the range [0..10].
The nullity is 1 and the entries of the non-zero null vector are integers, each having about 455
decimal digits.

> m := 301; n := 300;

> X := Matrix(n, [Random(0, 10): i in [1 .. m*n]]);

> time N := NullspaceMatrix(X);

Time: 9.519

> Nrows(N), Ncols(N);

1 301

> time IsZero(N*X);

true

Time: 0.429

> {#Sprint(N[1,i]): i in [1..301]};

{ 452, 455, 456, 457, 458 }

542 MATRICES AND LINEAR ALGEBRA Part V

Example H26E8

We show how one can enumerate all solutions to the system V ·X = W for a given matrix X and
vector W over a finite field. The Solution function gives a particular solution for V , and then
adding this to every element in the nullspace N of X, we obtain all solutions.

> K := GF(3);

> X := Matrix(K, 4, 3, [1,2,1, 2,2,2, 1,1,1, 1,0,1]);

> X;

[1 2 1]

[2 2 2]

[1 1 1]

[1 0 1]

> W := Vector(K, [0,1,0]);

> V, N := Solution(X, W);

> V;

(1 1 0 0)

> N;

Vector space of degree 4, dimension 2 over GF(3)

Echelonized basis:

(1 0 1 1)

(0 1 1 0)

> [V + U: U in N];

[

(1 1 0 0),

(2 1 1 1),

(0 1 2 2),

(0 2 0 2),

(1 2 1 0),

(2 2 2 1),

(2 0 0 1),

(0 0 1 2),

(1 0 2 0)

]

> [(V + U)*X eq W: U in N];

[true, true, true, true, true, true, true, true, true]

Ch. 26 MATRICES 543

26.9 Predicates

The functions in this section test various properties of matrices. See also the Lattices
chapter for a description of the function IsPositiveDefinite and related functions.

IsZero(A)

Given an m×n matrix A over the ring R, return true iff A is the m×n zero matrix.

IsOne(A)

Given a square m ×m matrix A over the ring R, return true iff A is the m ×m
identity matrix.

IsMinusOne(A)

Given a square m×m matrix A over the ring R, return true iff A is the negation
of the m×m identity matrix.

IsScalar(A)

Given a square m×m matrix A over the ring R, return true iff A is scalar, i.e., iff
A is the product of some element of R and the m×m identity matrix.

IsDiagonal(A)

Given a square matrix A over the ring R, return true iff A is diagonal, i.e., iff the
only non-zero entries of A are on the diagonal.

IsSymmetric(A)

Given a square matrix A over the ring R, return true iff A is symmetric, i.e., iff A
equals its transpose.

IsUpperTriangular(A)

Given a matrix A over the ring R, return true iff A is upper triangular, i.e., iff the
only non-zero entries of A are on or above the diagonal.

IsLowerTriangular(A)

Given a matrix A over the ring R, return true iff A is lower triangular, i.e., iff the
only non-zero entries of A are on or below the diagonal.

IsUnit(A)

Given a square matrix A over the ring R, return true iff A is a unit, i.e., iff A has an
inverse. The coefficient ring R may be any commutative ring (since the computation
depends on testing if the determinant is a unit – a calculation which is supported
in all commutative rings).

544 MATRICES AND LINEAR ALGEBRA Part V

IsSingular(A)

Given a square m×m matrix A over the ring R, return true iff A is singular, i.e.,
iff the determinant of A is zero (or, equivalently, iff the rank of A is less than m).
Note that (not IsSingular(A)) is not equivalent to IsUnit(A) whenever R is not
a field: if the determinant of A is non-zero but not a unit, then A is non-singular
but not invertible. The coefficient ring R may be any commutative ring (since
the computation involves only computing the determinant and testing whether it is
zero).

IsSymplecticMatrix(A)

Given an m×m matrix A over the integers, return true if and only if A is an integer

symplectic matrix, that is, AJ tA = J , where J =
(

0 1g

−1g 0

)
.

26.10 Determinant and Other Properties

Determinant(A: parameters)

MonteCarloLevel RngIntElt Default : 0
Proof BoolElt Default : true

pAdic BoolElt Default : true

Divisor RngIntElt Default : 0
Given a square matrix A over the ring R, return the determinant of A as an element
of R. R may be any commutative ring. The determinant of the 0 × 0 matrix over
R is defined to be R!1.

If the coefficient ring is the integer ring Z or the rational field Q then a modular
algorithm based on that of Abbott et al. [ABM99] is used, which first computes a
divisor d of the determinant D using a fast p-adic nullspace computation, and then
computes the quotient D/d by computing the determinant D modulo enough small
primes to cover the Hadamard bound divided by d. This always yields a correct
answer.

If the parameter MonteCarloLevel is set to a small positive integer s, then a
probabilistic Monte-Carlo modular technique is used. Rather than using sufficient
primes to cover the Hadamard bound divided by the divisor d, this version of the
algorithm terminates when the constructed residue remains constant for s steps.
The probability of this being wrong is non-zero but extremely small, even if s is
only 1 or 2. If the level is set to 0, then the normal deterministic algorithm is used.
Setting the parameter Proof to false is equivalent to setting MonteCarloLevel to
2.

If the coefficient ring is Z and the parameter Divisor is set to an integer d, then
d must be a known exact divisor of the determinant (the sign does not matter), and
the algorithm may be sped up because of this knowledge.

Ch. 26 MATRICES 545

Trace(A)

Given a square matrix A over the ring R, return the trace of A as an element of R,
which is simply the sum of the diagonal elements of A.

TraceOfProduct(A, B)

Given square matrices A and B over the ring R, with the same size, return the trace
of A ·B as an element of R. This is in general much faster than the call Trace(A*B).

Rank(A)

Given an m×n matrix A over a ring R, return the rank of A. This is defined to be
the largest r such that there exists a non-zero r× r subdeterminant of A, so r ≤ m
and r ≤ n. The rank may have to be obtained by computing the Smith form or
echelon form of A, and this computation may be quite expensive over some rings.

Minor(M, i, j)

The determinant of the submatrix of M (which must be square) formed by removing
the i-th row and j-th column.

Minor(M, I, J)

The determinant of the submatrix of M given by the row indices in I and the column
indices in J .

Minors(M, r)

Returns a sequence of all the r by r minors of the matrix M .

Cofactor(M, i, j)

The appropriate cofactor of M , equal to (−1)i+j times the corresponding minor.

Cofactors(M)

Returns a sequence of all the cofactors of the matrix M .

Cofactors(M, r)

Returns a sequence of all the r by r cofactors of the matrix M .

Pfaffian(M)

Pfaffian(M, I, J)

Pfaffians(M, r)

Let M be an anti-symmetric square matrix. Then its determinant is always a
square and a particular square-root of this, which can be described by a universal
polynomial in its entries, is called the Pfaffian of M . The first function returns this.
The second function returns the Pfaffian of the submatrix of M described by the
indices in I and J . The third function returns the sequence of Pfaffians of the

(
n
r

)
principal r by r submatrices of M (n = the number of rows of M).

These are primarily convenience functions and are computed naively by Pfaffian
row-expansion.

546 MATRICES AND LINEAR ALGEBRA Part V

26.11 Minimal and Characteristic Polynomials and Eigenvalues

The functions in this section deal with minimal and characteristic polynomials.

MinimalPolynomial(A: parameters)

Proof BoolElt Default : true

Given a square matrix A over a ring R, return the minimal polynomial of A. This is
defined to be the unique monic univariate polynomial f(x) of minimal degree such
that f(A) = 0, and f(x) always divides the characteristic polynomial of A. The
coefficient ring R is currently restricted to being a field or the integer ring Z.

Setting the parameter Proof to false suppresses proof of correctness.

CharacteristicPolynomial(A: parameters)

Al MonStg Default : “Modular”

Proof BoolElt Default : true

Given a square matrix A over a ring R, return the characteristic polynomial of A.
This is defined to be the monic univariate polynomial Det(x−A) ∈ R[x] where R[x]
is the univariate polynomial ring over R. R may be any commutative ring.

The parameter Al allows the user to specify which algorithm that is to be em-
ployed. The algorithm "Modular" (the default) may be used for matrices over Z
and Q—in such a case the parameter Proof can also be used to suppress proof of
correctness.

The algorithm "Hessenberg", available for matrices over fields, works by first
reducing the matrix to Hessenberg form. The algorithm "Interpolation", available
for matrices over Z and Q, works by evaluating the characteristic matrix of a at
various points and then interpolating. The algorithm "Trace", available for matrices
over fields, works by calculating the traces of powers of a.

Since V2.8, none of these algorithms are now recommended for matrices over Z
or Q, as the new p-adic modular algorithm over the integers is extremely fast.

MinimalAndCharacteristicPolynomials(A: parameters)

MCPolynomials(A)

Proof BoolElt Default : true

Given a square matrix A over a ring R, return the minimal and characteristic poly-
nomials of A. For some rings, both polynomials can be computed at the same
time, so in such cases it will be more efficient to use this function than to call
MinimalPolynomial and CharacteristicPolynomials separately.

Setting the parameter Proof to false suppresses proof of correctness.

Ch. 26 MATRICES 547

FactoredMinimalPolynomial(A: parameters)

Proof BoolElt Default : true

Given a square matrix A over a ring R, return the factorization of the minimal
polynomial of A. This is equivalent to Factorization(MinimalPolynomial(A)),
but may be faster than that for some coefficient rings (in particular, Z and Q).
Setting the parameter Proof to false suppresses proof of correctness.

FactoredCharacteristicPolynomial(A: parameters)

Al MonStg Default : “Modular”

Proof BoolElt Default : true

Given a square matrix A over a ring R, return the factorisation of the charac-
teristic polynomial of A. This function returns the same result as the command
Factorisation(CharacteristicPolynomial(A)), but may be faster than that for
some coefficient rings (in particular, Z and Q). The parameters are as for the
function CharacteristicPolynomial above (setting the parameter Proof to false
suppresses proof of correctness).

FactoredMinimalAndCharacteristicPolynomials(A: parameters)

FactoredMCPolynomials(A: parameters)

Al MonStg Default : “Modular”

Proof BoolElt Default : true

Given a square matrix A over a ring R, return the factorizations of the minimal
and characteristic polynomials of A, respectively. For some rings, both polynomials
can be computed and factored at the same time, so in such cases it will be more
efficient to use this function than to call the above functions separately. Setting the
parameter Proof to false suppresses proof of correctness.

Eigenvalues(A)

Given a square matrix A over a ring R, return the eigenvalues of A as a set of
pairs, each of which gives the value of a distinct eigenvalue and its multiplicity.
Factorization of polynomials over the base ring R must be possible.

Eigenspace(A, e)

Given a square matrix A over a ring R, and an element e of R, return the eigenspace
of A corresponding to e, which is Nullspace(A - e). If the ring element e is not a
eigenvalue for the matrix A then the trivial nullspace is returned.

548 MATRICES AND LINEAR ALGEBRA Part V

26.12 Canonical Forms

26.12.1 Canonical Forms over General Rings
The functions defined here apply to matrices defined over fields or Euclidean domains. See
also the section on Reduction in the Lattices chapter for a description of the function LLL
and related basis-reduction functions for matrices.

EchelonForm(A)

Given an m×n matrix A over the ring R, return the (reduced) row echelon form E of
A, and also an invertible m×m transformation matrix T over R such that T ·A = E.
Recall that T is a product of elementary matrices that transforms A into the echelon
form E. If R is a Euclidean domain, the function HermiteForm (described below) is
invoked. Note however, that the the user cannot set the parameters for HermiteForm
when invoking it via EchelonForm.

Adjoint(A)

Given a square m×m matrix A over the ring R, return the adjoint of A as an m×m
matrix. The base ring R must be a ring with exact division whose characteristic is
zero or greater than m (this includes most commutative rings).

26.12.2 Canonical Forms over Fields
The functions described in this section apply to square matrices defined over fields which
support factorization of univariate polynomials. See [Ste97] for a description of the single
algorithm which is the basis of most of these functions.

PrimaryRationalForm(A)

Given a square matrix A over a field K such that factorization of polynomials is
possible over K, return the primary rational form of A. Each block in the form
is the companion matrix of a power of an irreducible polynomial. This function
returns three values:
(a)The primary rational canonical form F of A;
(b)An invertible matrix T such that T ·A · T−1 = F ;
(c) A sequence of pairs corresponding to the blocks of F where each pair consists of

the irreducible polynomial and the multiplicity making up the block. This is the
value returned by PrimaryInvariantFactors(A).

JordanForm(A)

Given a square matrix A over a field K such that factorization of polynomials is
possible over K, return the generalized Jordan form of A. Each block in the form is a
Jordan block (which itself is derived from a power of an irreducible polynomial), and
the generalized Jordan form corresponds to the usual Jordan form if the minimal
polynomial splits over K. This function returns three values:
(a)The Jordan canonical form F of A;

Ch. 26 MATRICES 549

(b)An invertible matrix T such that T ·A · T−1 = F ;
(c) A sequence of pairs corresponding to the blocks of F where each pair consists of

the irreducible polynomial and the multiplicity making up the block. This is the
value returned by PrimaryInvariantFactors(A).

RationalForm(A)

Given a square matrix A over a field K such that factorization of polynomials is pos-
sible over K, return the rational form of A. For each block other than the final block,
the polynomial corresponding to that block divides the polynomial corresponding
to the next block. This function returns three values:
(a)The rational form F of A;
(b)An invertible matrix T such that T ·A · T−1 = F ;
(c) A sequence containing the polynomials corresponding to the successive blocks

(where each polynomial, other than the last, divides the next polynomial). This
is the value returned by InvariantFactors(A).

PrimaryInvariantFactors(A)

Given a square matrix A over a field K such that factorization of polynomials is
possible over K, return the primary invariant factors of A. This is the same as the
third return value of PrimaryRationalForm(A) or JordanForm(A).

InvariantFactors(A)

Given a square matrix A over a field K such that factorization of polynomials is
possible over K, return the invariant factors of A. This is the same as the third
return value of RationalForm(A).

IsSimilar(A, B)

Given square m×m matrices A and B, both over a field K such that factorization of
polynomials is possible over K, return true iff and only if A is similar to B, and if so,
return also an invertible m×m transformation matrix T such that T ·A ·T−1 = B.

HessenbergForm(A)

Given a square m×m matrix A over the ring R, return the Hessenberg form of A
as an m × m matrix. The form has zero entries above the super-diagonal. (This
form is used in one of the characteristic polynomial algorithms.) The base ring R
must be a field.

FrobeniusFormAlternating(A)

Given an non-singular 2n × 2n alternating matrix A over the integers, this func-
tion returns the (alternating) Frobenius form F of A. That is, a block matrix

F =
(

0 D
−D 0

)
, where D is a diagonal matrix with positive diagonal entries, di,

satisfying d1|d2| · · · |dn. The second return value is the change of basis matrix B,
such that BAtB = F.

550 MATRICES AND LINEAR ALGEBRA Part V

Example H26E9

We construct a 5 × 5 matrix over the finite field with 5 elements and then calculate various
canonical forms. We verify the correctness of the polynomial invariant factors corresponding to
the rational form by calculating the Smith form of the characteristic matrix of the original matrix
(see below).

> K := GF(5);

> A := Matrix(K, 5,

> [0, 2, 4, 2, 0,

> 2, 2, 2, 3, 3,

> 3, 4, 4, 1, 3,

> 0, 0, 0, 0, 1,

> 0, 0, 0, 1, 0]);

> A;

[0 2 4 2 0]

[2 2 2 3 3]

[3 4 4 1 3]

[0 0 0 0 1]

[0 0 0 1 0]

> PrimaryInvariantFactors(A);

[

<x + 1, 1>,

<x + 1, 1>,

<x + 4, 1>,

<x + 4, 1>,

<x + 4, 1>

]

> JordanForm(A);

[4 0 0 0 0]

[0 4 0 0 0]

[0 0 1 0 0]

[0 0 0 1 0]

[0 0 0 0 1]

> R, T, F := RationalForm(A);

> R;

[1 0 0 0 0]

[0 0 1 0 0]

[0 1 0 0 0]

[0 0 0 0 1]

[0 0 0 1 0]

> T;

[1 3 0 2 1]

[2 1 2 2 0]

[3 4 3 4 1]

[1 0 0 0 0]

[0 2 4 2 0]

> T*A*T^-1 eq R;

true;

Ch. 26 MATRICES 551

> F;

[

x + 4,

x^2 + 4,

x^2 + 4

]

> P<x> := PolynomialRing(K);

> PM := MatrixAlgebra(P, 5);

> Ax := PM ! x - PM ! A;

> Ax;

[x 3 1 3 0]

[3 x + 3 3 2 2]

[2 1 x + 1 4 2]

[0 0 0 x 4]

[0 0 0 4 x]

> SmithForm(Ax);

[1 0 0 0 0]

[0 1 0 0 0]

[0 0 x + 4 0 0]

[0 0 0 x^2 + 4 0]

[0 0 0 0 x^2 + 4]

> ElementaryDivisors(Ax);

[

1,

1,

x + 4,

x^2 + 4,

x^2 + 4

]

26.12.3 Canonical Forms over Euclidean Domains
The functions defined here apply to matrices defined over Euclidean domains. See also
the section on Reduction in the Lattices chapter for a description of the function LLL and
related functions, which are very useful for integer matrices.

HermiteForm(A)

Al MonStg Default : “Default”
Optimize BoolElt Default : true

Integral BoolElt Default : true

Given an m× n matrix A over the Euclidean ring R, return the Hermite form H of
A, and also an invertible m×m transformation matrix T over R such that T ·A = H.

The basic algorithm used is the classical Kannan-Bachem algorithm [KB79,
CC82], which has classical complexity (but does not suffer from bad coefficient
growth).

552 MATRICES AND LINEAR ALGEBRA Part V

Since V2.13, for matrices over the integers there is also a fast modular algorithm
by Allan Steel. By default, Magma chooses between these two algorithms, usu-
ally favouring the new modular algorithm. But one may set the parameter Al to
"Modular" to force the modular algorithm to be used, and to "Classical" to force
the classical algorithm to be used.

If R is the ring of integers Z and the matrix T is requested (i.e., if an assignment
statement is used with two variables on the left side), then the LLL algorithm will
also be used by default to improve T (using the kernel of A) so that the size of its
entries are very small. If the parameter Optimize is set to false, then this will
not happen (which will be faster but the entries of T will not be as small). If the
parameter Integral is set to true, then the integral (de Weger) LLL method will
be used in the LLL step, instead of the default floating point method.

SmithForm(A)

Given an m×n matrix A over the Euclidean ring R, return the Smith normal form
of A. This function returns three values:
(a)The Smith normal form S of A; and
(b)Unimodular matrices P and Q such that P ·A ·Q = S, i.e., P and Q are matrices

which transform A into Smith normal form.
The algorithm implemented first uses the sparse techniques described in [HHR93]

to reduce the matrix to a dense submatrix, then, if this is non-trivial, it either
repeatedly calls the Hermite normal form algorithm (see above) and transposes until
a diagonal form is obtained, or uses the modular algorithm of F. Lübeck [Lüb02].

Unless one wishes one or both of the transformation matrices, it is preferable to
use the following function ElementaryDivisors since it gives the same information,
but saves memory since the matrix S does not need to be constructed.

ElementaryDivisors(A)

Given an m× n matrix A over the Euclidean ring or field R, return the elementary
divisors of A. These are simply the non-zero diagonal entries of the Smith form of
A, in order. The divisors are returned as a sequence [e1, . . . , er] of r elements of R
(which may include ones), where r is the rank of A and ei|ei+1 for i = 1, . . . , r − 1.
The divisors are normalized, so the result is unique. If R is a field, the result is
always the sequence of r ones, where r is the rank of A.

Note that if m = n = r, then the determinant of A is the product of the ei and
if R is also a domain, then er is the lowest common denominator of the inverse of
A over the field of fractions of R.

Saturation(A)

Given an m × n matrix A over the integer ring Z, having rank r, return an m × n
matrix S over Z whose first r rows form a basis of the saturation w.r.t. Q of the
Q-vector space spanned by the rows of A. The rows of S thus span the same space
over Q as those of A, while the Z-module spanned by the rows of S is the set of all

Ch. 26 MATRICES 553

v such that for some non-zero scalar s, s · v is in the Z-module spanned by the rows
of A.

Example H26E10

We illustrate some of these operations for a 4× 3 matrix over F8.

> K<w> := GF(8);

> A := Matrix(K, 4, 3, [1,w,w^5, 0,w^3,w^4, w,1,w^6, w^3,1,w^4]);

> A;

[1 w w^5]

[0 w^3 w^4]

[w 1 w^6]

[w^3 1 w^4]

> EchelonForm(A);

[1 0 0]

[0 1 0]

[0 0 1]

[0 0 0]

We now illustrate some of these operations for a 4× 5 matrix over Z.

