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Chapter 69

ABELIAN GROUPS

69.1 Introduction

This Chapter contains a description of the Magma machinery provided for computing
with abstract abelian groups. Such a group may be described either in terms of defining
relations (category GrpAb) or by defining the group operations on some finite set (category
GrpAbGen). In the case of finitely presented groups, the abelian groups may be finite and
infinite, the only restriction being that the group be finitely generated.

69.2 Construction of a Finitely Presented Abelian Group and its
Elements

69.2.1 The Free Abelian Group

FreeAbelianGroup(n)

Construct the free abelian group F on n generators, where n is a positive integer.
The i-th generator may be referenced by the expression F.i, i = 1, . . . , n. Note that
a special form of the assignment statement is provided which enables the user to
assign names to the generators of F . In this form of assignment, the list of generator
names is enclosed within angle brackets and appended to the variable name on the
left hand side of the assignment statement.

Example H69E1

The statement

> F := FreeAbelianGroup(2);

creates the free abelian group on two generators. Here the generators may be referenced using
the standard names, F.1 and F.2.
The statement

> F<x, y> := FreeAbelianGroup(2);

defines F to be the free abelian group on two generators and assigns the names x and y to the
generators.
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69.2.2 Relations

w1 = w2

Given words w1 and w2 over the generators of an abelian group A, create the relation
w1 = w2. Note that this relation is not automatically added to the existing set of
defining relations R for S. It may be added to R, for example, through use of the
quo-constructor (see below).

r[1]

LHS(r)

Given a relation r over the generators of A, return the left hand side of the relation r.
The object returned is a word over the generators of A.

r[2]

RHS(r)

Given a relation r over the generators of A, return the right hand side of the rela-
tion r. The object returned is a word over the generators of A.

Parent(r)

Group over which the relation r is taken.

Example H69E2

We may define a group and a set of relations as follows:

> F<x, y> := FreeAbelianGroup(2);

> rels := { 2*x = 3*y, 4*x + 4*y = Id(F)} ;

To replace one side of a relation, the easiest way is to reassign the relation. So for example, to
replace the relation 2x = 3y by 2x = 4y:

> r := 2*x = 3*y;

> r := LHS(r) = 4*y;
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69.2.3 Specification of a Presentation
An abelian group with non-trivial relations is constructed as a quotient of an existing
abelian group, possibly a free abelian group.

AbelianGroup< X | R >

Given a list X of variables x1, . . . , xr, and a list of relations R over these generators,
let F be the free abelian group on the generators x1, . . . , xr. Then construct (a) an
abelian group A isomorphic to the quotient of F by the subgroup of F defined by R,
and (b) the natural homomorphism φ : F → A.

Each term of the list R is either a word, a relation, a relation list or a subgroup
of F .

• A relation consists of a pair of words, separated by ‘=’.

• A word w is interpreted as a relator, that is, it is equivalent to the relation w = 0.
(See above).

• A relation list consists of a list of words, where each pair of adjacent words is
separated by ‘=’: w1 = w2 = · · · = wr. This is interpreted as the set of relations
w1 = wr, . . . , wr−1 = wr. Note that the relation list construct is only meaningful
in the context of the quo-constructor.

A subgroup H appearing in the list R contributes its generators to the relation set
for A, i.e., each generator of H is interpreted as a relator for A.

The group F may be referred to by the special symbol $ in any word appearing
to the right of the ‘|’ symbol in the quo-constructor. Also, in the context of the quo-
constructor, the identity element (empty word) may be represented by the digit 0.
The function returns:

(a)The quotient group A;

(b)The natural homomorphism φ : F → A.

Example H69E3

We create the abelian group defined by the presentation < a, b, c | 7a + 4b + c, 8a + 5b + 2c, 9a +
6b + 3c >.

> F<a, b, c> := FreeAbelianGroup(3);

> A := quo< F | 7*a + 4*b + c, 8*a + 5*b + 2*c, 9*a + 6*b + 3*c >;

> A;

AbelianGroup isomorphic to Z_3 + Z

Defined on 2 generators

Relations:

3*A.1 = 0

A simple way of specifying an abelian group is as a product of cyclic groups.
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AbelianGroup([n1,...,nr])

Construct the abelian group defined by the sequence [n1, . . . , nr] of non-negative
integers as an abelian group. The function returns the direct product of cyclic
groups Cn1 × Cn2 × · · · × Cnr

, where C0 is interpreted as an infinite cyclic group.

Example H69E4

We create the abelian group Z2 × Z3 × Z4 × Z5 × Z6 × Z × Z.

> G<[x]> := AbelianGroup([2,3,4,5,6,0,0]);

> G;

Abelian Group isomorphic to Z/2 + Z/6 + Z/60 + Z + Z

Defined on 7 generators

Relations:

2*G.1 = 0

3*G.2 = 0

4*G.3 = 0

5*G.4 = 0

6*G.5 = 0

69.2.4 Accessing the Defining Generators and Relations
The functions described here provide access to basic information stored for an abelian
group A.

A . i

The i-th defining generator for A.

Generators(A)

A set containing the generators for A.

NumberOfGenerators(A)

Ngens(A)

The number of generators for A.

Parent(u)

The parent group A of the word u.

Relations(A)

A sequence containing the defining relations for A.

RelationMatrix(A)

A matrix where each row corresponds to one of the defining relations of A.
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69.3 Construction of a Generic Abelian Group
The term generic abelian group refers to the situation in which a group A is described by
giving a set X together with functions acting on X that perform the fundamental group
operations for A. Specifically, the user must provide functions which compute the product,
the inverse and the identity. For efficiency, the user may also optionally specify the order
and a generating set for the group. This is made explicit below.

Going from such a definition of an abelian group A to a presentation for A will often
be extremely expensive and so a small number of operations are implemented so as to not
require this information. The two key operations are computing the order of an element and
computing the discrete logarithm of an element to a given base. For many abelian group
operations, knowledge of a presentation is required and if such an operation is invoked,
the structure of A (and hence a presentation) will be automatically constructed.

There are two possible ways of computing the structure of the group. If the order of
the group is known (or can be computed) then it is relatively easy to construct each of the
p-Sylow subgroups. If the order is not available, the structure is computed from a set of
generators supplied by the user.

69.3.1 Specification of a Generic Abelian Group

GenericAbelianGroup(U: parameters)

IdIntrinsic MonStg Default :

AddIntrinsic MonStg Default :

InverseIntrinsic MonStg Default :

UseRepresentation Bool Default : false

Order RngIntElt Default :

UserGenerators SetEnum Default :

ProperSubset Bool Default : false

RandomIntrinsic MonStg Default :

ComputeStructure Bool Default : false

Construct the generic abelian group A over the domain U . The domain U can be
an aggregate (set, indexed set or sequence) of elements or it can be any structure,
for example, an elliptic curve, a jacobian, a magma of quadratic forms.

If the parameters IdIntrinsic, AddIntrinsic and InverseIntrinsic are
not set, then the identity, the composition and the inverse function of A are
taken to be the identity, the composition and the inverse function of U or of
Universe(U) if U is an aggregate. If the parameters IdIntrinsic, AddIntrinsic
and InverseIntrinsic are set, they define the identity, the composition and the
inverse function of A.

The parameter IdIntrinsic must be a function name whose sole argument
is U or Universe(U) if U is an aggregate. AddIntrinsic must be a function
name whose only two arguments are elements of U or of Universe(U) if U is
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an aggregate. InverseIntrinsic must be a function name whose only two ar-
guments are elements of U or of Universe(U) if U is an aggregate. That is, it
is required that InverseIntrinsic be a binary operation (see the example below
where InverseIntrinsic := "/" is indeed binary). Defining any of the three above
parameters implies that the other two must be defined as well.

Setting the parameter UseRepresentation to true implies that all elements of A
will be internally represented as linear combinations of the generators of A obtained
while computing the structure of A. This can be a costly procedure, since such a
representation is akin to solving the discrete logarithm problem. The advantage of
such a representation is that arithmetic for elements of A as well as computing the
order of elements of A are then essentially trivial operations.

The parameter Order can be set to the order of the group, if known. Knowledge
of the order may save a considerable amount of time for operations such as computing
a Sylow subgroup, determining the group structure or solve a discrete logarithm
problem. More importantly, if A is a proper subset of U , or of Universe(U) if U is
an aggregate, then one of Order or UserGenerators must be set.

One can set UserGenerators to some set of elements of U , or of Universe(U)
if U is an aggregate, which generate the group A. This can be useful when A is a
subset of U (Universe(U)), or more generally when the computation of the group
structure of A is made from a set of generators. Finally, setting UserGenerators
may be an alternative to setting RandomIntrinsic.

The parameter ProperSubset must be set when A is a proper subset of U
(Universe(U)).

The parameter RandomIntrinsic indicates the random function to use. If it is
not set, the random function (if it is required) is taken to be the random function
applying to U (Universe(U)).

The parameter RandomIntrinsic must be the name of a function taking as its
sole argument U (Universe(U)) and returning an element of U (Universe(U))
which is also an element of the group A, which is important when A is a proper
subset of U (Universe(U). Therefore, if A is a proper subset of U (Universe(U)),
then RandomIntrinsic must be set, unless the parameter UserGenerators is set.

The parameter Structure indicates that the group structure should be deter-
mined at the time of creation. If this parameter is set then the user may also want
to set the following parameters:

UseUserGenerators Bool Default : false

PollardRhoRParam RngInt Default : 20
PollardRhoTParam RngInt Default : 8
PollardRhoVParam RngInt Default : 3

Their meaning is detailed in Section 69.3.3.

Example H69E5

In our first example we create the subset U of Z/34384Z corresponding to its unit group as a
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generic abelian group G. Note that U is an indexed set.

> m := 34384;

> Zm := Integers(m);

> U := {@ x : x in Zm | GCD(x, m) eq 1 @};

> G := GenericAbelianGroup(U :

> IdIntrinsic := "Id",

> AddIntrinsic := "*",

> InverseIntrinsic := "/");

> G;

Generic Abelian Group over

Residue class ring of integers modulo 34384

In our next example we construct unique representatives for the classes of binary quadratic forms
corresponding to elements of a subgroup of the class group of the imaginary quadratic field of
discriminant −4000004.

> n := 6;

> Dk := -4*(10^n + 1);

> Q := QuadraticForms(Dk);

>

> p := 2;

> S := { };
> while #S lt 10 do

> if KroneckerSymbol(Dk,p) eq 1 then

> I := Reduction(PrimeForm(Q,p));

> Include(~S, I);

> end if;

> p := NextPrime(p);

> end while;

>

> QF := GenericAbelianGroup(Q : UserGenerators := S,

> ComputeStructure := true,

> UseUserGenerators := true);

> QF;

Generic Abelian Group over

Binary quadratic forms of discriminant -4000004

Abelian Group isomorphic to Z/2 + Z/516

Defined on 2 generators

Relations:

2*$.1 = 0

516*$.2 = 0

So the structure of the subgroup is Z2 × Z516
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69.3.2 Accessing Generators
These functions give access to generating sets for a generic group A. If a generating set
is requested and none has been supplied by the user then this will require the determi-
nation of the group structure which could be very expensive. Note the distinction be-
tween Generators and UserGenerators. From now on, unless otherwise specified, when-
ever mention is made of the generators of A, we refer to the generators as given by the
Generators function.

Universe(A)

The universe over which the generic abelian group A is defined.

A . i

The i-th generator for the generic abelian group A.

Generators(A)

A sequence containing a generating set for the generic abelian group A as elements of
A. The set of generators returned for A is a reduced set of generators as constructed
during the structure computation. Therefore, if the group structure of A has been
computed from a user-supplied set of generators, it is unlikely that Generators(A)
and UserGenerators(A) will be the same.

UserGenerators(A)

A sequence containing the user-supplied generators for the generic abelian group A
as elements of A.

NumberOfGenerators(A)

Ngens(A)

The number of generators for the generic abelian group A.

69.3.3 Computing Abelian Group Structure
If the order of a generic abelian group A can be obtained then the structure of A is found by
constructing each p-Sylow subgroup of A. The p-Sylow subgroups are built from random
elements of the underlying set X of A. Recall that U (Universe(U)) is the domain of A.
Random elements are obtained using either a random function attached to X or using a
user-supplied function (the RandomIntrinsic parameter), or using ser-supplied generators
(the UserGenerators parameter). It is therefore vital that user-supplied generators truly
generate the group one wishes to construct. A drawback of this method of obtaining the
structure of A is the memory needed to store all the elements of a specific p-Sylow subgroup
while under construction. This algorithm is mostly based on work by Michael Stoll.

The second approach computes the group structure from a set of generators as supplied
by the user, removing the need to compute the order of A. This can be particularly useful
when computing this order is expensive. Note that computing the structure of a group
from a set of generators is akin to solving a number of the discrete logarithm problems.



Ch. 69 ABELIAN GROUPS 2051

This second algorithm uses a variant of the Pollard–Rho algorithm and is due to Edlyn
Teske [Tes98].

If A is a subgroup of a generic abelian group, G say, then the structure of G is computed
first. The rationale is that once the structure of G is known, computing the structure of
A is almost always cheap.

AbelianGroup(A: parameters)

UseUserGenerators Bool Default : false

PollardRhoRParam RngInt Default : 20
PollardRhoTParam RngInt Default : 8
PollardRhoVParam RngInt Default : 3

Compute the group structure of the generic abelian group A, which may be a sub-
group as created by the subgroup constructor or the Sylow function. The two values
returned are the abstract abelian group and the invertible map from the latter into
A.

If UseUserGenerators is false, then the group structure computation is made
via the construction of each p-Sylow subgroup, using the factorization of the order
of A.

If UseUserGenerators is set to true, the group structure computation uses
the user-supplied set of generators for A. In this case, the additional parame-
ters PollardRhoRParam, PollardRhoTParam, and PollardRhoVParam can be sup-
plied. Their values will be passed to the Pollard–Rho algorithm used in the
group structure computation: PollardRhoRParam sets the size of the r-adding
walks, PollardRhoTParam sets the size of the internal storage of elements, and
PollardRhoVParam is used for an efficient finding of the periodic segment. It is con-
jectured that the default values as given above are ‘best’ (see [Tes98b]), therefore
there should be no need to set these parameters in general.

Example H69E6

The following statement computes the structure of the unit group of Z34384.

> G := AbelianGroup(G); G;

Generic Abelian Group over

Residue class ring of integers modulo 34384

Abelian Group isomorphic to Z/2 + Z/2 + Z/6 + Z/612

Defined on 4 generators

Relations:

2*G.1 = 0

2*G.2 = 0

6*G.3 = 0

612*G.4 = 0
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69.4 Elements

69.4.1 Construction of Elements

Unless otherwise stated, the operations in this section apply to fp-abelian groups and
generic abelian groups.

A ! [a1, ... ,an]

Given an abelian group A with generators e1, . . . , er and a sequence Q = [a1, · · · , ar]
of integers, construct the element a1e1 + · · ·+ arer of A.

A ! e

Given a generic abelian group A and an element e of the domain over which it is
defined, return e as an element of A. If A is a proper subset of its underlying domain,
then e must be a linear combination of the generators (which may be user-supplied)
of A.

A ! g

Given a generic abelian group A and an element g of the underlying set X of A,
return g as an element of A.

A ! n

Given an abelian group A with exactly one generator x, construct the element nx.

Random(A)

Given either a finite fp-abelian group or a generic abelian group A, return a random
element of A.

Identity(A)

Id(A)

A ! 0

Construct the identity element (empty word) for the abelian group A.
Let A be a generic abelian group defined in the universe U of A. If g is an

element of A, then U !g is an element of U .
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69.4.2 Representation of an Element
An element g of an abelian group A can be represented as a linear combination with respect
to a given generating sequence. The coefficients appearing in this linear combination
provide an alternative representation for g. If A is a fp-group, the generating set will be
the one on which the group was defined. In the case of a generic group, the generating
set can either be that obtained when constructing a presentation for A or a user-supplied
generating set.

Representation(g)

ElementToSequence(g)

Eltseq(g)

Let A be an abelian group with generating set e1, . . . , en and suppose g is an element
of A, where g = a1e1+. . .+anen. These functions return the sequenceQ of n integers
defined by Q[i] = ai, for i = 1, . . . , n. Moreover, each ai, i = 1, . . . , n, is the integer
residue modulus the order of the ith generator.

UserRepresentation(g)

Let A be a generic abelian group with a user-supplied set of generators u1, . . . , un

and suppose g is an element of A, where g = a1u1+. . .+anun. This function returns
the sequence Q of n integers defined by Q[i] = ai, for i = 1, . . . , n. Moreover, each
ai, i = 1, . . . , n, is the integer residue modulus the order of the ith generator.

Representation(S, g)

Let A be a generic abelian group and let S = [s1, . . . , sm] be any sequence of elements
of A. Assume g is an element of A such that bg = a1s1 + . . .+ amsm. This function
returns as its first value the sequence Q of m integers defined by Q[i] = ai, for
i = 1, . . . ,m. The second value returned is the coefficient b of g. Note that b might
not be 1.

Example H69E7

We use the quadratic forms example considered above to illustrate these functions.

> Generators(QF);

[ <2,2,500001>, <206,-102,4867> ]

> g := QF ! [5, 6];

> g;

<837,-766,1370>

> Representation(g);

[ 1, 6 ]

>

> g := Random(QF);

> Representation(g);

[ 1, 270 ]

>
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> UserRepresentation(g);

[ 377, 0, 515, 0, 0, 0, 0, 0, 0, 0 ]

>

> S := [];

> for i in [1..3] do

> d := Random(QF);

> Include(~S, d);

> end for;

> seq, coeff := Representation(S, g);

> seq; coeff;

[ -170, -3, 0 ]

1

69.4.3 Arithmetic with Elements

If the generic abelian group A has been constructed with the flag UseRepresentation set
true, then arithmetic with elements of A is trivial.

u + v

Given elements u and v belonging to the same abelian group A, return the sum of
u and v.

-u

The inverse of element u.

u - v

Given elements u and v belonging to the same abelian group A, return the sum of
u and the inverse of v.

m * u

u * m

Given an integer m, return the element w+w+ · · ·w (|m| summands), where w = u,
if m is positive and w = −u if m is negative.
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69.5 Construction of Subgroups and Quotient Groups
The operations in this section apply to both, free abelian groups and arbitrary abelian
groups.

69.5.1 Construction of Subgroups

sub< A | L >

Construct the subgroup B of the abelian group A generated by the elements specified
by the terms of the generator list L. A term L[i] of the generator list may consist
of any of the following objects:
(a)An element liftable to A;
(b)A sequence of integers representing an element of A;
(c) A subgroup of A;
(d)A set or sequence of type (a), (b), or (c).
The collection of words and groups specified by the list must all belong to the group
A and the group B will be constructed as a subgroup of A.

Example H69E8

We create a subgroup of the group A = Z2 + Z3 + Z4 + Z5 + Z6 + Z + Z.

> A<[x]> := AbelianGroup([2,3,4,5,6,0,0]);

> A;

Abelian Group isomorphic to Z/2 + Z/6 + Z/60 + Z + Z

Defined on 7 generators

Relations:

2*x[1] = 0

3*x[2] = 0

4*x[3] = 0

5*x[4] = 0

6*x[5] = 0

> B<[y]> := sub< A | x[1], x[3], x[5], x[7] >;

> B;

Abelian Group isomorphic to Z/2 + Z/2 + Z/12 + Z

Defined on 4 generators in supergroup A:

y[1] = 2*x[3] + 3*x[5]

y[2] = x[1]

y[3] = 3*x[3] + x[5]

y[4] = x[7]

Relations:

2*y[1] = 0

2*y[2] = 0

12*y[3] = 0

In the case of subgroups of generic groups, a number of parameters are provided.
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sub< A | L: parameters >

Construct the subgroup of the generic abelian group A generated by the elements
specified by the terms of the generator list L. A term L[i] of the generator list may
consist of any of the following objects:
(a)An element liftable into A;
(b)A sequence of integers representing an element of A;
(c) A set or sequence whose elements may be of either of the above types.

An element liftable into A may be an element of A itself, or it may be an element
of U (Universe(U)), U being as usual the domain over which A is defined. For
consistency with the construction, the values of the following parameters may also
be passed to the subgroup constructor:

Order RngInt Default :

RandomIntrinsic MonStg Default :

ComputeStructure Bool Default : false

UseUserGenerators Bool Default : false

PollardRhoRParam RngInt Default : 20
PollardRhoTParam RngInt Default : 8
PollardRhoVParam RngInt Default : 3

In particular, it is possible to construct a subgroup by giving its order and a
random function generating elements of the subgroup. In this case, the list L would
be empty since calculation of the subgroup structure would result in the construction
of the p-Sylow subgroups from random elements of the subgroup. Further, when
the structure of A is already known and if the subgroup is defined in terms of a set
of generators in L then the subgroup structure is computed at the time of creation.

Example H69E9

We create a subgroup of the quadratic forms group considered above.

> S := [];

> for j in [1..2] do

> P := Random(QF);

> Include(~S, P);

> end for;

> S;

[ <45,26,22226>, <937,-930,1298> ]

> QF1 := sub< QF | S>;

> QF1;

Generic Abelian Group over

Binary quadratic forms of discriminant -4000004

Abelian Group isomorphic to Z/2 + Z/258

Defined on 2 generators in supergroup A:
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QF1.1 = QF.1

QF1.2 = 2*QF.2

Relations:

2*QF1.1 = 0

258*QF1.2 = 0

>

69.5.2 Construction of Quotient Groups

quo< F | R >

Given an abelian group F , and a set of relations R in the generators of F , construct
(a) an abelian group A isomorphic to the quotient of F by the subgroup of F defined
by R, and (b) the natural homomorphism φ : F → A.

The expression defining F may be either simply the name of a previously con-
structed group, or an expression defining an abelian group. The possibilities for the
relation list R are the same as for the AbelianGroup construction.
The function returns:
(a)The quotient group A;
(b)The natural homomorphism φ : F → A.

A / B

Given a subgroup B of the abelian group A, construct the quotient of A by B.

69.6 Standard Constructions and Conversions

AbelianGroup(GrpAb, Q)

AbelianGroup(Q)

Let Q = [a1, . . . , ar] be a sequence of non-negative integers. This function creates
the abelian group Z1 + · · ·+ Zr, where Zi is the cyclic group of order |ai| if ai 6= 0
or the infinite cyclic group Z otherwise, i = 1, . . . , r.

AbelianGroup(G)

Given an abelian permutation, matrix or polycyclic group G, represent it as an
abelian group A. The function also returns the isomorphism φ : G → A as its
second value.

AbelianQuotient(G)

Given a finitely presented, permutation, matrix or polycyclic group G, return the
maximal abelian quotient A of G. The function returns the natural homomorphism
φ : G→ A as its second value.
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DirectSum(A, B)

The direct sum of abelian groups A and B.

PCGroup(A)

A pc-group representation G of A. The isomorphism φ : A→ G is also returned.

PermutationGroup(A)

A permutation group representation of A. The particular group G is generated
by disjoint cycles whose lengths are the abelian invariants of A. The isomorphism
φ : G→ A is also returned.

FPGroup(A)

A fp-group group representation of A. The particular group G is generated by com-
muting generators whose orders are the abelian invariants of A. The isomorphism
φ : G→ A is also returned.

CommutatorSubgroup(G)

DerivedSubgroup(G)

The derived subgroup of G, that is the trivial group, since G is abelian.

CommutatorSubgroup(H, K)

CommutatorSubgroup(G, H, K)

The commutator subgroup of groups H and K in their common overgroup G.

Centralizer(G, a)

Centraliser(G, a)

The centraliser of a in G.

Core(G, H)

The maximal normal subgroup of G that is contained in the subgroup H of G. Since
G is abelian, this is H itself.

Centre(G)

Center(G)

The center of G, ie. G itself.
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69.7 Operations on Elements

69.7.1 Order of an Element

Order(x)

Order of the element x belonging to an fp-abelian group. If the element has infinite
order, the value zero is returned.

Example H69E10

We compute the orders of some elements in the group Z2 × Z3 × Z4 × Z5 × Z.

> G<[x]> := AbelianGroup([2,3,4,5,0]);

> Order( x[1] + 2*x[2] + 3*x[4]);

30

> Order( x[1] + x[5] );

0

It is possible to determine the order of an element of a generic group with first calcu-
lating the structure of the group. The order function involves the use of one of several
algorithms:
– an improved baby-step giant-step algorithm, due to J. Buchmann, M.J. Jacobson, E.

Teske [BJT97],
– the Pollard–Rho method based algorithm, described above [Tes98].

When computing the order of an element whose lower and upper bounds are known, or
where lower and upper bounds for the group order are known, the following two algorithms
have been shown to be significantly faster than the two algorithms mentioned above.
– the standard baby-step giant-step Shanks algorithm,

– another variant of the Pollard–Rho method which is due to P. Gaudry and R.
Harley [GH00].

To avoid confusion we will distinguish the algorithms due to Teske et al and name them
the T baby-step giant-step algorithm and the T Pollard–Rho algorithm respectively. The
Pollard–Rho algorithm has smaller space requirements than the baby-step giant-step al-
gorithm, so it is recommended for use in very large groups.

In all cases, if the group order is known beforehand, the element order is computed using
this knowledge. This is a trivial operation.

Order(g: parameters)

ComputeGroupOrder Bool Default : true

BSGSLowerBound RngIntElt Default : 0
BSGSStepWidth RngIntElt Default : 0
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Assume that g is an element of the generic abelian group A. This functions returns
the order of the element g. Note that if UseRepresentation is set to true for A,
then this is a trivial operation.

If the parameter ComputeGroupOrder is true, the order of A is computed first
(unless it is already known). The order of g is then computed using this knowledge;
this last computation is trivial.

If ComputeGroupOrder is false, the order of g is computed using the T baby-step
giant-step algorithm.

BSGSLowerBound and BSGSStepWidth are parameters which can be passed to
the baby-step giant-step algorithm.

BSGSLowerBound sets a lowerbound on the order of the element g, and
BSGSStepWidth sets the step-width in the algorithm.

Order(g, l, u: parameters)

Alg MonStg Default : “Shanks”
UseInversion BoolElt Default : false

Assume that g is an element of the generic abelian group A such that the order of
g or the order of A is bounded by u and l. This function returns the order of the
element g.

If the parameter Alg is set to "Shanks" then the generic Shanks algorithm is used,
and when Alg is set to "PollardRho", the Gaudry–Harley Pollard–Rho variant
is used. Setting UseInversion halves the search space. To be effective element
inversion must be fast.

Order(g, l, u, n, m: parameters)

Alg MonStg Default : “Shanks”
UseInversion BoolElt Default : false

Assume that g is an element of the generic abelian group A such that the order of
g or the order of A is bounded by u and l. Assume also that Order(g) ≡ n (mod
m) or that #A ≡ (mod m) This function returns the order of the element g. The
two parameters Alg and UseInversion have the same meaning as for the previous
Order function.

69.7.2 Discrete Logarithm

Log(g, d: parameters)

ComputeGroupOrder Bool Default : true

AlInPohligHellmanLoop MonStg Default : “BSGS”
BSGSStepWidth RngIntElt Default : 0
PollardRhoRParam RngInt Default : 20
PollardRhoTParam RngInt Default : 8
PollardRhoVParam RngInt Default : 3
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Assume that g and d are elements of the generic abelian group A. This func-
tion returns the discrete logarithm of d to the base g. If ComputeGroupOrder
is true, then the group order is computed first (if not already known) and from
this the order of the base g is computed. The discrete logarithm problem is
then solved using a Pohlig–Hellman loop calling either the T baby-step giant-step
algorithm (AlInPohligHellmanLoop := "BSGS") or the T Pollard–Rho algorithm
(AlInPohligHellmanLoop := "PollardRho").

The parameter BSGSStepWidth has the same meaning as for the Order func-
tion. Parameters PollardRhoRParam, PollardRhoTParam, and PollardRhoVParam
have the same meaning as they do for the determination of structure (function
AbelianGroup). If ComputeGroupOrder is false then the discrete logarithm prob-
lem is solved using the T baby-step giant-step algorithm. Here again the parameter
BSGSStepWidth applies.

Example H69E11

It is assumed that the structure of the groups QF has already been computed. We illustrate the
computation of the discrete logarithm relative to a given base.

> n := 38716;

> Ip := Reduction(PrimeForm(Q,11));

> g := GA_qf!Ip;

> d := n * g;

>

> l1 := Log(g, d : BSGSStepWidth := Floor((-Dk)^(1/4)/2));

> l2 := Log(g, d : AlInPohligHellmanLoop := "PollardRho");

> l3 := Log(g, d : ComputeGroupOrder := false);

> l4 := Log(g, d: ComputeGroupOrder := false,

> BSGSStepWidth := Floor((-Dk)^(1/4)/2));

> assert l1 eq l2 and l2 eq l3 and l3 eq l4;

> assert IsDivisibleBy(n - l1, Order(g));

69.7.3 Equality and Comparison

u eq v

Returns true if the elements u and v are identical (as elements of the appropriate
free abelian group), false otherwise.

u ne v

Returns true if the elements u and v are not identical (as elements of the appropriate
free abelian group), false otherwise.

IsIdentity(u)

IsId(u)

Returns true if the element u, belonging to the abelian group A, is the identity
element (zero), false otherwise.
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69.8 Invariants of an Abelian Group

ElementaryAbelianQuotient(G, p)

The maximal p-elementary abelian quotient of the group G as GrpAb. The natural
epimorphism is returned as second value.

FreeAbelianQuotient(G)

The maximal free abelian quotient of the group G as GrpAb. The natural epimor-
phism is returned as second value.

Invariants(A)

The invariants of the abelian group G. Each infinite cyclic factor is represented by
zero.

TorsionFreeRank(A)

The torsion-free rank of the abelian group G.

TorsionInvariants(A)

The torsion invariants of the abelian group G.

PrimaryInvariants(A)

The primary invariants of the abelian group G.

pPrimaryInvariants(A, p)

The p-primary invariants of the abelian group G.

69.9 Canonical Decomposition

TorsionFreeSubgroup(A)

The torsion-free subgroup of the abelian group G.

TorsionSubgroup(A)

The torsion subgroup of the abelian group G.

pPrimaryComponent(A, p)

The p-primary component of the abelian group G.
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69.10 Set-Theoretic Operations

69.10.1 Functions Relating to Group Order

Order(G)

#G

The order of the group G, returned as an ordinary integer. If G is an infinite group,
the value zero is returned. Note that if G is a generic group then determining the
order will require the structure of G to be determined.

FactoredOrder(G)

The factored order of the group G, returned as a sequence of prime-exponent pairs.
If G is an infinite group, the empty sequence is returned. Note that if G is a generic
group then determining the order will require the structure of G to be determined.

Exponent(G)

The exponent of the group G. If the group is infinite, the value zero is returned.
Note that if G is a generic group then determining the exponent will require the
structure of G to be determined.

IsFinite(G)

Return true if the group G is finite.

IsInfinite(G)

Return true if G , false otherwise.

69.10.2 Membership and Equality

g in G

Given an element g and a group G, return true if g is an element of G, false
otherwise.

g notin G

Given an element g and a group G, return true if g is not an element of G, false
otherwise.

S subset G

Given an group G and a set S of elements belonging to a group H, where G and H
have some covering group, return true if S is a subset of G, false otherwise.

S notsubset G

Given a group G and a set S of elements belonging to a group H, where G and H
have some covering group, return true if S is not a subset of G, false otherwise.
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H subset G

Given groups G and H, subgroups of some common overgroup, return true if H is
a subgroup of G, and false otherwise.

H notsubset G

Given groups G and H, subgroups of some common overgroup, return true if H is
not a subgroup of G, and false otherwise.

G eq H

Given groups G and H, subgroups of some common overgroup, return true if G
and H are identical, and false otherwise.

G ne H

Given groups G and H, subgroups of some common overgroup, return true if G
and H are distinct groups, and false otherwise.

69.10.3 Set Operations

NumberingMap(G)

A bijective mapping from the finite group G onto the set of integers {1 . . . |G|}. The
actual mapping depends upon choice of standard generators for G.

RandomProcess(G)

Slots RngIntElt Default : 10
Scramble RngIntElt Default : 100

Create a process to generate randomly chosen elements from the finite group G. The
process is based on the product-replacement algorithm of [CLGM+95], modified by
the use of an accumulator. At all times, N elements are stored where N is the
maximum of the specified value for Slots and Ngens(G)+1. Initially, these are just
the generators of G. As well, one extra group element is stored, the accumulator.
Initially, this is the identity. Random elements are now produced by successive calls
to Random(P), where P is the process created by this function. Each such call chooses
one of the elements in the slots and adds it into the accumulator. The element in
that slot is replaced by the sum of it and another randomly chosen slot. The random
value returned is the new accumulator value. Setting Scramble := m causes m such
sum-replacement operations to be performed before the process is returned. Note
that this algorithm cannot produce well-distributed random elements of an infinite
group.

Random(P)

Given a random element process P created by the function RandomProcess(G) for
the finite abelian group G, return the next random element of G defined by the
process.
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Random(G)

An element chosen at random from the finite group G.

Rep(G)

A representative element of G.

69.11 Coset Spaces

Transversal(G, H)

RightTransversal(G, H)

Given a group G and a subgroup H of G, this function returns:

(a)An indexed set of elements T of G forming a right transversal for G over H; and,

(b)The corresponding transversal mapping φ : G→ T . If T = {t1, . . . , tr} and g in
G, φ is defined by φ(g) = ti, where g ∈ Hti.

69.11.1 Coercions Between Groups and Subgroups

G ! g

Given an element g belonging to the subgroup H of the group G, rewrite g as an
element of G.

H ! g

Given an element g belonging to the group G, and given a subgroup H of G con-
taining g, rewrite g as an element of H.

K ! g

Given an element g belonging to the group H, and a group K, such that H and K
are subgroups of G, and both H and K contain g, rewrite g as an element of K.

Morphism(H, G)

The integer matrix defining the inclusion monomorphism from the subgroup H of
G into G.
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69.12 Subgroup Constructions
Although, in the case of an abelian group, many of the standard subgroup constructors
are trivial, they are all implemented for the sake of uniformity. Here we document only
those which are meaningful in the conrext of abelian groups.

H meet K

Given subgroups H and K of some group G, construct their intersection.

H meet:= K

Replace H with the intersection of groups H and K.

H + K

Given subgroups H and K of some group G, construct the smallest subgroup con-
taining both.

n * G

For an integer n and some abelian group G, construct the subgroup nG. The second
return value is the map G→ G sending g → ng.

FrattiniSubgroup(G)

The Frattini subgroup of the finite abelian group G.

SylowSubgroup(G, p : parameters)

Sylow(G, p : parameters)

Structure Bool Default : false

The Sylow p-subgroup for the group G. If G is a generic group and the parameter
Structure is true, or if the group structure of A is known, then the group structure
of the Sylow subgroup is computed.

Example H69E12

In the following example, we construct the Sylow 2-subgroup of G = Z34384.

> m := 34384;

> Zm := Integers(m);

> U := {@ x : x in Zm | GCD(x, m) eq 1 @};

> G := GenericAbelianGroup(U : IdIntrinsic := "Id",

> AddIntrinsic := "*", InverseIntrinsic := "/");

> _ := AbelianGroup(G);

> Factorization(#G);

> Sylow(G, 2);

2-Sylow subgroup: Generic Abelian Group over

Residue class ring of integers modulo 34384

Abelian Group isomorphic to Z/2 + Z/2 + Z/2 + Z/4

Defined on 4 generators in supergroup G:

GAp.1 = G.1

GAp.2 = G.2
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GAp.3 = 3*G.3

GAp.4 = 153*G.4

Relations:

2*GAp.1 = 0

2*GAp.2 = 0

2*GAp.3 = 0

4*GAp.4 = 0

69.13 Subgroup Chains

CompositionSeries(G)

A composition series for the finite abelian group G returned as a sequence of sub-
groups.

Agemo(G, i)

Given a finite p-group G, return the characteristic subgroup of G generated by the
elements xpi

, x ∈ G, where i is a positive integer.

Omega(G, i)

Given a finite p-group G, return the characteristic subgroup of G generated by the
elements of order dividing pi, where i is a positive integer.

69.14 General Group Properties

IsCyclic(G)

Returns true if the group G is cyclic, false otherwise.

IsElementaryAbelian(G)

Returns true if the group G is elementary abelian, false otherwise.

IsFree(G)

Returns true if G is free, false otherwise.

IsMixed(G)

Returns true if G is a mixed group, false otherwise. An abelian group is mixed if
it is neither a torsion group nor free.

IspGroup(G)

Returns true if the finite group G is a p-group, ie. if all elements have order a power
of p.
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69.14.1 Properties of Subgroups

IsMaximal(G, H)

Returns true if the subgroup H of the finite group G is a maximal subgroup of G,
false otherwise.

Index(G, H)

The index of the subgroup H in the group G, returned as an ordinary integer. If H
has infinite index in G, the value zero is returned.

FactoredIndex(G, H)

The factored index of the subgroup H in the group G, returned as a sequence of
prime-exponent pairs. If H has infinite index in G, the empty sequence is returned.

IsPure(G, H)

Returns true if the subgroup H of the finite group G is pure, ie. if for all n we have
nG ∩H = nH.

IsNeat(G, H)

Returns true if the subgroup H of the finite group G is neat, i.e., if for all primes
p we have pG ∩H = pH.

69.14.2 Enumeration of Subgroups

MaximalSubgroups(G)

The maximal subgroups of the finite group G returned as a sequence of subgroups.

Subgroups(G:parameters)

The subgroups of the finite group G are returned as a sequence of records. The
record fields are subgroup, storing the actual group; order, storing the group order;
and length, storing the length of the conjugacy class, which is always 1 for abelian
groups.

Sub [RngIntElt] Default : []

If parameter Sub is set, only subgroups with invariants equal to the given se-
quence are found. The given sequence should contain positive integers, such that
each divides the following.

Quot [RngIntElt] Default : []

If parameter Quot is set, only subgroups such that the quotient group has in-
variants equal to the given sequence are found. The given sequence should contain
positive integers, such that each divides the following.
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NumberOfSubgroupsAbelianPGroup (A)

Return the number of subgroups of each non-trivial order in the abelian p-group G
where A = [a1, a2, . . .] and G = Ca1 × Ca2 × . . .. The m-th entry in the sequence
returned is the number of subgroups of order pm.

HasComplement(G, U)

For a finite abelian group G and a subgroup U decide if there exist some other
subgroup V such that G = U + V and U ∩ V = {0}. In case such a V exists, it is
returned as the second value.

Example H69E13

We look at subgroups of an abelian group of order 12.

> G := AbelianGroup([2,6]);

> s := Subgroups(G); #s;

10

> s[7];

rec<recformat<order, length, subgroup, presentation> |

order := 3, length := 1,

subgroup := Abelian Group isomorphic to Z/3

Defined on 1 generator in supergroup G:

$.1 = 2*G.2

Relations:

3*$.1 = 0>

> [x‘order:x in s];

[ 12, 6, 4, 2, 6, 6, 3, 2, 2, 1 ]

Now we find the elementary abelian subgroup of order 4.

> s22 := Subgroups(G:Sub := [2,2]); #s22;

1

> s22;

Conjugacy classes of subgroups

------------------------------

[1] Order 4 Length 1

Abelian Group isomorphic to Z/2 + Z/2

Defined on 2 generators in supergroup G:

$.1 = G.1

$.2 = 3*G.2

Relations:

2*$.1 = 0

2*$.2 = 0

There is more than one subgroup of index 2 in G.

> q2 := Subgroups(G:Quot := [2]); #q2;

3

> q2[3]‘subgroup;
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Abelian Group isomorphic to Z/6

Defined on 1 generator in supergroup G:

$.1 = G.1 + G.2

Relations:

6*$.1 = 0

69.15 Representation Theory

CharacterTable(G)

The table of irreducible characters for the group G.

69.16 The Hom Functor

Hom(G, H)

Given finite abelian groups G and H, return an abelian group A isomorphic to
Hom(G,H), and a transfer map t such that, given an element a of A, t(a) yields
the corresponding (Magma Map type) homomorphism from G to H. The structure
of Hom(G,H) may thus be analyzed by examining A.

HomGenerators(G, H)

Given finite abelian groups G and H, return a sequence of (Z-module) generators of
Hom(G,H). The generators are returned as actual (Magma Map type) homomor-
phisms. Note that Hom(G,H) is usually not free, so it is difficult to generate all
homomorphisms uniquely using the generators alone (use Hom or Homomorphisms if
that is desired).

Homomorphisms(G, H)

Given finite abelian groups G and H, return a sequence containing all elements of
Hom(G,H). The elements are returned as actual (Magma Map type) homomor-
phisms. Note that this function simply uses Hom, transferring each element of the
returned group to the actual Magma Map type homomorphism.
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Example H69E14

We examine A = Hom(G, H), for certain abelian groups G and H.

> G := AbelianGroup([2, 3]);

> H := AbelianGroup([4, 6]);

> A, t := Hom(G, H);

> #A;

12

> A;

Abelian Group isomorphic to Z/2 + Z/6

Defined on 2 generators

Relations:

2*A.1 = 0

6*A.2 = 0

> h := t(A.1);

> h;

Mapping from: GrpAb: G to GrpAb: H

> h(G.1);

3*H.2

> h(G.2);

0

We now enumerate all elements of A and examine the images of each generator of G under each
homomorphism. We note that each possible list of images occurs only once.

> I := [<h(G.1), h(G.2)> where h is t(x): x in A];

> I;

[

<0, 0>,

<3*H.2, 0>,

<2*H.1, 2*H.2>,

<2*H.1 + 3*H.2, 2*H.2>,

<0, 4*H.2>,

<3*H.2, 4*H.2>,

<2*H.1, 0>,

<2*H.1 + 3*H.2, 0>,

<0, 2*H.2>,

<3*H.2, 2*H.2>,

<2*H.1, 4*H.2>,

<2*H.1 + 3*H.2, 4*H.2>

]

> #I;

12

> #Set(I);

12
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69.17 Automorphism Groups

The full automorphism group of the abelian group G.

69.18 Cohomology

Dual(G)

Computes the dual group G∗ of G and a map M from G×G∗ → Z/mZ for m the
exponent of G that allows G∗ to act on G. G must be finite.

H2 G QmodZ(G)

Computes H := H2(G,Q/Z) and a map f : H → (G×G → Z/mZ) that will give
the cocycles as maps from G×G→ Z/mZ. m := #G.

Res H2 G QmodZ(U, H2)

For a subgroup U of G and H2 = H2(G,Q/Z) computes H2(U,Q/Z) in a compat-
ible way together with the restriction map into H2.

H2 must be the result of H2 G QmodZ as this function relies on the attributes
stored in there.

69.19 Homomorphisms

Two functions are provided to construct homomorphisms or isomorphisms from one group
into another, where either of the groups, or both, may be generic abelian groups.

hom< A -> B | L >

Given groups A and B, construct a homomorphism from A to B as defined by the
extension L. If one or both of A and B are generic abelian groups this works as
usual, with one minor difference as explained below. Suppose that the generators
of A are g1, . . . , gn, and that φ(gi) = hi for each i, where φ is the homomorphism
one wishes to construct. The list L as required by the constructors must be one of
the following:

(a) a list of the n 2-tuples < gi, hi > (order not important);

(b)a list of the n arrow-pairs gi → hi (order not important);

(c) h1, . . . , hn (order is important).

If A is a generic abelian group this rule is relaxed somewhat in the following sense: If
L is a list of n 2-tuples or of n arrow-pairs, the elements gi need not be the defining
generators of A. The only requirement is that the set {g1, . . . , gn} does actually
generate the whole of A.
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Homomorphism(A, B, X, Y)

Creates a homomorphism from A into B as given by the mapping of X into Y . The
arguments A and B may be any type of group, including of course, generic abelian
groups.

The function Homomorphism does not require the elements of the argument X
to be generators of A as given by Generators(A), so it allows more freedom when
creating a homomorphism. If, however, these elements fail to generate the whole of
A then the subsequent map application will fail.

iso< A -> B | L >

Given groups A and B, construct an isomorphism from A to B as defined by the
extension L. If one or both of A and B are generic abelian groups this works as
usual, with one minor difference as explained below. Suppose that the generators
of A are g1, . . . , gn, and that φ(gi) = hi for each i, where φ is the isomorphism one
wishes to construct. The list L as required by the constructors must be one of the
following:
(a) a list of the n 2-tuples < gi, hi > (order not important);
(b)a list of the n arrow-pairs gi → hi (order not important);
(c) h1, . . . , hn (order is important).
If A is a generic abelian group this rule is relaxed somewhat in the following sense:
If L is a list of n 2-tuples or of n arrow-pairs, the elements gi may not necessarily
be generators of A as given by the function Generators(A). The only requirement
is that the set {h1, . . . , hn} does actually generate the whole of B.

Isomorphism(A, B, X, Y)

Creates a isomorphism from A into B as given by the mapping of X into Y . The
arguments A and B can be any type of group, including of course, generic abelian
groups.

The function Isomorphism does not require the elements of the argument X to
be generators of A as given by Generators(A), so it allows more freedom when
creating an isomorphism. If, however, these elements fail to generate the whole of
A then the subsequent map application will fail.

Example H69E15

Recall that we defined the subgroups GH1Zm and GH2Zm of G as:

> GH1_Zm;

Generic Abelian Group over

Residue class ring of integers modulo 34384

Abelian Group isomorphic to Z/6 + Z/612

Defined on 2 generators in supergroup G:

GH1_Zm.1 = G.2 + G.3

GH1_Zm.2 = G.4
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Relations:

6*GH1_Zm.1 = 0

612*GH1_Zm.2 = 0

> GH2_Zm;

Generic Abelian Group over

Residue class ring of integers modulo 34384

Abelian Group isomorphic to Z/2 + Z/2 + Z/6 + Z/612

Defined on 4 generators in supergroup G:

GH2_Zm.1 = G.1

GH2_Zm.2 = G.2

GH2_Zm.3 = G.3

GH2_Zm.4 = G

Relations:

2*GH2_Zm.1 = 0

2*GH2_Zm.2 = 0

6*GH2_Zm.3 = 0

612*GH2_Zm.4 = 0

We construct the homomorphism

> h := hom<GH1_Zm -> GH2_Zm | GH2_Zm.1, GH2_Zm.2 >;

> h(GH1_Zm);

Generic Abelian Group over

Residue class ring of integers modulo 34384

Abelian Group isomorphic to Z/2 + Z/2

Defined on 2 generators in supergroup GH2_Zm:

$.1 = GH2_Zm.2

$.2 = GH2_Zm.1

Relations:

2*$.1 = 0

2*$.2 = 0

but we cannot construct the isomorphism

> i := iso<GH1_Zm -> GH2_Zm | GH2_Zm.1, GH2_Zm.2 >;

>> i := iso<GH1_Zm -> GH2_Zm | GH2_Zm.1, GH2_Zm.2 >;

^

Runtime error in map< ... >: Images do not generate the (whole) codomain

An alternative way of creating the homomorphism h would be

> h := Homomorphism(GH1_Zm, GH2_Zm, Generators(GH1_Zm), [GH2_Zm.1, GH2_Zm.2]);
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Chapter 70

FINITELY PRESENTED GROUPS

70.1 Introduction
This Chapter presents the functions designed for computing with finitely-presented groups
(fp-groups for short). The name of the corresponding Magma category is GrpFP. The func-
tions considered here are designed for doing what is sometimes referred to as combinatorial
group theory.

70.1.1 Overview of Facilities
The facilities provided for fp-groups fall into a number of natural groupings:
• The construction of fp-groups in terms of generators and relations;
• The construction of particular types of quotient groups: abelian quotient, p-quotient,

nilpotent quotient and soluble quotient;
• Index determination and subgroup building based on the Todd-Coxeter procedure;
• Calculations with subgroups having finite index in a group, where the subgroups are

represented by coset tables;
• The construction of all subgroups having index less than some (small) specified bound;
• The construction of representations of an fp-group corresponding to actions on coset

spaces and elementary abelian sections;
• The use of a rewriting process for constructing presentations of subgroups;
• The simplification of words with respect to a given set of relations.
For a description of fundamental algorithms for finitely presented groups, we refer the
reader to [Sim94].

70.1.2 The Construction of Finitely Presented Groups
The construction of fp-groups utilises the fact that every group is a quotient of some
free group. Thus, two general fp-group constructors are provided: FreeGroup(n) which
constructs a free group of rank n, and quo< F | R > which constructs the quotient of
group F by the normal subgroup defined by the relations R.

The naming of generators presents special difficulties since they are not always used in a
consistent manner in the mathematical literature. A generator name is used in two distinct
ways. Firstly, it plays the role of a variable having as its value a designated generator of G.
Secondly, it appears as the symbol designating the specified generator whenever elements
of the group are output. These two uses are separated in the Magma semantics.

In Magma, a standard indexing notation is provided for referencing the generators of
any fp-group G. Thus, G.i denotes the i-th generator of G. However, users may give
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individual names to the generators by means of the generator-assignment. Suppose that
the group G is defined on r generators. Then if the right hand side of the following
statement creates a group, the special assignment

> G< v_1, ..., v_r> := construction;

is equivalent to the statements

> G := construction;
> v_1 := G.1;
> ...
> v_r := G.r;

It should be noted that when the fp-group G is created as the quotient of the group F , any
names that the user may have associated with the generators of F will not be associated
with the corresponding generators of G. If this were allowed, then it would violate the
fundamental principle that every object is viewed as belonging to a unique structure.

70.2 Free Groups and Words

70.2.1 Construction of a Free Group

FreeGroup(n)

Construct the free group F of rank n, where n is a positive integer.
The i-th generator of F may be referenced by the expression F.i, i = 1, . . . , n.

Note that a special form of the assignment statement is provided which enables the
user to assign names to the generators of F . In this form of assignment, the list
of generator names is enclosed within angle brackets and appended to the variable
name on the left hand side of the assignment statement: F< v1, ..., vn > :=
FreeGroup(n);

Example H70E1

The statement

> F := FreeGroup(2);

creates the free group of rank 2. Here the generators may be referenced using the standard names,
F.1 and F.2.
The statement

> F<x, y> := FreeGroup(2);

defines F to be the free group of rank 2 and assigns the names x and y to the two generators.
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70.2.2 Construction of Words
The operations in this section apply to both, free groups and arbitrary fp-groups.

G ! [ i1, ..., is ]

Given a group G defined on r generators and a sequence [i1, · · · , is] of integers lying
in the range [−r, r], excluding 0, construct the word

G.|i1|ε1 ∗G.|i2|ε2 ∗ · · · ∗G.|is|εs

where εj is +1 if ij is positive, and −1 if ij is negative.

Identity(G)

Id(G)

G ! 1

Construct the identity element, represented as the empty word, for the fp-group G.
For a sample application of this function, see Example H70E3.

Random(G, m, n)

A random word of length l in the generators of the group G, where m ≤ l ≤ n. For
a sample application of this function, see Example H70E3.

70.2.3 Access Functions for Words
This section describes some basic access functions for words. These operations apply to
both, free groups and arbitrary fp-groups.

#w

The length of the word w.

ElementToSequence(w)

Eltseq(w)

The sequence Q obtained by decomposing the word w into its constituent gen-
erators and generator inverses. Suppose w is a word in the group G. Then, if
w = G.ie1

1 · · ·G.iem
m , with each ei = ±1, then Q[j] = ij if ej = +1 and Q[j] = −ij if

ej = −1, for j = 1, . . . ,m.

ExponentSum(w, x)

Weight(w, x)

Given a word w, and the name of a generator x of a group G, compute the sum of
the exponents of the generator x in the word w. For a sample application of this
function, see Example H70E3.
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GeneratorNumber(w)

Suppose w is a word belonging to a group G. Assume x is the name of the i-th
generator of G. Then

(i) if w = Identity(G), GeneratorNumber(w) is 0;

(ii) if w = x ∗ w′, w′ a word in G, GeneratorNumber(w) is i;

(iii) if w = x−1 ∗ w′, w′ a word in G, GeneratorNumber(w) is −i.

LeadingGenerator(w)

Suppose w is a word belonging to a group G. If w = xε ∗ w′, w′ a word in G, x a
generator of G and ε ∈ {−1,+1}, the functions returns xε. If w = Identity(G), it
returns Identity(G). For a sample application of this function, see Example H70E3.

Parent(w)

The parent group G of the word w.

Example H70E2

Consider the free group F on 6 generators

> F<u,v,w,x,y,z> := FreeGroup(6);

and the sequence of words

> rels := [ (u*v)^42, (v,x), (x*z^2)^4,

> v^2*y^3, (v*z)^3, y^4, (x*z)^3 ];

The abelianised relation matrix of the quotient

〈u, v, w, x, y, z | (uv)42, (v, x), (xz2)4, v2y3, (vz)3, y4, (xz)3〉

can be obtained using the following construction

> R := Matrix(Integers(),

> [ [ Weight(r, F.j) : j in [1..6] ] : r in rels ]);

> R;

[42 42 0 0 0 0]

[ 0 0 0 0 0 0]

[ 0 0 0 4 0 8]

[ 0 2 0 0 3 0]

[ 0 3 0 0 0 3]

[ 0 0 0 0 4 0]

[ 0 0 0 3 0 3]

(The function Matrix constructs a matrix from a sequence of row vectors.)
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70.2.4 Arithmetic Operators for Words
Suppose G is an fp-group for which generators have already been defined. This subsection
defines the elementary arithmetic operations on words that are derived from the multipli-
cation and inversion operators. The availability of the operators defined here enables the
user to construct an element (word) of G in terms of the generators as follows:

(i) A generator is a word;

(ii) The expression (u) is a word, where u is a word;

(iii) The product u ∗ v of the words u and v is a word;

(iv) The conjugate uv of the word u by the word v, is a word (uv expands into the word
v−1 ∗ u ∗ v);

(v) The power of a word, un, where u is a word and n is an integer, is a word;

(vi) The commutator (u, v) of the words u and v is a word ((u, v) expands into the word
u−1 ∗ v−1 ∗ u ∗ v). Note that (u, v, w) is equivalent to ((u, v), w), i.e. commutators
are left-normed.

The word operations defined here may be applied either to the words of a free group or
the words of a group with non-trivial relations. If such an operator is applied to a group
possessing non-trivial relations, only free reduction will be applied to the resulting words.

u * v

Given words u and v belonging to the same fp-group G, return the product of u and
v.

u ^ n

The n-th power of the word u, where n is an integer. When invoked with n = −1,
the function computes the inverse of u. When invoked with n = 0, the function
returns the identity element.

u ^ v

Given words u and v belonging to the same fp-group G, return the conjugate v−1 ∗
u ∗ v of the word u by the word v.

(u, v)

Given words u and v belonging to the same fp-group G, return the commutator
u−1v−1uv of the words u and v.

(u1, ..., un)

Given the n words u1, . . . , un belonging to the same fp-group G, return their com-
mutator. Commutators are left-normed, so that they are evaluated from left to
right.
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70.2.5 Comparison of Words
Words in an fp-group may be compared both for equality and for their relationship with
respect to a natural lexicographic ordering. It should be noted that even when a pair of
words belong to a group defined by non-trivial relations, only the free reductions of the
words are compared. Thus, a pair of words belonging to a group G may be declared to be
distinct even though they may represent the same element of G.

The words of an fp-group G are ordered first by length and then lexicographically. The
lexicographic ordering is determined by the following ordering on the generators and their
inverses:

G.1 < G.1−1 < G.2 < G.2−1 < · · ·
Here, u and v are words belonging to some common fp-group.

u eq v

Return true if the free reductions of the words u and v are identical.

u ne v

Return true if the free reductions of the words u and v are not identical.

u lt v

Return true if the word u precedes the word v, with respect to the ordering defined
above for elements of an fp-group. The words u and v are freely reduced before the
comparison is made.

u le v

Return true if the word u either precedes, or is equal to, the word v, with respect
to the ordering defined above for elements of an fp-group. The words u and v are
freely reduced before the comparison is made.

u ge v

Return true if the word u either follows, or is equal to, the word v, with respect
to the ordering defined above for elements of an fp-group. The words u and v are
freely reduced before the comparison is made.

u gt v

Return true if the word u follows the word v, with respect to the ordering defined
above for elements of an fp-group. The words u and v are freely reduced before the
comparison is made.
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Example H70E3

We construct the free group on three generators and generate a random word w of length between
4 and 6.

> F<a,b,c> := FreeGroup(3);

>

> w := Random(F, 4, 6);

> w;

b^-1 * a^-1 * b^2 * a^-1

We print the length of w and the weight (the exponent sum) of generator a in w.

> #w;

5

>

> Weight(w, a);

-2

We now strip the generators from w one by one, using arithmetic and comparison operators for
words and the access function LeadingGenerator.

> while w ne Identity(F) do

> g := LeadingGenerator(w);

> print g;

> w := g^-1 * w;

> end while;

b^-1

a^-1

b

b

a^-1

70.2.6 Relations
A relation is an equality between two words in a fp-group. To facilitate working with
relations, a relation type is provided.

w1 = w2

Given words w1 and w2 over the generators of an fp-group G, create the relation
w1 = w2. Note that this relation is not automatically added to the existing set of
defining relations R for G. It may be added to R, for example, through use of the
quo-constructor (see below).

r[1]

LHS(r)

Given a relation r over the generators of G, return the left hand side of the relation
r. The object returned is a word over the generators of G.
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r[2]

RHS(r)

Given a relation r over the generators of G, return the right hand side of the relation
r. The object returned is a word over the generators of G.

r[1] := w

Redefine the left hand side of the relation r to be the word w.

r[2] := w

Redefine the right hand side of the relation r to be the word w.

f(r)

Given a homomorphism of the group G for which r is a relation, return the image
of r under f .

Parent(r)

Group over which the relation r is taken.

Example H70E4

We may define a group and a set of relations as follows:

> F<x, y> := FreeGroup(2);

> rels := { x^2 = y^3, (x*y)^4 = Id(F)} ;

To replace one side of a relation, the easiest way is to reassign the relation. So for example, to
replace the relation x2 = y3 by x2 = y4, we go:

> r := x^2 = y^3;

> r := LHS(r) = y^4;
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70.3 Construction of an FP-Group

An fp-group is normally constructed either by giving a presentation in terms of gener-
ators and relations or it is defined to be a subgroup or quotient group of an existing
fp-group. However, fp-groups may be also created from finite permutation and matrix
groups. Finally, Magma has separate types for a number of families of fp-groups that
satisfy a condition such as being polycyclic. Again functions are provided to convert a
member of one of these families into a general fp-group.

70.3.1 The Quotient Group Constructor
A group with non-trivial relations is constructed as a quotient of an existing group, usually
a free group. For convenience, the necessary free group may be constructed in-line.

quo< F | R >

Given an fp-group F , and a set of relations R in the generators of F , construct the
quotient G of F by the normal subgroup of F defined by R. The group G is defined
by means of a presentation which consists of the relations for F (if any), together
with the additional relations defined by the list R.

The expression defining F may be either simply the name of a previously con-
structed group, or an expression defining an fp-group.

If R is a list then each term of the list is either a word, a relation, a relation list
or a subgroup of F .

A word is interpreted as a relator.
A relation consists of a pair of words, separated by ‘=’. (See above.)
A relation list consists of a list of words, where each pair of adjacent words is

separated by ‘=’: w1 = w2 = · · · = wr. This is interpreted as the set of relations
w1 = wr, . . . , wr−1 = wr. Note that the relation list construct is only meaningful in
the context of the quo-constructor.

A subgroup H appearing in the list R contributes its generators to the relation
set for G, i.e. each generator of H is interpreted as a relator for G.

The group F may be referred to by the special symbol $ in any word appearing
to the right of the ‘|’ symbol in the quo-constructor. Also, in the context of the
quo-constructor, the identity element (empty word) may be represented by the digit
1.
The function returns:
(a)The quotient group G;
(b)The natural homomorphism φ : F → G.

This function may require the computation of a coset table. Experienced users
can control the behaviour of a possibly invoked coset enumeration with a set of
global parameters. These global parameters can be changed using the function
SetGlobalTCParameters. For a detailed description of the available parameters
and their meanings, we refer to Chapter 71.
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G / H

Given a subgroup H of the group G, construct the quotient of G by the normal
closure N of H. The quotient is formed by taking the presentation for G and
including the generating words of H as additional relators.

Example H70E5

The symmetric group of degree 4 may be represented as a two generator group with presentation
< a, b | a2, b3, (ab)4 >. Giving the relations as a list of relators, the presentation would be specified
as:

> F<a, b> := FreeGroup(2);

> G<x, y>, phi := quo< F | a^2, b^3, (a*b)^4 >;

Alternatively, giving the relations as a relations list, the presentation would be specified as:

> F<a, b> := FreeGroup(2);

> G<x, y>, phi := quo< F | a^2 = b^3 = (a*b)^4 = 1>;

Finally, giving the relations in the form of a set of relations, this presentation would be specified
as:

> F<a, b> := FreeGroup(2);

> rels := { a^2, b^3, (a*b)^4 };
> G<x, y>, phi := quo< F | rels >;

Example H70E6

A group may be defined using the quo-constructor without first assigning a free group. The $
symbol is used to reference the group whose quotient is being formed.

> S4<x, y> := quo< FreeGroup(2) | $.1^2, $.2^3, ($.1*$.2)^4 >;

> S4;

Finitely presented group S4 on 2 generators

Relations

x^2 = Id(S4)

y^3 = Id(S4)

(x * y)^4 = Id(S4)

Example H70E7

We illustrate the use of the quo-constructor in defining the quotient of a group other than a free
group.

> F<x, y> := Group< x, y | x^2 = y^3 = (x*y)^7 = 1 >;

> F;

Finitely presented group F on 2 generators

Relations

x^2 = Id(F)

y^3 = Id(F)
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(x * y)^7 = Id(F)

> G<a, b> := quo< F | (x, y)^8 >;

> G;

Finitely presented group G on 2 generators

Relations

a^2 = Id(G)

b^3 = Id(G)

(a * b)^7 = Id(G)

(a, b)^8 = Id(G)

> Order(G);

10752

70.3.2 The FP-Group Constructor
For convenience, a constructor is provided which allows the user to define an fp-group in
a single step.

Group< X | R >

Given a list X of variables x1, . . . , xr, and a list of relations R over these generators,
first construct the free group F on the generators x1, · · · , xr and then construct the
quotient of F corresponding to the normal subgroup of F defined by the relations
R.

The syntax for the relations R is the same as for the quo-constructor. The
function returns:

(a)The quotient group G;

(b)The natural homomorphism φ : F → G.

Example H70E8

We illustrate the Group-constructor by defining the binary tetrahedral group in terms of the
presentation < r, s | r3 = s3 = (rs)2 >:

> G<r, s> := Group< r, s | r^3 = s^3 = (r*s)^2 >;

Example H70E9

Again, using the Group-constructor, the group < r, s, t | r2, s2, t2, rst = str = trs > would be
specified as:

> G<r, s, t> := Group<r, s, t | r^2, s^2, t^2, r*s*t = s*t*r = t*r*s>;



2092 FINITELY-PRESENTED GROUPS Part XI

Example H70E10

In our final example we illustrate the use of functions to represent parametrised families of groups.
In the notation of Coxeter, the symbol (l, m|n, k) denotes the family of groups having presentation

< a, b | al, bm, (a ∗ b)n, (a ∗ b−1)k > .

> Glmnk := func< l, m, n, k | Group< a, b | a^l, b^m, (a*b)^n, (a*b^-1)^k > >;

> G<a, b> := Glmnk(3, 3, 4, 4);

> G;

Finitely presented group G on 2 generators

Relations

a^3 = Id(G)

b^3 = Id(G)

(a * b)^4 = Id(G)

(a * b^-1)^4 = Id(G)

> Order(G);

168

> G<a, b> := Glmnk(2, 3, 4, 5);

> G;

Finitely presented group G on 2 generators

Relations

a^2 = Id(G)

b^3 = Id(G)

(a * b)^4 = Id(G)

(a * b^-1)^5 = Id(G)

> Order(G);

1

Thus (2, 3 | 4, 5) is the trivial group.

70.3.3 Construction from a Finite Permutation or Matrix Group

FPGroup(G)

Given a finite group G in category GrpPerm or GrpMat, this function returns a finitely
presented group F , isomorphic to G, together with the isomorphism φ : F → G.
The generators of F correspond to the generators of G, so this function can be used
to obtain a set of defining relations for the given generating set of G.

It should be noted that this function is only practical for groups of order at
most a few million. In the case of much larger permutation groups, an isomorphic
fp-group can be constructed using the function FPGroupStrong.
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FPGroupStrong(G)

Given a finite group G in category GrpPerm or GrpMat, this function returns a finitely
presented group F , isomorphic to G, together with the isomorphism φ : F → G.
The generators of F correspond to a set of strong generators of G. If no strong
generating set is known for G, one will be constructed.

For a detailed description of this function, in particular for a list of available
parameters, we refer to Chapter 58 and Chapter 59, respectively.

FPGroupStrong(G, N)

Given a permutation group G and a normal subgroup N of G, this function returns
a finitely presented group F , isomorphic to G/N , together with a homomorphism
φ : G→ F .

For a detailed description of this function, we refer to Chapter 58.

Example H70E11

We start with defining the alternating group G ' A5 as a permutation group.

> G := AlternatingGroup(5);

> G;

Permutation group G acting on a set of cardinality 5

Order = 60 = 2^2 * 3 * 5

(3, 4, 5)

(1, 2, 3)

Now we create an fp-group F isomorphic to G, using the function FPGroup. The presentation is
constructed by computing a set of defining relations for the generators of G, i.e. the generators of
the returned fp-group correspond to the generators of G. This defines a homomorphism from F
to G, which the function FPGroup returns as second return value.

> F<x,y>, f := FPGroup(G);

> F;

Finitely presented group F on 2 generators

Relations

x^3 = Id(F)

y^3 = Id(F)

(x^-1 * y * x * y)^2 = Id(F)

(x * y^-1 * x * y)^2 = Id(F)

> f;

Mapping from: GrpFP: F to GrpPerm: G

> f(x);

(3, 4, 5)

> f(y);

(1, 2, 3)

Using the function FPGroupStrong, we now create another fp-group Fs, isomorphic to G, whose
generators correspond to a set of strong generators of G.

> Fs<[z]>, fs := FPGroupStrong(G);
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> Fs;

Finitely presented group Fs on 3 generators

Relations

z[1]^-3 = Id(Fs)

(z[1]^-1 * z[3]^-1)^2 = Id(Fs)

z[3]^-3 = Id(Fs)

z[1]^-1 * z[2]^-1 * z[1] * z[3]^-1 * z[2] = Id(Fs)

z[2]^-3 = Id(Fs)

(z[3]^-1 * z[2]^-1)^2 = Id(Fs)

> fs;

Mapping from: GrpFP: Fs to GrpPerm: G

Applying the isomorphism fs, we have a look at the strong generating set constructed for G.

> [ fs(z[i]) : i in [1..#z] ];

[

(3, 4, 5),

(1, 2, 3),

(2, 3, 4)

]

70.3.4 Construction of the Standard Presentation for a Coxeter Group

There is a special Magma category GrpPermCox, a subcategory of GrpPerm, for finite Cox-
eter groups. Here, we describe a function to create from a Coxeter group W a finitely
presented group F , isomorphic to W , which is given by the standard Coxeter group pre-
sentation. We refer to Chapter 98.

CoxeterGroup(GrpFP, W)

Given a finite Coxeter group W in the category GrpFPCox or GrpPermCox, construct
a finitely presented group F isomorphic to W , given by a standard Coxeter presen-
tation. The isomorphism from W to F is returned as second return value. The first
argument to this function must be the category GrpFP.

Local BoolElt Default : false

If the parameter Local is set to true, F is the appropriate subgroup of the FP
version of the overgroup of W .

Example H70E12

We construct a Coxeter group W of Cartan type C5 and create an isomorphic fp-group F . We
can use the isomorphism from W to F to map words in the generators of F to permutation group
elements and vice versa.

> W := CoxeterGroup("C5");

> F<[s]>, h := CoxeterGroup(GrpFP, W);

> F;
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Finitely presented group F on 5 generators

Relations

s[3]^2 = Id(F)

s[2] * s[4] = s[4] * s[2]

s[1]^2 = Id(F)

s[1] * s[2] * s[1] = s[2] * s[1] * s[2]

s[2] * s[5] = s[5] * s[2]

s[4]^2 = Id(F)

s[1] * s[3] = s[3] * s[1]

s[3] * s[4] * s[3] = s[4] * s[3] * s[4]

s[2]^2 = Id(F)

s[1] * s[4] = s[4] * s[1]

s[5]^2 = Id(F)

(s[4] * s[5])^2 = (s[5] * s[4])^2

s[3] * s[5] = s[5] * s[3]

s[1] * s[5] = s[5] * s[1]

s[2] * s[3] * s[2] = s[3] * s[2] * s[3]

> h;

Mapping from: GrpCox: W to GrpFP: F given by a rule

> h(W.1*W.2);

s[1] * s[2]

> (s[1]*s[2]*s[3]*s[4]) @@ h;

(1, 39, 4, 3, 2)(5, 13, 19, 23, 25)(6, 36, 35, 8, 7)(9, 16, 21,

24, 17)(10, 33, 32, 31, 11)(12, 18, 22, 15, 20)(14, 29, 28,

27, 26)(30, 38, 44, 48, 50)(34, 41, 46, 49, 42)(37, 43, 47,

40, 45)

70.3.5 Conversion from a Special Form of FP-Group
Groups that satisfy certain properties, such as being abelian or polycyclic, are known
to possess presentations with respect to which the word problem is soluble. Specialised
categories have been constructed in Magma for several of these, e.g. the categories GrpGPC,
GrpPC and GrpAb. The functions described in this section allow a group created in one of
the special presentation categories to be recast as an fp-group.

FPGroup(G)

Given a group G, defined either by a polycyclic group presentation (types GrpPC
and GrpGPC) or an abelian group presentation (type GrpAb), return a group H
isomorphic to G, together with the isomorphism φ : G→ H. The generators for H
will correspond to the generators of G. The effect of this function is to convert a
presentation in a special form into a general fp-group presentation.
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Example H70E13

We illustrate the cast from special forms of fp-groups to the category GrpFP by converting a
polycyclic group.

> G := DihedralGroup(GrpGPC, 0);

> G;

GrpGPC : G of infinite order on 2 PC-generators

PC-Relations:

G.1^2 = Id(G),

G.2^G.1 = G.-2

> F := FPGroup(G);

> F;

Finitely presented group F on 2 generators

Relations

F.1^2 = Id(F)

F.2^F.1 = F.2^-1

F.1^-1 * F.2^-1 * F.1 = F.2

70.3.6 Construction of a Standard Group
A number of functions are provided which construct presentations for various standard
groups.

AbelianGroup(GrpFP, [n1,...,nr])

Construct the abelian group defined by the sequence [n1, . . . , nr] of non-negative
integers as an fp-group. The function returns the direct product of cyclic groups
Cn1 × Cn2 × · · · × Cnr , where C0 is interpreted as an infinite cyclic group.

AlternatingGroup(GrpFP, n)

Alt(GrpFP, n)

Construct the alternating group of degree n as an fp-group, where the generators
correspond to the permutations (3, 4, . . . , n) and (1, 2, 3), for n odd, or (1, 2)(3, 4,
. . ., n) and (1, 2, 3), for n even.

BraidGroup(GrpFP, n)

Construct the braid group on n strings (n− 1 Artin generators) as an fp-group.

CoxeterGroup(GrpFP, t)

Construct the Coxeter group of Cartan type t as a finitely presented group, given
by the standard Coxeter presentation. The Cartan type t is passed to this function
as a string; we refer to Chapter 97 for details.
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CyclicGroup(GrpFP, n)

Construct the cyclic group of order n as an fp-group.

DihedralGroup(GrpFP, n)

For n > 2, return the dihedral group of order 2n as an fp-group. For n = 0, return
the infinite dihedral group as an fp-group.

ExtraSpecialGroup(GrpFP, p, n : parameters)

Given a small prime p and a small positive integer n, construct an extra-special
group G of order p2n+1 in the category GrpFP. The isomorphism type of G can be
selected using the parameter Type.

Type MonStgElt Default : “ + ”
Possible values for this parameter are “+” (default) and “−”.
If Type is set to “+”, the function returns for p = 2 the central product of n copies

of the dihedral group of order 8, and for p > 2 it returns the unique extra-special
group of order p2n+1 and exponent p.

If Type is set to “−”, the function returns for p = 2 the central product of a
quaternion group of order 8 and n− 1 copies of the dihedral group of order 8, and
for p > 2 it returns the unique extra-special group of order p2n+1 and exponent p2.

SymmetricGroup(GrpFP, n)

Sym(GrpFP, n)

Construct the symmetric group of degree n as an fp-group, where the generators
correspond to the permutations (1, 2, . . . , n) and (1, 2).

Example H70E14

We create the symmetric group Sym(8) as an fp-group:

> S8 := SymmetricGroup(GrpFP, 8);

> S8;

Finitely presented group S8 on 2 generators

Relations

S8.1^8 = Id(S8)

S8.2^2 = Id(S8)

(S8.1 * S8.2)^7 = Id(S8)

(S8.1^-1 * S8.2 * S8.1 * S8.2)^3 = Id(S8)

(S8.2 * S8.1^-2 * S8.2 * S8.1^2)^2 = Id(S8)

(S8.2 * S8.1^-3 * S8.2 * S8.1^3)^2 = Id(S8)

(S8.2 * S8.1^-4 * S8.2 * S8.1^4)^2 = Id(S8)

We create the Coxeter group of Cartan type F4 as an fp-group:

> F := CoxeterGroup(GrpFP, "F4");

> F;
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Finitely presented group F on 4 generators

Relations

(F.2 * F.3)^2 = (F.3 * F.2)^2

F.1^2 = Id(F)

F.1 * F.3 = F.3 * F.1

F.2 * F.4 = F.4 * F.2

F.1 * F.2 * F.1 = F.2 * F.1 * F.2

F.2^2 = Id(F)

F.3^2 = Id(F)

F.3 * F.4 * F.3 = F.4 * F.3 * F.4

F.4^2 = Id(F)

F.1 * F.4 = F.4 * F.1

70.3.7 Construction of Extensions

Darstellungsgruppe(G)

Given an fp-group G, construct a maximal central extension G̃ of G. The group G̃
is created as an fp-group.

DirectProduct(G, H)

Given two fp-groups G and H, construct the direct product of G and H.

DirectProduct(Q)

Given a sequence Q of r fp-groups, construct the direct product Q[1]× . . .×Q[r].

FreeProduct(G, H)

Given two fp-groups G and H, construct the free product of G and H.

FreeProduct(Q)

Given a sequence Q of r fp-groups, construct the free product of the groups
Q[1], . . . , Q[r].



