
HANDBOOK OF MAGMA FUNCTIONS

Volume 7

Algebras

John Cannon Wieb Bosma

Claus Fieker Allan Steel

Editors

Version 2.19

Sydney

April 24, 2013

ii

MAGMA
C O M P U T E R • A L G E B R A

HANDBOOK OF MAGMA FUNCTIONS

Editors:

John Cannon Wieb Bosma Claus Fieker Allan Steel

Handbook Contributors:

Geoff Bailey, Wieb Bosma, Gavin Brown, Nils Bruin, John

Cannon, Jon Carlson, Scott Contini, Bruce Cox, Brendan

Creutz, Steve Donnelly, Tim Dokchitser, Willem de Graaf,

Andreas-Stephan Elsenhans, Claus Fieker, Damien Fisher,

Volker Gebhardt, Sergei Haller, Michael Harrison, Florian

Hess, Derek Holt, David Howden, Al Kasprzyk, Markus

Kirschmer, David Kohel, Axel Kohnert, Dimitri Leemans,

Paulette Lieby, Graham Matthews, Scott Murray, Eamonn

O’Brien, Dan Roozemond, Ben Smith, Bernd Souvignier,

William Stein, Allan Steel, Damien Stehlé, Nicole Suther-

land, Don Taylor, Bill Unger, Alexa van der Waall, Paul

van Wamelen, Helena Verrill, John Voight, Mark Watkins,

Greg White

Production Editors:

Wieb Bosma Claus Fieker Allan Steel Nicole Sutherland

HTML Production:

Claus Fieker Allan Steel

VOLUME 7: OVERVIEW

XI ALGEBRAS 2417
79 ALGEBRAS 2419
80 STRUCTURE CONSTANT ALGEBRAS 2431
81 ASSOCIATIVE ALGEBRAS 2441
82 FINITELY PRESENTED ALGEBRAS 2467
83 MATRIX ALGEBRAS 2505
84 GROUP ALGEBRAS 2545
85 BASIC ALGEBRAS 2559
86 QUATERNION ALGEBRAS 2619
87 ALGEBRAS WITH INVOLUTION 2663
88 CLIFFORD ALGEBRAS 2679

XII REPRESENTATION THEORY 2683
89 MODULES OVER AN ALGEBRA 2685
90 K[G]-MODULES AND GROUP REPRESENTATIONS 2721
91 CHARACTERS OF FINITE GROUPS 2757
92 REPRESENTATIONS OF SYMMETRIC GROUPS 2779
93 MOD P GALOIS REPRESENTATIONS 2787

vi VOLUME 7: CONTENTS

VOLUME 7: CONTENTS

XI ALGEBRAS 2417

79 ALGEBRAS . 2419

79.1 Introduction 2421
79.1.1 The Categories of Algebras 2421
79.2 Construction of General Algebras and their Elements 2421
79.2.1 Construction of a General Algebra 2422
79.2.2 Construction of an Element of a General Algebra 2423
79.3 Construction of Subalgebras, Ideals and Quotient Algebras 2423
79.3.1 Subalgebras and Ideals 2423
79.3.2 Quotient Algebras 2424
79.4 Operations on Algebras and Subalgebras 2424
79.4.1 Invariants of an Algebra 2424
79.4.2 Changing Rings 2425
79.4.3 Bases 2425
79.4.4 Decomposition of an Algebra 2426
79.4.5 Operations on Subalgebras 2428
79.5 Operations on Elements of an Algebra 2429
79.5.1 Operations on Elements 2429
79.5.2 Comparisons and Membership 2430
79.5.3 Predicates on Elements 2430

80 STRUCTURE CONSTANT ALGEBRAS 2431

80.1 Introduction 2433
80.2 Construction of Structure Constant Algebras and Elements 2433
80.2.1 Construction of a Structure Constant Algebra 2433
80.2.2 Construction of Elements of a Structure Constant Algebra 2434
80.3 Operations on Structure Constant Algebras and Elements 2435
80.3.1 Operations on Structure Constant Algebras 2435
80.3.2 Indexing Elements 2436
80.3.3 The Module Structure of a Structure Constant Algebra 2437
80.3.4 Homomorphisms 2437

81 ASSOCIATIVE ALGEBRAS 2441

81.1 Introduction 2443
81.2 Construction of Associative Algebras 2443
81.2.1 Construction of an Associative Structure Constant Algebra 2443
81.2.2 Associative Structure Constant Algebras from other Algebras 2444
81.3 Operations on Algebras and their Elements 2445
81.3.1 Operations on Algebras 2445
81.3.2 Operations on Elements 2447
81.3.3 Representations 2448
81.3.4 Decomposition of an Algebra 2448
81.4 Orders 2450
81.4.1 Creation of Orders 2451
81.4.2 Attributes 2454
81.4.3 Bases of Orders 2455
81.4.4 Predicates 2456

VOLUME 7: CONTENTS vii

81.4.5 Operations with Orders 2457
81.5 Elements of Orders 2458
81.5.1 Creation of Elements 2458
81.5.2 Arithmetic of Elements 2458
81.5.3 Predicates on Elements 2459
81.5.4 Other Operations with Elements 2459
81.6 Ideals of Orders 2460
81.6.1 Creation of Ideals 2460
81.6.2 Attributes of Ideals 2461
81.6.3 Arithmetic for Ideals 2462
81.6.4 Predicates on Ideals 2462
81.6.5 Other Operations on Ideals 2463
81.7 Quaternionic Orders 2465
81.8 Bibliography 2466

82 FINITELY PRESENTED ALGEBRAS 2467

82.1 Introduction 2469
82.2 Representation and Monomial Orders 2469
82.3 Exterior Algebras 2470
82.4 Creation of Free Algebras and Elements 2470
82.4.1 Creation of Free Algebras 2470
82.4.2 Print Names 2470
82.4.3 Creation of Polynomials 2471
82.5 Structure Operations 2471
82.5.1 Related Structures 2471
82.5.2 Numerical Invariants 2471
82.5.3 Homomorphisms 2472
82.6 Element Operations 2473
82.6.1 Arithmetic Operators 2473
82.6.2 Equality and Membership 2473
82.6.3 Predicates on Algebra Elements 2473
82.6.4 Coefficients, Monomials, Terms and Degree 2474
82.6.5 Evaluation 2476
82.7 Ideals and Gröbner Bases 2477
82.7.1 Creation of Ideals 2477
82.7.2 Gröbner Bases 2478
82.7.3 Verbosity 2479
82.7.4 Related Functions 2480
82.8 Basic Operations on Ideals 2482
82.8.1 Construction of New Ideals 2483
82.8.2 Ideal Predicates 2483
82.8.3 Operations on Elements of Ideals 2484
82.9 Changing Coefficient Ring 2485
82.10 Finitely Presented Algebras 2485
82.11 Creation of FP-Algebras 2485
82.12 Operations on FP-Algebras 2487
82.13 Finite Dimensional FP-Algebras 2488
82.14 Vector Enumeration 2492
82.14.1 Finitely Presented Modules 2492
82.14.2 S-algebras 2492
82.14.3 Finitely Presented Algebras 2493
82.14.4 Vector Enumeration 2493
82.14.5 The Isomorphism 2494
82.14.6 Sketch of the Algorithm 2495
82.14.7 Weights 2495

viii VOLUME 7: CONTENTS

82.14.8 Setup Functions 2496
82.14.9 The Quotient Module Function 2496
82.14.10 Structuring Presentations 2496
82.14.11 Options and Controls 2497
82.14.12 Weights 2497
82.14.13 Limits 2498
82.14.14 Logging 2499
82.14.15 Miscellaneous 2500

82.15 Bibliography 2503

83 MATRIX ALGEBRAS 2505

83.1 Introduction 2509

83.2 Construction of Matrix Algebras and their Elements 2509
83.2.1 Construction of the Complete Matrix Algebra 2509
83.2.2 Construction of a Matrix 2509
83.2.3 Constructing a General Matrix Algebra 2511
83.2.4 The Invariants of a Matrix Algebra 2512

83.3 Construction of Subalgebras, Ideals and Quotient Rings 2513

83.4 The Construction of Extensions and their Elements 2515
83.4.1 The Construction of Direct Sums and Tensor Products 2515
83.4.2 Construction of Direct Sums and Tensor Products of Elements 2517

83.5 Operations on Matrix Algebras 2518

83.6 Changing Rings 2518

83.7 Elementary Operations on Elements 2518
83.7.1 Arithmetic 2518
83.7.2 Predicates 2519

83.8 Elements of Mn as Homomorphisms 2523

83.9 Elementary Operations on Subalgebras and Ideals 2524
83.9.1 Bases 2524
83.9.2 Intersection of Subalgebras 2524
83.9.3 Membership and Equality 2524

83.10 Accessing and Modifying a Matrix 2525
83.10.1 Indexing 2525
83.10.2 Extracting and Inserting Blocks 2526
83.10.3 Joining Matrices 2526
83.10.4 Row and Column Operations 2527

83.11 Canonical Forms 2527
83.11.1 Canonical Forms for Matrices over Euclidean Domains 2527
83.11.2 Canonical Forms for Matrices over a Field 2529

83.12 Diagonalising Commutative Algebras over a Field 2532

83.13 Solutions of Systems of Linear Equations 2534

83.14 Presentations for Matrix Algebras 2535
83.14.1 Quotients and Idempotents 2535
83.14.2 Generators and Presentations 2538
83.14.3 Solving the Word Problem 2542

83.15 Bibliography 2544

VOLUME 7: CONTENTS ix

84 GROUP ALGEBRAS 2545

84.1 Introduction 2547

84.2 Construction of Group Algebras and their Elements 2547
84.2.1 Construction of a Group Algebra 2547
84.2.2 Construction of a Group Algebra Element 2549