> A := Matrix(4, 5,

> [2,-4,12,7,0,

> 3,-3,5,-1,4,

> 2,-1,-4,-5,-12,

> 0,3,6,-2,0]);

> A;

[2 -4 12 7 0]

[3 -3 5 -1 4]

[2 -1 -4 -5 -12]

[0 3 6 -2 0]

> Rank(A);

4

> HermiteForm(A);

[1 1 1 6 -164]

[0 3 0 16 -348]

[0 0 2 13 -200]

[0 0 0 19 -316]

> SmithForm(A);

[1 0 0 0 0]

[0 1 0 0 0]

[0 0 1 0 0]

[0 0 0 2 0]

> ElementaryDivisors(A);

[1, 1, 1, 2]

554 MATRICES AND LINEAR ALGEBRA Part V

26.13 Orders of Invertible Matrices

The functions defined here apply to invertible square matrices. Magma can efficiently com-
pute the order of an invertible matrix over a finite field, using the Cunningham database
to factorize the numbers of the form pn − 1 which arise. The algorithm employed is that
described in [CLG97a].

Magma also contains efficient algorithms for rigorously proving whether a matrix over
the ring of integers Z, the rational field Q, an algebraic number field, a cyclotomic field or
a quadratic field has finite order or not, and for determining the order if it is finite.

HasFiniteOrder(A)

Given a square invertible matrix A over a ring R, return true iff A has finite order,
i.e., iff there exists a positive integer n such that An = 1. The coefficient ring
R is currently restricted to being either a finite field, the ring of integers Z, the
rational field Q, an algebraic number field, a cyclotomic field or a quadratic field.
For matrices over any of these rings, the function rigorously proves its result (over
other rings, an error results).

Order(A)

Proof BoolElt Default : true

Given a square invertible matrix A over any commutative ring, return the order of
A. If R is a ring for which a finite order proof exists (see HasFiniteOrder above),
then an error results if A has infinite order. Over other rings, if A has infinite
order then the function may loop indefinitely since it may not be able to prove the
infinitude of the order.

FactoredOrder(A)

Proof BoolElt Default : true

Given a square invertible matrix A over a finite field, return the order of A in
factored form. This returns the same value as Factorization(Order(A)), but
since the order computation must compute the factorization of the order anyway, it
involves no more effort to have it return the factorization. The conditions on the
ring are as for Order.

ProjectiveOrder(A)

Proof BoolElt Default : true

Given a square invertible matrix A over a finite field K, return the projective order
n of A and a scalar s ∈ K such that An = sI. The projective order of A is the
smallest n such that An is a scalar matrix (not just the identity matrix), and it
always divides the true order of A. The parameter Proof is as for Order.

Ch. 26 MATRICES 555

FactoredProjectiveOrder(A)

Proof BoolElt Default : true

Given a square invertible matrix A over a finite field K, return the projective order
n of A in factored form and a scalar s ∈ K such that An = sI. The parameter
Proof is as for FactoredOrder.

26.14 Miscellaneous Operations on Matrices

FrobeniusImage(A, e)

Given a matrix A over a finite field K of characteristic p, return the matrix obtained
from A by mapping each entry Ai,j to (Ai,j)pe

.

NumericalEigenvectors(M, e)

Given a square matrix M that is coercible into the complexes, and an approxima-
tion e to an eigenvalue of it, attempt to find eigenvectors. This function is for cases
for which there are no numerical worries.

26.15 Bibliography
[ABM99] John Abbott, Manuel Bronstein, and Thom Mulders. Fast Deterministic

Computation of Determinants of Dense Matrices. In Sam Dooley, editor, Proceedings
ISSAC’99, pages 197–204, New York, 1999. ACM Press.

[CC82] T.W.J. Chou and G.E. Collins. Algorithms for the solution of systems of linear
Diophantine equations. SIAM J. Computing, 11(4):687–708, 1982.

[CLG97] Frank Celler and Charles R. Leedham-Green. Calculating the Order of an
Invertible Matrix. In Larry Finkelstein and William M. Kantor, editors, Groups and
Computation II, volume 28 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 55–60. AMS, 1997.

[HHR93] George Havas, Derek F. Holt, and Sarah Rees. Recognizing badly presented
Z-modules. Linear Algebra and its Applications, 192:137–164, 1993.

[KB79] R. Kannan and A. Bachem. Polynomial algorithms for computing the Smith
and Hermite normal forms of an integer matrix. SIAM J. Computing, 9:499–507, 1979.

[Lüb02] F. Lübeck. On the computation of elementary divisors of integer matrices. J.
Symbolic Comp., 33:57–65, 2002.

[Ste97] Allan Steel. A New Algorithm for the Computation of Canonical Forms of
Matrices over Fields. J. Symbolic Comp., 24(3):409–432, 1997.

27 SPARSE MATRICES
27.1 Introduction 559

27.2 Creation of Sparse Matrices . 559

27.2.1 Construction of Initialized Sparse
Matrices 559

SparseMatrix(R, m, n, Q) 559
SparseMatrix(m, n, Q) 559
SparseMatrix(R, m, n) 560
SparseMatrix(m, n) 560

27.2.2 Construction of Trivial Sparse Matri-
ces 560

SparseMatrix(R) 560
SparseMatrix() 560

27.2.3 Construction of Structured Matrices 562

IdentitySparseMatrix(R, n) 562
ScalarSparseMatrix(n, s) 562
ScalarSparseMatrix(R, n, s) 562
DiagonalSparseMatrix(R, n, Q) 562
DiagonalSparseMatrix(R, Q) 562
DiagonalSparseMatrix(Q) 562

27.2.4 Parents of Sparse Matrices 562

SparseMatrixStructure(R) 562

27.3 Accessing Sparse Matrices . . 563

27.3.1 Elementary Properties 563

BaseRing(A) 563
CoefficientRing(A) 563
NumberOfRows(A) 563
Nrows(A) 563
NumberOfColumns(A) 563
Ncols(A) 563
ElementToSequence(A) 563
Eltseq(A) 563
NumberOfNonZeroEntries(A) 563
NNZEntries(A) 563
Density(A) 563
Support(A, i) 563
Support(A) 563

27.3.2 Weights 564

RowWeight(A, i) 564
RowWeights(A) 564
ColumnWeight(A, j) 564
ColumnWeights(A) 564

27.4 Accessing or Modifying Entries 564

A[i] 564
A[i, j] 564
A[i, j] := x 564
SetEntry(∼A, i, j, x) 565

27.4.1 Extracting and Inserting Blocks . . 566

Submatrix(A, i, j, p, q) 566

ExtractBlock(A, i, j, p, q) 566
SubmatrixRange(A, i, j, r, s) 566
ExtractBlockRange(A, i, j, r, s) 566
Submatrix(A, I, J) 566
InsertBlock(A, B, i, j) 567
InsertBlock(∼A, B, i, j) 567
RowSubmatrix(A, i, k) 567
RowSubmatrix(A, i) 567
RowSubmatrixRange(A, i, j) 567
ColumnSubmatrix(A, i, k) 567
ColumnSubmatrix(A, i) 567
ColumnSubmatrixRange(A, i, j) 567

27.4.2 Row and Column Operations . . . 568

SwapRows(A, i, j) 568
SwapRows(∼A, i, j) 568
SwapColumns(A, i, j) 568
SwapColumns(∼A, i, j) 568
ReverseRows(A) 568
ReverseRows(∼A) 568
ReverseColumns(A) 568
ReverseColumns(∼A) 568
AddRow(A, c, i, j) 568
AddRow(∼A, c, i, j) 568
AddColumn(A, c, i, j) 568
AddColumn(∼A, c, i, j) 568
MultiplyRow(A, c, i) 568
MultiplyRow(∼A, c, i) 568
MultiplyColumn(A, c, i) 569
MultiplyColumn(∼A, c, i) 569
RemoveRow(A, i) 569
RemoveRow(∼A, i) 569
RemoveColumn(A, j) 569
RemoveColumn(∼A, j) 569
RemoveRowColumn(A, i, j) 569
RemoveRowColumn(∼A, i, j) 569
RemoveZeroRows(A) 569
RemoveZeroRows(∼A) 569

27.5 Building Block Matrices . . . 569

HorizontalJoin(A, B) 569
VerticalJoin(A, B) 569
DiagonalJoin(A, B) 570

27.6 Conversion to and from Dense
Matrices 570

Matrix(A) 570
SparseMatrix(A) 570

27.7 Changing Ring 570

ChangeRing(A, R) 570
SparseMatrix(R, A) 570

27.8 Predicates 571

eq 571
IsZero(A) 571

558 MATRICES AND LINEAR ALGEBRA Part V

IsOne(A) 571
IsMinusOne(A) 571
IsScalar(A) 571
IsDiagonal(A) 571
IsSymmetric(A) 571
IsUpperTriangular(A) 571
IsLowerTriangular(A) 571

27.9 Elementary Arithmetic 572

+ 572
- 572
* 572
* 572
* 572
-A 572
^-1 572
^ 572
Transpose(A) 572

27.10 Multiplying Vectors or Matrices
by Sparse Matrices 573

* 573
* 573
MultiplyByTranspose(v, A) 573
MultiplyByTranspose(V, A) 573

27.11 Non-trivial Properties . . . 573

27.11.1 Nullspace and Rowspace 573

Nullspace(A) 573
Kernel(A) 573
NullspaceMatrix(A) 574
KernelMatrix(A) 574
NullspaceOfTranspose(A) 574
Rowspace(A) 574

27.11.2 Rank 574

Rank(A) 574

27.12 Determinant and Other Proper-
ties 574

Determinant(A: -) 574

27.12.1 Elementary Divisors (Smith Form) 575

ElementaryDivisors(A) 575

27.12.2 Verbosity 575

SetVerbose("SparseMatrix", v) 575

27.13 Linear Systems (Structured
Gaussian Elimination) . . . 575

ModularSolution(A, M) 575
ModularSolution(A, L) 575

27.14 Bibliography 582

Chapter 27

SPARSE MATRICES

27.1 Introduction
A separate type is provided for sparse matrices to allow the user to construct such matrices
and apply algorithms which take advantage of sparsity. Sparse matrices are distinct from
normal matrices in Magma, which have a dense representation. This chapter describes
the operations available for creating and working with sparse matrices.

The operations provided for sparse matrices include dynamic construction, simple prop-
erties, and the calculation of a number of non-trivial and important invariants (such as
rank, determinant, or computing a non-zero vector in the nullspace). In particular, this
datatype supports the class of index-calculus algorithms which involve generating a very
large sparse system and then solving the system or finding the elementary divisors of the
corresponding matrix (for example, to compute the abelian group structure). An extended
example presented at the end of the chapter (H27E3) illustrates how an index-calculus
method may be implemented in practice in the Magma language using the sparse matrix
facilities.

The type name for the category of sparse matrices is MtrxSprs. All sparse matrices over
a given ring R lie in the same sparse matrix structure, whose type name is MtrxSprsStr.
The user will, in practice, rarely need to refer explicitly to the parent structure.

27.2 Creation of Sparse Matrices
This section describes the constructs provided for creating sparse matrices.

27.2.1 Construction of Initialized Sparse Matrices

SparseMatrix(R, m, n, Q)

SparseMatrix(m, n, Q)

Given a ring R (optional), integers m,n ≥ 0 and a sequence Q, return the m × n
sparse matrix over R whose non-zero entries are those specified by Q, coerced into
R. If R is not given, it is derived from the entries in Q. Either of m and n may
be 0, in which case Q must have length 0 (and may be null if R is given), and the
m× n zero sparse matrix over R is returned. There are two possibilities for Q:
(a)The sequence Q is a sequence of tuples, each of the form <i, j, x>, where

1 ≤ i ≤ m, 1 ≤ j ≤ n, and x ∈ S for some ring S. Such a tuple specifies that
the (i, j)-th entry of the matrix is x. If R is given, then x is coerced into R;
otherwise the matrix is created over S. If an entry position is not given then its
value is zero, while if an entry position is repeated then the last value overrides
any previous values.

560 MATRICES AND LINEAR ALGEBRA Part V

(b)The sequence Q is a “flat” sequence of integers, giving the entries of the matrix
in compact form. To be precise, Q begins with the number of non-zero entries n
for the first row, then 2 · n integers giving column-entry pairs for the first row,
and this format is immediately followed for the second row and so on. A zero
row is specified by a zero value for n. If R is given, the integer entries are coerced
into R; otherwise the matrix is defined over Z. (Thus this method will not allow
elements of R which cannot be created by coercing integers into R alone; another
way of saying this is that the entries must all lie in the prime ring of R). This
allows a very compact way to create (and store) sparse matrices. The examples
below illustrate this format.

SparseMatrix(R, m, n)

Given a ring R, and integers m,n ≥ 0, create the m× n sparse matrix over R.

SparseMatrix(m, n)

Given integers m,n ≥ 0, create the m× n sparse matrix over the integer ring Z.

27.2.2 Construction of Trivial Sparse Matrices

SparseMatrix(R)

SparseMatrix()

Create the 0× 0 sparse matrix over R. If R is omitted (so there are no arguments),
then R is taken to be the integer ring Z. These functions will usually be called
when the user wishes to create a sparse matrix whose final dimensions are initially
unknown, and for which the SetEntry procedure below will be used to extend the
matrix automatically, as needed.

Example H27E1

This example demonstrates simple ways of creating matrices using the general SparseMatrix(R,
m, n, Q) function. Sparse matrices may be displayed in the sparse representation using the Magma

print-format. Also, the function Matrix (described below) takes a sparse matrix and returns a
normal (dense-representation) matrix, so this function provides a means of printing a small sparse
matrix as a normal matrix.

(a) A sparse 2×2 matrix is defined over Z, using the first (sequence of tuples) method. We specify
that there is a 3 in the (1, 2) position and a −1 in the (2, 3) position. The ring need not be given
since the entries are in Z already.

> A := SparseMatrix(2, 3, [<1,2,3>, <2,3,-1>]);

> A;

Sparse matrix with 2 rows and 3 columns over Integer Ring

> Matrix(A);

[0 3 0]

Ch. 27 SPARSE MATRICES 561

[0 0 -1]

(b) The same matrix is now defined over F23. We could also coerce the 3rd component of each
tuple into F23 and thus omit the first argument.

> A := SparseMatrix(GF(23), 2, 3, [<1,2,3>, <2,3,-1>]);

> A;

Sparse matrix with 2 rows and 3 columns over GF(23)

> Matrix(A);

[0 3 0]

[0 0 22]

(c) A similar sparse matrix is defined over F24 . When A is printed in Magma format, the sequence-
of-tuples form is used (because the entries cannot be printed as integers).

> K<w> := GF(2^4);

> A := SparseMatrix(K, 2, 3, [<1,2,3>, <2,3,w>]);

> A;

Sparse matrix with 2 rows and 3 columns over GF(2^4)

> Matrix(A);

[0 1 0]

[0 0 w]

> A: Magma;

SparseMatrix(GF(2, 4), 2, 3, [

<1, 2, 1>,

<2, 3, w>

])

(d) A sparse 4 × 5 matrix A is defined over Z, using the second (flat integer sequence) method.
Here row 1 has one non-zero entry: -1 at column 3; then row 2 has three non-zero entries: 9 at
column 2, 7 at column 3, and −3 at column 4; row 3 has no non-zero entries (so we give a 0 at this
point); and finally row 4 has one non-zero entry 3 at column 4. Note that when A is printed in
Magma format, this time the compact “flat” sequence of integers form is used, since this is possible.

> A := SparseMatrix(4,5, [1,3,-1, 3,2,9,3,7,4,-3, 0, 1,4,3]);

> A;

Sparse matrix with 4 rows and 5 columns over Integer Ring

> Matrix(A);

[0 0 -1 0 0]

[0 9 7 -3 0]

[0 0 0 0 0]

[0 0 0 3 0]

> A: Magma;

SparseMatrix(4, 5, \[

1, 3,-1,

3, 2,9, 3,7, 4,-3,

0,

1, 4,3

])

562 MATRICES AND LINEAR ALGEBRA Part V

27.2.3 Construction of Structured Matrices

IdentitySparseMatrix(R, n)

Given a ring R, and an integer n ≥ 0, return the n× n identity sparse matrix over
R.

ScalarSparseMatrix(n, s)

Given an integer n ≥ 0 and an element s of a ring R, return the n× n scalar sparse
matrix over R which has s on the diagonal and zeros elsewhere. The argument n
may be 0, in which case the 0× 0 sparse matrix over R is returned.

ScalarSparseMatrix(R, n, s)

Given a ring R, an integer n ≥ 0 and an element s of a ring S, return the n × n
scalar sparse matrix over R which has s, coerced into R, on the diagonal and zeros
elsewhere. n may be 0, in which case in which case the 0× 0 sparse matrix over R
is returned.

DiagonalSparseMatrix(R, n, Q)

Given a ring R, an integer n ≥ 0 and a sequence Q of n ring elements, return the
n×n diagonal sparse matrix over R whose diagonal entries correspond to the entries
of Q, coerced into R.

DiagonalSparseMatrix(R, Q)

Given a ring R and a sequence Q of n ring elements, return the n × n diagonal
sparse matrix over R whose diagonal entries correspond to the entries of Q, coerced
into R.

DiagonalSparseMatrix(Q)

Given a sequence Q of n elements from a ring R, return the n× n diagonal sparse
matrix over R whose diagonal entries correspond to the entries of Q.

27.2.4 Parents of Sparse Matrices

SparseMatrixStructure(R)

Create the structure containing all sparse matrices (of any shape) over ring R. This
structure does not need to be created explicitly by the user (it will be the parent of
any sparse matrix over R), but it may be useful to create it in this way occasionally.

Ch. 27 SPARSE MATRICES 563

27.3 Accessing Sparse Matrices

The following functions access basic properties of sparse matrices.

27.3.1 Elementary Properties

BaseRing(A)

CoefficientRing(A)

Given a sparse matrix A with entries lying in a ring R, return R.

NumberOfRows(A)

Nrows(A)

Given an m× n sparse matrix A, return m, the number of rows of A.

NumberOfColumns(A)

Ncols(A)

Given an m× n sparse matrix A, return n, the number of columns of A.

ElementToSequence(A)

Eltseq(A)

Given a sparse matrix A over the ring R havingm rows and n columns, return the en-
tries of A as a sequence of all tuples of the form <i, j, x> such that the [i, j]-th en-
try of A equals x and x is non-zero. It is always true that SparseMatrix(Nrows(A),
Ncols(A), Eltseq(A)) equals A.

NumberOfNonZeroEntries(A)

NNZEntries(A)

Given a sparse matrix A, return the number of non-zero entries in A.

Density(A)

Given a sparse matrix A, return the density of A as a real number, which is the
number of non-zero entries in A divided by the product of the number of rows of A
and the number of columns of A (or zero if A has zero rows or columns).

Support(A, i)

Given a sparse matrix A having r rows, and an integer i such that 1 ≤ i ≤ r, return
the support of row i of A; i.e., the column numbers of the non-zero entries of row i
of A.

Support(A)

Given a sparse matrix A, return the sequence of all pairs <i, j> such that the
[i, j]-th entry of A is non-zero.

564 MATRICES AND LINEAR ALGEBRA Part V

27.3.2 Weights

RowWeight(A, i)

Given a sparse matrix A with m rows and an integer i such that 1 ≤ i ≤ m, return
the weight (number of non-zero entries) of the i-th row of A.

RowWeights(A)

Given a sparse matrix A with m rows, return the length m sequence of integers
whose i-th entry is the weight of the i-th row of A.

ColumnWeight(A, j)

Given a sparse matrix A with n columns and an integer j such that 1 ≤ j ≤ n,
return the weight (number of non-zero entries) of the j-th column of A.

ColumnWeights(A)

Given a sparse matrix A with n columns, return the length n sequence of integers
whose j-th entry is the weight of the j-th column of A.

27.4 Accessing or Modifying Entries

The following functions and procedures enable the user to access or set individual entries
of sparse matrices.

A[i]

Given a sparse matrix A over a ring R having m rows and n columns, and an integer
i such that 1 ≤ i ≤ m, return the i-th row of A, as a dense vector of length n (lying
in Rn).

A[i, j]

Given a sparse matrix A over a ring R having m rows and n columns, integers i and
j such that 1 ≤ i ≤ m and 1 ≤ j ≤ n, return the (i, j)-th entry of A, as an element
of the ring R.