Ch. 70 FINITELY PRESENTED GROUPS 2099

Example H70E15

We construct a maximal central extension of the following group of order 36.

> G<x1, x2> := Group<x1, x2 | x1^4,(x1*x2^-1)^2,x2^4,(x1*x2)^3>;

> G;

Finitely presented group G on 2 generators

Relations

x1^4 = Id(G)

(x1 * x2^-1)^2 = Id(G)

x2^4 = Id(G)

(x1 * x2)^3 = Id(G)

> D := Darstellungsgruppe(G);

> D;

Finitely presented group D on 4 generators

Relations

D.1^4 * D.3^-1 * D.4^2 = Id(D)

D.1 * D.2^-1 * D.1 * D.2^-1 * D.4 = Id(D)

D.2^4 = Id(D)

D.1 * D.2 * D.1 * D.2 * D.1 * D.2 * D.4 = Id(D)

(D.1, D.3) = Id(D)

(D.2, D.3) = Id(D)

(D.1, D.4) = Id(D)

(D.2, D.4) = Id(D)

(D.3, D.4) = Id(D)

> Index(D, sub< D | >);

108

Thus, a maximal central extension of G has order 108

Example H70E16

We create the direct product of the alternating group of degree 5 and the cyclic group of order 2.

> A5 := Group<a, b | a^2, b^3, (a*b)^5 >;

> Z2 := quo< FreeGroup(1) | $.1^2 >;

> G := DirectProduct(A5, Z2);

> G;

Finitely presented group G on 3 generators

Relations

G.1^2 = Id(G)

G.2^3 = Id(G)

(G.1 * G.2)^5 = Id(G)

G.3^2 = Id(G)

G.1 * G.3 = G.3 * G.1

G.2 * G.3 = G.3 * G.2
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70.3.8 Accessing the Defining Generators and Relations
The functions in this group provide access to basic information stored for a finitely-
presented group G.

G . i

The i-th defining generator for G. A negative subscript indicates that the inverse
of the generator is to be created. G.0 is Identity(G), the empty word in G.

Generators(G)

A set containing the generators for the group G.

NumberOfGenerators(G)

Ngens(G)

The number of generators for the group G.

PresentationLength(G)

The total length of the relators for G.

Relations(G)

A sequence containing the defining relations for G.

70.4 Homomorphisms

For a general description of homomorphisms, we refer to Chapter 16. This section describes
some special aspects of homomorphisms the domain of which is a finitely presented group.

70.4.1 General Remarks
The kernel of a homomorphism with a domain of type GrpFP can be computed using the
function Kernel, if the codomain is of one of the types GrpGPC, GrpPC (cf. Chapter 63),
GrpAb (cf. Chapter 69), GrpPerm (cf. Chapter 58), GrpMat (cf. Chapter 59), ModAlg or
ModGrp (cf. Chapter 89), if the image is finite and its order sufficiently small. In this case,
a regular permutation representation of the image is constructed and the kernel is created
as a subgroup of the domain, defined by a coset table.

The kernel may also be computable, if the codomain is of the type GrpFP, the image is
sufficiently small and a presentation for the image is known.

If the kernel of a map can be computed successfully, forming preimages of substructures
is possible. An attempt to compute the kernel of a map will be made automatically, if the
preimage of a substructure of the codomain is to be computed.

Note, that trying to compute the kernel may be very time and memory consuming; use
this feature with care.
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70.4.2 Construction of Homomorphisms

hom< P -> G | S >

Returns the homomorphism from the fp-group P to the group G defined by the
assignment S. S can be the one of the following:
(i) A list, sequence or indexed set containing the images of the n generators

P.1, . . . , P.n of P . Here, the i-th element of S is interpreted as the image of
P.i, i.e. the order of the elements in S is important.

(ii)A list, sequence, enumerated set or indexed set, containing n tuples < xi, yi > or
arrow pairs xi −> yi, where xi is a generator of P and yi ∈ G (i = 1, . . . , n) and
the set {x1, . . . , xn} is the full set of generators of P . In this case, yi is assigned
as the image of xi, hence the order of the elements in S is not important.
Note, that it is currently not possible to define a homomorphism by assigning

images to the elements of an arbitrary generating set of P . It is the user’s respon-
sibility to ensure that the arguments passed to the hom-constructor actually yield a
well-defined homomorphism. For certain codomain categories, this may be checked
using the function IsSatisfied described below.

IsSatisfied(U, E)

U is a set or sequence of either words belonging to an n-generator fp-group H or
relations over H. E is a sequence of n elements [e1, . . . , en] belonging to a group G
for which both, multiplication and comparison of elements are possible. Using the
mapping H.i→ ei (i = 1, . . . , n), we evaluate the relations given by U . If U is a set
or sequence of relations, the left and right hand sides of each relation are evaluated
and compared for equality. Otherwise, each word in U is evaluated and compared
to the identity. If all relations are satisfied, IsSatisfied returns the Boolean value
true. On the other hand, if any relation is not satisfied, IsSatisfied returns the
value false.

This function may be used to verify the correctness of the definition of a homo-
morphism from an fp-group to a group in a category for which both, multiplication
and comparison of elements are possible.

70.4.3 Accessing Homomorphisms

w @ f

f(w)

Given a homomorphism whose domain is an fp-group G and an element w of G,
return the image of w under f as an element of the codomain of f .

H @ f

f(H)

Given a homomorphism whose domain is an fp-group G and a subgroup H of G,
return the image of H under f as a subgroup of the codomain of f .

Some maps do not support images of subgroups.
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g @@ f

Given a homomorphism whose domain is an fp-group G and an element g of the
image of f , return the preimage of g under f as an element of G.

Some maps do not support inverse images.

H @@ f

Given a homomorphism whose domain is an fp-group G and a subgroup H of the
image of f , return the preimage of H under f as a subgroup of G.

Some maps do not support inverse images. The inverse image of a subgroup
of the codomain can only be computed if the kernel of the homomorphism can be
computed, i.e. if the kernel has moderate index in the domain.

Domain(f)

The domain of the homomorphism f .

Codomain(f)

The codomain of the homomorphism f .

Image(f)

The image or range of the homomorphism f as a subgroup of the codomain of f .
Some maps do not support this function.

Kernel(f)

The kernel of the homomorphism f as a (normal) subgroup of the domain of f ,
represented by a coset table.

Some maps do not support this function. The kernel of a homomorphism can
only be computed, if it has moderate index in the domain.

Example H70E17

For arbitrary n > 0, the symmetric group of degree n + 1 is an epimorphic image of the braid
group on n generators. In this example, we exhibit this relationship for n = 4.
We start with creating the braid group B on 5 strings, i.e. 4 Artin generators.

> B := BraidGroup(GrpFP, 5);

> B;

Finitely presented group B on 4 generators

Relations

B.1 * B.2 * B.1 = B.2 * B.1 * B.2

B.1 * B.3 = B.3 * B.1

B.1 * B.4 = B.4 * B.1

B.2 * B.3 * B.2 = B.3 * B.2 * B.3

B.2 * B.4 = B.4 * B.2
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B.3 * B.4 * B.3 = B.4 * B.3 * B.4

In the symmetric group of degree 5, we define 4 transpositions which will be the images of the
generators of B.

> S := SymmetricGroup(5);

> imgs := [ S!(1,2), S!(2,3), S!(3,4), S!(4,5) ];

In order to verify that this assignment actually gives rise to a well defined homomorphism, we
check whether the potential images satisfy the defining relations of B.

> rels := Relations(B);

> rels;

[ B.1 * B.2 * B.1 = B.2 * B.1 * B.2, B.1 * B.3 = B.3 * B.1,

B.1 * B.4 = B.4 * B.1, B.2 * B.3 * B.2 = B.3 * B.2 * B.3,

B.2 * B.4 = B.4 * B.2, B.3 * B.4 * B.3 = B.4 * B.3 * B.4 ]

> IsSatisfied(rels, imgs);

true

They do. So we can define the homomorphism from B to S.

> f := hom< B->S | imgs >;

We see that f is surjective, i.e. S is an epimorphic image of B as claimed above.

> f(B) eq S;

true

We now check the kernel of f .

> Kernel(f);

Finitely presented group

Index in group B is 120 = 2^3 * 3 * 5

Subgroup of group B defined by coset table

Using the function GeneratingWords described later, we can obtain a set of generators of ker(f)
as a subgroup of B.

> GeneratingWords(B, Kernel(f));

{ B.2^-2, (B.1 * B.2 * B.3^-1 * B.2^-1 * B.1^-1)^2, B.1^-2,

(B.3 * B.4^-1 * B.3^-1)^2, (B.2 * B.3^-1 * B.2^-1)^2,

(B.2 * B.3 * B.4^-1 * B.3^-1 * B.2^-1)^2, B.4^-2,

(B.1 * B.2^-1 * B.1^-1)^2, B.3^-2,

(B.1 * B.2 * B.3 * B.4^-1 * B.3^-1 * B.2^-1 * B.1^-1)^2 }

It is easy to see that all generators of ker(f) are conjugates of words of the form g±2, where g is
a generator of B. We check this, using the normal closure constructor ncl described later.

> Kernel(f) eq ncl< B | B.1^2, B.2^2, B.3^2, B.4^2 >;

true

Thus, the braid relations together with the relations B.12, B.22, B.32, B.42 are a set of defining
relations for S.
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70.4.4 Computing Homomorphisms to Finite Groups
This section describes functions for computing representatives of the classes of homo-
morphisms from a finitely presented group F to a finite group G modulo a group A of
automorphisms of G.

Homomorphisms(F, G, A : parameters)

Homomorphisms(F, G : parameters)

Given a finitely presented group F and two permutation groups G and A with G/A,
return a sequence containing representatives of the classes of homomorphisms from
F to G modulo automorphisms of G induced by elements of A. (That is, two
homomorphisms f1, f2 : F → G are considered equivalent if there exists an element
a ∈ A such that f1(x) = f2(x)a for all x ∈ F .) The call Homomorphisms(F, G) is
equivalent to Homomorphisms(F, G, G).

The function uses a backtrack algorithm testing certain conjugates of represen-
tatives of the A-classes in G as possible images of the generators of F .

The following parameters are available for this function.
Surjective BoolElt Default : true

If this parameter is set to true (default), only epimorphisms are considered.
Limit RngIntElt Default : 0 (no limit)

If this parameter is set to n, the function terminates after n classes of homomor-
phisms satisfying the specified conditions have been found. A value of 0 (default)
means no limit.

TimeLimit RngIntElt Default : 0 (no limit)
A limit in seconds for the amount of time spent in the backtrack search for homo-
morphisms. The time spent in initial coset enumerations is not counted towards
this limit. A value of 0 (default) means no limit.

CosetEnumeration BoolElt Default : true

If this parameter is set to true (default), a number of short coset enumerations are
performed for each generator of F in order to check whether some A-classes in G
can be ruled out as possible images for this generator. If a class can be ruled out,
the complexity of the backtrack search may be reduced significantly.

In situations where it seems unlikely that classes can be ruled out as possible
generator images, experienced users may wish to turn this feature off in order to
save the time spent on the coset enumerations.

CacheCosetAction BoolElt Default : true

The value of this parameter indicates whether the actions of A on the cosets of the
centralisers of representatives of the A-classes in G are cached during the backtrack
search.

Setting this parameter to true (default) results in faster computations and is
recommended for normal applications. When computing homomorphisms to large
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groups with many conjugate classes, this parameter can be set to false in order to
reduce memory requirements at the expense of increased computing time.

Example H70E18

Consider the finitely presented group

F := < a, b, c | ac−1bc−1aba−1b, abab−1c2b−1, a2b−1(ca)4cb−1 > .

> F := Group< a,b,c | a*c^-1*b*c^-1*a*b*a^-1*b,

> a*b*a*b^-1*c^2*b^-1,

> a^2*b^-1*c*a*c*a*c*a*c*a*c*b^-1 >;

We use the function Homomorphisms to prove that F maps onto A5.

> G := Alt(5);

> homs := Homomorphisms(F, G : Limit := 1);

> #homs gt 0;

true

Homomorphisms(F, G, A : parameters)

Homomorphisms(F, G : parameters)

Given a finitely presented group F and two finite polycyclic groups G and A with
G/A, return a sequence containing representatives of the classes of homomorphisms
from F to G modulo automorphisms of G induced by elements of A. (That is, two
homomorphisms f1, f2 : F → G are considered equivalent if there exists an element
a ∈ A such that f1(x) = f2(x)a for all x ∈ F .) The call Homomorphisms(F, G) is
equivalent to Homomorphisms(F, G, G).

The following parameters are available for this function.

Surjective BoolElt Default : true

If this parameter is set to true (default), only epimorphisms are considered.

Limit RngIntElt Default : 0 (no limit)

If this parameter is set to n, the function terminates after n classes of homomor-
phisms satisfying the specified conditions have been found. A value of 0 (default)
means no limit.
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70.4.4.1 Computing Homomorphisms to Permutation Groups Inter-
actively
A process version of the algorithm used by Homomorphisms is available for computing
homomorphisms one at a time. The functions relevant for this interactive version are
described in this section.

HomomorphismsProcess(F, G, A : parameters)

HomomorphismsProcess(F, G : parameters)

Given a finitely presented group F and two permutation groups G and A with G/A,
return a process P for computing representatives of the classes of homomorphisms
from F to G modulo automorphisms of G induced by elements of A. (That is, two
homomorphisms f1, f2 : F → G are considered equivalent if there exists an element
a ∈ A such that f1(x) = f2(x)a for all x ∈ F .) HomomorphismsProcess(F, G) is
equivalent to HomomorphismsProcess(F, G, G).

After constructing the process, the search for homomorphisms is started and
runs until the first homomorphism is found, the time limit is reached (in which case
P is marked as invalid) or the search is completed without finding a homomorphism
(in which case P is marked as empty).

The parameters have the same meaning as for the function Homomorphisms.
Surjective BoolElt Default : true

Limit RngIntElt Default : 0 (no limit)
TimeLimit RngIntElt Default : 0 (no limit)
CosetEnumeration BoolElt Default : true

CacheCosetAction BoolElt Default : true

Setting a time limit for a process P limits the total amount of time spent in the
backtrack search for homomorphisms during the construction of P and in subsequent
calls to NextElement and Complete. The time spent in initial coset enumerations
is not counted towards this limit.

If the time limit or the limit on the number of homomorphisms set for a process
P is reached, P becomes invalid. Calling NextElement or Complete for an invalid
process or for a process which is empty, that is, which has found all possible classes
of homomorphisms, will cause a runtime error. The functions IsValid and IsEmpty
can be used to check whether a process is valid or empty, respectively. The use
of these functions is recommended to avoid runtime errors in loops or user written
functions.

NextElement(∼P)
Given a valid and non-empty process P , continue the backtrack search until a new
class of homomorphisms is found. If the search completes without a new representa-
tive being found, P is marked as empty. If a limit set for P is reached, P is marked
as invalid.
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Complete(∼P)
Given a valid and non-empty process P , continue the search for homomorphisms
until all classes of homomorphisms have been found or a limit set for P is reached.
If the search for homomorphisms completes, P is marked as empty. If a limit set
for P is reached, P is marked as invalid.

IsEmpty(P)

Returns whether P is empty, that is, whether all possible classes of homomorphisms
have been found.

IsValid(P)

Returns false if a limit set for P has been reached and true otherwise. Note that
the return value of IsValid is not related to whether or not P currently defines a
homomorphism.

DefinesHomomorphism(P)

Returns whether P currently defines a homomorphism which can be extracted using
the function Homomorphism.

Homomorphism(P)

Given a process P which defines a homomorphism, return this homomorphism,
that is, the homomorphism most recently found by P . If P does not define a
homomorphism, a runtime error will result. The function DefinesHomomorphism
can be used to test whether a call to Homomorphism is legal for a process.

#P

Return the number of homomorphisms that have been found by the process P .

Homomorphisms(P)

Return a sequence containing all homomorphisms that have been found by the
process P . Note that the sequence will only contain a complete set of representatives
of the classes of homomorphisms if P is empty, that is, if the backtrack search for
P has been completed.

Example H70E19

Consider the braid group B on 4 strings. We show how the interactive computation of homomor-
phisms can be used to determine a homomorphism f : B → PSL(2, 16) whose image is a maximal
subgroup of PSL(2, 16).

Note how the functions IsValid, IsEmpty and DefinesHomomorphism are used to avoid runtime
errors in the while loop.

> B := BraidGroup(GrpFP, 4);

> G := PSL(2,16);

> P := HomomorphismsProcess(B, G : Surjective := false,
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> TimeLimit := 10);

> while not IsEmpty(P) do

> if DefinesHomomorphism(P) then

> f := Homomorphism(P);

> img := Image(f);

> if IsMaximal(G,img) then

> print "found image which is maximal subgroup";

> break;

> end if;

> end if;

> if IsValid(P) then

> NextElement(~P);

> else

> print "Limit has been reached";

> break;

> end if;

> end while;

found image which is maximal subgroup

>

> f;

Homomorphism of GrpFP: B into GrpPerm: G, induced by

B.1 |--> (1, 4, 3, 6, 12)(2, 11, 9, 16, 7)(5, 17, 8, 15, 13)

B.2 |--> (1, 4, 2, 10, 16)(3, 11, 9, 12, 14)(5, 15, 8, 13, 17)

B.3 |--> (1, 4, 3, 6, 12)(2, 11, 9, 16, 7)(5, 17, 8, 15, 13)

Example H70E20

This example sketches how the interactive version of the homomorphism algorithm could be used
as part of a function trying to prove that a group is infinite.

Note again how the functions IsValid, IsEmpty and DefinesHomomorphism are used to avoid
runtime errors.

> function MyIsInfinite(F)

>

> // ...

>

> // quotient approach: check whether an obviously infinite

> // normal subgroup can be found in reasonable time.

> S := [ Alt(5), PSL(2,7), PSL(2,9), PSL(2,11) ];

> for G in S do

> P := HomomorphismsProcess(F, G : Surjective := false,

> TimeLimit := 5);

> while IsValid(P) and not IsEmpty(P) do

> if DefinesHomomorphism(P) then

> f := Homomorphism(P);

> if 0 in AQInvariants(Kernel(f)) then

> print "found infinite normal subgroup";
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> print "Hence group is infinite";

> return true;

> end if;

> end if;

> if IsValid(P) then

> NextElement(~P);

> end if;

> end while;

> end for;

> print "quotient approach failed; trying other strategies";

>

> // ...

>

> end function;

We try the code fragment on the group

< a, b | ab−1a−1ba−1b−1abb, ab−1a−1baaba−1b−1ab−1a−1baba−1b−1 > .

> F := Group< a,b |

> a*b^-1*a^-1*b*a^-1*b^-1*a*b*b,

> a*b^-1*a^-1*b*a*a*b*a^-1*b^-1*a*b^-1*a^-1*b*a*b*a^-1*b^-1 >;

> MyIsInfinite(F);

found infinite normal subgroup

Hence group is infinite

true

70.4.4.2 Finding Homomorphisms onto Simple Groups
We describe utilities for finding homomorphisms onto simple groups. As in the previous
example, this may be useful when the presentation defines a perfect group. The methods
used are similar to the example, with a list of simple groups to try, and using the function
Homomorphisms.

The list of simple groups supplied in V2.10 contains all non-abelian simple groups with
order ≤ 109. Such a list is dominated by PSL(2, q)’s with q odd. In this implementation
these PSL(2, q)’s are treated as an infinite family rather than stored individually, and so
continue beyond the above limit.

SimpleQuotients(F, deg1, deg2, ord1, ord2: parameters)

SimpleQuotients(F, ord1, ord2: parameters)

SimpleQuotients(F, ord2: parameters)

Family Any Default : “All”
Limit RngIntElt Default : 1
HomLimit RngIntElt Default : 0
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Uses Homomorphisms to find epimorphisms from F onto simple groups in a fixed
list. The arguments deg1 and deg2 are respectively lower and upper bounds for the
degree of the image group. If the degree arguments are not present then bounds of
5 and 107 are used. The arguments ord1 and ord2 are respectively lower and upper
bounds for the orders of the image group. (Setting ord2 low enough is particularly
important if a quick search is wanted.) If ord1 is not given then it defaults to 1.

The return value is a list of sequences of epimorphisms found. Each sequence
contains epimorphisms onto one simple group. The parameter Limit limits the
number of successful searches to be carried out by Homomorphisms. The default
value is 1, so by default the search terminates with the first simple group found to
be a homomorphic image of F .

The parameter HomLimit limits the number of homomorphisms that will be
searched for by any particular call to Homomorphisms. It defaults to zero, so that
all homomorphisms for any group found will be returned.

The parameter Family selects sublists of the main list to search. Possible values
of this parameter are "All", "PSL", "PSL2", "Mathieu", "Alt", "PSp", "PSU",
"Other", and "notPSL2"; sets of these strings are also allowed, which searches on
the union of the appropriate sublists.

SimpleQuotientProcess(F, deg1, deg2, ord1, ord2: parameters)

Family Any Default : “All”

Produce a record that defines a process for searching for simple quotients of F as
SimpleQuotients does. Calling this function sets up the record and conducts the
initial search until a quotient is found. Continuing the search for another quotient
is done by calling NextSimpleQuotient. Extracting the epimorphisms found is
achieved using SimpleEpimorphisms, and testing if the process has expired is the
task of IsEmptySimpleQuotientProcess.

NextSimpleQuotient(∼P)

When P is a record returned by SimpleQuotientProcess, advance the search to the
next simple group which is a homomorphic image of the finitely presented group.
Does nothing if the process has expired.

IsEmptySimpleQuotientProcess(P)

When P is a record returned by SimpleQuotientProcess, test whether or not P
has expired.

SimpleEpimorphisms(P)

When P is a record returned by SimpleQuotientProcess, extract the most recently
found epimorphisms onto a simple group, plus a tuple describing the image group.
This is a valid operation when IsEmptySimpleQuotientProcess returns false.
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Example H70E21

We take a perfect finitely presented group and search for simple quotients.

> F := Group<a,b,c|a^13,b^3,c^2,a = b*c>;

> IsPerfect(F);

true

> L := SimpleQuotients(F,1, 100, 2, 10^5:Limit := 2);

> #L;

2

> for x in L do CompositionFactors(Image(x[1])); end for;

G

| A(1, 13) = L(2, 13)

1

G

| A(2, 3) = L(3, 3)

1

> L[2,1];

Homomorphism of GrpFP: F into GrpPerm: $, Degree 13, Order

2^4 * 3^3 * 13 induced by

F.1 |--> (1, 10, 4, 5, 11, 8, 3, 6, 7, 12, 9, 13, 2)

F.2 |--> (2, 10, 4)(3, 6, 7)(5, 11, 13)(8, 12, 9)

F.3 |--> (1, 10)(2, 5)(3, 12)(8, 13)

> #L[2];

2

We’ve found L(2,13) and L(3,3) as images, with 2 inequivalent homomorphisms onto the second.
We’ll try a process looking through a smaller family.

> P := SimpleQuotientProcess(F,1, 100, 2, 10^6:Family:="PSU");

> IsEmptySimpleQuotientProcess(P);

false

> eps, info := SimpleEpimorphisms(P);

> info;

<65, 62400, PSU(3, 4)>

We’ve found PSU(3,4) of order 62400 and degree 65 as an image. We continue with this process.

> NextSimpleQuotient(~P);

> IsEmptySimpleQuotientProcess(P);

true

No, there are no more within the limits given.
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70.4.5 The L2-Quotient Algorithm
Given a finitely presented group G on two generators, the L2-quotient algorithm of
Plesken and Fabianska [PF09] computes all quotients of G which are isomorphic to some
PSL(2, q) = L2(q), simultaneously for any prime power q. It can handle the case of in-
finitely many quotients, and also works for very large prime powers.

Note that, at the moment, the algorithm does not return images onto the groups
PSL(2, 2), PSL(2, 3), and PSL(2, 4) = PSL(2, 5).

L2Quotients(G)

This is the main method. It takes as parameter a finitely presented group on two
generators, and returns a list of prime ideals of Z[x1, x2, x12]. These prime ideals
contain all information about the L2-quotients.

L2Type(P)

For a prime ideal P in Z[x1, x2, x12], this method returns a string describing the
L2-type which the ideal encodes. The possible types are ”reducible”, ”dihedral”,
”Alt(4)”, ”Sym(4)”, ”Alt(5)”, ”infinite (characteristic zero)”, ”infinite
(characteristic p)”, ”PGL(2, q)”, and ”PSL(2, q)”. Note that for prime ideals
which are returned by L2Quotients or L2Ideals, only the last four types can occur;
the other types are eliminated in these methods.

L2Generators(P)

Given a maximal ideal M in Z[x1, x2, x12], compute two matrices with entries in
Z[x1, x2, x12]/M corresponding to M .

L2Ideals(I)

Given an ideal I in Z[x1, x2, x12], compute the minimal associated primes of I which
give rise to L2-quotients. This is mainly used for ideals returned by L2Quotients
which encode infinitely many L2 images.

Example H70E22

The first few examples are taken from Conder, Havas and Newman [CHN11].

> Gamma< x, y > := Group< x, y | x^2, y^3 >;

> u := x*y; v := x*y^-1;

> G := quo< Gamma | u^10*v^2*u*v*u*v^2 >;

> quot := L2Quotients(G); quot;

[

Ideal of Polynomial ring of rank 3 over Integer Ring

Order: Lexicographical

Variables: x1, x2, x12

Inhomogeneous, Dimension 0

Groebner basis:

[

x1,
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x2 + 1,

x12^2 + 4*x12 + 2,

5

]

]

L2Quotients returns only one ideal, so there is only one L2 quotient. We can use L2Type to check
what group this is.

> L2Type(quot[1]);

PSL( 2, 5^2 )

Finally, L2Generators returns matrices in SL(2, 25) which map onto generators in PSL(2, 25).

> L2Generators(quot[1]);

MatrixGroup(2, GF(5^2))

Generators:

[ 3 $.1^21]

[ 0 2]

[ 0 4]

[ 1 4]

Mapping from: MatrixGroup(2, GF(5^2)) to GL(2, ext<GF(5) | Polynomial(GF(5),

\[3, 3, 1])>)

There are other quotients of the modular group with only finitely many L2 quotients:

> G := quo< Gamma | u^3*v*u^3*v*u^3*v^2*u*v^2 >;

> quot := L2Quotients(G);

> [L2Type(P) : P in quot];

[ PGL( 2, 13 ) ]

>

> G := quo< Gamma | u^3*v*u^3*v^2*u*v^3*u*v^2 >;

> quot := L2Quotients(G);

> [L2Type(P) : P in quot];

[]

This tells us that the first group has only one L2 quotient, isomorphic to PGL(2, 13), and the
second group has no L2 quotients at all.

Example H70E23

Next, we look at Coxeter presentations of the form

(l, m|n, k) = 〈x, y|xl, ym, (xy)n, (x( − 1)y)k〉

and
(l, m, n; q) = 〈x, y|xl, ym, (xy)n, [x, y]k〉

for various values of l, m, n, k, q.

> G := Group< x,y | x^8, y^9, (x*y)^5, (x^-1*y)^7 >;

> [L2Type(P) : P in L2Quotients(G)];

[ PSL( 2, 71 ), PSL( 2, 71 ), PSL( 2, 71 ), PSL( 2, 2521 ), PSL( 2, 239 ),
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PSL( 2, 449 ), PSL( 2, 3876207679 ), PSL( 2, 1009 ), PSL( 2, 29113631 ),

PSL( 2, 41 ), PSL( 2, 3056201 ) ]

The group PSL(2, 71) occurs three times. This means that there are three essentially different
epimorphisms of G onto PSL(2, 71), i.e., there is no automorphism of PSL(2, 71) which transforms
one epimorphism into another.
Here is another example, this time for the other family.

> G := Group< x, y | x^4, y^3, (x*y)^5, (x,y)^6 >;

> [L2Type(P) : P in L2Quotients(G)];

[ PSL( 2, 79 ), PSL( 2, 3^2 ), PSL( 2, 5^2 ) ]

There are three groups in the second family for which it is not known whether they are finite or
infinite (Havas & Holt (2010) [HH10]). They are (3, 4, 9; 2), (3, 4, 11; 2), and (3, 5, 6; 2). Each of
them has only one L2 image.

> G := Group< x, y | x^3, y^4, (x*y)^9, (x,y)^2 >;

> [L2Type(P) : P in L2Quotients(G)];

[ PSL( 2, 89 ) ]

> G := Group< x, y | x^3, y^4, (x*y)^11, (x,y)^2 >;

> [L2Type(P) : P in L2Quotients(G)];

[ PSL( 2, 769 ) ]

> G := Group< x, y | x^3, y^5, (x*y)^6, (x,y)^2 >;

> [L2Type(P) : P in L2Quotients(G)];

[ PSL( 2, 61 ) ]

The algorithm currently only works for finitely presented groups on two generators. However, it
is sometimes possible to reduce the number of generators for finitely presented groups on more
than two generators.
The following examples are taken from Cavicchioli, O’Brien and Spaggiari [COS08], with code
supplied by Eamonn O’Brien.

> CHR := function (X)

> n := X[1]; m := X[2]; k := X[3];

> F := FreeGroup (n);

> R := [];

> for i in [1..n] do

> a := i + m;

> if a gt n then repeat a := a - n; until a le n; end if;

> b := i + k;

> if b gt n then repeat b := b - n; until b le n; end if;

> Append (~R, F.i * F.a = F.b);

> end for;

> Q := quo < F | R >;

> return Q;

> end function;

> G := CHR([9, 1, 3]); G;

Finitely presented group G on 9 generators

Relations

G.1 * G.2 = G.4

G.2 * G.3 = G.5
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G.3 * G.4 = G.6

G.4 * G.5 = G.7

G.5 * G.6 = G.8

G.6 * G.7 = G.9

G.7 * G.8 = G.1

G.8 * G.9 = G.2

G.9 * G.1 = G.3

> H := ReduceGenerators(G); H;

Finitely presented group H on 2 generators

Generators as words in group G

H.1 = G.2

H.2 = G.5

Relations

H.2^-2 * H.1^-2 * H.2^-1 * H.1^2 * H.2 * H.1 * H.2^-1 * H.1 = Id(H)

H.2^-1 * H.1^-1 * H.2^-2 * H.1^-1 * H.2^-1 * H.1 * H.2^-2 * H.1^-1 * H.2

* H.1^-1 = Id(H)

> L2Quotients(H);

[

Ideal of Polynomial ring of rank 3 over Integer Ring

Order: Lexicographical

Variables: x1, x2, x12

Inhomogeneous, Dimension 0

Groebner basis:

[

x1 + x12,

x2 + x12,

x12^3 + x12 + 1,

2

]

]

> [L2Type(Q) : Q in $1];

[ PSL( 2, 2^3 ) ]

>

> G := CHR([9, 1, 4]);

> H := ReduceGenerators(G); H;

Finitely presented group H on 2 generators

Generators as words in group G

H.1 = G.1

H.2 = G.5

Relations

H.2 * H.1 * H.2^-1 * H.1 * H.2^-2 * H.1^2 * H.2^2 * H.1^-1 * H.2 = Id(H)

H.1^-1 * H.2 * H.1^-1 * H.2^2 * H.1^-1 * H.2^3 * H.1^-1 * H.2 * H.1^-1 * H.2^2

* H.1^-1 * H.2 * H.1^-1 = Id(H)

> [L2Type(Q) : Q in L2Quotients(H)];

[]
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Example H70E24

The algorithm also handles the case in which there are infinitely many L2 quotients. This is the
case if one of the prime ideals returned by L2Quotients is not maximal. They can be handled
theoretically to get a precise list of all images. The functions in Magma can be used to get
information for a specified ideal containing the prime ideal.
We start again with a quotient of the modular group.

> Gamma< x, y > := Group< x, y | x^2, y^3 >;

> u := x*y; v := x*y^-1;

> G := quo< Gamma | u^5*v*u*v*u*v^5*u*v*u*v >;

> quot := L2Quotients(G);

> [L2Type(P) : P in quot];

[ infinite (characteristic zero) ]

This means that there are infinitely many L2 quotients of G (which already proves that G is
infinite). Let’s look at the prime ideal.

> P := quot[1]; P;

Ideal of Polynomial ring of rank 3 over Integer Ring

Order: Lexicographical

Variables: x1, x2, x12

Inhomogeneous, Dimension 0

Groebner basis:

[

x1,

x2 + 1,

x12^8 - 5*x12^6 + 6*x12^4 - 1

]

The residue class ring of P is a finite algebraic extension S of Z, and the algorithm found a homo-
morphism of G into PSL(2, S). Since S has epimorphisms onto finite fields in every characteristic,
this gives homomorphisms of G into PSL(2, pk) for every prime p and suitable k. To check what
images there are in characteristic p, we construct the ideal I = 〈p〉+P . This is no longer prime in
general. We can use L2Ideals to compute the associated primes of I; this method also removes
all ideals which don’t give rise to epimorphisms.

> R := Generic(P);

> I := ideal< R | 2 > + P;

> quot := L2Ideals(I);

> [L2Type(Q) : Q in quot];

[ PSL( 2, 2^4 ) ]

So G has one quotient isomorphic to PSL(2, 16), and we can construct images of the generators
of G.

> L2Generators(quot[1]);

MatrixGroup(2, GF(2^4))

Generators:

[ 1 $.1^6]

[ 0 1]
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[ 0 1]

[ 1 1]

Mapping from: MatrixGroup(2, GF(2^4)) to GL(2, ext<GF(2) | Polynomial(GF(2),

\[1, 0, 0, 1, 1])>)

We can check the images in various other characteristics:

> for p in PrimesInInterval(3, 19) do

> [L2Type(Q) : Q in L2Ideals(ideal< R | p > + P)];

> end for;

[ PGL( 2, 3^4 ) ]

[ PGL( 2, 5^2 ) ]

[ PSL( 2, 7^2 ), PSL( 2, 7^2 ), PGL( 2, 7^2 ) ]

[ PGL( 2, 11 ), PGL( 2, 11 ), PGL( 2, 11^2 ) ]

[ PSL( 2, 13^2 ), PSL( 2, 13^2 ), PSL( 2, 13^2 ), PSL( 2, 13^2 ) ]

[ PSL( 2, 17^4 ), PSL( 2, 17^4 ) ]

[ PSL( 2, 19 ), PSL( 2, 19 ), PSL( 2, 19^2 ), PSL( 2, 19^2 ), PGL( 2, 19 ) ]

There is virtually no limit on the size of the prime:

> p := RandomPrime(200);

> p;

307941320171307176726971038693755343299358400663182805777637

> I := ideal< R | p > + P;

> [L2Type(Q) : Q in L2Ideals(I)];

[ PGL( 2, 307941320171307176726971038693755343299358400663182805777637^2 ),

PGL( 2, 307941320171307176726971038693755343299358400663182805777637^2 ) ]

> p := NextPrime(p);

> I := ideal< R | p > + P;

> quot := L2Ideals(I);

> [L2Type(Q) : Q in quot];

[ PSL( 2, 307941320171307176726971038693755343299358400663182805777879 ),

PSL( 2, 307941320171307176726971038693755343299358400663182805777879 ),

PSL( 2, 307941320171307176726971038693755343299358400663182805777879^2 ),

PSL( 2, 307941320171307176726971038693755343299358400663182805777879^2 ),

PGL( 2, 307941320171307176726971038693755343299358400663182805777879 ) ]

> L2Generators(quot[1]);

MatrixGroup(2, GF(307941320171307176726971038693755343299358400663182805777879))

Generators:

[0 1]

[307941320171307176726971038693755343299358400663182805777878 0]

[260117736370596621578446660105615721012604377822664417621373

39170644893202404516985879121051845196952956796906799404293]

[124461947209331225807153039245860372991649922432590162143941

47823583800710555148524378588139622286754022840518388156505]

Mapping from: MatrixGroup(2, GF(3079413201713071767269710386937553432993584006631\

82805777879)) to GL(2, GF(307941320171307176726971038693755343299358400\

663182805777879, 1))
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Example H70E25

In the previous example, the group had infinitely many L2 quotients, finitely many in every
characteristic. The next example presents a group which has infinitely many L2r quotients, but
only in a single characteristic.

> G := Group< x, y | x*y*x^-1*y*x*y^4*x^-1*y^-4 >;

> quot := L2Quotients(G);

> [L2Type(Q) : Q in quot];

[ infinite (characteristic 41) ]

> P := quot[1]; P;

Ideal of Polynomial ring of rank 3 over Integer Ring

Order: Lexicographical

Variables: x1, x2, x12

Inhomogeneous, Dimension >0

Groebner basis:

[

x1 + 30*x2*x12,

x2^2 + 22,

41

]

The residue class ring of P is S = F412 [x12], and the algorithm found a homomorphism into
PSL(2, S). Since S has epimorphisms onto every finite extension of F412 , this gives homomor-
phisms of G into PSL(2, 41(2 ∗ k)) for every k.
We specialize x12 to different elements of extensions of F412 . For example, for different special-
izations in F412 we get an image onto PGL(2, 41) or PSL(2, 412):

> R< x1, x2, x12 > := Generic(P);

>

> I := ideal< R | x12 - 1 > + P;

> [L2Type(Q) : Q in L2Ideals(I)];

[ PGL( 2, 41 ) ]

>

> I := ideal< R | x12 - (x2 + 1) > + P;

> [L2Type(Q) : Q in L2Ideals(I)];

[ PSL( 2, 41^2 ) ]

We can check the images for a random specialization:

> pol := &+[Random([0..40])*x12^i : i in [0..30]]; pol;

19*x12^30 + x12^29 + 16*x12^28 + 14*x12^27 + 38*x12^26 + 27*x12^25 + 20*x12^24 +

31*x12^23 + 15*x12^22 + 22*x12^21 + 32*x12^20 + 26*x12^19 + 26*x12^18 +

18*x12^17 + 16*x12^16 + 29*x12^15 + 18*x12^14 + 11*x12^13 + 3*x12^12 +

11*x12^11 + 36*x12^10 + 13*x12^9 + 15*x12^8 + 33*x12^7 + 30*x12^6 + 8*x12^5 +

12*x12^4 + 40*x12^3 + 12*x12^2 + 25*x12 + 8;

> I := ideal< R | pol > + P;

> [L2Type(Q) : Q in L2Ideals(I)];

[ PGL( 2, 41 ), PGL( 2, 41 ), PGL( 2, 41 ), PSL( 2, 41^2 ), PSL( 2, 41^2 ),

PSL( 2, 41^2 ), PSL( 2, 41^2 ), PSL( 2, 41^14 ), PSL( 2, 41^14 ),
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PGL( 2, 41^9 ) ]

And again, this works for very large fields:

> pol := IrreduciblePolynomial(GF(41), 301);

> pol;

$.1^301 + $.1^2 + 6*$.1 + 30

> I := ideal< R | x12^301 + x12^2 + 6*x12 + 30 > + P;

> [L2Type(Q) : Q in L2Ideals(I)];

[ PGL( 2, 41^301 ) ]

70.4.6 Infinite L2 quotients
This section contains functions that use the L2-quotient algorithm of Plesken and Fabianska
([PF09]) to establish the existence or not of an infinite quotient of a finitely-presented
group in PSL2(K) for K a field of characteristic zero. The algorithm is often used to find
surjective quotients over finite fields but as a test for non-finiteness it is easier to work
directly in characteristic zero. We make some comments on the relation to finite fields
below.

The algorithm first constructs an affine scheme X over Q from the “trace ideal” of
the group G, for which the algebraic points over a field K are in 1-1 correspondence with
equivalence classes of representations of G into SL2(K). If g1, . . . , gn are the generators
of G, then the affine coordinates of X correspond to the trace under the representation
of various products of the Gi. For example, when n = 2, X lies in 3-dimensional affine
space and the coordinates correspond to the traces of g1, g2 and g1g2. The ideal is actually
generated by polynomials with coefficients in Z so X is naturally defined as a scheme over
Spec(Z), whose reduction mod p just gives the scheme corresponding to characteristic p
representations of G for p > 2.

Homomorphisms into PSL2 rather than SL2 are dealt with by considering a number
of X schemes for a particular G. Each one represents the homomorphisms from the free
cover of G to SL2 that takes each word in the set of relations defining G to either I or
−I. Each of the 2r choices of sign for the r defining relations gives an X (by the same
procedure) and the totality cover all possibilities for maps to PSL2.

The set of points of X corresponding to geometrically reducible, dihedral A4, S4 or
A5 images in PSL2 is a closed subscheme Y . In fact the first two possibilities give closed
subschemes with equations defined over Z and the last three give a dimension zero scheme
over Q. The overall equations defining Y reduce mod p to those defining the corresponding
subscheme in characteristic p for almost all primes p. The explicit equations defing Y are
determined by the algorithm as explained for n = 2 or 3 in the above reference or in more
detail in Fabianska’s MSc thesis ([Fab09]). Let U be the open complement of Y in X.

There are two possibilities.
1 A U is non-empty, so an algebraic point gives φ : G → PSL2(K), K a number field,

with infinite image, so G is infinite. Further, for all but finitely many primes p, φ can be
reduced mod v for any place v of characteristic p AND the reduction φv corresponds to
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a point in the analogue of U over the finite field. Thus the reductions give surjections of
G onto a PSL2(k) [or maybe a PGL2(k)] for finite fields of any characteristic outside
of a finite set.

2 All Us are empty. Here, all the homomorphisms of G into PSL2(K) in characteristic
zero have geometrically reducible, dihedral, A4, S4 or A5 images and the same holds
for K a field of characteristic p for all p outside of a finite set of primes. G may or may
not be infinite.

NB: In case 2), there may still be images of G which ARE infinite, but lie in a Cartan
or Borel subgroup, so are geometrically reducible, or lie in the normaliser of a Cartan
and have an infinite dihedral image. These infinite reducible/dihedral possibilities are not
currently checked for.

HasInfinitePSL2Quotient(G)

signs SeqEnum Default : 0
full BoolElt Default : false

Verbose IsInfGrp Maximum : 1
Function to return whether the two-generator finitely-presented group G has an
infinite quotient lying in a PSL2(K) with K a field of characteristic 0 as described
above.

For the convenience of the user, we have provided some parameters to output
more detailed information coming from the analysis of the X representation schemes
as well as to control which sign variations are considered.

Let ws be the sequence of words giving the defining relations of G (if a defining
relation is of the form w = v where v is not the identity word, then the corresponding
word is w ∗ v−1). Let ws = [w1, .., wr].

As described in the introduction, for each of the 2r combinations of signs attached
to the wi - let s be one - the program will consider the scheme X of homomorphisms
of G into PSL2 such that, when lifted to a homomorphism of the two-generator free
cover F of G into SL2, wi maps to si ∗ I.

In some cases, the user may realise that there is no point in considering certain
choices of signs. For example, if g2

1 is a relation in ws, g2
1 7→ I in SL2(K) means that

g1 7→ 1 in PSL2(K), so the PSL2(K) image would be (maybe infinitely) cyclic, and
it is a waste of time to consider this possibility. Similarly, if gr

1, r odd, is a relation
then ,without loss of generality, in a PSL2 to SL2 lift, gr

1 7→ I, which could be
specified.

The parameter signs allows the user to specify a restricted set of sign options to
analyse. signs should be an 0, 1,−1 or a sequence of length #ws of such integers.
A single value is converted into the sequence containing that value #ws times. An
entry e of 1 or −1 in position i means that the function will only consider sign
sequences s with s[i] = e, ie homomorphisms where wi map to eI in the lift to SL2.
If e = 0, then there is no condition at place i of the sign sequences considered. The
default value for signs is the single value 0.
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For each representation space X (corresponding to an allowable choice of signs
s), after removing positive dimensional components of Y corresponding to geomet-
rically reducible or dihedral type representations, there is often a zero-dimensional
subscheme left. The existence of an infinite (non-cyclic or dihedral) image homo-
morphism to PSL2 then comes down to examining the finite set of closed points
remaining and finding one that is not geometrically reducible, dihedral, A4, S4 or A5

type. Clearly, once one such is found the procedure can stop. However, it might be
of interest for the user to see the types of ALL of the representations corresponding
to closed points if the zero-dimensional analysis stage is performed.

If parameter full is set to true (the default is false), the program will con-
tinue analysing all of the representations in the 0-dimensional locus, even after one
corresponding to an infinite image is found. Furthermore a sequence of (signs,types)
pairs is also returned which gives, for each sign combination s of maps considered,
the sequence of types corresponding to the 0-dimensional locus (or empty if we don’t
reduce to dimension 0). These types are given as strings: “infinite”, “reducible”,
“dihedral”, “A4”, “S4”, and “A5”.

Setting the verbose flag IsInfGrp to true or 1 gives output of information on
the various stages as the function progresses, including the analysis of dimension
zero loci.

Example H70E26

We look at two examples of quotients of the two-generator free group with relations g2
1 , g3

2 and
one further word. The first is infinite, the second is not. As noted above, we may as well specify
that g2

1 maps to −I and g3
2 to I in SL2 and this can be done with the signs parameter.

> F := FreeGroup(2);

> rel := (F.1 * F.2 * F.1 * F.2 * F.1 * F.2 * F.1 * F.2 * F.1 * F.2 *

> F.1 * F.2 * F.1 * F.2 * F.1 * F.2^-1 * F.1 * F.2 * F.1 * F.2^-1)^2;

> G := quo<F | [F.1^2 ,F.2^3, rel]>;

> HasInfinitePSL2Quotient(G : full := true);

true

[ [*

[ 1, 1, 1 ],

[]

*], [*

[ 1, 1, -1 ],

[]

*], [*

[ 1, -1, 1 ],

[]

*], [*

[ 1, -1, -1 ],

[]

*], [*

[ -1, 1, 1 ],
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[ A4, A4 ]

*], [*

[ -1, 1, -1 ],

[ A5, A5, infinite ]

*], [*

[ -1, -1, 1 ],

[ A4, A4 ]

*], [*

[ -1, -1, -1 ],

[ A5, A5, infinite ]

*] ]

Now try it with the sign restriction.

> HasInfinitePSL2Quotient(G : full := true, signs := [-1,1,0]);

true

[ [*

[ -1, 1, 1 ],

[ A4, A4 ]

*], [*

[ -1, 1, -1 ],

[ A5, A5, infinite ]

*] ]

The second example is just A5.

> G := quo<F | [F.1^2 ,F.2^3, (F.1*F.2)^5]>;

> HasInfinitePSL2Quotient(G);

false

> HasInfinitePSL2Quotient(G : full := true, signs := [-1,1,0]);

false

[ [*

[ -1, 1, 1 ],

[ A5 ]

*], [*

[ -1, 1, -1 ],

[ A5 ]

*] ]
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70.4.7 Searching for Isomorphisms
This section describes a function for searching for isomorphisms between two finitely pre-
sented groups.

SearchForIsomorphism(F, G, m : parameters)

Attempt to find an isomorphism from the finitely presented group F to the finitely
presented group G. The search will be restricted to those homomorphisms for which
the sum of the word-lengths of the images of the generators of F in G is at most m.

If an isomorphism φ is found, then the values true, φ, φ−1 are returned. Other-
wise, the values false, , are returned; of course, that does not necessarily mean
that the groups are not isomorphic.

An error will result if any of the generators of F turn out to be trivial.
By setting the verbose flag "IsoSearch" to 1, information about the progress of

the search will be printed.
The parameters available for the function SearchForIsomorphism are:
All BoolElt Default : false

If All is false (default), then the function halts and returns as soon as a single
isomorphism is found. If All is true, then the search continues through all possible
images that satisfy the image length condition, and a list of pairs 〈φ, φ−1〉 for all
isomorphisms φ : F → G found is returned as the second return value.

IsomsOnly BoolElt Default : true

If IsomsOnly is set to false, then all homomorphisms F → G will be returned if
All is true, and the first nontrivial homomorphism found will be returned if All is
false.

MaxRels RngIntElt Default : 250 ∗m
The value of the MaxRelations parameter used in runs of RWSGroup. It is hard
to find a sensible default, because if the value is unnecessarily large then time can
be wasted unnecessarily. This may need to be increased if the function is used
with finite groups, for example (although it is usually much more efficient to use
permutation or matrix representations when testing isomorphism of finite groups).

CycConjTest BoolElt Default : true

When CycConjTest is true and All is false, then images of the first generator
which have a cyclic conjugate that comes earlier in the lexicographical order are
rejected, because there would be a conjugate isomorphism in which the image was
the cyclic conjugate. This nearly always results in faster run-times, but occasion-
ally it can happen that the conjugate isomorphism has a larger sum of lengths of
generator images, which is clearly bad. So the user has the option of not rejecting
such images.

Example H70E27

John Hillman asked whether the following two groups are isomorphic.

> G1<s,t,u> := Group <s,t,u | s*u*s^-1=u^-1, t^2=u^2, t*s^2*t^-1=s^-2,
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> u*(s*t)^2=(s*t)^2*u >;

> G2<x,y,z> := Group<x,y,z | x*y^2*x^-1=y^-2, y*x^2*y^-1=x^-2, x^2=z^2*(x*y)^2,

> y^2=(z^-1*x)^2, z*(x*y)^2=(x*y)^2*z >;

> isiso, f1, f2 := SearchForIsomorphism(G1,G2,7);

> isiso;

true

> f1;

Homomorphism of GrpFP: G1 into GrpFP: G2 induced by

s |--> x * z^-1

t |--> y * z

u |--> x * y^-1 * z

> f2;

Homomorphism of GrpFP: G2 into GrpFP: G1 induced by

x |--> s^2 * u * t^-1

y |--> s^-1 * u^-1

z |--> s * u * t^-1

The search for an isomorphism succeeeded and returns the isomorphisms explicitly.

Example H70E28

Walter Neumann asked whether the next two groups are isomorphic.

> G1<x,y,z> := Group< x,y,z | x^2*y^5, x^14*z^23, (x^2,y), (x^2,z), x*y*z>;

> G2<a,b> := Group<a,b | a*b^16*a*b^-7, a^4*b^7*a^-1*b^7>;

It is a good idea to minimize the number of generators of G1 - since there is clearly a redundant
generator here.

> G1s := Simplify(G1);

> Ngens(G1s);

2

> G1!G1s.1, G1!G1s.2;

x z

Now a direct call SearchForIsomorphism(G1, G2, 15) will succeed, but will take many hours,
and also use a lot of memory.
In contrast to G1, it can sometimes help to introduce a new generator in G2 if there are common
substrings in relators.

> G2b<a,b,c> := Group< a,b,c | a*b^16*a*b^-7, a^4*b^7*a^-1*b^7, c=b^7>;

> isiso, f1, f2 := SearchForIsomorphism(G1s,G2b,4);

> isiso;

true

> f1;

Homomorphism of GrpFP: G1s into GrpFP: G2b induced by

G1s.1 |--> a * c^-1

G1s.2 |--> c

> f2;

Homomorphism of GrpFP: G2b into GrpFP: G1s induced by
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a |--> G1s.1 * G1s.2

b |--> G1s.1^6 * G1s.2^10

c |--> G1s.2

70.5 Abelian, Nilpotent and Soluble Quotient

70.5.1 Abelian Quotient
The functions in this section compute information about the abelian quotient of an fp-
group G. Some functions may require the computation of a coset table. Experienced users
can control the behaviour of an implicit coset enumeration with a set of global parameters.
These global parameters can be changed using the function SetGlobalTCParameters. For
a detailed description of the available parameters and their meanings, we refer to Chap-
ter 71.

The functions returning the abelian quotient or the abelian quotient invariants report
an error if the abelian quotient cannot be computed, for example, because the relation
matrix is too large. To avoid problems in user written programs or loops, the functions
HasComputableAbelianQuotient and HasInfiniteComputableAbelianQuotient can be
used.

AbelianQuotient(G)

The maximal abelian quotient G/G′ of the group G as GrpAb (cf. Chapter 69). The
natural epimorphism π : G→ G/G′ is returned as second value.

ElementaryAbelianQuotient(G, p)

The maximal p-elementary abelian quotient Q of the group G as GrpAb (cf. Chapter
69). The natural epimorphism π : G→ Q is returned as second value.

AbelianQuotientInvariants(G)

AQInvariants(G)

Given a finitely presented group G, this function computes the elementary divisors
of the derived quotient group G/G′, by constructing the relation matrix for G and
transforming it into Smith normal form. The algorithm used is an algorithm of
Havas which does the reduction entirely over the ring of integers Z using clever
heuristics to minimize the growth of coefficients.

The divisors are returned as a sequence of integers.
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AbelianQuotientInvariants(H)

AQInvariants(H)

AbelianQuotientInvariants(G, T)

AQInvariants(G, T)

Given a subgroup H of the finitely presented group G, this function computes the
elementary divisors of the derived quotient group of H. (The coset table T may be
used to define H.) This is done by abelianising the Reidemeister-Schreier presenta-
tion for H and then proceeding as above. The divisors are returned as a sequence
of integers.

AbelianQuotientInvariants(G, n)

AQInvariants(G, n)

Given a finitely presented group G, this function computes the elementary divisors
of the quotient group G/N , where N is the normal subgroup of G generated by the
derived group G′ together with all n-th powers of elements of G. The algorithm
constructs the relation matrix corresponding to the presentation of G and computes
its Smith normal form over the ring Z/nZ. The calculation is particularly efficient
when n is a small prime. The divisors are returned as a sequence of integers.

AbelianQuotientInvariants(H, n)

AQInvariants(H, n)

AbelianQuotientInvariants(G, T, n)

AQInvariants(G, T, n)

Given a subgroup H of the finitely presented group G, this function computes the
elementary divisors of the quotient group H/N , where N is the normal subgroup of
H generated by H ′ together with all n-th powers of elements of H. (The coset table
T may be used to define H.) This is done by abelianising the Reidemeister-Schreier
presentation for H and then proceeding as above. The divisors are returned as a
sequence of integers.

HasComputableAbelianQuotient(G)

Given an fp-group G, this function tests whether the abelian quotient of G can be
computed. If so, it returns the value true, the abelian quotient A of G and the
natural epimorphism π : G→ A. If the abelian quotient of G cannot be computed,
the value false is returned.

This function is especially useful to avoid runtime errors in user written loops or
functions.
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HasInfiniteComputableAbelianQuotient(G)

Given an fp-group G, this function tests whether the abelian quotient of G can be
computed and is infinite. If so, it returns the value true, the abelian quotient A of
G and the natural epimorphism π : G→ A. If the abelian quotient of G cannot be
computed or if it is finite, the value false is returned.

The function first checks the modular abelian invariants for a set of small primes.
If for one of these primes, the modular abelian quotient is trivial, A must be finite
and the function returns without actually computing the abelian quotient. If one is
interested only in infinite quotients, this heuristics may save time.

IsPerfect(G)

Given an fp-group G, this function tries to decide whether G is perfect by checking
whether the abelian quotient of G is trivial.

TorsionFreeRank(G)

Given the finitely presented group G, return the torsion-free rank of the derived
quotient group of G.

Example H70E29

The Fibonacci group F (7) has the following 2-generator presentation:

< a, b | a2b−2a−1b−2(a−1b−1)2, abab2abab−1(ab2)2 > .

We proceed to investigate the structure of this group.

> F<a, b> := FreeGroup(2);

> F7<a, b> := quo< F | a^2*b^-2*a^-1*b^-2*(a^-1*b^-1)^2,

> a*b*a*b^2*a*b*a*b^-1*(a*b^2)^2 >;

> F7;

Finitely presented group F7 on 2 generators

Relations

a^2 * b^-2 * a^-1 * b^-2 * a^-1 * b^-1 * a^-1 * b^-1 =Id(F7)

a * b * a * b^2 * a * b * a * b^-1 * a * b^2 * a * b^2 = Id()7

We begin by determining the structure of the maximal abelian quotient of F (7).

> AbelianQuotientInvariants(F7);

[ 29 ]

The maximal abelian quotient of F (7) is cyclic of order 29. At this point there is no obvious way
to proceed, so we attempt to determine the index of some subgroups.

> Index( F7, sub< F7 | a > );

1

We are in luck: F (7) is generated by a and so must be cyclic. This fact coupled with the knowledge
that its abelian quotient has order 29 tells us that the group is cyclic of order 29.
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Example H70E30

The group G = (8, 7 | 2, 3) is defined by the presentation

< a, b | a8, b7, (ab)2, (a−1b)3 > .

We consider the subgroup H of G, generated by the words a2 and a−1b:

> G<a, b> := Group<a, b| a^8, b^7, (a * b)^2, (a^-1 * b)^3>;

> H<x, y> := sub< G | a^2, a^-1 * b >;

The fastest way to determine the order of the maximal 2-elementary abelian quotient of H is to
use the function AbelianQuotientInvariants:

> #AbelianQuotientInvariants(H,2);

1

We see that the maximal 2-elementary abelian quotient of H has order 21.

70.5.2 p-Quotient

Let F be a finitely presented group, p a prime and c a positive integer. A p-quotient
algorithm constructs a consistent power-conjugate presentation for the largest p-quotient
of F having lower exponent-p class at most c. The p-quotient algorithm used by Magma is
part of the ANU p-Quotient program. For details of the algorithm, see [NO96]. In Magma
the result is returned as a group of type GrpPC (cf. Chapter 63).

Assume that the p-quotient has order pn, Frattini rank d, and that its generators are
a1, . . . , an. Then the power-conjugate presentation constructed has the following additional
structure. The set {a1, . . . , ad} is a generating set for G. For each ak in {ad+1, . . . , an},
there is at least one relation whose right hand side is ak. One of these relations is taken as
the definition of ak. (The list of definitions is also returned by pQuotient.) The power-
conjugate generators also have a weight associated with them: a generator is assigned a
weight corresponding to the stage at which it is added and this weight is extended to all
normal words in a natural way.

The p-quotient function and its associated commands allows the user to construct a
power-conjugate presentation (pcp) for a p-group. Note that there is also a process version
of the p-quotient algorithm, which gives the user complete control over its execution. For
a description, we refer to Chapter 71.
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70.5.3 The Construction of a p-Quotient

pQuotient(F, p, c: parameters)

Given an fp-group F , a prime p and a positive integer c, construct a pcp for the
largest p-quotient G of F having lower exponent-p class at most c. If c is given as
0, then the limit 127 is placed on the class. The function also returns the natural
homomorphism π from F to G, a sequence S describing the definitions of the pc-
generators of G and a flag indicating whether G is the maximal p-quotient of F .

The k-th element of S is a sequence of two integers, describing the definition of
the k-th pc-generator G.k of G as follows.
- If S[k] = [0, r], then G.k is defined via the image of F.r under π.
- If S[k] = [r, 0], then G.k is defined via the power relation for G.r.
- If S[k] = [r, s], then G.k is defined via the conjugate relation involving G.rG.s.

There exist a number of parameters for controlling the behaviour of this function,
which are described below.

Example H70E31

We construct the largest 2-quotient of class 6 for a two-generator, two-relator group.

> F<a,b> := FreeGroup(2);

> G := quo< F | (b, a, a) = 1, (a * b * a)^4 = 1 >;

> Q, fQ := pQuotient(G, 2, 6);

> Order(Q);

524288

> fQ;

Mapping from: GrpFP: G to GrpPC: Q

The parameters available for the function pQuotient are:
Exponent RngIntElt Default : 0
If Exponent := m, enforce the exponent law, xm = 1, on the group.
Metabelian BoolElt Default : false

If Metabelian := true, then a consistent pcp is constructed for the largest
metabelian p-quotient of F having lower exponent-p class at most c.

Print RngIntElt Default : 0
This parameter controls the volume of printing. By default its value is that re-

turned by GetVerbose("pQuotient"), which is 0 unless it has been changed through
use of SetVerbose. The effect is the following:

Print := 0: No output.
Print := 1: Report order of p-quotient at each class.
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Print := 2: Report statistics and redundancy information about tails, consis-
tency, collection of relations and exponent enforcement components of calculation.

Print := 3: Report in detail on the construction of each class.
Note that the presentation displayed is a power-commutator presentation (since this
is the version stored by the p-quotient).

Workspace RngIntElt Default : 5000000
The amount of space requested for the p-quotient computation.

Example H70E32

We construct the largest 3-quotient of class 6 for a two-generator group of exponent 9.

> F<a,b> := FreeGroup(2);

> G := quo< F | a^3 = b^3 = 1 >;

> q := pQuotient(G, 3, 6: Print := 1, Exponent := 9);

Lower exponent-3 central series for G

Group: G to lower exponent-3 central class 1 has order 3^2

Group: G to lower exponent-3 central class 2 has order 3^3

Group: G to lower exponent-3 central class 3 has order 3^5

Group: G to lower exponent-3 central class 4 has order 3^7

Group: G to lower exponent-3 central class 5 has order 3^9

Group: G to lower exponent-3 central class 6 has order 3^11

Example H70E33

We use the metabelian parameter to construct a metabelian 5-quotient of the group

< a, b | a625 = b625 = 1, (b, a, b) = 1, (b, a, a, a, a) = (b, a)5 > .

> F<a, b> := FreeGroup(2);

> G := quo< F | a^625 = b^625 = 1, (b, a, b) = 1,

> (b, a, a, a, a) = (b, a)^5 >;

> q := pQuotient(G, 5, 20: Print := 1, Metabelian := true);

Lower exponent-5 central series for G

Group: G to lower exponent-5 central class 1 has order 5^2

Group: G to lower exponent-5 central class 2 has order 5^5

Group: G to lower exponent-5 central class 3 has order 5^8

Group: G to lower exponent-5 central class 4 has order 5^11

Group: G to lower exponent-5 central class 5 has order 5^12

Group: G to lower exponent-5 central class 6 has order 5^13

Group: G to lower exponent-5 central class 7 has order 5^14

Group: G to lower exponent-5 central class 8 has order 5^15

Group: G to lower exponent-5 central class 9 has order 5^16

Group: G to lower exponent-5 central class 10 has order 5^17

Group: G to lower exponent-5 central class 11 has order 5^18

Group: G to lower exponent-5 central class 12 has order 5^19

Group: G to lower exponent-5 central class 13 has order 5^20

Group completed. Lower exponent-5 central class = 13, order = 5^20
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Example H70E34

In the final example, we construct the largest finite 2-generator group having exponent 5.

> F := FreeGroup(2);

> q := pQuotient (F, 5, 14: Print := 1, Exponent := 5);

Lower exponent-5 central series for F

Group: F to lower exponent-5 central class 1 has order 5^2

Group: F to lower exponent-5 central class 2 has order 5^3

Group: F to lower exponent-5 central class 3 has order 5^5

Group: F to lower exponent-5 central class 4 has order 5^8

Group: F to lower exponent-5 central class 5 has order 5^10

Group: F to lower exponent-5 central class 6 has order 5^14

Group: F to lower exponent-5 central class 7 has order 5^18

Group: F to lower exponent-5 central class 8 has order 5^22

Group: F to lower exponent-5 central class 9 has order 5^28

Group: F to lower exponent-5 central class 10 has order 5^31

Group: F to lower exponent-5 central class 11 has order 5^33

Group: F to lower exponent-5 central class 12 has order 5^34

Group completed. Lower exponent-5 central class = 12, order = 5^34

70.5.4 Nilpotent Quotient
A nilpotent quotient algorithm constructs, from a finite presentation of a group, a poly-
cyclic presentation of a nilpotent quotient of the finitely presented group. The nilpotent
quotient algorithm used by Magma is the Australian National University Nilpotent Quo-
tient program, as described in [Nic96]. The version included in Magma is Version 2.2 of
January 2007.

The lower central series G0, G1, . . . of a group G can be defined inductively as G0 = G,
Gi = [G(i− 1), G]. G is said to have nilpotency class c if c is the smallest non-zero integer
such that Gc = 1. If N is a normal subgroup of G and G/N is nilpotent, then N contains
Gi for some non-negative integer i. G has infinite nilpotent quotients if and only if G/G1

(the maximal abelian quotient of G) is infinite and a prime p divides a finite factor of a
nilpotent quotient if and only if p divides a cyclic factor of G/G1. The i-th (i > 1) factor
Gi−1/Gi of the lower central series is generated by the elements [g, h]Gi, where g runs
through a set of representatives of G/G1 and h runs through a set of representatives of
Gi−2/Gi−1.

Any finitely generated nilpotent group is polycyclic and, therefore, has a subnormal
series with cyclic factors. Such a subnormal series can be used to represent the group in
terms of a polycyclic presentation. The ANU NQ computes successively the factor groups
modulo the terms of the lower central series. Each factor group is represented by a special
form of polycyclic presentation, a nilpotent presentation, that makes use of the nilpotent
structure of the factor group.

The algorithm has highly efficient code for enforcing the n-Engel identity in nilpotent
groups. When appropriate parameters are set, the algorithm computes the largest n-Engel
quotient of G/Gc.
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More generally, the algorithm has code for enforcing arbitrary identical relations. You
can even enforce relations which combine generators of G with “free variables”. (Werner
Nickel calls these “identical generators”.) For instance, the relation (a,x) = 1, where a
is a group generator and x is a free variable, will force the construction of quotients where
the image of a is central.

Mike Vaughan-Lee offers advice on when to use the nilpotent quotient algorithm. If
you know nothing about the finitely presented group, it is probably a good idea to look
at the abelian quotient first. If the abelian quotient is trivial then all nilpotent quotients
will be trivial. Similarly, if the abelian quotient is cyclic, then all nilpotent quotients will
be cyclic. Less trivially, if the abelian quotient is finite then all nilpotent quotients will be
finite and so will be the direct product of finite p-groups. Moreover, the relevant primes p
will all occur in the abelian quotient. Usually it will be more effective to use the p-quotient
algorithm to study the direct factors. However, if you want to study 3-Engel quotients
(say), then you are better using the nilpotent quotient even when the abelian quotient is
finite.

NilpotentQuotient(G, c: parameters)

This function returns the class c nilpotent quotient of G as a group in category
GrpGPC, together with the epimorphism π from G onto this quotient. When c is
set to zero, the function attempts to compute the maximal nilpotent quotient of G.
Using the parameters described below, the user can enforce certain conditions on
the quotient found.

Example H70E35

Here is a finitely presented group. The abelian quotient is infinite, so we look at the class 2
nilpotent quotient.

> G := Group<x,y,z|(x*y*z^-1)^2, (x^-1*y^2*z)^2, (x*y^-2*x^-1)^2 >;

> AbelianQuotient(G);

Abelian Group isomorphic to Z/2 + Z/2 + Z

Defined on 3 generators

Relations:

2*$.1 = 0

2*$.2 = 0

> N := NilpotentQuotient(G,2); N;

GrpGPC : N of infinite order on 6 PC-generators

PC-Relations:

N.1^2 = N.3^2 * N.5,

N.2^2 = N.4 * N.6,

N.4^2 = Id(N),

N.5^2 = Id(N),

N.6^2 = Id(N),

N.2^N.1 = N.2 * N.4,

N.3^N.1 = N.3 * N.5,

N.3^N.2 = N.3 * N.6
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Example H70E36

The free nilpotent group of rank r and class e is defined as F/γe+1(F ), where F is a free group of
rank r and γe+1(F ) denotes the (e + 1) st term of the lower central series of F .
We construct the free nilpotent group N of rank 2 and class 3 as quotient of the free group F of
rank 2 and the natural epimorphism from F onto N .

> F<a,b> := FreeGroup(2);

> N<[x]>, pi := NilpotentQuotient(F, 3);

> N;

GrpGPC : N of infinite order on 5 PC-generators

PC-Relations:

x[2]^x[1] = x[2] * x[3],

x[2]^(x[1]^-1) = x[2] * x[3]^-1 * x[4],

x[3]^x[1] = x[3] * x[4],

x[3]^(x[1]^-1) = x[3] * x[4]^-1,

x[3]^x[2] = x[3] * x[5],

x[3]^(x[2]^-1) = x[3] * x[5]^-1

Using the function NilpotencyClass described in Chapter 72, we check the nilpotency class of
the quotient.

> NilpotencyClass(N);

3

Example H70E37

The Baumslag-Solitar groups

BS(p, q) = 〈< a, b|abpa−1 = bq〉

form a fascinating class of 1-relator groups. We compute the nilpotent of class 4 quotient of two
of them, and print out the resulting presentations, and the structure of the generators.

> G<a,b> := Group<a,b|a*b*a^-1=b^4>;

> N,f := NilpotentQuotient(G,4);

> N;

GrpGPC : N of infinite order on 5 PC-generators

PC-Relations:

N.2^3 = N.3^2 * N.4^2 * N.5,

N.3^3 = N.4^2 * N.5^2,

N.4^3 = N.5^2,

N.5^3 = Id(N),

N.2^N.1 = N.2 * N.3,

N.2^(N.1^-1) = N.2 * N.3^2 * N.4^2 * N.5,

N.3^N.1 = N.3 * N.4,

N.3^(N.1^-1) = N.3 * N.4^2 * N.5^2,

N.4^N.1 = N.4 * N.5,

N.4^(N.1^-1) = N.4 * N.5^2

> for i := 1 to Ngens(N) do
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> N.i @@ f;

> end for;

a

b

(b, a)

(b, a, a)

(b, a, a, a)

> G<a,b> := Group<a,b|a*b^2*a^-1=b^4>;

> N,f := NilpotentQuotient(G,4);

> N;

GrpGPC : N of infinite order on 8 PC-generators

PC-Relations:

N.2^2 = Id(N),

N.3^2 = N.5 * N.8,

N.4^2 = N.7,

N.5^2 = N.8,

N.6^2 = Id(N),

N.7^2 = Id(N),

N.8^2 = Id(N),

N.2^N.1 = N.2 * N.3,

N.2^(N.1^-1) = N.2 * N.3 * N.4 * N.5 * N.6,

N.3^N.1 = N.3 * N.4,

N.3^(N.1^-1) = N.3 * N.4 * N.6 * N.7,

N.3^N.2 = N.3 * N.5,

N.4^N.1 = N.4 * N.6,

N.4^(N.1^-1) = N.4 * N.6,

N.4^N.2 = N.4 * N.7,

N.5^N.1 = N.5 * N.7,

N.5^(N.1^-1) = N.5 * N.7,

N.5^N.2 = N.5 * N.8

> for i := 1 to Ngens(N) do

> N.i @@ f;

> end for;

a

b

(b, a)

(b, a, a)

(b, a, b)

(b, a, a, a)

(b, a, b, a)

(b, a, b, b)

The parameters available for the function NilpotentQuotient are:
NumberOfEngelGenerators

RngIntElt Default : 1
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Setting this parameter to k forces the first k generators to be left or right Engel
elements, provided one (or both) of the parameters LeftEngel or RightEngel is
positive. Otherwise it is ignored.

LeftEngel RngIntElt Default : 0

Setting this parameter to n forces the first k generators g1, . . . , gk of the quo-
tient Q to be left n-Engel elements. That is, they satisfy [x, . . . , x, gi] = 1 (x
appearing n times) for all x in Q. The value of k is determined by the parameter
NumberOfEngelGenerators.

RightEngel RngIntElt Default : 0

This is the same as for LeftEngel, but here the generators are right n-Engel ele-
ments, so [gi, x, . . . , x] = 1.

Engel RngIntElt Default : 0

Setting this parameter to n enforces the nth Engel law on the quotient Q. That is,
[x, y, . . . , y] = 1 (y appearing n times) for all x, y in Q.

SemigroupOnly BoolElt Default : true

This option causes the program to check only semigroup words in the generating set
of the nilpotent quotient when an Engel condition is enforced. If none of the Engel
parameters are set, then it is ignored.

SemigroupFirst BoolElt Default : false

This option causes the program to check semigroup words in the generating set of
the quotient first and then all other words, when an Engel condition is enforced. If
SemigroupOnly is set, or no Engel condition is enforced, then it is ignored.

ReverseOrder BoolElt Default : false

In checking Engel identities, instances are processed in order of increasing weight.
This flag reverses the order.

ReverseEngel BoolElt Default : false

This flag changes the Engel conditions from the first k generators, to the last k
generators.

CheckFewInstances BoolElt Default : false

This option stops checking the Engel law at each class if all the checks of a certain
weight did not yield any non-trivial instances of the law.

Nickel BoolElt Default : false

Enforce the identities x8 and [[x1, x2, x3], [x4, x5, x6]] on the nilpotent quotient.

NumberOfFreeVariables RngIntElt Default : 0

If this parameter is set to n > 0 then the last n variables of the group are treated
as variables rather than generators of the group. In any relation they are treated as
standing for all group elements, enabling the user to enforce identical relations on the
quotient being computed. The value of n must be less than the number of generators
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of the input group. When this facility is used, the domain of the epimorphism
returned is the subgroup of G generated by the (first) non-free generators.

PrintResult BoolElt Default : false

If set to true, this parameter switches on the printing of results given by the stand
alone version of NQ.

SetVerbose("NilpotentQuotient", n)

Turn on and off the printing of information as the nilpotent quotient algorithm
proceeds. n may be set to any of 0, 1, 2 or 3. Setting n to be 0 turns printing
off, while successively higher values for n print more and more information as the
algorithm progresses. The default value of n is 0.

Example H70E38

We compute the maximal nilpotent quotient N1 of the group G given by the following presentation

〈a, b, c, d, e | (b, a), (c, a), (d, a) = (c, b), (e, a) = (d, b), (e, b) = (d, c), (e, c), (e, d)〉.

> F<a,b,c,d,e> := FreeGroup(5);

> G<a,b,c,d,e> :=

> quo<F | (b,a), (c,a),

> (d,a)=(c,b), (e,a)=(d,b), (e,b)=(d,c),

> (e,c), (e,d)>;

> N1<[x]>, pi1 := NilpotentQuotient(G, 0);

Using the function NilpotencyClass described in Chapter 72, we check the nilpotency class of
the quotient. It turns out to have nilpotency class 6.

> NilpotencyClass(N1);

6

Next we compute a metabelian quotient N2 of G, construct the natural epimorphism from N1
onto N2 and check its kernel. (The functions applied to the nilpotent quotients are described in
Chapter 72.) To get a metabelian quotient we adjoin 4 variables and a relation to the presentation
of G and use the “free variables” facility.

> M := Group<w,x,y,z|((w,x),(y,z))>; // metabelian identity

> D := FreeProduct(G,M); // adjoin to G

> N2, pi2 := NilpotentQuotient(D, 0: NumberOfFreeVariables := 4);

> NilpotencyClass(N2);

4

> DerivedLength(N2);

2

> f := hom< N1->N2 | [ pi1(G.i)->pi2(D.i) : i in [1..Ngens(G)] ] >;

> PCGenerators(Kernel(f), N1);

{@ x[14], x[15] * x[17], x[16], x[17]^2, x[18], x[19], x[20],

x[21], x[22], x[23], x[24], x[25], x[26], x[27], x[28], x[29],
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x[30], x[31] @}

We compute a quotient N3 of G satisfying the 4 th Engel law, construct the natural epimorphism
from N1 onto N3 and again check the kernel. (The functions applied to the nilpotent quotients
are described in Chapter 72.)