84.3 Construction of Subalgebras, Ideals and Quotient Algebras 2550

84.4 Operations on Group Algebras and their Subalgebras 2552
84.4.1 Operations on Group Algebras 2552
84.4.2 Operations on Subalgebras of Group Algebras 2553

84.5 Operations on Elements 2555

85 BASIC ALGEBRAS 2559

85.1 Introduction 2563

85.2 Basic Algebras 2563
85.2.1 Creation 2563
85.2.2 Special Basic Algebras 2564
85.2.3 Access Functions 2570
85.2.4 Elementary Operations 2571
85.2.5 Boolean Functions 2575

85.3 Homomorphisms 2575

85.4 Subalgebras and Quotient Algebras 2576
85.4.1 Subalgebras and their Constructions 2576
85.4.2 Ideals and their Construction 2577
85.4.3 Quotient Algebras 2578

85.5 Minimal Forms and Gradings 2579

85.6 Automorphisms and Isomorphisms 2581

85.7 Modules over Basic Algebras 2583
85.7.1 Indecomposable Projective Modules 2583
85.7.2 Creation 2584
85.7.3 Access Functions 2585
85.7.4 Predicates 2587
85.7.5 Elementary Operations 2588

85.8 Homomorphisms of Modules 2590
85.8.1 Creation 2590
85.8.2 Access Functions 2591
85.8.3 Projective Covers and Resolutions 2592

85.9 Duals and Injectives 2596
85.9.1 Injective Modules 2597

85.10 Cohomology 2600
85.10.1 Ext-Algebras 2605

85.11 Group Algebras of p-groups 2607
85.11.1 Access Functions 2608
85.11.2 Projective Resolutions 2608
85.11.3 Cohomology Generators 2609
85.11.4 Cohomology Rings 2610
85.11.5 Restrictions and Inflations 2610

85.12 A-infinity Algebra Structures on Group Cohomology 2614
85.12.1 Homological Algebra Toolkit 2616

85.13 Bibliography 2618

x VOLUME 7: CONTENTS

86 QUATERNION ALGEBRAS 2619

86.1 Introduction 2621
86.2 Creation of Quaternion Algebras 2622
86.3 Creation of Quaternion Orders 2626
86.3.1 Creation of Orders from Elements 2627
86.3.2 Creation of Maximal Orders 2628
86.3.3 Creation of Orders with given Discriminant 2630
86.3.4 Creation of Orders with given Discriminant over the Integers 2631
86.4 Elements of Quaternion Algebras 2632
86.4.1 Creation of Elements 2632
86.4.2 Arithmetic of Elements 2632
86.5 Attributes of Quaternion Algebras 2634
86.6 Hilbert Symbols and Embeddings 2636
86.7 Predicates on Algebras 2639
86.8 Recognition Functions 2640
86.9 Attributes of Orders 2642
86.10 Predicates of Orders 2643
86.11 Operations with Orders 2644
86.12 Ideal Theory of Orders 2645
86.12.1 Creation and Access Functions 2645
86.12.2 Enumeration of Ideal Classes 2648
86.12.3 Operations on Ideals 2651
86.13 Norm Spaces and Basis Reduction 2652
86.14 Isomorphisms 2654
86.14.1 Isomorphisms of Algebras 2654
86.14.2 Isomorphisms of Orders 2655
86.14.3 Isomorphisms of Ideals 2655
86.14.4 Examples 2657
86.15 Units and Unit Groups 2659
86.16 Bibliography 2661

87 ALGEBRAS WITH INVOLUTION 2663

87.1 Introduction 2665
87.2 Algebras with Involution 2665
87.2.1 Reflexive Forms 2666
87.2.2 Systems of Reflexive Forms 2666
87.2.3 Basic Attributes of ∗-Algebras 2667
87.2.4 Adjoint Algebras 2668
87.2.5 Group Algebras 2669
87.2.6 Simple ∗-Algebras 2670
87.3 Decompositions of ∗-Algebras 2671
87.4 Recognition of ∗-Algebras 2672
87.4.1 Recognition of Simple ∗-Algebras 2672
87.4.2 Recognition of Arbitrary ∗-Algebras 2673
87.5 Intersections of Classical Groups 2675
87.6 Bibliography 2677

88 CLIFFORD ALGEBRAS 2679

88.1 Introduction 2681
88.2 Clifford Algebras and their Elements 2681
88.2.1 Elements of a Clifford Algebra 2682
88.3 Bibliography 2682

VOLUME 7: CONTENTS xi

XII REPRESENTATION THEORY 2683

89 MODULES OVER AN ALGEBRA 2685

89.1 Introduction 2687

89.2 Modules over a Matrix Algebra 2688
89.2.1 Construction of an A-Module 2688
89.2.2 Accessing Module Information 2689
89.2.3 Standard Constructions 2691
89.2.4 Element Construction and Operations 2692
89.2.5 Submodules 2694
89.2.6 Quotient Modules 2697
89.2.7 Structure of a Module 2698
89.2.8 Decomposability and Complements 2704
89.2.9 Lattice of Submodules 2706
89.2.10 Homomorphisms 2710

89.3 Modules over a General Algebra 2716
89.3.1 Introduction 2716
89.3.2 Construction of Algebra Modules 2716
89.3.3 The Action of an Algebra Element 2717
89.3.4 Related Structures of an Algebra Module 2717
89.3.5 Properties of an Algebra Module 2718
89.3.6 Creation of Algebra Modules from other Algebra Modules 2718

90 K[G]-MODULES AND GROUP REPRESENTATIONS 2721

90.1 Introduction 2723

90.2 Construction of K[G]-Modules 2723
90.2.1 General K[G]-Modules 2723
90.2.2 Natural K[G]-Modules 2725
90.2.3 Action on an Elementary Abelian Section 2726
90.2.4 Permutation Modules 2727
90.2.5 Action on a Polynomial Ring 2729

90.3 The Representation Afforded by a K[G]-module 2730

90.4 Standard Constructions 2732
90.4.1 Changing the Coefficient Ring 2732
90.4.2 Writing a Module over a Smaller Field 2733
90.4.3 Direct Sum 2737
90.4.4 Tensor Products of K[G]-Modules 2737
90.4.5 Induction and Restriction 2738
90.4.6 The Fixed-point Space of a Module 2739
90.4.7 Changing Basis 2739

90.5 The Construction of all Irreducible Modules 2740
90.5.1 Generic Functions for Finding Irreducible Modules 2740
90.5.2 The Burnside Algorithm 2743
90.5.3 The Schur Algorithm for Soluble Groups 2744
90.5.4 The Rational Algorithm 2747

90.6 Extensions of Modules 2750

90.7 The Construction of Projective Indecomposable Modules 2751

xii VOLUME 7: CONTENTS

91 CHARACTERS OF FINITE GROUPS 2757

91.1 Creation Functions 2759
91.1.1 Structure Creation 2759
91.1.2 Element Creation 2759
91.1.3 The Table of Irreducible Characters 2760
91.2 Character Ring Operations 2764
91.2.1 Related Structures 2764
91.3 Element Operations 2765
91.3.1 Arithmetic 2765
91.3.2 Predicates and Booleans 2765
91.3.3 Accessing Class Functions 2766
91.3.4 Conjugation of Class Functions 2767
91.3.5 Functions Returning a Scalar 2767
91.3.6 The Schur Index 2768
91.3.7 Attribute 2771
91.3.8 Induction, Restriction and Lifting 2771
91.3.9 Symmetrization 2772
91.3.10 Permutation Character 2773
91.3.11 Composition and Decomposition 2773
91.3.12 Finding Irreducibles 2773
91.3.13 Brauer Characters 2776
91.4 Bibliography 2778

92 REPRESENTATIONS OF SYMMETRIC GROUPS 2779

92.1 Introduction 2781
92.2 Representations of the Symmetric Group 2781
92.2.1 Integral Representations 2781
92.2.2 The Seminormal and Orthogonal Representations 2782
92.3 Characters of the Symmetric Group 2783
92.3.1 Single Values 2783
92.3.2 Irreducible Characters 2783
92.3.3 Character Table 2783
92.4 Representations of the Alternating Group 2783
92.5 Characters of the Alternating Group 2784
92.5.1 Single Values 2784
92.5.2 Irreducible Characters 2784
92.5.3 Character Table 2784
92.6 Bibliography 2785

93 MOD P GALOIS REPRESENTATIONS 2787

93.1 Introduction 2789
93.1.1 Motivation 2789
93.1.2 Definitions 2789
93.1.3 Classification of ϕ-modules 2790
93.1.4 Connection with Galois Representations 2790
93.2 ϕ-modules and Galois Representations in Magma 2790
93.2.1 ϕ-modules 2791
93.2.2 Semisimple Galois Representations 2792
93.3 Examples 2793

PART XI
ALGEBRAS

79 ALGEBRAS 2419

80 STRUCTURE CONSTANT ALGEBRAS 2431

81 ASSOCIATIVE ALGEBRAS 2441

82 FINITELY PRESENTED ALGEBRAS 2467

83 MATRIX ALGEBRAS 2505

84 GROUP ALGEBRAS 2545

85 BASIC ALGEBRAS 2559

86 QUATERNION ALGEBRAS 2619

87 ALGEBRAS WITH INVOLUTION 2663

88 CLIFFORD ALGEBRAS 2679

79 ALGEBRAS
79.1 Introduction 2421

79.1.1 The Categories of Algebras 2421

79.2 Construction of General
Algebras and their Elements . 2421

79.2.1 Construction of a General Algebra . 2422

Algebra< > 2422
AssociativeAlgebra< > 2422
QuaternionAlgebra< > 2422
LieAlgebra< > 2422
LieAlgebra(A) 2422
GroupAlgebra(R, G) 2422
MatrixAlgebra(R, n) 2422