A[i, j] := x

Given a sparse matrix A over a ring R having m rows and n columns, integers i and
j such that 1 ≤ i ≤ m and 1 ≤ j ≤ n, and a ring element x coercible into R, modify
the (i, j)-th entry of A to be x. Here i and j must be within the ranges given by
the current dimensions of A; see SetEntry below for a procedure to automatically
extend A if necessary.

Ch. 27 SPARSE MATRICES 565

SetEntry(∼A, i, j, x)

(Procedure.) Given a sparse matrix A over a ring R, integers i, j ≥ 1, and a ring
element x coercible into R, modify the (i, j)-th entry of A to be x. The entry
specified by i and j is allowed to be beyond the current dimensions of A; if so, A is
automatically extended to have at least i rows and j columns.

This procedure will be commonly used in situations where the final size of the
matrix is not known as an algorithm proceeds (e.g., in index-calculus methods). One
can create the 0× 0 sparse matrix over Z, say, and then call SetEntry to build up
the matrix dynamically. See the example H27E3 below, which uses this technique.

Note that extending the dimensions of A with a very large i or j will not in itself
consume much memory, but if A then becomes dense or is passed to some algorithm,
then the memory needed may of course be proportional to the dimensions of A.

Example H27E2

This example demonstrates simple ways of accessing the entries of sparse matrices.

> A := SparseMatrix(2, 3, [<1,2,3>, <2,3,-1>]);

> A;

Sparse matrix with 2 rows and 3 columns over Integer Ring

> Matrix(A);

[0 3 0]

[0 0 -1]

> A[1];

(0 3 0)

> A[1, 3]:=5;

> A[1];

(0 3 5)

We next extend A using the procedure SetEntry.

> SetEntry(~A, 1, 5, -7);

> A;

Sparse matrix with 2 rows and 5 columns over Integer Ring

> Matrix(A);

[0 3 5 0 -7]

[0 0 -1 0 0]

A common situation is to start with the empty 0 × 0 matrix over Z and then to extend it
dynamically.

> A := SparseMatrix();

> A;

Sparse matrix with 0 rows and 0 columns over Integer Ring

> SetEntry(~A, 1, 4, -2);

> A;

Sparse matrix with 1 row and 4 columns over Integer Ring

> SetEntry(~A, 2, 3, 8);

> A;

566 MATRICES AND LINEAR ALGEBRA Part V

Sparse matrix with 2 rows and 4 columns over Integer Ring

> Matrix(A);

[0 0 0 -2]

[0 0 8 0]

> SetEntry(~A, 200, 319, 1);

> SetEntry(~A, 200, 3876, 1);

> A;

Sparse matrix with 200 rows and 3876 columns over Integer Ring

> Nrows(A);

200

> Ncols(A);

3876

> NNZEntries(A);

4

> Density(A);

0.000005159958720330237358101135190

> Support(A, 200);

[319, 3876]

27.4.1 Extracting and Inserting Blocks
The following functions enable the extraction of certain rows, columns or general subma-
trices, or the replacement of a block by another sparse matrix.

Submatrix(A, i, j, p, q)

ExtractBlock(A, i, j, p, q)

Given an m×n sparse matrix A and integers i, j, p and q such that 1 ≤ i ≤ i+ p ≤
m+ 1 and 1 ≤ j ≤ j + q ≤ n+ 1, return the p× q submatrix of A rooted at (i, j).
Either or both of p and q may be zero, while i may be m+ 1 if p is zero and j may
be n+ 1 if q is zero.

SubmatrixRange(A, i, j, r, s)

ExtractBlockRange(A, i, j, r, s)

Given an m× n sparse matrix A and integers i, j, r and s such that 1 ≤ i, i− 1 ≤
r ≤ m, 1 ≤ j, and j − 1 ≤ s ≤ n, return the r − i + 1 × s − j + 1 submatrix of A
rooted at the (i, j)-th entry and extending to the (r, s)-th entry, inclusive. r may
equal i − 1 or s may equal j − 1, in which case a sparse matrix with zero rows or
zero columns, respectively, will be returned.

Submatrix(A, I, J)

Given an m×n sparse matrix A and integer sequences I and J , return the submatrix
of A given by the row indices in I and the column indices in J .

Ch. 27 SPARSE MATRICES 567

InsertBlock(A, B, i, j)

InsertBlock(∼A, B, i, j)

Given an m × n sparse matrix A over a ring R, a p × q sparse matrix B over R,
and integers i and j such that 1 ≤ i ≤ i + p ≤ m + 1 and 1 ≤ j ≤ j + q ≤ n + 1,
insert B at position (i, j) in A. In the functional version (A is a value argument),
this function returns the new sparse matrix and leaves A untouched, while in the
procedural version (∼ A is a reference argument), A is modified in place so that the
p× q submatrix of A rooted at (i, j) is now equal to B.

RowSubmatrix(A, i, k)

Given an m×n sparse matrix A and integers i and k such that 1 ≤ i ≤ i+k ≤ m+1,
return the k × n submatrix of X consisting of rows [i . . . i + k − 1] inclusive. The
integer k may be zero and i may also be m+1 if k is zero, but the result will always
have n columns.

RowSubmatrix(A, i)

Given an m × n sparse matrix A and an integer i such that 0 ≤ i ≤ m, return the
i× n submatrix of X consisting of the first i rows. The integer i may be 0, but the
result will always have n columns.

RowSubmatrixRange(A, i, j)

Given an m × n sparse matrix A and integers i and j such that 1 ≤ i and i − 1 ≤
j ≤ m, return the j − i+ 1× n submatrix of X consisting of rows [i . . . j] inclusive.
The integer j may equal i− 1, in which case a sparse matrix with zero rows and n
columns will be returned.

ColumnSubmatrix(A, i, k)

Given an m×n sparse matrix A and integers i and k such that 1 ≤ i ≤ i+k ≤ n+1,
return the m×k submatrix of X consisting of columns [i . . . i+k−1] inclusive. The
integer k may be zero and i may also be n+1 if k is zero, but the result will always
have m rows.

ColumnSubmatrix(A, i)

Given an m × n sparse matrix A and an integer i such that 0 ≤ i ≤ n, return the
m× i submatrix of X consisting of the first i columns. The integer i may be 0, but
the result will always have m rows.

ColumnSubmatrixRange(A, i, j)

Given anm×n sparse matrix A and integers i and j such that 1 ≤ i and i−1 ≤ j ≤ n,
return the m× j− i+1 submatrix of X consisting of columns [i . . . j] inclusive. The
integer j may equal i − 1, in which case a sparse matrix with zero columns and n
rows will be returned.

568 MATRICES AND LINEAR ALGEBRA Part V

27.4.2 Row and Column Operations
The following functions and procedures provide elementary row or column operations on
sparse matrices. For each operation, there is a corresponding function which creates a
new sparse matrix for the result (leaving the input sparse matrix unchanged), and a cor-
responding procedure which modifies the input sparse matrix in place.

SwapRows(A, i, j)

SwapRows(∼A, i, j)

Given an m × n sparse matrix A and integers i and j such that 1 ≤ i ≤ m and
1 ≤ j ≤ m, swap the i-th and j-th rows of A.

SwapColumns(A, i, j)

SwapColumns(∼A, i, j)

Given an m × n sparse matrix A and integers i and j such that 1 ≤ i ≤ n and
1 ≤ j ≤ n, swap the i-th and j-th columns of A.

ReverseRows(A)

ReverseRows(∼A)
Given a sparse matrix A, reverse all the rows of A.

ReverseColumns(A)

ReverseColumns(∼A)
Given a sparse matrix A, reverse all the columns of A.

AddRow(A, c, i, j)

AddRow(∼A, c, i, j)

Given an m × n sparse matrix A over a ring R, a ring element c coercible into R,
and integers i and j such that 1 ≤ i ≤ m and 1 ≤ j ≤ m, add c times row i of A to
row j of A.

AddColumn(A, c, i, j)

AddColumn(∼A, c, i, j)

Given an m × n sparse matrix A over a ring R, a ring element c coercible into R,
and integers i and j such that 1 ≤ i ≤ n and 1 ≤ j ≤ n, add c times column i of A
to column j.

MultiplyRow(A, c, i)

MultiplyRow(∼A, c, i)

Given an m × n sparse matrix A over a ring R, a ring element c coercible into R,
and an integer i such that 1 ≤ i ≤ m, multiply row i of A by c (on the left).

Ch. 27 SPARSE MATRICES 569

MultiplyColumn(A, c, i)

MultiplyColumn(∼A, c, i)

Given an m × n sparse matrix A over a ring R, a ring element c coercible into R,
and an integer i such that 1 ≤ i ≤ n, multiply column i of A by c (on the left).

RemoveRow(A, i)

RemoveRow(∼A, i)

Given an m× n sparse matrix A and an integer i such that 1 ≤ i ≤ m, remove row
i from A (leaving an (m− 1)× n sparse matrix).

RemoveColumn(A, j)

RemoveColumn(∼A, j)

Given an m × n sparse matrix A and an integer j such that 1 ≤ j ≤ n, remove
column j from A (leaving an m× (n− 1) sparse matrix).

RemoveRowColumn(A, i, j)

RemoveRowColumn(∼A, i, j)

Given an m × n sparse matrix A and integers i and j such that 1 ≤ i ≤ m and
1 ≤ j ≤ n, remove row i and column j from A (leaving an (m− 1)× (n− 1) sparse
matrix).

RemoveZeroRows(A)

RemoveZeroRows(∼A)
Given a sparse matrix A, remove all the zero rows of A.

27.5 Building Block Matrices

HorizontalJoin(A, B)

Given a sparse matrix A with r rows and c columns, and a sparse matrix B with r
rows and d columns, both over the same coefficient ring R, return the sparse matrix
over R with r rows and (c + d) columns obtained by joining A and B horizontally
(placing B to the right of A).

VerticalJoin(A, B)

Given a sparse matrix A with r rows and c columns, and a sparse matrix B with s
rows and c columns, both over the same coefficient ring R, return the sparse matrix
with (r + s) rows and c columns over R obtained by joining A and B vertically
(placing B underneath A).

570 MATRICES AND LINEAR ALGEBRA Part V

DiagonalJoin(A, B)

Given matrices A with a rows and b columns and B with c rows and d columns,
both over the same coefficient ring R, return the sparse matrix with (a + c) rows
and (b + d) columns over R obtained by joining A and B diagonally (placing B
diagonally to the right of and underneath A, with zero blocks above and below the
diagonal).

27.6 Conversion to and from Dense Matrices

The following functions convert between sparse matrices and normal (dense-representation)
matrices.

Matrix(A)

Given a sparse matrix A, return the normal (dense-representation) matrix equal to
A. This function should only be used if the size of A is reasonably small since oth-
erwise the amount of memory needed to represent the dense-representation matrix
may be huge. Printing the result of this operation is a convenient way to display A
as a normal (dense) matrix if A is small.

SparseMatrix(A)

Given a normal (dense-representation) matrix A, return the sparse matrix equal to
A. Note that if there is a fast algorithm available for the sparse matrix type, there
is no need to convert a dense-representation matrix to the sparse matrix type first
and then to use that algorithm, since Magma does this automatically.

27.7 Changing Ring

ChangeRing(A, R)

SparseMatrix(R, A)

Given a sparse matrix A over a ring S having m rows and n columns, and another
ring R, return the m × n sparse matrix over R obtained by coercing the entries of
A from S into R.

The argument order to ChangeRing(A, R) here is consistent with other forms of
ChangeRing, while the SparseMatrix(R, A) form of this function is provided to be
consistent with the sparse matrix creation functions above, for which the destination
ring is the first argument, if supplied.

Ch. 27 SPARSE MATRICES 571

27.8 Predicates

The functions in this section test various properties of sparse matrices.

A eq B

Given sparse matrices A and B, return true if and only if A and B are equal.

IsZero(A)

Given an m×n sparse matrix A over the ring R, return true iff A is the m×n zero
sparse matrix.

IsOne(A)

Given a square m × m sparse matrix A over the ring R, return true iff A is the
m×m identity sparse matrix.

IsMinusOne(A)

Given a square m × m sparse matrix A over the ring R, return true iff A is the
negation of the m×m identity sparse matrix.

IsScalar(A)

Given a square m×m sparse matrix A over the ring R, return true iff A is scalar,
i.e., iff A is the product of some element of R and the m×m identity sparse matrix.

IsDiagonal(A)

Given a square sparse matrix A over the ring R, return true iff A is diagonal, i.e.,
iff the only non-zero entries of A are on the diagonal.

IsSymmetric(A)

Given a square sparse matrix A over the ring R, return true iff A is symmetric, i.e.,
iff A equals its transpose.

IsUpperTriangular(A)

Given a sparse matrix A over the ring R, return true iff A is upper triangular, i.e.,
iff the only non-zero entries of A are on or above the diagonal.

IsLowerTriangular(A)

Given a sparse matrix A over the ring R, return true iff A is lower triangular, i.e.,
iff the only non-zero entries of A are on or below the diagonal.

572 MATRICES AND LINEAR ALGEBRA Part V

27.9 Elementary Arithmetic

A + B

Given m× n sparse matrices A and B over a ring R, return A+B.

A - B

Given m× n sparse matrices A and B over a ring R, return A−B.

A * B

Given an m× n sparse matrix A over a ring R and an n× p sparse matrix B over
R, return the m× p sparse matrix A ·B over R.

x * A

A * x

Given an m× n sparse matrix A over a ring R and a ring element x coercible into
R, return the scalar product x ·A.

-A

Given a sparse matrix A, return −A.

A ^-1

Given a invertible square sparse matrix A over a ring R, return the inverse B of A
so that A ·B = B ·A = 1. The coefficient ring R must be either a field, a Euclidean
domain, or a ring with an exact division algorithm and having characteristic equal
to zero or greater than m (this includes most commutative rings).

A ^ n

Given a square sparse matrix A over a ring R and an integer n, return the matrix
power An. A0 is defined to be the identity matrix for any square matrix A (even if
A is zero). If n is negative, A must be invertible (see the previous function), and
the result is (A−1)−n.

Transpose(A)

Given an m× n sparse matrix A over a ring R, return the transpose of A, which is
simply the n×m sparse matrix over R whose (i, j)-th entry is the (j, i)-th entry of
A.

Ch. 27 SPARSE MATRICES 573

27.10 Multiplying Vectors or Matrices by Sparse Matrices

These functions allow the multiplication of a normal (dense-representation) vector by a
sparse matrix.

v * A

V * A

Given a dense-representation vector v or dense-representation matrix V with c
columns, together with a sparse c × n matrix A, both over a ring R, return the
product v ·A or V ·A.

This is generally fast if A is sparse and uses minimal memory.

MultiplyByTranspose(v, A)

MultiplyByTranspose(V, A)

Given a dense-representation vector v or dense-representation matrix V with c
columns, together with a sparse n × c matrix A, both over a ring R, return the
product of v or V by the transpose of A.

This is generally fast if A is sparse, and is much faster than computing the trans-
pose of A first. For example, if the vector-matrix product v ·A ·Atr is required, then
the function call MultiplyByTranspose(v*A, A) should be used to avoid forming
the matrix A·Atr which is usually dense. This product occurs in iterative algorithms
such as Lanzcos.

27.11 Non-trivial Properties

The following functions compute non-trivial properties of sparse matrices.

27.11.1 Nullspace and Rowspace
The following functions compute nullspaces (solving equations of the form V · A = 0) or
rowspaces of sparse matrices.

Nullspace(A)

Kernel(A)

Given an m × n sparse matrix A over a ring R, return the nullspace of A (or the
kernel of A, considered as a linear transformation or map), which is the R-space
consisting of all vectors v of length m such that v · A = 0. Since the result will be
given in the dense representation, both the nullity of A and the number of rows of
A must both be reasonably small.

The algorithm first performs sparse elimination using Markowitz pivoting
([DEJ84, Sec. 9.2]) to obtain a smaller dense matrix, then the nullspace algorithm
for dense-representation matrices is applied to this matrix.

574 MATRICES AND LINEAR ALGEBRA Part V

NullspaceMatrix(A)

KernelMatrix(A)

Given an m×n sparse matrix A over a ring R, return a (dense-representation) basis
matrix of the nullspace of A. This is a matrix N having m columns and the maximal
number of independent rows subject to the condition that N ·A = 0. This function
has the advantage that the nullspace is not returned as a R-space, so echelonization
of the resulting nullspace may be avoided.

NullspaceOfTranspose(A)

This function is equivalent to Nullspace(Transpose(A)), but will be more effi-
cient in space for large matrices, since the transpose may not have to be explicitly
constructed to compute the nullspace.

Rowspace(A)

Given an m× n sparse matrix A over a ring R, return the rowspace of A, which is
the R-space generated by the rows of A. Since the result will be given in the dense
representation, the rank and the number of columns of A must both be reasonably
small.

27.11.2 Rank

Rank(A)

Given an m×n sparse matrix A over a ring R, return the rank of A. The algorithm
first performs sparse elimination using Markowitz pivoting ([DEJ84, Sec. 9.2]) to
obtain a smaller dense matrix, then the rank algorithm for dense-representation
matrices is applied to this matrix.

27.12 Determinant and Other Properties

Determinant(A: parameters)

MonteCarloSteps RngIntElt Default :

Given a square sparse matrix A over the ring R, return the determinant of A as an
element of R. R may be any commutative ring.

The algorithm first performs sparse elimination using Markowitz pivoting
([DEJ84, Sec. 9.2]) to obtain a smaller dense matrix, then the determinant algo-
rithm for dense-representation matrices is applied to this matrix. If the parameter
MonteCarloSteps is given, then this is passed to the dense algorithm for the dense
matrix.

Ch. 27 SPARSE MATRICES 575

27.12.1 Elementary Divisors (Smith Form)

ElementaryDivisors(A)

Given an m× n matrix A over the Euclidean ring or field R, return the elementary
divisors of A. These are simply the non-zero diagonal entries of the Smith form of
A, in order.

The divisors are returned as a sequence Q = [e1, . . . , ed], ei|ei+1 (i = 1, . . . , d−1)
of d elements of R (which may include ones), where d is the rank of A. If R is a
field, the result is always a sequence of r ones, where r is the rank of A.

A function for computing the Smith normal form is not supplied for sparse ma-
trices since the form may be trivially derived from the elementary divisors, and the
sequence Q containing the divisors is often more convenient (and takes less mem-
ory). As transformation matrices are dense in general, they are not supported for
the sparse representation.

The algorithm first performs sparse elimination using Markowitz pivoting to
obtain a smaller dense matrix ([DEJ84, Sec. 9.2]; this is similar to the techniques
described in [HHR93]). Then it invokes the dense Smith normal form algorithm for
normal (dense-representation) matrices (SmithForm).

27.12.2 Verbosity

SetVerbose("SparseMatrix", v)

(Procedure.) Set the verbose printing level for all sparse matrix algorithms to be v.
Currently the legal values for v are true, false, 0, 1, 2, and 3 (false has the same
effect as 0, and true has the same effect as 1).

27.13 Linear Systems (Structured Gaussian Elimination)

ModularSolution(A, M)

ModularSolution(A, L)

Lanczos BoolElt Default : false

Given a sparse m × n matrix A, defined over the integer ring Z, and a positive
integer M , compute a vector v such that v satisfies the equation v ·Atr = 0 modulo
M . v will be non-zero with high probability.

This function is designed for index-calculus-type algorithms where a large sparse
linear system defined by the matrix A is first constructed and then a vector satisfying
the above equation modulo M is required. For this reason it is natural that the
transpose of A appears in this equation. The example H27E3 below illustrates such
a situation in detail.

The first version of the function takes the actual integer M as the second ar-
gument given and so must be factored as part of the calculation, while the second

576 MATRICES AND LINEAR ALGEBRA Part V

version of the function takes the factorization sequence L of M . If possible, the
solution vector is multiplied by a unit modulo M so that its first entry is 1.

The function uses the Structured Gaussian Elimination algorithm [LO91b,
Sec. 5]. This reduces the linear system to be solved to a much smaller but denser
system. By default, the function recurses on the smaller system until it is almost
completely dense, and then this dense system is solved using the fast dense modular
nullspace algorithm of Magma.

If the parameter Lanczos is set to true, then the Lanczos algorithm [LO91b,
Sec. 3] will be used instead. This is generally very much slower than the default
method (it is often 10 to 50 times slower), but it will take considerably less memory,
so may be preferable in the case of extremely large matrices.

For typical matrices arising in index-calculus problems, and for most machines,
the default method (reducing to a completely dense system) should solve a linear
system of size roughly 100, 000 × 100, 000 using about 500MB of memory while a
linear system of size roughly 200, 000×200, 000 should require about 1.5GB to 2.0GB
of memory.