> N3, pi3 := NilpotentQuotient(G, 0 : Engel := 4);

> NilpotencyClass(N3);

4

> DerivedLength(N3);

3

> h := hom< N1->N3 | [ pi1(g)->pi3(g) : g in Generators(G) ] >;

> PCGenerators(Kernel(h), N1);

{@ x[19], x[20], x[21], x[22], x[23], x[24], x[25], x[26], x[27],

x[28], x[29], x[30], x[31] @}

70.5.5 Soluble Quotient
A soluble quotient algorithm computes a consistent power-conjugate presentation of the
largest finite soluble quotient of a finitely presented group, subject to certain algorithmic
and user supplied restrictions. In this section we describe only the simplest use of such an
algorithm within Magma. For more information the user is referred to Chapter 71.

SolvableQuotient(G : parameters)

SolubleQuotient(G : parameters)

Let G be a finitely presented group. The function constructs the largest finite soluble
quotient of G.

Example H70E39

We compute the soluble quotient of the group

〈a, b | a2, b4, ab−1ab(abab−1)5ab2ab−2〉.

> G<a,b> := Group< a, b | a^2, b^4,

> a*b^-1*a*b*(a*b*a*b^-1)^5*a*b^2*a*b^-2 >;

> Q := SolubleQuotient(G);

> Q;

GrpPC : Q of order 1920 = 2^7 * 3 * 5

PC-Relations:

Q.1^2 = Q.4,

Q.2^2 = Id(Q),

Q.3^2 = Q.6,

Q.4^2 = Id(Q),

Q.5^2 = Q.7,

Q.6^2 = Id(Q),
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Q.7^2 = Id(Q),

Q.8^3 = Id(Q),

Q.9^5 = Id(Q),

Q.2^Q.1 = Q.2 * Q.3,

Q.3^Q.1 = Q.3 * Q.5,

Q.3^Q.2 = Q.3 * Q.6,

Q.4^Q.2 = Q.4 * Q.5 * Q.6 * Q.7,

Q.4^Q.3 = Q.4 * Q.6 * Q.7,

Q.5^Q.1 = Q.5 * Q.6,

Q.5^Q.2 = Q.5 * Q.7,

Q.5^Q.4 = Q.5 * Q.7,

Q.6^Q.1 = Q.6 * Q.7,

Q.8^Q.1 = Q.8^2,

Q.8^Q.2 = Q.8^2,

Q.9^Q.1 = Q.9^3,

Q.9^Q.2 = Q.9^4,

Q.9^Q.4 = Q.9^4

SolvableQuotient(F, n : parameters)

SolubleQuotient(F, n : parameters)

SolvableQuotient(F, P : parameters)

SolubleQuotient(F, P : parameters)

Find a soluble quotient G and the epimorphism π : F→→G with a specified order. n
must be a nonnegative integer. P must be a set of primes.

The three forms reflect possible information about the order of an expected
soluble quotient. In the first form the order of G is given by n, if n is greater than
zero. If n equals zero, nothing about the order is known and the relevant primes
will be calculated completely.

The second form, with no n argument, is equivalent to the first with n = 0. This
is a standard argument, and usually it is the most efficient way to calculate soluble
quotients.

Note that, if n > 0 is not the order of the maximal finite soluble quotient, it may
happen that no group of order n can be found, since an epimorphic image of size n
may not be exhibited by the chosen series.

In the third form a set P of relevant primes is given. The algorithm calculates
the biggest quotient such that the order has prime divisors only in P . P may have
a zero as element, this is just for consistency reasons. It is equivalent to the first
form with n equal zero.

For a description of the algorithm used and of the set of parameters available
for this function, see Chapter 71. Other more specialised functions for computing
soluble quotients and some examples can be found there as well.
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Example H70E40

Consider the group G defined by the presentation

〈x, y | x3, y8, [x, y4], x−1yx−1y−1xyxy−1, (xy−2)2(x−1y−2)2(xy2)2(x−1y2)2, (x−1y−2)6(x−1y2)6〉.

> G<x, y> := Group< x, y |

> x^3, y^8, (x,y^4), x^-1*y*x^-1*y^-1*x*y*x*y^-1,

> (x*y^-2)^2*(x^-1*y^-2)^2*(x*y^2)^2*(x^-1*y^2)^2,

> (x^-1*y^-2)^6*(x^-1*y^2)^6 >;

We apply the soluble quotient algorithm to G and compute the order of the soluble quotient Q.

> time Q := SolubleQuotient(G);

Time: 116.920

> Order(Q);

165888

Note that 165888 = 211 · 34. If we knew the possible primes in advance the soluble quotient can
be computed much more quickly by using this knowledge.

> time Q := SolubleQuotient(G, {2, 3});

Time: 39.400

Note that this reduces the execution time by a factor of almost three.

We now assume that G is finite and try to compute its order by means of the Todd-Coxeter
algorithm.

> Order(G);

165888

Hence the group is finite and soluble and G is isomorphic to Q. We may use the tools for finite
soluble groups to investigate the structure of G. For example we can easily find the number of
involutions in G.

> cls := ConjugacyClasses(Q);

> &+ [ cl[2] : cl in cls | cl[1] eq 2 ];

511
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70.6 Subgroups

70.6.1 Specification of a Subgroup

sub< G | L >

Construct the subgroup H of the fp-group G generated by the words specified by
the terms of the generator list L = L1, . . . , Lr.

A term Li of the generator list may consist of any of the following objects:
(a)A word;
(b)A set or sequence of words;
(c) A sequence of integers representing a word;
(d)A set or sequence of sequences of integers representing words;
(e) A subgroup of an fp-group;
(f) A set or sequence of subgroups.
The collection of words and groups specified by the list must all belong to the group
G and H will be constructed as a subgroup of G.

The generators of H consist of the words specified directly by terms Li together
with the stored generating words for any groups specified by terms of Li. Repetitions
of an element and occurrences of the identity element are removed (unless H is
trivial).

If the sub-constructor is invoked with an empty list L, the trivial subgroup will
be constructed.

sub< G | f >

Given a homomorphism f from G onto a transitive subgroup of Sym(n), construct
the subgroup of G which affords this permutation representation.

ncl< G | L >

Construct the subgroup N of the fp-group G as the normal closure of the subgroup
H generated by the words specified by the terms of the generator list L.

The possible forms of a term of the generator list are the same as for the sub-
constructor.

This constructor may be applied even when H has infinite index in G, provided
that its normal closureN has finite index. The subgroupN is obtained by computing
the coset table of the trivial subgroup in the group defined by the relations of G
together with relators corresponding to the words generating H. For a sample
application of this function, see Example H70E17.

This function may require the computation of a coset table. Experienced users
can control the behaviour of a possibly invoked coset enumeration with a set of
global parameters. These global parameters can be changed using the function
SetGlobalTCParameters. For a detailed description of the available parameters
and their meanings, we refer to Chapter 71.
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ncl< G | f >

Given a homomorphism f from G onto a transitive subgroup of Sym(n), construct
the subgroup of G that is the normal closure of the subgroup K of G which affords
this permutation representation.

CommutatorSubgroup(G)

DerivedSubgroup(G)

DerivedGroup(G)

Given an fp-group G, try to construct the derived subgroup G′ of G as finite index
subgroup of G. The construction fails if no presentation for G is known or can be
constructed, or if the index of G′ in G is too large or infinite.

This function may require the computation of a coset table. Experienced users
can control the behaviour of a possibly invoked coset enumeration with a set of
global parameters. These global parameters can be changed using the function
SetGlobalTCParameters. For a detailed description of the available parameters
and their meanings, we refer to Chapter 71.

Example H70E41

The group (8, 7 | 2, 3) is defined by the presentation

< a, b | a8, b7, (ab)2, (a−1b)3 >,

and has a subgroup of index 448 generated by the words a2 and a−1b:

> G<a, b> := Group<a, b| a^8, b^7, (a * b)^2, (a^-1 * b)^3>;

> G;

Finitely presented group G on 2 generators

Relations

a^8 = Id(G)

b^7 = Id(G)

(a * b)^2 = Id(G)

> H<x, y> := sub< G | a^2, a^-1 * b >;

> H;

Finitely presented group H on 2 generators

Generators as words in group G

x = a^2

y = a^-1 * b

Example H70E42

Given the group G defined by the presentation

< a, b | a8, b7, (ab)2, (a, b)9 >,
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there is a homomorphism into Sym(9) defined by

a → (2, 4)(3, 5)(6, 7)(8, 9)

b → (1, 2, 3)(4, 6, 7)(5, 8, 9)

We construct the subgroup H of G that is the preimage of the stabiliser of the point 1 in G.

> G<a, b> := Group< a, b | a^2, b^3, (a*b)^7, (a, b)^9>;

> T := PermutationGroup< 9 | (2, 4)(3, 5)(6, 7)(8, 9),

> (1, 2, 3)(4, 6, 7)(5, 8, 9) >;

> f := hom< G -> T | a -> T.1, b ->T.2 >;

> H := sub< G | f >;

> H;

Finitely presented group H

Subgroup of group G defined by coset table

> Index(G, H);

9

Using the function GeneratingWords, we obtain a set of generators for H.

> print GeneratingWords(G, H);

{ a, b^-1 * a * b^3 * a * b, b * a * b * a * b * a * b^-1,

b^3, b^-1 * a * b * a * b * a * b, b * a * b^3 * a * b^-1 }

70.6.2 Index of a Subgroup: The Todd-Coxeter Algorithm
This section describes the simplest use of coset enumeration techniques in Magma.
Magma also provides interactive facilities for coset enumeration. For information on these
more advanced uses, the user is referred to Chapter 71.

The Todd-Coxeter implementation installed in Magma is based on the stand alone
coset enumeration programme ACE3 developed by George Havas and Colin Ramsay at
the University of Queensland. The reader should consult [CDHW73] and [Hav91] for an
explanation of the terminology and a general description of the algorithm. A manual for
ACE3 as well as the sources of ACE3 can be found online [Ram].

Experienced users can control the Todd-Coxeter procedures invoked by the functions
described in this section with a wide range of parameters. For a complete description
of these parameters and their meanings we refer to the manual entry for the function
CosetEnumerationProcess in Chapter 71. We just mention briefly the most important
ones:

CosetLimit RngIntElt Default : 0
If CosetLimit is set to n, where n is a positive integer, then the coset table may have

at most n rows. In other words, a maximum of n cosets can be defined at any instant
during the enumeration. It is ensured in this case, that enough memory is allocated to
store the requested number of cosets, regardless of the value of the parameter Workspace.
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If CosetLimit is set to 0 (default), the maximal number of active cosets is determined
by the size of the coset table (cf. parameter Workspace) and the number of columns of the
coset table (i.e. the number of group generators).

Workspace RngIntElt Default : 4000000

The number of words allocated for the coset table. Note that if CosetLimit is set, at
least as much memory is allocated as is necessary to store the requested number of cosets.

Strategy MonStgElt Default :

Using this parameter one of several predefined strategies can be selected. (See the
manual entry for the function CosetEnumerationProcess in Chapter 71 for a complete
list.) The most important values of this parameter are:

• “Easy”: This selects a combination of parameters, which in situations where an overflow
is not expected is likely to produce a result more quickly and using less memory than
the default strategy. This strategy will fail for more complicated enumerations.

• “Hard”: This selects a combination of parameters, which is more likely to produce a
finite result for difficult coset enumerations than the default strategy. This strategy
will use more memory and enumerations usually will take longer.

ToddCoxeter(G, H: parameters)

Given a subgroup H of the fp-group G, this function attempts to build up a coset
table of H in G using the Todd-Coxeter procedure.

The first return value is the index of H in G (or 0, if the enumeration fails to
complete). The other values returned are the coset table map, the maximum number
of simultaneously active cosets, and the total number of cosets defined during the
enumeration.

Experienced users can control the Todd-Coxeter procedure invoked by this func-
tion with a wide range of parameters. This function accepts the same parameters
as the function CosetEnumerationProcess described in Chapter 71.

Index(G, H: parameters)

FactoredIndex(G, H: parameters)

Given a subgroup H of the fp-group G, these functions attempt to determine the
index of H in G by enumerating the cosets of H using the Todd-Coxeter procedure.
The index is returned as a positive integer (Index) or as a sequence of factors
(FactoredIndex), respectively. If the coset enumeration fails to complete with a
closed coset table, Index returns a value of 0, whereas FactoredIndex reports an
error. No conclusion can be drawn in this case.

Experienced users can control the Todd-Coxeter procedure invoked by these func-
tions with a wide range of parameters. Both functions accept the same parameters
as the function CosetEnumerationProcess described in Chapter 71.
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Example H70E43

The classical test example for Todd-Coxeter programmes is the enumeration of the 448 cosets of
the subgroup H = < a2, a−1b > in the group G = < a, b | a8, b7, (ab)2, (a−1b)3 >.

> F<x, y> := FreeGroup(2);

> G<a, b> := quo<F | x^8, y^7, (x*y)^2, (x^-1*y)^3>;

> H := sub<G | a^2,a^-1*b>;

> Index(G, H);

448

Order(G: parameters)

FactoredOrder(G: parameters)

Given an fp-group G, this function attempts to determine the order of G or to prove
that G is infinite. If a finite order can be computed, the function Order returns the
order as a positive integer, whereas the function FactoredOrder returns a sequence
of prime power factors. The function FactoredOrder reports an error in all other
cases, whereas the function Order returns the object Infinity, if G can be shown
to be infinite and returns a value of 0 if neither a finite value for the group order
nor a proof for the infinity of G can be obtained. No conclusions can be drawn from
a return value 0 of Order.

In addition to the parameters controlling possibly invoked coset enumerations,
there exist some other parameters controlling the strategy used by the functions
Order and FactoredOrder. These parameters are described below.

Example H70E44

We use the function Order without any parameters to compute the order of the group

G = < a, b | a8, b7, (ab)2, (a−1b)3 > .

> G<x, y> := Group<x,y | x^8, y^7, (x*y)^2, (x^-1*y)^3>;

> G;

Finitely presented group G on 2 generators

Relations

x^8 = Id(G)

y^7 = Id(G)

(x * y)^2 = Id(G)

(x^-1 * y)^3 = Id(G)

> Order(G);

10752



Ch. 70 FINITELY PRESENTED GROUPS 2145

The strategy employed by the functions Order and FactoredOrder may involve
trying to obtain information on certain subgroups of G. Whether or not an attempt
is made to construct a presentation for a subgroup arising in the course of the
computation by means of Reidemeister-Schreier rewriting, is controlled by three
parameters:

UseRewrite BoolElt Default : true

MinIndex RngIntElt Default : 10

MaxIndex RngIntElt Default : 1000

If UseRewrite is set to false, attempts to construct presentations for subgroups
are not made. Otherwise, MinIndex and MaxIndex specify for subgroups of which
index range Reidemeister-Schreier rewriting is done.

The following strategy is used for trying to determine the order of G.

(1)Check whether G is free. If so, G is either trivial or infinite.

(2)Check whether the presentation for G is deficient (i.e. whether the number of
relations is smaller than the number of generators). If it is, G is infinite.

(3)Check the subgroups of G with known order. If such a subgroup is known to be
infinite or if we can compute its index in G, we’re done.

(4)Try to compute the index of G in a supergroup of known order. (An infinite
supergroup in which G has finite index proves G to be infinite.)

(5)Try to enumerate the cosets of the trivial subgroup in G.

(6)Check the subgroups of known or easily computable index in G. If we can
compute the order of such a subgroup or prove that it is infinite, we’re done.

(7)Try to enumerate the cosets of some subgroups occurring ”naturally” in the
presentation of G.

(8)Check the supergroups in which G has known or easily computable index. If we
can compute the order of a supergroup or prove that it is infinite, we’re done.

(9)Try to rewrite G w.r.t. some supergroup and to enumerate the cosets of the
trivial subgroup using the resulting presentation.

Steps requiring coset enumeration in G or a supergroup of G are skipped, if no
relations are known for this group. Steps involving Reidemeister-Schreier rewriting
may be skipped according to the values of the parameters mentioned above.

Experienced users can control the behaviour of coset enumerations which may be
invoked by the functions Order and FactoredOrder with a wide range of parameters.
Both functions – in addition to the parameters mentioned above – accept the same
parameters as the function CosetEnumerationProcess described in Chapter 71.
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Example H70E45

The Harada-Norton simple group has the presentation

< x, a, b, c, d, e, f, g | x2, a2, b2, c2, d2, e2, f2, g2, (x, a), (x, g),

(bc)3, (bd)2, (be)2, (bf)2, (bg)2, (cd)3, (ce)2, (cf)2, (cg)2,

(de)3, (df)2, (dg)2, (ef)3, (eg)2, (fg)3, (b, xbx), (a, edcb),

(a, f)dcbdcd, (ag)5, (cdef, xbx), (b, xcdefx), (cdef, xcdefx) >

The subgroup generated by x, b, c, d, e, f, g has index 1,140,000. We use the parameter CosetLimit
to request a sufficiently large coset table. For the enumeration we choose the predefined strategy
Hard with the modification of a complete C-style lookahead (Lookahead := 2).

> HN<x, a, b, c, d, e, f, g> :=

> Group< x, a, b, c, d, e, f, g |

> x^2, a^2, b^2, c^2, d^2, e^2, f^2, g^2,

> (x, a), (x, g),

> (b*c)^3, (b*d)^2, (b*e)^2, (b*f)^2, (b*g)^2,

> (c*d)^3, (c*e)^2, (c*f)^2, (c*g)^2,

> (d*e)^3, (d*f)^2, (d*g)^2,

> (e*f)^3, (e*g)^2,

> (f*g)^3,

> (b, x*b*x),

> (a, e*d*c*b), (a, f)*d*c*b*d*c*d, (a*g)^5,

> (c*d*e*f, x*b*x), (b, x*c*d*e*f*x),

> (c*d*e*f, x*c*d*e*f*x)

> >;

> H := sub<HN | x,b,c,d,e,f,g >;

> idx := Index(HN, H: Print := true, CosetLimit := 1200000,

> Strategy := "Hard", Lookahead := 2);

INDEX = 1140000

(a=1140000 r=1471 h=1168483 n=1168483;

l=2945 c=201.17;

m=1142416 t=1470356)

> idx;

1140000

Example H70E46

We use a function representing a parametrised presentation to determine the order of a collec-
tion of groups obtained by systematically varying one relation. We select the predefined coset
enumeration strategy Easy for the order computations.

> Grp := func< p, q, r, s |

>

> Group<

> x, y, z, h, k, a |
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> x^2, y^2, z^2, (x,y), (y,z), (x,z), h^3, k^3, (h,k),

> (x,k), (y,k), (z,k), x^h*y, y^h*z, z^h*x, a^2, a*x*a*y,

> a*y*a*x, (a,z), (a,k), x^p*y^q*z^r*k^s*(a*h)^2 >

> >;

> [ < <i,j,k,l>, Order(Grp(i,j,k,l) : Strategy := "Easy") >

> : i, j, k in [0..1], l in [0..2] ];

[ <<0, 0, 0, 0>, 144>, <<0, 0, 1, 0>, 18>, <<0, 1, 0, 0>, 72>,

<<0, 1, 1, 0>, 36>, <<1, 0, 0, 0>, 18>, <<1, 0, 1, 0>, 144>,

<<1, 1, 0, 0>, 36>, <<1, 1, 1, 0>, 72>, <<0, 0, 0, 1>, 144>,

<<0, 0, 1, 1>, 18>, <<0, 1, 0, 1>, 72>, <<0, 1, 1, 1>, 36>,

<<1, 0, 0, 1>, 18>, <<1, 0, 1, 1>, 144>, <<1, 1, 0, 1>, 36>,

<<1, 1, 1, 1>, 72>, <<0, 0, 0, 2>, 144>, <<0, 0, 1, 2>, 18>,

<<0, 1, 0, 2>, 72>, <<0, 1, 1, 2>, 36>, <<1, 0, 0, 2>, 18>,

<<1, 0, 1, 2>, 144>, <<1,1, 0, 2>, 36>, <<1, 1, 1, 2>, 72> ]

70.6.3 Implicit Invocation of the Todd-Coxeter Algorithm
Several functions working with finitely presented groups at some point require a coset table
of a subgroup and may invoke a coset enumeration indirectly, e.g. the function meet or the
function Normaliser. The default behaviour for such implicitly called coset enumerations
is the same as the one for coset enumerations invoked explicitly, e.g. using the function
ToddCoxeter.

If such an implicitly called coset enumeration fails to produce a closed coset table, the
calling function may terminate with a runtime error.

Experienced users can control the behaviour of indirectly invoked coset enumerations
with a set of global parameters. These global parameters are valid for all implicitly called
coset enumerations. For a detailed description of the available parameters and their mean-
ings, we refer to Chapter 71. Note that coset enumerations which are explicitly invoked,
e.g. by a call to the function Index, are not affected by this global set of parameters.
Parameters for these functions have to be specified in the function call.

SetGlobalTCParameters(: parameters)

This function sets the parameter values used for indirect invocations of the Todd-
Coxeter coset enumeration procedure. The parameters accepted and their default
values are the same as for the function CosetEnumerationProcess described in
Chapter 71.

UnsetGlobalTCParameters()

This function restores the default values for the parameters used for indirect invo-
cations of the Todd-Coxeter coset enumeration procedure. For a description of the
meanings of the parameters and their default values, see CosetEnumerationProcess
in Chapter 71.



2148 FINITELY-PRESENTED GROUPS Part XI

Example H70E47

We consider again the Harada-Norton simple group with the presentation

< x, a, b, c, d, e, f, g | x2, a2, b2, c2, d2, e2, f2, g2, (x, a), (x, g),

(bc)3, (bd)2, (be)2, (bf)2, (bg)2, (cd)3, (ce)2, (cf)2, (cg)2,

(de)3, (df)2, (dg)2, (ef)3, (eg)2, (fg)3, (b, xbx), (a, edcb),

(a, f)dcbdcd, (ag)5, (cdef, xbx), (b, xcdefx), (cdef, xcdefx) >

and the subgroup H generated by x, b, c, d, e, f, g.

> HN<x, a, b, c, d, e, f, g> :=

> Group< x, a, b, c, d, e, f, g |

> x^2, a^2, b^2, c^2, d^2, e^2, f^2, g^2,

> (x, a), (x, g),

> (b*c)^3, (b*d)^2, (b*e)^2, (b*f)^2, (b*g)^2,

> (c*d)^3, (c*e)^2, (c*f)^2, (c*g)^2,

> (d*e)^3, (d*f)^2, (d*g)^2,

> (e*f)^3, (e*g)^2,

> (f*g)^3,

> (b, x*b*x),

> (a, e*d*c*b), (a, f)*d*c*b*d*c*d, (a*g)^5,

> (c*d*e*f, x*b*x), (b, x*c*d*e*f*x),

> (c*d*e*f, x*c*d*e*f*x) >;

> H := sub<HN | x,b,c,d,e,f,g >;

H has index 1,140,000 in HN . Using the default settings, the normaliser of H in HN cannot be
computed.

> N := Normaliser(HN, H);

>> N := Normaliser(HN, H);

^

Runtime error in ’Normaliser’: Coset table is not closed

We change the global parameters for implicitly called coset enumerations and try again.

> SetGlobalTCParameters( : Strategy := "Hard");

> N := Normaliser(HN, H);

With these parameters, the computation works. We see that H is self-normalising in HN .

> Index(HN, N);

1140000

> IsSelfNormalising(HN, H);

true

70.6.4 Constructing a Presentation for a Subgroup
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70.6.4.1 Introduction
Let H be a subgroup of finite index in the finitely presented group G. It frequently happens
that it is desirable to construct a set of defining relations for H from those of G. Such a
presentation can be obtained either on a set of Schreier generators for H or on the given
generators of H using the Reidemeister-Schreier rewriting technique [MKS76], if necessary
together with extended coset enumeration [AR84, HKRR84].

We emphasise that if the user wishes only to determine the structure of the max-
imal abelian quotient of H, then the function AbelianQuotientInvariants should be
used. In this case there is no need to first construct a presentation for H using the
Rewrite function described below, since AbelianQuotientInvariants employs a spe-
cial form of the Reidemeister-Schreier rewriting process which abelianises each relator
as soon as it is constructed. Thus, compared to the function Rewrite, the function
AbelianQuotientInvariants can be applied to subgroups of much larger index.

70.6.4.2 Rewriting

Rewrite(G, H : parameters)

Given a finitely presented group G and a subgroup H having finite index in G,
return a group R isomorphic to H with a presentation on (some of) the Schreier
generators of H in G. The group R will be created as a subgroup of G and defining
relations of R on its generators will be available. Note that the generators of R will,
in general, not correspond to the generators of H. The isomorphism from H onto
R is returned as second return value.

This function may require the computation of a coset table. Experienced users
can control the behaviour of a possibly invoked coset enumeration with a set of
global parameters. These global parameters can be changed using the function
SetGlobalTCParameters. For a detailed description of the available parameters
and their meanings, we refer to Chapter 71.

Simplify BoolElt Default : true

If this Boolean-valued parameter is given the value true, then the resulting presen-
tation for H will be simplified (default). The function Rewrite returns a finitely
presented group that is isomorphic to H. If simplification is requested (by set-
ting Simplify := true) then the simplification procedures are invoked (see next
section). These procedures perform a sequence of Tietze transformations which
typically result in a considerable simplification of the presentation produced by the
rewriting process. Alternatively, the user can set Simplify := false and then per-
form the simplification directly if desired. (See next section). If simplification is not
requested as part of Rewrite, a small amount of simplification is performed on the
presentation before it is returned.

EliminationLimit RngIntElt Default : 100
ExpandLimit RngIntElt Default : 150
GeneratorsLimit RngIntElt Default : 0



2150 FINITELY-PRESENTED GROUPS Part XI

LengthLimit RngIntElt Default : ∞
SaveLimit RngIntElt Default : 10
SearchSimultaneous RngIntElt Default : 20
Iterations RngIntElt Default : 10000
Print RngIntElt Default : 0

These parameters control the simplification. See the description of Simplify for an
explanation of these parameters.

Rewrite(G, ∼H : parameters)

Given a finitely presented group G and a subgroup H having finite index in G,
compute a defining set of relations for H on the existing generators, using extended
coset enumeration and Reidemeister-Schreier rewriting, and change the presentation
of H accordingly.

If the computation is successful, defining relations for H on its generators will be
available at the end; any previously computed relations ofH will be discarded. If the
computation is unsuccessful, H is not changed. In any case, both the isomorphism
type of H and its embedding into G as a subgroup is preserved by this function.

Simplify BoolElt Default : true

If this parameter is given the value true (default), then an attempt will be made to
simplify the constructed set of relations by substring searches, that is, Tietze trans-
formations not changing any generators. The generating set of H is not modified
by this process.

Moreover, the extended coset enumeration can be controlled by a wide range
of parameters. The function Rewrite – in addition to the parameter Simplify –
accepts the same parameters as the function CosetEnumerationProcess described
in Chapter 71.

Example H70E48

Starting with the group G defined by

< x, y | x2, y3, (xy)12, (xy)6(xy−1)6 >,

we construct a subgroup K of index 3 generated by the words x, yxy−1 and yxy−1xy−1xy. We
present the subgroup K, compute its abelian quotient structure and then show that the class 30
2-quotient of K has order 262.

> G<x, y> := Group< x, y | x^2, y^3, (x*y)^12, (x*y)^6*(x*y^-1)^6 >;

> G;

Finitely presented group G on 2 generators

Relations

x^2 = Id(G)

y^3 = Id(G)

(x * y)^12 = Id(G)

x * y * x * y * x * y * x * y * x * y * x * y * x * y^-1 * x *
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y^-1 * x * y^-1 * x * y^-1 * x * y^-1 * x * y^-1 = Id(G)

> K := sub< G | x, y*x*y^-1, y*x*y^-1*x*y^-1*x*y >;

> K;

Finitely presented group K on 3 generators

Generators as words in group G

K.1 = x

K.2 = y * x * y^-1

K.3 = y * x * y^-1 * x * y^-1 * x * y

> Index(G, K);

3

> T := Rewrite(G, K);

> T;

Finitely presented group T on 3 generators

Generators as words in group G

T.1 = x

T.2 = y * x * y^-1

T.3 = x^y

Relations

T.1^2 = Id(T)

T.2^2 = Id(T)

T.3^2 = Id(T)

(T.3 * T.2 * T.1 * T.3 * T.2)^2 = Id(T)

(T.1 * T.3 * T.2 * T.1 * T.3)^2 = Id(T)

(T.1 * T.2 * T.1 * T.3 * T.2)^2 = Id(T)

> AbelianQuotientInvariants(T);

[ 2, 2, 2 ]

> Q2 := pQuotient(T, 2, 30);

> FactoredOrder(Q2);

[ <2, 62> ]

Example H70E49

In this example we illustrate how the function Rewrite can be used to obtain a presentation of a
finitely presented group on a different set of generators.

We start with a presentation of L2(7) on two generators x and y.

> F<x,y> := Group< x, y | x^3 = 1, y^3 = 1, (x*y)^4 = 1,

> (y*y^x)^2 = y^x*y >;

The group is also generated by the elements a = (xy)2 and b = y.

> H<a,b> := sub<F | (x*y)^2, y >;

> Index(F,H);

1

At the moment, no defining relations of H ∼= F on the generators a and b are known.

> H;

Finitely presented group H on 2 generators
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Index in group F is 1

Generators as words in group F

a = (x * y)^2

b = y

We apply the function Rewrite to H as a subgroup of F in order to compute defining relations
on the generators a and b.

> Rewrite(F, ~H);

> H;

Finitely presented group H on 2 generators

Index in group F is 1

Generators as words in group F

a = (x * y)^2

b = y

Relations

a^2 = Id(H)

b^3 = Id(H)

(a * b)^7 = Id(H)

(a * b^-1 * a * b)^4 = Id(H)

(b * a * b^-1 * a * b * a)^4 = Id(H)

The last relation turns out to be redundant; a and b are standard generators for L2(7).

> Order(DeleteRelation(H,5)) eq Order(H);

true

70.7 Subgroups of Finite Index

The functions in this section are concerned with the construction of subgroups of finite
index. We first describe a method for computing all subgroups whose index does not
exceed some (modest) integer bound. The next family of functions are concerned with
constructing new subgroups of finite index from one or more known ones.

70.7.1 Low Index Subgroups

LowIndexSubgroups(G, R : parameters)

Given a finitely presented group G (possibly the free group), and an expression R
defining a positive integer range (see below), determine the conjugacy classes of
subgroups of G whose indices lie in the range specified by R. The subgroups are
generated by systematically building all coset tables consistent with the defining
relations for G and which satisfy the range condition R. The argument R is one of
the following:
(a)An integer n representing the range [1, n];
(b)A tuple < a, b > representing the range [a, b];
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The generation of subgroups can be controlled by a set of parameters described
below. The returned sequence contains the subgroups found and is sorted in order
of increasing index in G.

Example H70E50

(Peter Lorimer) The two graphs known as Tutte’s 8-cage and the Conder graph may be constructed
as the Cayley graphs of two conjugacy classes of subgroups having index 10 in the finitely presented
group

< q, r, s, h, a | h3 = a2 = p2 = 1, ph = p, pa = q, qh = r, ra = s,

hs = h−1, rh = pqr, sr = pqrs, pq = qp, pr = rp, ps = sp, qr = rq, qs = sq > .

We use the low index function to construct these subgroups.

> G<p, q, r, s, h, a> := Group<p, q, r, s, h, a |

> h^3 = a^2 = p^2 = 1, p^h = p, p^a = q,

> q^h = r, r^a = s, h^s = h^-1, r^h = p * q * r,

> s * r = p * q * r * s, p * q = q * p,

> p * r = r * p, p * s = s * p, q * r = r * q,

> q * s = s * q>;

> LowIndexSubgroups(G, <10, 10>);

[

Finitely presented group on 6 generators

Index in group G is 10 = 2 * 5

Generators as words in group G

$.1 = p

$.2 = s

$.3 = h

$.4 = q^-2

$.5 = a * h^-1 * a * r^-1

$.6 = a * h * a * h^-1 * a * q^-1,

Finitely presented group on 6 generators

Index in group G is 10 = 2 * 5

Generators as words in group G

$.1 = p

$.2 = s

$.3 = h

$.4 = q^-2

$.5 = a * h^-1 * a * r^-1

$.6 = a * h * a * h^-1 * a

]
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Example H70E51

A fairly surprising application for the low index subgroup algorithm is the enumeration of the
conjugacy classes of a finite fp-group. In this example, we consider the group

G ' PGL2(9) = 〈a, b|a2, b3, (ab)8, [a, b]5, [a, (ba)3b−1]2〉.

> G<a,b> := Group< a,b | a^2, b^3, (a*b)^8, (a,b)^5,

> (a,(b*a)^3*b^-1)^2 >;

> Order(G);

720

In an infinite fp-group, finding all classes of subgroups up to an index of 720 by applying the low
index subgroup algorithm, would be extremely hard. In the case of the finite group G, however,
we succeed.

> time sgG := LowIndexSubgroups(G, Order(G));

Time: 31.859

> #sgG;

26

We get a list of 26 representatives of the conjugacy classes of subgroups. For every representative,
its index in G and a set of generating words are known. We just have a look at two of them.

> sgG[10];

Finitely presented group on 2 generators

Index in group G is 60 = 2^2 * 3 * 5

Generators as words in group G

$.1 = b

$.2 = a * b * a * b * a * b^-1 * a * b * a * b * a * b^-1 * a

* b^-1 * a

> sgG[21];

Finitely presented group on 1 generator

Index in group G is 180 = 2^2 * 3^2 * 5

Generators as words in group G

$.1 = (b * a)^2

The function LowIndexSubgroups constructs all conjugacy classes of subgroups of
G satisfying the following two conditions:
(i) The index of each subgroup is in the range defined by R;
(ii)If the parameter Subgroup defines a subgroup H, then at least one subgroup in

each conjugacy class contains the subgroup H.
The subgroups are returned as a sequence of subgroups G, unless otherwise specified
by the parameter GeneratingSets (see below). The sequence is sorted by increasing
index of the subgroups in G.
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The subgroups are constructed using an algorithm due to Sims [Sim94, sect.
5.6]. This algorithm constructs the coset tables by using a backtrack algorithm. At
a given position in the coset table, coset definitions are made systematically. Once
a new definition has been made, the group relations are traced in an attempt to
deduce further entries or to infer that this partial table will not extend to a table
corresponding to a new class of subgroups. When either it cannot define a new
entry, or when a complete table has been constructed, the algorithm backtracks
to try the next possibility (this may introduce a new row, increasing the index).
This algorithm may also be run as a process in such a way that the subgroups are
returned one at a time, thereby allowing the user to analyze each subgroup as soon
as it is found.

ColumnMajor BoolElt Default : false

If ColumnMajor is set false (default), then the location for a new definition in the
coset table is determined by searching the table in row major order for undefined
entries. If ColumnMajor is set true, then the position for a new definition is de-
termined by searching the table in column major order. If the presentation for G
contains explicit relators expressing the fact that certain of the generators have large
order, then the presentation should be organized so that these generators appear
first and the column major order should be selected for new coset definition. This
strategy often leads to greatly improved performance.

GeneratingSets BoolElt Default : false

The conjugacy classes of subgroups are returned in the form of a sequence of sets
of words, where the i-th set is a generating set for a representative subgroup from
the i-th conjugacy class of subgroups satisfying the given conditions. This is a
much more compact representation than returning the subgroups as a sequence of
actual subgroups of G and should be used when a very large number of subgroups
is expected, as there may be insufficient space to store each of them as a subgroup.

Limit RngIntElt Default : ∞
Terminate after finding n conjugacy classes of subgroups satisfying the designated
conditions.

Long [ RngIntElt ] Default : []

This option enables the user to designate certain of the defining relators for G as
long relators. The relators of G are numbered from 1 to r, in the order they appear
in the quo- or Group-constructors. The value L of Long is a subset of the integer
set {1, . . . , r}. Magma interprets the relators whose numbers appear in L as long
relators. A relator designated as long is not used during the construction of a coset
table. Rather, it is applied once a complete table has been found. There is some
evidence to suggest that better performance is achieved in those groups having one
or more very long relators by deferring application of these relators until such time
as a complete coset table has been obtained.

Print RngIntElt Default : 0
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A description of each class of subgroups may be printed immediately after it is
constructed. The value n assigned to the Print parameter specifies just what infor-
mation is to be printed, according to the following rules:

n = 0 : No printing (default).

n = 1 : For each class, print a heading and a set of generators for the class repre-
sentative.

n = 2 : The information printed for n = 1, together with the permutation repre-
sentation of G on the right cosets of the class representative.

n = 3 : The information printed for n = 2, together with generators for the normal-
izer N of the class representative, and a system of right coset representatives
for N in G.

Subgroup GrpFP Default : sub< G | >

By specifying a value H for Subgroup, only subgroups containing H will be con-
structed.

TimeLimit RngIntElt Default : 0 (no limit)

A time limit in seconds. A value of 0 (default) means no limit.

LowIndexProcess(G, R : parameters)

ColumnMajor BoolElt Default : false

GeneratingSets BoolElt Default : false

Long [ RngIntElt ] Default : []

Print RngIntElt Default : 0

Subgroup GrpFP Default : sub< G | >

TimeLimit RngIntElt Default : 0 (no limit)

Create a low index subgroups process. This process may be used to create the
conjugacy classes of proper subgroups one at time, with control being handed back
to the Magma language processor each time a new class of subgroups is found. This
function returns a process which is used by the function NextSubgroup to actually
produce the subgroups.

The arguments and parameters have the same interpretation as for the function
LowIndexSubgroups, except that Limit is not available (since the same effect can
be achieved by limiting the number of calls to NextSubgroup).

Setting a time limit for a process P limits the total amount of time spent in calls
to NextSubgroup. If the time limit is exceeded in a call to NextSubgroup, this call is
aborted and P becomes invalid. Further attempts to access P will cause a runtime
error. The function IsValid can be used to check whether a process is valid in order
to avoid runtime errors in loops or user written functions.
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NextSubgroup(∼P)
NextSubgroup(∼P, ∼G)

Given a low index subgroups process P , construct the next conjugacy class of proper
subgroups. The process P must have been previously created using the function
LowIndexProcess and must be valid. Calling NextSubgroup for an empty process
has no effect.

ExtractGroup(P)

Extract a representative subgroup for the conjugacy class currently defined by the
low index process P . The subgroup extracted will be the one found by the previous
invocation of NextSubgroup, or the first subgroup if NextSubgroup has never been
invoked on this process. Note that ExtractGroup will not search for a new subgroup.
If P is empty or invalid, a runtime error will result.

ExtractGenerators(P)

Extract a generating set for the representative subgroup of the conjugacy class
currently defined by the low index process P . The subgroup extracted will be
the one found by the previous invocation of NextSubgroup, or the first sub-
group if NextSubgroup has never been invoked on this process. Note that
ExtractGenerators will not search for a new subgroup. If P is empty or invalid, a
runtime error will result.

IsEmpty(P)

Return true if the low index process P has already found all conjugacy classes of
subgroups. If IsEmpty is called immediately following the creation of the low index
process, then it will return the value false if there are no subgroups satisfying the
specified conditions or advance P to the first such subgroup otherwise.

IsValid(P)

Return true if the low index process P is valid, that is, no limit has been exceeded.
If IsValid is called immediately following the creation of the low index process, then
it will return the value false if no subgroups satisfying the specified conditions can
be found within the specified time or advance P to the first such subgroup otherwise.

Example H70E52

We determine all conjugacy classes of subgroups having index at most 15 in the triangle group

< a, b | a2, b3, (ab)7 > .

> G<a, b> := Group< a, b | a^2, b^3, (a*b)^7 >;

> L := LowIndexSubgroups(G, 15: Print := 1);

Subgroup class 1 Index 7 Length 7 Subgroup generators :-

{ a, b * a * b^-1, b^-1 * a * b * a * b^-1 * a * b }
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Subgroup class 2 Index 7 Length 7 Subgroup generators :-

{ a, b^-1 * a * b^-1 * a * b * a * b, b * a * b^-1 }

Subgroup class 3 Index 15 Length 15 Subgroup generators :-

{ a, b^-1 * a * b * a * b^-1 * a * b * a * b^-1 * a * b, b * a * b^-1 }

Subgroup class 4 Index 15 Length 15 Subgroup generators :-

{ a, b * a * b^-1, b^-1 * a * b^-1 * a * b * a * b^-1 * a * b * a * b }

Subgroup class 5 Index 14 Length 14 Subgroup generators :-

{ a, b^-1 * a * b * a * b^-1 * a * b * a * b * a * b^-1 * a * b, b * a * b^-1 }

Subgroup class 6 Index 14 Length 7 Subgroup generators :-

{ a, b^-1 * a * b * a * b^-1 * a * b * a * b^-1 * a * b * a * b^-1 * a * b, b *

a * b * a * b^-1 }

Subgroup class 7 Index 14 Length 14 Subgroup generators :-

{ a, b^-1 * a * b * a * b^-1 * a * b^-1 * a * b * a * b * a * b^-1 * a * b, b *

a * b * a * b^-1 }

Subgroup class 8 Index 14 Length 7 Subgroup generators :-

{ a, b * a * b * a * b^-1 * a * b^-1 * a * b * a * b * a * b^-1 * a * b^-1, b^-1

* a * b * a * b }

Subgroup class 9 Index 15 Length 15 Subgroup generators :-

{ a, b * a * b * a * b^-1 * a * b^-1, b^-1 * a * b^-1 * a * b * a * b }

Subgroup class 10 Index 9 Length 9 Subgroup generators :-

{ a, b * a * b * a * b * a * b^-1 }

Subgroup class 11 Index 14 Length 7 Subgroup generators :-

{ a, b * a * b * a * b * a * b^-1 * a * b, b * a * b^-1 * a * b * a * b^-1 }

Subgroup class 12 Index 14 Length 7 Subgroup generators :-

{ a, b * a * b * a * b^-1 * a * b * a * b, b * a * b^-1 * a * b * a * b^-1 }

Subgroup class 13 Index 14 Length 7 Subgroup generators :-

{ a, b^-1 * a * b * a * b^-1 * a * b, b * a * b * a * b * a * b^-1 * a * b^-1 }

Subgroup class 14 Index 14 Length 7 Subgroup generators :-

{ a, b * a * b * a * b^-1 * a * b * a * b, b^-1 * a * b * a * b^-1 * a * b }

Subgroup class 15 Index 14 Length 14 Subgroup generators :-

{ a, b^-1 * a * b * a * b * a * b^-1 * a * b, b * a * b * a * b * a * b^-1 * a *

b^-1 }

Subgroup class 16 Index 8 Length 8 Subgroup generators :-

{ b, a * b * a * b * a * b^-1 * a }



Ch. 70 FINITELY PRESENTED GROUPS 2159

Example H70E53

In this example we illustrate the use of the low index subgroup process by using it to determine
whether the simple group PSL(2, 8) is a homomorphic image of the triangle group

< x, y | x2, y3, (xy)7 > .

> F<x, y> := FreeGroup(2);

> G<x, y> := quo< F | x^2, y^3, (x*y)^7 >;

> LP := LowIndexProcess(G, 30);

> i := 0;

> while i le 100 and not IsEmpty(LP) do

> H := ExtractGroup(LP);

> NextSubgroup(~LP);

> P := CosetImage(G, H);

> if Order(P) eq 504 and IsSimple(P) then

> Ψprint "The group G has L(2, 8) as a homomorphic image.";

> print "It is afforded by the subgroup:-", H;

> Ψbreak;

> end if;

> i +:= 1;

> end while;

The group G has L(2, 8) as a homomorphic image.

It is afforded by the subgroup:-

Finitely presented group H on 4 generators

Index in group G is 28 = 2^2 * 7

Generators as words in group G

H.1 = x

H.2 = y * x * y^-1

H.3 = y^-1 * x * y * x * y^-1 * x * y * x * y^-1 * x * y * x * y^-1 *

x * y * x * y

H.4 = y^-1 * x * y * x * y^-1 * x * y^-1 * x * y * x * y^-1 * x * y *

x * y * x * y^-1 * x * y

Example H70E54

This example shows how the low index subgroup machinery may be used as part of a function
trying to prove that a group is infinite:

> function MyIsInfinite(G)

>

> // ...

>

> // Low index subgroup approach: check whether an obviously

> // infinite subgroup can be found in reasonable time.

> P := LowIndexProcess(G, 30 : TimeLimit := 5);

> while IsValid(P) and not IsEmpty(P) do

> H := ExtractGroup(P);
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> NextSubgroup(~P);

> if 0 in AbelianQuotientInvariants(H) then

> print "The group G has subgroup:-", H;

> print "whose abelian quotient is infinite";

> print "Hence G is infinite.";

> return true;

> end if;

> end while;

> print "Low index approach fails; trying other methods...";

>

> // ...

>

> end function;

We try the code fragment on the group

< x, z | z3xz3x−1, z5x2z2x2 > .

> G<x, z> := Group<x,z | z^3*x*z^3*x^-1, z^5*x^2*z^2*x^2 >;

> MyIsInfinite(G);

The group G has subgroup:-

Finitely presented group H on 4 generators

Index in group G is 4 = 2^2

Generators as words in group G

H.1 = x

H.2 = z * x * z

H.3 = z^3

H.4 = z * x^-1 * z * x * z^-1

whose abelian quotient has structure [ 2, 6, 0 ]

Hence G is infinite.

true

LowIndexNormalSubgroups(G, n: parameters)

The normal subgroups of finitely presented group G up to index n, n ≤ 100 000.
The subgroups are returned as a sequence of records (ordered by subgroup index)
where the ith record contains fields
Group: A presentation of the ith normal subgroup.
Index: The index of the ith normal subgroup in G.
Supegroups: The set of positions in the sequence of the groups which are super-
groups of the ith group.

PrintLevel RingIntElt Default : 0
This parameter may be set to 0, 1 or 2. At 0, the function prints no diagnostic
output. At level 1, it outputs details of each normal subgroup being tested for
further normal subgroups. Level 2 gives details of each test being performed on
each normal subgroup.
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Simplify MonStgElt Default : “No”

The possible values are "No", "Yes" and "LengthLimit". This determines
the parameter values passed to the Rewrite(G,H) function, when this func-
tion is used. The value "No" sets parameter Simplify:=false. The value
"Yes" sets parameter Simplify:=true. The value "LengthLimit" sets parame-
ter LengthLimit:=Index(G,H).

70.7.2 Subgroup Constructions

Most operations described in this subsection require a closed coset table for at least one
subgroup of an fp-group. If a closed coset table is needed and has not been computed,
a coset enumeration will be invoked. If the coset enumeration does not produce a closed
coset table, a runtime error is reported.

Experienced users can control the behaviour of such indirectly invoked coset enumer-
ation with a set of global parameters. These global parameters can be changed using the
function SetGlobalTCParameters. For a detailed description of the available parameters
and their meanings, we refer to Chapter 71.

H ^ u

Conjugate(H, u)

Given an fp-group H and a word u in an fp-group K, such that H and K are
subgroups of some common fp-group G and words in terms of the generators of
G are known for the generators of both H and K, construct the subgroup of G
obtained by conjugating H by u.

H meet K

Given subgroups H and K, both of finite index in some fp-group G, return the
subgroup which is the intersection of H and K.

This function requires closed coset tables for both, H and K in G.

Core(G, H)

Given a subgroup H of finite index in the fp-group G, construct the core of H in G.
This function requires a closed coset table for H in G.

GeneratingWords(G, H)

Given a subgroup H of the fp-group G, this function returns a set of words in the
generators of G, generating H as a subgroup of G (assuming such words are known
or can be constructed). Note that the returned generating set does not necessarily
correspond to the internal generators of H. In particular, generating words obtained
using the function GeneratingWords cannot be used to coerce elements from H to
G.
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MaximalOvergroup(G, H)

Given a subgroupH of finite index in the fp-groupG, construct a maximal overgroup
of H in G. A maximal overgroup of H is a maximal subgroup of G that contains
H. If H is already maximal, the group G is returned.

This function requires a closed coset table for H in G.

MinimalOvergroup(G, H)

Given a subgroup H of finite index in the fp-group G, construct a minimal overgroup
of H in G. A minimal overgroup of a subgroup H is a subgroup K of G such that
K contains H as a maximal subgroup. If H is already maximal in G, the group G
is returned.

This function requires a closed coset table for H in G.

H ^ G

NormalClosure(G, H)

Given a subgroup H of finite index in the fp-group G, construct the normal closure
of H in G.

This function requires a closed coset table for H in G.

Normaliser(G, H)

Normalizer(G, H)

Given a subgroup H of finite index in the fp-group G, construct the normaliser of
H in G. For a sample application of this function, see Example H70E47.

This function requires a closed coset table for H in G.

SchreierGenerators(G, H : parameters)

Simplify BoolElt Default : true

Given a subgroup H of finite index in the fp-group G, return the Schreier generators
for H as a set of words in G.

If the parameter Simplify is set to true (default), a heuristic method of elim-
inating redundant Schreier generators is applied. To switch this feature off, set
Simplify to false.

This function requires a closed coset table for H in G.

SchreierSystem(G, H)

Transversal(G, H)

Given a subgroup H of finite index in the fp-group G, construct a (right) Schreier
system of coset representatives for H in G. The function returns

(a) the Schreier system as a set of words in G;
(b) the corresponding Schreier coset function.
This function requires a closed coset table for H in G.
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Transversal(G, H, K)

Given subgroups H and K, both of finite index in the fp-group G, return an indexed
set of words which comprise a set of representatives for the double cosets HuK of
H and K in G, as well as a map from G to the representatives. It should be noted
that this function is evaluated by first constructing the right cosets of H in G and
then computing the orbits of the cosets under the action of the generators of the
subgroup K.

This function requires a closed coset table for H in G.

Example H70E55

We illustrate some of the subgroup constructions by using them to construct subgroups of small
index in the two-dimensional space group p4g which has the presentation

< r, s | r2, s4, (r, s)2 > .

> p4g<r, s> := Group< r, s | r^2 = s^4 = (r*s^-1*r*s)^2 = 1 >;

> p4g;

Finitely presented group p4g on 2 generators

Relations

r^2 = Id(p4g)

s^4 = Id(p4g)

(r * s^-1 * r * s)^2 = Id(p4g)

We define two subgroups of p4g and compute their indices in p4g.

> h := sub< p4g | (s^-1*r)^4, s*r >;

> k := sub< p4g | (s^-1*r)^2, (s*r)^2 >;

> Index(p4g, h);

8

> Index(p4g, k);

8

We construct the normal closure of h in p4g.

> n := NormalClosure(p4g, h);

> n;

Finitely presented group n on 6 generators

Index in group p4g is 2

Generators as words in group p4g

n.1 = (s^-1 * r)^4

n.2 = s * r

n.3 = r * s

n.4 = r^-1 * s * r^2

n.5 = s^2 * r * s^-1

n.6 = r * s

Next, we construct a subgroup of p4g containing h as maximal subgroup. . .

> m := MinimalOvergroup(p4g, h);
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> m;

Finitely presented group m on 3 generators

Index in group p4g is 4 = 2^2

Generators as words in group p4g

m.1 = (s^-1 * r)^4

m.2 = s * r

m.3 = (r * s)^2

. . . and a maximal subgroup of p4g containing k.

> n := MaximalOvergroup(p4g, k);

> n;

Finitely presented group n on 4 generators

Index in group p4g is 2

Generators as words in group p4g

n.1 = (s^-1 * r)^2

n.2 = (s * r)^2

n.3 = r

n.4 = s^2

Finally, we construct a transversal in p4g for the normaliser of h in p4g. . .

> T := Transversal(p4g, Normaliser(p4g, h));

> T;

{@ Id(p4g), r, s^-1, r * s @}

. . . compute the intersection of h and the conjugate of h by r. . .

> l := h meet h^r;

> l;

Finitely presented group l

Index in group p4g is 32 = 2^5

Subgroup of group p4g defined by coset table

. . . and construct the core of h in p4g.

> c := Core(p4g, h);

> c;

Finitely presented group c

Index in group p4g is 32 = 2^5

Subgroup of group p4g defined by coset table

Note, that the two subgroups l and c constructed last are defined as finite index subgroups of p4g
by a coset table and that there are no generators known for them. Generators can be obtained
e.g. by using the function GeneratingWords. We show this for the subgroup l.

> GeneratingWords(p4g, l);

{ (s * r)^4, (s^-1 * r)^4 }

Once computed, these generators are memorised. Compare the result of printing l to the output
obtained above.

> l;
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Finitely presented group l on 2 generators

Index in group p4g is 32 = 2^5

Generators as words in group p4g

l.1 = (s * r)^4

l.2 = (s^-1 * r)^4

Example H70E56

Consider the group G given by the presentation 〈x, y |x2, y3, (xy)7〉.
> G<x,y> := Group< x,y | x^2, y^3, (x*y)^7 >;

We construct the subgroups of index less than or equal to 7 using the low index algorithm.

> L := LowIndexSubgroups(G, 7);

> L;

[

Finitely presented group on 2 generators

Index in group G is 1

Generators as words in group G

$.1 = x

$.2 = y,

Finitely presented group on 3 generators

Index in group G is 7

Generators as words in group G

$.1 = x

$.2 = y * x * y^-1

$.3 = y^-1 * x * y^-1 * x * y * x * y,

Finitely presented group on 3 generators

Index in group G is 7

Generators as words in group G

$.1 = x

$.2 = y * x * y^-1

$.3 = y^-1 * x * y * x * y^-1 * x * y

]

We define a subgroup as the core of one of the subgroups of index 7. The function Core returns
a subgroup of G defined by a coset table.

> H := Core(G, L[2]);

> H;

Finitely presented group H

Index in group G is 168 = 2^3 * 3 * 7

Subgroup of group G defined by coset table

A set of generators for H can be obtained e.g. with the function SchreierGenerators.

> sgH := SchreierGenerators(G, H);

> #sgH;
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6

By default, SchreierGenerators returns a reduced generating set. The unreduced set of Schreier
generators can be obtained by setting the value of the parameter Simplify to false.

> sgHu := SchreierGenerators(G, H : Simplify := false);

> #sgHu;

85

70.7.3 Properties of Subgroups
The operations described in this subsection all require a closed coset table for at least one
subgroup of an fp-group. If a closed coset table is needed and has not been computed,
a coset enumeration will be invoked. If the coset enumeration does not produce a closed
coset table, a runtime error is reported.

Experienced users can control the behaviour of such indirectly invoked coset enumer-
ation with a set of global parameters. These global parameters can be changed using the
function SetGlobalTCParameters. For a detailed description of the available parameters
and their meanings, we refer to Chapter 71.

u in H

Given an fp-group H and a word u in an fp-group K, such that H and K are
subgroups of some common fp-group G, H is of finite index in G, and words for the
generators of K in terms of the generators of G are known, return trueif u is an
element of H and false otherwise.

This function requires a closed coset table for H in G.

u notin H

Given an fp-group H and a word u in an fp-group K, such that H and K are
subgroups of some common fp-group G, H is of finite index in G, and words for the
generators of K in terms of the generators of G are known, return trueif u is not
an element of H and false otherwise.

This function requires a closed coset table for H in G.

H eq K

Given subgroups H and K, both of finite index in the fp-group G, return trueif H
and K are equal and false otherwise.

This function may require closed coset tables for both, H and K in G.

H ne K

Given subgroups H and K, both of finite index in the fp-group G, return trueif H
and K are not equal and false otherwise.

This function may require closed coset tables for both, H and K in G.
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H subset K

Given subgroups H and K, both of finite index in the fp-group G, return trueif H
is contained in K and false otherwise.

This function requires a closed coset table for K in G.

H notsubset K

Given subgroups H and K, both of finite index in the fp-group G, return trueif H
is not contained in K and false otherwise.

This function requires a closed coset table for K in G.

IsConjugate(G, H, K)

Given subgroups H and K, both of finite index in the fp-group G, return trueif H
and K are conjugate subgroups of G and false otherwise. If H and K are conjugate
in G, a conjugating element is returned as second return value.

This function requires a closed coset table for both, H and K in G.

IsNormal(G, H)

Given a subgroup H of finite index in the fp-group G, return trueif H is a normal
subgroup of G and false otherwise.

This function requires a closed coset table for H in G.

IsMaximal(G, H)

Given a subgroup H of finite index in the fp-group G, return trueif H is a maximal
subgroup of G and false otherwise.

This function requires a closed coset table for H in G.

IsSelfNormalizing(G, H)

Given a subgroup H of finite index in the fp-group G, return trueif H is a self-
normalizing subgroup of G and false otherwise. For a sample application of this
function, see Example H70E47.

This function requires a closed coset table for H in G.

Example H70E57

We illustrate some of the subgroup predicates by applying them to some subgroups of the two-
dimensional space group p4g =< r, s|r2, s4, (r, s)2 > from Example H70E55.

> p4g<r, s> := Group< r, s | r^2 = s^4 = (r*s^-1*r*s)^2 = 1 >;

> h := sub< p4g | (s^-1*r)^4, s*r >;

> k := sub< p4g | (s^-1*r)^2, (s*r)^2 >;

h and k have the same index in p4g. . .

> Index(p4g, h);

8

> Index(p4g, k);



2168 FINITELY-PRESENTED GROUPS Part XI

8

. . . but they are not equal.

> h eq k;

false

We check for normality of h and k in p4g.

> IsNormal(p4g, h);

false

> IsNormal(p4g, k);

true

We construct the normal closure of h in p4g.

> n := NormalClosure(p4g, h);

We see that it is maximal. . .

> IsMaximal(p4g, n);

true

. . . and that it contains k.

> k subset n;

true

We define another subgroup of p4g.

> l := sub< p4g | (s*r)^4, s^-1*r >;

In fact, it is conjugate to h.

> IsConjugate(p4g, h, l);

true r^-1

I.e. l = hr−1
. The intersection of h and hr−1

already yields the core of h in p4g.

> h meet l eq Core(p4g, h);

true

Example H70E58

The constructions of the previous section together with the Boolean function IsMaximal may be
used to locate large maximal subgroups in a finite group. Consider the Hall-Janko group J2, which
may be defined by the presentation

< a, b, c | a3, b3, c3, abab−1a−1b−1, (ca)5, (cb)5,

(cb−1cb)2, a−1baca−1bac−1a−1b−1ac−1,

aba−1caba−1c−1ab−1a−1c−1 > .
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We examine subgroups generated by pairs of randomly chosen short words. Whenever we obtain
a proper subgroup, if it is not already maximal we replace it by a maximal subgroup that contains
it.

> J2<a, b, c> := Group<a, b, c | a^3, b^3, c^3, a*b*a*b^-1*a^-1*b^-1, (c*a)^5,

> (c*b)^5, (c*b^-1*c*b)^2,

> a^-1*b*a*c*a^-1*b*a*c^-1*a^-1*b^-1*a*c^-1,

> a*b*a^-1*c*a*b*a^-1*c^-1*a*b^-1*a^-1*c^-1>;

>

> Seen := { 0, 1};
> Found := { };
> Sgs := [ ];

> for i := 1 to 30 do

> u := Random(J2, 1, 1);

> v := Random(J2, 3, 5);

> H := sub< J2 | u, v >;

> Indx := Index(J2, H);

> if Indx notin Seen then

> Include(~Seen, Indx);

> if not IsMaximal(J2, H) then

> H := MaximalOvergroup(J2, H);

> end if;

> if Indx notin Found then

> Include(~Sgs, H);

> Include(~Seen, Indx);

> Include(~Found, Indx);

> end if;

> end if;

> end for;

> Sgs;

[

Finitely presented group on 3 generators

Index in group J2 is 315 = 3^2 * 5 * 7

Generators as words in group J2

$.1 = b^-1

$.2 = a^-2 * c * a^-1

$.3 = c,

Finitely presented group on 3 generators

Index in group J2 is 1008 = 2^4 * 3^2 * 7

Generators as words in group J2

$.1 = b^-1

$.2 = c^-1 * a^-1 * c^-1 * b

$.3 = a * c * b * c^-1 * a^-1 * c * b * c^-1,

Finitely presented group on 3 generators

Index in group J2 is 100 = 2^2 * 5^2

Generators as words in group J2
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$.1 = c

$.2 = (b * a^-1)^2

$.3 = a * b^-1

]

Thus after taking 30 2-generator random subgroups, we have obtained three maximal subgroups,
including the two largest maximal subgroups.

70.8 Coset Spaces and Tables

Let G =< X|R > be a finitely presented group. Suppose that H is a subgroup of G having
finite index m. Let V = {c1(= H), c2, . . . , cm} denote the set of distinct right cosets of H
in G. This set admits a natural G-action

f : V ×G→ V

where
f :< ci, x >= ck ⇐⇒ ci ∗ x = ck,

for ci ∈ V and x ∈ G. The set V together with this action is a G-set called a right coset
space for H in G. The action may also be represented using a coset table T .

If certain of the products ci ∗ x are unknown, the corresponding images under f are
undefined. In this case, T is not closed, and V is called an incomplete coset space for H
in G.

70.8.1 Coset Tables
A coset table is represented in Magma as a mapping. Given a finitely-presented group G
and a subgroup H, the corresponding (right) coset table is a mapping f : {1, . . . , r}×G→
{0, . . . , r}, where r is the index of H in G. f(i, x) is the coset to which coset i is mapped
under the action of x ∈ G. The value 0 is only included in the codomain if the coset table
is not closed, and it denotes that the coset is not known.

CosetTable(G, H: parameters)

The (right) coset table for G over subgroup H, constructed by means of the Todd-
Coxeter procedure. If the coset table does not close then the codomain will include
the value 0.

Experienced users can control the Todd-Coxeter procedure invoked by this func-
tion with a wide range of parameters. This function accepts the same parameters
as the function CosetEnumerationProcess described in Chapter 71.
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CosetTableToRepresentation(G, T)

Given a coset table T for a subgroup H of G, construct the permutation represen-
tation of G given by its action on the cosets of H, using the columns of T . The
function returns:

(a)The homomorphism f : G→ P ;

(b)The permutation group image P ;

(c) The kernel K of the action (a subgroup of G).

CosetTableToPermutationGroup(G, T)

Given a coset table T for a subgroup H of G, construct the permutation group
image of G given by its action on the cosets of H, using the columns of T . This is
the second return value of CosetTableToRepresentation(G, T).

Example H70E59

Consider the infinite dihedral group.

> G<a,b> := DihedralGroup(GrpFP, 0);

> G;

Finitely presented group G on 2 generators

Relations

b^2 = Id(G)

(a * b)^2 = Id(G)

We define a subgroup S of G and compute the coset table map for S in G.

> S := sub<G|a*b, a^10>;

> ct := CosetTable(G, S);

> ct;

Mapping from: Cartesian Product<{ 1 .. 10 }, GrpFP: G>

to { 1 .. 10 }

$1 $2 -$1

1. 2 2 3

2. 4 1 1

3. 1 4 5

4. 6 3 2

5. 3 6 7

6. 8 5 4

7. 5 8 9

8. 10 7 6

9. 7 10 10

10. 9 9 8

When printing the coset table, the action of the generators and of the non-trivial inverses of
generators on the enumerated transversal is shown in table form.
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Using the coset table, we now construct the permutation representation of G on the cosets of S in
G. We assign the representation (a homomorphism), the image (a permutation group of degree
[G : S] = 10) and the kernel of the permutation representation (a subgroup of G).

> fP, P, K := CosetTableToRepresentation(G, ct);

> fP;

Homomorphism of GrpFP: G into GrpPerm: P, Degree 10,

Order 2^2 * 5 induced by

a |--> (1, 2, 4, 6, 8, 10, 9, 7, 5, 3)

b |--> (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)

Note that the images of a and b correspond to the first two columns of the printed coset table
above.

> P;

Permutation group P acting on a set of cardinality 10

Order = 20 = 2^2 * 5

(1, 2, 4, 6, 8, 10, 9, 7, 5, 3)

(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)

> K;

Finitely presented group K

Index in group G is 20 = 2^2 * 5

Subgroup of group G defined by coset table

Now, we define a subgroup of infinite index in G and compute a coset table for it.

> H := sub<G|b>;

> ct := CosetTable(G, H);

Of course, the coset table cannot be complete; note that 0 is in its codomain, indicating unknown
images of cosets.

> ct;

Mapping from: Cartesian Product<{ 1 .. 1333331 }, GrpFP: G>

to { 0 .. 1333331 }

70.8.2 Coset Spaces: Construction
The indexed (right) coset space V of the subgroup H of the group G is a G-set consisting
of the set of integers {1, ...,m}, where i represents the right coset ci of H in G. The action
of G on this G-set is that induced by the natural G-action

f : V ×G→ V

where
f :< ci, x >= ck ⇐⇒ ci ∗ x = ck,

for ci ∈ V and x ∈ G. If certain of the products ci ∗ x are unknown, the corresponding
images under f are undefined, and V is called an incomplete coset space for H in G.
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CosetSpace(G, H: parameters)

This function attempts to construct a coset space for the subgroup H in the group
G by means of the Todd-Coxeter procedure. If the enumeration fails to complete,
the function returns an incomplete coset space. The coset space is returned as an
indexed right coset space. For a sample application of this function see Example
H70E61.

Experienced users can control the Todd-Coxeter procedure invoked by this func-
tion with a wide range of parameters. This function accepts the same parameters
as the function CosetEnumerationProcess described in Chapter 71.

RightCosetSpace(G, H: parameters)

LeftCosetSpace(G, H: parameters)

The explicit right coset space of the subgroup H of the group G is a G-set containing
the set of right cosets of H in G. The elements of this G-set are the pairs < H, x >,
where x runs through a transversal for H in G. Similarly, the explicit left coset
space of H is a G-set containing the set of left cosets of H in G, represented as the
pairs < x,H >. These functions use the Todd-Coxeter procedure to construct the
explicit right (left) coset space of the subgroup H of the group G. For a sample
application see Example H70E61.

Experienced users can control the Todd-Coxeter procedure invoked by these func-
tions with a wide range of parameters. Both functions accept the same parameters
as the function CosetEnumerationProcess described in Chapter 71.

70.8.3 Coset Spaces: Elementary Operations

H * g

Right coset of the subgroup H of the group G, where g is an element of G (as an
element of the right coset of H).

C * g

Coset to which the right coset C of the group G is mapped by the (right) action of
g, where g is an element of G.

C * D

and D.
Given two right cosets of the same normal subgroup H of the group G, return the
right coset that is the product of C and D.

g in C

Return true if element g of group G lies in the coset C.

g notin C

Return true if element g of group G does not lie in the coset C.
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C1 eq C2

Returns true if the coset C1 is equal to the coset C2.

C1 ne C2

Returns true if the coset C1 is not equal to the coset C2.

70.8.4 Accessing Information

#V

The cardinality of the coset space V .

Action(V)

The mapping V ×G→ V giving the action of G on the coset space V . This mapping
is a coset table.

<i, w> @ T

T(i, w)

The image of coset i as defined in the coset table T , under the action of word w.

ExplicitCoset(V, i)

The element of the explicit coset space that corresponds to indexed coset i.

IndexedCoset(V, w)

The element of the indexed coset space V to which the element w of G corresponds.

IndexedCoset(V, C)

The element of the indexed coset space V to which the explicit coset C of G corre-
sponds.

Group(V)

The group G for which V is a coset space.

Subgroup(V)

The subgroup H of G such that V is a coset space for G over H.

IsComplete(V)

Returns true if the coset space V is complete.
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ExcludedConjugates(V)

ExcludedConjugates(T)

Given a partial or complete coset space V for the group G over the subgroup H,
or a coset table T corresponding to this coset space, this function returns the set
of words E = {g−1

i hjgi | gi a generator of G, hj a generator of H, and, modulo
V , g−1

i hjgi does not lie in H}. If E is empty, then H is a normal subgroup of G,
while if E is non-empty, the addition of the elements of E to the generators of H
will usually be a larger subgroup of the normal closure of H. This function may be
used with incomplete coset spaces for G over H; it may then happen that some of
the elements of E actually lie in H but there is insufficient information for this to
be detected. This function is normally used in conjunction with the Todd-Coxeter
algorithm when seeking some subgroup having index sufficiently small so that the
Todd-Coxeter procedure completes. The conjugates are returned as a set of words.

Transversal(G, H)

RightTransversal(G, H)

Given a finitely presented group G and a subgroup H of G, this function returns
(a)A set of elements T of G forming a right transversal for G over H; and
(b)The corresponding transversal mapping φ : G→ T . If T = [t1, . . . , tr] and g ∈ G,

φ is defined by φ(g) = ti, where g ∈ H ∗ ti.
These functions may require the computation of a coset table. Experienced

users can control the behaviour of a possibly invoked coset enumeration with a set
of global parameters. These global parameters can be changed using the function
SetGlobalTCParameters. For a detailed description of the available parameters
and their meanings, we refer to Chapter 71.

Example H70E60

Consider the infinite dihedral group.

> G<a,b> := DihedralGroup(GrpFP, 0);

We define a subgroup H of index 10 in G. . .

> H := sub< G | a*b, a^10 >;

> Index(G, H);

10

. . . and construct a right transversal for H in G and the associate transversal map.

> RT, transmap := Transversal(G, H);

> RT;

{@ Id(G), a, a^-1, a^2, a^-2, a^3, a^-3, a^4, a^-4, a^5 @}

> transmap;

Mapping from: GrpFP: G to SetIndx: RT

From this a left transversal is easily obtained:

> LT := {@ x^-1 : x in RT @};
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> LT;

{@ Id(G), a^-1, a, a^-2, a^2, a^-3, a^3, a^-4, a^4, a^-5 @}

We construct the coset table and check whether the enumeration of the cosets is compatible to
the enumeration of the right transversal RT .

> ct := CosetTable(G, H);

> forall(culprit){ i : i in [1..Index(G, H)]

> | ct(1, RT[i]) eq i};

true

It is. Thus, we can very easily define a function RT ×G → RT , describing the action of G on the
set of right cosets of H in G.

> action := func< r, g | RT[ct(Index(RT, r), g)] >;

Note that the definition of the function action relies on the fact that the computed right transver-
sal and its enumeration match the ones internally used for the coset table ct.

> action(Id(G), b);

a

I.e. H ∗ b = H ∗ a.

> action(a^-4, a*b);

a^4

I.e. Ha−4 ∗ (ab) = Ha4.

Example H70E61

Consider the group G =< a, b | a8, b7, (ab)2, (a−1b)3 > and the subgroup H of G, generated by
a2 and a−1b.

> F<x, y> := FreeGroup(2);

> G<a, b> := quo< F | x^8, y^7, (x*y)^2, (x^-1*y)^3 >;

> H := sub< G | a^2,a^-1*b >;

We construct an indexed right coset space V and an explicit right coset space Vr for H in G.

> V := CosetSpace(G, H);

> Vr := RightCosetSpace(G, H);

The coset H always has index 1.

> trivial_coset := ExplicitCoset(Vr, 1);

> trivial_coset;

<GrpFP: H, Id(G)>

> IndexedCoset(V, trivial_coset);

1

We now pick a coset. . .

> coset := ExplicitCoset(Vr, 42);

> coset;
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<GrpFP: H, a^-1 * b^-1 * a^3 * b^-1>

. . . multiply from the right with b. . .

> coset * b;

<GrpFP: H, a^-1 * b^-1 * a^3>

. . . and check where this gets us in the indexed coset space V .

> IndexedCoset(V, coset * b);

23

Example H70E62

We present a function which computes the derived subgroup G′ for the finitely presented group
G. It assumes that the Todd-Coxeter procedure can enumerate the coset space of G′ in G.

> function DerSub(G)

>

> /* Initially define S to contain the commutator of each pair of distinct

> generators of G */

>

> S := { (x,y) : x, y in Generators(G) | (x,y) ne Id(G) };
>

> /* successively extend S until it is closed under conjugation by the

> generators of G */

>

> repeat

> V := CosetSpace(G, sub<G | S>);

> E := ExcludedConjugates(V);

> S := S join E;

> until # E eq 0;

> return sub<G | S>;

> end function;

Example H70E63

Given a subgroup H of the finitely presented group G, for which the Todd-Coxeter procedure does
not complete, add excluded conjugates one at a time to the generators of G until a subgroup K is
reached such that either K is normal in G, or K has sufficiently small index for the Todd-Coxeter
method to complete. The set hgens contains a set of generating words for H.

> function NormClosure(G, hgens)

> xgens := hgens;

> kgens := hgens;

> indx := 0;

> while # xgens ne 0 do

> Include(~kgens, Representative(xgens));

> V := CosetSpace(G, sub<G | kgens>);

> if IsComplete(V) then break; end if;
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> xgens := ExcludedConjugates(V);

> end while;

> if IsComplete(V) then

> print "The subgroup generated by", kgens, "has index", #V;

> return kgens;

> else

> print "The construction was unsuccessful";

> return {};
> end if;

> end function;

70.8.5 Double Coset Spaces: Construction

DoubleCoset(G, H, g, K )

The double coset H ∗ g ∗K of the subgroups H and K of the group G, where g is
an element of G.

DoubleCosets(G, H, K)

Set of double cosets H ∗ g ∗K of the group G.
This function may require the computation of a coset table. Experienced users

can control the behaviour of a possibly invoked coset enumeration with a set of
global parameters. These global parameters can be changed using the function
SetGlobalTCParameters. For a detailed description of the available parameters
and their meanings, we refer to Chapter 71.

Example H70E64

Consider again the infinite dihedral group G. . .

> G<a,b> := DihedralGroup(GrpFP, 0);

. . . and the subgroup H of index 10 in G.

> H := sub< G | a*b, a^10 >;

The set of H-H double cosets in G can be obtained with the statement

> DoubleCosets(G, H, H);

{ <GrpFP: H, Id(G), GrpFP: H>, <GrpFP: H, a^5, GrpFP: H>,

<GrpFP: H, a^4, GrpFP: H>, <GrpFP: H, a^2, GrpFP: H>,

<GrpFP: H, a, GrpFP: H>, <GrpFP: H, a^3, GrpFP: H> }
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70.8.6 Coset Spaces: Selection of Cosets

CosetsSatisfying(T, S: parameters)

CosetSatisfying(T, S: parameters)

CosetsSatisfying(V, S: parameters)

CosetSatisfying(V, S: parameters)

Given a fp-group G, and a partial or complete coset space V or coset table T for G
over the subgroup H generated by the set of words S, these functions return repre-
sentatives for the cosets of V which satisfy the conditions defined in the parameters.
In the description of the parameters below, the symbol l will denote a Boolean value,
while the symbol n will denote a positive integer in the range [1, #V ].

The functions are not identical. CosetsSatisfying returns a set of coset rep-
resentatives for V as defined in the parameters. CosetSatisfying is the same
as CosetsSatisfying with the Limit parameter equal to 1; thus it returns a set
containing a single coset representative, or an empty set if no cosets satisfy the
conditions.