79.2.2 Construction of an Element of a Gen-
eral Algebra 2423

Zero(A) 2423
! 2423
One(A) 2423
! 2423
Random(A) 2423

79.3 Construction of Subalgebras,
Ideals and Quotient Algebras . 2423

79.3.1 Subalgebras and Ideals 2423

sub< > 2423
lideal< > 2423
rideal< > 2424
ideal< > 2424

79.3.2 Quotient Algebras 2424

quo< > 2424
/ 2424

79.4 Operations on Algebras and Sub-
algebras 2424

79.4.1 Invariants of an Algebra 2424

CoefficientRing(A) 2424
BaseRing(A) 2424
Dimension(A) 2424
2424

79.4.2 Changing Rings 2425

ChangeRing(A, S) 2425
ChangeRing(A, S, f) 2425

79.4.3 Bases 2425

BasisElement(A, i) 2425
. 2425
Basis(A) 2425
IsIndependent(Q) 2425
ExtendBasis(S, A) 2425
ExtendBasis(Q, A) 2425

79.4.4 Decomposition of an Algebra . . . 2426

CompositionSeries(A) 2426
CompositionFactors(A) 2426
MinimalLeftIdeals(A : -) 2426
MinimalRightIdeals(A : -) 2426
MinimalIdeals(A : -) 2426
MaximalLeftIdeals(A : -) 2426
MaximalRightIdeals(A : -) 2426
MaximalIdeals(A : -) 2426
JacobsonRadical(A) 2426
IsSemisimple(A) 2427
IsSimple(A) 2427

79.4.5 Operations on Subalgebras 2428

IsZero(A) 2428
eq 2428
ne 2428
subset 2428
notsubset 2428
meet 2428
* 2428
^ 2428
Morphism(A, B) 2428

79.5 Operations on Elements of an Al-
gebra 2429

79.5.1 Operations on Elements 2429

+ 2429
- 2429
- 2429
* 2429
* 2429
* 2429
/ 2429
^ 2429
MinimalPolynomial(a) 2429
Parent(a) 2429

79.5.2 Comparisons and Membership . . 2430

eq 2430
ne 2430
in 2430
notin 2430

79.5.3 Predicates on Elements 2430

IsZero(a) 2430
IsOne(a) 2430
IsMinusOne(a) 2430
IsUnit(a) 2430
IsRegular(a) 2430
IsZeroDivisor(a) 2430
IsIdempotent(a) 2430
IsNilpotent(a) 2430

Chapter 79

ALGEBRAS

79.1 Introduction

Algebras are viewed as free modules over a ring R with an additional multiplication. There
are no a priori conditions imposed on the ring except that it must be unital, but some
functions may require that an echelonization algorithm is available for modules over R and
sometimes it is also required that R is a field. For example, quotients of algebras can only
be constructed over fields, since otherwise the quotient module is not necessarily a free
module over R.

The most general way to define an algebra is by structure constants, but for special
types of algebras Magma uses more efficient representations.

79.1.1 The Categories of Algebras
At present, Magma contains seven main categories of algebras:

(1)General algebras represented by structure constants: category AlgGen;

(2)Associative algebras represented by structure constants: category AlgAss;

(3)Quaternion algebras as special types of associative algebras; category AlgQuat;

(4)Lie algebras represented by structure constants: category AlgLie;

(5)Group algebras: category AlgGrp with a special type AlgGrpSub for subalgebras of
group algebras;

(6)Matrix algebras: category AlgMat;

(7)Finitely presented algebras: category AlgFP.

The hierarchy of these categories is such that AlgGen is on the top level and AlgAss and
AlgLie are on the next level inheriting the functions available for AlgGen. The categories
AlgQuat, AlgGrp and AlgMat are on a third level inheriting the functions available for
AlgAss. Finitely presented algebras are independent of the other categories.

79.2 Construction of General Algebras and their Elements

2422 ALGEBRAS Part XII

79.2.1 Construction of a General Algebra
The construction of an algebra depends on its category. The chapters on the individual
algebra categories describe this in detail. Here only an overview is given.

Algebra< R, n | Q >

Let R be ring, n an integer and Q a sequence of n3 elements of R. This function
creates an algebra A of dimension n over R with basis e1, . . . , en such that Q contains
the structure constants of A, i.e. ei∗ej =

∑
ak

ijek, where ak
ij is the element in position

(i− 1) ∗ n2 + (j − 1) ∗ n+ k of Q.

AssociativeAlgebra< R, n | Q >

Check BoolElt Default : true

This function creates the associative structure constant algebra A as returned by
Algebra< R, n | Q >. By default, the algebra is checked on associativity, but this
can be avoided by setting Check := false. The returned algebra is of type AlgAss.

QuaternionAlgebra< K | a, b >

This function creates the quaternion algebra A over the field K on generators x and
y with relations x2 = a, y2 = b, and xy = −yx.

LieAlgebra< R, n | Q >

Check BoolElt Default : true

This function creates the Lie structure constant algebra A as returned by Algebra<
R, n | Q >. By default, the algebra is checked to be a Lie algebra, but this can be
avoided by setting Check := false. The returned algebra is of type AlgLie.

LieAlgebra(A)

Given an associative algebra A, create the Lie algebra generated by the elements in
L using the induced Lie product (x, y) → x ∗ y − y ∗ x.

GroupAlgebra(R, G)

Given a ring R and a group G construct the group algebra R[G] of dimension |G|
over R.

MatrixAlgebra(R, n)

Given a positive integer n and a ring R, create the full matrix algebra Mn(R) of
dimension n2 over R.

Ch. 79 ALGEBRAS 2423

79.2.2 Construction of an Element of a General Algebra
The construction of a generic element of an algebra varies for the different types of algebras
and is therefore explained in the corresponding chapters.

Zero(A)

A ! 0

Create the zero element of the algebra A.

One(A)

A ! 1

If it exists, create the identity element of the algebra A; otherwise an error occurs.

Random(A)

Given an algebra A defined over a finite ring, return a random element.

79.3 Construction of Subalgebras, Ideals and Quotient Algebras

79.3.1 Subalgebras and Ideals
If the coefficient ring R of an algebra A is a Euclidean domain then one may construct
submodules and ideals of A in Magma.

sub< A | L >

Create the subalgebra S of the algebra A that is generated by the elements defined
by L, where L is a list of one or more items of the following types:
(a)An element of A;
(b)A set or sequence of elements of A;
(c) A subalgebra or ideal of A;
(d)A set or sequence of subalgebras or ideals of A.
The constructor returns the subalgebra as an algebra of the same type as A. An
exception are group algebras, where the subalgebra is either of type AlgAss or of the
special type AlgGrpSub. As well as the subalgebra S itself, the constructor returns
the inclusion homomorphism f : S → A.

lideal< A | L >

Create the left ideal I of the algebra A generated by the elements defined by L,
where L is a list as for the sub constructor above.

The constructor returns the left ideal as an algebra of the same type as A with
the same exception for group algebras as for the sub constructor. As well as the left
ideal I itself, the constructor returns the inclusion homomorphism f : I → A.

2424 ALGEBRAS Part XII

rideal< A | L >

Create the right ideal I of the algebra A generated by the elements defined by L,
where L is a list as for the sub constructor above.

The constructor returns the right ideal as an algebra of the same type as A with
the same exception for group algebras as for the sub constructor. As well as the
right ideal I itself, the constructor returns the inclusion homomorphism f : I → A.

ideal< A | L >

Create the (two-sided) ideal I of the algebra A generated by the elements defined
by L, where L is a list as for the sub constructor above.

The constructor returns the right ideal as an algebra of the same type as A with
the same exception for group algebras as for the sub constructor. As well as the
ideal I itself, the constructor returns the inclusion homomorphism f : I → A.

79.3.2 Quotient Algebras
If the coefficient ring R of an algebra A is a field, then quotient algebras of A may also be
constructed.

quo< A | L >

Create the quotient algebra Q = A/I, where I is the two-sided ideal of A generated
by the elements of A specified by the list L, which should satisfy the same conditions
as for the sub constructor above.

The constructor returns the quotient as a structure constant algebra with degree
equal to its dimension. If A is known to be associative, then Q is of type AlgAss,
otherwise Q is of type AlgGen. As well as the quotient Q itself, the constructor
returns the natural homomorphism f : A→ Q.

A / S

The quotient of the algebra A by the (two-sided) ideal closure of its subalgebra S.

79.4 Operations on Algebras and Subalgebras

79.4.1 Invariants of an Algebra

CoefficientRing(A)

BaseRing(A)

The coefficient ring (or base ring) over which the algebra A is defined.

Dimension(A)

The dimension of the algebra A.

#A

The cardinality of the algebra A if both R and the dimension of A are finite. Note
that this cannot be computed if the dimension of A is too large.

Ch. 79 ALGEBRAS 2425

79.4.2 Changing Rings

ChangeRing(A, S)

Given an algebra A with base ring R, together with a ring S, construct the algebra
B with base ring S obtained by coercing the coefficients of elements of A into S,
together with the homomorphism from A to B.

This function can not be applied if A is of type AlgGrpSub, as the parent structure
of elements of A is the full group algebra of which A is a subalgebra.

ChangeRing(A, S, f)

Given an algebra A with base ring R, together with a ring S and a map f : R→ S,
construct the algebra B with base ring S obtained by mapping the coefficients of
elements of A into S via f , together with the homomorphism from A to B.

As above, this function can not be applied if A is of type AlgGrpSub.

79.4.3 Bases
In general, every algebra comes with a basis, corresponding to its underlying module
structure. The only exception for that are group algebras in the "Terms" representation,
where the dimension of the algebra may be too large to create vectors of that degree.

BasisElement(A, i)

A . i

The i-th basis element of the algebra A.

Basis(A)

The basis of the algebra A, as a sequence of elements of A.
Note that if A is of type AlgGrpSub the returned elements will be elements of

the full group algebra of which A is a subalgebra.