Example H27E3

In this extended example, we demonstrate the application of the function ModularSolution to a
sparse matrix arising in an index-calculus algorithm. We present Magma code which performs the
first stage of the basic linear sieve [COS86, LO91a] for computing discrete logarithms in a prime
finite field Fp. This first stage determines most of the logarithms of the elements of the factor
basis (which is the set of small primes up to a given limit) by using a sieve to compute a sparse
linear system which is then solved modulo p− 1.

Even though the following sieving code is written in the Magma language and so is much slower
than a serious C implementation, it is sufficiently powerful to be able to compute the first stage
logarithms in less than a minute for fields Fp where p is about 1020 and (p − 1)/2 is prime.
In comparison, the standard Pohlig-Hellman algorithm based on the Pollard-Rho method would
take many hours for such fields. This Magma code can also be adapted for other index-calculus
methods.

Suppose p is an odd prime and let K = Fp. Let Q be the factor base, an ordered set consisting
of all positive primes from 2 to a given limit qlimit. Fix a primitive element α of K which is
also prime as an integer, so α is in Q. We wish to compute the discrete logarithms of most of the
elements of Q with respect to α; i.e., we wish to compute lq with αlq = q for most q ∈ Q.

The algorithm uses a sieve to search for linear relations involving the logarithms of the elements
of Q. Let H = b√pc+1 and J = H2− p. We search for pairs of integers (c1, c2) with 1 ≤ c1, c2 ≤
climit (where climit is a given limit which is much less than H) such that

[(H + c1)(H + c2)] mod p = J + (c1 + c2)H + c1c2

is smooth with respect to Q (i.e., all of its prime factors are in Q). If we include these H + ci

in the factor base, then this gives a linear relation modulo (p − 1) among the logarithms of the
elements of the extended factor base.

Ch. 27 SPARSE MATRICES 577

Fix c1 with 1 ≤ c ≤ climit and suppose we initialize a sieve array (to be indexed by c2) to have
zero in each position. For each prime power qh with q ∈ Q and h sufficiently small, we compute

d = [(J + c1H)(H + c1)
−1] mod qh.

Then for all c2 ≡ d (mod qh), it turns out that

(H + c1)(H + c2) ≡ 0 (mod qh).

So for each c2 with c1 ≤ c2 ≤ climit and c2 ≡ d (mod qh), we add log(q) to the position of
the sieve corresponding to c2. (Ensuring that c2 ≥ c1 avoids redundant relations.) When we have
done this for each q ∈ Q, we perform trial division to obtain relations for each of the c2 whose
sieve values are beneath a suitable threshold.

We repeat this with a new c1 value until we have more relations than elements of the factor base
(typically we make the ratio be 1.1 or 1.2), then we solve the corresponding linear system modulo
M = p − 1 to obtain the desired logarithms. We ensure that α is the first element of Q so that
when the vector is normalized modulo M (so that its first entry is 1), the logarithms will be with
respect to α. For derivations of the above equations and for further details concerning the sieving,
see [LO91a].

In practice, one first writes M = p − 1 = M1 ·M2 where M1 contains the maximal powers of all
the small primes dividing M (say, for primes ≤ 10000). The solution space modulo M1 will often
have high dimension, so the logarithms modulo M1 usually cannot be correctly computed from
the linear system alone. So we only compute the solution of the linear system modulo M2. It is
still possible that some logarithms cannot be determined modulo M2 (e.g., if 2 unknowns occur
only in one equation), but usually most of the logarithms will be correctly computed modulo
M2. Then the logarithm of each factor basis element can be easily computed modulo M1 by the
Pohlig-Hellman algorithm, and the Chinese Remainder Theorem can be used to combine these
with the correct modulo-M2 logarithms to compute the logarithms modulo M of most elements
of the factor basis.

Similar index-calculus-type algorithms should have techniques for handling small prime divisors
of the modulus M when the solution of the linear system has high nullity modulo these small
primes.

The following function Sieve has been developed by Allan Steel, based on code by Benjamin
Costello. Its arguments are the field K = Fp, the factor base prime limit qlimit, the c1, c2 range
limit climit, and the desired stopping ratio of relations to unknowns. The function returns the
sparse relation matrix A together with an indexed set containing the corresponding extended
factor base (the small primes and the H + ci values which yield relations).

> function Sieve(K, qlimit, climit, ratio)

> p := #K;

> Z := Integers();

> H := Iroot(p, 2) + 1;

> J := H^2 - p;

>

> // Get factor basis of all primes <= qlimit.

> fb_primes := [p: p in [2 .. qlimit] | IsPrime(p)];

578 MATRICES AND LINEAR ALGEBRA Part V

>

> printf "Factor base has %o primes, climit is %o\n", #fb_primes, climit;

>

> // Ensure that the primitive element of K is prime (as an integer).

> a := rep{x: x in [2..qlimit] | IsPrime(x) and IsPrimitive(K!x)};

> SetPrimitiveElement(K,K!a);

>

> // Initialize extended factor base FB to fb_primes (starting with a).

> FB := {@ Z!a @};

> for x in fb_primes do

> Include(~FB, x);

> end for;

>

> // Initialize A to 0 by 0 sparse matrix over Z.

> A := SparseMatrix();

>

> // Get logs of all factor basis primes.

> log2 := Log(2.0);

> logqs := [Log(q)/log2: q in fb_primes];

>

> for c1 in [1 .. climit] do

>

> // Stop if ratio of relations to unknowns is high enough.

> if Nrows(A)/#FB ge ratio then break; end if;

>

> if c1 mod 50 eq 0 then

> printf "c1: %o, #rows: %o, #cols: %o, ratio: %o\n",

> c1, Nrows(A), #FB, RealField(8)!Nrows(A)/#FB;

> end if;

>

> // Initialize sieve.

> sieve := [z: i in [1 .. climit]] where z := Log(1.0);

> den := H + c1; // denominator of relation

> num := -(J + c1*H); // numerator

>

> for i := 1 to #fb_primes do

> // For each prime q in factor base...

> q := fb_primes[i];

> logq := logqs[i];

>

> qpow := q;

> while qpow le qlimit do

> // For all powers qpow of q up to qlimit...

>

> if den mod qpow eq 0 then break; end if;

> c2 := num * Modinv(den, qpow) mod qpow;

> if c2 eq 0 then c2 := qpow; end if;

>

Ch. 27 SPARSE MATRICES 579

> nextqpow := qpow*q;

> // Ensure c2 >= c1 to remove redundant relations.

> while c2 lt c1 do

> c2 +:= qpow;

> end while;

>

> while c2 le #sieve do

> // Add logq into sieve for c2.

> sieve[c2] +:= logq;

>

> // Test higher powers of q if nextqpow is too large.

> if nextqpow gt qlimit then

> prod := (J + (c1 + c2)*H + c1*c2) mod p;

> nextp := nextqpow;

> while prod mod nextp eq 0 do

> sieve[c2] +:= logq;

> nextp *:= q;

> end while;

> end if;

> c2 +:= qpow;

> end while;

> qpow := nextqpow;

> end while;

> end for;

>

> // Check sieve for full factorizations.

> rel := den * (H + 1); // the relation

> relinc := H + c1; // add to relation to get next relation

> count := 0;

> for c2 in [1 .. #sieve] do

> n := rel mod p;

> if Abs(sieve[c2] - Ilog2(n)) lt 1 then

> fact, r := TrialDivision(n, qlimit);

> if r eq [] and (#fact eq 0 or fact[#fact][1] lt qlimit) then

> // Include each H + c_i in extended factor basis.

> Include(~FB, H + c1);

> Include(~FB, H + c2);

>

> // Include relation (H + c1)*(H + c2) = fact.

> row := Nrows(A) + 1;

> for t in fact do

> SetEntry(~A, row, Index(FB, t[1]), t[2]);

> end for;

> if c1 eq c2 then

> SetEntry(~A, row, Index(FB, H + c1), -2);

> else

> SetEntry(~A, row, Index(FB, H + c1), -1);

> SetEntry(~A, row, Index(FB, H + c2), -1);

580 MATRICES AND LINEAR ALGEBRA Part V

> end if;

> end if;

> end if;

> rel +:= relinc;

> end for;

> end for;

>

> // Check matrix by multiplying out relations in field.

> assert {&*[(K!FB[j])^A[k, j]: j in Support(A, k)]: k in [1..Nrows(A)]}

> eq {1};

>

> return A, FB;

> end function;

We first apply the function to a trivial example to illustrate the main points. We let K be F103,
and we make the factor basis include primes up to 35, the ci range be up to 27, and the stopping
ratio be 1.1. We first compute the relation matrix A and the extended factor basis F .

> K := GF(103);

> A, F := Sieve(K, 35, 27, 1.1);

Factor base has 11 primes, climit is 27

> A;

Sparse matrix with 33 rows and 30 columns over Integer Ring

We examine a few rows of A and the extended factor basis F . Note that 5 is the smallest prime
which is primitive in K, so it has been inserted first in F .

> A[1]; A[2]; A[30];

(1 0 0 0 0 1 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

(0 0 0 1 1 0 0 0 0 0 0 -1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

(0 -1 0 0 -1 0 0 0 0 0)

> F;

{@ 5, 2, 3, 7, 11, 13, 17, 19, 23, 29, 31, 12, 14, 15, 16, 21, 38,

20, 26, 35, 22, 33, 34, 24, 25, 28, 30, 37, 32, 36 @}

Next we compute a solution vector v such that v ·Atr = 0 modulo M = #K − 1.

> Factorization(#K-1);

[<2, 1>, <3, 1>, <17, 1>]

> v := ModularSolution(A, #K - 1);

> v;

(1 44 39 4 61 72 70 80 24 86 57 25 48 40 74 43 22 0 1 5 3 100 12 69 2

92 84 93 16 64)

Notice that 0 occurs in v, so the corresponding logarithm is not known. The vector is normalized
so that the logarithm of 5 is 1, as desired. We finally compute the powers of the primitive element
of K by each element of v and check that all of these match the entries of F except for the
one missed entry. Note also that because M has small prime divisors, it is fortunate that the
logarithms are all correct, apart from the missed one.

> a := PrimitiveElement(K);

Ch. 27 SPARSE MATRICES 581

> a;

5

> Z := IntegerRing();

> [a^Z!x: x in Eltseq(v)];

[5, 2, 3, 7, 11, 13, 17, 19, 23, 29, 31, 12, 14, 15, 16, 21, 38, 1,

5, 35, 22, 33, 34, 24, 25, 28, 30, 37, 32, 36]

> F;

{@ 5, 2, 3, 7, 11, 13, 17, 19, 23, 29, 31, 12, 14, 15, 16, 21, 38, 20,

26, 35, 22, 33, 34, 24, 25, 28, 30, 37, 32, 36 @}

Finally, we take K = Fp, where p is the smallest prime above 1020 such that (p− 1)/2 is prime.
The sparse matrix constructed here is close to 1000 × 1000, but the solution vector is still found
in less than a second.

> K := GF(100000000000000000763);

> Factorization(#K - 1);

[<2, 1>, <50000000000000000381, 1>]

> time A, F := Sieve(K, 2200, 800, 1.1);

Factor base has 327 primes, climit is 800

c1: 50, #rows: 222, #cols: 555, ratio: 0.4

c1: 100, #rows: 444, #cols: 738, ratio: 0.60162602

c1: 150, #rows: 595, #cols: 836, ratio: 0.71172249

c1: 200, #rows: 765, #cols: 921, ratio: 0.83061889

c1: 250, #rows: 908, #cols: 973, ratio: 0.9331963

c1: 300, #rows: 1014, #cols: 1011, ratio: 1.003

c1: 350, #rows: 1105, #cols: 1023, ratio: 1.0802

Time: 3.990

> A;

Sparse matrix with 1141 rows and 1036 columns over Integer Ring

> time v := ModularSolution(A, #K - 1);

Time: 0.170

We observe that the list consisting of the primitive element powered by the computed logarithms
agrees with the factor basis for at least the first 30 elements.

> a := PrimitiveElement(K);

> a;

2

> v[1], v[2];

1 71610399209536789314

> a^71610399209536789314;

3

> P := [a^x: x in Eltseq(v)];

> [P[i]: i in [1 .. 30]];

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,

67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113]

> [F[i]: i in [1 .. 30]];

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,

582 MATRICES AND LINEAR ALGEBRA Part V

67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113]

There are in fact 8 logarithms which could not be computed correctly.

> [i: i in [1..#F] | P[i] ne F[i]];

[671, 672, 673, 737, 738, 947, 1024, 1025]

A zero value appearing in the place of a logarithm indicates that the nullity of the system was
larger than 1, even considered modulo (#K − 1)/2.

> [v[i]: i in [1..#F] | P[i] ne F[i]];

[0, 22076788376647522787, 73252391663364176895, 0,

33553634905886614528, 42960107136526083388, 0, 57276316725691590267]

> [P[i]: i in [1..#F] | P[i] ne F[i]];

[1, 7480000052677, 7960000056517, 1, 5220000041437,

8938028430619715763, 1, 11360000275636]

However, we have found the correct logarithms for nearly all factor basis elements. As pointed
out above, the Pollard-Rho method applied to an element of the factor basis for this field would
take many hours!

27.14 Bibliography
[COS86] D. Coppersmith, A. M. Odlyzko, and R. Schroeppel. Discrete logarithms in

GF(p). Algorithmica, 1:1–15, 1986.
[DEJ84] I.S. Duff, A.M. Erisman, and J.K.Reid. Direct methods for sparse matrices.

Monographs on Numerical Analysis. Oxford University Press, 1984.
[HHR93] George Havas, Derek F. Holt, and Sarah Rees. Recognizing badly presented

Z-modules. Linear Algebra and its Applications, 192:137–164, 1993.
[LO91a] B. A. LaMacchia and A. M. Odlyzko. Computation of Discrete Logarithms

in Prime Fields. In A.J. Menezes and S. Vanstone, editors, Advances in Cryptology—
CRYPTO 1990, volume 537 of INCS, pages 616–618. Springer-Verlag, 1991.

[LO91b] B. A. LaMacchia and A. M. Odlyzko. Solving Large Sparse Linear Systems
over Finite Fields. In A.J. Menezes and S. Vanstone, editors, Advances in Cryptology—
CRYPTO 1990, volume 537 of LNCS, pages 109–133. Springer-Verlag, 1991.

28 VECTOR SPACES
28.1 Introduction 585

28.1.1 Vector Space Categories 585

28.1.2 The Construction of a Vector Space 585

28.2 Creation of Vector Spaces and
Arithmetic with Vectors . . . 586

28.2.1 Construction of a Vector Space . . 586

VectorSpace(K, n) 586
KSpace(K, n) 586
KModule(K, n) 586
KMatrixSpace(K, m, n) 586
Hom(V, W) 586

28.2.2 Construction of a Vector Space with
Inner Product Matrix 587

VectorSpace(K, n, F) 587
KSpace(K, n, F) 587

28.2.3 Construction of a Vector 587

elt< > 587
! 588
CharacteristicVector(V, S) 588
! 588
Zero(V) 588
Random(V) 588

28.2.4 Deconstruction of a Vector 589

ElementToSequence(u) 589
Eltseq(u) 589

28.2.5 Arithmetic with Vectors 589

+ 589
- 589
- 589
* 589
* 589
/ 589
NumberOfColumns(u) 589
Ncols(u) 589
Depth(u) 589
(u, v) 590
InnerProduct(u, v) 590
IsZero(u) 590
Norm(u) 590
Normalise(u) 590
Normalize(u) 590
Rotate(u, k) 590
Rotate(∼u, k) 590
NumberOfRows(u) 590
Nrows(u) 590
Support(u) 590
TensorProduct(u, v) 590
Trace(u, F) 591
Trace(u) 591
Weight(u) 591

28.2.6 Indexing Vectors and Matrices . . 592

u[i] 592
u[i, j] 592
u[i] := x 593
u[i] := x 593
u[i, j] := x 593

28.3 Subspaces, Quotient Spaces and
Homomorphisms 594

28.3.1 Construction of Subspaces 594

sub< > 594
Morphism(U, V) 594

28.3.2 Construction of Quotient Vector
Spaces 596

quo< > 596
/ 596

28.4 Changing the Coefficient Field 598

ExtendField(V, L) 598
RestrictField(V, L) 598
VectorSpace(V, F) 599
KSpace(V, F) 599
KMatrixSpace(V, F) 599
KModule(V, F) 599

28.5 Basic Operations 599

28.5.1 Accessing Vector Space Invariants . 599

. 599
CoefficientField(V) 599
BaseField(V) 599
Degree(V) 599
Degree(u) 599
Dimension(V) 599
Generators(V) 599
NumberOfGenerators(M) 600
Ngens(M) 600
OverDimension(V) 600
OverDimension(u) 600
Generic(V) 600
Parent(V) 600

28.5.2 Membership and Equality 600

in 600
notin 600
subset 600
notsubset 600
eq 600
ne 600

28.5.3 Operations on Subspaces 601

+ 601
meet 601
meet:= 601
&meet S 601
TensorProduct(U, V) 601

584 MATRICES AND LINEAR ALGEBRA Part V

Complement(V, U) 601
Transversal(V, U) 601

28.6 Reducing Vectors Relative to a
Subspace 601

ReduceVector(W, v) 601
ReduceVector(W, ∼v) 601
DecomposeVector(U, v) 601

28.7 Bases 602

VectorSpaceWithBasis(Q) 602
VectorSpaceWithBasis(a) 602
KSpaceWithBasis(Q) 602
KSpaceWithBasis(a) 602
KModuleWithBasis(Q) 602
Basis(V) 602
BasisElement(V, i) 602
BasisMatrix(V) 602
Coordinates(V, v) 602

Dimension(V) 602
ExtendBasis(Q, U) 602
ExtendBasis(U, V) 602
IsIndependent(S) 602
IsIndependent(Q) 603

28.8 Operations with Linear Transfor-
mations 604

* 604
a(v) 604
* 604
Domain(a) 604
Codomain(a) 604
Image(a) 604
Rank(a) 604
Kernel(a) 605
NullSpace(a) 605
Cokernel(a) 605

Chapter 28

VECTOR SPACES

28.1 Introduction

In this chapter we will discuss vector spaces and their linear transformations. Let K be a
field. In Magma, the standard K-vector space is taken to be the set of n-tuples over the
field K, which we shall write as K(n).

A rectangular matrix over a field K is considered to be an element of the vector space
consisting of all m×n matrices over K. This vector space will be written as K(m×n). Let
U and V be K-vector spaces of dimensions m and n, respectively. The set of all linear
transformations with domain U and codomain V will be denoted by HomK(U, V). Once
bases have been chosen for U and V , we may identify HomK(U, V) with K(m×n). Thus,
K(m×n) is first of all a vector space and all the normal vector space operations apply.
However, since it is also a set of mappings, some additional operations arising from this
characterization apply.

We shall use the term vector space or K-vector space (if we wish to emphasize the
coefficient field) to refer to both the space K(n) and the space K(m×n). If we wish to
differentiate between the two, we shall use the term tuple space when referring to K(n) and
the term matrix space referring to K(m×n).

28.1.1 Vector Space Categories
The family of all finite dimensional vector spaces over a given field K forms a category,
while the set of all finite dimensional vector spaces forms a family of categories indexed
by the field K. In this family of categories, objects are vector spaces and the morphisms
are linear transformations. The (indexed family of) categories consisting of vector spaces
of n-tuples has the name ModTupFld, while the (indexed family of) categories consisting
of vector spaces of m× n-matrices has the name ModMatFld.

28.1.2 The Construction of a Vector Space
Every vector space V defined over a field K is created either as a subspace of the row space
K(n) (tuple spaces) or as a subspace of K(m×n) (matrix modules). Thus, the construction
of a general vector space is a two step process:

(i) The appropriate row space K(n), is constructed;

(ii)The required vector space V is then defined as a subspace or quotient space of K(n).

586 MATRICES AND LINEAR ALGEBRA Part V

28.2 Creation of Vector Spaces and Arithmetic with Vectors

28.2.1 Construction of a Vector Space

VectorSpace(K, n)

KSpace(K, n)

Given a field K and a non-negative integer n, create the n-dimensional vector space
V = K(n), consisting of all n-tuples over K. The vector space is created with respect
to the standard basis, e1, . . . , en, where ei (i = 1, . . . , n) is the vector containing a
1 in the i-th position and zeros elsewhere.

Use of the functions VectorSpace and KSpace ensures that subspaces of V will
be presented in embedded form.