First RngIntElt Default : 1

Start looking for coset representatives satisfying the designated conditions beginning
with coset i of V .

Last RngIntElt Default : #V

Stop looking for coset representatives after examining coset j of V .

Limit RngIntElt Default : ∞
Terminate the search for coset representatives as soon as l have been found which sat-
isfy the designated conditions. This parameter is not available for CosetSatisfying,
since Limit is set to 1 for this function.

Normalizing BoolElt Default : false

If true, select coset representatives x such that, modulo V , the word x−1h1x, . . .,
x1hsx is contained in H.

Order RngIntElt Default : 0

Select coset representatives x such that, modulo V , the word xn is contained in H.

Print RngIntElt Default : 0

If t > 0, print the coset representatives found to satisfy the designated conditions.

Example H70E65

Consider the braid group G on 4 strings with Artin generators a, b and c and the subgroup H of
G generated by a and b.

> G<a,b,c> := BraidGroup(GrpFP, 4);
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> H := sub< G | a,b >;

We construct an – obviously incomplete – explicit right coset space for H in G.

> V := RightCosetSpace(G, H);

Using the function CosetSatisfying, we compute an element of G, not contained in H, which
normalises H.

> cs := CosetSatisfying(V, Generators(Subgroup(V))

> : Normalizing := true, First := 2);

> cs;

{

<GrpFP: H, c * b * a^2 * b * c>

}

> rep := c * b * a^2 * b * c;

The conjugates of a and b by this element had better be in H. . .

> rep^-1 * a * rep in H;

true

> rep^-1 * b * rep in H;

true

. . . OK.

70.8.7 Coset Spaces: Induced Homomorphism

CosetAction(G, H)

Given a subgroup H of the group G, this function constructs the permutation rep-
resentation φ of G given by the action of G on the cosets of H. It returns:

(a)The homomorphism φ;
(b)The image group φ(G).

(c) (if possible) the kernel of φ.

The permutation representation is obtained by using the Todd-Coxeter procedure
to construct the coset table for H in G. Note that G may be an infinite group: it is
only necessary that the index of H in G be finite.

CosetAction(V)

Construct the permutation representation L of G given by the action of G on the
coset space V . It returns the permutation representation φ (as a map) and its image.

CosetImage(G, H)

Construct the image of G given by its action on the (right) coset space of H in G.
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CosetImage(V)

Construct the image of G as defined by its action on the coset space V .

CosetKernel(G, H)

The kernel of G in its action on the (right) coset space of H in G. (Only available
when the index of H in G is very small).

This function may require the computation of a coset table. Experienced users
can control the behaviour of a possibly invoked coset enumeration with a set of
global parameters. These global parameters can be changed using the function
SetGlobalTCParameters. For a detailed description of the available parameters
and their meanings, we refer to Chapter 71.

CosetKernel(V)

The kernel of G in its action on the (right) coset space V . (Only available when the
index of the subgroup H of G defining the coset space is very small).

Example H70E66

The first Conway group has a representation as the image of the group

G = < a, b, c, d, e, f, g, h | a2, b2, c2, d2, e2, f2, g2, h2,

(ab)3, (ac)2, (ad)2, (ae)4, (af)2, (ag)2, (ah)3,

(bc)5, (bd)2, (be)2, (bf)2, (bg)4, (bh)4,

(cd)3, (ce)3, (cf)4, (cg)2, (ch)2,

(de)2, (df)3, (dg)2, (dh)2,

(ef)6, (eg)2, (eh)2,

(fg)4, (fh)6,

(gh)2,

a(cf)2 = (adfh)3 = b(ef)3 = (baefg)3 = 1,

(cef)7 = d(bh)2 = d(aeh)3 = e(bg)2 = 1 >

under the homomorphism defined by the action of G on the cosets of the subgroup

H = < a, b, c, d, e, f, g, (adefcefgh)39 > .

The permutation group can be constructed as follows:

> F<s, t, u, v, w, x, y, z> := FreeGroup(8);

> G<a, b, c, d, e, f, g, h> := quo<F | s^2, t^2, u^2, v^2, w^2, x^2, y^2, z^2,

> (s*t)^3, (s*u)^2, (s*v)^2, (s*w)^4, (s*x)^2, (s*y)^2, (s*z)^3,

> (t*u)^5, (t*v)^2, (t*w)^2, (t*x)^2, (t*y)^4, (t*z)^4,

> (u*v)^3, (u*w)^3, (u*x)^4, (u*y)^2, (u*z)^2,

> (v*w)^2, (v*x)^3, (v*y)^2, (v*z)^2,
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> (w*x)^6, (w*y)^2, (w*z)^2,

> (x*y)^4, (x*z)^6,

> (y*z)^2,

> s*(u*x)^2 = (s*v*x*z)^3 = t*(w*x)^3 = (t*s*w*x*y)^3 = 1,

> (u*w*x)^7 = v*(t*z)^2 = v*(s*w*z)^3 = w*(t*y)^2 = 1>;

> H := sub< G | a, b, c, d, e, f, g, (a*d*e*f*c*e*f*g*h)^39 >;

> V := CosetSpace(G, H: FillFactor := 100000);

> Co1 := CosetImage(V);

> Degree(Co1);

98280

Example H70E67

The group G2(3) is a homomorph of the fp-group G defined below. We construct a permutation
representation G1 for G2(3) on 351 points, and then compute the subgroup generated by the
images of the first four generators of G in G1. (The functions applied to permutation groups are
described in Chapter 58.)

> F<a,b,c,d,y,x,w> := FreeGroup(7);

> z := y*c*a^2*b;

> u := x*d;

> t := w*c*a*d*b^2*c;

> G<a,b,c,d,y,x,w>, g :=

> quo< F | a^4, b^4, c^2, d^2, (a,b), (a*c)^2, (b*c)^2,

> (c*d)^2, d*a*d*b^-1, y^3, (a^-1*b)^y*d*a^-1*b^-1,

> (c*d*a^-1*b)^y*b^-1*a*d*c, a*d*y*d*a^-1*y, x^3,

> a^x*b^-1, b^x*a*b, c^x*c, (x*d)^2, (u*z)^6, w^3,

> (w,y), (a*b)^w*b^-1*a*d*c, (c*d*a^-1*b)^w*d*c*b^2,

> (b^2*c*d)^w*a^-1*b^-1, (c*a^2*b*w)^2,

> (a^-1*b)^w*d*a^-1*b^-1, (t*u)^3 >;

> z1 := g(z);

> u1 := g(u);

> t1 := g(t);

> H := sub< G | z1*a^2*b^2, u1*c, t1*a^2*b^2 >;

> f, G1, K := CosetAction(G, H);

> Degree(G1);

351

> print Order(G1), FactoredOrder(G1);

4245696 [ <2, 6>, <3, 6>, <7, 1>, <13, 1> ]

> CompositionFactors(G1);

G

| G(2, 3)

1

> S := sub< G1 | f(a), f(b), f(c), f(d) >;

> BSGS(S);

> S;

Permutation group S of degree 351
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Order = 64 = 2^6

Thus the images of a, b, c and d in G1 generate the Sylow 2-subgroup

70.9 Simplification

70.9.1 Reducing Generating Sets
Subgroups of finitely presented groups constructed in certain ways may be created with a
generating set containing redundant generators. The most important case in which this
situation may occur is a subgroup of the domain of a homomorphism f of groups, defined
as the preimage under f of some given subgroup of the codomain of f . In this case, the
generating set of the preimage will contain generators of the kernel of f and is likely to be
not minimal.

Since reducing the generating set may be expensive and is not necessary in all situations,
a reduction is not done automatically. Instead, Magma provides a function for reducing
generating sets of finitely presented groups.

ReduceGenerators(G)

Given a finitely presented group G, attempt to construct a presentation H on fewer
generators. H is returned as a subgroup of G (which of course is equal to G), so
that element coerce is possible. The isomorphism from G to H is returned as second
return value.

If a presentation for G is known, this function attempts to simplify this presen-
tation (cf. section 70.9.2). Otherwise, it tries to rewrite G with respect to a suitable
supergroup to obtain a presentation on fewer generators.

For a sample application of this function, see Example H70E73.

70.9.2 Tietze Transformations
Given a finitely presented group G, the user can attempt to simplify its presentation using
Tietze transformations and substring searching. The choice of simplification strategy can
either be left to Magma or selected by the user.

Simplify(G: parameters)

Given a finitely presented group G, attempt to simplify the presentation of G by
repeatedly eliminating generators and subsequently shortening relators by substitu-
tion of substrings that correspond to the left or right hand side of a relation. The
order in which transformations are applied is determined by a set of heuristics. The
transformation process terminates when no more eliminations of generators and no
more length reducing substring replacements are possible.

A new group K isomorphic to G is returned which is (hopefully) defined by a
simpler presentation than G. K is returned as a subgroup of G. The isomorphism
f : G→ K is returned as second return value.
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The simplification process can be controlled by a set of parameters described
below.

Example H70E68

Consider the Fibonacci group $F(8)$.

> F<x1, x2, x3, x4, x5, x6, x7, x8> := FreeGroup(8);

> F8<x1, x2, x3, x4, x5, x6, x7, x8> :=

> quo< F | x1*x2=x3, x2*x3=x4, x3*x4=x5, x4*x5=x6,

> x5*x6=x7, x6*x7=x8, x7*x8=x1, x8*x1=x2>;

We use the function Simplify in order to obtain a presentation of F (8) on two generators.

> H<[y]>, f := Simplify(F8);

> H;

Finitely presented group H on 2 generators

Generators as words in group F8

y[1] = x3

y[2] = x4

Relations

y[2] * y[1]^-2 * y[2] * y[1]^-1 * y[2]^2 * y[1] * y[2]^2 *

y[1]^-1 = Id(H)

y[1] * y[2] * y[1] * y[2]^2 * y[1] * y[2] * y[1]^2 * y[2]^-1

* y[1] = Id(H)

The isomorphism f can be used to express the old generators in terms of the new ones.

> f;

Mapping from: GrpFP: F8 to GrpFP: H

> f(x1);

y[1]^2 * y[2]^-1

The strategy employed by the function Simplify can be controlled using the fol-
lowing set of parameters.

Preserve [RngIntElt] Default : []
This parameter can be used to indicate that certain generators of G should not be
eliminated (default: no restrictions). Preserve is assigned a sequence of integers
in the range [1, . . . , n], where n is the number of generators of G, containing the
numbers of those generators of G which should be preserved. See Example H70E70
for a sample application.

Iterations RngIntElt Default : 10000
This parameter sets the maximal number of iterations of the main elimination /
simplification cycle which will be performed.

EliminationLimit RngIntElt Default : 100
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This parameter sets the maximal number of generators which may be eliminated in
each elimination phase.

LengthLimit RngIntElt Default : ∞
If LengthLimit is set to n, any eliminations which would make the total length of
the relators grow beyond n will not be performed (default: no limit).

ExpandLimit RngIntElt Default : 150
If ExpandLimit is set to n, the total length of the relators is not permitted to grow
by more than a factor of n% in any elimination phase (default: 150%). If this limit
is reached, the elimination phase is aborted.

GeneratorsLimit RngIntElt Default : 0
Any eliminations which would reduce the number of generators below the value of
GeneratorsLimit will not be performed (default: 0).

SaveLimit RngIntElt Default : 10
If SaveLimit is set to n, any simplification phase is repeated, if the reduction in the
total length of the relators achieved during this phase exceeds n% (default: 10%).

SearchSimultaneous RngIntElt Default : 20
This parameter sets the number of relators processed simultaneously in a simplifi-
cation phase.

Print RngIntElt Default : 0
This parameter controls the volume of printing. By default its value is that returned
by GetVerbose("Tietze"), which is 0 unless it has been changed through use of
SetVerbose.

SimplifyLength(G: parameters)

Given a finitely presented group G, attempt to eliminate generators and shorten
relators by locating substrings that correspond to the left or right hand side of a
relation. The order in which transformations are applied is determined by a set
of heuristics. As opposed to the function Simplify, this function terminates the
transformation process when the total length of the presentation starts to increase
with the elimination of further generators.

A new group K isomorphic to G is returned which is (hopefully) defined by a
simpler presentation than G. K is returned as a subgroup of G. The isomorphism
f : G → K is returned as second return value. This function accepts the same set
of parameters as the function Simplify.

TietzeProcess(G: parameters)

Create a Tietze process that takes the presentation for the fp-group G as its starting
point. This process may now be manipulated by various procedures that will be
described below.

Preserve [RngIntElt] Default : []
Iterations RngIntElt Default : 10000
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EliminationLimit RngIntElt Default : 100
LengthLimit RngIntElt Default : ∞
ExpandLimit RngIntElt Default : 150
GeneratorsLimit RngIntElt Default : 0
SaveLimit RngIntElt Default : 10
SearchSimultaneous RngIntElt Default : 20
Print RngIntElt Default : 0

These parameters define the defaults used for the Tietze operations. Each of the
various procedures described below allows some or all of these control parameters
to be overridden.

For the meanings of the parameters, see the description under Simplify above.

ShowOptions(∼P : parameters)

Display the defaults associated with the Tietze process P . The current status of all
the control parameters may be viewed by using this function.

SetOptions(∼P : parameters)

Change the defaults associated with the Tietze process P . All of the control param-
eters may be overridden permanently by using this function.

Simplify(∼P : parameters)

SimplifyPresentation(∼P : parameters)

Use the default strategy to simplify the presentation as much as possible. The
transformation process is terminated when no more eliminations of generators and
no more length reducing substring replacements are possible. All the control pa-
rameters may be overridden for this function.

SimplifyLength(∼P : parameters)

Use the default strategy to simplify the presentation as much as possible. The
transformation process is terminated when the total length of the presentation starts
to increase with the elimination of further generators. All the control parameters
may be overridden for this function.

Eliminate(∼P: parameters)

EliminateGenerators(∼P: parameters)

Eliminate generators in the presentation defined by the Tietze process P under the
control of the parameters. First any relators of length one are used to eliminate
trivial generators. Then, if there are any non-involutory relators of length two, the
generator with the higher number is eliminated. Of the control parameters, only
EliminationLimit, ExpandLimit, GeneratorsLimit and LengthLimit may be
overridden by this function.
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Relator RngIntElt Default : 0

If n > 0, try to eliminate a generator using the n-th relator. If no generator is
specified by the parameter Generator below, then the generator which is eliminated
will be the one occurring once in the relator that produced the smallest total relator
length.

Generator RngIntElt Default : 0

If n > 0, try to eliminate the n-th generator. If no relation is specified by the
parameter Relator above, then the shortest relator in which the n-th generator
occurs exactly once (if any) is used.

Search(∼P: parameters)

Simplifies the presentation by repeatedly searching for common substrings in pairs
of relators where the length of the substring is greater than half the length of the
shorter relator and making the corresponding transformations. Relators of length
1 or 2 are also used to generate simplifications. The control parameters SaveLimit
and SearchSimultaneous can be overridden.

SearchEqual(∼P: parameters)

Modifies the presentation by repeatedly searching for common substrings in pairs of
relators where the length of the substring is exactly half the length of the shorter
relator and making the corresponding transformations. The control parameter
SearchSimultaneous can be overridden.

Group(P)

Extract the group G defined by the current presentation associated with the Tietze
process P , together with the isomorphism between the original group and G. G is
returned as a subgroup of the original group underlying P .

NumberOfGenerators(P)

Ngens(P)

The number of generators for the presentation currently stored by the Tietze process
P .

NumberOfRelations(P)

Nrels(P)

The number of relations in the presentation currently stored by the Tietze process
P .

PresentationLength(P)

The sum of the lengths of the relators in the presentation currently stored by the
Tietze process P .
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Example H70E69

The Fibonacci group F (n) is generated by {x1, . . . , xn} with defining relations

xixi+1 = xi+2, i ∈ {1, . . . , n},

where the subscripts are taken modulo n. Consider the Fibonacci group F (7), which is defined in
terms of the presentation

< x1, x2, x3, x4, x5, x6, x7 | x1x2 = x3, x2x3 = x4, x3x4 = x5,

x4x5 = x6, x5x6 = x7, x6x7 = x1, x7x1 = x2 > .

The following code will produce a 2-generator, 2-relator presentation for F (7):

> F<x1, x2, x3, x4, x5, x6, x7> := FreeGroup(7);

> F7<x1, x2, x3, x4, x5, x6, x7> :=

> quo< F | x1*x2=x3, x2*x3=x4, x3*x4=x5, x4*x5=x6,

> x5*x6=x7, x6*x7=x1, x7*x1=x2 >;

> P := TietzeProcess(F7);

> for i := 7 to 3 by -1 do

> Eliminate(~P: Generator := i);

> end for;

> Search(~P);

> H<x, y>, f := Group(P);

> H;

Finitely presented group H on 2 generators

Generators as words in group F7

x = x1

y = x2

Relations

x^-1 * y^-1 * x^-1 * y^-2 * x^-1 * y * x^-1 * y * x^-1 = Id(H)

x * y^3 * x^-1 * y * x^-1 * y^2 * x * y * x * y^-1 = Id(H)

The resulting presentation is

< a, b | a−1b−1a−1b−2a−1ba−1ba−1, ab3a−1ba−1b2abab−1 > .

We can use the isomorphism f returned by the function Group to express arbitrary words in the
original generators of F (7) in terms of the new generators x and y:

> f;

Mapping from: GrpFP: F7 to GrpFP: H

> f(x7);

x * y^2 * x * y^2 * x * y * x * y^2 * x * y

Alternatively, a similar effect may be obtained using the Simplify function:

> F<x1, x2, x3, x4, x5, x6, x7> := FreeGroup(7);

> F7<x1, x2, x3, x4, x5, x6, x7> :=

> quo< F | x1*x2=x3, x2*x3=x4, x3*x4=x5, x4*x5=x6,



Ch. 70 FINITELY PRESENTED GROUPS 2189

> x5*x6=x7, x6*x7=x1, x7*x1=x2>;

> H<x, y>, f := Simplify(F7: Iterations := 5);

> H;

Finitely presented group H on 2 generators

Generators as words in group F7

x = x2

y = x3

Relations

x * y^-1 * x * y^2 * x * y * x^2 * y^-1 = Id(H)

y * x * y^2 * x^-1 * y * x^-2 * y * x^-2 = Id(H)

Again, we can use the isomorphism f returned by the function Simplify to express arbitrary
words in the original generators of F (7) in terms of the new generators x and y:

> f;

Mapping from: GrpFP: F7 to GrpFP: H

> f(x7);

y * x * y * x * y^2 * x * y

Example H70E70

In a situation where some proper subset S of the original generating set of a finitely group G is
sufficient to generate G, the function Simplify can also be used to rewrite words in the original
generators in terms of the elements of S. Consider again one of the Fibonacci groups, say F (8).

> F<x1, x2, x3, x4, x5, x6, x7, x8> := FreeGroup(8);

> F8<x1, x2, x3, x4, x5, x6, x7, x8> :=

> quo< F | x1*x2=x3, x2*x3=x4, x3*x4=x5, x4*x5=x6,

> x5*x6=x7, x6*x7=x8, x7*x8=x1, x8*x1=x2>;

Obviously, F (8) is generated by x1 and x2. We utilise the function Simplify to obtain a presen-
tation H of F (8) on x1 and x2, using the parameter Preserve to indicate that x1 and x2 – i.e.
the first and the second generator – are to be retained in the new presentation. We also compute
the isomorphism f : F (8) → H.

> H<x, y>, f := Simplify(F8: Preserve := [1,2]);

Mapping elements of F (8) to H using the map f basically means to rewrite these elements in
terms of the generators x = x1 and y = x2. Since H is returned as a subgroup of F (8), the
resulting words can be coerced from H back into F (8), yielding words explicitly in x1 and x2.

> F8 ! f(x5*x6);

x1 * x2^2 * x1 * x2 * x1^2 * x2^-1 * x1 * x2^-1

Example H70E71

The finiteness of the last of the Fibonacci groups, F (9), was settled in 1988 by M.F. Newman
using the following result:
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Theorem. Let G be a group with a finite presentation on b generators and r relations, and
suppose p is an odd prime. Let d denote the rank of the elementary abelian group G1 = [G, G]Gp

and let e denote the rank of G2 = [G1, G]Gp. If

r − b < d2/2− d/2− d− e

or
r − b ≤ d2/2− d/2− d− e + (e + d/2− d2/4)d/2,

then G has arbitrary large quotients of p-power order.

We present a proof that F (9) is infinite using this result.

> Left := func< b, r | r - b >;

> Right := func< d, e | d^2 div 2 - d div 2 - d - e +

> (e + d div 2 - d^2 div 4)*(d div 2) >;

>

>

> F< x1,x2,x3,x4,x5,x6,x7,x8,x9 > :=

> ΨGroup< x1, x2, x3, x4, x5, x6, x7, x8, x9 |

> x1*x2=x3, x2*x3=x4, x3*x4=x5, x4*x5=x6, x5*x6=x7,

> x6*x7=x8, x7*x8=x9, x8*x9=x1, x9*x1=x2 >;

>

> F;

Finitely presented group F on 9 generators

Relations

x1 * x2 = x3

x2 * x3 = x4

x3 * x4 = x5

x4 * x5 = x6

x5 * x6 = x7

x6 * x7 = x8

x7 * x8 = x9

x8 * x9 = x1

x9 * x1 = x2

> AbelianQuotientInvariants(F);

[ 2, 38 ]

Thus the nilpotent quotient of F is divisible by 2 and 19. We examine the 2- and 19-quotients of
F .

> Q1 := pQuotient(F, 2, 0: Print := 1);

Class limit set to 127.

Lower exponent-2 central series for F

Group: F to lower exponent-2 central class 1 has order 2^2

Group: F to lower exponent-2 central class 2 has order 2^3

Group completed. Lower exponent-2 central class = 2, Order = 2^3

> Q2 := pQuotient(F, 19, 0: Print := 1);

Class limit set to 127.

Lower exponent-19 central series for F
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Group: F to lower exponent-19 central class 1 has order 19^1

Group completed. Lower exponent-19 central class = 1, Order = 19^1

Thus, the nilpotent residual of F has index 152. We try to locate this subgroup. We first take a
2-generator presentation for F .

> G := Simplify(F);

> G;

Finitely presented group G on 2 generators

Generators as words in group F

G.1 = x4

G.2 = x5

Relations

G.2 * G.1 * G.2 * G.1 * G.2^2 * G.1 * G.2^2 * G.1^-1 * G.2 * G.1^-2 * G.2 *

G.1^-2 = Id(G)

G.1 * G.2^2 * G.1 * G.2 * G.1^2 * G.2^-1 * G.1^2 * G.2^-1 * G.1 * G.2^-1 *

G.1^2 * G.2^-1 * G.1 * G.2^-1 = Id(G)

> H := ncl< G | (G.1, G.2) >;

> H;

Finitely presented group H

Index in group G is 76 = 2^2 * 19

Subgroup of group G defined by coset table

We haven’t got the full nilpotent residual yet, so we try again.

> H := ncl< G | (G.1*G.1, G.2) >;

> H;

Finitely presented group H

Index in group G is 152 = 2^3 * 19

Subgroup of group G defined by coset table

Now, we have it.

> AbelianQuotientInvariants(H);

[ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ]

The nilpotent residual H has a 5-quotient. We construct a presentation for H and then calculate
d and e for its 5-quotient.

> K := Rewrite(G, H: Simplify := false);

> KP := pQuotientProcess(K, 5, 1);

> d := FactoredOrder(ExtractGroup(KP))[1][2];

> NextClass(~KP);

> e := FactoredOrder(ExtractGroup(KP))[1][2] - d;

> "D = ", d, "e = ", e;

d = 18 e = 81

> "Right hand side = ", Right(d, e);

Right hand side = 135

> "Left hand side = ", Left(Ngens(K), #Relations(K));
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Left hand side = 151

Since Left is greater than Right, this presentation for H doesn’t work. Thus we start eliminating
generators.

> K := Simplify(K: Iterations := 1);

> "Left hand side = ", Left(Ngens(K), #Relations(K));

Left hand side = 136

> K := Simplify(K: Iterations := 1);

> "Left hand side = ", Left(Ngens(K), #Relations(K));

Left hand side = 123

Got it! By Newman’s theorem, H has an infinite 5-quotient and so F must be infinite.

Example H70E72

In this example, we consider a – quite unpleasant – presentation for some group G. In fact, it
is a presentation for the group PSL3(7):2, but we assume that we do not know this and want to
compute the order of the finitely presented group G using coset enumeration.
We note in passing that the strategy outlined in this example is, together with other approaches,
applied by the function Order.

> F<a,b,c> := FreeGroup(3);

> rels := [ a^4, b^2, (a,b)^3, (a*b)^8, ((a*b)^2*(a^-1*b)^3)^2,

> c^2, (c*a*c*a^2)^2, (c*a)^3*(c*a^-1)^3,

> c*a*b*c*a^-1*b*a^-1*c*a*b*c*a^2*a*b*a^-1,

> c*a*b*c*b*a*c*a*c*a^-1*b*c*b*a^-1*c*a^-1,

> c*a*b*a^-1*c*a*b*a^-1*c*a*b*a^-1*c*a*b*a^-1,

> c*b*a^2*b*c*b*c*a^2*c*b*c*b*a^2*b,

> c*a^2*c*b*a*c*b*a*c*b*a*c*a^-1*c*a*b*a^-1,

> c*a^-1*b*a*c*a^-1*b*a*c*b*a*b*a^2*b*a^-1*b,

> c*a*b*a^-1*b*c*b*a^-1*b*c*a^-1*b*a*b*a*c*b*c*b,

> c*a*c*b*a*b*c*a*c*b*a*b*c*a*c*b*a*b,

> c*b*a^-1*b*c*a^-1*c*a^-1*b*a*b*c*b*c*a^2*b*a*b*a^-1,

> c*b*a^-1*b*a*b*c*b*a^-1*b*a*b*c*b*a^-1*b*a*b,

> c*a^2*b*a^-1*b*c*b*c*b*a^-1*b*a*c*b*a^2*b*a^-1*b

> ];

> G<a,b,c> := quo< F | rels >;

As it happens, trying to determine the order of G by enumerating the cosets of the trivial sub-
group is quite hard. – Even the predefined enumeration strategy "Hard" (cf. ToddCoxeter and
CosetEnumerationProcess) does not give a finite result.

> time ToddCoxeter(G, sub<G|> : Strategy := "Hard");

0

Time: 199.620

Of course we could try to increase the workspace for the coset enumeration, but we decide to be
more clever. Trying random words in the generators of G, we easily find some subgroup S of G
with pretty small index in G.

> S := sub< G | b, c*a*c*b*a*b >;
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> time Index(G, S);

114

Time: 0.120

We now have to compute the order of S. In order to be able to do this using coset enumeration,
we have to construct a presentation for S by rewriting S w.r.t. G.

> time R := Rewrite(G, S : Simplify := false);

Time: 0.030

However, the presentation obtained by Reidemeister-Schreier rewriting without any simplification
is not suitable for coset enumeration: it contains too many generators and its total length is quite
high.

> NumberOfGenerators(R);

133

> PresentationLength(R);

14384

An enumeration with the predefined enumeration strategy "Hard" does not produce a finite re-
sult. (Note that in consideration of the high total relator length, we select a coset table based
enumeration style; cf. CosetEnumerationProcess in Chapter 71.)

> time ToddCoxeter(R, sub<R|> : Strategy := "Hard", Style := "C");

0

Time: 4.330

On the other hand, simplifying the presentation by reducing the number of generators as much
as possible is not a good idea either, since the total relator length grows massively.

> time Rs := Simplify(R);

Time: 43.900

> NumberOfGenerators(Rs);

3

> PresentationLength(Rs);

797701

Again, an enumeration with the predefined enumeration strategy "Hard" does not produce a finite
result.

> time ToddCoxeter(Rs, sub<Rs|> : Strategy := "Hard", Style := "C");

0

Time: 22015.849

The best strategy is, to simplify the presentation obtained from the Reidemeister-Schreier proce-
dure by eliminating generators until the total length of the relators starts to grow.

> time Rsl := SimplifyLength(R);

Time: 0.330

> NumberOfGenerators(Rsl);

48

> PresentationLength(Rsl);
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7152

A coset enumeration for this presentation produces a finite result in a reasonable amount of time.

> time ToddCoxeter(Rsl, sub<Rsl|> : Strategy := "Hard", Style := "C");

32928

Time: 289.410

This finally proves that G is finite and has order 32928 ∗ 114 = 3753792.

70.10 Representation Theory

This section describes some functions for creating R[G]-modules for a finitely presented
group G, which are unique for this category or have special properties when called for
fp-groups. For a complete description of the functions available for creating and working
with R[G]-modules we refer to chapter 89.

Note that the function GModuleAction can be used to extract the matrix representation
associated to an R[G]-module.

All operations described in this subsection may require a closed coset table for at least
one subgroup of an fp-group. If a closed coset table is needed and has not been computed,
a coset enumeration will be invoked. If the coset enumeration does not produce a closed
coset table, a runtime error is reported.

Experienced users can control the behaviour of such indirectly invoked coset enumer-
ation with a set of global parameters. These global parameters can be changed using the
function SetGlobalTCParameters. For a detailed description of the available parameters
and their meanings, we refer to Chapter 71.

GModulePrimes(G, A)

Let G be a finitely presented group and A a normal subgroup of G of finite index.
Given any prime p, the maximal p-elementary abelian quotient of A can be viewed
as a Fp[G]-module Mp. This function determines all primes p such that Mp is not
trivial (i.e. zero-dimensional) and the dimensions of the corresponding modules Mp.
The return value is a multiset S. If 0 /∈ S, the maximal abelian quotient of A is finite
and the multiplicity of p is the dimension of Mp. If S contains 0 with multiplicity
m, the maximal abelian quotient of A contains m copies of Z. In this case, Mp is
non-trivial for every prime p. The rank of Mp in this case is the sum of m and the
multiplicity of p in S.
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GModulePrimes(G, A, B)

Let G be a finitely presented group, A a normal subgroup of finite index in G and
B a normal subgroup of G contained in A. Given any prime p, the maximal p-
elementary abelian quotient of A/B can be viewed as a Fp[G]-module Mp. This
function determines all primes p such that Mp is not trivial (i.e. zero-dimensional)
and the dimensions of the corresponding modules Mp. The return value is a multiset
S. If 0 /∈ S, the maximal abelian quotient of A/B is finite and the multiplicity of
p is the dimension of Mp. If S contains 0 with multiplicity m, the maximal abelian
quotient of A/B contains m copies of Z. In this case, Mp is non-trivial for every
prime p. The rank of Mp in this case is the sum of m and the multiplicity of p in S.

GModule(G, A, p)

Given a finitely presented group G, a normal subgroup A of finite index in G and a
prime p, create the Fp[G]-module M corresponding to the conjugation action of G
on the maximal p-elementary abelian quotient of A. The function also returns the
epimorphism π : A→M .

Note that normality of A in G is not checked. The results for invalid input data
are undefined.

GModule(G, A, B, p)

GModule(G, A, B)

Given a finitely presented group G, a normal subgroup A of G of finite index, a
normal subgroup B of G contained in A and a prime p, create the Fp[G]-module M
corresponding to the conjugation action of G on the maximal p-elementary abelian
quotient of A/B.

p can be omitted, if the maximal elementary abelian quotient of A/B is a p-group
for some prime p. Note, however, that the computation is much faster, if a prime is
specified.

The function also returns the epimorphism π : A→M .
Note that normality of A and B in G is not checked. The results for invalid

input data are undefined.

Pullback(f, N)

Given a map f : A→M from a normal subgroup A of an fp-group G onto a Fp[G]-
module M and a submodule N of M , try to compute the preimage of N under f
using a fast pullback method. If successful, the preimage is returned as subgroup of
A.

If the pullback works, it is in general faster than a direct computation of the
preimage using the preimage operator and it produces a more concise generating
set for the preimage; see the following example. In cases where the pullback fails, a
runtime error is reported and a preimage construction should be used instead.
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Example H70E73

Consider the group G defined by the presentation

〈a, b, c, d, e | a4, b42, c6, e3, ba = b−1, [a, c], [a, d], [a, e],

cb = ce, db = d−1, eb = e2, dc = de, ec = e2, [d, e]〉.

> F<a,b,c,d,e> := FreeGroup(5);

> G<a,b,c,d,e> := quo< F | a^4, b^42, c^6, e^3,

> b^a=b^-1, (a,c), (a,d), (a,e),

> c^b=c*e, d^b=d^-1, e^b=e^2,

> d^c=d*e, e^c=e^2,

> (d,e) >;

The finite index subgroup H of G generated by c, d, e is normal in G.

> H := sub< G | c,d,e >;

> Index(G, H);

168

> IsNormal(G, H);

true

We check, for which characteristics the action of G on H yields non-trivial modules.

> GModulePrimes(G, H);

{* 0, 2, 3 *}

We construct the F3[G]-module M given by the action of G on the maximal 3-elementary abelian
quotient of H and the natural epimorphism π from H onto the additive group of M .

> M, pi := GModule(G, H, 3);

> M;

GModule M of dimension 2 over GF(3)

Using the function Submodules, we obtain the submodules of M . Their preimages under π are
precisely the normal subgroups of G which are contained in H and contain ker(π).

> submod := Submodules(M);

> time nsgs := [ m @@ pi : m in submod ];

Time: 11.640

> [ Index(G, s) : s in nsgs ];

[ 1512, 504, 504, 168 ]

The generating sets for the normal subgroups obtained in this way, contain in general many
redundant generators. (E.g. each will contain a generating set for ker(π).)

> [ NumberOfGenerators(s) : s in nsgs ];

[ 19, 20, 20, 21 ]

Optimised generating sets can be obtained using the function ReduceGenerators.

> nsgs_red := [ ReduceGenerators(s) : s in nsgs ];

> [ NumberOfGenerators(s) : s in nsgs_red ];
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[ 2, 2, 3, 2 ]

Alternatively, and in fact this is the recommended way, we can use the function Pullback to
compute the preimages of the submodules under π. Note that the generating sets for the preimages
computed this way contain fewer redundant generators.

> time nsgs := [ Pullback(pi, m) : m in submod ];

Time: 8.560

> [ Index(G, s) : s in nsgs ];

[ 1512, 504, 504, 168 ]

> [ NumberOfGenerators(s) : s in nsgs ];

[ 4, 4, 3, 2 ]

Example H70E74

Consider the group defined by the presentation

< a, b, c, d, e | a5, b5, c6, d5, e3, ba = bd,

(a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, d), (c, e), (d, e) > .

> G<a,b,c,d,e> := Group< a,b,c,d,e |

> a^5, b^5, c^6, d^5, e^3, b^a = b*d,

> (a,c), (a,d), (a,e), (b,c), (b,d), (b,e),

> (c,d), (c,e), (d,e) >;

Obviously the subgroup of G generated by b, c, d, e is normal in G.

> H := sub< G | b,c,d,e >;

> IsNormal(G, H);

true

We use the function GModulePrimes to determine the set of primes p for which the action of G on
the maximal p-elementary abelian quotient of H induces a nontrivial Fp[G]-module.

> P := GModulePrimes(G, H);

> 0 in P;

false

0 is not contained in P , i.e. the maximal free abelian quotient of H is trivial. Hence, there are
only finitely many primes, satisfying the condition above.

We loop over the distinct elements of P and for each element p we construct the induced Fp[G]-
module, print its dimension and check whether it is decomposable. Note that the dimension of
the module for p must be equal to the multiplicity of p in P .

> for p in MultisetToSet(P) do

> M := GModule(G, H, p);

> dim := Dimension(M);

> decomp := IsDecomposable(M);

>

> assert dim eq Multiplicity(P, p);



2198 FINITELY-PRESENTED GROUPS Part XI

>

> print "prime", p, ": module of dimension", dim;

> if decomp then

> print " has a nontrivial decomposition";

> else

> print " is indecomposable";

> end if;

> end for;

prime 2 : module of dimension 1

is indecomposable

prime 3 : module of dimension 2

has a nontrivial decomposition

prime 5 : module of dimension 2

is indecomposable

70.11 Small Group Identification

This section describes some special issues arising with the identification of a finitely pre-
sented group using the database of small groups described in Section 66.2.

IdentifyGroup(G)

Locate the pair of integers 〈o, n〉 so that SmallGroup(o, n) is isomorphic to G. If
the construction of a permutation representation for G fails or if there is no group
isomorphic to G in the database, then an error will result.

When trying to look up a finitely presented group G in the database of small
groups, Magma tries to construct a permutation representation ofG by enumerating
the cosets of the trivial subgroup in G. Assuming that a group isomorphic to G is
contained in the database, the resulting coset table will be fairly small. Hence for
performance reasons, a coset limit of 100 ·o is imposed, where o is the maximal order
of groups in the database, unless the order of G is known to be less or equal to o.
If, on the other hand, |G| ≤ o is known, the global set of parameters for implicitly
invoked coset enumerations applies. This set of parameters can be changed using
the function SetGlobalTCParameters.

If the coset enumeration for G fails with the coset limit 100 ·o, this can be seen as
a reasonable indication that G is probably too large to be contained in the database
of small groups.

To deal with cases where the coset enumeration fails although G is known or
suspected to be small enough, it is recommended to attempt to compute the order
of G using the function Order before the actual group identification. If G that
way can be shown to be small enough to be contained in the database, the function
SetGlobalTCParameters can be used to control the behaviour of coset enumerations
in a subsequent call to IdentifyGroup. The following example illustrates this.
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Example H70E75

Consider the group defined by the presentation

〈 a, b | (ba−1)3, (ba−1b)2, a12b2a7b2ab2 〉.

> G := Group<a,b | (b*a^-1)^3, (b*a^-1*b)^2,

> a^12*b^2*a^7*b^2*a*b^2 >;

We suspect (for some reason) that G is a small group and want to identify its isomorphism type
in the database of small groups.

> IdentifyGroup(G);

IdentifyGroup(

G: GrpFP: G

)

In file "/home/magma/package/Group/Grp/smallgps2.m", line 220,

column 25:

>> res := IdentifyGroup(db, G);

^

Runtime error in ’IdentifyGroup’: Coset enumeration failed; group

may be too large (see handbook entry for details)

The group couldn’t be identified, because it was not possible to obtain a permutation representa-
tion with the default value of the coset limit.
Since we still think the group should be small, we try to prove this using the function Order.

> Order(G : Print := true);

INDEX = 6 (a=6 r=66709 h=999999 n=999999; l=1247 c=1.56; m=969169

t=999998)

6

We were correct; the group is in fact very small. However, we can see from the output of the
Order command that this wasn’t that easy to find out: almost one million cosets were used in the
coset enumeration.
Since the order of G is now known to the system, a subsequent call to IdentifyGroup will now
use the global parameters for implicitly invoked coset enumerations. To be on the safe side, we
tell the system to be prepared to work a little harder using the function SetGlobalTCParameters

and try again to identify G.

> SetGlobalTCParameters( : Strategy := "Hard");

>

> IdentifyGroup(G);

<6, 1>

Now G can be identified.
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70.11.1 Concrete Representations of Small Groups
When an finitely-presented group is known to small, it may be useful to write it concretely
as a permutation or PC-group. There are two utilities provided for this purpose.

PermutationGroup(G)

Construct a faithful permutation representation of G, and the isomorphism from G
to the representation. The algorithm first computes the order of G, then takes the
regular representation of G, and reduces the degree. Thus the command is restricted
to small groups.

PCGroup(G)

Construct a faithful PC-group representation of G, and the isomorphism from G
to the representation. The algorithm first computes the order of G, then computes
the soluble quotient of G with the order found. Thus the command is restricted to
small soluble groups.

70.12 Bibliography
[AR84] D. G. Arrell and E. F. Robertson. A modified Todd-Coxeter algorithm. In

Computational group theory (Durham, 1982), pages 27–32. Academic Press, London,
1984.

[CDHW73] John J. Cannon, Lucien A. Dimino, George Havas, and Jane M. Watson.
Implementation and analysis of the Todd-Coxeter algorithm. Math. Comp., 27:463–
490, 1973.

[CHN11] M. Conder, G. Havas, and M. Newman. On one-relator quotients of the
modular group. In Proc. Groups St Andrews 2009 in Bath, number 387 in London
Mathematical Society Lecture Note Series, pages 183–197. Cambridge University Press,
2011.

[COS08] A. Cavicchioli, E. O’Brien, and F. Spaggiari. On some questions about a
family of cyclically presented groups. J. Algebra, 320(11):4063–4072, 2008.

[Fab09] Anna Fabianska. Algorithmic analysis of presentations of groups and
modules. Dissertation, RWTH Aachen University, 2009.

[Hav91] G. Havas. Coset enumeration strategies. In ISSAC’91, pages 191–199. ACM
Press, 1991.

[HH10] G. Havas and D.F. Holt. On Coxeter’s families of group presentations. J.
Algebra, 324(5):1076–1082, 2010.

[HKRR84] George Havas, P. E. Kenne, J. S. Richardson, and E. F. Robertson. A Tietze
transformation program. In Computational group theory (Durham, 1982), pages 69–73.
Academic Press, London, 1984.

[MKS76] Wilhelm Magnus, Abraham Karrass, and Donald Solitar. Combinatorial
group theory. Dover Publications Inc., New York, revised edition, 1976. Presentations
of groups in terms of generators and relations.



Ch. 70 FINITELY PRESENTED GROUPS 2201

[Nic96] Werner Nickel. Computing nilpotent quotients of finitely presented groups.
In Geometric and computational perspectives on infinite groups (Minneapolis, MN and
New Brunswick, NJ, 1994), pages 175–191. Amer. Math. Soc., Providence, RI, 1996.

[NO96] M. F. Newman and E. A. O’Brien. Application of computers to questions
like those of Burnside. II. Internat. J. Algebra Comput., 6(5):593–605, 1996.

[PF09] W. Plesken and A. Fabianska. An L2-quotient algorithm for finitely pre-
sented groups. J. Algebra, 322(3):914–935, 2009.

[Ram] Colin Ramsay. ACE. URL:http://www.csee.uq.edu.au/˜cram/.
[Sim94] Charles C. Sims. Computation with finitely presented groups. Cambridge

University Press, Cambridge, 1994.





71 FINITELY PRESENTED GROUPS:
ADVANCED

71.1 Introduction . . . . . . . . 2205

71.2 Low Level Operations on Presen-
tations and Words . . . . . . 2205

71.2.1 Modifying Presentations . . . . . 2206

AddGenerator(G) 2206
AddGenerator(G, w) 2206
AddRelation(G, r) 2206
AddRelation(G, g) 2206
AddRelation(G, r, i) 2206
AddRelation(G, g, i) 2206
DeleteGenerator(G, x) 2206
DeleteRelation(G, r) 2206
DeleteRelation(G, g) 2207
DeleteRelation(G, i) 2207
ReplaceRelation(G, s, r) 2207
ReplaceRelation(G, h, r) 2207
ReplaceRelation(G, s, g) 2207
ReplaceRelation(G, h, g) 2207
ReplaceRelation(G, i, r) 2207
ReplaceRelation(G, i, g) 2207

71.2.2 Low Level Operations on Words . . 2208

Eliminate(u, x, v) 2208
Eliminate(U, x, v) 2208
Match(u, v, f) 2209
RotateWord(u, n) 2209
Substitute(u, f, n, v) 2209
Subword(u, f, n) 2209

71.3 Interactive Coset Enumeration 2210

71.3.1 Introduction . . . . . . . . . . 2210

71.3.2 Constructing and Modifying a Coset
Enumeration Process . . . . . . 2211

CosetEnumerationProcess(G, H: -) 2211
AddRelator(∼P, w) 2214
AddSubgroupGenerator(∼P, w) 2215
SetProcessParameters(∼P: -) 2216

71.3.3 Starting and Restarting an Enumer-
ation . . . . . . . . . . . . . 2216

StartEnumeration(∼P: -) 2216
RedoEnumeration(∼P: -) 2217
CanRedoEnumeration(P) 2217
ContinueEnumeration(∼P: -) 2217
CanContinueEnumeration(P) 2217
ResumeEnumeration(∼P: -) 2218

71.3.4 Accessing Information . . . . . . 2218

CosetsSatisfying(P : -) 2218
CosetSatisfying(P : -) 2218
CosetTable(P) 2219

HasValidCosetTable(P) 2219
HasClosedCosetTable(P) 2219
HasCompleteCosetTable(P) 2219
ExcludedConjugate(P) 2220
ExcludedConjugates(P) 2220
ExistsCosetSatisfying(P : -) 2220
ExistsExcludedConjugate(P) 2220
ExistsNormalisingCoset(P) 2221
ExistsNormalizingCoset(P) 2221
Group(P) 2221
Index(P) 2221
HasValidIndex(P) 2221
MaximalNumberOfCosets(P) 2221
Subgroup(P) 2222
TotalNumberOfCosets(P) 2222

71.3.5 Induced Permutation
Representations . . . . . . . . . 2227

CosetAction(P) 2228
CosetImage(P) 2228
CosetKernel(P) 2228

71.3.6 Coset Spaces and Transversals . . 2228

CosetSpace(P) 2229
RightCosetSpace(P) 2229
LeftCosetSpace(P) 2229
Transversal(P) 2229
RightTransversal(P) 2229

71.4 p-Quotients (Process Version) . 2231

71.4.1 The p-Quotient Process . . . . . 2231

pQuotientProcess(F, p, c: -) 2231
NextClass(∼P : -) 2232
NextClass(∼P, k : -) 2232

71.4.2 Using p-Quotient Interactively . . 2232

StartNewClass(∼P: -) 2232
Tails(∼P: -) 2232
Tails(∼P, k: -) 2232
Consistency(∼P: -) 2233
Consistency(∼P, k: -) 2233
CollectRelations(∼P) 2233
ExponentLaw(∼P : -) 2233
ExponentLaw(∼P, Start, Fin: -) 2233
EliminateRedundancy(∼P) 2234
Display(P) 2234
Display(P, DisplayLevel) 2234
RevertClass(∼P) 2234
pCoveringGroup(∼P) 2234
pCoveringGroup(G) 2234
GeneratorStructure(P) 2234
GeneratorStructure(P, Start, Fin) 2234



2204 FINITELY-PRESENTED GROUPS Part XI

Jacobi(∼P, c, b, a, ∼r) 2235
Jacobi(∼P, c, b, a) 2235
Collect(P, Q) 2235
EcheloniseWord(∼P, ∼r) 2235
EcheloniseWord(∼P) 2235
SetDisplayLevel(∼P, Level) 2235
ExtractGroup(P) 2235
Order(P) 2235
FactoredOrder(P) 2235
NumberOfPCGenerators(P) 2235
pClass(P) 2236
NuclearRank(G) 2236
NuclearRank(P) 2236
pMultiplicatorRank(G) 2236
pMultiplicatorRank(P) 2236

71.5 Soluble Quotients . . . . . . 2241

71.5.1 Introduction . . . . . . . . . . 2241

71.5.2 Construction . . . . . . . . . . 2241

71.5.3 Calculating the Relevant Primes . . 2243

71.5.4 The Functions . . . . . . . . . 2243

SolubleQuotient(F, n : -) 2244
SolvableQuotient(F, n : -) 2244
SolubleQuotient(F : -) 2244
SolvableQuotient(F : -) 2244
SolubleQuotient(F, P : -) 2244
SolvableQuotient(F, P : -) 2244

71.6 Bibliography . . . . . . . . 2247



Chapter 71

FINITELY PRESENTED GROUPS:
ADVANCED

71.1 Introduction
This section presents some more advanced techniques available for computing with finitely-
presented groups (fp-groups for short) within Magma. The features considered here are
regarded as more advanced, either because they are technically or theoretically more com-
plex and they are therefore expected to be used mainly by specialists, or because their
efficient (and in a few cases even their merely correct) use requires some more detailed
knowledge on the user’s part.

Trying to summarise the expected main purpose of the functions described in this
section, one could think of two main situations: On the one hand, user written functions,
which may benefit from low-level tools for manipulating presentations or words, or which
make use of interruptible process versions of some standard Magma functions for fp-
groups. On the other hand, the solution of very hard problems, which require careful
fine-tuning of the strategy employed or for which some iterative approach, using feedback
of information obtained during the computation, is necessary.

The following topics are discussed in detail. First, some rather low-level operations
on presentations and elements of fp-groups (words) are described. Then, the features
for interactive coset enumeration in Magma are presented. This section also contains
the complete description of all the parameters available for controlling the execution of
the Todd-Coxeter procedure, which also applies to the appropriate standard functions
documented in Chapter 70. After that, we describe the process version of the p-quotient
algorithm. Note that some care has to be taken when interpreting results obtained with
this interactive p-quotient computation; incorrect use of the existing functions may result
in incomplete or wrong answers. The chapter ends with a treatise of the soluble quotient
algorithm available in Magma. This final section contains a brief review of the theory
underlying the soluble quotient algorithm, a description of the parameters available for
functions computing soluble quotients, and the documentation of the interactive soluble
quotient facilities.

71.2 Low Level Operations on Presentations and Words
In this section, we describe some rather low level operations on presentations and on
elements of fp-groups. The main purpose of the functions described here, is to provide
some efficient machinery for manipulating presentations and elements of fp-groups for user
written functions.
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71.2.1 Modifying Presentations
The functions described in this section construct a new fp-group from an existing one by
adding or deleting a generator or by adding, deleting or changing a relation. The new
group is created without any relationship to the existing group.

AddGenerator(G)

Given an fp-group G with presentation 〈X | R〉, create a new fp-group with presen-
tation 〈X ∪ {z} | R〉, where z is a symbol not in X.

AddGenerator(G, w)

Given an fp-group G with presentation 〈X | R〉, and given also a word w in the
generatorsX, create a new fp-group having the presentation 〈X ∪{z} | R∪{z = w}〉,
where z is a symbol not in X.

AddRelation(G, r)

Given an fp-group G, and a relation r on the generators of G, create a new fp-group
whose presentation consists of the relations of G together with the relation r.

AddRelation(G, g)

Given an fp-group G, and an element g of G, create a new fp-group whose presen-
tation consists of the relations of G together with the relation g = Id(G).

AddRelation(G, r, i)

Given an fp-group G, and a relation r on the generators of G, create a new fp-group
which has as its presentation the relations of G together with the relation r inserted
after the i-th existing relation of G.

AddRelation(G, g, i)

Given an fp-group G, and an element g of G, create a new fp-group which has as its
presentation the relations of G together with the relation g = Id(G) inserted after
the i-th existing relation of G.

DeleteGenerator(G, x)

Given an fp-group G with presentation 〈X | R〉, and given also an element z in X,
create a new fp-group with presentation 〈X \ {z} | R′〉, where the relations R′ are
obtained from R by deleting all relations containing an occurrence of z.

DeleteRelation(G, r)

Given an fp-group G, which includes the relation r amongst its relations, create a
new fp-group which has as its presentation the relations of G with relation r omitted.
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DeleteRelation(G, g)

Given an fp-group G, which includes the relation g = Id(G) amongst its relations,
create a new fp-group which has as its presentation the relations of G with this
relation omitted.

DeleteRelation(G, i)

Given an fp-group G, create a new fp-group which has as its presentation the rela-
tions for G with the i-th relation deleted.

ReplaceRelation(G, s, r)

ReplaceRelation(G, h, r)

ReplaceRelation(G, s, g)

ReplaceRelation(G, h, g)

Given an fp-group G, which includes the relation s or h = Id(G) amongst its rela-
tions, create a new fp-group which has as its presentation the relations for G with
the relation s replaced by the relation r or g = Id(G).

ReplaceRelation(G, i, r)

Given an fp-group G and a relation r in the generators of G, create a new fp-group
which has as its presentation the relations for G with relation number i replaced by
the relation r.

ReplaceRelation(G, i, g)

Given an fp-group G and an element g of G, create a new fp-group which has as
its presentation the relations for G with relation number i replaced by the relation
g = Id(G).

Example H71E1

We use the function ReplaceRelation to vary a particular relation in a presentation. The order
of the resulting group together with the index of a particular subgroup is determined.

> G<x,y,z,h,k,a> := Group< x, y, z, h, k, a |

> x^2, y^2, z^2, (x,y), (y,z), (x,z), h^3, k^3, (h,k),

> (x,k), (y,k), (z,k), x^h*y, y^h*z, z^h*x, a^2, a*x*a*y,

> a*y*a*x, (a,z), (a,k), (a*h)^2 >;

> for i := 0 to 1 do

> for j := 0 to 1 do

> for k := 0 to 1 do

> for l := 0 to 2 do

> rel := G.1^i*G.2^j*G.3^k*G.5^l*(G.6*G.4)^2 = Id(G);

> K := ReplaceRelation(G, 21, rel);

> print Order(K), Index(K, sub< K | K.6, K.4>);

> end for;

> end for;
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> end for;

> end for;

<0, 0, 0, 0> 144 24

<0, 0, 0, 1> 144 8

<0, 0, 0, 2> 144 8

<0, 0, 1, 0> 18 3

<0, 0, 1, 1> 18 1

<0, 0, 1, 2> 18 1

<0, 1, 0, 0> 72 3

<0, 1, 0, 1> 72 1

<0, 1, 0, 2> 72 1

<0, 1, 1, 0> 36 6

<0, 1, 1, 1> 36 2

<0, 1, 1, 2> 36 2

<1, 0, 0, 0> 18 3

<1, 0, 0, 1> 18 1

<1, 0, 0, 2> 18 1

<1, 0, 1, 0> 144 6

<1, 0, 1, 1> 144 2

<1, 0, 1, 2> 144 2

<1, 1, 0, 0> 36 6

<1, 1, 0, 1> 36 2

<1, 1, 0, 2> 36 2

<1, 1, 1, 0> 72 12

<1, 1, 1, 1> 72 4

<1, 1, 1, 2> 72 4

71.2.2 Low Level Operations on Words
The functions described in this section perform low level string operations like substitution,
elimination or substring matching on elements of fp-groups.

Eliminate(u, x, v)

Given words u and v, and a generator x, all belonging to a group G, return the
word obtained from u by replacing each occurrence of x by v and each occurrence
of x−1 by v−1.

Eliminate(U, x, v)

Given a set of words U , a word v, and a generator x, all belonging to a group G,
return the set of words obtained by taking each element u of U in turn, and replacing
each occurrence of x in u by v and each occurrence of x−1 by v−1.
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Match(u, v, f)

Suppose u and v are words belonging to the same group G, and that f is an integer
such that 1 ≤ f ≤ #u. The function seeks the least integer l such that:
(a) l ≥ f ; and
(b)v appears as a subword of u, starting at the l-th letter of u.
If such an integer l is found Match returns the value true and l. If no such l is found,
Match returns the value false.

RotateWord(u, n)

The word obtained by cyclically permuting the word u by n places. If n is positive,
the rotation is from left to right, while if n is negative the rotation is from right to
left. In the case where n is zero, the function returns u.

Substitute(u, f, n, v)

Given words u and v belonging to a group G, and non-negative integers f and n,
this function replaces the substring of u of length n, starting at position f , by the
word v. Thus, if u = xe1

i1
· · ·xef

if
· · ·xef+n−1

if+n−1
· · ·xem

im
then the substring xef

if
· · ·xef+n−1

if+n−1

is replaced by v. If the function is invoked with v = Id(G), then the substring
x

ef

if
· · ·xef+n−1

if+n−1
of u is deleted.

Subword(u, f, n)

The subword of the word u comprising the n consecutive letters commencing at the
f -th letter of u.

Example H71E2

We demonstrate some of these operations in the context of the free group on generators x, y, and
z.

> F<x, y, z> := FreeGroup(3);

> u := (x, y*z);

> w := u^(x^2*y);

> #w;

12

> w;

y^-1 * x^-3 * z^-1 * y^-1 * x * y * z * x^2 * y

We replace each occurrence of the generator x in w by the word y ∗ z−1.

> Eliminate(w, x, y*z^-1);

y^-1 * z * y^-1 * z * y^-1 * z * y^-1 * z^-2 * y * z * y * z^-1 * y * z^-1 * y

We count the number of occurrences of each generator in w.

> [ ExponentSum(w, F.i) : i in [1..Ngens(F)] ];

[ 0, 0, 0 ]

> GeneratorNumber(w);
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-2

We locate the start of the word u in the word w.

> b, p := Match(w, u, 1);

> b, p;

true 4

We now replace the subword u in w by the word y ∗ x.

> t := Substitute(w, p, #u, y*x);

> t;

y^-1 * x^-2 * y * x^3 * y

We create the set of all distinct cyclic permutations of the word u.

> rots := { RotateWord(u, i) : i in [1 ..#u] };
> rots;

{ y^-1 * x * y * z * x^-1 * z^-1, x * y * z * x^-1 * z^-1 * y^-1,

x^-1 * z^-1 * y^-1 * x * y * z, z * x^-1 * z^-1 * y^-1 * x * y,

z^-1 * y^-1 * x * y * z * x^-1, y * z * x^-1 * z^-1 * y^-1 * x }

71.3 Interactive Coset Enumeration

71.3.1 Introduction
This section presents the interactive coset enumeration facility of Magma. This concept
makes it possible to restart an enumeration after changing enumeration parameters or
adding relators or subgroup generators, while making use of information obtained up to
that point as much as possible. It is thus particularly suitable for very hard enumerations,
requiring a careful and interactive choice of enumeration parameters or for series of similar
enumerations.

The Todd-Coxeter implementation installed in Magma is based on the stand alone
coset enumeration programme ACE3 developed by George Havas and Colin Ramsay at
the University of Queensland. The reader should consult [CDHW73] and [Hav91] for an
explanation of the terminology and a general description of the algorithm. A manual for
ACE3 as well as the sources of ACE3 can be found online [Ram].

In Magma an interactive coset enumeration is realised as an object of the category
GrpFPCosetEnumProc which can be created and modified, allows starting and restarting
of coset enumerations and provides access to internal data like the coset table and various
status information.
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71.3.2 Constructing and Modifying a Coset Enumeration Process

CosetEnumerationProcess(G, H: parameters)

This function creates a coset enumeration process for enumerating the cosets of the
subgroupH of the finitely presented groupG. Note that no actual coset enumeration
is started for the created coset enumeration process. This can be done with the
function StartEnumeration.

The user can control in detail the way a subsequent enumeration will be per-
formed with the help of the following parameters. For a more thorough explanation
of the parameters and of how they affect the coset enumeration, we refer to the ACE3
manual.

Compact RngIntElt Default : 10
This parameter controls the compaction of the coset table during an enumeration.
A compaction will be done if a new coset definition is required, there is no space for
a new coset available in the coset table and the percentage of dead cosets exceeds
the value of the parameter Compact.

CosetLimit RngIntElt Default : 0
If CosetLimit is set to n, where n is a positive integer, then the coset table may
have at most n rows. In other words, a maximum of n cosets can be defined at
any instant during the enumeration. It is ensured in this case, that enough memory
is allocated to store the requested number of cosets, regardless of the value of the
parameter Workspace.

If CosetLimit is set to 0 (default), the maximal number of active cosets is
determined by the size of the coset table (cf. parameter Workspace) and the number
of columns of the coset table (i.e. the number of group generators).

Workspace RngIntElt Default : 4000000
The number of words allocated for the coset table. Note that if CosetLimit is set,
at least as much memory is allocated as is necessary to store the requested number
of cosets.

FillFactor RngIntElt Default : 0
In certain situations it is necessary to ensure that a certain proportion, the fill
fraction (see Havas (1991)), of the coset table is always kept filled, even if preferred
definitions are made. The parameter FillFactor allows the user to specify the fill
fraction which is the reciprocal of FillFactor. The default value of 0 selects a fill
factor of b(5 ∗ (c+ 2))/4c, where c is the number of columns in the coset table.

CTFactor RngIntElt Default : 1000
RTFactor RngIntElt Default : 2000/l
Style MonStgElt Default : “R CR”

These parameters control the enumeration style and the balance between coset table
style definitions (C-style, Felsch style) and relator table style definitions (R-style,
HLT style).
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The parameters CTFactor and RTFactor set the number of C-style coset defini-
tions and R-style coset applications, respectively, which are performed in every step
of the appropriate type. The default value for RTFactor is 2000/l, where l is the
total length of the relators.

The possible arguments to the parameter Style are "R", "C", "R CR", "Rc",
"Cr", "Rt" and "CR".

In style R all definitions are made via relator scans, i.e. this is HLT mode.
In style C all definitions are made by filling the next empty position in the coset

table and testing the new coset in all essentially different positions in the relators,
i.e. this is Felsch mode.

In style R CR we run in style R until an overflow occurs, perform a lookahead
on the entire table and then switch to style CR (see below).

The styles Rc and Cr are like the styles R and C, except that a single style C or
style R pass is done after the initial R or style C pass, respectively.

In style Rt definitions are made as in style R, but the new cosets are tested in
all essentially different positions in the relators as in style C.

In style CR alternate passes of style C and style R are performed, with all
definitions tested in all essentially different positions in the relators as in style C.

Lookahead RngIntElt Default : 0
In HLT style enumerations, possible implications of new definitions or deductions
made while tracing relators may not be detected until much later. One possible
solution to this problem is to perform lookaheads occasionally, i.e. to process the
coset table, looking for deductions or coincidences. A lookahead can be done using
the entire table (complete) or only that part of the table above the current coset
(partial) and it can be done in R-style (scanning cosets from the beginning of rela-
tors) or in C-style (testing all definitions in all essentially different relator positions).
The following lookahead modes are supported.

For Lookahead := 0 (default) no lookahead is done.
For Lookahead := 1 a partial R-style lookahead is done.
For Lookahead := 2 a complete C-style lookahead is done.
For Lookahead := 3 a complete R-style lookahead is done.
For Lookahead := 4 a partial C-style lookahead is done.
Mendelsohn BoolElt Default : false

If Mendelsohn is set, coset applications are done at all cyclic permutations of the
relators. This is usually very expensive but may nevertheless be helpful in certain
cases.

RelationsInSubgroup RngIntElt Default : −1
This parameter controls, whether relators are treated as additional subgroup gen-
erators, i.e. whether they are applied to coset 1 at the start of an enumeration. An
argument of −1 (default) includes all relators, an argument of 0 turns this feature
off and a positive argument includes the appropriate number of relators, in order.

RowFilling BoolElt Default : true
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In R-style it is usual to scan each row of the table after its coset has been applied
to all relators, and to make definitions to fill any holes encountered. Failure to do
so can cause even simple enumerations to overflow. To switch row filling off, set the
parameter RowFilling to false.

PrefDefMode RngIntElt Default : 3

If the argument is 0, then Felsch style definitions are made using the next empty
position in the coset table. Otherwise, gaps of length one found during relator scans
are preferentially filled. If the argument is 1, they are filled immediately, and if it
is 2, the consequent deduction is also made immediately. If the argument is 3, then
the gaps are noted in the preferred definition queue and the next coset definition
will be made to fill the oldest gap of length one.

PrefDefSize RngIntElt Default : 8

This parameter controls the size of the preferred definition queue, which is im-
plemented as a ring buffer, dropping earliest entries. Setting PrefDefSize to n
allocates a buffer of size 2n.

DeductionMode RngIntElt Default : 4

A completed table is only valid if every table entry has been tested in all essentially
different relator positions. Untested deductions are stored on a stack. This pa-
rameter allows the user to specify how deductions should be handled. The possible
actions are:

For DeductionMode := 0 : discard deductions if there is no stack space left.
For DeductionMode := 1 : as 0, but redundant cosets are purged off the top of

the stack whenever a coincidence is found.
For DeductionMode := 2 : as 0, but all redundant cosets are purged from the

stack whenever a coincidence is found.
For DeductionMode := 3 : discard the entire stack if it overflows.
For DeductionMode := 4 : if the stack overflows, then double the stack size and

purge all redundant cosets from the stack.
If deductions are discarded for any reason during an enumeration, then a final

relator application pass will be done at the end of the enumeration automatically
to check the result.

DeductionSize RngIntElt Default : 1000

Sets the (initial) size of the deduction stack in words, with one deduction taking
two words. A value of 0 selects the default size of 1000 words.

PathCompression BoolElt Default : false

Switching this option on reduces the amount of data movement during coincidence
processing at the expense of tracing and compressing coincidence paths, which in-
volves many coset table accesses. The value of this parameter has no effect on the
result but may influence the running time.

TimeLimit RngIntElt Default : −1
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This parameter puts a time limit in seconds on the length of an enumeration. A
value of −1 (default) means no limit. A value of 0 performs exactly one pass through
the main enumeration loop.

LoopLimit RngIntElt Default : 0
The core enumerator is organised as a state machine, with each step performing
an action (e.g. lookahead, compaction) or a block of actions (e.g. CTFactor coset
definitions or RTFactor coset applications). Using this parameter, a limit on the
total number of steps can be imposed. A value of 0 (default) turns this feature off.

LowerBound RngIntElt Default : 1
This may be set to any known lower bound for the index. Should it happen that
the coset table has no holes, and the number of active cosets is equal to the given
bound, the enumeration will terminate. When the given bound is equal to the index,
this will save tracing relators at many cosets when there is no possibility of finding
coincidences.

Print BoolElt Default : false

If this parameter is set to true, the enumerator prints a single message at the end
of an enumeration and possibly some progress messages during an enumeration (cf.
parameter Messages).

Messages RngIntElt Default : 0
If the argument n of this parameter is non-zero (and Print is set to true), then a
progress message is printed after every |n| “actions” (i.e. coset definitions, deduc-
tions, coincidences, etc.) A negative value of n turns hole monitoring on.

Strategy MonStgElt Default :

Using this parameter one of several predefined strategies can be selected. The effect
is equivalent to selecting an appropriate combination of arguments for some of the
parameters explained above. Any predefined strategy can be modified by explicitly
overriding parameter values.

The following predefined strategies exist: “Default”, “Easy”, “Hard”, “Felsch”,
“HLT”, “CT”, “RT”, “Sims1”, “Sims3”, “Sims5”, “Sims7”, “Sims9”.

All predefined strategies set PrefDefSize := 8, DeductionSize := 1000,
PathCompression := false and LoopLimit := 0. For the remaining parameter
settings see Table 1 on page 2215, Table 2 on page 2215 and Table 3 on page 2216.

AddRelator(∼P, w)

Add a word w in the generators of the group G underlying the coset enumeration
process P to the defining relations of G. This means that a coset enumeration
process P for the cosets of H in G is transformed into a coset enumeration process
for the cosets of π(H) in π(G), where π : G→ π(G) is an epimorphism with kernel
〈w〉G. (Here 〈w〉G denotes the normal closure in G of the subgroup of G generated
by w.)
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Default Easy Hard Felsch HLT

Compact 10 100 10 10 10

Workspace (in 106) 4 1 10 4 4

FillFactor 0 1 0 0 1

CTFactor 1000 0 1000 1000 0

RTFactor 2000/l 1000 1 0 1000

Style R CR R CR C R

Lookahead 0 0 0 0 1

Mendelsohn false false false false false

RelationsInSubgroup −1 0 −1 −1 0

RowFilling true true true false true

PrefDefMode 3 0 3 3 0

DeductionMode 4 0 4 4 0

Table 1: Strategies

CT RT Sims1 Sims3 Sims5

Compact 100 100 10 10 10

Workspace (in 106) 4 4 4 4 4

FillFactor 1 1 1 1 1

CTFactor 1000 0 0 0 0

RTFactor 0 1000 1000 1000 1000

Style C R R Rt R

Lookahead 0 0 0 0 0

Mendelsohn false false false false true

RelationsInSubgroup 0 0 0 0 0

RowFilling false false true true true

PrefDefMode 0 0 0 0 0

DeductionMode 4 0 0 4 0

Table 2: Strategies (continued)

AddSubgroupGenerator(∼P, w)

Add an element w of the group G underlying the coset enumeration process P to
the generators of the subgroup. This means that a coset enumeration process P for
the cosets of H in G is transformed into a coset enumeration process for the cosets
of 〈H,w〉 in G, where 〈H,w〉 denotes the subgroup of G generated by H and w.
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Sims7 Sims9

Compact 10 10

Workspace (in 106) 4 4

FillFactor 1 1

CTFactor 0 1000

RTFactor 1000 0

Style Rt C

Lookahead 0 0

Mendelsohn true false

RelationsInSubgroup 0 0

RowFilling true false

PrefDefMode 0 0

DeductionMode 4 4

Table 3: Strategies (continued)

SetProcessParameters(∼P: parameters)

Change enumeration parameters of the coset enumeration process P . The
set of parameters accepted by this function is the same as for the function
CosetEnumerationProcess; see there for a description.

All parameters which are not explicitly changed or modified by selecting one of
the predefined strategies retain their old values.

It should be noted that it is not possible to decrease the workspace allocated by
a coset enumeration process, once an enumeration has been started. However the
workspace can be extended without invalidating any information contained in the
process.

71.3.3 Starting and Restarting an Enumeration
There are several ways of starting and restarting an enumeration for a coset enumeration
process, which retain information from previous enumerations to a varying extent.

StartEnumeration(∼P: parameters)

Start a new enumeration for P . All information in P is discarded. This function
can be called at any time for an existing coset enumeration process. The enumer-
ation parameters for P can be modified by passing parameters to this function.
(This is equivalent to calling the function SetProcessParameters before calling
StartEnumeration.) The set of parameters accepted by this function is the same
as for the function CosetEnumerationProcess; see there for a description.
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RedoEnumeration(∼P: parameters)

Restart an enumeration for P . All information in P is retained and the enumeration
is restarted at coset number 1. This function can be called for any coset enumer-
ation process, which contains a valid coset table. (If P does not contain a valid
coset table, a call to RedoEnumeration causes a runtime error. Use the function
CanRedoEnumeration to check whether a call to RedoEnumeration is legal for a
certain coset enumeration process.) Note that the coset table of P need not be
complete to use this function.

This function is intended for the case where additional relators and/or subgroup
generators have been introduced. The coset table contained in P is still valid.
However, the additional data may allow the enumeration to compete, or cause a
collapse to a smaller index.

The enumeration parameters for P can be modified by passing parameters to this
function. (This is equivalent to calling the function SetProcessParameters before
calling RedoEnumeration.) The set of parameters accepted by this function is the
same as for the function CosetEnumerationProcess; see there for a description.

CanRedoEnumeration(P)

Returns true, if a call to RedoEnumeration is legal for the coset enumeration process
P .

ContinueEnumeration(∼P: parameters)

Continue an enumeration for P , which has been interrupted because some limit
was exceeded. All information in P is retained and the enumeration is restarted
at the coset where the previous enumeration was stopped. This function can only
be called for a coset enumeration process, if the previous enumeration produced a
valid coset table and the subgroup underlying P has not been changed since then.
(Otherwise, a call to ContinueEnumeration causes a runtime error. Use the function
CanContinueEnumeration to check whether a call to ContinueEnumeration is legal
for a certain coset enumeration process.) Note that the coset table of P need not
be complete to use this function.

This function is intended for the case where an enumeration stopped without
producing a finite index. This function allows to continue the enumeration with
modified enumeration parameters with the minimal possible overhead.

The enumeration parameters for P can be modified by passing parameters to this
function. (This is equivalent to calling the function SetProcessParameters before
calling ContinueEnumeration.) The set of parameters accepted by this function is
the same as for the function CosetEnumerationProcess; see there for a description.

CanContinueEnumeration(P)

Returns true, if a call to ContinueEnumeration is legal for the coset enumeration
process P .
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ResumeEnumeration(∼P: parameters)

Resume or start an enumeration for P in the “cheapest” way permitted by the state
of the coset enumeration process P . The call

ResumeEnumeration(~P : parameters);

is equivalent to

if CanContinueEnumeration(P) then
ContinueEnumeration(~P : parameters);

elif CanRedoEnumeration(P) then
RedoEnumeration(~P : parameters);

else
StartEnumeration(~P : parameters);

end if;

The enumeration parameters for P can be modified by passing parameters to this
function. (This is equivalent to calling the function SetProcessParameters before
calling ResumeEnumeration.) The set of parameters accepted by this function is the
same as for the function CosetEnumerationProcess; see there for a description.

71.3.4 Accessing Information

CosetsSatisfying(P : parameters)

CosetSatisfying(P : parameters)

Given a coset enumeration process P with underlying group G and subgroup H,
which contains a valid coset table, these functions return a set of words representing
cosets which satisfy the conditions defined in the parameters.

A call to CosetSatisfying is equivalent to calling CosetsSatisfying with
Limit set to 1 and First set to 2 (unless a higher value for First is specified
explicitly), i.e. the function returns when the first coset, other than H, satisfying
the specified conditions has been found.

First RngIntElt Default : 1

This parameter determines at which coset the search for coset representatives sat-
isfying the designated conditions is started. The coset H always is coset number 1,
i.e. setting First to 2 restricts the search to non-trivial cosets.

For the function CosetSatisfying, the minimal possible value for this parameter
is 2; setting it to 1 does not cause an error but will be ignored.

Last RngIntElt Default : 0

This parameter determines at which coset the search for coset representatives satis-
fying the designated conditions is stopped. If it is set to 0 (default), all active cosets
(starting from First) are searched.

Limit RngIntElt Default : 0
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If this parameter is set to l > 0, the search for coset representatives is aborted as
soon as l cosets satisfying the designated condition have been found. If it is set to
0 (default for CosetsSatisfying), no limit is in force.

This parameter is not available for the function CosetSatisfying.
Normalizing BoolElt Default : false

If true, select coset representatives x such that x−1hix is known to be contained in
H from the information in the coset table of P for every generator hi of H. (I.e. x
is recognised as an element of the normaliser of H in G.)

Order RngIntElt Default : 0
Select coset representatives x such that xn is known to be contained in H from the
information in the coset table of P .

Print RngIntElt Default : 0
If the value of this parameter is positive, print the coset representatives found to
satisfy the designated conditions.

These functions can be called for any coset enumeration process, which contains
a valid coset table. If P does not contain a valid coset table, a call to any of these
functions causes a runtime error. You can use the function HasValidCosetTable
to check whether a call to these functions is legal for a certain coset enumeration
process.

CosetTable(P)

The current coset table of P as a map f : {1, . . . , r}×G→ {0, . . . , r}, where G and
H are the finitely presented group and the subgroup underlying P , respectively, and
r is number of active cosets. f(i, x) is the coset to which coset i is mapped under
the action of x ∈ G. The value 0 is only included in the codomain if the coset table
is not complete, and it denotes that the image of i under x is not known.

This function can be called for any coset enumeration process, which contains a
valid coset table. If P does not contain a valid coset table, a call to CosetTable
causes a runtime error. Use the function HasValidCosetTable to check whether a
call to CosetTable is legal for a certain coset enumeration process. Note that the
coset table of P need not be complete to use this function.

HasValidCosetTable(P)

Returns true, if P contains a valid (but not necessarily closed) coset table, i.e. if a
call to CosetTable is legal for the coset enumeration process P .