IsIndependent(Q)

Given a sequence Q of elements of the R-algebra A, this functions returns true if
these elements are linearly independent over R; otherwise false.

ExtendBasis(S, A)

ExtendBasis(Q, A)

Given an algebra A and either a subalgebra S of dimension m of A or a sequence
Q of m linearly independent elements of A, return a sequence containing a basis of
A such that the first m elements are the basis of S resp. the elements in Q.

2426 ALGEBRAS Part XII

79.4.4 Decomposition of an Algebra
An algebra A can be regarded as a (left- or right-) module for itself. If A is defined over a
finite field, the machinery to decompose modules over finite fields can be used to investigate
the structure of the algebra A.

CompositionSeries(A)

Compute a composition series for the algebra A. The function has three return
values:
(a) a sequence containing the composition series as an ascending chain of subalgebras

such that the successive quotients are irreducible A-modules;
(b)a sequence containing the composition factors as structure constant algebras;
(c) a transformation matrix to a basis compatible with the composition series, that

is, the first basis elements form a basis of the first term of the composition series,
the next extend these to a basis for the second term etc.

CompositionFactors(A)

Compute the composition factors of a composition series for the algebra A. This
function returns the same as the second return value of CompositionSeries above,
but will often be very much quicker.

MinimalLeftIdeals(A : parameters)

MinimalRightIdeals(A : parameters)

MinimalIdeals(A : parameters)

Limit RngIntElt Default : ∞
Return the minimal left/right/two-sided ideals of A (in non-decreasing size). If
Limit is set to n, at most n ideals are calculated and the second return value
indicates whether all of the ideals were computed.

MaximalLeftIdeals(A : parameters)

MaximalRightIdeals(A : parameters)

MaximalIdeals(A : parameters)

Limit RngIntElt Default : ∞
Return the maximal left/right/two-sided ideals of A (in non-decreasing size). If
Limit is set to n, at most n ideals are calculated and the second return value
indicates whether all of the ideals were computed.

JacobsonRadical(A)

Construct the Jacobson (or nilpotent) radical of A, that is, the intersection of the
maximal ideals of A (which is equal to the intersection of the maximal left or right
ideals).

Ch. 79 ALGEBRAS 2427

IsSemisimple(A)

Return true if the Jacobson radical of A is trivial; otherwise false.

IsSimple(A)

Return true if A has no non-trivial composition factor; otherwise false.

Example H79E1

We create a division algebra of dimension 4 over the rational field.

> Q := MatrixAlgebra< Rationals(), 4 |

> [0,1,0,0, -1,0,0,0, 0,0,0,-1, 0,0,1,0],

> [0,0,1,0, 0,0,0,1, -1,0,0,0, 0,-1,0,0]>;

> i := Q.1;

> j := Q.2;

> k := i*j;

> Dimension(Q);

4

> MinimalPolynomial((1+i+j+k)/2);

$.1^2 - $.1 + 1

Hence, the element (1+i+j+k)/2 is integral. In fact, together with 1, i and j it forms a Z-basis
of a maximal order in Q. We create this maximal order as a structure constant algebra over the
integers.

> a := [Q!1, i, j, (1+i+j+k)/2];

> T := MatrixAlgebra(Rationals(),4) ! &cat[Coordinates(Q,a[i]) : i in [1..4]];

> V := RSpace(Rationals(), 4);

> C := [V ! Coordinates(Q, a[i]*a[j]) * T^-1 : j in [1..4], i in [1..4]];

> A := ChangeRing(Algebra< V | C >, Integers());

> IsAssociative(A);

true

> AA := AssociativeAlgebra(A);

> AA;

Associative Algebra of dimension 4 with base ring Integer Ring

> MinimalPolynomial(AA.4);

$.1^2 - $.1 + 1

The so constructed maximal order is ramified at 2 and ∞, hence it should be simple after reducing
at odd primes.

> for p in [i : i in [1..100] | IsPrime(i)] do

> if not IsSimple(ChangeRing(AA, GF(p))) then

> print p;

> end if;

> end for;

2

> CS, CF, T := CompositionSeries(ChangeRing(AA, GF(2)));

> T;

[1 0 1 0]

2428 ALGEBRAS Part XII

[0 1 1 0]

[0 0 1 0]

[0 0 0 1]

A glance at the preimages of the basis of the irreducible submodule shows the ramification of AA
at the prime 2.

> MinimalPolynomial(AA.1 + AA.3);

$.1^2 - 2*$.1 + 2

> MinimalPolynomial(AA.2 + AA.3);

$.1^2 + 2

79.4.5 Operations on Subalgebras

IsZero(A)

Returns true if the algebra A is trivial; otherwise false.

A eq B

Returns true if the algebras A and B (having a common superalgebra) are equal;
otherwise false.

A ne B

Returns true if the algebras A and B are not equal; otherwise false.

A subset B

Returns true if A is a subalgebra of the algebra B; otherwise false.

A notsubset B

Returns true if A is not a subalgebra of the algebra B; otherwise false.

A meet B

The intersection of the algebras A and B, which must have a common superalgebra.

A * B

The algebra product A ∗ B of the algebras A and B, which must have a common
superalgebra.

A ^ n

The (left-normed) n-th power of the algebra A, i.e. ((. . . (A ∗A) ∗ . . .) ∗A).

Morphism(A, B)

The map giving the morphism from A to B. Either A is a subalgebra of B, in which
case the embedding of A into B is returned, or B is a quotient algebra of A, in
which case the natural epimorphism from A onto B is returned.

Ch. 79 ALGEBRAS 2429

79.5 Operations on Elements of an Algebra

79.5.1 Operations on Elements

a + b

The sum of the elements a and b of an algebra A.

-a

The negation of the algebra element a.

a - b

The difference of the elements a and b of an algebra A.

a * b

The product of the elements a and b of an algebra A.

a * r

r * a

The product of the element a of the algebra A and the ring element r ∈ R, where
R is the coefficient ring of A.

a / r

The product of the element a of the R-algebra A and the ring element 1/r ∈ R,
where R is a field.

a ^ n

If n is positive, form the (left-normed) n-th power ((. . . ((a ∗ a) ∗ a) . . .) ∗ a) of a; if
the parent algebra A of a has an identity and n is zero, return the identity; if n < 0
and a has an inverse a−1 in A, form the n-th power of a−1.

MinimalPolynomial(a)

If R is a field or the integer ring, return the minimal polynomial of the algebra
element a.

Parent(a)

For an element a in an algebra A return A.

2430 ALGEBRAS Part XII

79.5.2 Comparisons and Membership

a eq b

Returns true if the elements a and b of an algebra A are equal; otherwise false.

a ne b

Returns true if the elements a and b of an algebra A are not equal; otherwise false.

a in A

Returns true if a is in the algebra A; otherwise false.

a notin A

Returns true if a is not in the algebra A; otherwise false.

79.5.3 Predicates on Elements

IsZero(a)

Returns true if the algebra element a is zero; otherwise false.

IsOne(a)

Returns true if the algebra element a is the identity; otherwise false.

IsMinusOne(a)

Returns true if the algebra element a is the negative of the identity element; oth-
erwise false.

IsUnit(a)

Returns true if the element a is a unit, plus the inverse; otherwise false.

IsRegular(a)

Returns true if the element a is regular, that is, is not a zero divisor; otherwise
false.

IsZeroDivisor(a)

Returns true if the algebra element a is a divisor of zero; otherwise false.

IsIdempotent(a)

Returns true if the element a is an idempotent, i.e. if a2 = a; otherwise false.

IsNilpotent(a)

Returns true if the element a is nilpotent, i.e. if an = 0 for some n ≥ 0; otherwise
false. If true, the minimal n such that an = 0 is returned as a second value.

80 STRUCTURE CONSTANT ALGEBRAS
80.1 Introduction 2433

80.2 Construction of Structure Con-
stant Algebras and Elements . 2433

80.2.1 Construction of a Structure Constant
Algebra 2433

Algebra< > 2433
Algebra< > 2433
Algebra< > 2434
ChangeBasis(A, B) 2434
ChangeBasis(A, B) 2434
ChangeBasis(A, B) 2434

80.2.2 Construction of Elements of a Struc-
ture Constant Algebra 2434

elt< > 2434
! 2434
BasisProduct(A, i, j) 2434
BasisProducts(A) 2435

80.3 Operations on Structure
Constant Algebras and Elements2435

80.3.1 Operations on Structure Constant
Algebras 2435

IsCommutative(A) 2435
IsAssociative(A) 2435
IsLie(A) 2435
DirectSum(A, B) 2435

80.3.2 Indexing Elements 2436

a[i] 2436
a[i] := r 2436

80.3.3 The Module Structure of a Structure
Constant Algebra 2437

Module(A) 2437
Degree(A) 2437
Degree(a) 2437
ElementToSequence(a) 2437
Eltseq(a) 2437
Coordinates(S, a) 2437
InnerProduct(a, b) 2437
Support(a) 2437

80.3.4 Homomorphisms 2437

hom< > 2437

Chapter 80

STRUCTURE CONSTANT ALGEBRAS

80.1 Introduction
A structure constant algebra A of dimension n over a ring R can be defined in Magma by
giving the n3 structure constants ak

ij ∈ R(1 ≤ i, j, k ≤ n) such that, if e1, e2, . . . , en is the
basis of A, ei ∗ ej =

∑n
k=1 a

k
ij ∗ ek. Structure constant algebras may be defined over any

unital ring R. However, many operations require that R be a Euclidean domain or even a
field.

80.2 Construction of Structure Constant Algebras and Elements

80.2.1 Construction of a Structure Constant Algebra
There are three ways in Magma to specify the structure constants for a structure constant
algebra A of dimension n. The first is to give n3 ring elements, the second to identify A
with the module M = Rn and give the products ei ∗ ej as elements of M and the third to
specify only the non-zero structure constants.