KModule(K, n)

Given a field K and a non-negative integer n, create the n-dimensional vector space
V = K(n), consisting of all n-tuples over K. The vector space is created with respect
to the standard basis, e1, . . . , en, where ei (i = 1, . . . , n) is the vector containing a
1 in the i-th position and zeros elsewhere.

Use of the function KModule ensures that subspaces of V will be presented in
reduced form. In all other respects, a vector space created by this function is
identical to one created by KSpace.

KMatrixSpace(K, m, n)

Given a field K and integers m and n greater than one, create the vector space
K(m×n), consisting of all m× n matrices over K. The vector space is created with
the standard basis, {Eij | i = 1 . . . ,m, j = 1 . . . , n}, where Eij is the matrix having
a 1 in the (i, j)-th position and zeros elsewhere.

Note that for a matrix space, subspaces will always be presented in embedded
form, i.e. there is no reduced mode available for matrix spaces.

Hom(V, W)

If V is the vector space K(m) and W is the vector space K(n), create the matrix
space HomK(V,W) as the vector space K(m×n), represented as the set of all m× n
matrices over K. The vector space is created with the standard basis, {Eij | i =
1 . . . ,m, j = 1 . . . , n}, where Eij is the matrix having a 1 in the (i, j)-th position
and zeros elsewhere.

Ch. 28 VECTOR SPACES 587

Example H28E1

We construct the vector space V consisting of 6-tuples over the rational field.

> Q := RationalField();

> V := VectorSpace(Q, 6);

> V;

Vector space of dimension 6 over Rational Field

Example H28E2

We construct the matrix space M consisting of 3× 5 matrices over the field Q(
√

5).

> K<w> := QuadraticField(5);

> V := KMatrixSpace(K, 3, 5);

> V;

Full Vector Space of 3 by 5 matrices over Quadratic Field Q(w)

28.2.2 Construction of a Vector Space with Inner Product Matrix

VectorSpace(K, n, F)

KSpace(K, n, F)

Given a field K, a non-negative integer n and a square n × n symmetric matrix
F , create the n-dimensional vector space V = K(n) (in embedded form), with
inner product matrix F . This is the same as VectorSpace(K, n), except that
the functions Norm and InnerProduct (see below) will be with respect to the inner
product matrix F .

28.2.3 Construction of a Vector

elt< V | L >

(1)Suppose V is a subspace of the vector space K(n). Given elements a1, . . . , an

belonging to K, construct the vector v = (a1, . . . , an) as a vector of V . Note
that if v is not an element of V , an error will result.

(2)Suppose V is a subspace of the matrix spaceK(m×n). Given elements a1, . . . , amn

belonging toK, construct the matrixm = (a1, . . . , amn) as an element of V . Note
that if m is not an element of V , an error will result.

588 MATRICES AND LINEAR ALGEBRA Part V

V ! Q

(1)Suppose V is a subspace of the vector space K(n). Given elements a1, . . . , an

belonging to K, construct the vector v = (a1, . . . , an) as a vector of V . Note
that if v is not an element of V , an error will result.

(2)Suppose V is a subspace of the matrix spaceK(m×n). Given elements a1, . . . , amn

belonging toK, construct the matrixm = (a1, . . . , amn) as an element of V . Note
that if m is not an element of V , an error will result.

CharacteristicVector(V, S)

Given a subspace V of the vector space K(n) together with a set S of integers lying
in the interval [1, n], return the characteristic number of S as a vector of V .

V ! 0

Zero(V)

The zero element for the vector space V .

Random(V)

Given a vector space V defined over a finite field, return a random vector.

Example H28E3

We create the 5-dimensional vector space V over F4 and define the vector u = (1, w, 1 + w, 0, 0),
where w is a primitive element of F4.

> K<w> := GaloisField(4);

> V := VectorSpace(K, 5);

> u := V ! [1, w, 1+w, 0, 0];

> u;

(1 w w + 1 0 0)

> zero := V ! 0;

> zero;

(0 0 0 0 0)

r := Random(V);

(1 0 w 1 w + 1)

Example H28E4

We create an element belonging to the space of 3× 4 matrices over the number field Q(w), where
w is a root of x7 − 7x + 3.

> R<x> := PolynomialRing(RationalField());

> L<w> := NumberField(x^7 - 7*x + 3);

> L34 := KMatrixSpace(L, 3, 4);

> a := L34 ! [1, w, 0, -w, 0, 1+w, 2, -w^3, w-w^3, 2*w, 1/3, 1];

> a;

[1 w 0 -1 * w]

Ch. 28 VECTOR SPACES 589

[0 w + 1 2 -1 * w^3]

[-1 * w^3 + w 2 * w 1/3 1]

28.2.4 Deconstruction of a Vector

ElementToSequence(u)

Eltseq(u)

Given an element u belonging to the K-vector space V , return u in the form of a
sequence Q of elements of V . Thus, if u is an element of K(n), then Q[i] = u[i],
1 ≤ i ≤ n.

28.2.5 Arithmetic with Vectors
For the following operations the vectors u and v must belong to the same vector space i.e.
the same tuple space K(n) or the same matrix space K(m×n). The scalar a must belong
to the field K.

u + v

Sum of the vectors u and v, where u and v lie in the same vector space.

-u

Additive inverse of the vector u.

u - v

Difference of the vectors u and v, where u and v lie in the same vector space.

x * u

u * x

The scalar product of the vector u belonging to the K-vector space and the field
element x belonging to K.

u / x

The scalar product of the vector u belonging to the K-vector space and the field
element 1/x belonging to K where x is non-zero.

NumberOfColumns(u)

Ncols(u)

The number of columns in the vector u.

Depth(u)

The index of the first non-zero entry of the vector u (0 if none such).

590 MATRICES AND LINEAR ALGEBRA Part V

(u, v)

InnerProduct(u, v)

Return the inner product of the vectors u and v with respect to the inner product
defined on the space. If an inner product matrix F is given when the space is
created, then this is defined to be u · F · vtr. Otherwise, this is simply u · vtr.

IsZero(u)

Returns true iff the vector u belonging to a vector space is the zero element.

Norm(u)

Return the norm product of the vector u with respect to the inner product defined
on the space. If an inner product matrix F is given when the space is created, then
this is defined to be u · F · utr. Otherwise, this is simply u · utr.

Normalise(u)

Normalize(u)

Given an element u, not the zero element, belonging to the K-vector space V , return
1
a ∗ u, where a is the first non-zero component of u. If u is the zero vector, it is
returned. The net effect is that Normalize(u) always returns a vector v in the
subspace generated by u, such that the first non-zero component of v (if existent)
is K!1.

Rotate(u, k)

Given a vector u, return the vector obtained from u by rotating by k coordinate
positions.

Rotate(∼u, k)

Given a vector u, destructively rotate u by k coordinate positions.

NumberOfRows(u)

Nrows(u)

The number of rows in the vector u (1 of course; included for completeness).

Support(u)

A set of integers giving the positions of the non-zero components of the vector u.

TensorProduct(u, v)

The tensor (Kronecker) product of the vectors u and v. The resulting vector has
degree equal to the product of the degrees of u and v.

Ch. 28 VECTOR SPACES 591

Trace(u, F)

Trace(u)

Given a vector belonging to the space K(n), and a subfield F of K, return the vector
obtained by replacing each component of u by its trace over the subfield F . If F is
the prime field of K, it may be omitted.

Weight(u)

The number of non-zero components of the vector u.

Example H28E5

We illustrate the use of the arithmetic operators for module elements by applying them to elements
of the 4-dimensional vector space over the field Q(w), where w is an 8-th root of unity.

> K<w> := CyclotomicField(8);

> V := VectorSpace(K, 4);

> x := V ! [w, w^ 2, w^ 4, 0];

> y := V ! [1, w, w^ 2, w^ 4];

> x + y;

((1 + w) (w + w^2) (-1 + w^2) -1)

> -x;

((-w) (-w^2) 1 0)

> x - y;

((-1 + w) (-w + w^2) (-1 - w^2) 1)

> w * x;

((w^2) (w^3) (-w) 0)

> y * w^ -4;

(-1 (-w) (-w^2) 1)

> Normalize(x);

(1 (w) (w^3) 0)

> InnerProduct(x, y);

(w - w^2 + w^3)

> z := V ! [1, 0, w, 0];

> z;

(1 0 (w) 0)

> Support(z);

{ 1, 3 }

Example H28E6

We illustrate how one can define a non-trivial inner product on a space.

> Q := RationalField();

> F := SymmetricMatrix(Q, [1, 0,2, 0,0,3, 1,2,3,4]);

> F;

[1 0 0 1]

[0 2 0 2]

592 MATRICES AND LINEAR ALGEBRA Part V

[0 0 3 3]

[1 2 3 4]

> V := VectorSpace(Q, 4, F);

> V;

Full Vector space of degree 4 over Rational Field

Inner Product Matrix:

[1 0 0 1]

[0 2 0 2]

[0 0 3 3]

[1 2 3 4]

> v := V![1,0,0,0];

> Norm(v);

1

> w := V![0,1,0,0];

> Norm(w);

2

> InnerProduct(v, w);

0

> z := V![0,0,0,1];

> Norm(z);

4

> InnerProduct(v, z);

1

> InnerProduct(w, z);

2

28.2.6 Indexing Vectors and Matrices
The indexing operations have a different meaning depending upon whether they are applied
to a tuple space or a matrix space.

u[i]

u[i, j]

Given an vector u belonging to a K-vector space V , the result of this operation
depends upon whether V is a tuple or matrix space.

If V is a subspace of K(n), and i, 1 ≤ i ≤ n, is a positive integer, the i-th
component of the vector u is returned (as an element of the field K).

If V is a subspace of K(m×n), and i, 1 ≤ i ≤ m, is a positive integer, u[i]
will return the i-th row of the matrix u (as an element of the vector space K(n)).
Similarly, if i and j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, are positive integers, u[i, j] will return
the (i, j)-th component of the matrix u (as an element of K).

Ch. 28 VECTOR SPACES 593

u[i] := x

u[i] := x

u[i, j] := x

Given an vector u belonging to a K-vector space V , and an element x of K, the
result of this operation depends upon whether V is a tuple or matrix space.

If V is a subspace of K(n), and i, 1 ≤ i ≤ n, is a positive integer, the i-th
component of the vector u is redefined to be x.

If V is a subspace of K(m×n) and 1 ≤ i ≤ m is a positive integer and x is an
element ofK(n), u[i] := x will redefine the i-th row of the matrix u to be the vector
x, where x must be an element of K(n). Similarly, if 1 ≤ i ≤ m, 1 ≤ j ≤ n, are
positive integers, u[i, j] := x will redefine the (i, j)-th component of the matrix
u to be x, where x must be an element of K.

Example H28E7

We illustrate the use of the indexing operators for vector space elements by applying them to a
3-dimensional tuple space and a 2 × 3 matrix space over the field Q(w), where w is an 8-th root
of unity.

> K<w> := CyclotomicField(8);

> V := VectorSpace(K, 3);

> u := V ! [1 + w, w^ 2, w^ 4];

> u;

((1 + w) (w^2) -1)

> u[3];

-1

> u[3] := 1 + w - w^7;

> u;

((1 + w) (w^2) (1 + w + w^3))

> // We now demonstrate indexing a matrix space

> W := KMatrixSpace(K, 2, 3);

> l := W ! [1 - w, 1 + w, 1 + w + w^2, 0, 1 - w^7, 1 - w^3 + w^6];

> l;

[(1 - w) (1 + w) (1 + w + w^2)]

[0 (1 + w^3) (1 - w^2 - w^3)]

> l[2];

(0 (1 + w^3) (1 - w^2 - w^3))

> l[2,2];

(1 + w^3)

> m := l[2];

> m;

(0 (1 + w^3) (1 - w^2 - w^3))

> l[2] := u;

> l;

[(1 - w) (1 + w) (1 + w + w^2)]

[(1 + w) (w^2) -1]

> l[2, 3] := 1 + w - w^7;

594 MATRICES AND LINEAR ALGEBRA Part V

> l;

[(1 - w) (1 + w) (1 + w + w^2)]

[(1 + w) (w^2) (1 + w + w^3)]

28.3 Subspaces, Quotient Spaces and Homomorphisms

28.3.1 Construction of Subspaces
The conventions defining the presentations of subspaces and quotient spaces are as follows:

If V has been created using the function VectorSpace or MatrixSpace, then every
subspace and quotient space of V is given in terms of a basis consisting of elements of
V , i.e. by means of an embedded basis.

If V has been created using the function RModule, then every subspace and quotient
space of V is given in terms of a reduced basis.

sub< V | L >

Given a K-vector space V , construct the subspace U generated by the elements of
V specified by the list L. Each term Li of the list L must be an expression defining
an object of one of the following types:

(a)A sequence of n elements of K defining an element of V ;

(b)A set or sequence whose terms are elements of V ;

(c) A subspace of V ;

(d)A set or sequence whose terms are subspaces of V .

The generators stored for U consist of the vectors specified by terms Li together
with the stored generators for subspaces specified by terms of Li. Repetitions of
a vector and occurrences of the zero vector are removed (unless U is the trivial
subspace).

The constructor returns the subspace U and the inclusion homomorphism f :
U → V . If V is of embedded type, the basis constructed for U consists of elements
of V . If V is of standard type, a standard basis is constructed for U .

Morphism(U, V)

Assuming the vector space U has been created as a subspace of V , the function
returns the matrix defining the embedding of U into V .

Ch. 28 VECTOR SPACES 595

Example H28E8

The ternary Golay code is a six-dimensional subspace of the vector space K(11), where K is F3.
This subspace is first constructed in the space constructed by the VectorSpace function.

> K11 := VectorSpace(FiniteField(3), 11);

> G3 := sub< K11 |

> [1,0,0,0,0,0,1,1,1,1,1], [0,1,0,0,0,0,0,1,2,2,1],

> [0,0,1,0,0,0,1,0,1,2,2], [0,0,0,1,0,0,2,1,0,1,2],

> [0,0,0,0,1,0,2,2,1,0,1], [0,0,0,0,0,1,1,2,2,1,0] >;

> G3;

Vector space of degree 11, dimension 6 over GF(3)

Generators:

(1 0 0 0 0 0 1 1 1 1 1)

(0 1 0 0 0 0 0 1 2 2 1)

(0 0 1 0 0 0 1 0 1 2 2)

(0 0 0 1 0 0 2 1 0 1 2)

(0 0 0 0 1 0 2 2 1 0 1)

(0 0 0 0 0 1 1 2 2 1 0)

Echelonized basis:

(1 0 0 0 0 0 1 1 1 1 1)

(0 1 0 0 0 0 0 1 2 2 1)

(0 0 1 0 0 0 1 0 1 2 2)

(0 0 0 1 0 0 2 1 0 1 2)

(0 0 0 0 1 0 2 2 1 0 1)

(0 0 0 0 0 1 1 2 2 1 0)

Example H28E9

We now construct the ternary Golay code starting with the vector space constructed using the
RModule function. In this case the subspace is presented on a reduced basis.

> K11 := RModule(FiniteField(3), 11);

> G3 := sub< K11 |

> [1,0,0,0,0,0,1,1,1,1,1], [0,1,0,0,0,0,0,1,2,2,1],

> [0,0,1,0,0,0,1,0,1,2,2], [0,0,0,1,0,0,2,1,0,1,2],

> [0,0,0,0,1,0,2,2,1,0,1], [0,0,0,0,0,1,1,2,2,1,0] >;

> G3;

KModule G3 of dimension 6 with base ring GF(3)

> Basis(G3);

[

G3: (1 0 0 0 0 0),

G3: (0 1 0 0 0 0),

G3: (0 0 1 0 0 0),

G3: (0 0 0 1 0 0),

G3: (0 0 0 0 1 0),

G3: (0 0 0 0 0 1)

]

> f := Morphism(G3, K11);

596 MATRICES AND LINEAR ALGEBRA Part V

> f;

[1 0 0 0 0 0 1 1 1 1 1]

[0 1 0 0 0 0 0 1 2 2 1]

[0 0 1 0 0 0 1 0 1 2 2]

[0 0 0 1 0 0 2 1 0 1 2]

[0 0 0 0 1 0 2 2 1 0 1]

[0 0 0 0 0 1 1 2 2 1 0]

28.3.2 Construction of Quotient Vector Spaces

quo< V | L >

Given a K-vector space V , construct the quotient vector space W = V/U , where U
is the subspace generated by the elements of V specified by the list L. Each term Li

of the list L must be an expression defining an object of one of the following types:
(a)A sequence of n elements of K defining an element of V ;
(b)A set or sequence whose terms are elements of V ;
(c) A subspace of V ;
(d)A set or sequence whose terms are subspaces of V .
The generators constructed for U consist of the elements specified by terms Li

together with the stored generators for subspaces specified by terms of Li.
The constructor returns the quotient space W and the natural homomorphism

f : V →W .

V / U

Given a subspace U of the vector space V , construct the quotient space W of V by
U . If r is defined to be dim(V) − dim(U), then W is created as an r-dimensional
vector space relative to the standard basis.

The constructor returns the quotient space W and the natural homomorphism
f : V →W .

Example H28E10

We construct the quotient of K(11) by the Golay code.

> K11 := VectorSpace(FiniteField(3), 11);

> Q3, f := quo< K11 |

> [1,0,0,0,0,0,1,1,1,1,1], [0,1,0,0,0,0,0,1,2,2,1],

> [0,0,1,0,0,0,1,0,1,2,2], [0,0,0,1,0,0,2,1,0,1,2],

> [0,0,0,0,1,0,2,2,1,0,1], [0,0,0,0,0,1,1,2,2,1,0] >;

> Q3;

Full Vector space of degree 5 over GF(3)

> f;

Mapping from: ModTupFld: K11 to ModTupFld: Q3

Ch. 28 VECTOR SPACES 597

Example H28E11

If we wished to construct this quotient of K(11) as a subspace of the original space, we could do
so using the Complement function.

> K11 := VectorSpace(FiniteField(3), 11);

> S := sub< K11 |

> [1,0,0,0,0,0,1,1,1,1,1], [0,1,0,0,0,0,0,1,2,2,1],

> [0,0,1,0,0,0,1,0,1,2,2], [0,0,0,1,0,0,2,1,0,1,2],

> [0,0,0,0,1,0,2,2,1,0,1], [0,0,0,0,0,1,1,2,2,1,0] >;

> Complement(K11, S);

Vector space of degree 11, dimension 5 over GF(3)

Echelonized basis:

(0 0 0 0 0 0 1 0 0 0 0)

(0 0 0 0 0 0 0 1 0 0 0)

(0 0 0 0 0 0 0 0 1 0 0)

(0 0 0 0 0 0 0 0 0 1 0)

(0 0 0 0 0 0 0 0 0 0 1)

Example H28E12

We construct a subspace and its quotient space in Q(3×4).

> Q := RationalField();

> Q3 := VectorSpace(Q, 3);

> Q4 := VectorSpace(Q, 4);

> H34 := Hom(Q3, Q4);

> a := H34 ! [2, 0, 1, -1/2, 1, 0, 3/2, 4, 4/5, 6/7, 0, -1/3];

> b := H34 ! [1/2, -3, 0, 5, 1/3, 2, 4/5, 0, 5, -1, 5, 7];

> c := H34 ! [-1, 4/9, 1, -4, 5, -5/6, -3/2, 0, 4/3, 7, 0, 7/9];

> d := H34 ! [-3, 5, 1/3, -1/2, 2/3, 4, -2, 0, 0, 4, -1, 0];

> a, b, c, d;

[2 0 1 -1/2]

[1 0 3/2 4]

[4/5 6/7 0 -1/3]

[1/2 -3 0 5]

[1/3 2 4/5 0]

[5 -1 5 7]

[-1 4/9 1 -4]

[5 -5/6 -3/2 0]

[4/3 7 0 7/9]

[-3 5 1/3 -1/2]

[2/3 4 -2 0]

[0 4 -1 0]

> U := sub< H34 | a, b, c, d >;

> U:Maximal;

598 MATRICES AND LINEAR ALGEBRA Part V

KMatrixSpace of 3 by 4 GHom matrices and dimension 4 over Rational Field

Echelonized basis:

[1 0 0 0]

[-33872/30351 -5164/10117 42559/50585 11560/10117]

[-10514/10117 -121582/70819 -8476/10117 -48292/30351]

[0 1 0 0]

[-7797/10117 4803/10117 12861/101170 5940/10117]

[-7818/10117 -38214/70819 -7821/10117 -10967/10117]

[0 0 1 0]

[31261/10117 28101/20234 -2157/20234 18552/10117]

[161802/50585 291399/70819 20088/10117 33419/10117]

[0 0 0 1]

[-8624/30351 7445/10117 7696/50585 2408/10117]

[32388/50585 -3562/10117 6272/10117 27580/30351]

> W := H34/U;

> W;

Full Vector space of degree 8 over Rational Field

28.4 Changing the Coefficient Field

The standard constructions described in section 31.5 for R-modules may be applied to
vector spaces. In addition, we may extend or restrict the field of scalars, using the functions
described here.