HasClosedCosetTable(P)

HasCompleteCosetTable(P)

Returns true, if P contains a closed, valid coset table.
Note that if HasClosedCosetTable returns true for a coset enumeration process

P , then in particular a call to CosetTable is legal for P .
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ExcludedConjugate(P)

ExcludedConjugates(P)

Given a coset enumeration process P with underlying group G and subgroup H,
which contains a valid coset table, these functions return a set E containing either
at most one word (ExcludedConjugate) or all words (ExcludedConjugates) of the
form g−1

i hjgi, where gi is a generator of G and hj is a generator of H, such that
g−1

i hjgi is not known to lie in H from the information contained in the coset table
of P .

If E is empty, then H is a normal subgroup of G. Otherwise the addition of
elements of E to the generators of H may yield a larger subgroup of the normal
closure of H in G. In the case of a non-complete coset table it may happen, however,
that excluded conjugates are found which actually lie in H.

These functions can be called for any coset enumeration process, which con-
tains a valid coset table. If P does not contain a valid coset table, a call to
ExcludedConjugate or ExcludedConjugates causes a runtime error. You can use
the function HasValidCosetTable to check whether a call to these functions is legal
for a certain coset enumeration process.

ExistsCosetSatisfying(P : parameters)

Given a coset enumeration process P with underlying group G and subgroup H,
which contains a valid coset table, return whether or not there exists a coset other
than H, which satisfies the conditions defined in the parameters. If such a coset
exists, a representing word is returned as second return value. This function ac-
cepts the same set of parameters as the function CosetSatisfying; see there for a
description.

This function can be called for any coset enumeration process, which con-
tains a valid coset table. If P does not contain a valid coset table, a call
to ExistsCosetSatisfying causes a runtime error. You can use the function
HasValidCosetTable to check whether a call to ExistsCosetSatisfying is legal
for a certain coset enumeration process.

ExistsExcludedConjugate(P)

Given a coset enumeration process P with underlying group G and subgroup H,
which contains a valid coset table, return whether or not there exists a word of the
form g−1

i hjgi, where gi is a generator of G and hj is a generator of H, such that
g−1

i hjgi is not known to lie in H from the information contained in the coset table
of P . If the answer is positive, such a word is returned as second return value.

This function can be called for any coset enumeration process, which con-
tains a valid coset table. If P does not contain a valid coset table, a call to
ExistsExcludedConjugate causes a runtime error. You can use the function
HasValidCosetTable to check whether a call to ExistsExcludedConjugate is legal
for a certain coset enumeration process.
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Note that the coset table of P need not be complete to call this function. A
negative result of ExistsExcludedConjugate always implies that H is a normal
subgroup of G, even if the coset table of P is not complete. In the case of a non-
complete coset table it may happen, however, that excluded conjugates are found
which actually lie in H.

ExistsNormalisingCoset(P)

ExistsNormalizingCoset(P)

Returns true, if an element of G \ H which normalises H can be found from the
coset table contained in P . (Here, G and H are the finitely presented group and
the subgroup underlying P , respectively.) If the answer is positive, such an element
is returned as second return value.

This function can be called for any coset enumeration process, which con-
tains a valid coset table. If P does not contain a valid coset table, a call
to ExistsNormalisingCoset causes a runtime error. You can use the function
HasValidCosetTable to check whether a call to ExistsNormalisingCoset is legal
for a certain coset enumeration process.

Note that the coset table of P need not be complete to call this function. How-
ever, no conclusion can be drawn from a negative result in the case of a non-complete
coset table.

Group(P)

Returns the group underlying P as a finitely presented group.

Index(P)

Returns the index of H in G. (Here, G and H denote the finitely presented group
and the subgroup underlying P , respectively.)

This function can only be called, if the last enumeration done for P has completed
successfully with a finite index. Otherwise, a call to Index will cause a runtime
error. Use the function HasValidIndex to check whether a call to Index is legal for
a certain coset enumeration process.

HasValidIndex(P)

Returns true, if the last enumeration done for P has completed successfully with a
finite index, i.e., if a call to Index is legal for the coset enumeration process P .

MaximalNumberOfCosets(P)

Returns the maximal number of cosets which were simultaneously active during the
last enumeration done for P , or 1 if no enumeration has been done for P .

This function may be useful for assessing the performance of a certain set of
enumeration parameters.
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Subgroup(P)

Returns the subgroup H underlying the coset enumeration process P . H is returned
as a subgroup of G, where G is the finitely presented group underlying P .

TotalNumberOfCosets(P)

Returns the total number of cosets defined during the last enumeration done for P ,
or 1 if no enumeration has been done for P .

This function may be useful for assessing the performance of a certain set of
enumeration parameters.

Example H71E3

In the Harada-Norton sporadic simple group

< x, a, b, c, d, e, f, g | x2, a2, b2, c2, d2, e2, f2, g2,

(x, a), (x, g),

(bc)3, (bd)2, (be)2, (bf)2, (bg)2,

(cd)3, (ce)2, (cf)2, (cg)2,

(de)3, (df)2, (dg)2,

(ef)3, (eg)2,

(fg)3,

(b, xbx),

(a, edcb), (a, f)dcbdcd, (ag)5,

(cdef, xbx), (b, xcdefx), (cdef, xcdefx) >

we want to construct the coset table for the subgroup generated by x, b, c, d, e, f, g interactively.
First, we create a coset enumeration process. Since the index of the chosen subgroup is 1 140 000,
we request a coset limit of 1 200 000. Then we start the enumeration.

> HN<x, a, b, c, d, e, f, g> :=

> Group< x, a, b, c, d, e, f, g |

> x^2, a^2, b^2, c^2, d^2, e^2, f^2, g^2,

> (x, a), (x, g),

> (b*c)^3, (b*d)^2, (b*e)^2, (b*f)^2, (b*g)^2,

> (c*d)^3, (c*e)^2, (c*f)^2, (c*g)^2,

> (d*e)^3, (d*f)^2, (d*g)^2,

> (e*f)^3, (e*g)^2,

> (f*g)^3,

> (b, x*b*x), (a, e*d*c*b), (a, f)*d*c*b*d*c*d,

> (a*g)^5, (c*d*e*f, x*b*x), (b, x*c*d*e*f*x),

> (c*d*e*f, x*c*d*e*f*x)

> >;

> H := sub<HN | x,b,c,d,e,f,g >;

> P := CosetEnumerationProcess(HN, H : CosetLimit := 1200000, Print := true);
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> StartEnumeration(~P);

Overflow

(a=1110331 r=58605 h=101193 n=1200001;

l=5444 c=105.36;

m=1110331 t=2001537)

The enumeration could not be completed successfully. Though P does contain a valid coset table,
but this coset table fails to be closed.

> HasValidCosetTable(P);

true

> HasClosedCosetTable(P);

false

We extract the coset table map, check its domain and its codomain, and determine the position
of the first “hole” in the coset table.

> ct := CosetTable(P);

> Domain(ct) : Minimal;

Cartesian Product<{ 1 .. 1110331 }, GrpFP: HN>

> Codomain(ct);

{ 0 .. 1110331 }

> row := 1;

> while forall(col){ gen : gen in {x, a, b, c, d, e, f, g}

> | ct(<row, gen>) ne 0 } do

> row +:= 1;

> end while;

> row;

41881

> col;

x

We change the enumeration parameters for the process P , selecting the predefined strategy Hard.
Since this predefined strategy sets a workspace of 10 000 000, we must expressly override this, if
we want the old value to be retained. Because the workspace size never is decreased once an
enumeration has been started, we can retain the old value simply by setting Workspace to 0; this
overrides the setting done by selecting the predefined strategy, but actually doesn’t change the
process’ workspace. We then continue the enumeration with the new set of parameters, after
checking that this is legal.

> SetProcessParameters(~P : Strategy := "Hard",

> Workspace := 0);

> CanContinueEnumeration(P);

true

> ContinueEnumeration(~P);

INDEX = 1140000

(a=1140000 r=58512 h=1144534 n=1144534;

l=70 c=6.50;
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m=1140000 t=2035739)

We have obtained a closed coset table. Note that the codomain of the new coset table map does
not contain 0.

> HasClosedCosetTable(P);

true

> ct := CosetTable(P);

> Domain(ct) : Minimal;

Cartesian Product<{ 1 .. 1140000 }, GrpFP: HN>

> Codomain(ct);

{ 1 .. 1140000 }

Example H71E4

First, we create a coset enumeration process for the trivial subgroup of the finite group G :=
〈a, b | a8, b7, (a ∗ b)2, (a−1 ∗ b)3〉 and start the enumeration.

> F<x, y> := FreeGroup(2);

> G<a, b> := quo<F | x^8, y^7, (x*y)^2, (x^-1*y)^3>;

> H := sub<G | >;

> P := CosetEnumerationProcess(G, H : Print := true);

> StartEnumeration(~P);

INDEX = 10752

(a=10752 r=57263 h=1 n=57263;

l=292 c=0.11;

m=47825t=57262)

We want to enumerate the cosets of the two non-trivial subgroups of G generated by a−1 ∗ b and
a2, respectively. To do this, we create two copies of the coset enumeration process P and use
the function AddSubgroupGenerator for each of them. Since the copies inherit all information
contained in P, we then can call the function RedoEnumeration to enumerate the cosets of the two
non-trivial subgroups, making use of the existing coset table.

> P1 := P;

> AddSubgroupGenerator(~P1, a^-1*b);

> Subgroup(P1);

Finitely presented group on 2 generators

Generators as words in group G

$.1 = Id(G)

$.2 = a^-1 * b

> CanRedoEnumeration(P1);

true

> RedoEnumeration(~P1);

INDEX = 3584

(a=3584 r=57263 h=1 n=57263;

l=49 c=0.02;

m=47825 t=57262)

>

> P2 := P;
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> AddSubgroupGenerator(~P2, a^2);

> Subgroup(P2);

Finitely presented group on 2 generators

Generators as words in group G

$.1 = Id(G)

$.2 = a^2

> CanRedoEnumeration(P2);

true

> RedoEnumeration(~P2);

INDEX = 2688

(a=2688 r=57263 h=1 n=57263;

l=37 c=0.02;

m=47825 t=57262)

Finally, we are interested in the quotient of G by the normal closure of the subgroup generated by
a4 and want to enumerate the cosets of the image of the subgroup generated by a2 in this quotient.
Since this is the subgroup used in P2, we create a copy of P2 and add the relation a4. Again, we
are able to make use of information obtained earlier, by continuing the inherited enumeration.

> P3 := P2;

> AddRelator(~P3, a^4);

> CanContinueEnumeration(P3);

true

> ContinueEnumeration(~P3);

INDEX = 84

(a=84 r=57263 h=1 n=57263;

l=2 c=0.00;

m=47825 t=57262)

We extract the quotient and its subgroup from the process P3, using the appropriate access
functions.

> G3<a3,b3> := Group(P3);

> G3;

Finitely presented group G3 on 2 generators

Relations

a3^8 = Id(G3)

b3^7 = Id(G3)

(a3 * b3)^2 = Id(G3)

(a3^-1 * b3)^3 = Id(G3)

a3^4 = Id(G3)

> H3<u3, v3> := Subgroup(P3);

> H3;

Finitely presented group H3 on 2 generators

Generators as words in group G3

u3 = Id(G3)

v3 = a3^2
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Example H71E5

Consider the subgroup H of the (infinite) group G := 〈a, b | b7, (a ∗ b)2, (a−1 ∗ b)3〉 generated by
a. We create a coset enumeration process and start an enumeration with the default parameters.

> F<x, y> := FreeGroup(2);

> G<a, b> := quo<F | y^7, (x*y)^2, (x^-1*y)^3>;

> H := sub<G | a>;

> P := CosetEnumerationProcess(G, H);

> StartEnumeration(~P : Print := true);

Overflow

(a=957026 r=415230 h=415230 n=999999;

l=3553 c=2.38;

m=960050 t=999998)

The enumeration produces a valid (albeit not complete) coset table.

> HasValidCosetTable(P);

true

> HasCompleteCosetTable(P);

false

Even the partial coset table is sufficient to find an element in the normaliser of H in G.

> found, elt := ExistsNormalisingCoset(P);

> found;

true

> elt;

b^-4 * a * b^-2

Example H71E6

Consider again the subgroup H of the (infinite) group G := 〈a, b | b7, (a∗ b)2, (a−1 ∗ b)3〉 generated
by a. We create a coset enumeration process and start an enumeration with the default parameters.

> F<x, y> := FreeGroup(2);

> G<a, b> := quo<F | y^7, (x*y)^2, (x^-1*y)^3>;

> H := sub<G | a>;

> P := CosetEnumerationProcess(G, H);

> StartEnumeration(~P : Print := true);

Overflow

(a=957026 r=415230 h=415230 n=999999;

l=3553 c=2.38;

m=960050 t=999998)

We check, whether the coset table exhibits excluded conjugates.

> ExistsExcludedConjugate(P);
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true a^b

It does. This means in particular, that H is not normal in G. We create a copy P1 of the coset
enumeration process P, extend the subgroup of P1 by the excluded conjugates found in the previous
step and restart the enumeration for P1.

> P1 := P;

> for c in ExcludedConjugates(P) do

> AddSubgroupGenerator(~P1, c);

> end for;

> RedoEnumeration(~P1);

INDEX = 1 (a=1 r=2 h=2 n=2; l=2 c=0.94; m=960050 t=999998)

The new subgroup is equal to G. In particular, the normal closure of H in G is the whole of G.

We return to the coset enumeration process P and check whether we can find a non-trivial element
x ∈NG(H) such that x2 ∈ H.

> ExistsCosetSatisfying(P : Order := 2, Normalizing := true);

true b^-4 * a * b^-2

We can. In fact, b−4 ·a·b−2 is the only non-trivial coset which is known to satisfy this condition. . .

> CosetsSatisfying(P : Order := 2, Normalizing := true);

{ Id(G), b^-4 * a * b^-2 }

. . . and we can’t find in a similar way a non-trivial element x ∈NG(H) such that x3 ∈ H.

> ExistsCosetSatisfying(P : Order := 3, Normalizing := true);

false

Note the difference in the output of CosetSatisfying and CosetsSatisfying: The former takes
into account only cosets other than H, whereas the latter (unless we set the parameter First)
includes the coset H, which obviously satisfies the specified conditions.

> CosetSatisfying(P : Order := 3, Normalizing := true);

{}

> CosetsSatisfying(P : Order := 3, Normalizing := true);

{ Id(G) }

71.3.5 Induced Permutation Representations
Given a finite index subgroup H of a group G, the action of G on the set of right cosets of
H in G by right multiplication defines a permutation representation ρ : G→ S of G onto
a suitable subgroup S of the symmetric group on [G : H] letters. The kernel of ρ is the
core of H in G, the maximal normal subgroup of G contained in H.
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CosetAction(P)

Given a coset enumeration process P with underlying group G and subgroup H for
which a valid finite index has been obtained, this function returns
(a)The permutation representation ρ of G, induced by the action of G on the set of

right cosets of H in G.
(b)The image group ρ(G).
(c) (if possible) the kernel of ρ.

This function can only be called, if the last enumeration done for P has completed
successfully with a finite index. Otherwise, a call to CosetAction will cause a run-
time error. Use the function HasValidIndex to check whether a call to CosetAction
is legal for a certain coset enumeration process.

CosetImage(P)

Given a coset enumeration process P with underlying group G and subgroup H for
which a valid finite index has been obtained, this function returns the image of the
permutation representation ρ of G induced by the action of G on the set of right
cosets of H in G as a permutation group on [G : H] digits.

This function can only be called, if the last enumeration done for P has completed
successfully with a finite index. Otherwise, a call to CosetImage will cause a runtime
error. Use the function HasValidIndex to check whether a call to CosetImage is
legal for a certain coset enumeration process.

CosetKernel(P)

Given a coset enumeration process P with underlying group G and subgroup H for
which a valid finite index has been obtained, this function returns the kernel of the
permutation representation ρ of G induced by the action of G on the set of right
cosets of H in G. This function is only available if the index of H in G is sufficiently
small.

This function can only be called, if the last enumeration done for P has completed
successfully with a finite index. Otherwise, a call to CosetKernel will cause a run-
time error. Use the function HasValidIndex to check whether a call to CosetKernel
is legal for a certain coset enumeration process.

71.3.6 Coset Spaces and Transversals
The (right) indexed coset space V of the subgroup H of the group G is a G-set consisting
of the set of integers {1, ...,m}, where i represents some right coset ci of H in G. The
action of G on this G-set is that induced by the natural G-action

f : V ×G→ V

where
f : 〈ci, x〉 = ck ⇐⇒ ci ∗ x = ck,

for ci ∈ V and x ∈ G. If certain of the products ci ∗ x are unknown, the corresponding
images under f are undefined, and V is called an incomplete coset space for H in G.
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CosetSpace(P)

The coset space defined by the current state of the coset enumeration process P .
This function can be called for any coset enumeration process, which contains a

valid coset table. (If P does not contain a valid coset table, a call to CosetSpace
causes a runtime error. Use the function HasValidCosetTable to check whether a
call to CosetSpace is legal for a certain coset enumeration process.) Note that the
coset table of P need not be complete to use this function.

RightCosetSpace(P)

LeftCosetSpace(P)

The explicit right coset space of a subgroup H of some group G is a G-set containing
the set of right cosets of H in G. The elements of this G-set are the pairs 〈H,x〉,
where x runs through a transversal for H in G. Similarly, the explicit left coset
space of H is a G-set containing the set of left cosets of H in G, represented as the
pairs 〈x,H〉.

These functions return the explicit right (left) coset space defined by the current
state of the coset enumeration process P .

This function can be called for any coset enumeration process, which contains a
valid coset table. (If P does not contain a valid coset table, a call to any of these
functions causes a runtime error. Use the function HasValidCosetTable to check
whether a call to these functions is legal for a certain coset enumeration process.)
Note that the coset table of P need not be complete to use these functions.

Transversal(P)

RightTransversal(P)

Given a coset enumeration process P with underlying group G and subgroup H for
which a valid finite index has been obtained, these functions return
(a)An indexed set T of elements of G forming a right transversal for H in G; and
(b)The corresponding transversal mapping φ : G→ T . If T = {@ t1, . . . , tr @} and

g ∈ G, then φ is defined by φ(g) = ti, where g ∈ H ∗ ti.
These functions can only be called, if the last enumeration done for P has com-

pleted successfully with a finite index. Otherwise, a call to any of these functions
will cause a runtime error. Use the function HasValidIndex to check whether a call
to these functions is legal for a certain coset enumeration process.

Example H71E7

We construct a coset enumeration process for the subgroup H = 〈a2, a−1b〉 in the group G =
〈a, b | a8, b7, (ab)2, (a−1b)3〉 and start an enumeration.

> F<x, y> := FreeGroup(2);

> G<a, b> := quo<F | x^8, y^7, (x*y)^2, (x^-1*y)^3>;

> H := sub<G | a^2,a^-1*b>;
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> P := CosetEnumerationProcess(G, H);

> StartEnumeration(~P);

After checking that a finite index has been obtained, we extract a transversal and the correspond-
ing transversal map from P.

> HasValidIndex(P);

true

> T, f := Transversal(P);

> #T;

448

> f;

Mapping from: GrpFP: G to SetIndx: T

Finally, we construct the permutation representation of G on the cosets of H in G, its image and
its kernel.

> r, S, K := CosetAction(P);

> r : Minimal;

Homomorphism of GrpFP: G into GrpPerm: S, Degree 448, Order 2^9 *

3 * 7

> S;

Permutation group S acting on a set of cardinality 448

Order = 10752 = 2^9 * 3 * 7

> K;

Finitely presented group K

Index in group G is 10752 = 2^9 * 3 * 7

Subgroup of group G defined by coset table

The kernel turns out to be trivial, i.e. the permutation representation is faithful.

> Order(K);

1

Example H71E8

Consider the subgroup H of the (infinite) group G := 〈a, b | b7, (a ∗ b)2, (a−1 ∗ b)3〉 generated by
a. We create a coset enumeration process and start an enumeration with the default parameters.

> F<x, y> := FreeGroup(2);

> G<a, b> := quo<F | y^7, (x*y)^2, (x^-1*y)^3>;

> H := sub<G | a>;

> P := CosetEnumerationProcess(G, H);

> StartEnumeration(~P : Print := true);

Overflow

(a=957026 r=415230 h=415230 n=999999;

l=3553 c=2.38;

m=960050 t=999998)

The enumeration produces a valid (albeit not complete) coset table.

> HasValidCosetTable(P);
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true

> HasCompleteCosetTable(P);

false

We extract the incomplete coset space from the process.

> V := CosetSpace(P);

> #V;

957026

> IsComplete(V);

false

71.4 p-Quotients (Process Version)

Let F be a finitely presented group, p a prime and c a positive integer. A p-quotient
algorithm constructs a consistent power-conjugate presentation for the largest p-quotient
of F having lower exponent-p class at most c. For details of this algorithm, see [NO96].

Assume that the p-quotient has order pn, Frattini rank d, and that its generators are
a1, . . . , an. Then the power-conjugate presentation constructed has the following additional
structure. The set {a1, . . . , ad} is a generating set for G. For each ak in {ad+1, . . . , an},
there is at least one relation whose right hand side is ak. One of these relations is taken as
the definition of ak. (The list of definitions is also returned by pQuotient.) The power-
conjugate generators also have a weight associated with them: a generator is assigned a
weight corresponding to the stage at which it is added and this weight is extended to all
normal words in a natural way.

The p-quotient process and its associated commands allows the user to construct a
power-conjugate presentation (pcp) for a p-group.

71.4.1 The p-Quotient Process

pQuotientProcess(F, p, c: parameters)

Given an fp-group F , a prime p and a positive integer c, create a p-quotient process
for the group F with the indicated arguments. As part of the initialisation of
the process, a pcp for the largest p-quotient of F having class at most c will be
constructed. If c is given as 0, then the limit 127 is placed on the class. This
function supports the same parameters as pQuotient and returns a process P .
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NextClass(∼P : parameters)

NextClass(∼P, k : parameters)

Exponent RngIntElt Default :

Metabelian BoolElt Default :

Print RngIntElt Default :

MaxOccurrence [ RngIntElt ] Default : []

Assumes that a pcp has already been constructed for the class c quotient of F . It
seeks to construct a pcp for the class c+1 p-quotient of F . If k is supplied, continue
to construct until the pcp for the largest quotient of class k is constructed.

The parameters Exponent, Print, and Metabelian are used as before. If
MaxOccurrence := Q, then the sequence Q has length equal to the rank of the
class 1 quotient of F ; its entries are integers which specify the maximum number of
occurrences of the class 1 generators in the definitions of pcp generators of F . An
entry of 0 for a particular generator indicates that no limit is placed on the number
of occurrences of this generator.

Care should be exercised when supplying values for parameters. Once set, they retain their
values until explicitly reassigned.

71.4.2 Using p-Quotient Interactively
We assume that we have constructed a pcp for the largest class c p-quotient of F and now
seek to construct a pcp for the largest class c+ 1 p-quotient.

The following options allow the user to construct a pcp for the next class of the group
interactively. The steps are laid out in one of a number of natural sequences in which
they may be executed. Some of them may be interleaved; however, the user should pay
particular attention to the assumptions mentioned below. The procedures that drive the
process do not verify that the assumptions are satisfied.

StartNewClass(∼P: parameters)

If P is a process for a class c p-quotient, commence construction of class c+ 1.

Tails(∼P: parameters)

Tails(∼P, k: parameters)

Metabelian BoolElt Default : false

Add tails to the current pcp; default is to add all tails for this class. If k is supplied,
then tails for weight k only are added; in this case, it is assumed that the tails for
each of weight c + 1, c, . . . , k + 1 have already been added. The valid range of k is
2, . . . , c+1. The one valid parameter is Metabelian; if true, then only the tails for
the metabelian p-quotient are inserted.
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Consistency(∼P: parameters)

Consistency(∼P, k: parameters)

Metabelian BoolElt Default : false

Apply the consistency algorithm to the pcp to compute any redundancies among
the tails already added. Default is to apply it to all tails; in this case, it is assumed
that all tails have been added. If k is supplied, it is assumed that tails for weight k
have been added; in this case, the tails added for weight k only are checked. The
range of k is 3, . . . , c+1. The one valid parameter is Metabelian; if true, we assume
that the tails inserted were those for a metabelian p-quotient and hence invoke the
(less expensive) metabelian consistency algorithm.

CollectRelations(∼P)
Collect the defining relations (if any) in the current pcp. If the tails operation is
not complete, then the relations may be evaluated incorrectly.

ExponentLaw(∼P : parameters)

ExponentLaw(∼P, Start, Fin: parameters)

Enforce the supplied exponent law on the current pcp. If Start and Fin are supplied,
then enforce the law for those weights between Start and Fin; otherwise, enforce
the law for all weights. It is assumed that the tails operation is complete. If the
display parameter DisplayLevel (which may be set using SetDisplayLevel) has
value 2, those words whose powers are collected and give redundancies among the
pcp generators are printed out. If DisplayLevel has value 3, all words whose powers
are collected are printed out. The following additional parameters are available:

Exponent RngIntElt Default : 0
If Exponent := m, enforce the exponent law, xm = 1, on the group.

Print RngIntElt Default : 1
As for pQuotient.
Trial BoolElt Default : false

Generate the list of words used to enforce the exponent law and print out statistics
but do not power words or echelonise the results.

ShortList BoolElt Default : false

Generate the list of enforcement words whose entries have the form w or 1∗w where
w is an element of the Frattini subgroup of F .

DisplayList BoolElt Default : false

Display the list of all enforcement words generated – not just those which are col-
lected.

IdentifyFilters BoolElt Default : false

Identify filters used to eliminate words from list.
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InitialSegment [<GrpFPElt, RngIntElt>] Default : []

If InitialSegment := w, generate only those enforcement words which have w as
an initial segment, where w is supplied as a sequence of generator-exponent pairs.

Report RngIntElt Default : 0

If Report := n, report after computing the powers of each collection of n enforce-
ment words.

EliminateRedundancy(∼P)
Eliminate all redundant generators from the pcp defined by process P . This opera-
tion may be performed at any time.

We now list the remaining functions which can be applied to a pQuotient process.

Display(P)

Display(P, DisplayLevel)

Display the pcp for the p-quotientG of the fp-group F . The argument DisplayLevel
may be 1, 2, or 3, and is used to control the amount of information given:

1 : Display order and class of G;

2 : Display non-trivial relations for G;

3 : Display the structure of pcp generators of G, non-trivial relations of G, and the
map from the defining generators of F to the pcp generators of G.
The presentation displayed by this function is in power-commutator form. If

DisplayLevel is not supplied, the information displayed is determined by its exist-
ing (or default) value.

RevertClass(∼P)
Given a pcp for the class c + 1 p-quotient of F , this procedure reverts to the pcp
for the class c p-quotient of F . Note that this command can be applied only once
during construction of a single class.

pCoveringGroup(∼P)
pCoveringGroup(G)

Given a process or a pcp for a p-group, this procedure computes a pcp for the p-
covering group of this group. In the process case, it is equivalent to Tails(∼P);
Consistency(∼P); EliminateRedundancy(∼P).

GeneratorStructure(P)

GeneratorStructure(P, Start, Fin)

Display the structure of the generators in the pcp. If Start and Fin are given, then
print out the structure of those pcp generators numbered from Start to Fin.
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Jacobi(∼P, c, b, a, ∼r)
Jacobi(∼P, c, b, a)

Calculate the Jacobi c, b, a and echelonise the resulting relation against the current
pcp. If a redundant generator results from the echelonisation, the optional variable
r is the number of that generator; otherwise r has value 0.

Collect(P, Q)

The sequence Q, consisting of generator-exponent pairs, defines a word w in the pcp
generators of the group defined by the process P . Collect this word and return the
resulting normal word as an exponent vector.

EcheloniseWord(∼P, ∼r)
EcheloniseWord(∼P)

Echelonise the word most recently collected using Collect against the relations
of the pcp. If a redundant generator results from the echelonisation, the optional
variable r is the number of that generator; otherwise r has value 0. This function
must be called immediately after Collect.

SetDisplayLevel(∼P, Level)

This procedure alters the display level for the process to the supplied value, Level.

ExtractGroup(P)

Extract the group G defined by the pcp associated with the process P , as a member
of the category GrpPC of finite soluble groups. The function also returns the natural
homomorphism π from the original group F to G, a sequence S describing the
definitions of the pc-generators of G and a flag indicating whether G is the maximal
p-quotient of F .

The k-th element of S is a sequence of two integers, describing the definition of
the k-th pc-generator G.k of G as follows.
- If S[k] = [0, r], then G.k is defined via the image of F.r under π.
- If S[k] = [r, 0], then G.k is defined via the power relation for G.r.
- If S[k] = [r, s], then G.k is defined via the conjugate relation involving G.rG.s.

Order(P)

The order of the group defined by the pcp associated with the process P .

FactoredOrder(P)

The factored order of the group defined by the pcp associated with the process P .

NumberOfPCGenerators(P)

The number of pc-generators of the group defined by the pcp associated with the
process P .
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pClass(P)

The lower exponent-p class of the group defined by the pcp associated with the
process P .

NuclearRank(G)

NuclearRank(P)

Return the rank of the p-multiplicator of the p-group G, where G may be supplied
or defined by the process P .

pMultiplicatorRank(G)

pMultiplicatorRank(P)

Return the rank of the p-multiplicator of the p-group G, where G may be supplied
or defined by the process P .

Example H71E9

Starting with an exponent 9 group having two generators of order 3, we set up the largest class 4
quotient and then interactively compute two more classes.

> G<a, b> := Group<a, b | a^3, b^3>;

> q := pQuotientProcess(G, 3, 4: Exponent := 9, Print :=1);

Lower exponent-3 central series for G

Group: G to lower exponent-3 central class 1 has order 3^2

Group: G to lower exponent-3 central class 2 has order 3^3

Group: G to lower exponent-3 central class 3 has order 3^5

Group: G to lower exponent-3 central class 4 has order 3^7

> Display(q, 2);

Group: G to lower exponent-3 central class 4 has order 3^7

Non-trivial powers:

.3^3 = .6^2

Non-trivial commutators:

[ .2, .1 ] = .3

[ .3, .1 ] = .4

[ .3, .2 ] = .5

[ .4, .1 ] = .6

[ .4, .2 ] = .7

[ .5, .1 ] = .7
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[ .5, .2 ] = .6

We construct the class 5 quotient using the function NextClass.

> NextClass(~q);

Group: G to lower exponent-3 central class 5 has order 3^9

We now construct the class 6 quotient step by step. For this, we set the output level to 1.

> SetDisplayLevel(~q, 1);

Now we start the next class.

> StartNewClass(~q);

The first step is to add the tails.

> Tails(~q);

After that, we apply the consistency algorithm,. . .

> Consistency(~q);

. . . collect the defining relations,. . .

> CollectRelations(~q);

. . . and enforce the exponent law.

> ExponentLaw(~q);

Finally, we eliminate redundant generators.

> EliminateRedundancy(~q);

This results in the following presentation for class 6 quotient.

> Display(q, 2);

Group: G to lower exponent-3 central class 6 has order 3^11

Non-trivial powers:

.3^3 = .6^2 .8^2 .10 .11

Non-trivial commutators:

[ .2, .1 ] = .3

[ .3, .1 ] = .4

[ .3, .2 ] = .5

[ .4, .1 ] = .6

[ .4, .2 ] = .7

[ .4, .3 ] = .8 .10^2 .11^2

[ .5, .1 ] = .7 .8 .9^2 .10^2 .11^2

[ .5, .2 ] = .6 .8 .9^2 .10^2

[ .5, .3 ] = .9^2 .11

[ .5, .4 ] = .10 .11
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[ .6, .2 ] = .10^2

[ .7, .1 ] = .8

[ .7, .2 ] = .9

[ .7, .3 ] = .10^2 .11

[ .8, .2 ] = .10

[ .9, .1 ] = .11

Example H71E10

Starting with the free product of two cyclic groups of order 5, we bound the number of occurrences
of pcp generators of the class 1 quotient in definitions of new pcp generators.
We start with setting up the class 1 quotient of the group.

> G := Group<a, b | a^5, b^5>;

> q := pQuotientProcess(G, 5, 1);

> Display(q, 1);

Group: G to lower exponent-5 central class 1 has order 5^2

Now we start the next class, setting bounds on the number of occurrences of the pcp generators
of the class 1 quotient in the definitions of new pcp generators.

> NextClass(~q, 6: MaxOccurrence := [3, 2]);

Group: G to lower exponent-5 central class 2 has order 5^3

Group: G to lower exponent-5 central class 3 has order 5^5

Group: G to lower exponent-5 central class 4 has order 5^7

Group: G to lower exponent-5 central class 5 has order 5^9

> Display(q, 2);

Group: G to lower exponent-5 central class 5 has order 5^9

Non-trivial powers:

Non-trivial commutators:

[ .2, .1 ] = .3

[ .3, .1 ] = .4

[ .3, .2 ] = .5

[ .4, .1 ] = .6

[ .4, .2 ] = .7

[ .4, .3 ] = .8^4 .9

[ .5, .1 ] = .7 .8^4 .9

[ .6, .2 ] = .8

[ .7, .1 ] = .9

Example H71E11

We construct the class 6 quotient q of R(2, 5) and then partially construct the class 7 quotient
interactively to find out how many normal words having initial segment q.12 need to be considered
when imposing the exponent law.

> F := FreeGroup(2);

> q := pQuotientProcess(F, 5, 6: Exponent := 5);

Lower exponent-5 central series for F
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Group: F to lower exponent-5 central class 1 has order 5^2

Group: F to lower exponent-5 central class 2 has order 5^3

Group: F to lower exponent-5 central class 3 has order 5^5

Group: F to lower exponent-5 central class 4 has order 5^8

Group: F to lower exponent-5 central class 5 has order 5^10

Group: F to lower exponent-5 central class 6 has order 5^14

> StartNewClass(~q);

> Tails(~q);

> Consistency(~q);

> SetDisplayLevel(~q, 3);

> ExponentLaw(~q, 1, 6: InitialSegment := [<1, 2>], Trial := true);

0 Relations of class 1 will be collected

0 Relations of class 2 will be collected

Will collect power 5 of the following word: 1^2 2^1

1 Relation of class 3 will be collected

Will collect power 5 of the following word: 1^2 2^2

1 Relation of class 4 will be collected

Will collect power 5 of the following word: 1^2 2^3

Will collect power 5 of the following word: 1^2 5^1

2 Relations of class 5 will be collected

Will collect power 5 of the following word: 1^2 2^4

Will collect power 5 of the following word: 1^2 2^1 4^1

2 Relations of class 6 will be collected

Example H71E12

We demonstrate several of the remaining procedures in the course of interactively extending the
class 6 quotient of the group

< a, b, c, d | (bc−1d)7, (cd−1)7, (b, a) = c−1, (c, a) = 1, (c, b) = d−1 >

to class 7.

> G := Group<a, b, c, d | (b * c^-1 * d)^7, (c * d^-1)^7, (b,a) = c^-1,

> (c,a) = 1, (c,b) = d^-1>;

> q := pQuotientProcess(G, 7, 6);

Lower exponent-7 central series for G

Group: G to lower exponent-7 central class 1 has order 7^2

Group: G to lower exponent-7 central class 2 has order 7^4

Group: G to lower exponent-7 central class 3 has order 7^6

Group: G to lower exponent-7 central class 4 has order 7^8

Group: G to lower exponent-7 central class 5 has order 7^11

Group: G to lower exponent-7 central class 6 has order 7^14

> StartNewClass(~q);

> Tails(~q);

> GeneratorStructure(q, 15, 34);

Class 7

15 is defined on [12, 1] = 2 1 2 2 1 2 1
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16 is defined on [12, 2] = 2 1 2 2 1 2 2

17 is defined on [13, 1] = 2 1 2 2 2 2 1

18 is defined on [13, 2] = 2 1 2 2 2 2 2

19 is defined on [14, 1] = 1 1 1 1 1 1 1

20 is defined on [14, 2] = 1 1 1 1 1 1 2

21 is defined on 14^7 = 1 1 1 1 1 1 1

22 is defined on [9, 1] = 2 1 2 2 1 1

23 is defined on [10, 1] = 2 1 2 2 2 1

24 is defined on [11, 1] = 1 1 1 1 1 1

25 is defined on [11, 2] = 1 1 1 1 1 2

26 is defined on [8, 1] = 1 1 1 1 1

27 is defined on [8, 2] = 1 1 1 1 2

28 is defined on [5, 1] = 2 1 2 1

29 is defined on [6, 1] = 1 1 1 1

30 is defined on [6, 2] = 1 1 1 2

31 is defined on [3, 1] = 2 1 1

32 is defined on [4, 1] = 1 1 1

33 is defined on [4, 2] = 1 1 2

34 is defined on 2^7 = 2 2

> Jacobi(~q, 6, 6, 1);

Generator 26 is trivial

Jacobi was 6 6 1

> Jacobi(~q, 3, 2, 1);

Generator 28 is redundant

Jacobi was 3 2 1

> v := Collect(q, [<29, 2>, <26, -3>]);

> v;

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 0, 0 ]

> EcheloniseWord(~q, ~redgen);

Generator 29 is trivial

> Display(q, 1);

Group: G to lower exponent-7 central class 7 has order 7^34

Now we enforce the relations. . .

> CollectRelations(~q);

. . . and apply the consistency algorithm.

> Consistency(~q);

> Display(q, 1);

Group: G to lower exponent-7 central class 7 has order 7^36

> EliminateRedundancy(~q);

> Display(q, 1);

Group: G to lower exponent-7 central class 7 has order 7^19
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71.5 Soluble Quotients

71.5.1 Introduction
This section presents a short overview towards the theory of the soluble quotient algorithm,
the functions designed for computing soluble quotients and the functions designed for
dealing with soluble quotient processes.

71.5.2 Construction
For a finite group G, the property of being soluble means that the derived series G =
G(0) > G(1) > ... > G(n) terminates with G(n) = 〈1〉. Each section G(i)/G(i+1) is a finite
abelian group, hence it can be identified with a ZG/G(i)-module M , where the action of
G/G(i) on M is given by the conjugation action on G(i)/G(i+1).

From module theory we see that there exists a series M = M (0) > M (1) > ... > M (ri),
where each section is an irreducible GF (p) G/G(i)-module for some prime p. Using these
series we obtain a refinement G = G(0) > G(1) > ... > G(n) = 〈1〉 of the commutator series
with the properties:
• The series is normal,
• Each section G(i)/G(i+1) is elementary abelian of prime power order, and is irreducible

as a G/G(i)-module.
• If G = H(0) > H(1) > ... > H(t) = 〈1〉 is another series with these properties, then

n = t and there exists a permutation π ∈ Sn such that G(i)/G(i+1) is isomorphic to
H(iπ)/H(iπ+1) (as GF (p) modules).

Note: A PC-presentation defined by a further refinement of this series leads to a “con-
ditioned” presentation. The converse is not always true, because the irreducibility of the
sections is not required for a conditioned presentation.

The soluble quotient algorithm uses these series to construct soluble groups. Starting
with the trivial group G/G(0), it successively chooses irreducible G/G(i) modules Mi and
extensions

ζi ∈ H2(G/G(i),Mi)

which give rise to exact sequences

1 →Mi → G/G(i+1) = G/G(i).Mi → G/G(i) → 1.

To describe the algorithmic approach, we consider the following situation. Let G be a finite
soluble group, M a normal elementary abelian subgroup of G such that M is a H = G/M
irreducible module. (The action of H on M is identified with the conjugation action of
G/M on the subgroup M .) Then the relations of the group G have the shape

gpi

i = wimi resp. ggi

j = wijmij ,mi,mij ∈M

where wi, wij are the canonical representatives ofH in G. Then ḡpi

i = w̄i resp. ḡj
ḡi = w̄ij is

a PC-presentation ofH and the set of images
(
(gpi−1

i , gi) → mi, (gj , gi) 7→ mij

)
determines

a unique element of the cocycle space C2(H,M).
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According to the p-group situation, we call the system t = (mi,mij), the tail defining
G = H.Mt as an extension of M by H.

Not every choice of a system t = (mi,mij) defines an extension. To make sure that t
corresponds to an element s of C2(G,M) it must satisfy a certain equation system, the so-
called consistency equations (see Vaughan-Lee). These are linear homogeneous equations
in M , so the solution space can be determined.

For the construction of soluble quotients we also have to find the epimorphism ε :
F→→G. The existence of the epimorphism is obviously a restriction of the possible images
G, and it can be checked simultaneously with constructing G. Let G be an extension
G = H.M , where M is a H-module and H is a known soluble quotient δ : F→→H. Then
δ is uniquely determined by the images δ(fi) = hi, 1 ≤ i ≤ r, where {f1, . . . , fr} is a
generating set of F . We want to find a lift ε of δ, i.e. ε(f) = δ(f) mod M for all f ∈ F .
This means that ε(fi) = hixi for all i ≤ r, where xi ∈ M are to be determined. Since ε
will be a homomorphism, we require ε(rj(f1, . . . , fr)) = 1G for the defining relations rj of
F . This leads to a linear equation system for the variables (x1, . . . , xr) ∈ Mr. We solve
this equation system together with the consistency equations, hence we find a subspace S
of Mr ×H2(H,M) of those extensions for which the epimorphism δ has a lift. Let us call
an element of S an extended tail.

Let K be the minimal splitting field of M, i.e. the character field of the unique char-
acter of H which corresponds to M . Then M is obviously a KH-module and S is also a
K-space. The space S has a K-subspace SS of split extensions, i.e. the projection of SS

into H2(H,M) is only the trivial element. For any element t ∈ S/SS the corresponding
map εt : F → H.Mt is necessarily surjective, hence defines a soluble quotient. Let s1, s2
be two elements of S/SS and let εi : F→→H.Msi =: Gi denote the corresponding soluble
quotients. If s1 and s2 are K-linear dependent, the groups G1 and G2 will be isomor-
phic. Unfortunately, the converse is not true, even K-linear independent elements may
lead to isomorphic groups. Nevertheless, if s1 and s2 are independent, the kernels of the
epimorphisms will be different, hence one can iterate the lifting to

ε1,2 : F→→(G1).Ms2 = (H.Ms1).Ms2 = H.(M ⊕M)s1·s2 .

(The last equality can be read as a definition of s1 · s2 in the righthand side term.)
The dimension a = dimK(S/SS) is therefore characterised as the maximal multiplicity

a = max
{
z ∈ Z+ | ∃ε : F→→H,Mz

}
.

SS itself also has a K-subspace SC , for which the map

εs : F → H.Ms, s ∈ SC

is not surjective. The K-dimension b = dimK(SS/SC) is again characterised as the maxi-
mal multiplicity

b = max
{
z ∈ Z+ | ∃ε : F→→H,Mz

}
.

Moreover, after taking a maximal extension ε : F→→H.M b, M never has to be considered
for split extensions again.
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71.5.3 Calculating the Relevant Primes
A crucial step in finding finite soluble quotients ε : F→→G is the calculation of the relevant
primes, i.e. the prime divisors of |G|. This is the most time consuming part of the algorithm,
so it is crucial to apply it as efficiently as possible, and any other information about possible
prime divisors is very helpful. We do not explain this calculation in detail. However, to
use the functions and options provided by Magma in a correct manner, we outline the
idea of the calculation.

Let ε : F→→G be a finite soluble quotient and let N denote the kernel of ε. If a module
M allows an extension ε̄ : F→→G.M , then M must be a constituent of N/N ′, and the
relevant primes are the prime divisors of N/N ′. Again N/N ′ can be viewed as an F/N -
module, hence an H-module. Therefore it is a direct sum N/N ′ ∼= Mp1 ⊕Mp2 ⊕ . . .⊕ Zd,
where the Mpi are finite modules of order a power of the prime pi. Let p not divide |H|.
Then by Zassenhaus the extension H.Mp must split. We consider an irreducible module
M in the head of Mp, i.e. there is an H-epimorphism Mp→→M . Then there is a valid
soluble quotient ε : F→→H.M and the extension H.M splits.

Now there exists an irreducible ZH- module L such that M is a GF (p)-modular con-
stituent of L/pL. Moreover, ∆ : H → GL(L) is the corresponding representation of H
and any ∆-module will have this property.

Now using the theory of space groups, one can construct homomorphisms ε1 : F→→H.L
and ε2 : H.L→→H.M such that the composition is surjective. Hence p can be detected in
∆. Let P∆ denote the set of primes obtained from ∆. To find these primes, we have to
know a set D of representatives of the irreducible rational representations of F/N , hence
of H. The set of prime divisors of K/K ′ is a subset of

P =
⋃

∆∈D

P∆ ∪ {p | p prime, p | |G|}.

We want to point out the following:
• Usually the set of primes dividing |K/K ′| is a proper subset of P , because the primes

dividing |G| may or may not divide |K/K ′|.
Conversely, if p does not divide |G|, then there certainly exists a module M in charac-
teristic p such that there is a soluble quotient F→→G.M , and the extension splits.

• The algorithm can also recognise infinite abelian sections. This means that already
ε1 : F→→H.L is surjective. All primes are relevant and no maximal finite soluble
quotient exists.

• Let φ : F→→H be a lift of ε : F→→G, i.e. G is a quotient of H: φ : H→→G. If the
relevant primes of G are known, these are also relevant primes of H, and only those
representations ∆ of H must be considered for which kerφ 6⊂ ker∆ is valid.

71.5.4 The Functions
Magma provides two different ways to calculate finite soluble quotients: a main function
for the whole calculation, and a process which gives control over each individual step.

Let F be a finitely presented group.
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SolubleQuotient(F, n : parameters)

SolvableQuotient(F, n : parameters)

SolubleQuotient(F : parameters)

SolvableQuotient(F : parameters)

SolubleQuotient(F, P : parameters)

SolvableQuotient(F, P : parameters)

Find a soluble quotient ε : F→→G with a specified order. n must be a nonnegative
integer. P must be a set of primes.

The three forms reflect possible information about the order of an expected
soluble quotient. In the first form the order of G is given by n, if n is greater than
zero. If n equals zero, nothing about the order is known and the relevant primes
will be calculated completely.

The second form, with no n argument, is equivalent to the first with n = 0. This
is a standard argument, and usually it is the most efficient way to calculate soluble
quotients.

Note that, if n > 0 is not the order of the maximal finite soluble quotient, it may
happen that no group of order n can be found, since an epimorphic image of size n
may not be exhibited by the chosen series.

In the third form a set P of relevant primes is given. The algorithm calculates
the biggest quotient such that the order has prime divisors only in P . P may have
a zero as element, this is just for consistency reasons. It is equivalent to the first
form with n equal zero.

The returned values are the group G and the epimorphism ε : F→→G. The third
returned value is a sequence describing the series and modules by which G has been
constructed.

The fourth value is a string which explain the reason for termination. The
following list gives the termination conditions. The algorithm terminates normally
if:

1. A quotient of the given order has been constructed.

2. A maximal quotient (with respect to the conditions given on the order) has been
constructed.

The algorithm will be aborted and returns a warning if:

3. A bound on the length of a series or subseries has been hit.

4. A limit on the size of the quotient or a section has been hit.

5. The algorithm detects a free abelian section.
With the following options one can define abort conditions corresponding to the

third and fourth item. The idea of all these conditions is to control the occurrence
of infinite soluble quotients.

SeriesLength RngIntElt Default : 0
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Limits the length of the chief series to r. For sag-series it is the nilpotent length of
the series, for derived series it is the derived length. The default value of zero means
no limit.

If the algorithm hits the limit, it gives a warning message and returns the last
soluble quotient.

SubseriesLength RngIntElt Default : 0

Limits the length of a series in a section. If the sag-series is used, it is the length
of the lower descending series. For the derived series, the limit is applied to the
exponent of an element of a section with maximal prime power order. For example,
if the limit is set to 3, the limit would be hit by a section of type C8, but not by C3

2

and not even by C2
4 .

#QuotientSize RngIntElt Default : 0

If the value n is bigger than zero, the algorithm returns if a quotient of order bigger
or equal to n has been found. A warning message will be printed.

#SectionSize RngIntElt Default : 0

If the value s is bigger than zero, the algorithm returns if the order of a section is
bigger than or equal to s. A warning message will be printed.

Note: Since an additive bound on a group order is not as meaningful as a mul-
tiplicative bound, the latter options are only useful as break conditions when the
quotient gets too big for further calculations. The return quotient which hits such
a bound is somewhat randomly chosen, since only a change in the order of checking
modules may lead to other quotients.

With the following options the strategy of the algorithm and some subalgorithms
can be chosen.

#MSQ Series MonStgElt Default : “sag”

Determines the series which is used for the construction of soluble groups.
The default value is "sag", since it is usually the most efficient choice. Of course,

there is a value "derived", exhibiting the derived series.
Another choice is "lowercentral", choosing the lower central series. This re-

stricts the algorithm to finite nilpotent quotients. The choice "pcentral" only
exhibits p-groups as quotients.

The nilpotent resp. p-quotient algorithms are usually more efficient, so these
options may only be useful to obtain additional information needed for a SQ-process.

MSQ PrimeSearchModus RngIntElt Default : 3

Defines at what status of the algorithm the relevant prime search is called.
The possible choices reflect the different intentions of constructing a soluble quo-

tient; for the general situation, (i.e. finding a finite soluble quotient without any
information about relevant primes and check its maximality) this option makes only
little difference in runtime behaviour.
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0: No calculation of relevant primes. This is the default value, if the second argu-
ment does not request a prime calculation, e.g. if the order of the quotient or its
relevant primes are known.

1: The relevant primes will be calculated after the soluble quotient algorithm (with
the given input) terminates normally. Possibly new relevant primes are returned
in a message. If, for example, the second argument is a set S (so no limit on the
exponent) and no new relevant primes have been found, the maximality of the
soluble quotient is proved.

2: As 1, but continues the algorithm when finding new relevant primes.
3: Perform the relevant prime calculation after a “main” step in the series, i.e.

after completing a nilpotent section in a sag-series resp. a commutator section
for the derived series. This is the default value, if prime calculation is required
by the second argument. It is a good choice if one wants to construct large finite
quotients quickly.
Note: This option can cause problems in case of a sag-series when infinite soluble
quotients exist. For finite quotients, it seems to be the best choice.

4: Perform the relevant prime calculation after calculating an elementary abelian
layer. This option is preferable, if the sag-series is used and an infinite soluble
quotient is possible.

5: Perform the relevant prime calculation after each successful lift of a quotient.
This option is preferable when infinite sections shall be detected as soon as
possible (with respect to the chosen series).
MSQ ModulCalcModus RngIntElt Default : 0

In the construction of soluble quotients using a sag-series one can restrict the number
of modules by using tensor products and skew symmetric products. This can improve
the performance in the case of big soluble quotients, for small quotients the overhead
may invalidate the improvement. For other series this option has no meaning. The
possible values are:
0: Do not apply this technique (default).
1: Fast version, just apply those parts which can be calculated quickly.
2: Full version, this is only recommended for “big” soluble quotients, i.e. quotients

with long descending series in nilpotent sections.
MSQ CollectorModus RngIntElt Default : 2

Defines the setup modus for the symbolic collector, i.e. the ratio of precalculation
to dynamic setup:
0: Full precalculation, preferable for small soluble groups.
1: Partial precalculation (test version).
2: Dynamic setup (default).

The function also provides a general print option determining the amount of
timings status information during the function call. Additionally there are some
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verbose flags which determine the amount of information given about various sub-
algorithms. If both a general print value and a verbose flag are given, the verbose
flag has higher preference.

Print RngIntElt Default : 0
Determines what timing information and status messages are given during the cal-
culation (0 = no printing, 5 = maximal information).

Verbose MSQ Messages Maximum : 2
If set to 1, the sizes of new soluble quotients are printed.

Verbose MSQ PrimeSearch Maximum : 15
Bitflag for print levels during the calculation of relevant primes:
1: Timings and statistics about the calculation of rational representations.
2: Timings for transforming rational into integral representations.
4: Timing for finding the relevant primes.
8: Printing of new relevant primes.

Verbose MSQ RepsCheck Maximum : 3

1: Timing for checking extensions of modules.
2: Statistics about the modules to be checked.

Verbose MSQ RepsCalc Maximum : 3

1: Timing information about the module calculation.
2: Statistics about the module calculation.

Verbose MSQ Collector Maximum : 1
If set to 1, the timing for the setup of the symbolic collector is printed.

Verbose MSQ TraceFunc Maximum : 2
Give messages about the main function calls (1) resp. most function calls (2) in the
Magma language during the algorithm.
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Chapter 72

POLYCYCLIC GROUPS

72.1 Introduction

In this chapter, we consider a class of finitely presented groups for which the word problem
is solvable, the category of – possibly infinite – polycyclic groups. The corresponding
Magma category is called GrpGPC. To distinguish this class from finite solvable groups
described by a power-conjugate presentation (Magma category GrpPC, cf. Chapter 63),
we use the term general polycyclic group.

An introduction to the theory of polycyclic groups and a collection of some basic al-
gorithms can be found in [Sim94, ch. 9]. Unless otherwise mentioned, implementations of
Magma functions are mostly based on ideas described in this reference.

72.2 Polycyclic Groups and Polycyclic Presentations

72.2.1 Introduction
A polycyclic group is a group G with a subnormal series G = G1 . G2 . . . . . Gn+1 = 1 in
which each of the quotients Gi/Gi+1 is cyclic. Every polycyclic group G has a presentation
of the form

< a1, . . . , an | ami
i = wi,i (i ∈ I),
aai

j = wi,j (1 ≤ i < j ≤ n),

a
a−1

i
j = w−i,j (1 ≤ i < j ≤ n, i /∈ I) >

where
(i) I ⊆ {1, . . . , n},
(ii) mi > 1 for i ∈ I, and

(iii) the words wi,j are of the form wi,j = a
l(i,j,|i|+1)
|i|+1 . . . a

l(i,j,n)
n , with 0 ≤ l(i, j, k) < mk

if k ∈ I.
Such a presentation is called a polycyclic presentation for G. For 1 ≤ i ≤ n, let Gi

be the subgroup of G generated by ai, . . . , an and define Gn+1 to be the trivial group.
The presentation is called consistent, if |Gi/Gi+1| = mi whenever i ∈ I and Gi/Gi+1 is
infinite whenever i /∈ I. The generators a1, . . . an are referred to as polycyclic generators
(pc-generators) for G and the values mi (i ∈ I) are called the corresponding pc-exponents.

In Magma, the user can define a polycyclic group by providing a consistent polycyclic
presentation or by using one of the existing category transfer functions.

Given a consistent polycyclic presentation for G, every element a of G can be written
uniquely in the form a = ae1

1 . . . aen
n , where the ei are integers satisfying 0 ≤ ei < mi
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if i ∈ I. This form is called normal form. There exists an algorithm (the collection
algorithm), which given an arbitrary word in the generators a1, . . . , an, will determine
the corresponding normal word. Magma uses a collection algorithm written by Volker
Gebhardt. The cost of collection for this algorithm grows logarithmically in a bound on
the absolute values of the exponents ei occurring during the collection [Geb02].

Infinite polycyclic groups are a comparatively new topic in computational group theory
and the number of available algorithms is much smaller than in the case of finite polycyclic
groups. For this reason, the data type GrpPC (cf. Chapter 63) should be preferred for finite
polycyclic groups.

72.2.2 Specification of Elements
Elements of polycyclic groups are words. A word is defined inductively as follows:
(i) A generator is a word;
(ii) The expression (u) is a word, where u is a word;
(iii) The product u ∗ v of the words u and v is a word;
(iv) The conjugate uv of the word u by the word v is a word (uv expands into the word

v−1 ∗ u ∗ v);
(v) The power of a word un, where u is a word and n is an integer, is a word;
(vi) The commutator (u, v) of the words u and v is a word ( (u, v) expands into the

word u−1 ∗ v−1 ∗ u ∗ v).
G ! Q

Given the polycyclic group G and a sequence Q of length n, containing integers
e1 . . . en, where 0 ≤ ei < mi if i ∈ I, construct the element x of G given by

x = ae1
1 . . . aen

n .

Identity(G)

Id(G)

G ! 1

Construct the identity element of the polycyclic group G.

72.2.3 Access Functions for Elements
Throughout this subsection, G will be a polycyclic group with pc-generators a1, . . . , an.

ElementToSequence(x)

Eltseq(x)

Given an element x belonging to the polycyclic group G, where x = ae1
1 . . . aen

n

in normal form, return the sequence Q of n integers defined by Q[i] = ei, for
i = 1, . . . , n.
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LeadingTerm(x)

Given an element x of a polycyclic group G with n pc-generators, where x is of the
form ae1

1 . . . aen
n , return aei

i for the smallest i such that ei > 0. If x is the identity of
G, then the identity is returned.

LeadingGenerator(x)

Given an element x of a polycyclic group G with n pc-generators, where x is of the
form ae1

1 . . . aen
n , return ai for the smallest i such that ei > 0. If x is the identity of

G, then the identity is returned.

LeadingExponent(x)

Given an element x of a polycyclic group G with n pc-generators, where x is of the
form ae1

1 . . . aen
n , return ei for the smallest i such that ei > 0. If x is the identity of

G, then 0 is returned.

Depth(x)

Given an element x of a polycyclic group G with n pc-generators, where x is of the
form ae1

1 . . . aen
n , return the smallest i such that ei > 0. If x is the identity of G,

then n+ 1 is returned.
Depth returns the maximal value of i, such that x ∈ Gi.

72.2.4 Arithmetic Operations on Elements
Throughout this subsection, G will be a polycyclic group with pc-generators a1, . . . , an.

g * h

Product of the element g and the element h, where g and h belong to some common
subgroup G of a polycyclic group U . If g and h are given as elements belonging to
the same proper subgroup G of U , then the result will be returned as an element of
G; if g and h are given as elements belonging to distinct subgroups H and K of U ,
then the product is returned as an element of G, where G is the smallest subgroup
of U known to contain both elements.

g *:= h

Replace g with the product of element g and element h.

g ^ n

The n-th power of the element g, where n is a positive or negative integer.

g ^:= n

Replace g with the n-th power of the element g.
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g / h

Quotient of the element g by the element h, i.e. the element g ∗ h−1. Here g and
h must belong to some common subgroup G of a polycyclic group U . The rules for
determining the parent group of g/h are the same as for g ∗ h.

g /:= h

Replace g with g ∗ h−1.

g ^ h

Conjugate of the element g by the element h, i.e. the element h−1 ∗ g ∗ h. Here g
and h must belong to some common subgroup G of a polycyclic group U . The rules
for determining the parent group of gh are the same as for g ∗ h.

g ^:= h

Replace g with the conjugate of the element g by the element h.

(g1, ..., gn)

Given the n words g1, . . . , gn belonging to some common subgroup G of a polycyclic
group U , compute the left-normed commutator of g1, . . . , gn. This is defined induc-
tively as follows: (g1, g2) = g−1

1 ∗g−1
2 ∗g1 ∗g2 and (g1, . . . , gn) = ((g1, . . . , gn−1), gn).

If g1, . . . , gn are given as elements belonging to the same proper subgroup G of
U , then the result will be returned as an element of G; if g1, . . . , gn are given as
elements belonging to distinct subgroups of U , then the product is returned as an
element of G, where G is the smallest subgroup of U known to contain all elements.

72.2.5 Operators for Elements

Order(x)

The order of the element x.

Parent(x)

The parent group G of the element x.

72.2.6 Comparison Operators for Elements

g eq h

Given elements g and h belonging to a common polycyclic group, return true if g
and h are the same element, false otherwise.

g ne h

Given elements g and h belonging to a common polycyclic group, return true if g
and h are distinct elements, false otherwise.
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IsIdentity(g)

IsId(g)

Returns true if g is the identity element, false otherwise.

72.2.7 Specification of a Polycyclic Presentation

quo< GrpGPC : F | R : parameters >

Check BoolElt Default : true

Given a free group F of rank n with generating set X, and a collection R of poly-
cyclic relations on X, construct the polycyclic group G defined by the polycyclic
presentation < X|R >.

The construct R denotes a list of polycyclic relations. Thus, an element of R
must be one of:
(a)A power relation ami

i = wi,i, i ∈ I ⊆ {1, . . . , n}, where mi > 1 is an integer, and
wi,i is Id(F ) or a word in the generators ai+1, . . . , an for i < n, and wi,i = Id(F )
for i = n.

(b)A conjugate relation a
ae

i
j = we·i,j , 1 ≤ i < j ≤ n, where we·i,j is a word in the

generators ai+1, . . . , an, e = 1 if i ∈ I and e ∈ {−1, 1} if i /∈ I.
(c) A power ami

i , i ∈ I ⊆ {1, . . . , n}, where mi > 1 is an integer, which is treated as
the power relation ami

i = Id(F ).
(d)A set of (a) – (c).
(e) A sequence of (a) – (c).

Note the following points:
(i) If there is no power relation for some generator ai, i = 1, . . . , n (i.e. i /∈ I),

conjugate relations aa−1
i

j = w−i,j must be present for i < j ≤ n (except for pairs
of commuting generators). If there is a power relation for ai, on the other hand,
conjugate relations involving a−1

i are not permitted.
(ii)Conjugate relations for pairs of commuting generators may be omitted. If no

conjugate relations are given for a certain pair of generators, the corresponding
generators are assumed to commute.

(iii)The words wi,j must be in normal form.
(iv)The presentation must be consistent. In particular, right hand sides of conjugate

relations must not be the empty word.

This constructor returns a polycyclic group because the category GrpGPC is stated.
If no category were stated, it would return an fp-group.

The parameter Check may be used to indicate whether or not the presentation
should be checked for consistency. Disabling this check can be useful for avoiding
runtime errors if the constructor is called in user written loops or functions. The
boolean valued function IsConsistent is provided to check presentations obtained
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with disabled consistency check. It should be noted that the results of working with
an inconsistent presentation are undefined, hence it is strongly advised to enable
the consistency check in the constructor or to use the function IsConsistent.

The natural homomorphism from F → G is returned as second return value.

PolycyclicGroup< x1, ..., xn | R : parameters >

Check BoolElt Default : true

Class MonStgElt Default :

Construct the polycyclic group G defined by the consistent polycyclic presentation
< x1, . . . , xn|R >.

The construct x1, . . . , xn defines names for the generators of G that are local
to the constructor, i.e. they are used when writing down the relations to the right
of the bar. However, no assignment of names to these generators is made. If the
user wants to refer to the generators by these (or other) names, then the generators
assignment construct must be used on the left hand side of an assignment statement.

The construct R denotes a list of polycyclic relations. The syntax and semantics
for the relations clause is identical to that appearing in the quo-constructor above.

A map f from the free group on x1, . . . , xn to G is returned as second return
value.

The parameter Check may be used as described for the quo-constructor.
If R is both, a valid power-conjugate presentation for a finite soluble group (cf.

Chapter 63) and a consistent polycyclic presentation, this constructor by default
returns a group in the category GrpPC. To force creation of a group in the category
GrpGPC, the parameter Class must be set to "GrpGPC" in these situations.

Example H72E1

(1) Consider the infinite polycyclic group defined by the presentation

< a, b, c | ba = b ∗ c, (a, c), (b, c) > .

Starting from a free group and giving the relations in the form of a sequence, this presentation
would be specified as follows:

> F<a,b,c> := FreeGroup(3);

> rels := [ b^a = b*c, b^(a^-1) = b*c^-1 ];

> G<a,b,c> := quo< GrpGPC : F | rels >;

> G;

GrpGPC : G of infinite order on 3 PC-generators

PC-Relations:

b^a = b * c,

b^(a^-1) = b * c^-1

Note, that the relation ba−1
= b ∗ c−1 has to be included, although it can be derived from the

relations ba = b ∗ c and (a, b).
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(2) The infinite dihedral group is obtained as epimorphic image of the free group of rank two as
follows:

> F<a,b> := FreeGroup(2);

> D<u,v>, pi := quo<GrpGPC: F | a^2, b^a = b^-1>;

> D;

GrpGPC : D of infinite order on 2 PC-generators

PC-Relations:

u^2 = Id(D),

v^u = v^-1

> pi;

Mapping from: GrpFP: F to GrpGPC: D

(3) We create an element e of the group D defined above from a sequence of coefficients and
extract both its leading generator and its leading exponent.

> e := D ! [1,42];

> e;

u * v^42

> gen := LeadingGenerator(e);

> gen;

u

> Parent(gen);

GrpGPC : D of infinite order on 2 PC-generators

PC-Relations:

u^2 = Id(D),

v^u = v^-1

> exp := LeadingExponent(e);

> exp;

1

We obtain an element of depth 2 from e, by replacing e with its quotient by the appropriate power
of the leading generator.

> e /:= gen^exp;

> Depth(e);

2

> e;

v^-42

> ElementToSequence(e);

[ 0, -42 ]

Example H72E2

Using the constructor PolycyclicGroup with different values of the parameter Class, we con-
struct the dihedral group of order 10 first as a finite soluble group given by a power-conjugate
presentation (GrpPC) and next as a general polycyclic group (GrpGPC). Note that the presenta-
tion 〈a, b | a2, b5, ba = b4〉 is both a valid power-conjugate presentation and a consistent polycyclic
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presentation, so we have to set the parameter Class to "GrpGPC" if we want to construct a group
in the category GrpGPC.

> G1<a,b> := PolycyclicGroup< a,b | a^2, b^5, b^a=b^4 >;

> G1;

GrpPC : G1 of order 10 = 2 * 5

PC-Relations:

a^2 = Id(G1),

b^5 = Id(G1),

b^a = b^4

> G2<a,b> := PolycyclicGroup< a,b | a^2, b^5, b^a=b^4 : Class := "GrpGPC">;

> G2;

GrpGPC : G2 of order 10 = 2 * 5 on 2 PC-generators

PC-Relations:

a^2 = Id(G2),

b^5 = Id(G2),

b^a = b^4

We construct the infinite dihedral group as a group in the category GrpGPC from a consistent
polycyclic presentation. We do not have to use the parameter Class in this case.

> G3<a,b> := PolycyclicGroup< a,b | a^2, b^a=b^-1>;

> G3;

GrpGPC : G3 of infinite order on 2 PC-generators

PC-Relations:

a^2 = Id(G3),

b^a = b^-1

The presentation 〈a, b | a2, b4, ba = b3〉 is not a valid power-conjugate presentation for the dihedral
group of order 8, since the exponent of b is not prime. However, it is a consistent polycyclic
presentation. Consequently, the constructor PolycyclicGroup without specifying a value for the
parameter Class returns a group in the category GrpGPC.

> G4<a,b> := PolycyclicGroup< a,b | a^2, b^4, b^a=b^3 >;

> G4;

GrpGPC : G4 of order 2^3 on 2 PC-generators

PC-Relations:

a^2 = Id(G3),

b^4 = Id(G3),

b^a = b^3
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72.2.8 Properties of a Polycyclic Presentation

IsConsistent(G)

Returns true if the stored presentation for G is consistent, false otherwise.

IsIdenticalPresentation(G, H)

Returns true if the polycyclic presentations for G and H are identical, false oth-
erwise.

PresentationIsSmall(G)

Returns true if only small integers occur in the presentation of G, false otherwise.
The category transfer functions FPGroup and PCGroup currently support only groups
with a small presentation.

72.3 Subgroups, Quotient Groups, Homomorphisms and Exten-
sions

72.3.1 Construction of Subgroups

sub< G | L >

Construct the subgroup H of the polycyclic group G generated by the elements
specified by the terms of the generator list L.
A term L[i] of the generator list may consist of any of the following objects:

(a)An element liftable to G;

(b)A sequence of integers representing an element of G;

(c) A subgroup of G;

(d)A set or sequence of (a), (b), or (c). The collection of words and groups specified
by the list must all belong to the groupG andH will be constructed as a subgroup
of G.
The generators of H consist of the words specified directly by terms of L[i]

together with the stored generating words for any groups specified by terms of L[i].
Repetitions of an element and occurrences of the identity element are removed.

The inclusion map from H to G is returned as a second value.

ncl< G | L >

Construct the subgroup N of the polycyclic group G as the normal closure of the
subgroup generated by the elements specified by the terms of the generator list L.

The possible forms of a term L[i] of the generator list are the same as for the
sub-constructor.

The inclusion map from N to G is returned as a second value.
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72.3.2 Coercions Between Groups and Subgroups

G ! g

Given an element g belonging to the subgroup H of the group G, rewrite g as an
element of G.

H ! g

Given an element g belonging to the group G, and given a subgroup H of G con-
taining g, rewrite g as an element of H.

K ! g

Given an element g belonging to the group H, and a group K, such that H and K
are subgroups of G, and both H and K contain g, rewrite g as an element of K.

InclusionMap(G, H)

The map from the subgroup H of G to G.

Example H72E3

Consider again the infinite polycyclic group G defined by the polycyclic presentation

< a, b, c | ba = b ∗ c, (a, c), (b, c) > .

> F<a,b,c> := FreeGroup(3);

> rels := [ b^a = b*c, b^(a^-1) = b*c^-1 ];

> G<a,b,c> := quo< GrpGPC : F | rels >;

> G;

GrpGPC : G of infinite order on 3 PC-generators

PC-Relations:

b^a = b * c,

b^(a^-1) = b * c^-1

Using the function PCGenerators which is described later, the groups G1, . . . , G4 and the corre-
sponding inclusion maps can be defined as follows:

> G_ := []; incl_ := [ PowerStructure(Map) | ];

> for i := 1 to #PCGenerators(G)+1 do

> G_[i], incl_[i] := sub< G | [ g : g in PCGenerators(G) |

> Depth(g) ge i ] >;

> end for;

> for i := 1 to #G_ do

> printf "G_%o = <%o>", i, {@ G!x : x in

> PCGenerators(G_[i]) @}; print "";

> end for;

G_1 = <{@ a, b, c @}>

G_2 = <{@ b, c @}>

G_3 = <{@ c @}>
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G_4 = <{@ @}>

Note that we must set the universe of the sequence incl to PowerStructure(Map) manually,
since we want to store maps which do not have a common domain. If we failed to do this, the
universe would be chosen automatically to be the set of all maps from G1 to G when the first
map is inserted into the sequence. Inserting the second map, which does not have the domain G1,
would then cause a runtime error.

72.3.3 Construction of Quotient Groups

quo< G | L >

Construct the quotient Q of the polycyclic group G by the normal subgroup N ,
where N is the smallest normal subgroup of G containing the elements specified by
the terms of the generator list L.

The possible forms of a term L[i] of the generator list are the same as for the
sub-constructor.

The quotient group Q and the corresponding natural homomorphism f : G→ Q
are returned.

G / N

Given a normal subgroup N of the polycyclic group G, construct the quotient of G
by N .

72.3.4 Homomorphisms
For a general description of homomorphisms, we refer to Chapter 16. This section describes
some special aspects of homomorphisms the domain of which is a polycyclic group.

72.3.4.1 General remarks
The kernel of a homomorphism with a domain of type GrpGPC can be computed using the
function Kernel, if the codomain is of one of the types GrpGPC, GrpPC (cf. Chapter 63),
GrpAb (cf. Chapter 69), GrpPerm (cf. Chapter 58), ModAlg or ModGrp (cf. Chapter 89) or
if the codomain is of the type GrpMat (cf. Chapter 59) and the image is finite.

In particular, preimages of substructures can be computed in these situations. The
kernel of a map will be computed automatically, if the preimage of a substructure of the
codomain is to be computed.

The kernel (and hence preimages of substructures) may also be computable, if the
codomain is of the type GrpFP (cf. Chapter 70) and the domain is nilpotent.
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72.3.4.2 Construction of Homomorphisms

hom< P -> G | S : parameters >

Returns the homomorphism from the polycyclic group P to the group G defined by
the assignment S. S can be the one of the following:
(i) A list, sequence or indexed set containing the images of the n polycyclic gener-

ators P.1, . . . , P.n of P . Here, the i-th element of S is interpreted as the image
of P.i, i.e. the order of the elements in S is important.

(ii)A list, sequence, enumerated set or indexed set, containing r tuples < xi, yi > or
arrow pairs xi −> yi, where xi ∈ P , yi ∈ G (i = 1, . . . , r) and the set {x1, . . . , xr}
is a generating set for P . In this case, yi is assigned as the image of xi, hence
the order of the elements in S is not important. Note that the preimages xi need
not be the polycyclic generators of P .
If the data type of the codomain supports element arithmetic and element com-

parison, by default the constructed homomorphism is checked by verifying that the
would-be images of the polycyclic generators satisfy the defining relations of P and
that this assignment is consistent with the assignments made by the user. In this
case, it is assured that the returned map is a well-defined homomorphism with the
desired images. The most important situation in which it is not possible to perform
checking is the case in which the domain is a finitely presented group (FPGroup;
cf. Chapter 70) which is not free. Checking may be disabled using the parameter
Check.

Check BoolElt Default : true

If Check is set to false, checking of the homomorphism is disabled.

72.3.5 Construction of Extensions

DirectProduct(G, H)

The direct product K of the polycyclic groups G and H. The second value returned
is a sequence containing the inclusion maps IG : G → K and IH : H → K. The
third value returned is a sequence containing the projection maps PG : K → G and
PH : K → H.

72.3.6 Construction of Standard Groups
A number of functions are provided which construct polycyclic presentations for various
standard groups.

AbelianGroup(GrpGPC, Q)

Construct the abelian group defined by the sequence Q = [n1, . . . , nr] as a polycyclic
group. The entries ni may be either zero, indicating an infinite cyclic factor, or
integers greater than 1. The function returns the polycyclic group which is the
direct product of the cyclic groups Z1 × · · · × Zr, where Zi is a cyclic group of
infinite order if ni = 0, or a cyclic group of order ni if ni > 1.
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CyclicGroup(GrpGPC, n)

For n > 0, the cyclic group of order n is returned, while for n = 0, the infinite cyclic
group is returned as a polycyclic group.

DihedralGroup(GrpGPC, n)

For n ≥ 3, the dihedral group of order 2n is returned, while for n = 0, the infinite
dihedral group is returned as a polycyclic group.

ElementaryAbelianGroup(GrpGPC, p, n)

Given a prime p and a positive integer n, construct the elementary abelian group of
order pn as a polycyclic group.

ExtraSpecialGroup(GrpGPC, p, n : parameters)

Given a prime p and a small positive integer n, construct an extra-special group G
of order p2n+1 as a polycyclic group. The isomorphism type of G can be selected
using the parameter Type.

Type MonStgElt Default : “ + ”

Possible values for this parameter are “+” (default) and “−”.
If Type is set to “+”, the function returns for p = 2 the central product of n copies

of the dihedral group of order 8, and for p > 2 it returns the unique extra-special
group of order p2n+1 and exponent p.