Algebra< R, n | Q : parameters >

Algebra< M | Q : parameters >

Rep MonStgElt Default : “Dense”
This function creates the structure constant algebra A over the free moduleM = Rn,
with standard basis e1, e2, . . . , en, and with the structure constants ak

ij being given
by the sequence Q. The sequence Q can be of any of the following three forms. Note
that in all cases the actual ordering of the structure constants is the same: it is only
their division that varies.
(i) A sequence of n sequences of n sequences of length n. The j-th element of the

i-th sequence is the sequence [a1
ij , . . . , a

n
ij], or the element (a1

ij , . . . , a
n
ij) of M ,

giving the coefficients of the product ei ∗ ej .
(ii)A sequence of n2 sequences of length n, or n2 elements ofM . Here the coefficients

of ei ∗ ej are given by position (i− 1) ∗ n+ j of Q.
(iii)A sequence of n3 elements of the ringR. Here the sequence elements are the struc-

ture constants themselves, with the ordering a1
11, a

2
11, . . . , a

n
11, a

1
12, a

2
12, . . . , a

n
nn.

So ak
ij lies in position (i− 1) ∗ n2 + (j − 1) ∗ n+ k of Q.

The optional parameter Rep can be used to select the internal representation of
the structure constants. The possible values for Rep are "Dense", "Sparse" and
"Partial", with the default being "Dense". In the dense format, the n3 structure

2434 ALGEBRAS Part XII

constants are stored as n2 vectors of length n, similarly to (ii) above. This is the best
representation if most of the structure constants are non-zero. The sparse format,
intended for use when most structure constants are zero, stores the positions and
values of the non-zero structure constants. The partial format stores the vectors,
but records for efficiency the positions of the non-zero structure constants.

Algebra< R, n | T : parameters >

Rep MonStgElt Default : “Sparse”

This function creates the structure constant algebra A with standard basis
e1, e2, . . . , en over R. The sequence T contains quadruples < i, j, k, ak

ij > giving
the non-zero structure constants. All other structure constants are defined to be 0.

As above, the optional parameter Rep can be used to select the internal repre-
sentation of the structure constants.

ChangeBasis(A, B)

ChangeBasis(A, B)

ChangeBasis(A, B)

Rep MonStgElt Default : “Dense”

Create a new structure constant algebra A′, isomorphic to A, by recomputing the
structure constants with respect to the basis B. The basis B can be specified as
a set or sequence of elements of A, a set or sequence of vectors, or a matrix. The
second returned value is the isomorphism from A to A′.

As above, the optional parameter Rep can be used to select the internal repre-
sentation of the structure constants. Note that the default is dense representation,
regardless of the representation used by A.

80.2.2 Construction of Elements of a Structure Constant Algebra

elt< A | r1, r2, . . . , rn >

Given a structure constant algebra A of dimension n over a ring R, and ring elements
r1, r2, . . . , rn ∈ R construct the element r1 ∗ e1 + r2 ∗ e2 + . . .+ rn ∗ en of A.

A ! Q

Given a structure constant algebra A of dimension n and a sequence Q =
[r1, r2, . . . , rn] of elements of the base ring R of A, construct the element r1 ∗ e1 +
r2 ∗ e2 + . . .+ rn ∗ en of A.

BasisProduct(A, i, j)

Return the product of the i-th and j-th basis element of the algebra A.

Ch. 80 STRUCTURE CONSTANT ALGEBRAS 2435

BasisProducts(A)

Rep MonStgElt Default : “Dense”

Return the products of all basis elements of the algebra A.
The optional parameter Rep may be used to specify the format of the result. If

Rep is set to “Dense”, the products are returned as a sequence Q of n sequences of
n elements of A, where n is the dimension of A. The element Q[i][j] is the product
of the i-th and j-th basis elements.

If Rep is set to “Sparse”, the products are returned as a sequence Q contain-
ing quadruples (i, j, k, aijk) signifying that the product of the i-th and j-th basis
elements is

∑n
k=1 aijkbk, where bk is the k-th basis element and n = dim(A).

80.3 Operations on Structure Constant Algebras and Elements

80.3.1 Operations on Structure Constant Algebras

IsCommutative(A)

Returns true if the algebra A is commutative; otherwise false.

IsAssociative(A)

Returns true if the algebra A is associative; otherwise false.
Note that for a structure constant algebra of dimension n this requires up to n3

tests.

IsLie(A)

Returns true if the algebra A is a Lie algebra; otherwise false.
Note that for a structure constant algebra of dimension n this requires about

n3/3 tests of the Jacobi identity.

DirectSum(A, B)

Construct a structure constant algebra of dimension n+m where n and m are the
dimensions of the algebras A and B, respectively. The basis of the new algebra is
the concatenation of the bases of A and B and the products a ∗ b where a ∈ A and
b ∈ B are defined to be 0.

2436 ALGEBRAS Part XII

Example H80E1

We define a structure constant algebra which is a Jordan algebra.

> M := MatrixAlgebra(GF(3), 2);

> B := Basis(M);

> C := &cat[Coordinates(M,(B[i]*B[j]+B[j]*B[i])/2) : j in [1..#B], i in [1..#B]];

> A := Algebra< GF(3), #B | C >;

> #A;

81

> IsAssociative(A);

false

> IsLie(A);

false

> IsCommutative(A);

true

This is a good start, as one of the defining properties of Jordan algebras is that they are commu-
tative. The other property is that the identity (x2 ∗ y) ∗ x = x2 ∗ (y ∗ x) holds for all x, y ∈ A. We
check this on a random pair.

> x := Random(A); y := Random(A); print (x^2*y)*x - x^2*(y*x);

(0 0 0 0)

The algebra is small enough to check this identity on all elements.

> forall{<x, y>: x, y in A | (x^2*y)*x eq x^2*(y*x)};

true

So the algebra is in fact a Jordan algebra (which was clear by construction). We finally have a
look at the structure constants.

> BasisProducts(A);

[

[(1 0 0 0), (0 2 0 0), (0 0 2 0), (0 0 0 0)],

[(0 2 0 0), (0 0 0 0), (2 0 0 2), (0 2 0 0)],

[(0 0 2 0), (2 0 0 2), (0 0 0 0), (0 0 2 0)],

[(0 0 0 0), (0 2 0 0), (0 0 2 0), (0 0 0 1)]

]

80.3.2 Indexing Elements

a[i]

If a is an element of a structure constant algebra A of dimension n and 1 ≤ i ≤ n
is a positive integer, then the i-th component of the element a is returned (as an
element of the base ring R of A).

a[i] := r

Given an element a belonging to a structure constant algebra of dimension n over
R, a positive integer 1 ≤ i ≤ n and an element r ∈ R, the i-th component of the
element a is redefined to be r.

Ch. 80 STRUCTURE CONSTANT ALGEBRAS 2437

80.3.3 The Module Structure of a Structure Constant Algebra

Module(A)

The module Rn underlying the structure constant algebra A.

Degree(A)

The degree (= dimension) of the module underlying the algebra A.

Degree(a)

Given an element belonging to the structure constant algebra A of dimension n,
return n.

ElementToSequence(a)

Eltseq(a)

The sequence of coefficients of the structure constant algebra element a.

Coordinates(S, a)

Let a be an element of a structure constant algebra A and let S be a subalgebra of
A containing a. This function returns the coefficients of a with respect to the basis
of S.

InnerProduct(a, b)

The (Euclidean) inner product of the coefficient vectors of a and b, where a and b
are elements of some structure constant algebra A.

Support(a)

The support of the structure constant algebra element a; i.e. the set of indices of
the non-zero components of a.

80.3.4 Homomorphisms

hom< A -> B | Q >

Given a structure constant algebra A of dimension n over R and either a structure
constant algebra B over R or a module B over R, construct the homomorphism
from A to B specified by Q. The sequence Q may be of the form [b1, . . . , bn],
bi ∈ B, indicating that the i-th basis element of A is mapped to b1 or of the form
[< a1, b1 >, . . . , < an, bn >] indicating that ai maps to bi, where the ai(1 ≤ i ≤ n)
must form a basis of A.

Note that this is in general only a module homomorphism, it is not checked
whether it is an algebra homomorphism.

2438 ALGEBRAS Part XII

Example H80E2

We construct the real Cayley algebra, which is a non-associative algebra of dimension 8, containing
7 quaternion algebras. If the basis elements are labelled 1, . . . , 8 and 1 corresponds to the identity,
these quaternion algebras are spanned by {1, (n+1) mod 7+2, (n+2) mod 7+2, (n+4) mod 7+4},
where 0 ≤ n ≤ 6. We first define a function, which, given three indices i, j, k constructs a sequence
with the structure constants for the quaternion algebra spanned by 1, i, j, k in the quadruple
notation.

> quat := func<i,j,k | [<1,1,1, 1>, <i,i,1, -1>, <j,j,1, -1>, <k,k,1, -1>,

> <1,i,i, 1>, <i,1,i, 1>, <1,j,j, 1>, <j,1,j, 1>, <1,k,k, 1>, <k,1,k, 1>,

> <i,j,k, 1>, <j,i,k, -1>, <j,k,i, 1>, <k,j,i, -1>, <k,i,j, 1>, <i,k,j, -1>]>;

We now define the sequence of non-zero structure constants for the Cayley algebra using the
function quat. Some structure constants are defined more than once and we have to get rid of
these when defining the algebra.