ExtendField(V, L)

Given a K-vector space V , with K a field and L an extension of K, construct the
L-vector space U = V ⊗K L. The function returns

(a) the vector space U ; and

(b)the inclusion homomorphism φ : V → U .

RestrictField(V, L)

Given a K-vector space V , with K a field and L a subfield of K, construct the
L-vector space U consisting of those vectors of V having all of their components
lying in the subfield L. The function returns

(a) the vector space U ; and

(b)the restriction homomorphism φ : V → U .

Ch. 28 VECTOR SPACES 599

VectorSpace(V, F)

KSpace(V, F)

KMatrixSpace(V, F)

KModule(V, F)

Given an n-dimensional K-vector space V , and a subfield F of a finite field or
cyclotomic field K such that K has degree m over F , construct a vector space U of
dimension mn over the field F . The function returns
(a) the vector space U ; and
(b)a mapping φ : V → U such that a vector (v1, . . . , vi, . . . , vn) of V is mapped

into the vector

(u11, . . . , u1n, . . . , ui1, . . . , uin, . . . , un1, . . . unn),

where (ui1, . . . , uin) is the field element vi written as a vector over the subfield
F .

28.5 Basic Operations

28.5.1 Accessing Vector Space Invariants

V . i

Given an vector space V and a positive integer i, return the i-th generating element
of V .

CoefficientField(V)

BaseField(V)

Given a K-vector space V , return the field K.

Degree(V)

Given a K-vector space V which is a subspace of K(n), return n.

Degree(u)

Given an vector u belonging to a subspace of the vector space K(n), return n.

Dimension(V)

The dimension of the vector space V .

Generators(V)

The generators for the vector space V , returned as a set.

600 MATRICES AND LINEAR ALGEBRA Part V

NumberOfGenerators(M)

Ngens(M)

The number of generators for the vector space V .

OverDimension(V)

Given a K-vector space V which is a subspace of K(n), return n.

OverDimension(u)

Given an vector u belonging to a subspace of the vector space K(n), return n.

Generic(V)

The generic vector space containing V , i.e. the full vector space in which V is
naturally embedded.

Parent(V)

The power structure for the vector space V (the set consisting of all finite dimen-
sional vector spaces).

28.5.2 Membership and Equality

v in V

Returns true if the element v lies in the vector space V , where v and V belong to
a common space.

v notin V

Returns true if the element v does not lie in the vector space V , where v and V
belong to a common space.

U subset V

Returns true if the K-vector space U is contained in the K-vector space V , where
U and V are subspaces of some common vector space.

U notsubset V

Returns true if the K-vector space U is not contained in the K-vector space V ,
where U and V are subspaces of some common vector space.

U eq V

Returns true if the subspaces U and V are equal, where U and V belong to a
common vector space.

U ne V

Returns true if the subspaces U and V are not equal, where U and V belong to a
common vector space.

Ch. 28 VECTOR SPACES 601

28.5.3 Operations on Subspaces

U + V

Sum of the subspaces U and V , where U and V must be subspaces of a common
vector space.

U meet V

Intersection of the subspaces U and V , where U and V must be subspaces of a
common vector space.

U meet:= V

Replace U with the intersection of the subspaces U and V , where U and V must be
subspaces of a common vector space.

&meet S

Intersection of the subspaces of the set or sequence S, which must be subspaces of
a common vector space.

TensorProduct(U, V)

The tensor (Kronecker) product of the vector spaces U and V , generated by all the
tensor products of elements of U by elements of V . The resulting vector space has
degree equal to the product of the degrees of U and V .

Complement(V, U)

Given a subspace U of the vector space V , construct a complement for U in V (a
subspace of V).

Transversal(V, U)

Given a subspace U of the vector space V over a finite field, return a transversal for
U in V as a set of vectors.

28.6 Reducing Vectors Relative to a Subspace

ReduceVector(W, v)

(Function.) Given a vector v from a tuple module V and a submodule W of V ,
return the reduction of v with respect to W (that is, the canonical representative of
the coset v +W).

ReduceVector(W, ∼v)
(Procedure.) Given a vector v from a tuple module V and a submodule W of V , re-
place v with its reduction of with respect to W (that is, the canonical representative
of the coset v +W).

DecomposeVector(U, v)

Given a vector v from a tuple module V and a submodule U of V , return the unique
u in U and w in the complement to U in U+ < v > such that v = u+ w.

602 MATRICES AND LINEAR ALGEBRA Part V

28.7 Bases

This section is concerned with the construction of bases for vector spaces.

VectorSpaceWithBasis(Q)

VectorSpaceWithBasis(a)

KSpaceWithBasis(Q)

KSpaceWithBasis(a)

KModuleWithBasis(Q)

Create a vector space having as basis the terms of B (rows of a).

Basis(V)

The current basis for the vector space V , returned as a sequence of vectors.

BasisElement(V, i)

The i-th basis element for the vector space V .

BasisMatrix(V)

The current basis for the vector space V , returned as the rows of a matrix belonging
to the matrix space K(m×n), where m is the dimension of V and n is the over-
dimension of V .

Coordinates(V, v)

Given a vector v belonging to the r-dimensional K-vector space V , with basis
v1, . . . , vr, return a sequence [a1, . . . , ar] of elements of K giving the coordinates
of v relative to the V -basis: v = a1 ∗ v1 + · · ·+ ar ∗ vr.

Dimension(V)

The dimension of the vector space V .

ExtendBasis(Q, U)

Given a sequenceQ containing r linearly independent vectors belonging to the vector
space U , extend the vectors of Q to a basis for U . The basis is returned in the form
of a sequence T such that T [i] = Q[i], i = 1, . . . r.

ExtendBasis(U, V)

Given an r-dimensional subspace U of the vector space V , return a basis for V in
the form of a sequence T of elements such that the first r elements correspond to
the given basis vectors for U .

IsIndependent(S)

Given a set S of elements belonging to the vector space V , return true if the elements
of S are linearly independent.

Ch. 28 VECTOR SPACES 603

IsIndependent(Q)

Given a sequence Q of elements belonging to the vector space V , return true if the
terms of Q are linearly independent.

Example H28E13

These operations will be illustrated in the context of the subspace G3 of the 11-dimensional vector
space over F3 defining the ternary Golay code.

> V11 := VectorSpace(FiniteField(3), 11);

> G3 := sub< V11 | [1,0,0,0,0,0,1,1,1,1,1], [0,1,0,0,0,0,0,1,2,2,1],

> [0,0,1,0,0,0,1,0,1,2,2], [0,0,0,1,0,0,2,1,0,1,2],

> [0,0,0,0,1,0,2,2,1,0,1], [0,0,0,0,0,1,1,2,2,1,0] >;

> Dimension(G3);

6

> Basis(G3);

[

(1 0 0 0 0 0 1 1 1 1 1),

(0 1 0 0 0 0 0 1 2 2 1),

(0 0 1 0 0 0 1 0 1 2 2),

(0 0 0 1 0 0 2 1 0 1 2),

(0 0 0 0 1 0 2 2 1 0 1),

(0 0 0 0 0 1 1 2 2 1 0)

]

> S := ExtendBasis(G3, V11);

> S;

[

(1 0 0 0 0 0 1 1 1 1 1),

(0 1 0 0 0 0 0 1 2 2 1),

(0 0 1 0 0 0 1 0 1 2 2),

(0 0 0 1 0 0 2 1 0 1 2),

(0 0 0 0 1 0 2 2 1 0 1),

(0 0 0 0 0 1 1 2 2 1 0),

(0 0 0 0 0 0 1 0 0 0 0),

(0 0 0 0 0 0 0 1 0 0 0),

(0 0 0 0 0 0 0 0 1 0 0),

(0 0 0 0 0 0 0 0 0 1 0),

(0 0 0 0 0 0 0 0 0 0 1)

]

> C3:= Complement(V11, G3);

> C3;

Vector space of degree 11, dimension 5 over GF(3)

Echelonized basis:

(0 0 0 0 0 0 1 0 0 0 0)

(0 0 0 0 0 0 0 1 0 0 0)

(0 0 0 0 0 0 0 0 1 0 0)

(0 0 0 0 0 0 0 0 0 1 0)

(0 0 0 0 0 0 0 0 0 0 1)

604 MATRICES AND LINEAR ALGEBRA Part V

> G3 + C3;

Full Vector space of degree 11 over GF(3)

> G3 meet C3;

Vector space of degree 11, dimension 0 over GF(3)

> x := Random(G3);

> x;

(1 1 2 0 0 1 1 1 1 2 0)

> c := Coordinates(G3, x);

> c;

[1, 1, 2, 0, 0, 1]

> G3 ! &+[c[i] * G3.i : i in [1 .. Dimension(G3)]];

(1 1 2 0 0 1 1 1 1 2 0)

28.8 Operations with Linear Transformations
Throughout this section, V is a subspace of K(m), W is a subspace of K(n) and a is a
linear transformation belonging to HomK(V,W). See also the chapter on general matrices
for many other functions applicable to such matrices (e.g., EchelonForm).

v * a

a(v)

Given an element v belonging to the vector space V , and an element a belonging to
HomK(V,W), return the image of v under the linear transformation a as an element
of the vector space W .

a * b

Given a matrix a belonging to K(m×n) and a matrix b belonging to K(n×p), for
some integers m, n, p, form the product of a and b as an element of K(m×p).

Domain(a)

The domain of the linear transformation a belonging to HomK(V,W), returned as
a subspace of V .

Codomain(a)

The codomain of the linear transformation a belonging to HomK(V,W), returned
as a subspace of W .

Image(a)

The image of the linear transformation a belonging to HomK(V,W), returned as a
subspace of W .

Rank(a)

The dimension of the image of the linear transformation a, i.e., the rank of the
matrix a.

Ch. 28 VECTOR SPACES 605

Kernel(a)

NullSpace(a)

The kernel of the linear transformation a belonging to HomK(V,W), returned as a
subspace of V .

Cokernel(a)

The cokernel of the linear transformation a belonging to HomK(V,W).

Example H28E14

We illustrate the map operations for matrix spaces in the following example:

> Q := RationalField();

> Q2 := VectorSpace(Q, 2);

> Q3 := VectorSpace(Q, 3);

> Q4 := VectorSpace(Q, 4);

> H23 := Hom(Q2, Q3);

> H34 := Hom(Q3, Q4);

> x := Q2 ! [-1, 2];

> a := H23 ! [1/2, 3, 0, 2/3, 4/5, -1];

> a;

[1/2 3 0]

[2/3 4/5 -1]

> Domain(a);

Full Vector space of degree 2 over Rational Field

> Codomain(a);

Full Vector space of degree 3 over Rational Field

> x*a;

(5/6 -7/5 -2)

> b := H34 ! [2, 0, 1, -1/2, 1, 0, 3/2, 4, 4/5, 6/7, 0, -9/7];

> b;

[2 0 1 -1/2]

[1 0 3/2 4]

[4/5 6/7 0 -9/7]

> c := a*b;

> c;

[4 0 5 47/4]

[4/3 -6/7 28/15 436/105]

> x*c;

(-4/3 -12/7 -19/15 -1447/420)

> Image(c);

Vector space of degree 4, dimension 2 over Rational Field

Echelonized basis:

(1 0 5/4 47/16)

(0 1 -7/30 -11/40)

> Kernel(c);

Vector space of degree 2, dimension 0 over Rational Field

606 MATRICES AND LINEAR ALGEBRA Part V

> Rank(c);

2

> EchelonForm(c);

[1 0 5/4 47/16]

[0 1 -7/30 -11/40]

29 POLAR SPACES
29.1 Introduction 609

29.2 Reflexive Forms 609

29.2.1 Quadratic Forms 610

29.3 Inner Products 611

DotProduct(u, v) 611
DotProductMatrix(W) 611
GramMatrix(V) 611
InnerProductMatrix(V) 612

29.3.1 Orthogonality 613

OrthogonalComplement(V, X : -) 613
Radical(V : -) 613
IsNondegenerate(V) 613
SingularRadical(V) 613
IsNonsingular(V) 613

29.4 Isotropic and Singular Vectors and
Subspaces 614

HasIsotropicVector(V) 614
HasSingularVector(V) 614
HyperbolicPair(V, u) 614
HyperbolicSplitting(V) 615
IsTotallyIsotropic(V) 616
IsTotallySingular(V) 616
WittDecomposition(V) 616
WittIndex(V) 616
MaximalTotallyIsotropicSubspace(V) 616
MaximalTotallySingularSubspace(V) 616

29.5 The Standard Forms 617

StandardAlternatingForm(n,R) 617
StandardAlternatingForm(n,q) 617
StandardPseudoAlternatingForm(n,K) 617
StandardPseudoAlternatingForm(n,q) 617
StandardHermitianForm(n,K) 618
StandardHermitianForm(n,q) 618
StandardQuadraticForm(n, K : -) 618
StandardQuadraticForm(n, q : -) 618
StandardSymmetricForm(n, K) 619
StandardSymmetricForm(n, q : -) 619

29.6 Constructing Polar Spaces . . 620

IsPolarSpace(V) 620
PolarSpaceType(V) 620

29.6.1 Symplectic Spaces 621

SymplecticSpace(J) 621
IsSymplecticSpace(W) 621
IsPseudoSymplecticSpace(W) 621

29.6.2 Unitary Spaces 621

UnitarySpace(J, sigma) 621
IsUnitarySpace(W) 621
ConjugateTranspose(M, sigma) 622

29.6.3 Quadratic Spaces 622

QuadraticSpace(Q) 622
QuadraticSpace(f) 622
SymmetricToQuadraticForm(J) 622
QuadraticFormMatrix(V) 622
QuadraticNorm(v) 622
QuadraticFormPolynomial(V) 623
OrthogonalSum(V, W) 623
TotallySingularComplement(V, U, W) 623
Discriminant(V) 623
ArfInvariant(V) 623
DicksonInvariant(V, f) 624
SpinorNorm(V, f) 624
HyperbolicBasis(U, B, W) 624
OrthogonalReflection(a) 624
RootSequence(V, f) 624
ReflectionFactors(V, f) 624
SiegelTransformation(u, v) 624

29.7 Isometries and Similarities . . 625

29.7.1 Isometries 625

IsIsometry(U, V, f) 625
IsIsometry(f) 625
IsIsometry(V, g) 625
IsIsometric(V, W) 625
CommonComplement(V, U, W) 627
ExtendIsometry(V, U, f) 627
IsometryGroup(V) 627

29.7.2 Similarities 628

IsSimilarity(U, V, f) 628
IsSimilarity(f) 628
IsSimilarity(V, g) 629
SimilarityGroup(V) 629

29.8 Wall Forms 629

WallForm(V, f) 629
WallIsometry(V, I, mu) 629
WallDecomposition(V, f) 629
SemiOrthogonalBasis(V) 629

29.9 Invariant Forms 630

InvariantBilinearForms(G) 630
InvariantQuadraticForms(G) 631
SemilinearDual(M, mu) 632
InvariantSesquilinearForms(G) 632
InvariantFormBases(G) 633

29.9.1 Semi-invariant Forms 633

TwistedDual(M, lambda) 634
SemiInvariantBilinearForms(G) 634
SemiInvariantQuadraticForms(G) 634
TwistedSemilinearDual(M, lambda, mu) 634
SemiInvariantSesquilinearForms(G) 634

29.10 Bibliography 635

608 MATRICES AND LINEAR ALGEBRA Part V

Chapter 29

POLAR SPACES

29.1 Introduction
This chapter describes Magma functions for working with quadratic, bilinear and sesqui-
linear forms defined on vector spaces. The emphasis is on vector spaces defined over
finite fields but in some instances the functions apply more widely. For quadratic forms
defined on lattices see Chapter 32. For the interpretation of reflexive forms as algebras
with involution see Chapter 87. General references for this material are [Bou07, Tay92].

29.2 Reflexive Forms
Let V be a vector space of dimension n over a field K. If σ is an automorphism of K, a
σ-sesquilinear form on the vector space V over K is a map β : V × V → K such that

β(u1 + u2, v) = β(u1, v) + β(u2, v),
β(u, v1 + v2) = β(u, v1) + β(u, v2)

and
β(au, bv) = aσ(b)β(u, v).

for all u, u1, u2, v, v1, v2 ∈ V and all a, b ∈ K. If σ is the identity, the form is said to be
bilinear.

A linear transformation g of V is an isometry if g preserves β; it is a similarity if it
preserves β up to a non-zero scalar multiple.

A σ-sesquilinear form β is reflexive if for all u, v ∈ V , β(u, v) = 0 implies β(v, u) =
0. Any non-zero multiple of a reflexive form is again reflexive with the same group of
isometries. By a theorem of Brauer [Bra36] (but sometimes referred to as the Birkhoff–
von Neumann theorem), up to a non-zero scalar multiple, there are three types of non-
degenerate reflexive forms:

Alternating. In this case σ is the identity, β(u, u) = 0 for all u ∈ V and consequently
β(u, v) = −β(v, u) for all u, v ∈ V . The group of isometries is a symplectic group.
Symmetric. In this case σ is the identity and β(u, v) = β(v, u) for all u, v ∈ V . If the
characteristic of K is not two, the group of isometries is an orthogonal group. If the
characteristic is two, the form is either alternating or pseudo-alternating (see below).
Hermitian. In this case σ is an automorphism of order two and β(u, v) = σβ(v, u) for
all u, v ∈ V . The group of isometries is a unitary group.

If V is a vector space V and if β is a reflexive form defined on V , the partially ordered
set of totally isotropic subspaces with respect to β is often referred to as a polar space.

610 MATRICES AND LINEAR ALGEBRA Part V

Similarly, there are polar spaces associated with quadratic forms (see Section 29.2.1). But
throughout this chapter by polar space we shall simply mean a vector space furnished with
either a reflexive σ-sesquilinear form or a quadratic form. See [Bue95, Chap. 2] for an
account of polar spaces in a more general context.

Let K0 be the fixed field of σ. Multiplying an alternating, symmetric or hermitian form
by a non-zero element of K0 leaves the type of the form unchanged.

However, multiplying an hermitian form by a non-zero element of K produces a
sesquilinear form ξ and an element ε ∈ K such that for all u, v ∈ V , ξ(v, u) = εσξ(u, v),
where εσ(ε) = 1. In this case ξ is said to be ε-hermitian.

Skew-hermitian. A reflexive σ-sesquilinear form is skew-hermitian if the order of σ
is two and ξ(v, u) = −σξ(v, u) for all u, v ∈ V . If β is hermitian and if d ∈ K is chosen
so that d 6= σ(d), then e = d − σ(d) satisfies σ(e) = −e. Thus ξ(u, v) = eβ(u, v) is
skew-hermitian. The group of isometries of ξ coincides with the group of isometries of
β and it is therefore a unitary group.

In the case of fields of characteristic two there is no distinction between hermitian and
skew-hermitian forms and moreover, every alternating form is symmetric.

Pseudo-alternating. A symmetric form (in characteristic two) which is not alternat-
ing is said to be pseudo-alternating.

The three types of forms—alternating, symmetric and hermitian—correspond to the
three types of classical groups of isometries: symplectic, orthogonal and unitary. But this
is not quite the whole story because it does not include orthogonal groups over fields of
characteristic two. In order to include these groups it is necessary to consider quadratic
forms in addition to symmetric bilinear forms.

29.2.1 Quadratic Forms
If β is a bilinear form, a quadratic form with polar form β is a function Q : V → K such
that

Q(av) = a2Q(v)
and

β(u, v) = Q(u+ v)−Q(u)−Q(v)

for all u, v ∈ V and all a ∈ K. We have β(v, v) = 2Q(v) and therefore, if the characteristic
of K is not two, β determines Q.

We extend the notion of polar space to include vector spaces V with an associated
quadratic form Q. The pair (V,Q) is an orthogonal geometry and V is a quadratic space.

Ch. 29 POLAR SPACES 611

29.3 Inner Products

Every vector space V in Magma created via the VectorSpace intrinsic (or its synonym
KSpace) has an associated bilinear form which is represented by a matrix and which can be
accessed via InnerProductMatrix(V) or via the attribute ip form. By default the inner
product matrix is the identity. If the dimension of V is n, then any n× n matrix defined
over the base field of V can serve as the inner product matrix by passing it to VectorSpace
as an additional parameter.