If Type is set to “−”, the function returns for p = 2 the central product of a
quaternion group of order 8 and n− 1 copies of the dihedral group of order 8, and
for p > 2 it returns the unique extra-special group of order p2n+1 and exponent p2.

FreeAbelianGroup(GrpGPC, n)

Given a positive integer n, construct the free abelian group of rank n as a polycyclic
group.

FreeNilpotentGroup(r, e)

The free nilpotent group of rank r and class e is returned as a polycyclic group.

Example H72E4

Consider the dihedral group D4.

> G<a,b> := DihedralGroup(GrpGPC, 4);

We obtain a well-defined homomorphism f of G onto a group A = Z2 × Z2, by assigning two
generators of A as the images of a and ab, respectively. Note that in the definition of f we can
use the generating set {a, ab} of G, instead of the defining polycyclic generating sequence of G.

> A<u,v> := AbelianGroup([2,2]);
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> f := hom< G->A | a->u, a*b->v >;

We compute the kernel K of f and express the generators of K as elements of G, using the
function PCGenerators described later.

> K := Kernel(f);

> PCGenerators(K, G);

{@ b^2 @}

Example H72E5

A polycyclic representation for the group D3 ×D∞ may be obtained as follows:

> G1<a,b> := DihedralGroup(GrpGPC, 3);

> G2<u,v> := DihedralGroup(GrpGPC, 0);

> D, incl, proj := DirectProduct(G1, G2);

> D;

GrpGPC : D of infinite order on 4 PC-generators

PC-Relations:

D.1^2 = Id(D),

D.2^3 = Id(D),

D.3^2 = Id(D),

D.2^D.1 = D.2^2,

D.4^D.3 = D.-4

Using the inclusion maps returned by DirectProduct, we define a subgroup and compute the
quotient by its normal closure:

> S := sub<D| incl[1](a)*incl[2](u), incl[1](b)*incl[2](v)>;

> S;

GrpGPC : S of infinite order on 3 PC-generators

PC-Relations:

S.1^2 = Id(S),

S.2^3 = S.3,

S.2^S.1 = S.2^2 * S.-3,

S.3^S.1 = S.-3

> Q, pi := quo<D|S>;

> Q;

GrpGPC : Q of order 2 on 1 PC-generators

PC-Relations:

Q.1^2 = Id(Q)

> Q.1 @@ pi;

D.3
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72.4 Conversion between Categories
This section describes category transfers from polycyclic groups to other Magma categories
of groups. For category transfers to permutation groups (cf. Chapter 58) the functions
CosetAction and CosetImage can be used. For category transfers to matrix groups (cf.
Chapter 59) we refer to section 72.12.

AbelianGroup(G)

A GrpAb (cf. Chapter 69) representation A of the abelian polycyclic group G and
the isomorphism from G to A.

FPGroup(G)

A GrpFP (cf. Chapter 70) representation F of G and the isomorphism from F to
G. This category transfer is currently only possible provided that all exponents
occurring in the presentation of G are small integers. This can be checked by means
of the function PresentationIsSmall.

PCGroup(G)

A GrpPC (cf. Chapter 63) representation F of the finite polycyclic group G and the
isomorphism from G to F .

This category transfer is currently only possible provided that all exponents
occurring in the presentation of G are small integers. This can be checked by means
of the function PresentationIsSmall.

GPCGroup(G)

A GrpGPC representation P of the solvable group G and the isomorphism from G
to P . The group G can be of one of the following types: GrpPerm (cf. Chapter 58),
GrpMat (cf. Chapter 59), GrpAb (cf. Chapter 69), GrpPC (cf. Chapter 63). Currently
G must be finite, if it is of type GrpMat.

Example H72E6

We define a finite, solvable matrix group and convert it to a (general) polycyclic group G.

> a := GL(2,3) ! [1,1,0,1];

> b := GL(2,3) ! [0,1,1,0];

> M := sub<Parent(a)|a,b>;

> IsSolvable(M);

true

> IsFinite(M);

true

> G, f := GPCGroup(M);

We now compute the direct product D of G and the infinite dihedral group H, define a subgroup
S of D, its normal closure N and construct the quotient Q of D by N .

> H<u,v> := DihedralGroup(GrpGPC, 0);

> D, incl, proj := DirectProduct(G, H);
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> S := sub<D | incl[1](f(a*b)), incl[2]((u,v)^2)>;

> N := ncl<D|S>;

> Q := D/N;

> Q;

GrpGPC : Q of order 2^3 on 2 PC-generators

PC-Relations:

Q.1^2 = Id(Q),

Q.2^4 = Id(Q),

Q.2^Q.1 = Q.2^3

Since Q is finite, it can be transformed into a group of type GrpPC using the function PCGroup.
This should (in non-trivial examples) be done, if further computations with it are intended.

> Q_ := PCGroup(Q);

> Q_;

GrpPC : Q_ of order 8 = 2^3

PC-Relations:

Q_.2^2 = Q_.3,

Q_.2^Q_.1 = Q_.2 * Q_.3

72.5 Access Functions for Groups

The functions described here provide access to basic information stored for a polycyclic
group G.

G . i

The i-th polycyclic generator for G if i > 0, the inverse of the |i|-th polycyclic
generator for G if i < 0 and the identity element of G if i = 0.

Generators(G)

PCGenerators(G)

An indexed set containing the polycyclic generators of G.

Generators(H, G)

PCGenerators(H, G)

An indexed set containing the polycyclic generators of H as elements of G.

NumberOfGenerators(G)

Ngens(G)

NumberOfPCGenerators(G)

NPCgens(G)

The number of polycyclic generators for the polycyclic group G.
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PCExponents(G)

The orders of the cyclic factors in the polycyclic series defined by the polycyclic
presentation of G. The orders are returned in a sequence Q. |Gi/Gi+1| = mi = Q[i]
if Q[i] > 0 and Gi/Gi+1 is infinite (i.e. i /∈ I) if Q[i] = 0.

HirschNumber(G)

The Hirsch number of G, i.e. the number of infinite cyclic factors in the polycyclic
series defined by the polycyclic presentation of G.

The Hirsch number of G is equal to n − |I|, i.e. to the number of polycyclic
generators of G for which there is no power relation. A polycyclic group G is finite
if and only if its Hirsch number is 0.

72.6 Set-Theoretic Operations in a Group

72.6.1 Functions Relating to Group Order

FactoredIndex(G, H)

Given a group G and a subgroup H of G of finite index, return the factored index
of H in G

FactoredOrder(G)

The factored order of the finite group G.

Index(G, H)

The index of the subgroup H in the group G, returned as an ordinary integer.

Order(G)

#G

The order of the group G, returned as an ordinary integer.

72.6.2 Membership and Equality

g in G

Given an element g and a group G, return true if g is an element of G, false
otherwise.

g notin G

Given an element g and a group G, return true if g is not an element of G, false
otherwise.

S subset G

Given an group G and a set S of elements belonging to a group H, where G and H
have some covering group, return true if S is a subset of G, false otherwise.
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S notsubset G

Given a group G and a set S of elements belonging to a group H, where G and H
have some covering group, return true if S is not a subset of G, false otherwise.

H subset G

Given groups G and H, having some covering group, return true if H is a subgroup
of G, false otherwise.

H notsubset G

Given groups G and H, having some covering group, return true if H is not a
subgroup of G, false otherwise.

G eq H

Given groups G and H, having some covering group, return true if G and H are
the same group, false otherwise.

G ne H

Given groups G and H, having some covering group, return true if G and H are
distinct groups, false otherwise.

72.6.3 Set Operations

Representative(G)

Rep(G)

A representative element of G.

RandomProcess(G)

Slots RngIntElt Default : 10
Scramble RngIntElt Default : 100

Create a process to generate pseudo-randomly chosen elements from the group G.
The process uses an ‘expansion’ procedure to construct a set of elements correspond-
ing to fairly long words in the generators of G [CLGM+95]. At all times, N elements
forming a generating set for G are stored. Here, N is the maximum of n + 1 and
the specified value for Slots, where n is the number of generators of G. Initially,
these are just the generators of G and products of pairs of generators of G. Random
elements are now produced by successive calls to Random(P), where P is the process
created by this function. Each such call chooses an element previously stored by the
process as the new random element. The process then replaces this stored element
with the product of this element and another one of the stored elements (on the
left or the right). Setting Scramble:= m causes m such operations to be performed
before the process is returned.

Care should be taken when trying to apply this function to infinite polycyclic
groups. Firstly, the computations may take a considerable amount of time and sec-
ondly, the quality of the pseudo-random element generator may be extremely poor,
depending on the required properties of the sequence of pseudo-random elements.
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Random(P)

Given a random element process P created by the function RandomProcess(G) for
the group G, construct a pseudo-random element of G by forming a random product
over the expanded generating set currently stored by the process. The remarks
concerning random elements of infinite polycyclic groups given in the description of
RandomProcess apply here.

Random(G)

Random(G, max)

An element, pseudo-randomly chosen, from the group G. An exponent vector in
normal form is chosen at random. Exponents of polycyclic generators for which
there is no power relation, are chosen to have absolute value less or equal to max. A
default value for max is 10.

It should be kept in mind that the distribution of the elements returned by
Random is uniform only in the case that G is finite.

72.7 Coset Spaces

CosetTable(G, H)

The (right) coset table for G over the subgroup H of finite index, relative to the
polycyclic generators. This is defined to be a map

{1, . . . , |G : H|} ×G→ {1, . . . , |G : H|}

describing the action of G on the enumerated set of right cosets of H in G by right
multiplication.

The underlying set of right coset representatives is identical to the right transver-
sal returned by Transversal and RightTransversal and the same enumeration of
the elements is used.

Transversal(G, H)

RightTransversal(G, H)

Given a group G and a subgroup H of G, this function returns:

(a)An indexed set of elements T of G forming a right transversal for G over H. The
right transversal and its enumeration are identical to those internally used by
the function CosetTable.

(b)The corresponding transversal mapping φ : G → T . If T = [t1, . . . , tr] and g in
G, φ is defined by φ(g) = ti, where g ∈ H ∗ ti.
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Example H72E7

We compute a right transversal of a subgroup H of the infinite dihedral group G.

> G<a,b> := DihedralGroup(GrpGPC, 0);

> H := sub<G|a*b, b^10>;

> Index(G, H);

10

> RT, transmap := Transversal(G, H);

> RT;

{@ Id(G), b^-1, b^-2, b^-3, b^-4, b^-5, b^-6, b^-7, b^-8, b^-9 @}

> transmap;

Mapping from: GrpGPC: G to SetIndx: RT

From this a left transversal is easily obtained:

> LT := {@ x^-1 : x in RT @};

> LT;

{@ Id(G), b, b^2, b^3, b^4, b^5, b^6, b^7, b^8, b^9 @}

We construct the coset table and define a function RT ×G → RT , describing the action of G on
the set of right cosets of H in G.

> ct := CosetTable(G, H);

> action := func< r, g | RT[ct(Index(RT, r), g)] >;

> action(Id(G), b);

b^-9

I.e. H ∗ b = Hb−9.

> action(b^-4, a*b);

b^-6

I.e. Hb−4 ∗ (ab) = Hb−6.

Note that the definition of the function action relies on the fact that the computed right transver-
sal and its enumeration are identical to those internally used by the function CosetTable.

CosetAction(G, H)

Given a subgroup H of the group G of finite index, construct the permutation
representation of G, induced by the action of G on the set of (right) cosets of H in
G. The function returns:

(a)The permutation representation f : G → L ≤ Sym(|G : H|), induced by the
action of G on the set of (right) cosets of H in G;

(b)The epimorphic image L of G under the representation f ;

(c) The kernel K of the representation f .
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CosetImage(G, H)

Given a subgroup H of the group G of finite index, construct the permutation
group, induced by the action of G on the set of (right) cosets of H in G. The
returned group is the epimorphic image L of G under the permutation representation
f : G→ L ≤ Sym(|G :H|), induced by the action of G on the set of (right) cosets of
H in G.

CosetKernel(G, H)

Given a subgroup H of the group G of finite index, construct the kernel of the
permutation representation f : G → L ≤ Sym(|G :H|), induced by the action of G
on the set of (right) cosets of H in G.

Example H72E8

We use the function CosetAction to construct a (non-faithful) permutation representation of the
group G defined by the polycyclic presentation

< a, b, c | ba = b ∗ c, (a, c), (b, c) > .

> F<a,b,c> := FreeGroup(3);

> rels := [ b^a=b*c, b^(a^-1)=b*c^-1 ];

> G<a,b,c> := quo<GrpGPC: F | rels>;

>

> S := sub<G|(a*b)^3, c^7, b^21>;

> Index(G, S);

441

> pi, P, K := CosetAction(G, S);

> P;

Permutation group P acting on a set of cardinality 441

> K;

GrpGPC : K of infinite order on 3 PC-generators

PC-Relations:

K.2^K.1 = K.2 * K.3^63,

K.2^(K.-1) = K.2 * K.-3^63

> Index(G, K);

3087

We express the generators of the kernel K in terms of the generators of G:

> {@ G!x : x in PCGenerators(K) @};

{@ a^21, b^21, c^7 @}

pi(S) is a point stabiliser in the transitive permutation group P of degree 441 and hence should
have index 441 in P:

> pi(S);

Permutation group acting on a set of cardinality 441

> Index(P, pi(S));

441
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72.8 The Subgroup Structure

72.8.1 General Subgroup Constructions
The operators and functions which construct a subgroup of a polycyclic group always
return the subgroup as a polycyclic group.

H ^ g

Conjugate(H, g)

Construct the conjugate g−1 ∗H ∗ g of the group H under the action of the element
g. The group H and the element g must belong to a common group.

H ^ G

ncl< G | H >

NormalClosure(G, H)

Given a subgroup H of the group G, construct the normal closure of H in G.

CommutatorSubgroup(G, H, K)

CommutatorSubgroup(H, K)

Construct the commutator subgroup of groups H and K, where H and K are
subgroups of a common group G.

72.8.2 Subgroup Constructions Requiring a Nilpotent Covering Group

The operators and functions described in this section require the existence of a nilpotent
covering group. They are based on algorithms published in [Lo98]. Again, the constructed
subgroup is returned as a polycyclic group.

H meet K

Given two groups H and K, contained in some common group G which is nilpotent,
construct the intersection of H and K.

H meet:= K

Given two groups H and K, contained in some common group G which is nilpotent,
replace H with the intersection of H and K.

Centraliser(G, g)

Centralizer(G, g)

The subgroup of G centralising g. Both g and G must be contained in some common
nilpotent group.
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Centraliser(G, H)

Centralizer(G, H)

The subgroup of G centralising H. Both H and G must be subgroups of some
common nilpotent group.

Core(G, H)

The maximal normal subgroup of the nilpotent group G that is contained in the
subgroup H of G.

Normaliser(G, H)

Normalizer(G, H)

The subgroup of G normalising H. Both H and G must be subgroups of some
common nilpotent group.

72.9 General Group Properties

IsAbelian(G)

Returns true if the group G is abelian, false otherwise.

IsCyclic(G)

Returns true if the group G is cyclic, false otherwise.

IsElementaryAbelian(G)

Returns true if the group G is elementary abelian, false otherwise. The following
definition is used:

A group G is called elementary abelian if it is an abelian p-group of exponent p
for some prime p.

IsFinite(G)

Returns true if the group G is finite, false otherwise.

IsNilpotent(G)

Returns true if the group G is nilpotent, false otherwise. This function uses an
algorithm described in [Lo98].

IsPerfect(G)

Returns true if the group G is perfect, false otherwise. A polycyclic group G is
perfect, if and only if it is trivial.

IsSimple(G)

Returns true if the group G is simple, false otherwise. A polycyclic group is
simple, if and only if it is cyclic of prime order.
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IsSoluble(G)

IsSolvable(G)

Returns true if the group G is solvable, false otherwise. Every polycyclic group is
solvable.

72.9.1 General Properties of Subgroups

IsCentral(G, H)

Returns true if the subgroup H of the group G lies in the centre of G, false
otherwise.

IsNormal(G, H)

Returns true if the subgroup H of the group G is a normal subgroup of G, false
otherwise.

72.9.2 Properties of Subgroups Requiring a Nilpotent Covering Group

The functions described in this section require the existence of a nilpotent covering group.
The are based on algorithms published in [Lo98].

IsConjugate(G, H, K)

Given groups G, H and K with a nilpotent common covering group, return the
value true if there exists c ∈ G such that Hc = K. If so, the function returns such
a conjugating element as second value.

IsSelfNormalising(G, H)

IsSelfNormalizing(G, H)

Returns true if the subgroup H of the nilpotent group G is self-normalising in G,
false otherwise.

Example H72E9

We define a group G on 5 generators a, . . . , e of infinite order by fixing the commutators of the
generators:

(b, a) = e2, (d, c) = e3

All other pairs of generators commute.

> F<a,b,c,d,e> := FreeGroup(5);

> rels := [ b^a = b*e^2, b^(a^-1) = b*e^-2, d^c = d*e^3,

> d^(c^-1) = d*e^-3 ];

> G<a,b,c,d,e> := quo< GrpGPC: F | rels >;

> IsNilpotent(G);

true

Since G is nilpotent, we can compute intersections of subgroups of G.
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We define the subgroups generated by a, . . . , e and their nontrivial commutator groups as sub-
groups of G.

> H1 := sub<G|a>;

> H2 := sub<G|b>;

> H3 := sub<G|c>;

> H4 := sub<G|d>;

> H5 := sub<G|e>;

>

> C12 := CommutatorSubgroup(H1, H2);

> {@ G!x : x in PCGenerators(C12) @};

{@ e^2 @}

> C12 subset H5;

true

>

> C34 := CommutatorSubgroup(H3, H4);

> {@ G!x : x in PCGenerators(C34) @};

{@ e^3 @}

> C34 subset H5;

true

Finally, we compute the intersection C of C12 and C13.

> C := C12 meet C34;

> {@ G!x : x in PCGenerators(C) @};

{@ e^6 @}

This intersection C is cyclic and central in G.

> IsCyclic(C);

true

> IsCentral(G, C);

true

Example H72E10

Consider the nilpotent group G := D16 o 2 generated by the 5 generators a, b, c, d, t with the
relations

a2 = 1, b16 = 1, ba = b15

c2 = 1, d16 = 1, dc = d15

t2 = 1, at = c, bt = d, ct = a, dt = b

(All other pairs of generators commute.)

> F<t, a,b, c,d> := FreeGroup(5);

> G<t, a,b, c,d> := quo<GrpGPC: F | a^2, b^16, b^a=b^15,

> c^2, d^16, d^c=d^15,

> t^2, a^t=c, b^t=d, c^t=a, d^t=b>;

> IsNilpotent(G);
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true

Since G is nilpotent, we can compute normalisers and centralisers in G.
We define the (dihedral) subgroup D3 of G generated by ac and bd and compute its normaliser
in G and its centraliser in the (dihedral) subgroup D2 of G generated by c and d.

> D2 := sub<G|c,d>;

>

> D3<u,v> := sub<G|a*c, b*d>;

> D3;

GrpGPC : D3 of order 2^5 on 2 PC-generators

PC-Relations:

u^2 = Id(D3),

v^16 = Id(D3),

v^u = v^15

>

> N3 := Normaliser(G, D3);

> PCGenerators(N3, G);

{@ t, a * c, b * d, d^8 @}

>

> C3 := Centraliser(D2, D3);

> PCGenerators(C3, G);

{@ d^8 @}

Finally we compute the centraliser of the element t in G.

> Ct := Centraliser(G, t);

> PCGenerators(Ct, G);

{@ t, a * c, b * d @}

72.10 Normal Structure and Characteristic Subgroups

72.10.1 Characteristic Subgroups and Subgroup Series

Centre(G)

Center(G)

The centre of the group G. For nilpotent groups the centre is computed using the
centraliser algorithm [Lo98]. Otherwise, it is computed as the simultaneous fixed
point space of the action of the generators of G on the centre of the Fitting subgroup
of G [Eic01].

DerivedLength(G)

The derived length of the group G.
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DerivedSeries(G)

The derived series of the group G. The series is returned as a sequence of subgroups.

DerivedSubgroup(G)

DerivedGroup(G)

The derived subgroup of the group G.

EFASeries(G)

Returns a normal series of G, the factors of which are either elementary abelian
p-groups or free abelian groups.

FittingLength(G)

The Fitting length of the group G, i.e. the smallest integer k such that Fk = G
where the groups Fi are defined recursively by F0 := 1 and Fi/Fi−1 := Fit(G/Fi−1)
(i > 0). Note that such a k exists for every polycyclic group G.

FittingSeries(G)

The Fitting series of the group G, where the groups Fi are defined recursively by
F0 := 1 and Fi/Fi−1 := Fit(G/Fi−1) (i > 0). The series is returned as the sequence
[F0, . . . , Fk] of subgroups of G. Note that every polycyclic group G has a finite
Fitting series ending in G.

FittingSubgroup(G)

FittingGroup(G)

The Fitting subgroup of the group G, i.e. the maximal nilpotent normal subgroup
of G. This function uses an algorithm described in [Eic01].

HasComputableLCS(G)

This function returns the value true if the lower central series of G is computable,
otherwise it returns the value false. This is useful to avoid runtime errors, when
LowerCentralSeries is called in user written loops or functions.

LowerCentralSeries(G)

The lower central series for the group G. The series is returned as a sequence of
subgroups. Since infinite polycyclic groups need not satisfy the descending chain
condition for subgroups, computation of the lower central series may fail. To deter-
mine if the series can be computed and thereby avoid runtime errors, the function
HasComputableLCS may be used. This function uses an algorithm described in
[Lo98].

NilpotencyClass(G)

The nilpotency class of the group G. If G is not nilpotent, then −1 is returned.
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NilpotentPresentation(G)

A polycyclic presentation is called nilpotent, if for all i = 1, . . . , n, Gi+1 is normal
in G and Gi/Gi+1 is central in G/Gi+1. Every nilpotent polycyclic group has a
nilpotent polycyclic presentation. A suitable polycyclic series can be obtained by
refining the lower central series.

The function NilpotentPresentation computes a group N isomorphic to G,
given by a nilpotent polycyclic presentation and the isomorphism from G to N .

SemisimpleEFASeries(G)

Returns a normal series of G, the factors of which are either elementary abelian
p-groups which are semisimple as Fp[G]-modules or free abelian groups which are
semisimple as Q[G]-modules.

The normal series returned by the function SemisimpleEFASeries is a refinement
of the normal series returned by the function EFASeries.

UpperCentralSeries(G)

The upper central series [Z0, . . . , Zk] of the group G, where the groups Zk are defined
recursively by Z0 := 1 and Zi/Zi−1 := Z(G/Zi−1) (i > 0). The series is returned as a
sequence of subgroups of G. Note that since polycyclic groups satisfy the ascending
chain condition for subgroups, every polycyclic group G has a finite upper central
series.

Example H72E11

The dihedral group of order 32 is nilpotent; we compute its lower central series.

> D16<a,b> := DihedralGroup(GrpGPC, 16);

> IsNilpotent(D16);

true

> NilpotencyClass(D16);

4

> L := LowerCentralSeries(D16);

The generators of the subgroups in the lower central series expressed as elements of D16 are:

> for i := 1 to 1+NilpotencyClass(D16) do

> print i, ":", {@ D16!x : x in PCGenerators(L[i]) @};

> end for;

1 : {@ a, b @}

2 : {@ b^2 @}

3 : {@ b^4 @}

4 : {@ b^8 @}

5 : {@ @}

We compute a nilpotent presentation and express the new generators in terms of a and b:

> N<p,q,r,s,t>, f := NilpotentPresentation(D16);

> N;
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GrpGPC : N of order 2^5 on 5 PC-generators

PC-Relations:

p^2 = Id(N),

q^2 = r,

r^2 = s,

s^2 = t,

t^2 = Id(N),

q^p = q * r * s * t,

r^p = r * s * t,

s^p = s * t

> {@ x@@f : x in PCGenerators(N) @};

{@ a, b, b^2, b^4, b^8 @}

The infinite dihedral group has an infinite, strictly descending, lower central series which cannot
be computed:

> D := DihedralGroup(GrpGPC, 0);

> HasComputableLCS(D);

false

It is easy to see, that b2i−1
would be a generator of Li.

The symmetric group on 3 letters is not nilpotent, but has a lower central series which becomes
stationary and which can be computed:

> F2<a,b> := FreeGroup(2);

> rels := [ a^2 = F2!1, b^3 = F2!1, b^a = b^2 ];

> G<a,b> := quo<GrpGPC : F2 | rels>;

> G;

GrpGPC : G of order 6 = 2 * 3 on 2 PC-generators

PC-Relations:

a^2 = Id(G),

b^3 = Id(G),

b^a = b^2

> IsNilpotent(G);

false

> HasComputableLCS(G);

true

> L := LowerCentralSeries(G);

> for i := 1 to #L do

> print i, ":", {@ G!x : x in PCGenerators(L[i]) @};

> end for;

1 : {@ a, b @}

2 : {@ b @}
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72.10.2 The Abelian Quotient Structure of a Group

AbelianQuotient(G)

The maximal abelian quotient G/G′ of the group G as GrpAb (cf. Chapter 69). The
natural epimorphism is returned as second return value.

AbelianQuotientInvariants(G)

AQInvariants(G)

Returns a sequence containing the invariants of the maximal abelian quotient G/G′

of the group G. Each infinite cyclic factor of G/G′ is represented by zero.

ElementaryAbelianQuotient(G, p)

The maximal p-elementary abelian quotient of the group G as GrpAb (cf. Chapter
69). The natural epimorphism is returned as second return value.

FreeAbelianQuotient(G)

The maximal free abelian quotient of the group G as GrpAb (cf. Chapter 69). The
natural epimorphism is returned as second return value.

72.11 Conjugacy
The functions described in this section require the existence of a nilpotent covering group.
They are based on algorithms published in [Lo98].

IsConjugate(G, g, h)

Given elements g and h and a group G, which are contained in some nilpotent
common group, return the value true if there exists c ∈ G such that gc = h. If so,
the function returns such a conjugating element as second value.

IsConjugate(G, H, K)

Given groups G, H and K with a nilpotent common covering group, return the
value true if there exists c ∈ G such that Hc = K. If so, the function returns such
a conjugating element as second value.

Example H72E12

We again consider the nilpotent group G := D16 o 2.

> F<t, a,b, c,d> := FreeGroup(5);

> G<t, a,b, c,d> := quo<GrpGPC: F | a^2, b^16, b^a=b^15,

> c^2, d^16, d^c=d^15,

> t^2, a^t=c, b^t=d, c^t=a, d^t=b>;

> IsNilpotent(G);

true

Since G is nilpotent, a test for conjugacy in G is available.
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We define the following subgroups of G: D1 generated by a and b, D2 generated by c and d and
D3 generated by ac and bd.

> D1 := sub<G|a,b>;

> D2 := sub<G|c,d>;

> D3<u,v> := sub<G|a*c, b*d>;

>

D1 and D2 are, of course, conjugate in G; t is a conjugating element.

> IsConjugate(G, D1, D2);

true t

The elements b and d−1 are conjugate in G; we compute a conjugating element.

> IsConjugate(G, b, d^-1);

true t * a * c

However, neither the subgroups D1 and D2 nor the elements b and d−1, are conjugate in the
subgroup D3.

> IsConjugate(D3, D1, D2);

false

> IsConjugate(D3, b, d^-1);

false

72.12 Representation Theory
This section describes some functions for creating R[G]-modules for a polycyclic group G,
which are unique for this category or have special properties when called for polycyclic
groups. For a complete description of the functions available for creating and working with
R[G]-modules we refer to Chapter 89.

Note that the function GModuleAction can be used to extract the matrix representation
associated to an R[G]-module.

EFAModuleMaps(G)

Every polycyclic group G has a normal series G = N1 . N2 . . . . . Nr+1 = 1, such
that every quotient Mi := Ni/Ni+1 is either free abelian or p-elementary abelian
for some prime p. The action of G by conjugation induces a Z[G]-module structure
on Mi if Mi is free abelian and an Fp[G]-module structure if Mi is p-elementary
abelian.

This function returns a sequence [f1, . . . , fr], where fi : Ni → Mi is the natu-
ral epimorphism onto the additive group of an Ri[G]-module Mi (Ri ∈ {Fp,Z}),
constructed as above.

The functions EFAModuleMaps and EFAModules use the normal series returned
by the function EFASeries.

Note that the kernels of the epimorphisms fi can be computed and hence it is
possible to form preimages of submodules of Mi, which are normal subgroups of G
contained in Ni and containing Ni+1.
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EFAModules(G)

Every polycyclic group G has a normal series G = N1 . N2 . . . . . Nr+1 = 1, such
that every quotient Mi := Ni/Ni+1 is either free abelian or p-elementary abelian
for some prime p. The action of G by conjugation induces a Z[G]-module structure
on Mi if Mi is free abelian and an Fp[G]-module structure if Mi is p-elementary
abelian.

This function returns a sequence [M1, . . . ,Mr] of Ri[G]-modules (where Ri ∈
{Fp,Z}), constructed as above.

The functions EFAModuleMaps and EFAModules use the normal series returned
by the function EFASeries.

GModule(G, A, p)

GModule(G, A)

Let A be a normal subgroup of the polycyclic group G. If p = 0, the function returns
the Z[G]-module corresponding to the conjugation action of G on the maximal free
abelian quotient of A. If p is a prime, it returns the Fp[G]-module corresponding
to the conjugation action of G on the maximal p-elementary abelian quotient of A.
The epimorphism π : A → M onto the additive group of the constructed module
M is returned as second return value. Note that the kernel of π can be computed
and hence it is possible to form preimages of submodules of M , which are normal
subgroups of G contained in A.

If the maximal abelian quotient A/A′ of A is either free abelian or p-elementary
abelian for some prime p, p can be omitted in the function call.

Note that it is the user’s responsibility to ensure that A is in fact normal in G.

GModule(G, A, B, p)

GModule(G, A, B)

Let A and B < A be normal subgroups of the polycyclic group G. If p = 0, the
function returns the Z[G]-module corresponding to the conjugation action of G on
the maximal free abelian quotient of A/B. If p is a prime, it returns the Fp[G]-
module corresponding to the conjugation action of G on the maximal p-elementary
abelian quotient of A/B. The epimorphism π : A → M onto the additive group of
the constructed module M is returned as second return value. Note that the kernel
of π can be computed and hence it is possible to form preimages of submodules of
M , which are normal subgroups of G contained in A and containing B.

If the maximal abelian quotient of A/B is either free abelian or p-elementary
abelian for some prime p, p can be omitted in the function call.

Note that it is the user’s responsibility to ensure that A and B are in fact normal
in G.
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GModulePrimes(G, A)

Let G be a polycyclic group and A a normal subgroup of G. Given any prime p,
the maximal p-elementary abelian quotient of A can be viewed as an Fp[G]-module
Mp. The maximal free abelian quotient of A can be viewed as a Z[G]-module M0.
This function determines those primes p for which the module Mp is non-trivial (i.e.
not zero-dimensional) and the dimensions of the corresponding modules Mp. The
return value is a multiset S. If 0 /∈ S, the maximal abelian quotient of A is finite
and the multiplicity of p is the dimension of Mp. If S contains 0 with multiplicity
m, the maximal abelian quotient of A contains m copies of Z. In this case, the rank
of M0 is m and Mp is non-trivial for every prime p and its rank is the sum of m and
the multiplicity of p in S.

GModulePrimes(G, A, B)

Let G be a polycyclic group, A a normal subgroup of G and B a normal subgroup of
G contained in A. Given any prime p, the maximal p-elementary abelian quotient of
A/B can be viewed as an Fp[G]-module Mp. The maximal free abelian quotient of
A/B can be viewed as a Z[G]-module M0. This function determines those primes p
for which the moduleMp is non-trivial (i.e. not zero-dimensional) and the dimensions
of the corresponding modules Mp. The return value is a multiset S. If 0 /∈ S, the
maximal abelian quotient of A/B is finite and the multiplicity of p is the dimension
of Mp. If S contains 0 with multiplicity m, the maximal abelian quotient of A/B
contains m copies of Z. In this case, the rank of M0 is m and Mp is non-trivial for
every prime p and its rank is the sum of m and the multiplicity of p in S.

SemisimpleEFAModuleMaps(G)

Every polycyclic group G has a normal series G = N1 . N2 . . . . . Nr+1 = 1, such
that every quotient Mi := Ni/Ni+1 is either free abelian and semisimple as a Q[G]-
module or p-elementary abelian and semisimple as an Fp[G]-module for some prime
p.

This function returns a sequence [f1, . . . , fr], where fi : Ni → Mi is the natu-
ral epimorphism onto the additive group of an Ri[G]-module Mi (Ri ∈ {Fp,Z}),
constructed as above.

The functions SemisimpleEFAModules and SemisimpleEFAModuleMaps use the
normal series returned by the function SemisimpleEFASeries. Moreover, this nor-
mal series is a refinement of the normal series returned by the function EFASeries.

Note that the kernels of the epimorphisms fi can be computed and hence it is
possible to form preimages of submodules of Mi, which are normal subgroups of G
contained in Ni and containing Ni+1.

SemisimpleEFAModules(G)

Every polycyclic group G has a normal series G = N1 . N2 . . . . . Nr+1 = 1, such
that every quotient Mi := Ni/Ni+1 is either free abelian and semisimple as a Q[G]-
module or p-elementary abelian and semisimple as an Fp[G]-module for some prime
p.
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This function returns a sequence [M1, . . . ,Mr] of Ri[G]-modules (where Ri ∈
{Fp,Z}), constructed as above.

The functions SemisimpleEFAModules and SemisimpleEFAModuleMaps use the
normal series returned by the function SemisimpleEFASeries. Moreover, this nor-
mal series is a refinement of the normal series returned by the function EFASeries.

Example H72E13

Consider the group G defined by the polycyclic presentation

〈a, b, c, d, e | c6, e3, dc = de, ec = e2, ba = b−1, ba−1
= b−1,

cb = ce, cb−1
= ce, db = d−1, db−1

= d−1, eb = e2, eb−1
= e2〉.

(Trivial commutator relations have been omitted.)

> F<a,b,c,d,e> := FreeGroup(5);

> G<a,b,c,d,e> := quo< GrpGPC : F | c^6 = F!1, e^3 = F!1,

> d^c=d*e, e^c=e^2,

> b^a=b^-1,

> b^(a^-1)=b^-1,

> c^b=c*e,

> c^(b^-1)=c*e,

> d^b=d^-1,

> d^(b^-1)=d^-1,

> e^b=e^2,

> e^(b^-1)=e^2 >;

The subgroup H of G generated by c, d, e is normal in G.

> H := sub< G | c,d,e >;

> IsNormal(G, H);

true

We determine the primes such that the action of G on H yields non-trivial modules.

> GModulePrimes(G, H);

{* 0, 2, 3 *}

We construct the F3[G]-module M given by the action of G on the maximal 3-elementary abelian
quotient of H and the natural epimorphism π from H onto the additive group of M .

> M, pi := GModule(G, H, 3);

> M;

GModule M of dimension 2 over GF(3)

Using the function Submodules, we obtain the submodules of M . Their preimages under π are
precisely the normal subgroups of G which are contained in H and contain ker(π).

> submod := Submodules(M);

> nsgs := [ m @@ pi : m in submod ];

> [ PCGenerators(s, G) : s in nsgs ];
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[

{@ c^3, d^3, e @},

{@ c, d^3, e @},

{@ c^3, d, e @},

{@ c, d, e @}

]

Example H72E14

Consider the group defined by the polycyclic presentation

< a, b, c, d, e | a5, b5, c6, d5, e3, ba = bd > .

> F<a,b,c,d,e> := FreeGroup(5);

> G<a,b,c,d,e> := quo< GrpGPC : F |

> a^5, b^5, c^6, d^5, e^3, b^a = b*d >;

Obviously the subgroup of G generated by b, c, d, e is normal in G.

> H := sub< G | b,c,d,e >;

> IsNormal(G, H);

true

We use the function GModulePrimes to determine the set of primes p for which the action of G on
the maximal p-elementary abelian quotient of H induces a nontrivial Fp[G]-module.

> P := GModulePrimes(G, H);

> 0 in P;

false

0 is not contained in P , i.e. the maximal free abelian quotient of H is trivial. Hence, there are
only finitely many primes, satisfying the condition above.

We loop over the distinct elements of P and for each element p we construct the induced Fp[G]-
module, print its dimension and check whether it is decomposable. Note that the dimension of
the module for p must be equal to the multiplicity of p in P .

> for p in MultisetToSet(P) do

> M := GModule(G, H, p);

> dim := Dimension(M);

> decomp := IsDecomposable(M);

>

> assert dim eq Multiplicity(P, p);

>

> print "prime", p, ": module of dimension", dim;

> if decomp then

> print " has a nontrivial decomposition";

> else

> print " is indecomposable";

> end if;
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> end for;

prime 2 : module of dimension 1

is indecomposable

prime 3 : module of dimension 2

has a nontrivial decomposition

prime 5 : module of dimension 2

is indecomposable

Example H72E15

The Fitting subgroup of a polycyclic group G can be characterised as the intersection of the
centralisers in G of the semisimple G-modules defined by the action of G on the factors of a
semisimple EFA-series of G. The centraliser in G of a G-module is just the kernel of the action
map.

We illustrate this with the group G defined in the example above.

> F<a,b,c,d,e> := FreeGroup(5);

> G<a,b,c,d,e> := quo< GrpGPC : F | c^6 = F!1, e^3 = F!1,

> b^a = b * d,

> b^(a^-1) = b * d^-1 >;

We first construct the G-modules defined by the action of G on the factors of a semisimple EFA-
series of G.

> modules := SemisimpleEFAModules(G);

> modules;

[

GModule of dimension 2 over Integer Ring,

GModule of dimension 1 over Integer Ring,

GModule of dimension 1 over GF(2),

GModule of dimension 2 over GF(3)

]

Now, we compute the intersection of the kernels of the module action maps, which can be obtained
using the function GModuleAction.

> S := G;

> for m in modules do

> S meet:= Kernel(GModuleAction(m));

> end for;

Finally, we compare the result with the Fitting subgroup of G, returned by the Magma function
FittingSubgroup.

> S eq FittingSubgroup(G);

true
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Example H72E16

The functions EFAModuleMaps and SemisimpleEFAModuleMaps are useful whenever it is desired to
refine an EFA-series or a semisimple EFA-series by computing the subgroups corresponding to
submodules of the G-modules given by the factors of the series. Consider again the group defined
above.

> F<a,b,c,d,e> := FreeGroup(5);

> G<a,b,c,d,e> := quo< GrpGPC : F | c^6 = F!1, e^3 = F!1,

> b^a = b * d,

> b^(a^-1) = b * d^-1 >;

We extract the map f from G (the first group in any EFA-series of G) onto the module given by
the first factor of an EFA-series of G.

> f := EFAModuleMaps(G)[1];

> f;

Mapping from: GrpGPC: G to GModule of dimension 2 over Integer

Ring

The module itself can be accessed as the codomain of f .

> M := Codomain(f);

> M;

GModule M of dimension 2 over Integer Ring

Spinning up random elements, we try to construct a submodule S of M .

> repeat

> S := sub<M|[Random(-1, 1): i in [1 .. Dimension(M)]]>;

> until Dimension(S) gt 0 and S ne M;

> S;

GModule S of dimension 1 over Integer Ring

The preimage N of S under f is a normal subgroup of G, which lies between the first and the
second subgroup of the original EFA-series for G.

> N := S @@ f;

> PCGenerators(N, G);

{@ a^2 * b^4, c, d, e @}

72.13 Power Groups

Parent(G)

The PowerStructure of category GrpGPC.

PowerGroup(G)

The set of all subgroups of G. This is very useful when constructing sets of polycyclic
groups. If the user will be building a set of subgroups of a polycyclic group G, then
it is best to specify the set’s universe to be PowerGroup(G). If the set’s universe is
not specified it will be the parent structure of G as returned by Parent(G).
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Chapter 73

BRAID GROUPS

73.1 Introduction
This chapter deals with another, quite specialised, class of finitely presented groups for
which the word problem is solvable, the category of braid groups. The corresponding
Magma category is called GrpBrd.

The notion of braid groups was introduced by Artin [Art47], who considered a sequence
Bn (n = 1, 2, . . .) of groups, where Bn is presented on n− 1 generators σ1, . . . , σn−1 with
the defining relations

σiσj = σjσi (1 ≤ i < j < n, j − i > 1),
σiσi+1σi = σi+1σiσi+1 (1 ≤ i < n− 1) .

Bn is called the braid group on n strings. In the sequel, we refer to the above presentation
as Artin presentation and to σ1, . . . , σn−1 as Artin generators of Bn.

Birman, Ko and Lee introduced an alternative way of presenting braid groups [BKL98].
Here, Bn is presented on n(n − 1)/2 generators ar,t (n ≥ r > t ≥ 1) with the defining
relations

at,sar,q = ar,qat,s for n ≥ t > s ≥ 1, n ≥ r > q ≥ 1, (t− r)(t− q)(s− r)(s− q) > 0
at,sas,r = at,rat,s = as,rat,r for n ≥ t > s > r > 0 .

We refer to this presentation as BKL presentation and to ar,t (n ≥ r > t ≥ 1) as BKL
generators of Bn.

A possible choice for the BKL generators in terms of Artin generators is ar,t =
(σr−1 · · ·σt+1)σt(σ−1

t+1 · · ·σ−1
r−1). This identification is used in Magma.

Recently, braid groups came under consideration as possible sources for public key cryp-
tosystems [AAG99, KLC+00]. The features of braid groups which make them interesting
for public key cryptography are the following.
- The basic group operations in braid groups can be implemented efficiently on a com-

puter.
- The word problem in braid groups is solvable, that is, there is a normal form for elements

of a braid group and elements can be compared. Moreover, there are algorithms which
are able to compute the normal form of an element efficiently.

- There are several problems in braid groups which are believed to be mathematically
hard and whose use for cryptographic purposes has been suggested. The most important
examples are variations of the conjugacy problem.
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However, both recent attacks on particular cryptosystems [GKT+02, HS03, Hug02, LL02,
LP03] and advances in the analysis of the conjugacy problem [GM02, Geb03] in general
shed some doubts on the security of braid group cryptosystems. At the time of this
writing it is an open question whether braid group cryptosystems can be made secure by
an appropriate choice of parameters and keys or whether they have to be considered as
insecure. More research into these issues is necessary.

The Magma category GrpBrd was introduced mainly with these applications in mind.
Focus was put on providing fast operations with elements and on giving the user as much
control over the details of computations as possible.

73.1.1 Lattice Structure and Simple Elements
In this section we briefly recall the basic terminology used for describing elements of braid
groups. More detailed descriptions can be found in [ECH+92] for the Artin presentation
and in [BKL98] for the BKL presentation.

We remark that both Artin presentation and BKL presentation are special cases of
so-called Garside groups [Deh02].

In the sequel, let M be either the Artin presentation or the BKL presentation of the
braid group B on n strings, let X denote the generators of M and let R denote the relations
of M . As the relations in R do not contain inverses of generators, we can interpret M as
monoid presentation. We denote the finitely presented monoid defined by M by B+. The
natural homomorphism from B+ to B can be shown to be injective. We identify its image
with B+ and call it the set of positive elements of B. Finally, we denote the identity of B
by 1.

We can now define two partial orderings on B. For elements u, v ∈ B we say u ¹ v,
if there exists a positive element a such that ua = v, and we say v º u, if there exists a
positive element a such that v = au. Note that these partial orderings are different; u ¹ v
is not equivalent to v º u.

B can be shown to be a lattice with respect to both partial orderings, that is, for
elements u, v ∈ B there are elements dl,ml, dr,mr ∈ B such that

dl ¹ u, dl ¹ v and d ¹ u, d ¹ v implies d ¹ dl for all d ∈ B
u ¹ ml, v ¹ ml and u ¹ m, v ¹ m implies ml ¹ m for all m ∈ B
u º dr, v º dr and u º d, v º d implies dr º d for all d ∈ B

mr º u, mr º v and m º u, m º v implies m º mr for all m ∈ B .

We call dl,ml, dr and mr the left-gcd, the left-lcm, the right-gcd and the right-lcm, respec-
tively, of u and v.

It can be shown that the left-lcm of the elements of X and the right-lcm of the elements
of X are equal; we call this element the fundamental element of the presentation M and
denote it by D. The fundamental element is crucial for the study of braid groups. One
of its most important properties is that a certain power DN of D generates the centre of
B. (N = 2 for the Artin presentation and N = n for the BKL presentation.) Moreover,
u ¹ Dk is equivalent to Dk º u and Dk ¹ u is equivalent to u º Dk for all k ∈ Z, u ∈ B.
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In Magma, the partial ordering ¹ is provided as operator le and the partial ordering º
is provided as operator ge; see Section 73.4.4. For a description of the functions computing
lcm and gcd of elements, see Section 73.4.5.

The positive elements c of B satisfying c ¹ D are called simple elements; we denote the
set of simple elements by C. simple elements can be uniquely described by permutations
on n points. In Magma, a simple element c inducing a permutation π on the strings on
which B is defined, is represented by the permutation π−1.

If M is the Artin presentation, every permutation on n points corresponds to a simple
element, that is, |C| = n!.

If M is the BKL presentation, |C| = (2n)!/(n!(n + 1)!) and only permutations on n
points which are products of parallel, descending cycles correspond to simple elements.
Here, a cycle (i1, . . . , ir) is called descending if i1 > . . . > ir and two descending cycles
(i1, . . . , ir) and (j1, . . . , js) are called parallel if (ik − jl)(ik − jl′)(ik′ − jl)(ik′ − jl′) > 0
for all 1 ≤ k, k′ ≤ r and 1 ≤ l, l′ ≤ s. The descending cycle (i1, . . . , ir) corresponds to
the element ai1,i2ai2,i3 · · · air−1,ir of B. It is obvious from the defining relations that the
simple elements defined by two parallel descending cycles commute.

Every element u of B can be written in the form u = Dlc1 · · · ck, where l is a suitable
integer and c1, . . . ck are simple elements. We call representations of this form simple
element representations or canonical factor products (CFP).

73.1.2 Representing Elements of a Braid Group
This section describes the ways in which elements of a braid group can be represented
internally by Magma. From the user’s point of view, this mainly affects input and printing
of elements. This section is intended to be a concise overview; for a detailed description of
functions and for examples we refer to Section 73.2, Section 73.3 and Section 73.4.1.

Since an element of a braid group B can be represented either as word in the generators
or as product of simple elements (see Section 73.4.5) with respect to either the Artin
presentation or the BKL presentation of B, there are four different ways of representing
elements of B, which can be used for entering or printing elements and for computing with
elements.

73.1.2.1 Automatic Conversions
Magma can work with all the above representations and conversions are done automat-
ically when necessary, for example, when multiplying an element defined as word in the
Artin generators with an element given as product of simple elements for the BKL pre-
sentation. Hence, the user normally does not have do give too much thought about how
elements are represented. It should be noted, however, that automatic conversions can
affect performance and that in time critical situations, the best results in general are
obtained if automatic conversions are avoided.

73.1.2.2 Default Presentations
When creating a braid group B using the command BraidGroup, the user can specify
whether the Artin presentation or the BKL presentation should be used as default pre-
sentation for B. Unless specified otherwise by the user, this presentation is used in all
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subsequent operations with B or with elements of B. In particular, group operations
and printing of elements are performed with respect to this presentation. It is possible
to change the default presentation using the command SetPresentation. Certain com-
mands accept a parameter Presentation, which can be used to perform that command
with respect to a presentation other than the default presentation.

73.1.2.3 Representation Used for Group Operations
By default, group operations with elements of a braid group B are performed using rep-
resentations of the elements as products of simple elements for the default presentation
of B. Experienced users can change this behaviour using the command SetForceCFP. If
this flag is set to false, arguments of a group operation are not automatically converted
into CFP representation if both arguments are represented as words in the generators of
the default presentation of B, but the operation is performed, if possible, using the word
representations instead.

73.1.2.4 Printing of Elements
The default printing format for an element u of a braid group B is that both a represen-
tation of u as word in the generators of the default presentation of B and a representation
of u as product of simple elements for the default presentation of B are printed.

Depending on the application, the user may wish to change the print format so that
only one of the above representations of u is printed. This can be achieved using the
command SetElementPrintFormat.

73.1.3 Normal Form for Elements of a Braid Group
This section briefly describes the normal form for elements of braid groups. For details we
refer to [ECH+92] and [BKL98]. The Magma commands for computing normal forms are
described in Section 73.4.2.

Let B be the braid group on n strings and fix a presentation M for B, either the Artin
presentation or the BKL presentation. A product of simple elements Dlc1 · · · ck is said to
be in left normal form with respect to M , if c1 6= D, ck 6= 1 and (c−1

i D) ∧l ci+1 = 1 for
i = 1, . . . , k − 1, where (c−1

i D) ∧l ci+1 denotes the left-gcd of c−1
i D and ci+1 with respect

to the presentation M .
Similarly, we define c1 · · · ckDl to be in right normal form with respect to M , if ck 6= D,

c1 6= 1 and ci ∧r (Dc−1
i+1) = 1 for i = 1, . . . , k − 1, where ∧r denotes right-gcd with respect

to the presentation M .
It can be shown that the numbers of simple elements and the powers of D in the left

and right normal forms of an element are equal, that is, if x ∈ B has left normal form
Dlc1 · · · ck and right normal form c̄1 · · · c̄k′Dl′ then k′ = k and l′ = l. In this situation we
call l the infimum of x, denoted by inf(x), k the canonical length of x, denoted by len(x),
and l + k the supremum of x, denoted by sup(x). l is the maximal integer d satisfying
Dd ¹ x and l + k is the minimal integer d satisfying x ¹ Dd.

To bring a product Dlc1 · · · ck of simple elements into left normal form, we proceed by
induction, assuming that Dlc1 · · · ck−1 is in left normal form. For i = k − 1, . . . , 1 we now
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compute d = (c−1
i D) ∧l ci+1 and, if d 6= 1, replace ci by cid and ci+1 by d−1ci+1. Finally,

we delete trailing trivial simple elements and absorb simple elements equal to D into the
leading power of D. The result can be shown to be in left normal form [ECH+92, BKL98].

Both the theoretical complexity of this algorithm and its performance in practice are
determined by the gcd computations.

For the Artin presentation, the cost of computing the left-gcd of two simple elements
is O(n logn) [ECH+92], whence the complexity of bringing a product of simple elements
as above into left normal form is O(k2n logn).

For the Artin presentation, the cost of computing the left-gcd of two simple elements is
O(n) [BKL98], whence the complexity of bringing a product of simple elements as above
into left normal form is O(k2n).

Computing right normal forms is analogous.

73.1.4 Mixed Canonical Form and Lattice Operations
This section outlines the algorithms used for lattice operations in a braid group. Let u
and v be elements of a braid group B and let M be either the Artin presentation or the
BKL presentation of B. The Magma commands for computing mixed canonical forms are
described in Section 73.4.2 and the commands providing lattice operations are described
in Section 73.4.5.

Evaluating partial orderings for u and v with respect to M is straightforward. u ¹ v
if and only if u−1v is a positive element with respect to M . The latter can be decided by
computing the left normal form Dlc1 · · · ck of u−1v with respect to M : u−1v is positive if
and only if l ≥ 0. Evaluating the partial ordering º is analogous.

We call the tuple < a, b > the left-mixed canonical form of an element x ∈ B, if
a = a1 · · · ak and b = b1 · · · bs are positive elements in left normal form (a1 = D, b1 = D is
permitted), x = a−1b and the left-gcd of a1 and b1 is trivial.

Similarly, we call the tuple < a, b > the right-mixed canonical form of x, if a = a1 · · · ak

and b = b1 · · · bs are positive elements in right normal form (ak = D, bs = D is permitted),
x = ab−1 and the right-gcd of ak and bs is trivial.

It is not difficult to show that the left-gcd of u and v is given by ua−1, where < a, b >
is the left-mixed canonical form of u−1v, and that the right-gcd of u and v is given by
a−1u, where < a, b > is the right-mixed canonical form of uv−1 [ECH+92].

Similarly, the left-lcm of u and v is given by ua, where < a, b > is the right-mixed
canonical form of u−1v and the right-lcm of u and v is given by au, where < a, b > is the
left-mixed canonical form of uv−1

Computing the left-mixed canonical form of an element x can, after writing x = a−1b
with two positive elements a and b, easily be reduced to computing repeatedly the left-
normal forms of a and b and cancelling the left-gcd of the leading simple elements. Com-
puting the right-mixed canonical form is analogous.
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73.1.5 Conjugacy Testing and Conjugacy Search
Conjugacy testing, that is, deciding whether two given braids are conjugate, and conju-
gacy search, that is, computing a conjugating element for a pair of conjugate braids, are
of particular importance to public key cryptosystems based on braid groups. Known al-
gorithms for both conjugacy testing and conjugacy search require the (at least partial)
computation of an invariant of the conjugacy classes of the elements in question, either
the super summit set [Gar69, ERM94] or the ultra summit set [Geb03].

This section recalls the definition of these invariants and sketches the algorithms used
for computing them, for conjugacy testing and for conjugacy search. The relevant Magma
commands are described in Section 73.4.6.

For this section let B be a braid group and let M be either the Artin presentation or
the BKL presentation of B.

73.1.5.1 Definition of the Class Invariants
We define two operations, the cycling operation c and the decycling operation d, each
mapping an arbitrary element x ∈ B to a conjugate of x as follows. Let x ∈ B be
a braid with left normal form x = Dlc1 · · · ck as defined in Section 73.1.3. If k = 0,
we define c(x) = x and d(x) = x. Otherwise, we define c(x) = Dlc2 · · · ck(cD

−l

1 ) and
d(x) = Dl(cD

l

k )c1 · · · ck−1.

We now fix an element x ∈ B and consider the set Cx of all conjugates of x. Proofs for
the following facts can be found in [ECH+92] or [BKL98].

- The set {inf(y) : y ∈ Cx} is bounded above; we denote its maximum by ss-inf(x).

- The set {sup(y) : y ∈ Cx} is bounded below; we denote its minimum by ss-sup(x).

- The maximum of inf on Cx and the minimum of sup on Cx can be achieved simultane-
ously.

We define three sets of conjugates of x as follows.

- The set Px = {y ∈ Cx : y ∈ B+}, containing the positive conjugates of x.

- The set Sx = {y ∈ Cx : inf(y) = ss-inf(x), sup(y) = ss-sup(x)}, called the super summit
set of x.

- The set Ux = {y ∈ Sx : ∃ i > 0 : ci(y) = y}, called the ultra summit set of x.

Clearly, the sets Px, Sx and Ux only depend on the conjugacy class of x. Moreover, the
set Px is empty if ss-inf(x) < 0 and it contains Sx if ss-inf(x) ≥ 0.

Proofs of the following properties can be found in [ECH+92] and [BKL98] for the sets Px

and Sx and in [Geb03] for the set Ux.

- The sets Px, Sx and Ux are finite.

- The sets Sx and Ux are non-empty.

- Representatives of Px, Sx and Ux, respectively, can be obtained from x by a finite
number of cycling and decycling operations.
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73.1.5.2 Computing the Class Invariants
The main tools for computing the class invariants introduced in Section 73.1.5.1 are the
following “convexity” results established in [ERM94] and [FGM03] for the sets Px and Sx

and in [Geb03] for the set Ux. Let Ix ∈ {Px, Sx, Ux}.
- For y, z ∈ Ix, there exists a finite sequence y = y0, . . . , yr = z such that for i = 1, . . . , r,

yi ∈ Ix and yi = yci
i−1 for a simple element ci.

- For y ∈ Ix and a simple element c, there exists a unique ¹-minimal element ιy(c) such
that c ¹ ιy(c) and yιy(c) ∈ Ix. Moreover, ιy(c) is simple.

By the above results, any non-empty subset I ⊆ Ix with the property that yιy(s) ∈ I
for all y ∈ I and all generators s of the presentation M is equal to Ix. In particular, Ix
can be computed, starting from a single representative, as closure under conjugation with
minimal simple elements.

Algorithms for computing the minimal simple elements ιy(c) are given in [FGM03] for
the case Ix ∈ {Px, Sx} and in [Geb03] for the case Ix = Ux.

The Magma commands for computing the class invariants Px, Sx and Ux as well as
corresponding minimal simple elements ιy(c) are described in Section 73.4.6.

73.1.5.3 Conjugacy Testing and Conjugacy Search
Testing conjugacy of two braids x, y ∈ B can be performed using either super summit
sets or ultra summit sets. It is obvious from the results cited in Section 73.1.5.1 that the
following are equivalent.

- x and y are conjugate in B.

- Sx = Sy.

- Ux = Uy.

- Sx ∩ Sy 6= ∅.
- Ux ∩ Uy 6= ∅.
If x and y are conjugate, a conjugating element can be obtained by establishing an element
z ∈ Sx ∩ Sy or z ∈ Ux ∩ Uy both as conjugate of x and of y and keeping track of the
conjugating elements in each step.

The size of super summit sets grows rapidly with increasing values of braid index n
and canonical length. In general, computing super summit sets is difficult or infeasible for
braids on more than 5-10 strings, except for very short canonical lengths. Ultra summit
sets, on the other hand tend to be much smaller and can frequently be computed for
braids on up to 100 strings and canonical length up to 1000, provided sufficient memory is
available [Geb03]. Conjugacy search may be successful even in situations where the entire
class invariant is too large to be computed.

In Magma, conjugacy testing and conjugacy search based on ultra summit sets is
provided by the function IsConjugate.
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73.2 Constructing and Accessing Braid Groups

This section describes the facilities for creating a braid group and for accessing and chang-
ing its basic properties.

BraidGroup(n: parameters)

BraidGroup(GrpBrd, n: parameters)

Given a small integer n > 0, return the braid group on n strings, that is, n−1 Artin
generators.

Presentation MonStgElt Default : “Artin”
The presentation can be selected using the parameter Presentation. Possible values
for this parameter are "Artin" (default) and "BKL".

GetPresentation(B)

Returns a string s indicating the presentation currently used for B. s is either
"Artin" or "BKL".

SetPresentation(∼B, s)

Set the presentation used for B to the presentation indicated by s. Possible values
for s are "Artin" and "BKL".

GetForceCFP(B)

Returns whether arithmetic operations with elements of B are always done using
representations of the elements as products of simple elements.

SetForceCFP(∼B, b)

By default, arithmetic operations with elements of B are always done using rep-
resentations of the elements as products of simple elements. If necessary, such
representations are computed.

Experienced users can turn this feature off for a braid group B using the proce-
dure SetForceCFP with b set to false.

GetElementPrintFormat(B)

Returns a string s indicating the format currently used for printing elements of B.
s is one of "Word", "CFP" or "Both".

SetElementPrintFormat(∼B, s)

When printing an element of a braid group B, by default both the representation
as word in the generators and the representation as product of simple elements in
the presentation selected for B are printed.

Experienced users can use the procedure SetElementPrintFormat for changing
the print format. Possible values for s are "Word", "CFP" and "Both".
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NumberOfStrings(B)

Given a braid group B, return the number of strings on which B is defined.

NumberOfGenerators(B)

Ngens(B)

Given a braid group B, return the number of Artin generators of B. Note that the
number of Artin generators is returned regardless of the presentation selected for B.

73.3 Creating Elements of a Braid Group

This section describes the facilities for creating elements of a braid group.

Representative(B)

Rep(B)

Given a braid group B, return a representative of B.

Identity(B)

Id(B)

B ! 1

Given a braid group B, return the identity element of B.

FundamentalElement(B: parameters)

Presentation MonStgElt Default :

Return the fundamental element for the presentation of B indicated by the parame-
ter Presentation. Possible values for this parameter are "Artin" and "BKL". If the
parameter Presentation is not used, the fundamental element for the presentation
currently selected for B is returned.

Generators(B: parameters)

Presentation MonStgElt Default :

Return a sequence containing the generators for the presentation of B indicated
by the parameter Presentation. Possible values for this parameter are "Artin"
and "BKL". If the parameter Presentation is not used, a sequence containing the
generators for the presentation currently selected for B is returned.

B . i

Given a braid group B on n strings and an integer i, where 0 < |i| < n, return the
|i|-th Artin generator σi, if i > 0, or its inverse σ−1

|i| , if i < 0.
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B . T

Given a braid groupB on n strings and an tuple T =< r, t >, where 1 ≤ |t| < |r| ≤ n,
return the BKL generator a|r|,|t|, if r, t > 0, or its inverse a−1

|r|,|t| otherwise.

B ! [ i1, ..., ik ]

Given a braid group B on n strings and a sequence [i1, · · · , ik] of integers satisfying
0 < |ij | < n (j = 1, . . . , k), return the element of B given by the product

σ
sgn(i1)

|i1| · · ·σsgn(ik)

|ik| .

B ! [ T1, ..., Tk ]

Given a braid group B on n strings and a sequence [T1, · · · , Tk] of tuples satisfying
Tj =< rj , tj >, 1 ≤ |tj | < |rj | ≤ n (j = 1, . . . , k), return the element of B given by
the product

ae1
|r1|,|t1| · · · a

ek

|rk|,|tk|

where ej = 1 if rj , tj > 0 and ej = −1 otherwise (j = 1, . . . , k).

B ! p

Given a braid group B on n strings and a permutation p on n points, return the
simple element defined by p in the presentation currently selected for B as new
element of B.

Note that the result in general depends on the presentation selected for B.
Note further that in the BKL presentation, only permutations which are prod-
ucts of parallel descending cycles correspond to simple elements; attempting to
coerce an invalid permutation will result in a runtime error. The function
IsProductOfParallelDescendingCycles can be used to test whether a given per-
mutation corresponds to a BKL simple element.

B ! [ p1, ...,pk ]

Given a braid group B on n strings and a sequence [p1, . . . , pk] of permutations on
n points, return the product c1 · · · ck as new element of B, where cj is the simple
element defined by pj in the presentation currently selected for B (j = 1, . . . , k).

Note that the result in general depends on the presentation selected for B. Note
further that in the BKL presentation, only permutations which are products of
parallel descending cycles correspond to simple elements; attempting to coerce a
sequence containing an invalid permutation will result in a runtime error. The
function IsProductOfParallelDescendingCycles can be used to test whether a
given permutation corresponds to a BKL simple element.
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B ! T

Given a braid group B on n strings and an tuple T =< s, l, S, r >, where s is either
the string "Artin" or the string "BKL", l and r are integers and S is a sequence
[p1, . . . , pk] of permutations on n points, return the product Dlc1 · · · ckDr as new
element of B, where D is the fundamental element and cj is the simple element
defined by pj (j = 1, . . . , k) in the presentation indicated by s.

Note that in the BKL presentation, only permutations which are products of
parallel descending cycles correspond to simple elements; if S contains an invalid
permutation, a runtime error will result. Whether the elements of a given se-
quence S correspond to BKL simple elements can be tested using the function
IsProductOfParallelDescendingCycles.

IsProductOfParallelDescendingCycles(p)

Given a permutation p on n points, return whether p is a product of parallel de-
scending cycles, that is, whether p defines a simple element in the BKL monoid on
n strings.

Random(B, r, s, m, n: parameters)

RandomCFP(B, r, s, m, n: parameters)

Random(B: parameters)

RandomCFP(B: parameters)

Presentation MonStgElt Default :

Given a braid group B and integers r, s,m, n, satisfying r ≤ s and 0 ≤ m ≤ n, a
pseudo-random element of B is constructed as follows. Let D be the fundamental
element and C the set of simple elements for the presentation indicated by the
parameter Presentation. First, integers e ∈ [r, s] and l ∈ [m,n] are chosen using
uniform distributions on these sets. Then, for i = 1, . . . , l, ci ∈ C is chosen using a
uniform distribution on C and the element Dec1 · · · cl is returned.

If no value is given for the parameter Presentation, the presentation selected
for B is used.

The versions with a single argument are short for Random(B, 0, 0, 0, 42).

Random(B, m, n: parameters)

RandomWord(B, m, n: parameters)

RandomWord(B: parameters)

Presentation MonStgElt Default :

Given a braid group B and two integers 0 ≤ m ≤ n, Random(B, m, n) returns a
pseudo-random element of B constructed as follows. First, a length l ∈ [m,n] is
chosen using a uniform distribution. Then, for i = 1, . . . , l, gi ∈ X ∪X−1 \ {g−1

i−1}
is chosen using a uniform distribution on this set. Here, X is the set of generators
of the presentation indicated by the parameter Presentation and X−1 is the set of
generator inverses.
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If no value is given for the parameter Presentation, the presentation selected
for B is used.

The signature RandomWord(B) is short for RandomWord(B, 0, 42).

Example H73E1

We construct the braid group B on 6 strings and the symmetric group S on 6 points.

> S := Sym(6);

> B := BraidGroup(6);

> B;

GrpBrd : B on 6 strings

By default, B is created using the Artin presentation.

> GetPresentation(B);

Artin

We now define the fundamental element with respect to the BKL presentation of B and print this
element with respect to the presentation currently used for B, that is, with respect to the Artin
presentation. Note that both a word in the Artin generators and a representation of the element
in terms of Artin simple elements are printed.

> D_BKL := FundamentalElement(B : Presentation := "BKL");

> D_BKL;

B.5 * B.4 * B.3 * B.2 * B.1

<Artin, 0, [

(1, 6, 5, 4, 3, 2)

], 0>

> GetElementPrintFormat(B);

Both

We print the BKL generator a3,1.

> B.<3,1>;

B.2 * B.1 * B.2^-1

<Artin, 0, [

(1, 3, 2),

(1, 6)(2, 5, 3, 4)

], -1>

Next we change the format for printing elements of B using the function SetElementPrintFormat

so that only a representation in terms of simple elements is printed.

> SetElementPrintFormat(~B, "CFP");

We now define and print several elements of B, illustrating the use of some of the functions
described in the previous section.

First we create a pseudo-random element of B as product of 3 random simple elements for the
Artin presentation.

> u := Random(B, 0, 0, 3, 3);

> u;
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<Artin, 0, [

(1, 6)(3, 5, 4),

(1, 3)(2, 6)(4, 5),

(2, 3)

], 0>

Next we define an element of B by a product of simple elements for the BKL presentation using
the coercion operator ‘!’. Note that printing of this element is still done with respect to the Artin
presentation.

> v := B ! <"BKL", 0, [ S | (1,6)(3,5,4), (1,3)(4,5)], 0>;

> v;

<Artin, 0, [

(1, 6, 5, 4, 3, 2),

(1, 2, 6)(3, 5),

(2, 4, 5, 6),

(1, 6)(2, 4, 3, 5)

], -2>

Finally, we look at the simple elements defined by the permutations p = (1, 3)(4, 2) and q = (1, 4, 3)
on 6 points.

> p := S ! (1,3)(4,2);

> q := S ! (1,4,3);

Creating the simple elements for the Artin presentation defined by p and q is straightforward
using the coercion operator ‘!’.

> p_Artin := B!p;

> p_Artin;

<Artin, 0, [

(1, 3)(2, 4)

], 0>

> q_Artin := B!q;

> q_Artin;

<Artin, 0, [

(1, 4, 3)

], 0>

We now change the presentation used for B to the BKL presentation. Note that this also changes
the presentation with respect to which elements are printed.

> SetPresentation(~B, "BKL");

> GetPresentation(B);

BKL

The attempt to define a simple element for the BKL presentation using the permutation p fails.

> p_BKL := B!p;

>> p_BKL := B!p;

^
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Runtime error in ’!’: Illegal coercion

LHS: GrpBrd

RHS: GrpPermElt

We should have been more careful: using the function IsProductOfParallelDescendingCycles

we see that p is not a product of parallel descending cycles and hence does not define a simple
element for the BKL presentation.

> IsProductOfParallelDescendingCycles(p);

false

q, on the other hand, does define a simple element for the BKL presentation and we can coerce q
to an element of B using the operator ‘!’.

> IsProductOfParallelDescendingCycles(q);

true

> q_BKL := B!q;

> q_BKL;

<BKL, 0, [

(1, 4, 3)

], 0>

Note however, that the simple element for the BKL presentation defined by q and the simple
element for the Artin presentation defined by q are different elements of B! (The comparison
operator eq is described in Section 73.4.4.)

> q_BKL eq q_Artin;

false

The representations of the Artin simple elements defined by p and q in terms of BKL simple
elements have no obvious connection to p and q, respectively.

> p_Artin;

<BKL, 0, [

(1, 3, 2),

(2, 4, 3)

], 0>

> q_Artin;

<BKL, 0, [

(1, 4, 3, 2),

(2, 3)

], 0>
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73.4 Working with Elements of a Braid Group

73.4.1 Accessing Information
This sections describes how the internal representations of an element and a number of
basic invariants can be accessed.

Parent(u)

Given an element u of a braid group B, return the parent group of u, that is B.

#u

Given an element u of a braid group B, return the length of the representing word
in the generators corresponding to the presentation selected for B. Note that this
is not an invariant of u.

CanonicalFactorRepresentation(u: parameters)

CFP(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group B, return a tuple T =< s, l, S, r > describing
the representation in terms of simple elements for the presentation indicated by the
value of the parameter Presentation. If no value for Presentation is given, the
presentation selected for B is used.

The interpretation of the components of T is as follows: s is a string, either equal
to "Artin" or equal to "BKL" indicating the presentation, l and r are integers and
S is a sequence [p1, . . . , pk] of permutations on n points, such that

Dlc1 · · · ckDr

is the representation of u in terms of simple elements, where D is the fundamental
element and cj is the simple element defined by pj (j = 1, . . . , k) in the presentation
indicated by s.

WordToSequence(u: parameters)

ElementToSequence(u: parameters)

Eltseq(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group B, return a sequence describing the repre-
senting word in the generators corresponding to the presentation indicated by the
value of the parameter Presentation. If no value for Presentation is given, the
presentation selected for B is used.

For a representing word
σe1

i1
· · ·σek

ik
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in the Artin generators with 0 < ij < n and ej ∈ {−1, 1} for j = 1, . . . , k, the
sequence of integers

[e1i1, . . . , ekik]

is returned.
For a representing word

ae1
r1,t1 ...a

ek
rk,tk

in the BKL generators with 1 ≤ tj < rj ≤ n and ej ∈ {−1, 1} for j = 1, . . . , k, the
sequence of tuples

[< e1r1, e1t1 >, . . . , < ekrk, ektk >]

is returned.

InducedPermutation(u)

Given an element u of a braid group B on n strings, return the permutation on n
points induced by u acting on the strings on which B is defined.

For the following description of the functions CanonicalLength, Infimum and
Supremum, let D be the fundamental element and let Dlc1 · · · ck be the left normal
form of the element u of the braid group B in the presentation indicated by the
value of the parameter Presentation. If no value for Presentation is given, the
presentation selected for B is used.

CanonicalLength(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group B, return the canonical length k of u for the
appropriate presentation of B. The argument is converted into left normal form.

Infimum(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group B, return the infimum l of u for the appropriate
presentation of B. The argument is converted into left normal form.

Supremum(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group B, return the supremum l + k of u for the
appropriate presentation of B. The argument is converted into left normal form.

For the following description of the functions SuperSummitCanonicalLength,
SuperSummitInfimum and SuperSummitSupremum, let D be the fundamental ele-
ment and let Dlc1 · · · ck be the normal form of a representative of the super summit
set the element u of the braid group B with respect to the presentation indicated by
the value of the parameter Presentation. If no value for Presentation is given,
the presentation selected for B is used.
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SuperSummitCanonicalLength(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group B, return the canonical length k of a represen-
tative of the super summit set of u with respect to the appropriate presentation of
B, that is, the minimal canonical length among all conjugates of u. The argument
is converted into left normal form.

SuperSummitInfimum(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group B, return the infimum l of a representative of
the super summit set of u with respect to the appropriate presentation of B, that
is, the maximal infimum among all conjugates of u. The argument is converted into
left normal form.

SuperSummitSupremum(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group B, return the supremum l+k of a representative
of the super summit set of u with respect to the appropriate presentation of B, that
is, the minimal supremum among all conjugates of u. The argument is converted
into left normal form.

Example H73E2

We define the braid group B on 6 strings using the BKL presentation and create an element u as
a random word of length between 5 and 10 in the BKL generators.

> B := BraidGroup(6 : Presentation := "BKL");

> u := RandomWord(B, 5, 10);

The parent group of u can be accessed using the function Parent.

> Parent(u);

GrpBrd : B on 6 strings

As word in the BKL generators, u has length 5. We define a sequence describing the representation
of u as word in the BKL generators.

> #u;

5

> seq_BKL := WordToSequence(u);

> seq_BKL;

[ <5, 1>, <5, 2>, <5, 4>, <4, 1>, <2, 1> ]

When we ask for a representation as word in the Artin generators, such a representation is created
automatically.

> seq_Artin := WordToSequence(u : Presentation := "Artin");

> seq_Artin;
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[ 4, 3, 2, 1, 2, 1, -2, -3, 1 ]

We now define the permutation p induced by u on the strings on which B is defined.

> p := InducedPermutation(u);

> p;

(4, 5)

The representation of u in terms of simple elements for the Artin presentation can be obtained
using the function CanonicalFactorRepresentation.

> CanonicalFactorRepresentation(u : Presentation := "Artin");

<Artin, 0, [

(1, 5, 4, 3),

(1, 2),

(1, 6)(2, 5, 3),

(5, 6)

], -1>

We now compute the canonical lengths of u with respect to the Artin presentation and with
respect to the BKL presentation. Note that these lengths are different.

> CanonicalLength(u : Presentation := "Artin");

4

> CanonicalLength(u : Presentation := "BKL");

3

Finally, we compute for both presentations the canonical lengths of a super summit representative
of u.

> SuperSummitCanonicalLength(u : Presentation := "Artin");

2

> SuperSummitCanonicalLength(u : Presentation := "BKL");

3

Obviously, u does not belong to its super summit set with respect to the Artin presentation. (We
cannot tell for the BKL presentation from the information we have computed.)

73.4.2 Computing Normal Forms of Elements
This section describes functions and procedures for computing various normal forms of
elements of a braid group B. All normal forms are defined in terms of representations
of elements as products of simple elements and depend on the presentation of B which
is used. The functions documented in this section all accept a parameter Presentation
which can be used to specify the presentation of B with respect to which the computation
should be performed. Possible values for this parameter are the strings "Artin" and "BKL"
If no value is given for Presentation, the presentation selected for B is used.
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LeftNormalForm(u: parameters)

NormalForm(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group B, return a new element of B defined by the
left normal form of u with respect to the indicated presentation.

LeftNormalForm(∼u: parameters)

NormalForm(∼u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group B, bring u into left normal form with respect
to the indicated presentation.

RightNormalForm(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group B, return a new element of B defined by the
right normal form of u with respect to the indicated presentation.

RightNormalForm(∼u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group B, bring u into right normal form with respect
to the indicated presentation.