> con := &cat[quat((n+1) mod 7 +2, (n+2) mod 7 +2, (n+4) mod 7 +2):n in [0..6]];

> C := Algebra< Rationals(), 8 | Setseq(Set(con)) >;

> C;

Algebra of dimension 8 with base ring Rational Field

> IsAssociative(C);

false

> IsAssociative(sub< C | C.1, C.2, C.3, C.5 >);

true

The integral elements in this algebra are those where either all coefficients are integral or exactly
4 coefficients lie in 1/2 + Z in positions i1, i2, i3, i4, such that i1, i2, i3, i4 are a basis of one of the
7 quaternion algebras or a complement of such a basis. These elements are called the integral
Cayley numbers and form a Z-algebra. The units in this algebra are the elements with either one
entry ±1 and the others 0 or with 4 entries ±1/2 and 4 entries 0, where the non-zero entries are
in the positions as described above. This gives 240 units and they form (after rescaling with

√
2)

the roots in the root lattice of type E8.

> a := (C.1 - C.2 + C.3 - C.5) / 2;

> MinimalPolynomial(a);

$.1^2 - $.1 + 1

> MinimalPolynomial(a^-1);

$.1^2 - $.1 + 1

> MinimalPolynomial(C.2+C.3);

$.1^2 + 2

> MinimalPolynomial((C.2+C.3)^-1);

$.1^2 + 1/2

Tensoring the integral Cayley algebra with a finite field gives a finite Cayley algebra. As the
Z-algebra generated by the chosen basis for C has index 24 in the full integral Cayley algebra,
we can get the finite Cayley algebras by applying the ChangeRing function for finite fields of odd
characteristic. The Cayley algebra over GF (q) has the simple group G2(q) as its automorphism
group. Since the identity has to be fixed, every automorphism is determined by its image on the
remaining 7 basis elements. Each of these has minimal polynomial x2 + 1, hence one obtains a

Ch. 80 STRUCTURE CONSTANT ALGEBRAS 2439

permutation representation of G2(q) on the elements with this minimal polynomial. As ±-pairs
have to be preserved, this number can be divided by 2.

> C3 := ChangeRing(C, GF(3));

> f := MinimalPolynomial(C3.2);

> f;

$.1^2 + 1

> #C3;

6561

> time Im := [c : c in C3 | MinimalPolynomial(c) eq f];

Time: 3.099

> #Im;

702

> C5 := ChangeRing(C, GF(5));

> f := MinimalPolynomial(C5.2);

> f;

$.1^2 + 1

> #C5;

390625

> time Im := [c : c in C5 | MinimalPolynomial(c) eq f];

Time: 238.620

> #Im;

15750

In the case of the Cayley algebra over GF (3) we obtain a permutation representation of degree
351, which is in fact the smallest possible degree (corresponding to the representation on the
cosets of the largest maximal subgroup U3(3) : 2). Over GF (5), the permutation representation
is of degree 7875, corresponding to the maximal subgroup L3(5) : 2, the smallest possible degree
being 3906.

81 ASSOCIATIVE ALGEBRAS
81.1 Introduction 2443

81.2 Construction of Associative Al-
gebras 2443

81.2.1 Construction of an Associative Struc-
ture Constant Algebra 2443

AssociativeAlgebra< > 2443
AssociativeAlgebra< > 2443
AssociativeAlgebra< > 2444
AssociativeAlgebra(A) 2444
ChangeBasis(A, B) 2444
ChangeBasis(A, B) 2444
ChangeBasis(A, B) 2444

81.2.2 Associative Structure Constant Alge-
bras from other Algebras 2444

Algebra(A) 2444
Algebra(F, E) 2445
AlgebraOverCenter(A) 2445

81.3 Operations on Algebras and their
Elements 2445

81.3.1 Operations on Algebras 2445

Centre(A) 2445
Centralizer(A, S) 2445
Centraliser(A, S) 2445
Idealizer(A, B: -) 2445
Idealiser(A, B: -) 2445
LieAlgebra(A) 2445
CommutatorModule(A, B) 2445
CommutatorIdeal(A, B) 2446
LeftAnnihilator(A, B) 2446
RightAnnihilator(A, B) 2446

81.3.2 Operations on Elements 2447

Centralizer(A, s) 2447
Centraliser(A, s) 2447
LieBracket(a, b) 2447
(a, b) 2447
IsScalar(a) 2447
RepresentationMatrix(a, M : -) 2448

81.3.3 Representations 2448

MatrixAlgebra(A) 2448
MatrixAlgebra(A, M : -) 2448
RegularRepresentation(A : -) 2448

81.3.4 Decomposition of an Algebra . . . 2448

JacobsonRadical(A) 2448
DirectSumDecomposition(A) 2449
IndecomposableSummands(A) 2449
CentralIdempotents(A) 2449

81.4 Orders 2450

81.4.1 Creation of Orders 2451

Order(R, S) 2451

Order(S) 2451
Order(S, I) 2451
Order(A, m, I) 2451
Order(A, pm) 2451
MaximalOrder(A) 2453

81.4.2 Attributes 2454

BaseRing(O) 2454
CoefficientRing(O) 2454
Algebra(O) 2454
Degree(O) 2454
Dimension(O) 2454
Discriminant(O) 2454
FactoredDiscriminant(O) 2454
MultiplicationTable(O) 2454
Module(O) 2454
TraceZeroSubspace(O) 2454

81.4.3 Bases of Orders 2455

Basis(O) 2455
PseudoBasis(O) 2455
PseudoMatrix(O) 2455
ZBasis(O) 2455
Generators(O) 2455

81.4.4 Predicates 2456

eq 2456
in 2456
notin 2456

81.4.5 Operations with Orders 2457

Adjoin(O, x) 2457
Adjoin(O, x, I) 2457
+ 2457
meet 2457
^ 2457

81.5 Elements of Orders 2458

81.5.1 Creation of Elements 2458

! 2458
Zero(O) 2458
! 2458
One(O) 2458
. 2458
! 2458
Random(O) 2458

81.5.2 Arithmetic of Elements 2458

+ 2458
- 2458
- 2458
* 2458
* 2458
* 2458
/ 2459
div 2459
^ 2459

2442 ALGEBRAS Part XII

81.5.3 Predicates on Elements 2459

eq 2459
ne 2459
IsZero(x) 2459
IsUnit(a) 2459
IsScalar(x) 2459

81.5.4 Other Operations with Elements . 2459

ElementToSequence(x) 2459
Eltseq(x) 2459
Norm(x) 2459
Trace(x) 2459
LeftRepresentationMatrix(e) 2459
RightRepresentationMatrix(e) 2459
RepresentationMatrix(a) 2460
CharacteristicPolynomial(x) 2460
MinimalPolynomial(x) 2460

81.6 Ideals of Orders 2460

81.6.1 Creation of Ideals 2460

lideal< > 2460
rideal< > 2460
ideal< > 2460
lideal< > 2460
rideal< > 2460
ideal< > 2460
* 2460
* 2460
RandomRightIdeal(O) 2460

81.6.2 Attributes of Ideals 2461

Algebra(I) 2461
Order(I) 2461
LeftOrder(I) 2461
RightOrder(I) 2461
Basis(I) 2461
Basis(I, R) 2461
BasisMatrix(I) 2461
BasisMatrix(I, R) 2461
PseudoBasis(I) 2461
PseudoBasis(I, R) 2461
PseudoMatrix(I) 2461

PseudoMatrix(I, R) 2461
ZBasis(I) 2461
Generators(I) 2461
Denominator(I) 2462

81.6.3 Arithmetic for Ideals 2462

+ 2462
* 2462
* 2462
* 2462
Colon(J, I) 2462
MultiplicatorRing(I) 2462

81.6.4 Predicates on Ideals 2462

IsLeftIdeal(I) 2462
IsRightIdeal(I) 2462
IsTwoSidedIdeal(I) 2462
eq 2462
subset 2462
in 2462
notin 2462

81.6.5 Other Operations on Ideals 2463

Norm(I) 2463

81.7 Quaternionic Orders 2465

MaximalOrder pMaximalOrder 2465
IsMaximal IspMaximal 2465
pMatrixRing 2465
Embed 2465
LeftIdealClasses RightIdealClasses 2465
TwoSidedIdealClasses 2465
TwoSidedIdealClassGroup 2465
OptimizedRepresentation 2465
OptimisedRepresentation 2465
Units MultiplicativeGroup UnitGroup 2465
Conjugate 2465
Enumerate Enumerate Enumerate 2465
ReducedBasis ReducedBasis 2465
IsIsomorphic IsLeftIsomorphic 2465
IsRightIsomorphic IsPrincipal 2465

81.8 Bibliography 2466

Chapter 81

ASSOCIATIVE ALGEBRAS

81.1 Introduction
Defining an algebra by structure constants gives a very general set-up, but many structural
concepts are restricted to associative algebras. Therefore, Magma provides a special type
for structure constant algebras which are known to be associative.

81.2 Construction of Associative Algebras

81.2.1 Construction of an Associative Structure Constant Algebra

The construction of an associative structure constant algebra is identical to that of a general
structure constant algebra, with the exception that an additional parameter is provided
which may be used to avoid checking that the algebra is associative.

AssociativeAlgebra< R, n | Q : parameters >

AssociativeAlgebra< M | Q : parameters >

Check BoolElt Default : true

Rep MonStgElt Default : “Dense”
This function creates the associative structure constant algebra A over the free
moduleM = Rn, with standard basis e1, e2, . . . , en, and with the structure constants
ak

ij being given by the sequence Q. The sequence Q can be of any of the following
three forms. Note that in all cases the actual ordering of the structure constants is
the same: it is only their division that varies.
(i) A sequence of n sequences of n sequences of length n. The j-th element of

the i-th sequence is the sequence [a1
ij , . . . , a

n
ij], or the element (a1

ij , . . . , a
n
ij) of

M , giving the coefficients of the product ei ∗ ej .
(ii) A sequence of n2 sequences of length n, or n2 elements of M . Here the

coefficients of ei ∗ ej are given by position (i− 1) ∗ n+ j of Q.
(iii) A sequence of n3 elements of the ring R. Here the sequence elements are the

structure constants themselves, a1
11, a

2
11, . . . , a

n
11, a

1
12, a

2
12, . . . , a

n
nn. So ak

ij lies
in position (i− 1) ∗ n2 + (j − 1) ∗ n+ k of Q.