If e1, e2, . . . , en is a basis for V , the matrix of the form β with respect to this basis is
J :=

(
β(ei, ej)

)
.

Example H29E1

> K := GF(11);

> J := Matrix(K,3,3,[1,2,3, 4,5,6, 7,8,9]);

> V := VectorSpace(K,3,J);

> InnerProductMatrix(V);

[1 2 3]

[4 5 6]

[7 8 9]

A vector space may also have an associated quadratic form. This can be assigned
via the function QuadraticSpace described in Section 29.6.3 and, if assigned, it can be
accessed as the return value of QuadraticFormMatrix.

In addition, in order to accommodate hermitian forms, a vector space of type ModTupFld
has an attribute Involution. This attribute is intended to hold an automorphism (of order
two) of the base field.

DotProduct(u, v)

If V is the generic space of the parent of u and v, let σ be the field automor-
phism V‘Involution if this attribute is assigned or the identity automorphism if
V‘Involution is not assigned. If J is the inner product matrix of V , the expression
DotProduct(u,v) evaluates to uJσ(vtr). That is, it returns β(u, v), where β is a
bilinear or sesquilinear form on V .

DotProductMatrix(W)

The matrix of inner products of the vectors in the sequence W . The inner products
are calculated using DotProduct and therefore take into account any field automor-
phism attached to the Involution attribute of the generic space of the universe of
S.

GramMatrix(V)

If B is the basis matrix of V and if J is the inner product matrix, this function
returns BJBtr. In this case the Involution attribute is ignored.

612 MATRICES AND LINEAR ALGEBRA Part V

InnerProductMatrix(V)

The inner product matrix attached to the generic space of V . This is the attribute
V‘ip form.

Example H29E2

This example illustrates the difference between GramMatrix and InnerProductMatrix. The func-
tion GramMatrix uses the echelonised basis of the subspace W . To obtain the matrix of inner
products between a given list of vectors, use DotProductMatrix.

> K<a> := QuadraticField(-2);

> J := Matrix(K,3,3,[1,2,1, 2,1,0, 1,0,2]);

> V := VectorSpace(K,3,J);

> W := sub<V| [a,a,a], [1,2,3]>;

> InnerProductMatrix(W);

[1 2 1]

[2 1 0]

[1 0 2]

> GramMatrix(W);

[1 0]

[0 9]

> DotProductMatrix([W.1,W.2]);

[-20 19*a]

[19*a 37]

Example H29E3

Continuing the previous example, the vector space V does not have the attribute Involution

assigned and therefore DotProduct uses the symmetric bilinear form represented by the inner
product matrix J . However, the field K has a well-defined operation of complex conjugation and
so InnerProduct uses the hermitian form represented by J .

> u := W.1+W.2;

> DotProduct(u,u);

38*a + 17

> InnerProduct(u,u);

57

Ch. 29 POLAR SPACES 613

29.3.1 Orthogonality
If β is any bilinear or sesquilinear form, the vectors u and v are orthogonal if β(u, v) = 0.
The left orthogonal complement of a subset X of V is the subspace

⊥X := {u ∈ V | β(u, x) = 0 for all x ∈ X }

and the right orthogonal complement of W is

X⊥ := {u ∈ V | β(x, u) = 0 for all x ∈ X }.

If β is reflexive, then ⊥X = X⊥.

OrthogonalComplement(V, X : parameters)

Right BoolElt Default : false

The default value is the left orthogonal complement of X in V . To obtain the right
orthogonal complement set Right to true.

Radical(V : parameters)

Right BoolElt Default : false

The left radical of the inner product space V , namely ⊥V . To obtain the right
radical set Right to true.

A bilinear or sesquilinear form β is non-degenerate if rad(V) = 0, where V is the polar
space of β.

IsNondegenerate(V)

Returns true if the determinant of the matrix of inner products of the basis vec-
tors of V is non-zero, otherwise false. This function takes into account the field
automorphism, if any, attached to the Involution attribute of the generic space
of V .

If V is a quadratic space over a perfect field of characteristic 2, the restriction of the
quadratic form Q to the radical is a semilinear functional (with respect to x 7→ x2) whose
kernel is the singular radical of V . A quadratic space is non-singular if its singular radical
is zero.

SingularRadical(V)

The kernel of the restriction of the quadratic form of the quadratic space V to the
radical of V .

IsNonsingular(V)

Returns true if V is a non-singular quadratic space, otherwise false.

614 MATRICES AND LINEAR ALGEBRA Part V

29.4 Isotropic and Singular Vectors and Subspaces
Let β be a reflexive bilinear or a sesquilinear form on the vector space V . A non-zero
vector v is isotropic (with respect to β) if β(v, v) = 0. If Q is a quadratic form, a non-zero
vector v is singular if Q(v) = 0.

HasIsotropicVector(V)

Determine whether the polar space V contains an isotropic vector; if it does, the
second return value is a representative.

HasSingularVector(V)

Determine whether the quadratic space V contains a singular vector; if it does, the
second return value is a representative.

An ordered pair of vectors (u, v) such that u and v are isotropic and β(u, v) = 1 is a
hyperbolic pair. If V is a quadratic space, u and v are required to be singular.

HyperbolicPair(V, u)

Given a singular or isotropic vector u which is not in the radical, return a vector v
such that (u, v) is a hyperbolic pair.

If V is the direct sum of subspaces U and W and if β(u,w) = 0 for all u ∈ U and all
w ∈W , we write V = U ⊥W .

A vector space V furnished with a reflexive form β has a direct sum decomposition
V = U ⊥ rad(V), where U is any complement to rad(V) in V .

If V is a polar space, it has a hyperbolic splitting ; namely, it is a direct sum

V = L1 ⊥ L2 ⊥ · · · ⊥ Lm ⊥W

where the Li are 2-dimensional subspaces spanned by hyperbolic pairs and m is maximal.
If the form defining the polar space is non-degenerate and not pseudo-alternating, then
every isotropic (resp. singular) vector belongs to a hyperbolic pair and consequently W
does not contain any isotropic (resp. singular) vectors. In this case the integer m is the
Witt index of the form and W is called the anisotropic component of the splitting. A
non-degenerate form on V is said to have maximal Witt index if dimV is 2m or 2m+ 1.

Example H29E4

The vector space of dimension 2 over F2 is pseudo-symplectic (the form is the identity matrix). It
has three non-zero elements only one of which is isotropic. This confirms that not every isotropic
vector in a non-degenerate pseudo-symplectic space belongs to a hyperbolic pair.

> V := VectorSpace(GF(2),2);

> IsPseudoSymplecticSpace(V);

true

> IsNondegenerate(V);

true

> { v : v in V | v ne V!0 and DotProduct(v,v) eq 0};

Ch. 29 POLAR SPACES 615

{

(1 1)

}

HyperbolicSplitting(V)

A maximal list of pairwise orthogonal hyperbolic pairs together with a basis for the
orthogonal complement of the subspace they span. This function requires the form
to be non-degenerate and, except for symplectic spaces, the base ring of V must be
a finite field.

Example H29E5

Find the hyperbolic splitting of a polar space defined by a symmetric bilinear form. In this
example W is a non-degenerate subspace of the polar space V .

> K<a> := GF(7,2);

> J := Matrix(K,3,3,[1,2,1, 2,1,0, 1,0,2]);

> V := VectorSpace(K,3,J);

> W := sub<V| [a,a,a], [1,2,3]>;

> IsNondegenerate(W);

true

> HyperbolicSplitting(W);

<[

[

(a^20 1 a^39),

(a^12 2 a)

]

], []>

Example H29E6

The polar space V of the previous example is degenerate and so HyperbolicSplitting cannot be
applied directly. Instead, we first split off the radical.

> IsNondegenerate(V);

false

> R := Radical(V);

> H := (Dimension(R) eq 0) select V else

> sub<V|[e : e in ExtendBasis(B,V) | e notin B] where B is Basis(R)>;

> HyperbolicSplitting(H);

<[

[

(0 a^20 1),

(0 a^12 2)

]

], []>

616 MATRICES AND LINEAR ALGEBRA Part V

A subspace W of a polar space V is totally isotropic if every non-zero vector of W is
isotropic. If V is a quadratic space, W is totally singular if every non-zero vector of W is
singular.

IsTotallyIsotropic(V)

Returns true if the polar space V is totally isotropic, otherwise false.

IsTotallySingular(V)

Returns true if the quadratic space V is totally singular, otherwise false.

Suppose that V = L1 ⊥ · · · ⊥ Lm ⊥ W ⊥ rad(V) where the Li are 2-dimensional sub-
spaces spanned by hyperbolic pairs (ei, fi) for 1 ≤ i ≤ m. The subspaces P = 〈e1, . . . , em〉
and N = 〈f1, . . . , fm〉 are totally isotropic and we call the 4-tuple (rad(V), P,N,W) a
Witt decomposition of V . A polar space is hyperbolic if it is the direct sum of two totally
isotropic (resp. totally singular) subspaces; in Bourbaki [Bou07, p. 66] the corresponding
form is said to be neutral.

WittDecomposition(V)

The Witt decomposition of the space V .

WittIndex(V)

The Witt index of the polar space V ; namely half the dimension of a maximal
hyperbolic subspace.

MaximalTotallyIsotropicSubspace(V)

A representative maximal totally isotropic subspace of the polar space V .

MaximalTotallySingularSubspace(V)

A representative maximal totally singular subspace of the quadratic space V .

Ch. 29 POLAR SPACES 617

29.5 The Standard Forms

This section describes the “standard” alternating, hermitian, quadratic and symmetric
forms defined on a finite dimensional vector space over a field. These are forms of maximal
Witt index together with the quadratic forms of non-maximal Witt index over finite fields
(see Section 29.4). Except for the orthogonal groups the standard forms are preserved by
the Magma implementation of the classical groups over finite fields.

If J is the matrix of the form, then X preserves the form if XJXtr = J .

If β is a non-degenerate alternating form, then rad(V) and the anisotropic component
of a hyperbolic splitting are zero. Thus the dimension of V must be even and V has a
basis of mutually orthogonal hyperbolic pairs. In particular, up to equivalence, there is
only one non-degenerate alternating form on V .

StandardAlternatingForm(n,R)

StandardAlternatingForm(n,q)

If n = 2m, this function returns the n × n matrix of a non-degenerate alternating
form over the ring R (or the field of q elements) such that if e1, e2, . . . , e2m is the
standard basis, then (e1, e2m), (e2, e2m−1), . . . , (em, em+1) are mutually orthogonal
hyperbolic pairs.

The group of isometries of this form is the symplectic group Sp(2m,R).

Example H29E7

Create a symplectic geometry with the standard alternating form and then check that every
non-zero vector is isotropic.

> K := GF(5);

> J := StandardAlternatingForm(4,K);

> J;

[0 0 0 1]

[0 0 1 0]

[0 4 0 0]

[4 0 0 0]

> V := VectorSpace(K,4,J);

> forall{ v : v in V | DotProduct(v,v) eq 0 };

true

StandardPseudoAlternatingForm(n,K)

StandardPseudoAlternatingForm(n,q)

The matrix of the standard pseudo-alternating form of degree n over the field K (or
the finite field of order q), which must have characteristic 2; that is, a symmetric
form which is not alternating.

618 MATRICES AND LINEAR ALGEBRA Part V

StandardHermitianForm(n,K)

StandardHermitianForm(n,q)

The first return value of this function is the n × n anti-diagonal matrix (δi,n−i+1)
over the field K (or the field of q2 elements). If K is the finite field of q2 elements,
the second return value is the field involution K → K : x 7→ xq. If K is a field
which admits the operation of complex conjugation, the second return value is the
field automorphism which sends each element to its complex conjugate.

If β is a non-degenerate hermitian form over a finite field, then rad(V) is zero
and the dimension of the anisotropic component of a hyperbolic splitting is either 1
or 0.

In the finite field case, the group of isometries of this form is GU(n, q).

Suppose that β is the polar form of a quadratic form Q defined on the vector space V .
A vector v ∈ V is said to be singular if Q(v) = 0. A subspace W is totally singular is
Q(w) = 0 for all w ∈ W . The Witt index of Q is the dimension of a maximal totally
singular subspace. If the characteristic of the field is not 2 a subspace is totally singular if
and only if it is totally isotropic with respect to β and hence in this case the Witt index
of Q coincides with the Witt index of β.

StandardQuadraticForm(n, K : parameters)

StandardQuadraticForm(n, q : parameters)

Minus BoolElt Default : false

Variant MonStgElt Default : “Default”
An n × n upper triangular matrix representing a quadratic form over the field K
(or the field of order q). The default option is to return a form of maximal Witt
index, namely the upper triangular matrix whose non-zero entries are δi,n−i+1, where
1 ≤ i ≤ (n+ 1)/2.

If Minus is true and n = 2m, this function returns a form whose Witt index is
m− 1. This option is available only for finite fields.

For historical reasons, over finite fields of odd characteristic, the (m,m) element
in the quadratic form used by the orthogonal groups of odd degree is 1/4.

If the K is a finite field and W is the anisotropic component of a hyperbolic
splitting of a form of Minus type, then W has basis vectors e and f such that
Q(e) = β(e, f) = 1 and Q(f) = a, where x2 + x+ a is an irreducible polynomial in
F [x]. This is the form returned by the Default option. If the characteristic of K is
two, this is also returned by the Revised option. However, if the characteristic of
K is odd, the Revised option returns a form corresponding to an orthonormal basis
for W . The Original option returns the form preserved by OldGOMinus(2*m,q).

Example H29E8

Construct a standard quadratic form of minus type.

> K<z> := GF(7,2);

Ch. 29 POLAR SPACES 619

> Q := StandardQuadraticForm(4,49 : Minus);

> Q;

[0 0 0 1]

[0 1 1 0]

[0 0 z^23 0]

[0 0 0 0]

> _<x> := PolynomialRing(K);

> a := Q[3,3];

> IsIrreducible(x^2+x+a);

true

Example H29E9

Compare the revised form with the standard form: the forms Q above and QR below have different
entries in the central 2× 2 block.

> QR := StandardQuadraticForm(4,49 : Minus, Variant := "Revised");

> QR;

[0 0 0 1]

[0 4 0 0]

[0 0 z^11 0]

[0 0 0 0]

StandardSymmetricForm(n, K)

StandardSymmetricForm(n, q : parameters)

Minus BoolElt Default : false

Variant MonStgElt Default : “Default”

In all casses this is Q + Qtr, where Q is the corresponding standard quadratic
form, as defined above.

620 MATRICES AND LINEAR ALGEBRA Part V

29.6 Constructing Polar Spaces

If J is an n × n matrix, the command VectorSpace(K,n,J) creates a vector space of
dimension n over K with a bilinear form whose matrix is J .

The default form attached to every vector space in Magma is the symmetric form
whose matrix is the identity matrix.

A vector space V is recognised as a polar space if any of the following conditions apply.
(There is no check to ensure that the inner product matrix is is non-degenerate.)

1. There is a quadratic form attached to V .

2. There is a field involution attached to V and the inner product matrix of V is hermitian
or skew-hermitian with respect to this involution.

3. The inner product matrix of V is symmetric or alternating.

Thus a vector space with a symmetric inner product matrix but no quadratic form
attached is a polar space. If the characteristic of the field is 2 and the form is not alternating
it is a pseudo-symplectic space, otherwise we shall call it an orthogonal space to distinguish
it from quadratic spaces.

IsPolarSpace(V)

Check if the vector space V is a quadratic space or if the Gram matrix of V is a
reflexive form.

PolarSpaceType(V)

The type of the polar space V , returned as a string.

Example H29E10

Create the standard vector space of dimension 4 over the rational field and check if it is a polar
space.

> V := VectorSpace(Rationals(),4);

> IsPolarSpace(V);

true

> PolarSpaceType(V);

orthogonal space

Ch. 29 POLAR SPACES 621

29.6.1 Symplectic Spaces

SymplecticSpace(J)

The symplectic space of dimension n defined by the n× n matrix J . This function
checks to ensure that J is alternating.

IsSymplecticSpace(W)

Returns true if the Involution attribute of the generic vector space W is not
assigned and the space carries an alternating form, otherwise false.

Note that a quadratic space over a field of characteristic 2 satisfies these condi-
tions and consequently this function will return true for these spaces.

IsPseudoSymplecticSpace(W)

Given a vector space W over a finite field, this intrinsic returns true if the base field
has characteristic 2, the Involution attribute is not assigned to the generic space
and the form is symmetric but not alternating, otherwise false.

29.6.2 Unitary Spaces
In order to accommodate hermitian forms it is necessary to assign a field automorphism
of order two to the Involution attribute of the vector space.

Thus a unitary space is characterised as a vector space V whose ambient space,
Generic(V), has the attribute Involution and whose inner product matrix is either her-
mitian or skew hermitian.

UnitarySpace(J, sigma)

The n-dimensional unitary space over the base field K of J , where σ is an auto-
morphism of K of order 2 and where J is an n × n matrix which is hermitian or
skew-hermitian with respect to σ.

IsUnitarySpace(W)

Return true if the Involution attribute of the generic space of W is assigned and
the form is either hermitian or skew-hermitian when restricted to W .

Example H29E11

Create a unitary geometry with the standard hermitian form and check that the given vector is
isotropic. Note that the function DotProduct takes both the form and the field involution into
account when calculating its values. For finite fields, the function InnerProduct ignores the field
involution.

> K<z> := GF(25);

> J, sigma := StandardHermitianForm(5,K);

> J;

[0 0 0 0 1]

[0 0 0 1 0]

[0 0 1 0 0]

622 MATRICES AND LINEAR ALGEBRA Part V

[0 1 0 0 0]

[1 0 0 0 0]

> sigma(z);

z^5

> V := UnitarySpace(J,sigma);

> u := V![1,z,0,z^2,-1];

> DotProduct(u,u);

0

> InnerProduct(u,u);

z^20

ConjugateTranspose(M, sigma)

The transpose of the matrix σ(M), where σ is an automorphism of the base field
ofthe matrix M .

29.6.3 Quadratic Spaces
A vector space V with an attached quadratic form is called a quadratic space. The polar
form of a quadratic space is the inner product matrix J of the space. If the characteristic
of the field is not 2, the value of the quadratic form on a row vector v is 1

2v ∗ J ∗ vtr.

QuadraticSpace(Q)

The quadratic space of dimension n defined by the quadratic form represented by an
upper triangular n×n matrix Q. The inner product matrix of the space is Q+Qtr.
If Q is not upper triangular, the space will be constructed but there is no guarantee
that other functions in this package will return correct results.

QuadraticSpace(f)

The quadratic space of dimension n whose quadratic form is given by the quadratic
polynomial f in n variables. If the variables are x1, . . . , xn, then for i ≤ j, the
(i, j)-th entry of the matrix of the form is the coefficient of xixj in f .

SymmetricToQuadraticForm(J)

Provided the characteristic of the field is not two, this is the upper triangular matrix
which represents the same quadratic form as the symmetric matrix J .

QuadraticFormMatrix(V)

The (upper triangular) matrix which represents the quadratic form of the quadratic
space V .

QuadraticNorm(v)

The value Q(v), where Q is the quadratic form attached to the generic space of the
parent of the vector v.

Ch. 29 POLAR SPACES 623

QuadraticFormPolynomial(V)

The polynomial
∑

i≤j qijxixj , where Q = (qij) is the matrix of the quadratic form
of the quadratic space V .

Example H29E12

The quadratic space defined by a polynomial.

> _<x,y,z> := PolynomialRing(Rationals(),3);

> f := x^2 + x*y +3*x*z - 2*y*z + y^2 +z^2;

> V := QuadraticSpace(f);

> PolarSpaceType(V);

quadratic space

> IsNonsingular(V);

true

> QuadraticFormMatrix(V);

[1 1 3]

[0 1 -2]

[0 0 1]

OrthogonalSum(V, W)

The orthogonal direct sum of the quadratic spaces V and W .

TotallySingularComplement(V, U, W)

Given totally singular subspaces U and W of the quadratic space V such that
U⊥ ∩ W = 0 this function returns a totally singular subspace X such that V =
X ⊕ U⊥ and W ⊆ X.

Discriminant(V)

If V is a vector space over the finite field K and if J is the Gram matrix of V ,
the discriminant of V is the determinant ∆ of J modulo squares. That is, the
discriminant is 0 if ∆ is a square in K, 1 if it is a non-square. The form J is
required to be non-degenerate.

ArfInvariant(V)

The Arf invariant of the quadratic space V .
Currently this is available only for quadratic spaces of even dimension 2m over

a finite field F of characteristic 2. In this case there are two possibilities: either the
Witt index of the form is m and the Arf invariant is 0, or the Witt index is m − 1
and the Arf invariant is 1.