LeftMixedCanonicalForm(u: parameters)

MixedCanonicalForm(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group B, return two tuples T1 and T2 defining products
v1 · · · vk and w1 · · ·wl, respectively, of simple elements for the indicated presentation,
such that v1 · · · vk and w1 · · ·wl are in left normal form, the left-gcd of v1 and w1 is
trivial and

u = (v1 · · · vk)−1(w1 · · ·wl).

See the entry for CanonicalFactorRepresentation for a description of the tuple
format. Note that the tuples can be coerced into elements of B using the coercion
operator ‘!’.
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RightMixedCanonicalForm(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group B, return two tuples T1 and T2 defining products
v1 · · · vk and w1 · · ·wl, respectively, of simple elements for the indicated presentation,
such that v1 · · · vk and w1 · · ·wl are in right normal form, the right-gcd of v1 and w1

is trivial and
u = (v1 · · · vk)(w1 · · ·wl)−1.

See the entry for CanonicalFactorRepresentation for a description of the tuple
format. Note that the tuples can be coerced into elements of B using the coercion
operator ‘!’.

Example H73E3

We define the braid group B on 6 strings using the Artin presentation, set the print format for
elements to "CFP" and define an element u of B.

> B := BraidGroup(6);

> SetElementPrintFormat(~B, "CFP");

>

> u := B ! <"Artin",

> 0,

> [ Sym(6) | (1,6)(3,5,4), (1,3)(2,6)(4,5), (2,3)],

> 0>;

> u;

<Artin, 0, [

(1, 6)(3, 5, 4),

(1, 3)(2, 6)(4, 5),

(2, 3)

], 0>

We compute and print the left normal form of u with respect to the Artin presentation of B.

> u_Artin := LeftNormalForm(u);

> u_Artin;

<Artin, 1, [

(1, 2, 6, 5, 4, 3),

(2, 3)

], 0>

We now compute the left normal form of u with respect to the BKL presentation of B. Since
elements are printed with respect to the presentation selected for the parent group, that is, in
the Artin presentation in our example, we use the function CanonicalFactorRepresentation to
print the representation in terms of simple elements for the BKL presentation.

> u_BKL := LeftNormalForm(u : Presentation := "BKL");

> CFP(u_BKL : Presentation := "BKL");

<BKL, 2, [

(2, 6, 5, 4, 3),
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(2, 6, 5, 4),

(2, 6, 5),

(2, 6),

(2, 3)

], 0>

We define another element v of B in left normal form.

> v := LeftNormalForm(B.5*B.2^-2*B.4*B.3^-1*B.5^-1*B.3^-1*B.5);

> v;

<Artin, -3, [

(1, 6)(2, 4, 3, 5),

(1, 2, 6)(3, 5),

(1, 6, 2, 5)(3, 4),

(3, 5)(4, 6)

], 0>

As can easily be read off the representation of v in terms of simple elements which is in left normal
form, v has infimum -3, canonical length 4 and supremum 1 with respect to the Artin presentation.

> Infimum(v);

-3

> CanonicalLength(v);

4

> Supremum(v);

1

Note that infimum, canonical length and supremum of an element can also be obtained from its
right normal form.

> RightNormalForm(v);

<Artin, 0, [

(4, 6, 5),

(1, 6)(2, 5, 3, 4),

(1, 6)(2, 4, 5),

(1, 6)(2, 5)

], -3>

73.4.3 Arithmetic Operators and Functions for Elements
This section describes the basic arithmetic operations for elements of a braid group. Strictly
speaking, all functions should be considered as functions on representatives of elements,
that is, words in the generators or products of simple elements.

Unless stated otherwise, arithmetic operations with elements of a braid group B are
performed using representations with respect to the presentation selected for B. This
presentation can be changed using the function SetPresentation.

By default, arithmetic operations with elements of B are performed using representa-
tions in terms of simple elements; such representations are created if necessary. Experi-
enced users can change this behaviour, if desired, using the function SetForceCFP.
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The complexity of all basic arithmetic operations is linear in the length of the represen-
tations of the input elements. No normalisations are performed automatically, as doing so
would restrict the user’s control of operations with elements. It is, however, recommended
to use the function NormalForm or its procedural version in time critical situations to limit
the length of representations of elements; see Example H73E4.

u * v

Given elements u and v belonging to the same braid group B, return the product
uv as a new element of B.

u *:= v

Given elements u and v belonging to the same braid group B, replace u with the
product uv.

u / v

Given elements u and v belonging to the same braid group B, return the product
uv−1 as a new element of B.

u /:= v

Given elements u and v belonging to the same braid group B, replace u with the
product uv−1.

u ^ n

Given an element u of a braid group B and an integer n, return the power un as a
new element of B.

u ^:= n

Given an element u of a braid group B and an integer n, replace u with the power
un.

u ^ v

Given elements u and v belonging to the same braid group B, return the conjugate
uv = v−1uv as a new element of B.

u ^:= v

Given elements u and v belonging to the same braid group B, replace u with the
conjugate uv = v−1uv.

Inverse(u)

Given an element u of a braid group B, return its inverse u−1 as a new element of
B.

Inverse(∼u)
Given an element u of a braid group B, replace u with its inverse u−1.



Ch. 73 BRAID GROUPS 2313

LeftConjugate(u, v)

Given elements u and v belonging to the same braid group B, return the “left
conjugate” vuv−1 as a new element of B.

LeftConjugate(∼u, v)

Given elements u and v belonging to the same braid group B, replace u with the
“left conjugate” vuv−1.

LeftDiv(u, v)

Given elements u and v belonging to the same braid group B, return the product
u−1v as a new element of B.

LeftDiv(u, ∼v)
Given elements u and v belonging to the same braid group B, replace v with the
product u−1v.

The following functions Cycle and Decycle accept a parameter Presentation which
can be set either to "Artin" or to "BKL". The results of the cycling and decycling oper-
ations are defined in terms of the left normal form Dlc1 · · · ck of the argument u ∈ B in
terms of simple elements for a presentation of B and the results in general depend on the
presentation used. The results of these functions are returned in left normal form.

If no value for the parameter Presentation is given, the presentation selected for the
parent group of the argument will be used.

Cycle(u: parameters)

Presentation MonStgElt Default :

Given an element u ∈ B with left normal form Dlc1 · · · ck, return the result of a
cycling operation on u, that is,

u(cD−l

1 )

as new element of B in left normal form.

Cycle(∼u: parameters)

Presentation MonStgElt Default :

Given an element u ∈ B with left normal form Dlc1 · · · ck, replace u by the result
of a cycling operation on u, that is, by

u(cD−l

1 )

in left normal form.
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Decycle(u: parameters)

Presentation MonStgElt Default :

Given an element u ∈ B with left normal form Dlc1 · · · ck, return the result of a
decycling operation on u, that is,

u(c−1
k

)

as new element of B in left normal form.

Decycle(∼u: parameters)

Presentation MonStgElt Default :

Given an element u ∈ B with left normal form Dlc1 · · · ck, replace u by the result
of a decycling operation on u, that is, by

u(c−1
k

)

in left normal form.

Example H73E4

We illustrate the importance of limiting the length of representations of elements using the function
NormalForm when performing a sequence of arithmetic operations on an element.
Consider the following computation in the braid group B on 6 strings. Starting with an element
w, we repeatedly replace w by the product wwσ1 where σ1 is the first Artin generator of B.
A naive way of implementing this computation would be as follows.

> B := BraidGroup(6);

> u := B.5*B.2^-2*B.4*B.3^-1;

> v := B.1;

> N := 14;

>

> T := Cputime();

> w := u;

> for i := 1 to N do

> w := w * w^v;

> end for;

This, however, yields an extremely complicated representation for the result; the representation
in terms of simple elements has the length 114686.

> #CFP(w)[3];

114686

Performing subsequent computations with the result, for example computing its normal form, is
very expensive.

> NormalForm(~w);

> print "total time used: ", Cputime()-T;
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total time used: 149.229

One might be tempted to solve this problem by working only with elements in normal form, that
is, by bringing every result of an arithmetic operation into normal form after computing it.
Using this approach, computing the result of the above iteration is indeed much faster.

> T := Cputime();

> w := u;

> for i := 1 to N do

> t := w^v;

> NormalForm(~t);

> w := w * t;

> NormalForm(~w);

> end for;

> print "total time used: ", Cputime()-T;

total time used: 0.53

However, this strategy is not optimal either. For the above example, the optimal performance is
obtained if the result is normalised every third pass through the iteration.

> T := Cputime();

> w := u;

> for i := 1 to N do

> w := w * w^v;

> if i mod 3 eq 0 then

> NormalForm(~w);

> end if;

> end for;

> NormalForm(~w);

> print "total time used: ", Cputime()-T;

total time used: 0.171

Unfortunately, the frequency of normalisation giving best results depends heavily on the situation,
that is, both on the arithmetic operations and on the characteristics of the arguments.
As a rule of thumb, the effects of normalising results too frequently are less of a problem than
normalising results not often enough or not at all.

73.4.4 Boolean Predicates for Elements
This section describes the tests for membership, equality and partial orderings which are
available for elements of a braid group B.

Unless stated otherwise, all computations are performed in the presentation selected
for B or in the presentation specified by the value of the parameter Presentation, either
"Artin" or "BKL" if a value for this parameter is given.

u in B

Given an element u of a braid group and a braid group B, return true if u ∈ B and
false otherwise.
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u notin B

Given an element u of a braid group and a braid group B, return false if u ∈ B
and true otherwise.

IsEmptyWord(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group, return true if u is the represented by the
empty word in the specified presentation and false otherwise.

AreIdentical(u, v: parameters)

Presentation MonStgElt Default :

Given elements u and v belonging to the same braid group B, return true if u
and v are represented by identical words in the specified presentation and false
otherwise.

IsSimple(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group, return true if u is a simple element with respect
to the specified presentation and false otherwise. The argument is converted into
normal form.

IsSuperSummitRepresentative(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group, return true if u is an element of its super
summit set with respect to the specified presentation and false otherwise. The
argument is converted into normal form.

IsUltraSummitRepresentative(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group, return true if u is an element of its ultra
summit set with respect to the specified presentation and false otherwise. The
argument is converted into normal form.

IsIdentity(u: parameters)

IsId(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group B, return true if u is the identity element of
B and false otherwise. The argument is converted into normal form.

u eq v

Given elements u and v belonging to the same braid group B, return true if u = v
and false otherwise. Both arguments are converted into normal form.
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u ne v

Given elements u and v belonging to the same braid group B, return false if u = v
and true otherwise. Both arguments are converted into normal form.

u le v

IsLE(u, v: parameters)

IsLe(u, v: parameters)

Presentation MonStgElt Default :

Given elements u and v belonging to the same braid group B, return true if u ¹ v,
that is, if u−1v is a positive element, with respect to the specified presentation and
false otherwise.

Note that the parameter Presentation is not available for the operator version
of this predicate.

u ge v

IsGE(u, v: parameters)

IsGe(u, v: parameters)

Presentation MonStgElt Default :

Given elements u and v belonging to the same braid group B, return true if u º v,
that is, if uv−1 is a positive element, with respect to the specified presentation and
false otherwise.

Note that the parameter Presentation is not available for the operator version
of this predicate.

IsConjugate(u, v: parameters)

Presentation MonStgElt Default :

Given elements u and v belonging to the same braid group B, return true and an
element c ∈ B satisfying uc = v if u and v are conjugate and return false otherwise.

The function first computes representatives us and vs of the ultra summit sets
of u and v, respectively, with respect to the specified presentation. If this does not
prove that the elements are not conjugate, the function tries to compute elements
of the ultra summit set of u until either the element vs is found, proving that u and
v are conjugate, or the ultra summit set of u is seen not to contain vs, proving that
u and v are not conjugate. See Example H73E8 for a more detailed description.

Note that testing elements for conjugacy is a hard problem and may require
significant amounts of memory and CPU time.
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Example H73E5

We define the braid group B on 6 strings using the Artin presentation and set the print format
for elements to "CFP".

> B:= BraidGroup(6);

> SetElementPrintFormat(~B, "CFP");

(1) We create pseudo-random elements of B until we find an element u which is contained in its
super summit set with respect to the Artin presentation of B.

> repeat

> u := Random(B, 5, 10);

> until IsSuperSummitRepresentative(u);

> NormalForm(u);

<Artin, -2, [

(1, 5)(2, 3, 6),

(1, 5, 6, 3, 2, 4),

(2, 6)(3, 4, 5)

], 0>

u is not contained in its super summit set with respect to the BKL presentation of B, showing
that the super summit set of an element in general depends on the presentation with respect to
which it is defined.

> IsSuperSummitRepresentative(u : Presentation := "Artin");

true

> IsSuperSummitRepresentative(u : Presentation := "BKL");

false

(2) This example shows that the Artin presentation and the BKL presentation give rise to distinct
partial orderings on B.

σ−1
1 σ2σ1 has negative infimum with respect to the Artin presentation and hence is not a positive

element with respect to this presentation.

> Infimum(B.1^-1*B.2*B.1 : Presentation := "Artin");

-1

Consequently, σ1 6¹ σ2σ1 in the partial ordering defined with respect to the Artin presentation.

> B.1 le B.2*B.1;

false

We can also use the function version to check this.

> IsLE(B.1, B.2*B.1 : Presentation := "Artin");

false

However, σ−1
1 σ2σ1 is equal to the BKL generator a3,1 and hence is, in particular, a positive element

with respect to the BKL presentation. in the BKL generators.

> B.1^-1*B.2*B.1 eq B.<3,1>;
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true

Hence, σ1 ¹ σ2σ1 in the partial ordering defined with respect to the BKL presentation.

> IsLE(B.1, B.2*B.1 : Presentation := "BKL");

true

(3) We change the print format for elements of B so that only words in the Artin generators are
printed.

> SetElementPrintFormat(~B, "Word");

Inducing permutations with different cycle structure, σ1 and σ1σ2 cannot be conjugate in B.

> InducedPermutation(B.1);

(1, 2)

> InducedPermutation(B.2*B.1);

(1, 2, 3)

> IsConjugate(B.1, B.2*B.1);

false

σ1 and σ2, however, are conjugate in B. We compute a conjugating element c.

> res, c := IsConjugate(B.1, B.2);

> res;

true

> NormalForm(c);

B.2 * B.1

c, as desired, conjugates σ1: s1: to σ2: s2:.

> B.1^c eq B.2;

true

73.4.5 Lattice Operations
This section describes the functions available for computing lattice operations, least com-
mon multiple and greatest common divisor, for elements of a braid group B. The results
of all lattice operations depend on the presentation used for B and on the partial ordering
considered.

The functions documented in this section all accept a parameter Presentation which
can be used to specify the presentation of B with respect to which the computation should
be performed. Possible values for this parameter are the strings "Artin" and "BKL". If no
value is given for Presentation, the presentation selected for B is used.
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LeftGCD(u, v: parameters)

LeftGcd(u, v: parameters)

LeftGreatestCommonDivisor(u, v: parameters)

GCD(u, v: parameters)

Gcd(u, v: parameters)

GreatestCommonDivisor(u, v: parameters)

Presentation MonStgElt Default :

Given elements u and v belonging to the same braid group B, return the left-gcd
of u and v, that is, the with respect to ¹ maximal element d of B satisfying d ¹ u
and d ¹ v. Here, ¹ is the partial ordering on B defined as follows: a ¹ b iff a−1b is
representable as a positive word in the specified presentation of B.

RightGCD(u, v: parameters)

RightGcd(u, v: parameters)

RightGreatestCommonDivisor(u, v: parameters)

Presentation MonStgElt Default :

Given elements u and v belonging to the same braid group B, return the right-gcd
of u and v, that is, the with respect to º maximal element d of B satisfying u º d
and v º d. Here, º is the partial ordering on B defined as follows: a º b iff ab−1 is
representable as a positive word in the specified presentation of B.

LeftGCD(S: parameters)

LeftGcd(S: parameters)

LeftGreatestCommonDivisor(S: parameters)

GCD(S: parameters)

Gcd(S: parameters)

GreatestCommonDivisor(S: parameters)

Presentation MonStgElt Default :

Given a set or a sequence S containing elements of a braid group B, return the
left-gcd of the elements of S, that is, the with respect to ¹ maximal element d of B
satisfying d ¹ s for all s ∈ S, where ¹ is defined as above.

RightGCD(S: parameters)

RightGcd(S: parameters)

RightGreatestCommonDivisor(S: parameters)

Presentation MonStgElt Default :
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Given a set or a sequence S containing elements of a braid group B, return the
right-gcd of the elements of S, that is, the with respect to º maximal element d of
B satisfying s º d for all s ∈ S, where º is defined as above.

LeftLCM(u, v: parameters)

LeftLcm(u, v: parameters)

LeftLeastCommonMultiple(u, v: parameters)

LCM(u, v: parameters)

Lcm(u, v: parameters)

LeastCommonMultiple(u, v: parameters)

Presentation MonStgElt Default :

Given elements u and v belonging to the same braid group B, return the left-lcm
of u and v, that is, the with respect to ¹ minimal element d of B satisfying u ¹ d
and v ¹ d, where ¹ is defined as above.

RightLCM(u, v: parameters)

RightLcm(u, v: parameters)

RightLeastCommonMultiple(u, v: parameters)

Presentation MonStgElt Default :

Given elements u and v belonging to the same braid group B, return the right-lcm
of u and v, that is, the with respect to º minimal element d of B satisfying d º u
and d º v, where º is defined as above.

LeftLCM(S: parameters)

LeftLcm(S: parameters)

LeftLeastCommonMultiple(S: parameters)

LCM(S: parameters)

Lcm(S: parameters)

LeastCommonMultiple(S: parameters)

Presentation MonStgElt Default :

Given a set or a sequence S containing elements of a braid group B, return the
left-gcd of the elements of S, that is, the with respect to ¹ minimal element d of B
satisfying s ¹ d for all s ∈ S, where ¹ is defined as above.
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RightLCM(S: parameters)

RightLcm(S: parameters)

RightLeastCommonMultiple(S: parameters)

Presentation MonStgElt Default :

Given a set or a sequence S containing elements of a braid group B, return the
right-lcm of the elements of S, that is, the with respect to º minimal element d of
B satisfying d º s for all s ∈ S, where º is defined as above.

Example H73E6

We define the braid group B on 6 strings.

> B := BraidGroup(6);

> SetElementPrintFormat(~B, "CFP");

(1) For both Artin and BKL presentation, the fundamental element is the (left or right) least
common multiple of the generators. We check this for the Artin presentation. . .

> D_Artin := LeftLCM({B.i : i in [1..NumberOfGenerators(B)]});

> D_Artin eq FundamentalElement(B);

true

> D_Artin eq RightLCM({B.i : i in [1..NumberOfGenerators(B)]});

true

. . . and for the BKL presentation.

> idx := { <r,t> : r,t in {1..NumberOfStrings(B)} | r gt t };

> D_BKL := LeftLCM({B.T : T in idx} : Presentation := "BKL");

> D_BKL eq FundamentalElement(B : Presentation := "BKL");

true

> D_BKL eq RightLCM({B.T : T in idx} : Presentation := "BKL");

true

In general, left and right least common multiple of elements are different.

> LeftLCM(B.1,B.1*B.2) eq RightLCM(B.1,B.1*B.2);

false

(2) For both Artin and BKL presentation, the following hold. Let D denote the fundamental
element.

- The simple elements are those positive elements s satisfying s ¹ D (or D º s).

- A product u1 · · ·ur of simple elements is in left normal form, if and only if the left greatest
common divisor of u−1

i D and ui+1 is trivial for all i = 1, . . . , r − 1.

We illustrate this for the Artin presentation.

> D := FundamentalElement(B);

> forall{ s : s in Sym(6) | B!1 le B!s and B!s le D };

true

> forall{ s : s in Sym(6) | D ge B!s and B!s ge B!1 };
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true

We create an element u as product of random simple elements.

> u := Random(B, 0, 0, 3, 5);

> u;

<Artin, 0, [

(1, 5, 2)(3, 6),

(1, 6, 5, 3),

(1, 6, 5, 3, 2)

], 0>

We define a sequence of elements of B, containing the simple elements of the above representation
of u using the function CanonicalFactorRepresentation and the coercion operator !.

> cfu := [ B!x : x in CFP(u)[3] ];

This representation is not in left normal form, as the above condition is violated for i = 1.

> IsId(LeftGCD(cfu[1]^-1*D, cfu[2]));

false

We now bring u into left normal form and extract again the sequence of simple elements.

> n := NormalForm(u);

> n;

<Artin, 0, [

(1, 5, 3, 6, 2),

(1, 6, 3, 2, 5)

], 0>

> cfn := [ B!x : x in CFP(n)[3] ];

This time, the above condition is satisfied.

> IsId(LeftGCD(cfn[1]^-1*D, cfn[2]));

true

73.4.6 Invariants of Conjugacy Classes
This section describes the functions for computing the set of positive conjugates, the super
summit set and the ultra summit set for an element of a braid group B as defined in
Section 73.1.5, as well as related Magma functions.

All the class invariants in general depend on the presentation of B used for their defini-
tion. Many functions documented in this section accept a parameter Presentation which
can be used to specify the presentation of B with respect to which the computation should
be performed. Possible values for this parameter are the strings "Artin" and "BKL". If no
value is given for Presentation, the presentation selected for B is used.

For any given element u ∈ B, all the invariants defined in Section 73.1.5 are finite and
can be computed in principle. In practice, however, computations may fail because the
sets can get very large with increasing canonical length of u or with increasin braid index
of B. This is in particular the case for sets of positive conjuagtes and for super summit
sets.
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PositiveConjugates(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group B, return an indexed set containing the conju-
gates of u which can be represented as positive words in the specified presentation
of B.

SuperSummitRepresentative(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group B, return an element us of the super summit set
of u with respect to the specified presentation of B and an element c of B satisfying
uc = us.

Note that us is a positive conjugate of u, if us has non-negative infimum and
that u does not have any positive conjugates if the infimum of us is negative.

SuperSummitSet(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group B, return the super summit set of u with
respect to the specified presentation as indexed set of elements of B.

UltraSummitRepresentative(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group B, return an element us of the ultra summit set
of u with respect to the specified presentation of B and an element c of B satisfying
uc = us.

Note that us is an element of the super summit set of u, that us is a positive
conjugate of u, if us has non-negative infimum and that u does not have any positive
conjugates if the infimum of us is negative.

UltraSummitSet(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group B, return the ultra summit set of u with respect
to the specified presentation as indexed set of elements of B.

Example H73E7

(1) In the braid group B on 4 strings we compute the sets of positive conjugates and the super
summit sets of u = σ1σ2σ1 with respect to both Artin presentation and BKL presentation.

> B := BraidGroup(4);

> u := B.1*B.2*B.1;

> p_Artin := PositiveConjugates(u : Presentation := "Artin");

> p_BKL := PositiveConjugates(u : Presentation := "BKL");

> s_Artin := SuperSummitSet(u : Presentation := "Artin");
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> s_BKL := SuperSummitSet(u : Presentation := "BKL");

Since the Artin generators form a subset of the BKL generators, every element which is positive
with respect to the Artin presentation is also positive with respect to the BKL presentation. In
particular, p Artin is a subset of p BKL.

> p_Artin subset p_BKL;

true

The converse inclusion does not hold.

> #p_Artin;

10

> #p_BKL;

36

For both presentations the super summit set is a subset of the set of positive conjugates, as u is
positive. The converse inclusions do not hold.

> s_Artin subset p_Artin;

true

> s_BKL subset p_BKL;

true

> #s_Artin;

2

> #s_BKL;

12

(2) As we have seen in Section 73.1.5, we can decide whether two braids are conjugate by checking
whether their super summit sets are equal.

We illustrate this approach with two elements of B, using the Artin presentation of B.

> u := B.2 * B.1 * B.2^2 * B.1 * B.2;

> v := B.2^2 * B.1 * B.3 * B.1 * B.3;

Suppose we want to prove that u and v are not conjugate in B. We could start by checking the
cycle structure of the induced permutations on the strings on which B acts.

> CycleStructure(InducedPermutation(u));

[ <1, 4> ]

> CycleStructure(InducedPermutation(v));

[ <1, 4> ]

This does not help. Next we can check the infima and the suprema of super summit representatives.

> SuperSummitInfimum(u) eq SuperSummitInfimum(v);

true

> SuperSummitSupremum(u) eq SuperSummitSupremum(v);

true

Again, we cannot conclude anything. We decide to compare the super summit sets of u and v.

> SuperSummitSet(u) eq SuperSummitSet(v);
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false

Success! The super summit sets of u and v are different, proving that u and v are not conjugate.

For a more efficient version of conjugacy testing see Example H73E8.

(3) Finally, we illustrate the significant difference in the sizes of super summit sets and ultra
summit sets for slightly larger values of braid index and canonical length.

> B := BraidGroup(8);

We create a pseudo-random element of B as product of 5 simple elements independently chosen
at random.

> x := B.4 * B.3 * B.2 * B.1 * B.5 * B.4 * B.5 *

> B.6 * B.7 * B.6 * B.5;

> x := x^2;

> Sx := SuperSummitSet(x);

> #Sx;

10972

> Ux := UltraSummitSet(x);

> #Ux;

36

The ultra summit set is much smaller than the super summit set. We try again.

> x := B.4 * B.3 * B.2 * B.1 * B.5 * B.4 * B.5;

> x := x^3;

> Sx := SuperSummitSet(x);

> #Sx;

882

> Ux := UltraSummitSet(x);

> #Ux;

18

The difference in sizes is still large. The behaviour exhibited by these examples is quite typical.
In particular, the sizes of super summit sets for braids on a given number of strings and with a
given canonical length show much larger fluctuations than the sizes of ultra summit sets. For a
more detailed analysis we refer to [Geb03].

73.4.6.1 Computing Class Invariants Interactively
This section describes the functions relevant for interactive computation of the set of
positive conjugates, the super summit set and the ultra summit set for a given element of
a braid group B as defined in Section 73.1.5.

Process versions of the algorithms used by the functions PositiveConjugates,
SuperSummitSet and UltraSummitSet are available for computing these invariants one
element at a time.
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PositiveConjugatesProcess(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group B, return a process for constructing the conju-
gates of u which can be represented as positive words in the specified presentation
of B.

The returned process contains the first positive conjugate of u if positive conju-
gates exist and is empty otherwise.

SuperSummitProcess(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group B, return a process for constructing the super
summit elements of u with respect to the specified presentation of B.

The returned process contains the first super summit element of u.

UltraSummitProcess(u: parameters)

Presentation MonStgElt Default :

Given an element u of a braid group B, return a process for constructing the ultra
summit elements of u with respect to the specified presentation of B.

The returned process contains the first ultra summit element of u.

BaseElement(P)

Return the element used for the construction of the process P .

#P

Return the number of elements that have been found by the process P .

Representative(P)

Rep(P)

Given a non-empty process P , return the element most recently found by P .
If P is empty, a runtime error will occur. The function IsEmpty can be used for

checking whether a process is empty, in order to avoid runtime errors in loops and
user written functions.

IsEmpty(P)

Return true if P is empty and false otherwise.
This function can be used to check whether Representative can be called for a

process P .

Elements(P)

Return an indexed set containing the elements found so far by the process P .
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u in P

Given an element u of a braid group and a process P for computing positive con-
jugates or super summit elements of the element b, return true and an element c
satisfying bc = u if u is one of the elements that have been constructed by P and
false otherwise.

u notin P

Given an element u of a braid group and a process P , return false if u is one of
the elements that have been constructed by P and true otherwise.

NextElement(∼P)
Given a process P , continue searching for elements until the next element is found
or the search completes without finding a new element.

If a new element if found, it can subsequently be accessed using the function
Representative. If the search completes without finding a new element, P is
marked as empty. Calling NextElement on an empty process has no effect.

Complete(∼P)
Given a process P , complete the search for elements. After executing this procedure,
P is empty and the set of all elements found by P can be accessed using the function
Elements. Calling Complete on an empty process has no effect.

Example H73E8

We sketch how the functions described in the preceeding section could be used for testing whether
two elements are conjugate and for computing a conjugating element if they are.

The approach outlined here is basically the algorithm used by the function IsConjugate.

> function MyIsConjugate(u, v)

>

> // check obvious invariants

> infu := SuperSummitInfimum(u);

> infv := SuperSummitInfimum(v);

> supu := SuperSummitSupremum(u);

> supv := SuperSummitSupremum(v);

> if infu ne infv or supu ne supv then

> return false, _;

> end if;

>

> // compute an ultra summit element for v

> sv, cv := UltraSummitRepresentative(v);

>

> // set up a process for computing the ultra summit set of u

> P := UltraSummitProcess(u);

>

> // compute ultra summit elements of u until sv is found

> // or sv is seen not to be in the ultra summit set of u
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> while sv notin P and not IsEmpty(P) do

> NextElement(~P);

> end while;

>

> print #P, "elements computed";

> isconj, c := sv in P;

> if isconj then

> // return true and an element conjugating u to v

> return true, c*cv^-1;

> else

> return false, _;

> end if;

>

> end function;

We test our function using two pairs of elements of the braid group B on 4 strings.

> B := BraidGroup(4);

As we have seen in Example H73E7, the following elements u and v are not conjugate.

> u := B.2 * B.1 * B.2^2 * B.1 * B.2;

> v := B.2^2 * B.1 * B.3 * B.1 * B.3;

To prove this, our function has to compute the whole ultra summit set of u.

> MyIsConjugate(u,v);

2 elements computed

false

> #UltraSummitSet(u);

2

We try our function on another pair of elements.

> r := B.3*B.2*B.3*B.2^2*B.1*B.3*B.1*B.2;

> s := B.3^-1*B.2^-1*B.3*B.2*B.3*B.2^2*B.1*B.3*B.1*B.2^2*B.3;

> isconj, c := MyIsConjugate(r,s);

3 elements computed

> isconj;

true

> r^c eq s;

true

The ultra summit representative of s was the 3rd ultra summit element of r found. Note that the
function did not have to compute the whole ultra summit set of r to find the answer.

> #UltraSummitSet(r);

6

In this small example, we could also have used super summit sets for conjugacy testing, as the
super summit set of r is not much larger than its ultra summit set.

> #SuperSummitSet(r);
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22

A more challenging application of the function MyIsConjugate from above will be presented in
Example H73E10.

73.4.6.2 Computing Minimal Simple Elements
This section describes the functions for computing minimal simple elements as introduced
in Section 73.1.5.2 and functions for computing the transport and the pullback as defined
in [Geb03].

All functions documented in this section accept two parameters, Presentation and
CheckArguments. The parameter Presentation can be used to specify the presentation
of a braid group B with respect to which the computation should be performed. Possible
values for this parameter are the strings "Artin" and "BKL". If no value is given for
Presentation, the presentation selected for B is used. The parameter CheckArguments
can be used to turn off argument checking for performance reasons. It should be noted
that the results are undefined if functions are called with invalid arguments and argument
checking is disabled.

MinimalElementConjugatingToPositive(x, s: parameters)

Presentation MonStgElt Default :

CheckArguments BoolElt Default : true

Given a positive element x of a braid group B and a simple element s, return the
minimal simple element rx(s) satisfying s ¹ rx(s) and xrx(s) ∈ B+.

MinimalElementConjugatingToSuperSummit(x, s: parameters)

Presentation MonStgElt Default :

CheckArguments BoolElt Default : true

Given an element x of a braid group B which is contained in its super summit
set Sx and a simple element s, return the minimal simple element ρx(s) satisfying
s ¹ ρx(s) and xρx(s) ∈ Sx.

MinimalElementConjugatingToUltraSummit(x, s: parameters)

Presentation MonStgElt Default :

CheckArguments BoolElt Default : true

Given an element x of a braid group B which is contained in its ultra summit set Ux

and a simple element s, return the minimal simple element cx(s) satisfying s ¹ cx(s)
and xcx(s) ∈ Ux.
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Transport(x, s: parameters)

Presentation MonStgElt Default :

CheckArguments BoolElt Default : true

Given an element x of a braid group B and a simple element s such that both
x and xs are super summit elements, return the transport of s along x → c(x),
that is, the element φx(s) = (D ∧l xD

− inf(x))−1 · s · (D ∧l x
sD− inf(x)), where

D is the fundamental element of B. The transport is a simple element satisfying
c(xs) = c(x)φx(s) [Geb03].

Pullback(x, s: parameters)

Presentation MonStgElt Default :

CheckArguments BoolElt Default : true

Given an element x of a braid group B which is contained in its super summit set
Sx and a simple element s, return the pullback of s along x → c(x), that is, the
unique ¹-minimal element πx(s) satisfying xπx(s) ∈ Sx and s ¹ φx(πx(s)) [Geb03].

Example H73E9

The following function uses the technique sketched in Section 73.1.5 for computing the ultra
summit set of a given braid. This is basically the algorithm used by the Magma function
UltraSummitSet.

> function MyUltraSummitSet(x)

>

> // create a subset of the ultra summit set of x

> U := {@ UltraSummitRepresentative(x) @};

> gens := Generators(Parent(x));

> pos := 1;

>

> // close U under conjugation with minimal simple elements

> while pos le #U do

> y := U[pos];

> // add missing conjugates of y

> for z in { y^MinimalElementConjugatingToUltraSummit(y, s)

> : s in gens } do

> if z notin U then

> Include(~U, z);

> end if;

> end for;

> pos +:= 1;

> end while;

>

> return U;

>

> end function;
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73.5 Homomorphisms
For a general description of homomorphisms, we refer to Chapter 16. This section describes
some special aspects of homomorphisms whose domain is in the category GrpBrd.

73.5.1 General Remarks
An important special case of homomorphisms with domain in the category GrpBrd is the
following. A homomorphism f : B → G, where B and B′ are braid groups on n and m
strings, respectively, and f is an embedding of B in G induced by

σi → σ′k+εi (i = 1, . . . , n− 1)

where the σi are the Artin generators of B, the σ′j are the Artin generators of B′, |ε| = 1
and k is a suitable constant.

The Magma implementation uses special optimisation techniques, if a homomorphism
with domain in the category GrpBrd has the additional properties listed above. Compared
to the general case, this results in faster evaluation of such homomorphisms, in particular
in the case ε = 1.

Computing preimages under homomorphisms with domain in the category GrpBrd cur-
rently is only supported for the special case described above. Moreover, computing the
preimage of an element u under a map f may fail, even if u is contained in the image of f .

73.5.2 Constructing Homomorphisms

hom< B -> G | S : parameters >

Check BoolElt Default : true

Returns the homomorphism from the braid group B to the group G defined by the
assignment S. S can be the one of the following:
(i) A list, sequence or indexed set containing the images of all k Artin generators

B.1, . . . , B.k of B. Here, the i-th element of S is interpreted as the image of B.i,
that is, the order of the elements in S is important.

(ii)A list, sequence, enumerated set or indexed set, containing k tuples < xi, yi >
or arrow pairs xi −> yi, where xi is a generator of B and yi ∈ G (i = 1, . . . , k)
and the set {x1, . . . , xk} is the full set of Artin generators of B. In this case,
yi is assigned as the image of xi, hence the order of the elements in S is not
important.
Note, that it is currently not possible to define a homomorphism by assigning

images to the elements of an arbitrary generating set of B.
If the category of the codomain supports element arithmetic and element com-

parison, by default the constructed homomorphism is checked by verifying that the
would-be images of the Artin generators satisfy the braid relations of B. In this
case, it is assured that the returned map is a well-defined homomorphism. The
most important situation in which it is not possible to perform checking is the case
in which the domain is a finitely presented group (FPGroup; cf. Chapter 70) which
is not free. Checking may be disabled by setting the parameter Check to false.
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73.5.3 Accessing Homomorphisms

e @ f

f(e)

Given a homomorphism whose domain is a braid group B and an element e of B,
return the image of e under f as element of the codomain of f .

B @ f

f(B)

Given a homomorphism whose domain is a braid group B, return the image of B
under f as a subgroup of the codomain of f .

This function is not supported for all codomain categories.

u @@ f

Given a homomorphism whose domain is a braid group B and an element u of the
image of f , return the preimage of u under f as an element of B.

This function currently is only supported if f is an embedding of one braid
group into another as described in Section 73.5.1. Note, moreover, that computing
the preimage of u may fail, even if u is contained in the image of f .

Domain(f)

The domain of the homomorphism f .

Codomain(f)

The codomain of the homomorphism f .

Image(f)

The image or range of the homomorphism f as a subgroup of the codomain of f .
This function is not supported for all codomain categories.

Example H73E10

(1) The symmetric group on n letters is an epimorphic image of the braid group on n strings,
where for 0 < i < n the image of the Artin generator σi is given by the transposition (i, i + 1).
We construct this homomorphism for the case n = 10.

> Bn := BraidGroup(10);

> Sn := Sym(10);

> f := hom< Bn->Sn | [ Sn!(i,i+1) : i in [1..Ngens(Bn)] ] >;

Of course, the image of f is the full symmetric group.

> Image(f) eq Sn;

true

Now we compute the image of a pseudo-random element of Bn under f.

> f(Random(Bn));
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(1, 5, 8)(2, 4, 9, 7, 6, 3)

(2) (Key exchange as proposed in [KLC+00])

Consider a collection of l + r strings t1, . . . , tl+r and the braid group B acting on t1, . . . , tl+r with
Artin generators σ1, . . . , σl+r−1 . The subgroups of B fixing the strings tl+1, . . . , tl+r and t1, . . . , tl

may be identified with braid groups L on l strings and R on r strings, respectively, with the Artin
generators of L and R corresponding to σ1, . . . , σl−1 and σl+1, . . . , σl+r−1, respectively.

We set up these groups for l = 6 and r = 7 using the BKL presentations.

> l := 6;

> r := 7;

> B := BraidGroup(l+r : Presentation := "BKL");

> L := BraidGroup(l : Presentation := "BKL");

> R := BraidGroup(r : Presentation := "BKL");

We now construct the embeddings f : L → B and g : R → B.

> f := hom< L-> B | [ L.i -> B.i : i in [1..Ngens(L)] ] >;

> g := hom< R-> B | [ R.i -> B.(l+i) : i in [1..Ngens(R)] ] >;

To complete the preparatory steps, we choose a random element of B which is not too short.

> x := Random(B, 15, 25);

The data constructed so far is assumed to be publicly available. Each time two users A and B
require a shared key, the following steps are performed.

(a) A chooses a random secret element a ∈ L and sends the normal form of y1 := xa to B.
(b) B chooses a random secret element b ∈ R and sends the normal form of y2 := xb to A.
(c) A receives y2 and computes the normal form of ya

2 .
(d) B receives y1 and computes the normal form of yb

1.

Note the following.

• Transmitting y1 and y2 in normal form disguises their structure as products a−1xa and b−1xb,
provided the words used are long enough and prevents simply reading off the conjugating elements
a and b.
• Since the subgroups L and R of B commute, we have ab = ba, which implies ya

2 = xba =
xab = yb

1. Thus, the normal forms computed by A and B in steps (c) and (d), respectively, must
be identical and can be used to extract a secret shared key.

We illustrate this, using the groups set up above. For step (a):

> a := Random(L, 15, 25);

> y1 := NormalForm(x^f(a));

Now for step (b):

> b := Random(R, 15, 25);

> y2 := NormalForm(x^g(b));

We now verify that A and B arrive at the same information in steps (c) and (d).

> K_A := NormalForm(y2^f(a));
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> K_B := NormalForm(y1^g(b));

> AreIdentical(K_A, K_B);

true

We see that the information computed by A and B in steps (c) and (d) is indeed identical and
hence can be used (in suitable form) as a common secret. Note, however, that the number of
strings and the lengths of the elements used in the example above are much smaller than the
values suggested for real cryptographic purposes.

(3) (Attack on key exchange)

We now show an attack on the key exchange outlined above using conjugacy search based on ultra
summit sets.

An eavesdropper can try to compute an element c conjugating x to y1. While this is not guaranteed
to reproduce the braid a, the chances for a successful key recovery are quite good.

We decide to change to the Artin presentation of B and use the function MyIsConjugate from
Example H73E8 for computing a conjugating element c as above.

> SetPresentation(~B, "Artin");

> time _, c := MyIsConjugate(x, y1);

42 elements computed

Time: 0.020

Finding a conjugating element is no problem at all. Using the conjugating element, we can try to
recover the shared secret. In this example we are lucky.

> NormalForm(y2^c) eq K_A;

true

In the conjugacy search above, a conjugating element was found after computing 42 ultra summit
elements. The ultra summit set itself is larger, but can still be computed very easily.

> time Ux := UltraSummitSet(x);

Time: 3.150

> #Ux;

1584

The super summit set is, even in this small example, too large to be computed; conjugacy search
based on super summit sets would quite likely fail.

> time Sx := SuperSummitSet(x);

Current total memory usage: 4055.1MB

System error: Out of memory.

Finally, we show that the attack using conjugacy search based on ultra summit sets is also applica-
ble to larger examples. We try to recover a key, which is generated using elements with canonical
lengths between 500 and 1000 in a braid group on 100 strings.

> l := 50;

> r := 50;

> B := BraidGroup(l+r);

> L := BraidGroup(l);
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> R := BraidGroup(r);

>

> f := hom< L-> B | [ L.i -> B.i : i in [1..Ngens(L)] ] >;

> g := hom< R-> B | [ R.i -> B.(l+i) : i in [1..Ngens(R)] ] >;

>

> x := Random(B, 0, 1, 500, 1000);

>

> a := Random(L, 0, 1, 500, 1000);

> y1 := NormalForm(x^f(a));

>

> b := Random(R, 0, 1, 500, 1000);

> y2 := NormalForm(x^g(b));

>

> K_A := NormalForm(y2^f(a));

> K_B := NormalForm(y1^g(b));

> AreIdentical(K_A, K_B);

true

We again try to recover the key by computing an element conjugating x to y1. This time, we use
the built-in Magma function for efficiency reasons.

> time _, c := IsConjugate(x, y1);

Time: 18.350

> K_A eq NormalForm(y2^c);

false

Bad luck. – We managed to compute a conjugating element, but this failed to recover the key.
We try with an element conjugating x to y2.

> time _, c := IsConjugate(x, y2);

Time: 3.800

> K_B eq NormalForm(y1^c);

true

Success! – Good that we didn’t use this key to encrypt our credit card number!

73.5.4 Representations of Braid Groups
This section describes the functions available for creating a number of well known repre-
sentations of braid groups.

SymmetricRepresentation(B)

Given a braid group B on n strings, return the natural epimorphism from B onto
the symmetric group on n points, induced by the action of B on the strings by which
B is defined.
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BurauRepresentation(B)

Given a braid group B on n strings, return the Burau representation of B as homo-
morphism from B to the matrix algebra of degree n over the rational function field
over the integers.

BurauRepresentation(B, p)

Given a braid group B on n strings and a prime p, return the p-modular Burau
representation of B as homomorphism from B to the matrix algebra of degree n
over the rational function field over the field with p elements.

Example H73E11

We construct the Burau representation of the braid group on 4 strings.

> B := BraidGroup(4);

> f := BurauRepresentation(B);

Its codomain is a matrix algebra of degree 4 over the rational function field over the integers.

> A := Codomain(f);

> A;

GL(4, FunctionField(IntegerRing()))

> F := BaseRing(A);

> F;

Univariate rational function field over Integer Ring

Variables: $.1

To obtain nicer printing, we assign the name t to the generator of the function field F .

> AssignNames(~F, ["t"]);

Now we can check easily whether we remembered the definition of the Burau representation
correctly.

> f(B.1);

[-t + 1 t 0 0]

[ 1 0 0 0]

[ 0 0 1 0]

[ 0 0 0 1]

> f(B.2);

[ 1 0 0 0]

[ 0 -t + 1 t 0]

[ 0 1 0 0]

[ 0 0 0 1]

> f(B.3);

[ 1 0 0 0]

[ 0 1 0 0]

[ 0 0 -t + 1 t]

[ 0 0 1 0]
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Chapter 74

GROUPS DEFINED BY
REWRITE SYSTEMS

74.1 Introduction
The class of finitely presented groups defined by finite rewrite systems provide a Magma
level interface to Derek Holt’s KBMAG programs, and specifically to the Knuth–Bendix
completion procedure for groups defined by a finite (monoid) presentation. Much of the
material in this chapter is taken from the KBMAG documentation [Hol97]. Familiarity
with the Knuth–Bendix completion procedure is assumed. Some familiarity with KBMAG
would be beneficial.

74.1.1 Terminology
A rewrite group G is a finitely presented group in which equality between elements of
G, called words or strings, may be decidable via a sequence of rewriting equations, called
reduction relations, rules, or equations. In the interests of efficiency the reduction rules are
codified into a finite state automaton called a reduction machine. The words in a rewrite
group G are ordered, as are the reduction relations of G. Several possible orderings of
words are supported, namely short-lex, recursive, weighted short-lex and wreath-product
orderings. A rewrite group can be confluent or non-confluent. If a rewrite group G is
confluent its reduction relations, or more specifically its reduction machine, can be used
to reduce words in G to their irreducible normal forms under the given ordering, and so
the word problem for G can be efficiently solved.

74.1.2 The Category of Rewrite Groups
The family of all rewrite groups forms a category. The objects are the rewrite groups and
the morphisms are group homomorphisms. The Magma designation for this category of
groups is GrpRWS. Elements of a rewrite group are designated as GrpRWSElt.

74.1.3 The Construction of a Rewrite Group
A rewrite group G is constructed in a three-step process:

(i) We construct a free group FG.

(ii)We construct a quotient F of FG.

(iii) We create a monoid presentation of F and then run a Knuth–Bendix completion
procedure on this presentation to create a rewrite group G.

The Knuth–Bendix procedure may or may not succeed. If it fails the user may need to
perform the above steps several times, manually adjusting the parameters to the Knuth–
Bendix procedure. If it succeeds then the rewrite system constructed will be confluent.
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74.2 Constructing Confluent Presentations

74.2.1 The Knuth-Bendix Procedure

RWSGroup(F: parameters)

Suppose F is a finitely presented group. Internally, the first step is to construct
a presentation for a monoid M . By default, the generators of M are taken to
be g1, g−1

1 , . . . , gn, g
−1
n , where g1, . . . , gn are the generators of F . The relations for

M are taken to be the relations of F together with the trivial relations g1g−1
1 =

g−1
1 g1 = 1. The Knuth–Bendix completion procedure for monoids is now applied

to M . Regardless of whether or not the completion procedure succeeds, the result
will be a rewrite monoid, M , containing a reduction machine and a sequence of
reduction relations. If the procedure succeeds M will be marked as confluent, and
the word problem for M is therefore decidable. If, as is very likely, the procedure
fails then M will be marked as non-confluent. In this case M will contain both the
reduction relations and the reduction machine computed up to the point of failure.
Reductions made using these relations will be correct in F , but words that are equal
in F are not guaranteed to reduce to the same word.

The Knuth–Bendix procedure requires ordering to be defined on both the gener-
ators and the words. The default generator ordering is that induced by the ordering
of the generators of F while the default ordering on strings is the ShortLex order.
We give a simple example and then discuss the parameters that allow the user to
specify these two orderings.

As the Knuth–Bendix procedure will more often than not run forever, some
conditions must be specified under which it will stop. These take the form of limits
that are placed on certain variables, such as the number of reduction relations. If
any of these limits are exceeded during a run of the completion procedure it will fail,
returning a non-confluent rewrite monoid. The optimal values for these limits vary
from example to example. The various parameters that allow the user to specify
the limits for these variables will be described in a subsequent section.

Example H74E1

We construct the Von Dyck (2, 3, 5) group. Since a string ordering is not specified the default
ShortLex ordering is used. Similarly, since a generator ordering is not specified, the default
generator ordering, in this case [a, a−1, b, b−1], is used.

> FG<a,b> := FreeGroup(2);

> F := quo< FG | a*a=1, b*b=b^-1, a*b^-1*a*b^-1*a=b*a*b*a*b>;

> G := RWSGroup(F);

> G;

A confluent rewrite group.

Generator Ordering = [ a, a^-1, b, b^-1 ]

Ordering = ShortLex.

The reduction machine has 39 states.

The rewrite relations are:
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a^2 = Id(F)

b * b^-1 = Id(F)

b^-1 * b = Id(F)

b^2 = b^-1

b * a * b * a * b = a * b^-1 * a * b^-1 * a

b^-2 = b

b^-1 * a * b^-1 * a * b^-1 = a * b * a * b * a

a^-1 = a

a * b^-1 * a * b^-1 * a * b = b * a * b * a * b^-1

b * a * b^-1 * a * b^-1 * a = b^-1 * a * b * a * b

a * b * a * b * a * b^-1 = b^-1 * a * b^-1 * a * b

b^-1 * a * b * a * b * a = b * a * b^-1 * a * b^-1

b * a * b * a * b^-1 * a * b * a = a * b^-1 * a * b * a * b^-1 * a * b^-1

b^-1 * a * b^-1 * a * b * a * b^-1 * a = a * b * a * b^-1 * a * b * a * b

b^-1 * a * b * a * b^-1 * a * b * a * b^-1 = b * a * b^-1 * a * b * a * b^-1

* a * b

b * a * b^-1 * a * b * a * b^-1 * a * b^-1 = (b^-1 * a * b * a)^2

b^-1 * a * b * a * b^-1 * a * b * a * b = (b * a * b^-1 * a)^2

b * a * b^-1 * a * b * a * b^-1 * a * b * a = a * b * a * b^-1 * a * b * a *

b^-1 * a * b

74.2.2 Defining Orderings

RWSGroup(F: parameters)

Attempt to construct a confluent presentation for the finitely presented group F
using the Knuth-Bendix completion algorithm. In this section we describe how the
user can specify the generator order and the ordering on strings.

GeneratorOrder SeqEnum Default :

Give an ordering for the generators. This ordering affects the ordering of words
in the alphabet. If not specified the ordering defaults to the order induced by F ’s
generators, that is [g1, . . . , gn] where g1, . . . , gn are the generators of F .

Ordering MonStgElt Default : “ShortLex”
Levels SeqEnum Default :

Weights SeqEnum Default :

Ordering := "ShortLex": Use the short-lex ordering on strings. Shorter words
come before longer, and for words of equal length lexicographical ordering is used,
using the given ordering of the generators.
Ordering := "Recursive" | "RtRecursive": Use a recursive ordering on strings.
There are various ways to define this. Perhaps the quickest is as follows. Let u and
v be strings in the generators. If one of u and v, say v, is empty, then u ≥ v.
Otherwise, let u = u′a and v = v′b, where a and b are generators. Then u > v if
and only if one of the following holds:
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(i) a = b and u′ > v′;

(ii)a > b and u > v′;

(iii) b > a and u′ > v.

The RtRecursive ordering is similar to the Recursive ordering, but with u = au′

and v = bv′. Occasionally one or the other runs significantly quicker, but usually
they perform similarly.
Ordering := "WtLex": Use a weighted-lex ordering. Weights should be a sequence
of non-negative integers, with the i-th element of Weights giving the weight of the
i-the generator. The length of Weights must equal the number of generators. The
length of words in the generators is then computed by adding up the weights of the
generators in the words. Otherwise, ordering is as for short-lex.
Ordering := "Wreath": Use a wreath-product ordering. Levels should be a se-
quence of non-negative integers, with the i-th element of Levels giving the level of
the i-the generator. The length of Levels must equal the number of generators. In
this ordering, two strings involving generators of the same level are ordered using
short-lex, but all strings in generators of a higher level are larger than those involv-
ing generators of a lower level. That is not a complete definition; one can be found
in [Sim94, pp. 46–50]. Note that the recursive ordering is the special case in which
the level of generator number i is i.

Example H74E2

A confluent presentation is constructed for an infinite non-hopfian group using the Recursive

ordering.

> F<a, b> := Group< a, b | b^-1*a^2*b=a^3>;

> G := RWSGroup(F : Ordering :="Recursive");

> G;

A confluent rewrite group.

Generator Ordering = [ a, a^-1, b, b^-1 ]

Ordering = Recursive.

The reduction machine has 7 states.

The rewrite relations are:

a * a^-1 = Id(FG)

a^-1 * a = Id(FG)

b * b^-1 = Id(FG)

b^-1 * b = Id(FG)

a^3 * b^-1 = b^-1 * a^2

a^2 * b = b * a^3

a^-1 * b^-1 = a^2 * b^-1 * a^-2

a^-1 * b = a * b * a^-3
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Example H74E3

A confluent presentation of a free nilpotent group of rank 2 and class 2 is constructed by the
following code. Note that the lower weight generators (in the sense of nilpotency class) need to
come first in the ordering of generators.

> FG<a,b,c> := FreeGroup(3);

> F := quo< FG | b*a=a*b*c, c*a=a*c, c*b=b*c>;

> G := RWSGroup(F : Ordering :="Recursive",

> GeneratorOrder := [c,c^-1,b,b^-1,a,a^-1]);

> G;

A confluent rewrite group.

Generator Ordering = [ c, c^-1, b, b^-1, a, a^-1 ]

Ordering = Recursive.

The reduction machine has 7 states.

The rewrite relations are:

c * c^-1 = Id(FG)

c^-1 * c = Id(FG)

b * b^-1 = Id(FG)

b^-1 * b = Id(FG)

a * a^-1 = Id(FG)

a^-1 * a = Id(FG)

b * a = a * b * c

c * a = a * c

c * b = b * c

c^-1 * a = a * c^-1

c * a^-1 = a^-1 * c

c^-1 * b = b * c^-1

c * b^-1 = b^-1 * c

b^-1 * a = a * b^-1 * c^-1

b^-1 * a^-1 = a^-1 * b^-1 * c

c^-1 * a^-1 = a^-1 * c^-1

c^-1 * b^-1 = b^-1 * c^-1

b * a^-1 = a^-1 * b * c^-1

74.2.3 Setting Limits
In this section we introduce the various parameters used to control the execution of the
Knuth-Bendix procedure.
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RWSMonoid(F: parameters)

Attempt to construct a confluent presentation for the finitely presented group F
using the Knuth-Bendix completion algorithm. We present details of the various
parameters used to control the execution of the Knuth-Bendix.

MaxRelations RngIntElt Default : 32767
Limit the maximum number of reduction equations to MaxRelations.

TidyInt RngIntElt Default : 100
After finding TidyInt new reduction equations, the completion procedure interrupts
the main process of looking for overlaps, to tidy up the existing set of equations.
This will eliminate any redundant equations performing some reductions on their
left and right hand sides to make the set as compact as possible. (The point is that
equations discovered later often make older equations redundant or too long.)

RabinKarp Tup Default :

Use the Rabin-Karp algorithm for word-reduction on words having length at least
l, provided that there are at least n equations, where RabinKarp := <l, n>. This
uses less space than the default reduction automaton, but it is distinctly slower, so
it should only be used when seriously short of memory. Indeed this option is only
really useful for examples in which collapse occurs - i.e. at some intermediate stage
of the calculation there is a very large set of equations, which later reduces to a
much smaller confluent set. Collapse is not uncommon when analysing pathological
presentations of finite groups, and this is one situation where the performance of the
Knuth–Bendix algorithm can be superior to that of Todd-Coxeter coset enumeration.
The best setting for RabinKarp varies from example to example - generally speaking,
the smaller l is, the slower things will be, so set it as high as possible subject to not
running out of memory. The number of equations n should be set to a value greater
than the expected final number of equations.

MaxStates RngIntElt Default :

Limit the maximum number of states of the finite state automaton used for word
reduction to MaxStates. By default there is no limit, and the space allocated is
increased dynamically as required. The space needed for the reduction automaton
can also be restricted by using the RabinKarp parameter. This limit is not usually
needed.

MaxReduceLen RngIntElt Default : 32767
Limit the maximum allowed length that a word can reach during reduction to
MaxReduceLen. It is only likely to be exceeded when using the recursive ordering
on words. This limit is usually not needed.

ConfNum RngIntElt Default : 500
If ConfNum overlaps are processed and no new equations are discovered, then the
overlap searching process is interrupted, and a fast check for confluence performed
on the existing set of equations. Doing this too often wastes time, but doing it at the
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right moment can also save a lot of time. If ConfNum = 0, then the fast confluence
check is performed only when the search for overlaps is complete.

Warning: Changing the default setting on any of the following parameters may
either cause the procedure to terminate without having found a confluent presenta-
tion or may change the underlying group.

MaxStoredLen Tup Default :

Only equations in which the left and right hand sides have lengths at most l and r,
respectively, where MaxStoredLen := <l, r> are kept. Of course this may cause
the overlap search to complete on a set of equations that is not confluent. In
some examples, particularly those involving collapse (i.e. a large intermediate set of
equations, which later simplifies to a small set), it can result in a confluent set being
found much more quickly. It is most often useful when using a recursive ordering on
words. Another danger with this option is that sometimes discarding equations can
result in information being lost, and the monoid defined by the equations changes.

MaxOverlapLen RngIntElt Default :

Only overlaps of total length at most MaxOverlapLen are processed. Of course this
may cause the overlap search to complete on a set of equations that is not confluent.

Sort BoolElt Default : false

MaxOpLen RngIntElt Default : 0

If Sort is set to true then the equations will be sorted in order of increasing length
of their left hand sides, rather than the default, which is to leave them in the order
in which they were found. MaxOpLen should be a non-negative integer. If MaxOpLen
is positive, then only equations with left hand sides having length at most MaxOpLen
are output. If MaxOpLen is zero, then all equations are sorted by length. Of course,
if MaxOpLen is positive, there is a danger that the monoid defined by the output
equations may be different from the original.

SetVerbose("KBMAG", v)

Set the verbose printing level for the Knuth-Bendix completion algorithm. Setting
this level allows a user to control how much extra information on the progress of the
algorithm is printed. Currently the legal values for v are 0 to 3 inclusive. Setting
v to 0 corresponds to the ‘-silent’ option of KBMAG in which no extra output is
printed. Setting v to 2 corresponds to the ‘-v’ (verbose) option of KBMAG in which
a small amount of extra output is printed. Setting v to 3 corresponds to the ‘-vv’
(very verbose) option of KBMAG in which a huge amount of diagnostic information
is printed.

74.2.4 Accessing Group Information
The functions in this group provide access to basic information stored for a rewrite group
G.
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G . i

The i-th defining generator for G. The integer i must lie in the range [−r, r], where
r is the number of group G.

Generators(G)

A sequence containing the defining generators for G.

NumberOfGenerators(G)

Ngens(G)

The number of defining generators for G.

Relations(G)

A sequence containing the defining relations for G. The relations will be given
between elements of the free group of which G is a quotient. In these relations the
(image of the) left hand side (in G) will always be greater than the (image of the)
right hand side (in G) in the ordering on words used to construct G.

NumberOfRelations(G)

Nrels(G)

The number of relations in G.

Ordering(G)

The ordering of G.

Example H74E4

We illustrate the access operations using the following presentation of Z o C2.

> FG<a,b,t> := FreeGroup(3);

> F := quo< FG | t^2=1, b*a=a*b, t*a*t=b>;

> G<x,y,z> := RWSGroup(F);

> G;

A confluent rewrite group.

Generator Ordering = [ a, a^-1, b, b^-1, t, t^-1 ]

Ordering = ShortLex.

The reduction machine has 6 states.

The rewrite relations are:

a * a^-1 = Id(F)

a^-1 * a = Id(F)

b * b^-1 = Id(F)

b^-1 * b = Id(F)

t^2 = Id(F)

b * a = a * b

t * a = b * t

b^-1 * a = a * b^-1

t * b = a * t
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b * a^-1 = a^-1 * b

t * a^-1 = b^-1 * t

t^-1 = t

b^-1 * a^-1 = a^-1 * b^-1

t * b^-1 = a^-1 * t

> G.1;

x

> G.1*G.2;

x * y

> Generators(G);

[ x, y, z ]

> Ngens(G);

3

> Relations(G);

[ a * a^-1 = Id(F), a^-1 * a = Id(F), b * b^-1 = Id(F), b^-1 * b = Id(F), t^2 =

Id(F), b * a = a * b, t * a = b * t, b^-1 * a = a * b^-1, t * b = a * t, b *

a^-1 = a^-1 * b, t * a^-1 = b^-1 * t, t^-1 = t, b^-1 * a^-1 = a^-1 * b^-1, t *

b^-1 = a^-1 * t ]

> Nrels(G);

14

> Ordering(G);

ShortLex

74.3 Properties of a Rewrite Group

IsConfluent(G)

Returns true if G is confluent, false otherwise.

IsFinite(G)

Given a confluent group G return true if G has finite order and false otherwise.
If G does have finite order also return the order of G.

Order(G)

#G

The order of the group G as an integer. If the order of G is known to be infinite,
the symbol ∞ is returned.
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Example H74E5

We construct the Weyl group E8.

> FG<a,b,c,d,e,f,g,h> := FreeGroup(8);

> Q := quo< FG | a^2=1, b^2=1, c^2=1, d^2=1, e^2=1, f^2=1, g^2=1,

> h^2=1, b*a*b=a*b*a, c*a=a*c, d*a=a*d, e*a=a*e, f*a=a*f,

> g*a=a*g, h*a=a*h, c*b*c=b*c*b, d*b=b*d, e*b=b*e, f*b=b*f,

> g*b=b*g, h*b=b*h, d*c*d=c*d*c, e*c*e=c*e*c, f*c=c*f,

> g*c=c*g, h*c=c*h, e*d=d*e, f*d=d*f, g*d=d*g, h*d=d*h,

> f*e*f=e*f*e, g*e=e*g, h*e=e*h, g*f*g=f*g*f, h*f=f*h,

> h*g*h=g*h*g>;

> G := RWSGroup(Q);

> IsConfluent(G);

true

> IsFinite(G);

true 696729600

So the group is finite of order 696, 729, 600.

Example H74E6

We construct a 2-generator 2-relator group and use the order function to show that the group is
infinite. The symbol Infinity, returned by Order, indicates that the group has infinite order.

> G := Group< x, y | x^2 = y^2, x*y*x = y*x*y >;

> R := RWSGroup(G);

> print Order(G);

Infinity

74.4 Arithmetic with Words

74.4.1 Construction of a Word

Identity(G)

Id(G)

G ! 1

Construct the identity word in G.

G ! [ i1, ..., is ]

Given a rewrite groupG defined on r generators and a sequence [i1, · · · , is] of integers
lying in the range [−r, r], excluding 0, construct the word

G.|i1|ε1 ∗G.|i2|ε2 ∗ · · · ∗G.|is|εs

where εj is +1 if ij is positive, and −1 if ij is negative. The resulting word is reduced
using the reduction machine associated with G.
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Parent(w)

The parent group G for the word w.

Example H74E7

We construct the Fibonacci group F (2, 7), and its identity.

> FG<a,b,c,d,e,f,g> := FreeGroup(7);

> F := quo< FG | a*b=c, b*c=d, c*d=e, d*e=f, e*f=g, f*g=a, g*a=b>;

> G := RWSGroup(F : TidyInt := 1000);

> Id(G);

Id(G)

> G!1;

Id(G)

> G![1,2];

G.3

74.4.2 Element Operations
Having constructed a rewrite group G one can perform arithmetic with words in G. As-
suming we have u, v ∈ G then the product u ∗ v will be computed as follows:
(i) the product w = u ∗ v is formed as a product in the appropriate free group.
(ii)w is reduced using the reduction machine associated with G.
If G is confluent, then w will be the unique minimal word that represents u ∗ v under the
ordering of G. If G is not confluent, then there are some pairs of words which are equal
in G, but which reduce to distinct words, and hence w will not be a unique normal form.
Note that:
(i) reduction of w can cause an increase in the length of w. At present there is an internal

limit on the length of a word – if this limit is exceeded during reduction an error will
be raised. Hence any word operation involving reduction can fail.

(ii)the implementation is designed more with speed of execution in mind than with mini-
mizing space requirements; thus, the reduction machine is always used to carry out word
reduction, which can be space-consuming, particularly when the number of generators
is large.

u * v

Given words w and v belonging to a common group, return their product.

u / v

Given words w and v belonging to a common group, return the product of the word
u by the inverse of the word v, i.e. the word u ∗ v−1.

u ^ n

The n-th power of the word w.
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u ^ v

Given words w and v belonging to a common group, return the conjugate of the
word u by the word v, i.e. the word v−1 ∗ u ∗ v.

Inverse(w)

The inverse of the word w.

(u, v)

Given words w and v belonging to a common group, return the commutator of the
words u and v, i.e., the word u−1v−1uv.

(u1, ..., ur)

Given r words u1, . . . , ur belonging to a common group, return their commutator.
Commutators are left-normed, so they are evaluated from left to right.

u eq v

Given words w and v belonging to the same group, return true if w and v reduce to
the same normal form, false otherwise. If G is confluent this tests for equality. If
G is non-confluent then two words which are the same may not reduce to the same
normal form.

u ne v

Given words w and v belonging to the same group, return false if w and v reduce to
the same normal form, true otherwise. If G is confluent this tests for non-equality.
If G is non-confluent then two words which are the same may reduce to different
normal forms.

IsId(w)

IsIdentity(w)

Returns true if the word w is the identity word.

#u

The length of the word w.

ElementToSequence(u)

Eltseq(u)

The sequence Q obtained by decomposing the element u of a rewrite group into its
constituent generators and generator inverses. Suppose u is a word in the rewrite
group G. Then, if u = G.ie1

1 · · ·G.iem
m , with each ei = ±1, then Q[j] = ij if ej = +1

and Q[j] = −ij if ej = −1, for j = 1, . . . ,m.
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Example H74E8

We illustrate the word operations by applying them to elements of the Fibonacci group F (2, 5).

> FG<a,b,c,d,e> := FreeGroup(5);

> F := quo< FG | a*b=c, b*c=d, c*d=e, d*e=a, e*a=b>;

> G<a,b,c,d,e> := RWSGroup(F);

> a*b^-1;

e^-1

> a/b;

e^-1

> (c*d)^4;

a

> a^b, b^-1*a*b;

a a

> a^-2,

> Inverse(a)^2;

d d

> c^-1*d^-1*c*d eq (c,d);

true

> IsIdentity(a*b*c^-1);

true

> #(c*d);

1

74.5 Operations on the Set of Group Elements

Random(G, n)

A random word of length at most n in the generators of G.

Random(G)

A random word (of length at most the order of G) in the generators of G.

Representative(G)

Rep(G)

An element chosen from G.
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Set(G, a, b)

Search MonStgElt Default : “DFS”
Create the set of reduced words, w, in G with a ≤ length(w) ≤ b. If Search
is set to "DFS" (depth-first search) then words are enumerated in lexicographical
order. If Search is set to "BFS" (breadth-first-search) then words are enumerated
in lexicographical order for each individual length (i.e. in short-lex order). Depth-
first-search is marginally quicker. Since the result is a set the words may not appear
in the resultant set in the search order specified (although internally they will be
enumerated in this order).

Set(G)

Search MonStgElt Default : “DFS”
Create the set of reduced words that is the carrier set of G. If Search is set to "DFS"
(depth-first search) then words are enumerated in lexicographical order. If Search
is set to "BFS" (breadth-first-search) then words are enumerated in lexicographi-
cal order for each individual length (i.e. in short-lex order). Depth-first-search is
marginally quicker. Since the result is a set the words may not appear in the resul-
tant set in the search order specified (although internally they will be enumerated
in this order).

Seq(G, a, b)

Search MonStgElt Default : “DFS”
Create the sequence S of reduced words, w, in G with a ≤ length(w) ≤ b. If Search
is set to "DFS" (depth-first search) then words will appear in S in lexicographical
order. If Search is set to "BFS" (breadth-first-search) then words will appear in S
in lexicographical order for each individual length (i.e. in short-lex order). Depth-
first-search is marginally quicker.

Seq(G)

Search MonStgElt Default : “DFS”
Create a sequence S of reduced words in the carrier set of G. If Search is set
to "DFS" (depth-first search) then words will appear in S in lexicographical order.
If Search is set to "BFS" (breadth-first-search) then words will appear in S in
lexicographical order for each individual length (i.e. in short-lex order). Depth-
first-search is marginally quicker.

Example H74E9

We construct the group D22, together with a representative word from the group, a random word
and a random word of length at most 5 from the group, and the set of elements of the group.

> FG<a,b,c,d,e,f> := FreeGroup(6);

> Q := quo< FG | a*c^-1*a^-1*d=1, b*f*b^-1*e^-1=1, c*e*c^-1*d^-1=1,

> d*f^-1*d^-1*a=1, e*b*e^-1*a^-1=1, f*c^-1*f^-1*b^-1=1>;
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> G<a,b,c,d,e,f> := RWSGroup(Q);

> Representative(G);

Id(G)

> Random(G);

b

> Random(G, 5);

a * d * b

> Set(G);

{ a * d * b, a * b, a * b * e, a * c, a * d, d * b, b * e, a * b * a,

a * b * d, b * a, a * c * e, Id(G), b * d, c * e, e, f, a, a * e, b,

c, a * f, d }

> Seq(G : Search := "DFS");

[ Id(G), a, a * b, a * b * a, a * b * d, a * b * e, a * c, a * c * e,

a * d, a * d * b, a * e, a * f, b, b * a, b * d, b * e, c, c * e, d,

d * b, e, f ]

74.6 Homomorphisms
For a general description of homomorphisms, we refer to chapter 16. This section describes
some special aspects of homomorphisms whose domain or codomain is a rewrite group.

74.6.1 General Remarks
Groups in the category GrpRWS currently are accepted as codomains only in some special
situations. The most important cases in which a rewrite group can be used as a codomain
are group homomorphisms whose domain is in one of the categories GrpFP, GrpGPC, GrpRWS
or GrpAtc.

74.6.2 Construction of Homomorphisms

hom< R -> G | S >

Returns the homomorphism from the rewrite group R to the group G defined by
the expression S which can be the one of the following:
(i) A list, sequence or indexed set containing the images of the n generators

R.1, . . . , R.n of R. Here, the i-th element of S is interpreted as the image of
R.i, i.e. the order of the elements in S is important.

(ii)A list, sequence, enumerated set or indexed set, containing n tuples < xi, yi > or
arrow pairs xi → yi, where xi is a generator of R and yi ∈ G (i = 1, . . . , n) and
the set {x1, . . . , xn} is the full set of generators of R. In this case, yi is assigned
as the image of xi, hence the order of the elements in S is not important.

It is the user’s responsibility to ensure that the provided generator images actu-
ally give rise to a well-defined homomorphism. No checking is performed by the
constructor.

Note that it is currently not possible to define a homomorphism by assigning
images to the elements of an arbitrary generating set of R.
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74.7 Conversion to a Finitely Presented Group
There is a standard way to convert a rewrite group into a finitely presented group using
the functions Relations and Simplify. This is shown in the following example.

Example H74E10

We construct a two generator free abelian group as a rewrite group and then convert it into a
finitely presented group.

> FG<a,b> := FreeGroup(2);

> F := quo< FG | b^-1*a*b=a >;

> G := RWSGroup(F);

> print G;

A confluent rewrite group.

Generator Ordering = [ a, a^-1, b, b^-1 ]

Ordering = ShortLex.

The reduction machine has 5 states.

The rewrite relations are:

a * a^-1 = Id(FG)

a^-1 * a = Id(FG)

b * b^-1 = Id(FG)

b^-1 * b = Id(FG)

b^-1 * a = a * b^-1

b * a = a * b

b^-1 * a^-1 = a^-1 * b^-1

b * a^-1 = a^-1 * b

> P<x,y> := Simplify(quo< FG | Relations(G)>);

> print P;

Finitely presented group P on 2 generators

Generators as words

x = $.1

y = $.2

Relations

(y, x^-1) = Id(P)

74.8 Bibliography
[Hol97] Derek Holt. KBMAG – Knuth-Bendix in Monoids and Automatic Groups. Uni-

versity of Warwick, 1997.
[Sim94] Charles C. Sims. Computation with finitely presented groups. Cambridge Uni-

versity Press, Cambridge, 1994.



75 AUTOMATIC GROUPS
75.1 Introduction . . . . . . . . 2359

75.1.1 Terminology . . . . . . . . . . 2359

75.1.2 The Category of Automatic Groups 2359

75.1.3 The Construction of an Automatic
Group . . . . . . . . . . . . . 2359

75.2 Creation of Automatic Groups 2360

75.2.1 Construction of an Automatic Group2360

AutomaticGroup(F: -) 2360
IsAutomaticGroup(F: -) 2360

75.2.2 Modifying Limits . . . . . . . . 2361

AutomaticGroup(F: -) 2361
IsAutomaticGroup(F: -) 2361
SetVerbose("KBMAG", v) 2362

75.2.3 Accessing Group Information . . . 2365

. 2365
Generators(G) 2365
NumberOfGenerators(G) 2365
Ngens(G) 2365
FPGroup(G) 2366
WordAcceptor(G) 2366
WordAcceptorSize(G) 2366
WordDifferenceAutomaton(G) 2366
WordDifferenceSize(G) 2366
WordDifferences(G) 2366
GeneratorOrder(G) 2366

75.3 Properties of an Automatic
Group . . . . . . . . . . . 2366

IsFinite(G) 2366
Order(G) 2366
# 2366

75.4 Arithmetic with Words . . . 2368

75.4.1 Construction of a Word . . . . . 2368

! 2368
Identity(G) 2368

Id(G) 2368
! 2368
Parent(w) 2368

75.4.2 Operations on Elements . . . . . 2369

* 2369
/ 2369
^ 2370
^ 2370
Inverse(w) 2370
(u, v) 2370
(u1, ..., ur) 2370
eq 2370
ne 2370
IsId(w) 2370
IsIdentity(w) 2370
# 2370
ElementToSequence(u) 2370
Eltseq(u) 2370

75.5 Homomorphisms . . . . . . 2371

75.5.1 General Remarks . . . . . . . . 2371

75.5.2 Construction of Homomorphisms . 2372

hom< > 2372

75.6 Set Operations . . . . . . . 2372

Random(G, n) 2372
Random(G) 2372
Representative(G) 2372
Rep(G) 2372
Set(G, a, b) 2372
Set(G) 2373
Seq(G, a, b) 2373
Seq(G) 2373

75.7 The Growth Function . . . . 2374

GrowthFunction(G) 2374

75.8 Bibliography . . . . . . . . 2375





Chapter 75

AUTOMATIC GROUPS

75.1 Introduction

Automatic groups provide a Magma level interface to Derek Holt’s KBMAG programs, and
specifically to KBMAG’s automatic groups program autgroup. Much of the material in
this chapter is based on the KBMAG documentation [Hol97]. Familiarity with the Knuth–
Bendix completion procedure and the automata associated with a short-lex automatic
group is assumed. Some familiarity with KBMAG would be beneficial.

75.1.1 Terminology
An automatic group G is a finitely presented group in which various group operations,
notably equality between words of G and word enumeration, are decidable through the
use of various automata. The words in the automatic group G that can be computed
in Magma are ordered using the short-lex ordering on words (shorter words come before
longer, and for words of equal length lexicographical ordering is used, based on the given
ordering of the generators).