By default the algebra is checked to be associative; this can be overruled by setting
the parameter Check to false.

The optional parameter Rep can be used to select the internal representation of
the structure constants. The possible values for Rep are "Dense", "Sparse" and
"Partial", with the default being "Dense". In the dense format, the n3 structure

2444 ALGEBRAS Part XII

constants are stored as n2 vectors of length n, similarly to (ii) above. This is the best
representation if most of the structure constants are non-zero. The sparse format,
intended for use when most structure constants are zero, stores the positions and
values of the non-zero structure constants. The partial format stores the vectors,
but records for efficiency the positions of the non-zero structure constants.

AssociativeAlgebra< R, n | T : parameters >

Check BoolElt Default : true

Rep MonStgElt Default : “Sparse”

This function creates the associative structure constant algebra A with standard
basis e1, e2, . . . , en over R. The sequence T contains quadruples < i, j, k, ak

ij >
giving the non-zero structure constants. All other structure constants are defined
to be 0.

The optional parameters are as above.

AssociativeAlgebra(A)

Given a structure constant algebra A of type AlgGen, construct an isomorphic asso-
ciative structure constant algebra of type AlgAss. If it is not known whether or not
A is associative, this will be checked and an error occurs if it is not. The elements
of the resulting algebra can be coerced into A and vice versa.

ChangeBasis(A, B)

ChangeBasis(A, B)

ChangeBasis(A, B)

Rep MonStgElt Default : “Dense”

Create a new associative structure constant algebra A′, isomorphic to A, by recom-
puting the structure constants with respect to the basis B. The basis B can be
specified as a set or sequence of elements of A, a set or sequence of vectors, or a
matrix. The second returned value is the isomorphism from A to A′.

As above, the optional parameter Rep can be used to select the internal repre-
sentation of the structure constants. Note that the default is dense representation,
regardless of the representation used by A.

81.2.2 Associative Structure Constant Algebras from other Algebras

Algebra(A)

If A is either a group algebra of type AlgGrp given in vector representation or a
matrix algebra of type AlgMat, construct the associative structure constant algebra
B isomorphic to A together with the isomorphism A→ B.

Ch. 81 ASSOCIATIVE ALGEBRAS 2445

Algebra(F, E)

Let E and F be either finite fields or algebraic number fields such that E is a subfield
of F . This function returns the associative algebra A of dimension [F : E] over E
which is isomorphic to F , together with the isomorphism from F to A such that the
(i− 1)-th power of the generator of F over E is mapped to the i-th basis vector of
A.

AlgebraOverCenter(A)

Given a simple algebra A of type AlgMat or AlgAss with center K, this function
returns a K-algebra B which is K-isomorphic to A as well as an isomorphism from
A to B.

81.3 Operations on Algebras and their Elements

81.3.1 Operations on Algebras

Centre(A)

The centre of the associative algebra A.

Centralizer(A, S)

Centraliser(A, S)

The centralizer of the subalgebra S of the associative algebra A, that is, the subal-
gebra of A commuting elementwise with S.

Idealizer(A, B: parameters)

Idealiser(A, B: parameters)

Side MonStgElt Default : “Both”
Given an associative algebra A and a subalgebra B of A, compute the idealizer of
B in A, that is, the largest subalgebra of A in which B is an ideal. By default the
two-sided idealizer, that is, the largest subalgebra in which B is a two-sided ideal,
is found; the left- or right-idealizer can be found by setting the parameter Side to
"Left" or "Right" respectively.

LieAlgebra(A)

For an associative structure constant algebra A, return the structure constant alge-
bra L with product given by the Lie bracket (a, b) 7→ a ∗ b− b ∗ a. As a second value
the map identifying the elements of A and L is returned.

CommutatorModule(A, B)

Let A and B be subalgebras of an associative algebra with underlying module M .
This function returns the submodule of M which is spanned by the elements [a, b] =
a ∗ b− b ∗ a, a ∈ A, b ∈ B.

2446 ALGEBRAS Part XII

CommutatorIdeal(A, B)

For two subalgebras A and B of an associative algebra, return the ideal generated
by all [a, b] = a ∗ b− b ∗ a, a ∈ A, b ∈ B.

LeftAnnihilator(A, B)

For two subalgebras A and B of an associative algebra, return the left annihilator of
B in A; that is, the subalgebra of A consisting of all elements a such that a ∗ b = 0
for all b ∈ B.

RightAnnihilator(A, B)

For two subalgebras A and B of an associative algebra, return the right annihilator
of B in A; that is, the subalgebra of A consisting of all elements a such that b∗a = 0
for all b ∈ B.

Example H81E1

We create the Lie algebra sl3(Q) as a structure constant algebra. First, we construct gl3(Q) from
the full matrix algebra M3(Q) and get sl3(Q) as the derived algebra of gl3(Q).

> gl3 := LieAlgebra(Algebra(MatrixRing(Rationals(), 3)));

> sl3 := gl3 * gl3;

> sl3;

Lie Algebra of dimension 8 with base ring Rational Field

Let’s see how the first basis element acts.

> for i in [1..8] do

> print sl3.i * sl3.1;

> end for;

(0 0 0 0 0 0 0 0)

(0 -1 0 0 0 0 0 0)

(0 0 -2 0 0 0 0 0)

(0 0 0 1 0 0 0 0)

(0 0 0 0 0 0 0 0)

(0 0 0 0 0 -1 0 0)

(0 0 0 0 0 0 2 0)

(0 0 0 0 0 0 0 1)

Since it acts diagonally, this element lies in a Cartan subalgebra. The next candidate seems to be
the fifth basis element.

> for i in [1..8] do

> print sl3.i * sl3.5;

> end for;

(0 0 0 0 0 0 0 0)

(0 1 0 0 0 0 0 0)

(0 0 -1 0 0 0 0 0)

(0 0 0 -1 0 0 0 0)

(0 0 0 0 0 0 0 0)

Ch. 81 ASSOCIATIVE ALGEBRAS 2447

(0 0 0 0 0 -2 0 0)

(0 0 0 0 0 0 1 0)

(0 0 0 0 0 0 0 2)

This also acts diagonally and commutes with sl3.1, hence we have luckily found a full Cartan
algebra in sl3(Q). We can now easily work out the root system. Obviously the root spaces
correspond to the pairs (sl3.2, sl3.4), (sl3.3, sl3.7) and (sl3.6, sl3.8). The product of
a positive root with its negative should lie in the Cartan algebra.

> sl3.2*sl3.4;

(1 0 0 0 -1 0 0 0)

> sl3.3*sl3.7;

(1 0 0 0 0 0 0 0)

> sl3.6*sl3.8;

(0 0 0 0 1 0 0 0)

Clearly some choices have to be made and we fix sl3.3 as the element eα corresponding to the
first fundamental root α, sl3.7 as e−α and get sl3.1 as hα = eα∗e−α. For the other fundamental
root β we have to find an element eβ such that eα ∗ eβ is non-zero.

> sl3.3*sl3.2;

(0 0 0 0 0 0 0 0)

> sl3.3*sl3.4;

(0 0 0 0 0 -1 0 0)

> sl3.3*sl3.6;

(0 0 0 0 0 0 0 0)

> sl3.3*sl3.8;

(0 1 0 0 0 0 0 0)

We choose sl3.8 as eβ , sl3.6 as e−β and consequently -sl3.5 as hβ . This now determines eα+β

to be sl3.2 and e−α−β to be sl3.4.

81.3.2 Operations on Elements

Centralizer(A, s)

Centraliser(A, s)

The centralizer of the element s of the associative algebra A, that is, the subalgebra
of A commuting with s.

LieBracket(a, b)

(a, b)

The Lie bracket a ∗ b− b ∗ a of a and b, where a and b are elements of an associative
algebra A.

IsScalar(a)

Returns true (and a coerced to F) iff a belongs to the base ring F of its parent
algebra.

2448 ALGEBRAS Part XII

RepresentationMatrix(a, M : parameters)

Side MonStgElt Default : “Right”

Returns the matrix representation of Side-multiplication by the element a in the
associative algebra A (which must have 1) on the A-module M .

81.3.3 Representations

MatrixAlgebra(A)

For an associative algebra A of dimension n return an isomorphic matrix algebra.
If A contains the identity-element, the matrix algebra will be of degree n, otherwise
it will be of degree n+ 1.

MatrixAlgebra(A, M : parameters)

Side MonStgElt Default : “Right”

Given a finite-dimensional R-algebra A and a Side A-module M (both free as R-
modules), return the matrix algebra of A-endomorphisms of M , and the R-algebra
homomorphism from A into this endomorphism ring.

RegularRepresentation(A : parameters)

Side MonStgElt Default : “Right”

For an associative algebra A of dimension n over R return its regular representation.
If B = (e1, e2, . . . , en) is the stored basis for A, an element a ∈ A is mapped to the
matrix in Rn×n which has as its i-th row the coordinates of ei ∗ a with respect to
B. As a second map, the homomorphism of A onto the regular representation is
returned.

By default, the right-regular representation is computed. This can be changed
to the left-regular representation (in which the i-th row of the image of a contains
the coordinates of a ∗ ei) by setting the parameter Side to "Left".

81.3.4 Decomposition of an Algebra
This section describes a few functions that can be used to obtain information on the
structure of a finite-dimensional associative algebra.

JacobsonRadical(A)

Al MonStgElt Default : “Default”

This returns the largest nilpotent ideal of A. This function works for finite-
dimensional associative algebras defined over a field of characteristic 0, or over a
finite field.

The algorithm used by default is taken from [CIW97]. The meataxe algorithm
can be used by setting Al := "Meataxe".