624 MATRICES AND LINEAR ALGEBRA Part V

DicksonInvariant(V, f)

The Dickson invariant of the isometry f of the quadratic space V is the rank (mod 2)
of 1 − f . If the polar form of Q is non-degenerate, the Dickson invariant defines a
homomorphism from the orthogonal group O(V) onto the additive group of order 2.

SpinorNorm(V, f)

The spinor norm of the isometry f of the quadratic space V . This is the discriminant
of the Wall form (Section 29.8) of f .

HyperbolicBasis(U, B, W)

Given complementary totally singular subspaces U and W of a quadratic space and
a basis B for U , return a sequence of pairwise orthogonal hyperbolic pairs whose
second components form a basis for W .

OrthogonalReflection(a)

The reflection determined by a non-singular vector of a quadratic space.

RootSequence(V, f)

Given a matrix f representing an isometry of the quadratic space V , return a se-
quence of vectors such that the product of the corresponding orthogonal reflections
is f . The empty sequence is returned if f is the identity matrix.

ReflectionFactors(V, f)

Given a matrix f representing an isometry of the quadratic space V , return a se-
quence of reflections whose product is f . The empty sequence corresponds to the
identity matrix.

Given a quadratic space V defined by a quadratic form Q with polar form β and non-
zero vectors u, v ∈ V such that u is singular and β(u, v) = 0, the Siegel transformation
(also called an Eichler transformation) is the isometry ρu,v defined by

xρu,v = x+ β(x, v)u− β(x, u)v −Q(v)β(x, u)u.

SiegelTransformation(u, v)

The Siegel transformation defined by a singular vector u and a vector v orthogonal
to u. The common parent of u and v must be a quadratic space.

Ch. 29 POLAR SPACES 625

Example H29E13

A group of isometries generated by Siegel transformations.

> Q := StandardQuadraticForm(4,3);

> V := QuadraticSpace(Q);

> u := V.1;

> QuadraticNorm(u);

0

> X := { v : v in V | DotProduct(u,v) eq 0 and QuadraticNorm(v) ne 0 };

> #X;

12

> H := sub< GL(V) | [SiegelTransformation(u,v) : v in X]>;

> #H;

9

29.7 Isometries and Similarities

If β is a bilinear or sesquilinear form on the vector space V , a linear transformation g of
V is an isometry if g preserves β; it is a similarity if it preserves β up to a non-zero scalar
multiple.

29.7.1 Isometries

IsIsometry(U, V, f)

Returns true if the map f is an isometry from U to V with respect to the attached
forms.

IsIsometry(f)

Returns true if the map f is an isometry from its domain to its codomain.

IsIsometry(V, g)

Returns true if the matrix g is an isometry of V with respect to the attached form.

IsIsometric(V, W)

Determines whether the polar spaces V and W are isometric; if they are, an isometry
is returned (as a map).

626 MATRICES AND LINEAR ALGEBRA Part V

Example H29E14

A vector space is always equipped with a bilinear form and the default value is the identity matrix.

However the “standard” symmetric form is Q + Qtr, where Q is the standard quadratic form. In
the following example the polar spaces defined by these forms are similar but not isometric.

> F := GF(5);

> V1 := VectorSpace(F,5);

> PolarSpaceType(V1);

orthogonal space

> WittIndex(V1);

2

> J2 := StandardSymmetricForm(5,F);

> J2;

[0 0 0 0 1]

[0 0 0 1 0]

[0 0 2 0 0]

[0 1 0 0 0]

[1 0 0 0 0]

> V2 := VectorSpace(F,5,J2);

> IsIsometric(V1,V2);

false

> V3 := VectorSpace(F,5,2*J2);

> flag, f := IsIsometric(V1,V3); flag;

true

> IsIsometry(f);

true

If J is an n × n matrix which represents a bilinear form and if M is a non-singular
n×n matrix, then J and MJMtr are said to be congruent and they define isometric polar
spaces.

Conversely, given bilinear forms J1 and J2 the following example shows how to use the
IsIsometric function to determine whether J1 and J2 are congruent and if so how to find
a matrix M such that J1 = MJ2M

tr.

Example H29E15

Begin with alternating forms J1 and J2 over F25, construct the corresponding symplectic spaces
and then use the isometry to define the matrix M .

> F<x> := GF(25);

> J1 := Matrix(F,4,4,[0, x^7, x^14, x^13, x^19, 0, x^8, x^5,

> x^2, x^20, 0, x^17, x, x^17, x^5, 0]);

> J2 := Matrix(F,4,4,[0, x^17, 2, x^23, x^5, 0, x^15, x^5,

> 3, x^3, 0, 4, x^11, x^17, 1, 0]);

> V1 := SymplecticSpace(J1);

> V2 := SymplecticSpace(J2);

> flag, f := IsIsometric(V1,V2); assert flag;

Ch. 29 POLAR SPACES 627

> f;

Mapping from: ModTupFld: V1 to ModTupFld: V2 given by a rule

> M := Matrix(F,4,4,[f(V1.i) : i in [1..4]]);

> J1 eq M*J2*Transpose(M);

true

Example H29E16

Another way to obtain a matrix with the same effect as M is to use the function TransformForm.

> M1 := TransformForm(J1,"symplectic");

> M2 := TransformForm(J2,"symplectic");

> M_alt := M1*M2^-1;

> J1 eq M_alt*J2*Transpose(M_alt);

true

CommonComplement(V, U, W)

A common complement to the subspaces U and W in the vector space V . (The
subspaces must have the same dimension.) This is used by the following function,
which implements Witt’s theorem.

ExtendIsometry(V, U, f)

An extension of the isometry f : U → V to an isometry V → V , where U is a
subspace of the polar space V .

This is an implementation of Witt’s theorem on the extension of an isometry
defined on a subspace of a symplectic, unitary or quadratic space. The isometry f
must satisfy f(U ∩ rad(V)) = f(U) ∩ rad(V).

If the characteristic is two and the form J of V is symmetric, then J must be
alternating.

IsometryGroup(V)

The group of isometries of the polar space V . This includes degenerate polar spaces
as well as polar spaces defined by a quadratic form over a field of characteristic two.

Given a reflexive form J , the function IsometryGroup(J) defined in Chapter 87 returns
the isometry group of J . More generally, if S is a sequence of reflexive forms, the function
IsometryGroup(S) returns the group of isometries of the system.

628 MATRICES AND LINEAR ALGEBRA Part V

Example H29E17

We give an example of an isometry group of a degenerate quadratic space over a field of charac-
teristic 2.

> F := GF(4);

> Q1 := StandardQuadraticForm(4,F : Minus);

> Q := DiagonalJoin(Q1,ZeroMatrix(F,2,2));

> V := QuadraticSpace(Q);

> G := IsometryGroup(V);

> [IsIsometry(V,g) : g in Generators(G)];

[true, true, true, true, true, true, true]

> #G;

96259276800

Example H29E18

The matrix M constructed in Example H29E15 can be used to conjugate the isometry group of
J1 to the isometry group of J2.

> F<x> := GF(25);

> J1 := Matrix(F,4,4,[0, x^7, x^14, x^13, x^19, 0, x^8, x^5,

> x^2, x^20, 0, x^17, x, x^17, x^5, 0]);

> J2 := Matrix(F,4,4,[0, x^17, 2, x^23, x^5, 0, x^15, x^5,

> 3, x^3, 0, 4, x^11, x^17, 1, 0]);

> V1 := SymplecticSpace(J1);

> V2 := SymplecticSpace(J2);

> flag, f := IsIsometric(V1,V2); assert flag;

> M := Matrix(F,4,4,[f(V1.i) : i in [1..4]]);

> G1 := IsometryGroup(V1);

> G2 := IsometryGroup(V2);

> M^-1*G1.1*M in G2;

true

> M^-1*G1.2*M in G2;

true

29.7.2 Similarities

IsSimilarity(U, V, f)

Returns true if the map f is a similarity from U to V with respect to the attached
forms.

IsSimilarity(f)

Returns true if the map f is a similarity from its domain to its codomain.

Ch. 29 POLAR SPACES 629

IsSimilarity(V, g)

Returns true if the matrix g is a similarity of V with respect to the attached form.

SimilarityGroup(V)

The group of similarities of the polar space V . This includes degenerate polar spaces
as well as polar spaces defined by a quadratic form over a field of characteristic two.

29.8 Wall Forms

Given an isometry f of a quadratic or symplectic space V with bilinear form β, the Wall
form of f is the form θ defined on the image I of 1 − f by θ(u, v) = β(w, v), where
u = w(1− f). In general, the Wall form is not reflexive.

WallForm(V, f)

The space of the Wall form of f and its embedding in V .

WallIsometry(V, I, mu)

The inverse of WallForm. This is an isometry corresponding to the embedding
µ : I → V , where V is a quadratic or symplectic space.

WallDecomposition(V, f)

An isometry f of a quadratic or symplectic space V is Wall-regular if the restriction
of 1 − f to the image of 1− f is invertible. If f is any isometry of V this function
returns a Wall-regular element fr and a unipotent element fu such that f = frfu =
fufr.

SemiOrthogonalBasis(V)

If V is a vector space with a bilinear form β, a basis e1, e2, . . . , en for V is semi-
orthogonal if β(ei, ej) = 0 for i < j. This function returns a semi-orthogonal basis
with respect to the non-degenerate, non-alternating form attached to V . If the base
field is F2, the form should be symmetric.

630 MATRICES AND LINEAR ALGEBRA Part V

29.9 Invariant Forms

Given a group G which acts on a vector space V over a finite field F , the space of all
G-invariant bilinear forms is isomorphic to HomG(V, V ∗), where V ∗ is the dual space of
V . The isomorphism associates the form β to θ ∈ HomG(V, V ∗), where β(u, v) = 〈v, uθ〉
and where 〈v, ϕ〉 denotes the action of ϕ on v. If v1, v2, . . . , vn is a basis for V with dual
basis ω1, ω2, . . . , ωn, the matrix of θ with respect to these bases is J = (β(ei, ej)).

A linear transformation with matrix A preserves the form if and only if AJAtr = J .
If the characteristic of the field is not 2, then J = 1

2 (J + Jtr) + 1
2 (J − Jtr). Therefore,

in this case, every G-invariant form is the sum of a G-invariant symmetric form and a
G-invariant alternating form. If the characteristic of the field is 2, every alternating form
is symmetric. Thus in this case the space of G-invariant alternating forms is a subspace of
the space of G-invariant symmetric forms. If the G-module is irreducible these two spaces
coincide.

InvariantBilinearForms(G)

Given a matrix group G this function returns two sequences: a basis for the space
of G-invariant symmetric forms and a basis for the space of G-invariant alternating
forms.

Example H29E19

In this example the group G is reducible but (up to a scalar multiple) there is a unique G-invariant
bilinear form.

> F<x> := GF(25);

> G := MatrixGroup< 4, F |

> [1, 0, 0, 0, 0, 1, 0, 0, 0, x^14, 1, 0, 0, 0, 0, 1],

> [3, x^23, x^20, x^10, 2, 3, 0, x^13, 4, x^10, x^13, x^23,

> x^5, x^11, x, x^17] >;

> IsIrreducible(G);

false

> InvariantBilinearForms(G);

[]

[

[0 0 0 1]

[0 0 1 0]

[0 4 0 0]

[4 0 0 0]

]

If G acts irreducibly on a vector space V of dimension n over a (finite) field F and
if θ0 : V → V ∗ is a G-invariant isomorphism, then D → HomG(V, V ∗) : θ 7→ θθ0 is an
isomorphism of vector spaces, where D = EndG(V). The algebra D is a division ring and
hence a field (since F is finite). Thus V becomes a vector space of dimension m over D,
where n = m|D : F | and G is isomorphic to a subgroup of GL(m,D).

Ch. 29 POLAR SPACES 631

Example H29E20

If G acts irreducibly on V , the spaces of symmetric and alternating G-invariant forms are iso-
morphic (as vector spaces) to subfields of EndG(V) and therefore their dimensions are either 0 or
divide dimF (V).

> F<a> := GF(25);

> G := MatrixGroup< 4, F |

> [a^10, a^21, a^4, 4,

> a^16, 4, a^9, a^8,

> a^20, 4, 4, a^13,

> 0, a^2, a^11, a] >;

> IsIrreducible(G), #G;

true 626

> sym, alt := InvariantBilinearForms(G);

> #sym,#alt;

2 2

If the characteristic of the field is not two and if J is a symmetric bilinear form there
is a unique upper triangular matrix Q such that J = Q+Qtr.

On the other hand, if the characteristic is two and J is alternating, the upper triangular
matrices Q such that J = Q+Qtr form an affine space of dimension dimV .

Suppose that the characteristic is two. If G preserves a symmetric bilinear form which
is not alternating, then G is reducible. Conversely, if G is irreducible and if J is the matrix
of a symmetric form preserved by G, then the form must be alternating and there is a
unique G-invariant quadratic form Q such that J = Q+Qtr.

InvariantQuadraticForms(G)

A basis for the space of quadratic forms preserved by the irreducible matrix group G.

Example H29E21

In the following example the quadratic forms which are invariant under the action of a cyclic
group H of order 13 form a vector space of dimension 3 over F4.

> F<z> := GF(4);

> H := MatrixGroup<6,F |

> [z, 0, z^2, z, z, 1,

> 1, z, 0, z, z, z,

> 0, z^2, z, 1, z^2, z^2,

> z, 1, z, 1, 1, 0,

> 1, z^2, z, z, 0, 1,

> 1, 0, 1, 0, z^2, 1] >;

>

> InvariantQuadraticForms(H);

[

[1 1 0 1 0 0]

[0 0 1 z^2 z^2 z]

632 MATRICES AND LINEAR ALGEBRA Part V

[0 0 1 0 z^2 z]

[0 0 0 0 0 z]

[0 0 0 0 z^2 z]

[0 0 0 0 0 z^2],

[1 0 1 z^2 1 0]

[0 z 1 1 1 z]

[0 0 z 0 1 0]

[0 0 0 z^2 z^2 z^2]

[0 0 0 0 z^2 1]

[0 0 0 0 0 1],

[0 0 0 0 0 1]

[0 0 0 0 1 0]

[0 0 1 1 0 0]

[0 0 0 z 0 0]

[0 0 0 0 0 0]

[0 0 0 0 0 0]

]

Given a group G which acts on a vector space V over a finite field F with an automor-
phism F → F : a 7→ a of order 2, the space of G-invariant sesquilinear forms is isomorphic
to the space of G-invariant semilinear maps from V to V ∗; equivalently it is isomorphic
to HomG(V, V

∗
), where V

∗
is the semilinear dual of V , namely the space of all semilinear

maps from V to F .
If θ ∈ HomG(V, V

∗
), the corresponding sesquilinear form β is defined by β(u, v) =

〈v, uθ〉 where, as before, 〈v, ϕ〉 denotes the action of ϕ on v.

SemilinearDual(M, mu)

The semilinear dual of the G-module M with respect to the field automorphism mu.

InvariantSesquilinearForms(G)

A basis for the space of hermitian forms preserved by the matrix group G.

Example H29E22

Let F0 be the fixed field of the involution. The set H of G-invariant hermitian forms is a vector
space over F0 and if the characteristic of F is not 2, then HomG(V, V

∗
) ' H⊗F0 F .

> F<x> := GF(5,2);

> mu := hom< F->F | x :-> x^5 >;

> H := MatrixGroup< 5, F |

> [0, x^3, 0, 1, x^9, x^8, 1, 0, x^11, x^7, x^20, x^16, 1,

> x^11, x^3, x^21, 4, 1, x^3, x^23, x^4, x^3, x, x^3, 2] >;

> M := GModule(H);

> D := SemilinearDual(M,mu);

> E := AHom(M,D);

> Dimension(E);

Ch. 29 POLAR SPACES 633

5

> herm := InvariantSesquilinearForms(H);

> #herm;

5

Example H29E23

If an irreducible group preserves both a bilinear and a sesquilinear form then it is realisable over
a subfield of its base field. Conversely, this observation can be used to construct an example:

> F<x> := GF(81);

> H := MatrixGroup< 4, F | [ChangeRing(g,F) : g in Generators(Sp(4,9))]>;

> InvariantBilinearForms(H);

[]

[

[0 0 0 1]

[0 0 1 0]

[0 2 0 0]

[2 0 0 0]

]

> InvariantSesquilinearForms(H);

[

[0 0 0 x^45]

[0 0 x^45 0]

[0 x^5 0 0]

[x^5 0 0 0]

]

InvariantFormBases(G)

This function returns four sequences: bases for the spaces of symmetric, alternating,
hermitian and quadratic forms preserved by the matrix group G.

29.9.1 Semi-invariant Forms
Given a vector space V over a finite field F and a group G which acts on V , a bilinear
form β : V × V → F is semi-invariant if for all g ∈ G there is a scalar λ(g) such that
β(ug, vg) = λ(g)β(u, v) for all u, v ∈ V . The function λ : G→ F× is a homomorphism and
its kernel contains the derived group of G. The twisted dual V ∗λ of the G-module V is the
dual space of V with G-action given by 〈v, ϕg〉 = λ(g)〈vg−1, ϕ〉; thus if A is the matrix of
g acting on V the matrix of the action on V ∗λ with respect to the dual basis is λ(g)A−tr.

The space of all semi-invariant bilinear forms is isomorphic to HomG(V, V ∗λ). The
isomorphism associates the form β to θ ∈ HomG(V, V ∗λ), where β(u, v) = 〈v, uθ〉.

If β is a bilinear form with matrix J , then the linear transformation g with matrix A
preserves the form up to multiplication by λ(g) if and only if AJAtr = λ(g)J

634 MATRICES AND LINEAR ALGEBRA Part V

TwistedDual(M, lambda)

The twisted dual of the G-module M with respect to the linear character lambda.

SemiInvariantBilinearForms(G)

A sequence of triples 〈L, S,A〉 where L is a sequence of field elements (one for each
generator) which define a homomorphism from the matrix group G to its base field
and S and A are bases for the spaces of symmetric and alternating forms preserved
by G (up to multiplication by scalars).

SemiInvariantQuadraticForms(G)

A sequence of pairs 〈L,Q〉 where L is a sequence of field elements (one for each
generator) which define a homomorphism from the matrix group G to its base field
and Q is a basis for the space of quadratic forms preserved by G (up to multiplication
by scalars).

TwistedSemilinearDual(M, lambda, mu)

The twisted semilinear dual of the G-module M with respect to the linear character
lambda and the field automorphism mu.

SemiInvariantSesquilinearForms(G)

A sequence of pairs 〈L,H〉 where L is a sequence of field elements (one for each
generator) which define a homomorphism from the matrix group G to the field F0,
where the base field of G is a quadratic extension of F0, and H is a basis for the
space of hermitian forms preserved by G (up to multiplication by scalars).

Example H29E24

In this example H is a normal subgroup of the absolutely irreducible group N an H is irreducible
but not absolutely irreducible.

> F<x> := GF(3,2);

> H := MatrixGroup<3,F|

> [x^2,x^7,x^3, x,0,1, x^3,x^6,2],

> [x^3, 0, 0, 0, x^3, 0, 0, 0, x^3] >;

> N := MatrixGroup<3,F|H.1,H.2,[x^5,x^5,2, 0,x^2,x^6, x^7,x^7,2]>;

> IsNormal(N,H);

true

> IsIrreducible(H), IsAbsolutelyIrreducible(H);

true false

> IsIrreducible(N), IsAbsolutelyIrreducible(N);

true true

> SemiInvariantSesquilinearForms(H);

[

<[1, 2],

[

[1 x x]

[x^3 0 x^3]

[x^3 x 1],

Ch. 29 POLAR SPACES 635

[0 x^3 x]

[x 0 x^5]

[x^3 x^7 0],

[0 0 1]

[0 1 0]

[1 0 0]

]>

]

> SemiInvariantSesquilinearForms(N);

[

<[1, 2, 1],

[

[0 0 1]

[0 1 0]

[1 0 0]

]>

]

29.10 Bibliography
[Bou07] N. Bourbaki. Éléments de mathématique. Algèbre. Chapitre 9. Springer-Verlag,

Berlin, 2007. Reprint of the 1959 original.
[Bra36] Richard Brauer. A characterization of null systems in projective space. Bull.

Amer. Math. Soc., 42(4):247–254, 1936.
[Bue95] Francis Buekenhout. Handbook of incidence geometry. North-Holland, Amster-

dam, 1995.
[Tay92] Donald E. Taylor. The geometry of the classical groups, volume 9 of Sigma

Series in Pure Mathematics. Heldermann Verlag, Berlin, 1992.