75.1.2 The Category of Automatic Groups
The family of all automatic groups forms a category. The objects are the automatic groups
and the morphisms are group homomorphisms. The Magma designation for this category
of groups is GrpAtc. Elements of a automatic group are designated as GrpAtcElt.

75.1.3 The Construction of an Automatic Group
An automatic group G is constructed in a three-step process:

(i) We construct a free group FG.

(ii) We construct a quotient F of FG.

(iii) We create a monoid presentation for F and then run procedures which attempt to
construct the automata associated with G and to prove them correct.

These procedures may or may not succeed. Of course, if G is not an automatic group then
they have no chance of succeeding.
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75.2 Creation of Automatic Groups

75.2.1 Construction of an Automatic Group

AutomaticGroup(F: parameters)

IsAutomaticGroup(F: parameters)

Internally a monoid presentation P of the group F is constructed. By default the
generators of P are taken to be g1, g1−1, . . . , gn, gn

−1 where g1, . . . , gn are the gener-
ators of F . The relations of P are taken to be the relations of F . The trivial relations
between the generators and their inverses are also added. The word ordering is the
short-lex ordering. The Knuth–Bendix completion procedure for monoids is now
run on P to calculate the word difference automata corresponding to the generated
equations, which are then used to calculate the finite state automata associated with
a short-lex automatic group. In successful cases these automata are proved correct
in the final step.

If the procedure succeeds the result will be an automatic group, G, containing
four automata. These are the first and second word-difference machines, the word
acceptor, and the word multiplier. The form AutomaticGroup returns an automatic
group while the form IsAutomaticGroup returns the boolean value true and the
automatic group. If the procedure fails, the first form does not return a value while
the second returns the boolean value false.

For simple examples, the algorithms work quickly, and do not require much
space. For more difficult examples, the algorithms are often capable of completing
successfully, but they can sometimes be expensive in terms of time and space re-
quirements. Another point to be borne in mind is that the algorithms sometimes
produce temporary disk files which the user does not normally see (because they are
automatically removed after use), but can occasionally be very large. These files are
stored in the /tmp directory. If you interrupt a running automatic group calculation
you must remove these temporary files yourself.

As the Knuth–Bendix procedure will more often than not run forever, some
conditions must be specified under which it will stop. These take the form of limits
that are placed on certain variables, such as the number of reduction relations. If
any of these limits are exceeded during a run of the completion procedure it will
fail, returning a non-confluent automatic group. The optimal values for these limits
varies from example to example. Some of these limits may be specified by setting
parameters (see the next section). In particular, if a first attempt to compute the
automatic structure of a group fails, it should be run again with the parameter
Large (or Huge) set to true.

Example H75E1

We construct the automatic structure for the fundamental group of the torus. Since a generator
ordering is not specified, the default generator ordering, [a, a−1, b, b−1, c, c−1, d, d−1], is used.

> FG<a,b,c,d> := FreeGroup(4);
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> F := quo< FG | a^-1*b^-1*a*b=d^-1*c^-1*d*c>;

> f, G := IsAutomaticGroup(F);

Running Knuth-Bendix with the following parameter values

MaxRelations = 200

MaxStates = 0

TidyInt = 20

MaxWdiffs = 512

HaltingFactor = 100

MinTime = 5

#Halting with 118 equations.

#First word-difference machine with 33 states computed.

#Second word-difference machine with 33 states computed.

#System is confluent, or halting factor condition holds.

#Word-acceptor with 36 states computed.

#General multiplier with 104 states computed.

#Validity test on general multiplier succeeded.

#General length-2 multiplier with 220 states computed.

#Checking inverse and short relations.

#Checking relation: _8*_6*_7*_5 = _2*_4*_1*_3

#Axiom checking succeeded.

> G;

An automatic group.

Generator Ordering = [ a, a^-1, b, b^-1, c, c^-1, d, d^-1 ]

The second word difference machine has 33 states.

The word acceptor has 36 states.

75.2.2 Modifying Limits
In this section we describe the various parameters used to control the execution of the
procedures employed to determine the automatic structure.

AutomaticGroup(F: parameters)

IsAutomaticGroup(F: parameters)

Attempt to construct an automatic structure for the finitely presented group F (see
the main entry). We now present details of the various parameters used to control
the execution of the procedures.

Large BoolElt Default : false

If Large is set to true large hash tables are used internally. Also the Knuth–
Bendix algorithm is run with larger parameters, specifically TidyInt is set to 500,
MaxRelations is set to 262144, MaxStates is set to unlimited, HaltingFactor is
set to 100, MinTime is set to 20 and ConfNum is set to 0. It is advisable to use this
option only after having first tried without it, since it will result in much longer
execution times for easy examples.

Huge BoolElt Default : false
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Setting Huge to true doubles the size of the hash tables and MaxRelations over the
Large parameter. As with the Large parameter, it is advisable to use this option
only after having first tried without it.

MaxRelations RngIntElt Default : 200
Limit the maximum number of reduction equations to MaxRelations.

TidyInt RngIntElt Default : 20
After finding n new reduction equations, the completion procedure interrupts the
main process of looking for overlaps, to tidy up the existing set of equations. This
will eliminate any redundant equations performing some reductions on their left
and right hand sides to make the set as compact as possible. (The point is that
equations discovered later often make older equations redundant or too long.) The
word-differences arising from the equations are calculated after each such tidying
and the number reported if verbose printing is on. The best strategy in general is
to try a small value of TidyInt first and, if that is not successful, try increasing it.
Large values such as 1000 work best in really difficult examples.

GeneratorOrder SeqEnum Default :

Give an ordering for the generators of P . This ordering affects the ordering of words
in the alphabet. If not specified, the ordering defaults to [g1, g1−1, . . . , gn, gn

−1]
where g1, . . . , gn are the generators of F .

MaxWordDiffs RngIntElt Default :

Limit the maximum number of word differences to MaxWordDiffs. The default
behaviour is to increase the number of allowed word differences dynamically as
required, and so usually one does not need to set this option.

HaltingFactor RngIntElt Default : 100
MinTime RngIntElt Default : 5

These options are experimental halting options. HaltingFactor is a positive integer
representing a percentage. After each tidying it is checked whether both the number
of equations and the number of states have increased by more than HaltingFactor
percent since the number of word-differences was last less than what it is now. If so
the program halts. A sensible value seems to be 100, but occasionally a larger value
is necessary. If the MinTime option is also set then halting only occurs if at least
MinTime seconds of cpu-time have elapsed altogether. This is sometimes necessary
to prevent very early premature halting. It is not very satisfactory, because of
course the cpu-time depends heavily on the particular computer being used, but no
reasonable alternative has been found yet.

SetVerbose("KBMAG", v)

Set the verbose printing level for the Knuth–Bendix completion algorithm. Setting
this level allows a user to control how much extra information on the progress of the
algorithm is printed. Currently the legal values for v are 0 to 3 inclusive. Setting
v to 0 corresponds to the ‘-silent’ option of KBMAG in which no extra output is
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printed. Setting v to 2 corresponds to the ‘-v’ (verbose) option of KBMAG in which
a small amount of extra output is printed. Setting v to 3 corresponds to the ‘-vv’
(very verbose) option of KBMAG in which a huge amount of diagnostic information
is printed.

Example H75E2

We attempt to construct an automatic structure for one of Listing’s knot groups.

> F := Group< d, f | f*d*f^-1*d*f*d^-1*f^-1*d*f^-1*d^-1=1>;

> b, G := IsAutomaticGroup(F);

Running Knuth-Bendix with the following parameter values

MaxRelations = 200

MaxStates = 0

TidyInt = 20

MaxWdiffs = 512

HaltingFactor = 100

MinTime = 5

#Maximum number of equations exceeded.

#Halting with 195 equations.

#First word-difference machine with 45 states computed.

#Second word-difference machine with 53 states computed.

> b;

false;

So this attempt has failed. We run the IsAutomaticGroup function again setting Large to true.
This time we succeed.

> f, G := IsAutomaticGroup(F : Large := true);

Running Knuth-Bendix with the following parameter values

MaxRelations = 262144

MaxStates = 0

TidyInt = 500

MaxWdiffs = 512

HaltingFactor = 100

MinTime = 5

#Halting with 3055 equations.

#First word-difference machine with 49 states computed.

#Second word-difference machine with 61 states computed.

#System is confluent, or halting factor condition holds.

#Word-acceptor with 101 states computed.

#General multiplier with 497 states computed.

#Multiplier incorrect with generator number 3.

#General multiplier with 509 states computed.

#Multiplier incorrect with generator number 3.

#General multiplier with 521 states computed.

#Multiplier incorrect with generator number 3.

#General multiplier with 525 states computed.

#Validity test on general multiplier succeeded.
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#General length-2 multiplier with 835 states computed.

#Checking inverse and short relations.

#Checking relation: _3*_1*_4*_1*_3 = _1*_3*_2*_3*_1

#Axiom checking succeeded.

> G;

An automatic group.

Generator Ordering = [ d, d^-1, f, f^-1 ]

The second word difference machine has 89 states.

The word acceptor has 101 states.

Example H75E3

We construct the automatic group corresponding to the fundamental group of the trefoil knot. A
generator order is specified.

> F<a, b> := Group< a, b | b*a^-1*b=a^-1*b*a^-1>;

> f, G := IsAutomaticGroup(F: GeneratorOrder := [a,a^-1, b, b^-1]);

Running Knuth-Bendix with the following parameter values

MaxRelations = 200

MaxStates = 0

TidyInt = 20

MaxWdiffs = 512

HaltingFactor = 100

MinTime = 5

#Halting with 83 equations.

#First word-difference machine with 15 states computed.

#Second word-difference machine with 17 states computed.

#System is confluent, or halting factor condition holds.

#Word-acceptor with 15 states computed.

#General multiplier with 67 states computed.

#Multiplier incorrect with generator number 4.

#General multiplier with 71 states computed.

#Validity test on general multiplier succeeded.

#General length-2 multiplier with 361 states computed.

#Checking inverse and short relations.

#Checking relation: _3*_2*_3 = _2*_3*_2

#Axiom checking succeeded.

> G;

An automatic group.

Generator Ordering = [ a, a^-1, b, b^-1 ]

The second word difference machine has 21 states.

The word acceptor has 15 states.
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75.2.3 Accessing Group Information
The functions in this group provide access to basic information stored for an automatic
group G.

G . i

The i-th defining generator for G. The integer i must lie in the range [−r, r], where
r is the number of group G.

Generators(G)

A sequence containing the defining generators for G.

NumberOfGenerators(G)

Ngens(G)

The number of defining generators for G.

Example H75E4

We illustrate the access operations using the Von Dyck (2,3,5) group (isomorphic to A5).

> F<a,b> := FreeGroup(2);

> Q := quo< F | a*a=1, b*b=b^-1, a*b^-1*a*b^-1*a=b*a*b*a*b>;

> f, G<a,b> := IsAutomaticGroup(Q);

> G;

An automatic group.

Generator Ordering = [ a, a^-1, b, b^-1 ]

The second word difference machine has 33 states.

The word acceptor has 28 states.

> print G.1*G.2;

a * b

> print Generators(G);

[ a, b ]

> print Ngens(G);

2

> rels := Relations(G);

> print rels[1];

Q.2 * Q.2^-1 = Id(Q)

> print rels[2];

Q.2^-1 * Q.2 = Id(Q)

> print rels[3];

Q.1^2 = Id(Q)

> print rels[4];

Q.2^2 = Q.2^-1

> print Nrels(G);

18

> print Ordering(G);

ShortLex
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FPGroup(G)

Returns the finitely presented group F used in the construction of G, and the
isomorphism from F to G.

WordAcceptor(G)

A record describing the word acceptor automaton stored in G.

WordAcceptorSize(G)

The number of states of the word acceptor automaton stored in G, and the size of
the alphabet of this automaton.

WordDifferenceAutomaton(G)

A record describing the word difference automaton stored in G.

WordDifferenceSize(G)

The number of states of the 2nd word difference automaton stored in G, and the
size of the alphabet of this automaton.

WordDifferences(G)

The labels of the states of the word difference automaton stored in G. The result is
a sequence of elements of the finitely presented group used in the construction of G.

GeneratorOrder(G)

The value of the GeneratorOrder parameter used in the construction of G. The
result is a sequence of generators and their inverses from the finitely presented group
used in the construction of G.

75.3 Properties of an Automatic Group

IsFinite(G)

Given an automatic group G return true if G has finite order and false otherwise.
If G does have finite order also return the order of G.

Order(G)

#G

The order of the group G as an integer. If the order of G is known to be infinite,
the symbol ∞ is returned.
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Example H75E5

We construct the group Z o C2 and compute its order. The result of Infinity indicates that the
group has infinite order.

> F<a,b,t> := FreeGroup(3);

> Q := quo< F | t^2=1, b*a=a*b, t*a*t=b>;

> f, G := IsAutomaticGroup(Q);

Running Knuth-Bendix with the following parameter values

MaxRelations = 200

MaxStates = 0

TidyInt = 20

MaxWdiffs = 512

HaltingFactor = 100

MinTime = 5

#System is confluent.

#Halting with 14 equations.

#First word-difference machine with 14 states computed.

#Second word-difference machine with 14 states computed.

#System is confluent, or halting factor condition holds.

#Word-acceptor with 6 states computed.

#General multiplier with 27 states computed.

#Validity test on general multiplier succeeded.

#Checking inverse and short relations.

#Axiom checking succeeded.

> Order(G);

Infinity

Example H75E6

We construct a three fold cover of A6 and check whether it has finite order.

> FG<a,b> := FreeGroup(2);

> F := quo< FG | a^3=1, b^3=1, (a*b)^4=1, (a*b^-1)^5=1>;

> f, G := IsAutomaticGroup(F : GeneratorOrder := [a,b,a^-1,b^-1]);

Running Knuth-Bendix with the following parameter values

MaxRelations = 200

MaxStates = 0

TidyInt = 20

MaxWdiffs = 512

HaltingFactor = 100

MinTime = 5

#System is confluent.

#Halting with 183 equations.

#First word-difference machine with 289 states computed.

#Second word-difference machine with 360 states computed.

#System is confluent, or halting factor condition holds.

#Word-acceptor with 314 states computed.

#General multiplier with 1638 states computed.
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#Multiplier incorrect with generator number 4.

#General multiplier with 1958 states computed.

#Multiplier incorrect with generator number 2.

#General multiplier with 2020 states computed.

#Multiplier incorrect with generator number 1.

#General multiplier with 2038 states computed.

#Validity test on general multiplier succeeded.

#General length-2 multiplier with 4252 states computed.

#Checking inverse and short relations.

#Checking relation: _1*_2*_1*_2 = _4*_3*_4*_3

#Checking relation: _1*_4*_1*_4*_1 = _2*_3*_2*_3*_2

#Axiom checking succeeded.

> IsFinite(G);

true 1080

> isf, ord := IsFinite(G);

> isf, ord;

true 1080

75.4 Arithmetic with Words

75.4.1 Construction of a Word

G ! [ i1, ..., is ]

Given an automatic group G defined on r generators and a sequence [i1, · · · , is] of
integers lying in the range [−r, r], excluding 0, construct the word

G.|i1|ε1 ∗G.|i2|ε2 ∗ · · · ∗G.|is|εs

where εj is +1 if ij is positive, and −1 if ij is negative. The word will be returned
in reduced form.

Identity(G)

Id(G)

G ! 1

Construct the identity word in the automatic group G.

Parent(w)

The parent group G for the word w.
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Example H75E7

We construct some words in a two-generator two-relator group.

> F<a, b> := Group< a, b | a^2 = b^2, a*b*a = b*a*b >;

> f, G<a, b> := IsAutomaticGroup(F);

> G;

An automatic group.

Generator Ordering = [ $.1, $.1^-1, $.2, $.2^-1 ]

The second word difference machine has 11 states.

The word acceptor has 8 states.

> Id(G);

Id(G)

> print G!1;

Id(G)

> a*b*a*b^3;

a^4 * b * a

> G![1,2,1,2,2,2];

a^4 * b * a

75.4.2 Operations on Elements
Having constructed an automatic group G one can perform arithmetic with words in G.
Assuming we have u, v ∈ G then the product u ∗ v will be computed as follows:

(i) The product w = u ∗ v is formed as a product in the appropriate free group.

(ii)w is reduced using the second word difference machine associated with G.

Note that:

(i) Reduction of w can cause an increase in the length of w. At present there is an internal
limit on the length of a word – if this limit is exceeded during reduction an error will
be raised. Hence any word operation involving reduction can fail.

(ii)The implementation is designed more with speed of execution in mind than with mini-
mizing space requirements; thus, the reduction machine is always used to carry out word
reduction, which can be space-consuming, particularly when the number of generators
is large.

u * v

Given words w and v belonging to a common group, return their product.

u / v

Given words w and v belonging to a common group, return the product of the word
u by the inverse of the word v, i.e. the word u ∗ v−1.
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u ^ n

The n-th power of the word w.

u ^ v

Given words w and v belonging to a common group, return the conjugate of the
word u by the word v, i.e. the word v−1 ∗ u ∗ v.

Inverse(w)

The inverse of the word w.

(u, v)

Given words w and v belonging to a common group, return the commutator of the
words u and v, i.e., the word u−1v−1uv.

(u1, ..., ur)

Given r words u1, . . . , ur belonging to a common group, return their commutator.
Commutators are left-normed, so they are evaluated from left to right.

u eq v

Given words w and v belonging to the same group, return true if w and v reduce to
the same normal form, false otherwise. If G is confluent this tests for equality. If
G is non-confluent then two words which are the same may not reduce to the same
normal form.

u ne v

Given words w and v belonging to the same group, return false if w and v reduce to
the same normal form, true otherwise. If G is confluent this tests for non-equality.
If G is non-confluent then two words which are the same may reduce to different
normal forms.

IsId(w)

IsIdentity(w)

Returns true if the word w is the identity word.

#u

The length of the word w.

ElementToSequence(u)

Eltseq(u)

The sequence Q obtained by decomposing the element u of a rewrite group into its
constituent generators and generator inverses. Suppose u is a word in the rewrite
group G. Then, if u = G.ie1

1 · · ·G.iem
m , with each ei = ±1, then Q[j] = ij if ej = +1

and Q[j] = −ij if ej = −1, for j = 1, . . . ,m.
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Example H75E8

We illustrate the word operations by applying them to elements of the fundamental group of a
3-manifold.
We illustrate the word operations by applying them to elements of a free group of rank two (with
lots of redundant generators).

> FG<a,b,c,d,e> := FreeGroup(5);

> F := quo< FG | a*d*d=1, b*d*d*d=1, c*d*d*d*d*d*e*e*e=1>;

> f, G<a,b,c,d,e> := IsAutomaticGroup(F);

> G;

An automatic group.

Generator Ordering = [ a, a^-1, b, b^-1, c, c^-1, d, d^-1, e, e^-1 ]

The second word difference machine has 41 states.

The word acceptor has 42 states.

> print a*d;

d^-1

> print a/(d^-1);

d^-1

> print c*d^5*e^2;

e^-1

> print a^b, b^-1*a*b;

a a

> print (a*d)^-2, Inverse(a*d)^2;

a^-1 a^-1

> print c^-1*d^-1*c*d eq (c,d);

true

> print IsIdentity(b*d^3);

true

> print #(c*d*d*d*d*d*e*e);

1

75.5 Homomorphisms

For a general description of homomorphisms, we refer to chapter 16. This section describes
some special aspects of homomorphisms whose domain or codomain is an automatic group.

75.5.1 General Remarks
Groups in the category GrpAtc currently are accepted as codomains only in some special
situations. The most important cases in which an automatic group can be used as a
codomain are group homomorphisms whose domain is in one of the categories GrpFP,
GrpGPC, GrpRWS or GrpAtc.
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75.5.2 Construction of Homomorphisms

hom< A -> G | S >

Returns the homomorphism from the automatic group A to the group G defined by
the expression S which can be the one of the following:
(i) A list, sequence or indexed set containing the images of the n generators

A.1, . . . , A.n of A. Here, the i-th element of S is interpreted as the image of
A.i, i.e. the order of the elements in S is important.

(ii)A list, sequence, enumerated set or indexed set, containing n tuples < xi, yi > or
arrow pairs xi −> yi, where xi is a generator of A and yi ∈ G (i = 1, . . . , n) and
the set {x1, . . . , xn} is the full set of generators of A. In this case, yi is assigned
as the image of xi, hence the order of the elements in S is not important.
It is the user’s responsibility to ensure that the provided generator images ac-

tually give rise to a well-defined homomorphism. No checking is performed by the
constructor.

Note that it is currently not possible to define a homomorphism by assigning
images to the elements of an arbitrary generating set of A.

75.6 Set Operations

In this section we describe functions which allow the user to enumerate various sets of
elements of an automatic group G.

Random(G, n)

A random word of length at most n in the generators of G.

Random(G)

A random word (of length at most the order of G) in the generators of G.

Representative(G)

Rep(G)

An element chosen from G.

Set(G, a, b)

Search MonStgElt Default : “DFS”
Create the set of words, w, in G with a ≤ length(w) ≤ b. If Search is set to "DFS"
(depth-first search) then words are enumerated in lexicographical order. If Search
is set to "BFS" (breadth-first-search) then words are enumerated in lexicographi-
cal order for each individual length (i.e. in short-lex order). Depth-first-search is
marginally quicker. Since the result is a set the words may not appear in the resul-
tant set in the search order specified (although internally they will be enumerated
in this order).
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Set(G)

Search MonStgElt Default : “DFS”
Create the set of words that is the carrier set of G. If Search is set to "DFS" (depth-
first search) then words are enumerated in lexicographical order. If Search is set
to "BFS" (breadth-first-search) then words are enumerated in lexicographical order
for each individual length (i.e. in short-lex order). Depth-first-search is marginally
quicker. Since the result is a set the words may not appear in the resultant set in the
search order specified (although internally they will be enumerated in this order).

Seq(G, a, b)

Search MonStgElt Default : “DFS”
Create the sequence S of words, w, in G with a ≤ length(w) ≤ b. If Search is
set to "DFS" (depth-first search) then words will appear in S in lexicographical
order. If Search is set to "BFS" (breadth-first-search) then words will appear in S
in lexicographical order for each individual length (i.e. in short-lex order). Depth-
first-search is marginally quicker.

Seq(G)

Search MonStgElt Default : “DFS”
Create a sequence S of words from the carrier set of G. If Search is set to "DFS"
(depth-first search) then words will appear in S in lexicographical order. If Search
is set to "BFS" (breadth-first-search) then words will appear in S in lexicographi-
cal order for each individual length (i.e. in short-lex order). Depth-first-search is
marginally quicker.

Example H75E9

We construct the group D22, together with a representative word from the group, a random word
and a random word of length at most 5 from the group, and the set of elements of the group.

> FG<a,b,c,d,e,f> := FreeGroup(6);

> F := quo< FG | a*c^-1*a^-1*d=1, b*f*b^-1*e^-1=1,

> c*e*c^-1*d^-1=1, d*f^-1*d^-1*a=1,

> e*b*e^-1*a^-1=1, f*c^-1*f^-1*b^-1=1 >;

> f, G<a,b,c,d,e,f> := IsAutomaticGroup(F);

Running Knuth-Bendix with the following parameter values

MaxRelations = 200

MaxStates = 0

TidyInt = 20

MaxWdiffs = 512

HaltingFactor = 100

MinTime = 5

#System is confluent.

#Halting with 41 equations.

#First word-difference machine with 16 states computed.
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#Second word-difference machine with 17 states computed.

#System is confluent, or halting factor condition holds.

#Word-acceptor with 6 states computed.

#General multiplier with 58 states computed.

#Validity test on general multiplier succeeded.

#Checking inverse and short relations.

#Axiom checking succeeded.

> Representative(G);

Id(G)

> Random(G);

a*c;

> Random(G, 5);

a * b

> Set(G);

{ a * d * b, a * b, a * b * e, a * c, a * d, d * b, b * e,

a * b * a, a * b * d, b * a, a * c * e, Id(G), b * d, c * e,

e, f, a, a * e, b, c, a * f, d }

> Seq(G : Search := "BFS");

[ Id(G), a, b, c, d, e, f, a * b, a * c, a * d, a * e, a * f,

b * a, b * d, b * e, c * e, d * b, a * b * a, a * b * d,

a * b * e, a * c * e, a * d * b ]

75.7 The Growth Function

GrowthFunction(G)

Primes SeqEnum Default : []
Compute the growth function of the word acceptor automaton associated with G.
The growth function of a DFA, A, is the quotient of two integral polynomials in a
single variable x. The coefficient of xn in the Taylor expansion (about 0) of this
quotient is equal to the number of words of length n accepted by A. That is, the
result is a closed form for this generating function.

The algorithm is by Derek Holt. The Primes parameter is no longer used, but
is kept for backward compatibility. It may be removed in future releases.

Example H75E10

We construct a dihedral group of order 10 and compute the growth function of its word acceptor.
As the group is finite, the result will be a polynomial. Note here that the R!f is only necessary
to get pretty printing, specifically to ensure that f is printed in the variable x.

> R<x> := RationalFunctionField(Integers());

> FG<a,b> := FreeGroup(2);

> Q := quo< FG | a^5, b^2, a^b = a^-1>;

> G := AutomaticGroup(Q);

> f := GrowthFunction(G);
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> R!f;

2*x^3 + 4*x^2 + 3*x + 1

Now we take as example an infinite dihedral group. The group is infinite, so the result cannot be
polynomial. We then extract the coefficients of the growth function for word lengths 0 to 14.

> FG2<d,e> := FreeGroup(2);

> Q2 := quo<FG2| e^2, d^e = d^-1>;

> G2 := AutomaticGroup(Q2);

> f2 := GrowthFunction(G2);

> R!f2;

(-x^2 - 2*x - 1)/(x - 1)

> PSR := PowerSeriesRing(Integers():Precision := 15);

> Coefficients(PSR!f2);

[ 1, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ]

75.8 Bibliography
[Hol97] Derek Holt. KBMAG – Knuth-Bendix in Monoids and Automatic Groups. Uni-

versity of Warwick, 1997.





76 GROUPS OF
STRAIGHT-LINE PROGRAMS

76.1 Introduction . . . . . . . . 2379

76.2 Construction of an SLP-Group
and its Elements . . . . . . 2379

76.2.1 Structure Constructors . . . . . . 2379

SLPGroup(n) 2379

76.2.2 Construction of an Element . . . . 2380

Identity(G) 2380
Id(G) 2380
! 2380

76.3 Arithmetic with Elements . . 2380

* 2380
^ 2380
^ 2380
# 2380
76.3.1 Accessing the Defining Generators

and Relations . . . . . . . . . . 2380

. 2380
Generators(G) 2380
NumberOfGenerators(G) 2380
Ngens(G) 2380
Parent(u) 2380

76.4 Addition of Extra Generators . 2381

AddRedundantGenerators(G, Q) 2381

76.5 Creating Homomorphisms . . 2381

hom< > 2381
Evaluate(u, Q) 2381
Evaluate(u, G) 2381
Evaluate(v, Q) 2381
Evaluate(v, G) 2381

76.6 Operations on Elements . . . 2383

76.6.1 Equality and Comparison . . . . 2383

eq 2383
ne 2383

76.7 Set-Theoretic Operations . . . 2383

76.7.1 Membership and Equality . . . . 2383

in 2383
notin 2383
subset 2383
notsubset 2383

76.7.2 Set Operations . . . . . . . . . 2384

RandomProcess(G) 2384
Random(P) 2384
Rep(G) 2384

76.7.3 Coercions Between Related Groups 2385

! 2385

76.8 Bibliography . . . . . . . . 2385





Chapter 76

GROUPS OF
STRAIGHT-LINE PROGRAMS

76.1 Introduction
This Chapter describes the category of straight-line program groups (SLP-groups). A
straight-line program is formally a sequence [s1, s2, . . . , sn] such that each si is one of the
following:
(i) A generator of the SLP-group;
(ii) A product sjsk, j < i, k < i;
(iii) A power sn

j , j < i;
(iv) A conjugate ssk

j , j < i, k < i.
Effectively, a straight-line program can be regarded as a word in the generators which is
stored as an expression tree instead of a list of generator-exponent pairs.

The importance of such a category of groups is that storing a word as an expression
tree allows much faster evaluation of homomorphisms given as the unique extension of a
mapping of the generators into a group of any category, as common subexpressions may
be computed once only, and powers or conjugates may be more efficiently computed in the
target group than by a linear product of generators and their inverses.

The name in Magma for the category of SLP-groups is GrpSLP.

76.2 Construction of an SLP-Group and its Elements

76.2.1 Structure Constructors

SLPGroup(n)

Construct the free group F of straight-line programs on n generators, where n is a
non-negative integer. The i-th generator may be referenced by the expression F.i,
i = 1, . . . , n.

Example H76E1

The statement

> F := SLPGroup(2);

creates the free group on two generators. Here the generators may be referenced using the standard
names, F.1 and F.2. Group operations on the elements will be stored as part of the result.
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76.2.2 Construction of an Element

Identity(G)

Id(G)

G ! 1

Construct the identity element (the straight-line program [] of length 0) for the
SLP-group G.

76.3 Arithmetic with Elements

u * v

Given straight-line programs u = [u1, . . . , um] and v = [v1, . . . , vn] belonging to the
same SLP-group G, return a straight-line program corresponding to the product
of u and v. It is clear that the straight-line program [u1, . . . , um, v1, . . . , vn, umvn]
satisfies the formal definition. In practice, the ui and vi need not be distinct, so the
resulting program may be shorter.

u ^ m

Given an integer m and a straight-line program u, return the straight-line program
corresponding to the m-th power of u.

u ^ v

Given straight-line programs u and v, return the straight-line program corresponding
to the conjugate of u by v.

#u

Given a straight-line program u, return the number of multiplication, power or
conjugate operations required to evaluate a homomorphism on u.

76.3.1 Accessing the Defining Generators and Relations
The functions described here provide access to basic information stored for an SLP-group
G.

G . i

The i-th generator for G.

Generators(G)

A set containing the generators for G.

NumberOfGenerators(G)

Ngens(G)

The number of generators for B.

Parent(u)

The parent group G of the straight-line program u.
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76.4 Addition of Extra Generators

It is often the case that a particular expression in the original generators is important in
some homomorphic image of the group in the sense that it will very often form a common
subexpression of subsequent expression. For this reason, Magma provides facilities to
build related SLP-groups in which particular words acquire generator status themselves.

AddRedundantGenerators(G, Q)

An SLP-group H on n + q generators (where G has n generators and Q has q
elements). Furthermore, the identification of G.i with H.i (i ≤ n) and of Q[i]
with H.(n + i) is maintained, allowing coercion between G and H and also simple
definition of homomorphisms.

76.5 Creating Homomorphisms

Because SLP-groups exist primarily to allow the user to write efficient code for evaluat-
ing words under a homomorphism, there are some extra features in the homomorphism
constructor which rely on the user providing correct input.

Whne evaluating single words, it may not be desirable to explicitly construct the ho-
momorphism. The Evaluate function uses the same evaluation mechanism as the homo-
morphisms and may a useful alternative.

hom< G -> H | L: parameters >

CheckCodomain BoolElt Default : true

Return the group homomorphism φ : G → H defined by the list L. The list may
contain:
(i) Elements of the codomain. This form can only be used when all the preceding

entries have given the image of the corresponding generator of G;
(ii) Generator-image pairs of the form G.i -> x or <G.i, x>;
(iii) A homomorphism ψ from an SLP-group B to H where G has been defined

as a result of adding redundant generators to B. If this item appears, it
must appear first. After the remaining generators have been processed, any
images which are not yet assigned are computed from ψ. If the parameter
CheckCodomain has the value false, then it is assumed that the generator
images lie in the codomain.

Evaluate(u, Q)

Evaluate(u, G)

Evaluate(v, Q)

Evaluate(v, G)

Evaluate the word u using the elements of Q as images of the generators of the
parent of u. The sequence Q must contains at least as many group elements as the
parent of u has generators.
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The second form evaluates all the words in v simultaneously, which is usually
quicker than doing individual evaluations.

When the second argument is a group G, Q is taken as the sequence of generators of
G.

Example H76E2

An illustration of the use of AddRedundantGenerators and the homomorphism constructing ma-
chinery.

> G := SLPGroup(2);

> M := GeneralLinearGroup(19, 7);

> P := RandomProcess(G);

> x := Random(P);

> #x;

74

We evaluate x im M using the Evaluate function.

> m := Evaluate(x, [M.1, M.2]);

> Order(m);

118392315154200

If we wish to evaluate several different words, we may be better off using a homomorphism.

> Q := [x^G.1, x^G.2, x^(G.1*G.2)];

> phi := hom<G -> M | M.1, M.2>;

> time R1 := phi(Q);

Time: 0.129

We note that x has become important since it is now a common sub-expression of several straight-
line programs. We can build a homomorphism which will store the image of x by adding x as a
redundant generator and defining the same homomorphism from the resulting group.

> H := AddRedundantGenerators(G, [x]);

> QQ := [H | x: x in Q];

We will define psi as the unique map on H which matches phi.

> psi := hom<H -> M | phi>;

> time R2 := psi(QQ);

Time: 0.000

> R1 eq R2;

true

In fact, if we had looked at the expression lengths of the straight-line programs involved, we would
have found the following, which explains the significant speed up:

> [#x: x in Q];

[ 75, 75, 75 ]

> [#x: x in QQ];

[ 1, 1, 2 ]
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76.6 Operations on Elements

76.6.1 Equality and Comparison

u eq v

Reutrns true if and only if the straight-line programs u and v are identical. Identical
here means they are identical as expression trees, not that they will always evaluate
to the same word in the generators.

u ne v

Returns true if and only if the straight-line programs u and v are not identical.
Identical here means they are identical as expression trees, not that they will always
evaluate to the same word in the generators.

76.7 Set-Theoretic Operations

76.7.1 Membership and Equality

g in G

Given a straight-line program g and an SLP-group G, return true if g is an element
of G, false otherwise.

g notin G

Given an straight-line program g and an SLP-group G, return true if g is not an
element of G, false otherwise.

S subset G

Given an group G and a set S of elements belonging to a group H, where G and H
are related, return true if S is a subset of G, false otherwise.

S notsubset G

Given a group G and a set S of elements belonging to a group H, where G and H
are related, return true if S is not a subset of G, false otherwise.
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76.7.2 Set Operations

RandomProcess(G)

Slots RngIntElt Default : 10
Scramble RngIntElt Default : 100

Create a process to generate randomly chosen elements from the group G. The
process is based on the product-replacement algorithm of [CLGM+95], modified by
the use of an accumulator. At all times, N elements are stored where N is the
maximum of the specified value for Slots and Ngens(G)+1. Initially, these are just
the generators of G. As well, one extra group element is stored, the accumulator.
Initially, this is the identity. Random elements are now produced by successive
calls to Random(P), where P is the process created by this function. Each such call
chooses one of the elements in the slots and multiplies it into the accumulator. The
element in that slot is replaced by the product of it and another randomly chosen
slot. The random value returned is the new accumulator value. Setting Scramble
:= m causes m such operations to be performed before the process is returned.

It should be noted that this process is not suitable for infinite groups, since
all elements produced are products of the generators only and not their inverses.
However, as long as the homomorphic image of G that is being worked with is finite,
there is no problem.

Random(P)

Given a random element process P created by the function RandomProcess(G) for
the SLP-group G, construct a random element of G by forming a random product
over the expanded generating set stored as part of the process. The expanded
generating set stored with the process is modified by replacing an existing generator
by the element returned.

Rep(G)

A representative element of G.

Example H76E3

As an illustration of the efficiency of computing homomorphisms from SLP-groups, we set up the
same random expression as both a straight-line program and a linear word.

> G := SLPGroup(3);

> F := FreeGroup(3);

> M := GeneralOrthogonalGroup(7, 3);

> gf := hom<G -> F | F.1, F.2, F.3>;

> gm := hom<G -> M | M.1, M.2, M.3>;

> fm := hom<F -> M | M.1, M.2, M.3>;

> P := RandomProcess(G);

> x := Random(P);

> #x;
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85

The evaluation of the straight-line program will take 85 operations in M.

> w := gf(x);

> #w;

52307

The evaluation of the word will take 52306 multiplications in M.

> time h1 := gm(x);

Time: 0.020

> time h2 := fm(w);

Time: 1.640

> h1 eq h2;

true

76.7.3 Coercions Between Related Groups

G ! g

Given an element g belonging to an SLP-group H related to the group G, rewrite g
as an element of G.

76.8 Bibliography
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Chapter 77

FINITELY PRESENTED SEMIGROUPS

77.1 Introduction
This Chapter presents the functions designed for computing with finitely-presented semi-
groups (fp-semigroups for short).

77.2 The Construction of Free Semigroups and their Elements

77.2.1 Structure Constructors

FreeSemigroup(n)

Construct the free semigroup F on n generators, where n is a positive integer. The
i-th generator may be referenced by the expression F.i, i = 1, . . . , n. Note that
a special form of the assignment statement is provided which enables the user to
assign names to the generators of F . In this form of assignment, the list of generator
names is enclosed within angle brackets and appended to the variable name on the
left hand side of the assignment statement.

FreeMonoid(n)

Construct the free monoid F on n generators, where n is a positive integer. The
i-th generator may be referenced by the expression F.i, i = 1, . . . , n. Note that
a special form of the assignment statement is provided which enables the user to
assign names to the generators of F . In this form of assignment, the list of generator
names is enclosed within angle brackets and appended to the variable name on the
left hand side of the assignment statement.

Example H77E1

The statement

> F := FreeSemigroup(2);

creates the free semigroup on two generators. Here the generators may be referenced using the
standard names, F.1 and F.2.
The statement

> F<x, y> := FreeSemigroup(2);

defines F to be the free semigroup on two generators and assigns the names x and y to the
generators.
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77.2.2 Element Constructors
Suppose S is an fp-semigroup, not necessarily free, for which generators have already been
defined. A word is defined inductively as follows:

(i) A generator is a word;

(ii)The product uv of the words u and v is a word;

(iii)The power of a word, un, where u is a word and n is an integer, is a word.

An element (word) of S may be constructed as an expression in the generators as outlined
below.

S ! [i1, ... is]

Given a semigroup S defined on r generators and a sequence Q = [i1, · · · , is] of
integers lying in the range [1, r], construct the word G.i1G.i2 · · ·G.is.

Id(M)

M ! 1

Construct the identity element (empty word) for the fp-monoid M .

77.3 Elementary Operators for Words

77.3.1 Multiplication and Exponentiation
The word operations defined here may be applied either to the words of a free semigroup
or the words of a semigroup with non-trivial relations.

u * v

Given words u and v belonging to the same fp-semigroup S, return the product of
u and v.

u ^ n

The n-th power of the word u, where n is a positive integer.

G ! Q

Given a sequence Q of words belonging to the fp-semigroup G, return the product
Q[1]Q[2] · · ·Q[n] of the terms of Q as a word in G.

77.3.2 The Length of a Word

#u

The length of the word u.
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77.3.3 Equality and Comparison
The words of an fp-semigroup S are ordered first by length and then lexicographically.
The lexicographic ordering is determined by the following ordering on the generators:

S.1 < S.2 < S.3 < S.4 < · · ·

Here, u and v are words belonging to some common fp-semigroup.

u eq v

Returns true if the words u and v are identical (as elements of the appropriate free
semigroup), false otherwise.

u ne v

Returns true if the words u and v are not identical (as elements of the appropriate
free semigroup), false otherwise.

u lt v

Returns true if the word u precedes the word v, with respect to the ordering defined
above for elements of an fp-semigroup, false otherwise.

u le v

Returns true if the word u either precedes, or is equal to, the word v, with respect
to the ordering defined above for elements of an fp-semigroup, false otherwise.

u ge v

Returns true if the word u either follows, or is equal to, the word v, with respect
to the ordering defined above for elements of an fp-semigroup, false otherwise.

u gt v

Returns true if the word u follows the word v, with respect to the ordering defined
above for elements of an fp-semigroup.

IsOne(u)

Returns true if the word u, belonging to the monoid M , is the identity word, false
otherwise.
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77.4 Specification of a Presentation

77.4.1 Relations

w1 = w2

Given words w1 and w2 over the generators of an fp-semigroup S, create the relation
w1 = w2. Note that this relation is not automatically added to the existing set of
defining relations R for S. It may be added to R, for example, through use of the
quo-constructor (see below).

LHS(r)

Given a relation r over the generators of S, return the left hand side of the relation
r. The object returned is a word over the generators of S.

RHS(r)

Given a relation r over the generators of S, return the right hand side of the relation
r. The object returned is a word over the generators of S.

77.4.2 Presentations
A semigroup with non-trivial relations is constructed as a quotient of an existing semigroup,
possibly a free semigroup.

Semigroup< generators | relations >

Given a generators clause consisting of a list of variables x1, · · · , xr, and a set of
relations relations over these generators, first construct the free semigroup F on
the generators x1, · · · , xr and then construct the quotient of F corresponding to the
ideal of F defined by relations.

The syntax for the relations clause is the same as for the quo-constructor. The
function returns:

(a)The quotient semigroup S;

(b)The natural homomorphism φ : F → S.

Thus, the statement
S< y1, ..., yr > := Semigroup< x1, ..., xr | w1, ..., ws >;

is an abbreviation for
F< x1, ..., xr > := FreeSemigroup(r);
S< y1, ..., yr > := quo< F | w1, ..., ws >;
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Monoid< generators | relations >

Given a generators clause consisting of a list of variables x1, · · · , xr, and a set of
relations relations over these generators, first construct the free monoid F on the
generators x1, · · · , xr and then construct the quotient of F corresponding to the
ideal of F defined by relations.

The syntax for the relations clause is the same as for the quo-constructor. The
function returns:
(a)The quotient monoid M ;
(b)The natural homomorphism φ : F →M .
Thus, the statement

M< y1, ..., yr > := Monoid< x1, ..., xr | w1, ..., ws >;
is an abbreviation for

F< x1, ..., xr > := FreeMonoid(r);
M< y1, ..., yr > := quo< F | w1, ..., ws >;

Example H77E2

We create the monoid defined by the presentation < x, y | x2, y2, (xy)2 >.

> M<x,y> := Monoid< x, y | x^2, y^2, (x*y)^2 >;

> M;

Finitely presented monoid

Relations:

x^2 = Id(M)

y^2 = Id(M)

(x * y)^2 = Id(M)

77.4.3 Accessing the Defining Generators and Relations
The functions in this group provide access to basic information stored for a finitely-
presented semigroup G.

S . i

The i-th defining generator for S.

Generators(S)

A set containing the generators for S.

NumberOfGenerators(S)

Ngens(S)

The number of generators for S.

Parent(u)

The parent semigroup S of the word u.
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Relations(S)

A sequence containing the defining relations for S.

77.5 Subsemigroups, Ideals and Quotients

77.5.1 Subsemigroups and Ideals

sub< S | L1, ..., Lr >

Construct the subsemigroup R of the fp-semigroup S generated by the words spec-
ified by the terms of the generator list L1,. . ., Lr.
A term Li of the generator list may consist of any of the following objects:
(a)A word;
(b)A set or sequence of words;
(c) A sequence of integers representing a word;
(d)A set or sequence of sequences of integers representing words;
(e) A subsemigroup of an fp-semigroup;
(f) A set or sequence of subsemigroups.

The collection of words and semigroups specified by the list must all belong to
the semigroup S, and R will be constructed as a subgroup of S.

The generators of R consist of the words specified directly by terms Li together
with the stored generating words for any semigroups specified by terms of Li. Rep-
etitions of an element and occurrences of the identity element are removed (unless
R is trivial).

ideal< S | L1, ..., Lr >

Construct the two-sided ideal I of the fp-semigroup S generated by the words spec-
ified by the terms of the generator list L1,. . ., Lr.

The possible forms of a term Li of the generator list are the same as for the
sub-constructor.

lideal< G | L1, ..., Lr >

Construct the left ideal I of the fp-semigroup S generated by the words specified by
the terms of the generator list L1,. . ., Lr.

The possible forms of a term Li of the generator list are the same as for the
sub-constructor.

rideal< G | L1, ..., Lr >

Construct the right ideal I of the fp-semigroup S generated by the words specified
by the terms of the generator list L1,. . ., Lr.

The possible forms of a term Li of the generator list are the same as for the
sub-constructor.
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77.5.2 Quotients

quo< F | relations >

Given an fp-semigroup F , and a list of relations relations over the generators of F ,
construct the quotient of F by the ideal of F defined by relations.

The expression defining F may be either simply the name of a previously con-
structed semigroup, or an expression defining an fp-semigroup.

Each term of the list relations must be a relation, a relation list or, if S is a
monoid, a word.

A word is interpreted as a relator if S is a monoid.
A relation consists of a pair of words, separated by ‘=’. (See above).
A relation list consists of a list of words, where each pair of adjacent words

is separated by ‘=’: w1 = w2 = · · · = wr. This is interpreted as the relations
w1 = wr, . . . , wr−1 = wr.

Note that the relation list construct is only meaningful in the context of the fp
semigroup-constructor.

In the context of the quo-constructor, the identity element (empty word) of a
monoid may be represented by the digit 1.
Note that this function returns:

(a)The quotient semigroup S;

(b)The natural homomorphism φ : F → S.

77.6 Extensions

DirectProduct(R, S)

Given two fp-semigroups R and S, construct the direct product of R and S.

FreeProduct(R, S)

Given two fp-semigroups R and S, construct the free product of R and S.

77.7 Elementary Tietze Transformations

AddRelation(S, r)

AddRelation(S, r, i)

Given an fp-semigroup S and a relation r in the generators of S, create the quotient
semigroup obtained by adding the relation r to the defining relations of S. If an
integer i is specified as third argument, insert the new relation after the i-th relation
of S. If the third argument is omitted, r is added to the end of the relations that
are carried across from S.
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DeleteRelation(S, r)

Given an fp-semigroup S and a relation r that occurs among the given defining
relations for S, create the semigroup T , having the same generating set as S but
with the relation r removed.

DeleteRelation(S, i)

Given an fp-semigroup S and an integer i, 1 ≤ i ≤ m, where m is the number of
defining relations for S, create the semigroup T having the same generating set as
S but with the i-th relation omitted.

ReplaceRelation(S, r1, r2)

Given an fp-semigroup S and relations r1 and r2 in the generators of S, where r1
is one of the given defining relations for S, create the semigroup T having the same
generating set as S but with the relation r1 replaced by the relation r2.

ReplaceRelation(S, i, r)

Given an fp-semigroup S, an integer i, 1 ≤ i ≤ m, where m is the number of defining
relations for S, and a relation r in the generators of S, create the semigroup T having
the same generating set as S but with the i-th relation of S replaced by the relation
r.

AddGenerator(S)

Given an fp-semigroup S with presentation < X | R >, create the semigroup T with
presentation < X ∪ {y} | R >, where y denotes a new generator.

AddGenerator(S, w)

Given an fp-semigroup S with presentation < X | R > and a word w in the gener-
ators of S, create the semigroup T with presentation < X ∪ {y} | R ∪ {y = w} >,
where y denotes a new generator.

DeleteGenerator(S, y)

Given an fp-semigroup S with presentation < X | R > and a generator y of S such
that either S has no relations involving y, or a single relation r containing a single
occurrence of y, create the semigroup T with presentation < X − {y} | R− {r} >.
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77.8 String Operations on Words

Eliminate(u, x, v)

Given words u and v, and a generator x, belonging to a semigroup S, return the
word obtained from u by replacing each occurrence of x by v.

Match(u, v, f)

Suppose u and v are words belonging to the same semigroup S, and that f is an
integer such that 1 ≤ f ≤ #u. If v is a subword of u, the function returns true, as
well as the least integer l such that:
(a) l ≥ f ; and,
(b)v appears as a subword of u, starting at the l-th letter of u.

If no such l is found, Match returns only false.

Random(S, m, n)

A random word of length l in the generators of the semigroup S, where m ≤ l ≤ n.

RotateWord(u, n)

The word obtained by cyclically permuting the word u by n places. If n is positive,
the rotation is from left to right, while if n is negative the rotation is from right to
left. In the case where n is zero, the function returns u.

Substitute(u, f, n, v)

Given words u and v belonging to a semigroup S, and non-negative integers f and
n, this function replaces the substring of u of length n, starting at position f , by the
word v. Thus, if u = xi1 · · ·xif

· · ·xif+n−1 · · ·xim then the substring xif
· · ·xif+n−1

is replaced by v. If u and v belong to a monoid M and the function is invoked with
v =Id(M), then the substring xif

· · ·xif+n−1 of u is deleted.

Subword(u, f, n)

The subword of the word u comprising the n consecutive letters commencing at the
f -th letter of u.

ElementToSequence(u)

Eltseq(u)

The sequence obtained by decomposing u into the indices of its constituent genera-
tors. Thus, if u = xi1 . . . xim , then the sequence constructed by ElementToSequence
is [i1, i2, . . . , im].
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Chapter 78

MONOIDS GIVEN BY
REWRITE SYSTEMS

78.1 Introduction
The category of monoids defined by finite sets of rewrite rules provide a Magma level in-
terface to Derek Holt’s KBMAG programs, and specifically to KBMAG’s Knuth–Bendix
completion procedure on monoids defined by a finite presentation. As such much of the
documentation in this chapter is taken from the KBMAG documentation [Hol97]. Famil-
iarity with the Knuth–Bendix completion procedure is assumed. Some familiarity with
KBMAG would be beneficial.

78.1.1 Terminology
A rewrite monoid M is a finitely presented monoid in which equality between elements
of M , called words or strings, is decidable via a sequence of rewriting equations, called
reduction relations, rules, or equations. In the interests of efficiency the reduction rules are
codified into a finite state automaton called a reduction machine. The words in a rewrite
monoid M are ordered, as are the reduction relations of M . Several possible orderings of
words are supported, namely short-lex, recursive, weighted short-lex and wreath-product
orderings. A rewrite monoid can be confluent or non-confluent. If a rewrite monoid M is
confluent its reduction relations, or more specifically its reduction machine, can be used
to reduce words in M to their irreducible normal forms under the given ordering, and so
the word problem for M can be efficiently solved.

78.1.2 The Category of Rewrite Monoids
The family of all rewrite monoids forms a category. The objects are the rewrite monoids
and the morphisms are monoid homomorphisms. The Magma designation for this category
of monoids is MonRWS. Elements of a rewrite monoid are designated as MonRWSElt.

78.1.3 The Construction of a Rewrite Monoid
A rewrite monoid M is constructed in a three-step process:

(i) A free monoid F of the appropriate rank is defined.

(ii)A quotient Q of F is created.

(iii) The Knuth–Bendix completion procedure is applied to the monoid Q to produce a
monoid M defined by a rewrite system.
The Knuth–Bendix procedure may or may not succeed. If it fails the user may need

to perform the above steps several times, manually adjusting parameters that control
the execution of the Knuth–Bendix procedure. If it succeeds then the rewrite systems
constructed will be confluent.
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78.2 Construction of a Rewrite Monoid

RWSMonoid(Q: parameters)

The Knuth–Bendix completion procedure for monoids is run, with the relations of
Q taken as the initial reduction rules for the procedure. Regardless of whether
or not the completion procedure succeeds, the result will be a rewrite monoid,
M , containing a reduction machine and a sequence of reduction relations. If the
procedure succeeds M will be marked as confluent, and the word problem for M is
therefore decidable. If, as is very likely, the procedure fails then M will be marked
as non-confluent. In this case M will contain both the reduction relations and the
reduction machine computed up to the point of failure.

As the Knuth–Bendix procedure will more often than not run forever, some
conditions must be specified under which it will stop. These take the form of limits
that are placed on certain variables, such as the number of reduction relations. If
any of these limits are exceeded during a run of the completion procedure it will
fail, returning a non-confluent rewrite monoid. The optimal values for these limits
varies from example to example.

MaxRelations RngIntElt Default : 32767
Limit the maximum number of reduction equations to MaxRelations.

GeneratorOrder SeqEnum Default :

Give an ordering for the generators. This ordering affects the ordering of words
in the alphabet. If not specified the ordering defaults to the order induced by Q’s
generators, that is [g1, . . . , gn] where g1, . . . , gn are the generators of Q.

Ordering MonStgElt Default : “ShortLex”
Levels SeqEnum Default :

Weights SeqEnum Default :

Ordering := "ShortLex": Use the short-lex ordering on strings. Shorter words
come before longer, and for words of equal length lexicographical ordering is used,
using the given ordering of the generators.
Ordering := "Recursive" | "RTRecursive": Use a recursive ordering on strings.
There are various ways to define this. Perhaps the quickest is as follows. Let u and
v be strings in the generators. If one of u and v, say v, is empty, then u ≥ v.
Otherwise, let u = u′a and v = v′b, where a and b are generators. Then u > v if
and only if one of the following holds:

(i) a = b and u′ > v′;
(ii)a > b and u > v′;
(iii) b > a and u′ > v.

The RTRecursive ordering is similar to the Recursive ordering, but with u = au′

and v = bv′. Occasionally one or the other runs significantly quicker, but usually
they perform similarly.
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Ordering := "WTShortLex": Use a weighted-lex ordering. Weights should be a
sequence of non-negative integers, with the i-th element of Weights giving the weight
of the i-the generator. The length of Weights must equal the number of generators.
The length of words in the generators is then computed by adding up the weights
of the generators in the words. Otherwise, ordering is as for short-lex.
Ordering := "Wreath": Use a wreath-product ordering. Levels should be a se-
quence of non-negative integers, with the i-th element of Levels giving the level of
the i-the generator. The length of Levels must equal the number of generators. In
this ordering, two strings involving generators of the same level are ordered using
short-lex, but all strings in generators of a higher level are larger than those involv-
ing generators of a lower level. That is not a complete definition; one can be found
in [Sim94, pp. 46–50]. Note that the recursive ordering is the special case in which
the level of generator number i is i.

TidyInt RngIntElt Default : 100
After finding TidyInt new reduction equations, the completion procedure interrupts
the main process of looking for overlaps, to tidy up the existing set of equations.
This will eliminate any redundant equations performing some reductions on their
left and right hand sides to make the set as compact as possible. (The point is that
equations discovered later often make older equations redundant or too long.)

RabinKarp Tup Default :

Use the Rabin-Karp algorithm for word-reduction on words having length at least
l, provided that there are at least n equations, where RabinKarp := <l, n>. This
uses less space than the default reduction automaton, but it is distinctly slower, so
it should only be used when seriously short of memory. Indeed this option is only
really useful for examples in which collapse occurs - i.e. at some intermediate stage
of the calculation there is a very large set of equations, which later reduces to a
much smaller confluent set. Collapse is not uncommon when analysing pathological
presentations of finite groups, and this is one situation where the performance of the
Knuth–Bendix algorithm can be superior to that of Todd-Coxeter coset enumeration.
The best setting for RabinKarp varies from example to example - generally speaking,
the smaller l is, the slower things will be, so set it as high as possible subject to not
running out of memory. The number of equations n should be set higher than the
expected final number of equations.

MaxStates RngIntElt Default :

Limit the maximum number of states of the finite state automaton used for word
reduction to MaxStates. By default there is no limit, and the space allocated is
increased dynamically as required. The space needed for the reduction automaton
can also be restricted by using the RabinKarp parameter. This limit is not usually
needed.

MaxReduceLen RngIntElt Default : 32767
Limit the maximum allowed length that a word can reach during reduction to
MaxReduceLen. It is only likely to be exceeded when using the recursive ordering
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on words. This limit is usually not needed.
ConfNum RngIntElt Default : 500

If ConfNum overlaps are processed and no new equations are discovered, then the
overlap searching process is interrupted, and a fast check for confluence performed
on the existing set of equations. Doing this too often wastes time, but doing it at the
right moment can also save a lot of time. If ConfNum = 0, then the fast confluence
check is performed only when the search for overlaps is complete.

Warning: Changing the default setting for any of the following parameters may
either cause the procedure to terminate without having found a confluent presenta-
tion or change the monoid.

MaxStoredLen Tup Default :

Only equations in which the left and right hand sides have lengths at most l and r,
respectively, where MaxStoredLen := <l, r> are kept. Of course this may cause
the overlap search to complete on a set of equations that is not confluent. In
some examples, particularly those involving collapse (i.e. a large intermediate set of
equations, which later simplifies to a small set), it can result in a confluent set being
found much more quickly. It is most often useful when using a recursive ordering
on words. Another danger with this option is that sometimes discarding equations
can result in information being lost, with the effect of changing the monoid defined
by the equations.

MaxOverlapLen RngIntElt Default :

Only overlaps of total length at most MaxOverlapLen are processed. Of course this
may cause the overlap search to complete on a set of equations that is not confluent.

Sort BoolElt Default : false

MaxOpLen RngIntElt Default : 0
If Sort is set to true then the equations will be sorted in order of increasing length
of their left hand sides, rather than the default, which is to leave them in the order
in which they were found. MaxOpLen should be a non-negative integer. If MaxOpLen
is positive, then only equations with left hand sides having length at most MaxOpLen
are output. If MaxOpLen is zero, then all equations are sorted by length. Of course,
if MaxOpLen is positive, there is a danger that the monoid defined by the output
equations may be different from the original.

SetVerbose("KBMAG", v)

Set the verbose printing level for the Knuth-Bendix completion algorithm. Setting
this level allows a user to control how much extra information on the progress of the
algorithm is printed. Currently the legal values for v are 0 to 3 inclusive. Setting
v to 0 corresponds to the ‘-silent’ option of KBMAG in which no extra output is
printed. Setting v to 2 corresponds to the ‘-v’ (verbose) option of KBMAG in which
a small amount of extra output is printed. Setting v to 3 corresponds to the ‘-vv’
(very verbose) option of KBMAG in which a huge amount of diagnostic information
is printed.
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Example H78E1

Starting with a monoid presentation for the alternating group A4, we construct a rewrite system.
Since we don’t specify an ordering the default ShortLex ordering is used. Since we don’t specify
a generator ordering, the default generator ordering, in this case that from Q, is used.

> FM<g10,g20,g30> := FreeMonoid(3);

> Q := quo< FM | g10^2=1, g20*g30=1, g30*g20=1,

> g20*g20=g30, g30*g10*g30=g10*g20*g10>;

> M := RWSMonoid(Q);

> print M;

A confluent rewrite monoid.

Generator Ordering = [ g10, g20, g30 ]

Ordering = ShortLex.

The reduction machine has 12 states.

The rewrite relations are:

g10^2 = Id(FM)

g20 * g30 = Id(FM)

g30 * g20 = Id(FM)

g20^2 = g30

g30 * g10 * g30 = g10 * g20 * g10

g30^2 = g20

g20 * g10 * g20 = g10 * g30 * g10

g30 * g10 * g20 * g10 = g20 * g10 * g30

g10 * g20 * g10 * g30 = g30 * g10 * g20

g20 * g10 * g30 * g10 = g30 * g10 * g20

g10 * g30 * g10 * g20 = g20 * g10 * g30

Example H78E2

We construct the second of Bernard Neumann’s series of increasingly complicated presentations
of the trivial monoid. The example runs best with a large value of TidyInt. Again the default
ShortLex ordering is used.

> FM<x,X,y,Y,z,Z> := FreeMonoid(6);

> Q := quo< FM |

> x*X=1, X*x=1, y*Y=1, Y*y=1, z*Z=1, Z*z=1,

> y*y*X*Y*x*Y*z*y*Z*Z*X*y*x*Y*Y*z*z*Y*Z*y*z*z*Y*Z*y=1,

> z*z*Y*Z*y*Z*x*z*X*X*Y*z*y*Z*Z*x*x*Z*X*z*x*x*Z*X*z=1,

> x*x*Z*X*z*X*y*x*Y*Y*Z*x*z*X*X*y*y*X*Y*x*y*y*X*Y*x=1>;

> M := RWSMonoid(Q : TidyInt := 3000);

> print M;

A confluent rewrite monoid.

Generator Ordering = [ x, X, y, Y, z, Z ]

Ordering = ShortLex.

The reduction machine has 1 state.

The rewrite relations are:

Z = Id(FM)

Y = Id(FM)
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z = Id(FM)

X = Id(FM)

y = Id(FM)

x = Id(FM)

Example H78E3

We construct a confluent presentation of a submonoid of a nilpotent group.

> FM<a,b,c> := FreeMonoid(6);

> Q := quo< FM | b*a=a*b*c, c*a=a*c, c*b=b*c >;

> M := RWSMonoid(Q:Ordering:="Recursive", GeneratorOrder:=[c,b,a]);

> M;

A confluent rewrite monoid.

Generator Ordering = [ c, b, a ]

Ordering = Recursive.

The reduction machine has 3 states.

b * a = a * b * c

c * a = a * c

c * b = b * c

> Order(M);

Infinity

Example H78E4

We construct a monoid presentation corresponding to the Fibonacci group F (2, 7). This is a very
difficult calculation unless the parameters of RWSMonoid are selected carefully. The best approach is
to run the Knuth-Bendix once using a Recursive ordering with a limit on the lengths of equations
stored (MaxStoredLen := <15,15> works well). This will halt returning a non-confluent rewrite
monoid M , and give a warning message that the Knuth-Bendix procedure only partly succeeded.
The original equations should then be appended to the relations of M , and the Knuth-Bendix
re-run with no limits on lengths. It will then quickly complete with a confluent set. This is typical
of a number of difficult examples, where good results can be obtained by running more than once.

> FM<a,b,c,d,e,f,g> := FreeMonoid(7);

> I := [a*b=c, b*c=d, c*d=e, d*e=f, e*f=g, f*g=a, g*a=b];

> Q := quo<FM | I>;

> M := RWSMonoid(Q: Ordering := "Recursive", MaxStoredLen := <15,15>);

Warning: Knuth Bendix only partly succeeded

> Q := quo< FM | Relations(M) cat I>;

> M := RWSMonoid(Q: Ordering := "Recursive");

> print M;

A confluent rewrite monoid.

Generator Ordering = [ a, b, c, d, e, f, g ]

Ordering = Recursive.

The reduction machine has 30 states.

The rewrite relations are:
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c = a^25

d = a^20

e = a^16

f = a^7

g = a^23

b = a^24

a^30 = a

> Order(M);

30

It turns out that the non-identity elements of this monoid form a submonoid isomorphic to the
Fibonacci group F (2, 7) which is cyclic of order 29.

78.3 Basic Operations

78.3.1 Accessing Monoid Information
The functions in this section provide access to basic information stored for a rewrite monoid
M .

M . i

The i-th defining generator for M .

Generators(M)

A sequence containing the defining generators for M .

NumberOfGenerators(M)

Ngens(M)

The number of defining generators for M .

Relations(M)

A sequence containing the defining relations for M . The relations will be given
between elements of the free monoid of which M is a quotient. In these relations
the (image of the) left hand side (in M) will always be greater than the (image of
the) right hand side (in M) in the ordering on words used to construct M .

NumberOfRelations(M)

Nrels(M)

The number of relations in M .

Ordering(M)

The ordering of M .

Parent(w)

The parent monoid M for the word w.
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Example H78E5

We illustrate the access operations using the following presentation of S4.

> FM<a,b> := FreeMonoid(2);

> Q := quo< FM | a^2=1, b^3=1, (a*b)^4=1 >;

> M<x,y> := RWSMonoid(Q);

> print M;

A confluent rewrite monoid.

Generator Ordering = [ a, b ]

Ordering = ShortLex.

The reduction machine has 12 states.

a^2 = Id(FM)

b^3 = Id(FM)

b * a * b * a * b = a * b^2 * a

b^2 * a * b^2 = a * b * a * b * a

b * a * b^2 * a * b * a = a * b * a * b^2 * a * b

> print Order(M);

24

> print M.1;

x

> print M.1*M.2;

x * y

> print Generators(M);

[ x, y ]

> print Ngens(M);

2

> print Relations(M);

[ a^2 = Id(FM), b^3 = Id(FM), b * a * b * a * b = a * b^2 * a, b^2 * a * b^2 = a

* b * a * b * a, b * a * b^2 * a * b * a = a * b * a * b^2 * a * b ]

> print Nrels(M);

5

> print Ordering(M);

ShortLex

78.3.2 Properties of a Rewrite Monoid

IsConfluent(M)

Returns true if M is confluent, false otherwise.

IsFinite(M)

Given a confluent monoid M return true if M has finite order and false otherwise.
If M does have finite order also return the order of M .
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Order(M)

#M

Given a monoid M defined by a confluent presentation, this function returns the
cardinality of M . If the order of M is known to be infinite ∞ is returned.

Example H78E6

We construct a threefold cover of A6.

> FM<a,b> := FreeMonoid(2);

> Q := quo< FM | a^3=1, b^3=1, (a*b)^4=1, (a*b^2)^5 = 1 >;

> M := RWSMonoid(Q);

> print Order(M);

1080

> IsConfluent(M);

true

Example H78E7

We construct the 2-generator free abelian group and compute its order. The result Infinity

indicates that the group has infinite order.

> FM<a,A,b,B> := FreeMonoid(4);

> Q := quo< FM | a*A=1, A*a=1, b*B=1, B*b=1, B*a*b=a>;

> M := RWSMonoid(Q);

> Order(M);

Infinity

Example H78E8

We construct the Weyl group E8 and test whether or not it has finite order.

> FM<a,b,c,d,e,f,g,h> := FreeMonoid(8);

> Q := quo< FM | a^2=1, b^2=1, c^2=1, d^2=1, e^2=1, f^2=1, g^2=1,

> h^2=1, b*a*b=a*b*a, c*a=a*c, d*a=a*d, e*a=a*e, f*a=a*f,

> g*a=a*g, h*a=a*h, c*b*c=b*c*b, d*b=b*d, e*b=b*e, f*b=b*f,

> g*b=b*g, h*b=b*h, d*c*d=c*d*c, e*c*e=c*e*c, f*c=c*f,

> g*c=c*g, h*c=c*h, e*d=d*e, f*d=d*f, g*d=d*g, h*d=d*h,

> f*e*f=e*f*e, g*e=e*g, h*e=e*h, g*f*g=f*g*f, h*f=f*h,

> h*g*h=g*h*g>;

> M := RWSMonoid(Q);

> print IsFinite(M);

true

> isf, ord := IsFinite(M);

> print isf, ord;

true 696729600
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78.3.3 Construction of a Word

Identity(M)

Id(M)

M ! 1

Construct the identity word in M .

M ! [ i1, ..., is ]

Given a rewrite monoid M defined on r generators and a sequence [i1, · · · , is] of
integers lying in the range [1, r], construct the word M.i1 ∗M.i2 ∗ · · · ∗M.is.

Example H78E9

We construct the Fibonacci group F (2, 7), and it’s identity.

> FM<a,A,b,B,c,C,d,D,e,E,f,F,g,G> := FreeMonoid(14);

> Q := quo< FM | a*A=1, A*a=1, b*B=1, B*b=1, c*C=1, C*c=1,

> d*D=1, D*d=1, e*E=1, E*e=1, f*F=1, F*f=1, g*G=1, G*g=1,

> a*b=c, b*c=d, c*d=e, d*e=f, e*f=g, f*g=a, g*a=b>;

> M := RWSMonoid(Q : TidyInt := 1000);

> print Id(M);

Id(M)

> print M!1;

Id(M)

> Order(M);

29

78.3.4 Arithmetic with Words
Having constructed a rewrite monoid M one can perform arithmetic with words in M .
Assuming we have u, v ∈M then the product u ∗ v will be computed as follows:
(i) The product w = u ∗ v is formed as a product in the appropriate free monoid.

(ii)The word w is reduced using the reduction machine associated with M .
If M is confluent, then w will be the unique minimal word that represents u ∗ v under

the ordering of M . If M is not confluent, then there are some pairs of words which are
equal in M , but which reduce to distinct words, and hence w will not be a unique normal
form. Note that:

(i) Reduction of w can cause an increase in the length of w. At present there is an internal
limit on the length of a word – if this limit is exceeded during reduction an error will
be raised. Hence any word operation involving reduction can fail.

(ii)The implementation is designed more with speed of execution in mind than with mini-
mizing space requirements; thus, the reduction machine is always used to carry out word
reduction, which can be space-consuming, particularly when the number of generators
is large.
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u * v

Product of the words w and v.

u ^ n

The n-th power of the word w, where n is a positive or zero integer.

u eq v

Given words w and v belonging to the same monoid, return true if w and v reduce
to the same normal form, false otherwise. If M is confluent this tests for equality. If
M is non-confluent then two words which are the same may not reduce to the same
normal form.

u ne v

Given words w and v belonging to the same monoid, return false if w and v reduce to
the same normal form, true otherwise. If M is confluent this tests for non-equality.
If M is non-confluent then two words which are the same may reduce to different
normal forms.

IsId(w)

IsIdentity(w)

Returns true if the word w is the identity word.

#u

The length of the word w.

ElementToSequence(u)

Eltseq(u)

The sequence Q obtained by decomposing the element u of a rewrite monoid into
its constituent generators. Suppose u is a word in the rewrite monoid M . If u =
M.i1 · · ·M.im, then Q[j] = ij , for j = 1, . . . ,m.

Example H78E10

We illustrate the word operations by applying them to elements of the Fibonacci monoid FM(2, 5).

> FM<a,b,c,d,e> := FreeMonoid(5);

> Q:=quo< FM | a*b=c, b*c=d, c*d=e, d*e=a, e*a=b >;

> M<a,b,c,d,e> := RWSMonoid(Q);

> a*b*c*d;

b^2

> (c*d)^4 eq a;

true

> IsIdentity(a^0);

true

> IsIdentity(b^2*e);

false
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78.4 Homomorphisms

For a general description of homomorphisms, we refer to Chapter 16. This section describes
some special aspects of homomorphisms whose domain is a rewrite monoid.

78.4.1 General Remarks
Monoids in the category MonRWS currently are accepted as codomains only for monoid
homomorphisms, whose codomain is a rewrite monoid as well.

78.4.2 Construction of Homomorphisms

hom< M -> N | S >

Returns the homomorphism from the rewrite group M to the monoid N defined by
the expression S which must be the one of the following:

(i) A list, sequence or indexed set containing the images of the n generators
M.1, . . . ,M.n of M . Here, the i-th element of S is interpreted as the image
of M.i, i.e. the order of the elements in S is important.

(ii)A list, sequence, enumerated set or indexed set, containing n tuples < xi, yi > or
arrow pairs xi −> yi, where xi is a generator of M and yi ∈ N (i = 1, . . . , n) and
the set {x1, . . . , xn} is the full set of generators of M . In this case, yi is assigned
as the image of xi, hence the order of the elements in S is not important.
It is the user’s responsibility to ensure that the provided generator images ac-

tually give rise to a well-defined homomorphism. No checking is performed by the
constructor. Presently, N must be either a rewrite monoid or a group, and it is
not possible to define a homomorphism by assigning images to the elements of an
arbitrary generating set of M .

78.5 Set Operations

Random(M, n)

A random word of length at most n in the generators of M .

Random(M)

A random word (of length at most the order of M) in the generators of M .

Representative(M)

Rep(M)

An element chosen from M .
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Set(M, a, b)

Search MonStgElt Default : “DFS”
Create the set of words, w, in M with a ≤ length(w) ≤ b. If Search is set to "DFS"
(depth-first search) then words are enumerated in lexicographical order. If Search
is set to "BFS" (breadth-first-search) then words are enumerated in lexicographi-
cal order for each individual length (i.e. in short-lex order). Depth-first-search is
marginally quicker. Since the result is a set the words may not appear in the resul-
tant set in the search order specified (although internally they will be enumerated
in this order).

Set(M)

Search MonStgElt Default : “DFS”
Create the set of words that is the carrier set of M . If Search is set to "DFS" (depth-
first search) then words are enumerated in lexicographical order. If Search is set
to "BFS" (breadth-first-search) then words are enumerated in lexicographical order
for each individual length (i.e. in short-lex order). Depth-first-search is marginally
quicker. Since the result is a set the words may not appear in the resultant set in the
search order specified (although internally they will be enumerated in this order).

Seq(M, a, b)

Search MonStgElt Default : “DFS”
Create the sequence S of words, w, in M with a ≤ length(w) ≤ b. If Search
is set to "DFS" (depth-first search) then words will appear in S in lexicographical
order. If Search is set to "BFS" (breadth-first-search) then words will appear in S
in lexicographical order for each individual length (i.e. in short-lex order). Depth-
first-search is marginally quicker.

Seq(M)

Search MonStgElt Default : “DFS”
Create a sequence S of words from the carrier set of M . If Search is set to "DFS"
(depth-first search) then words will appear in S in lexicographical order. If Search
is set to "BFS" (breadth-first-search) then words will appear in S in lexicographi-
cal order for each individual length (i.e. in short-lex order). Depth-first-search is
marginally quicker.

Example H78E11

We construct the group D22, together with a representative word from the group, a random word
and a random word of length at most 5 from the group, and the set of elements of the group.

> FM<a,b,c,d,e,f> := FreeMonoid(6);

> Q := quo< FM | a^2=1, f^2=1,

> d*a=a*c, e*b=b*f, d*c=c*e, d*f=a*d, a*e=e*b, b*f*c=f >;

> M<a,b,c,d,e,f> := RWSMonoid(Q);
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> print Order(M);

22

> print Representative(M);

Id(M)

> print Random(M);

c * e

> print Random(M, 5);

d

> Set(M);

{ a * c, e, a * d, f, a * e, a * f, Id(M), a * c * e, b * a,

b * d, a * d * b, b * e, c * e, a * b * a, d * b, a * b * d,

a, a * b * e, b, c, a * b, d }

> Seq(M : Search := "BFS");

[ Id(M), a, b, c, d, e, f, a * b, a * c, a * d, a * e, a * f,

b * a, b * d, b * e, c * e, d * b, a * b * a, a * b * d,

a * b * e, a * c * e, a * d * b ]

78.6 Conversion to a Finitely Presented Monoid
There is a standard way to convert a rewrite monoid into a finitely presented monoid using
the function Relations. This is shown in the following example.

Example H78E12

We construct the Fibonacci monoid FM(2, 4) as a rewrite monoid, and then convert it into a
finitely presented monoid.

> FM<a,b,c,d> := FreeMonoid(4);

> Q := quo< FM | a*b=c, b*c=d, c*d=a, d*a=b >;

> M := RWSMonoid(Q);

> Order(M);

11

> P<w,x,y,z> := quo < FM | Relations(M) >;

> P;

Finitely presented monoid

Relations

w * x = y

x * y = z

y * z = w

z * w = x

y^2 = w * z

z^2 = x * w

z * y = x^2

y * x = w^2

x * w * z = x^2

w^3 = w * z

x * w^2 = x * z
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x^2 * z = x

w^2 * y = w

x^3 = x * w

x^2 * w = z

z * x = x * z

y * w = w * y

w^2 * z = y

x * w * y = x
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