Ch. 81 ASSOCIATIVE ALGEBRAS 2449

Example H81E2

We compute the Jacobson radical of the group algebra over the field of three elements of a 3-group.
In that case it is equal to the augmentation ideal.

> G:= SmallGroup(27, 5);

> A:= GroupAlgebra(GF(3), G);

> JacobsonRadical(A);

Ideal of dimension 26 of the group algebra A

DirectSumDecomposition(A)

IndecomposableSummands(A)

Given an associative algebra A, return the direct sum decomposition of L as a se-
quence of ideals of L whose sum is L and each of which cannot be further decomposed
into a direct sum of ideals. The second sequence return contains the corresponding
primitive central idempotents.

For a description of the algorithm we refer to [EG96].

CentralIdempotents(A)

Let Z be the centre of the associative algebra A, and let J(Z) denote its Jacobson
radical. This function returns a sequence of primitive orthogonal idempotents in Z
such that their images in Z/J(Z) span J(Z). Each such idempotent generates a
two-sided ideal in A. The second return value is the sequence of these ideals.

In particular, if A is a semisimple algebra, then this function returns a sequence
of primitive orthogonal idempotents spanning Z. Furthermore, the ideals in the
second sequence returned are simple algebras, and their direct sum equals A.

For a description of the algorithm we refer to [EG96].

Example H81E3

We compute the direct sum decomposition of a group algebra.

> G:= SmallGroup(10, 2);

> A:= GroupAlgebra(Rationals(), G);

> ee, II:= CentralIdempotents(A);

> ee[1];

1/10*Id(G) + 1/10*G.2 + 1/10*G.2^2 + 1/10*G.2^3 + 1/10*G.2^4 + 1/10*G.1 +

1/10*G.1 * G.2 + 1/10*G.1 * G.2^2 + 1/10*G.1 * G.2^3 + 1/10*G.1 * G.2^4

> II;

[

Ideal of dimension 1 of the group algebra A

Basis:

Id(G) + G.2 + G.2^2 + G.2^3 + G.2^4 + G.1 + G.1 * G.2 + G.1 * G.2^2 +

G.1 * G.2^3 + G.1 * G.2^4,

Ideal of dimension 1 of the group algebra A

Basis:

2450 ALGEBRAS Part XII

Id(G) + G.2 + G.2^2 + G.2^3 + G.2^4 - G.1 - G.1 * G.2 - G.1 * G.2^2 -

G.1 * G.2^3 - G.1 * G.2^4,

Ideal of dimension 4 of the group algebra A

Basis:

Id(G) - G.2^4 + G.1 - G.1 * G.2^4

G.2 - G.2^4 + G.1 * G.2 - G.1 * G.2^4

G.2^2 - G.2^4 + G.1 * G.2^2 - G.1 * G.2^4

G.2^3 - G.2^4 + G.1 * G.2^3 - G.1 * G.2^4,

Ideal of dimension 4 of the group algebra A

Basis:

Id(G) - G.2^4 - G.1 + G.1 * G.2^4

G.2 - G.2^4 - G.1 * G.2 + G.1 * G.2^4

G.2^2 - G.2^4 - G.1 * G.2^2 + G.1 * G.2^4

G.2^3 - G.2^4 - G.1 * G.2^3 + G.1 * G.2^4

]

We see that here the group algebra is the direct sum of two 1-dimensional and two 4-dimensional
ideals. The first idempotent is the sum over all group elements divided by the group order.

81.4 Orders

Let F be a number field with ring of integers R, and let A be a associative algebra over
F (finite-dimensional, with 1). An associative order O of A is a subring O ⊂ A which is a
projective R-module such that O ·F = A. We will also refer to an associative order simply
as an order.

In Magma, associative orders have the type AlgAssVOrd, and may be declared for
any associative algebra of type AlgAssV, namely, AlgAss, AlgMat, AlgQuat and AlgGrp.
Orders have ideals of type AlgAssVOrdIdl, and elements of type AlgAssVOrdElt. In the
special case where A is a quaternion algebra over the rationals, A has type AlgQuat and
orders in A have type AlgQuatOrd.

Orders, like modules over Dedekind domains, are represented by a pseudobasis, see
Section 55.10. Currently, only basic arithmetic functions and procedures are available
for general associative orders. Most of the nontrivial functionality currently available is
designed for orders in quaternion algebras (over the rationals or number fields). The
specialised functions for quaternionic orders are described in Chapter 86.

IMPORTANT WARNING for algebras over the rationals: In Magma, the rationals
are not considered to be a number field (the type FldRat is not a subtype of FldNum).
Currently, much of the functionality here is designed primarily for algebras whose base
field is a FldNum (while some of it, but not all, also works for algebras over the FldRat).
To compute with algebras over Q, in many cases the best solution is to create Q as a
number field at the outset, using RationalsAsNumberField(), and create the algebra
over this field instead of Rationals().

Ch. 81 ASSOCIATIVE ALGEBRAS 2451

81.4.1 Creation of Orders

Order(R, S)

Given a ring R and sequence S of elements of an associative algebra A, returns the
order of A generated freely over R by the sequence S. The ring R must be a number
ring or Z.

Order(S)

Given a sequence of elements S of an associative algebra A, returns the order of A
generated by the sequence S. The algebra A must be defined over a number field
F .

Order(S, I)

Given a sequence of elements S of an associative algebra A and a sequence I of
ideals of a number ring R, returns the order of A generated by the sequence S with
coefficient ideals I. The algebra A must be defined over a number field F and have
ring of integers R.

Order(A, m, I)

Given an associative algebra A, a matrix m, and a sequence I of ideals of a number
ring R, returns the order of A generated by the sequence of elements specified by
the rows of m in the basis of A with coefficient ideals I. The algebra A must be
defined over a number field F and have ring of integers R.

Order(A, pm)

Given an associative algebra A and a pseudomatrix pm, returns the order of A
specified by the pseudomatrix pm. The basis of the order is specified by the rows
of pm which have coefficients with respect to the basis of A. The algebra A must
be defined over a number field with ring of integers R which is the base ring of the
pseudomatrix pm.

Example H81E4

We begin by illustrating three methods for creating an associative order.

> P<x> := PolynomialRing(Rationals());

> F := NumberField(x^3-3*x-1);

> Z_F := MaximalOrder(F);

> A<alpha,beta,alphabeta> := QuaternionAlgebra<F | -3,b>;

First type of constructor takes an algebra, a matrix representing the basis elements, and coefficient
ideals.

> M := MatrixAlgebra(F,4) ! 1;

> I := [ideal<Z_F | 1> : i in [1..4]];

> O := Order(A, M, I);

> O;

Order of Quaternion Algebra with base ring Field of Fractions of Z_F

2452 ALGEBRAS Part XII

with coefficient ring Maximal Equation Order with defining polynomial x^3 - 3*x

- 1 over its ground order

The second type takes an algebra and a pseudomatrix.

> P := PseudoMatrix(I, M);

> O := Order(A, P);

> O;

Order of Quaternion Algebra with base ring Field of Fractions of Z_F

with coefficient ring Maximal Equation Order with defining polynomial x^3 - 3*x

- 1 over its ground order

The third takes simply a sequence of elements.

> O := Order([alpha,beta]);

> O;

Order of Quaternion Algebra with base ring Field of Fractions of Z_F

with coefficient ring Maximal Equation Order with defining polynomial x^3 - 3*x

- 1 over its ground order

Example H81E5

Here we give two other examples of order creation.

> F<w> := CyclotomicField(3);

> A := FPAlgebra<F, x,y | x^3-3, y^3+5, y*x-w*x*y>;

> Aass, f := Algebra(A);

> Aass;

Associative Algebra of dimension 9 with base ring F

> f;

Mapping from: AlgFP: A to AlgAss: Aass

> S := [f(A.i) : i in [1..2]];

> S;

[(0 0 1 0 0 0 0 0 0), (0 1 0 0 0 0 0 0 0)]

> O := Order(S);

> O;

Order of Associative Algebra of dimension 9 with base ring Field of Fractions of R

with coefficient ring Maximal Equation Order with defining polynomial x^2 + x +

1 over its ground order

>

> A := GroupAlgebra(F, DihedralGroup(6));

> Aass := Algebra(A);

> O := Order([g : g in Generators(Aass)]);

> O;

Order of Associative Algebra of dimension 12 with base ring Field of Fractions

of R with coefficient ring Maximal Equation Order with defining polynomial

x^2 + x + 1 over its ground order

Ch. 81 ASSOCIATIVE ALGEBRAS 2453

MaximalOrder(A)

Computes a maximal Z-order in the semisimple associative algebra A, which must
be defined over the rational numbers. The algorithm can be found in [Fri00], §3.5.
We refer to [IR93] for a very similar approach.

Example H81E6

First we define two 9 × 9-matrices that generate a 9-dimensional associative algebra. We check
that its Jacobson radical is zero, and then we compute a maximal order.

> a1 := Matrix([

> [-184174/80137, -325/80137, 71/2163699, 0, 0, 0, 0, 0, 0],

> [17713719/80137, 92087/80137, -325/80137, 0, 0, 0, 0, 0, 0],

> [-2189265975/80137, -16429806/80137, 92087/80137, 0, 0, 0, 0, 0, 0],

> [0, 0, 0, 64850/80137, 1472/240411, -25/2163699, 0, 0, 0],

> [0, 0, 0, -6237225/80137, -32425/80137, 1472/240411, 0, 0, 0],

> [0, 0, 0, 3305230272/80137, 45310743/80137, -32425/80137, 0, 0, 0],

> [0, 0, 0, 0, 0, 0, 119324/80137, -497/240411, -46/2163699],

> [0, 0, 0, 0, 0, 0, -11476494/80137, -59662/80137, -497/240411],

> [0, 0, 0, 0, 0, 0, -1115964297/80137, -28880937/80137, -59662/80137]]);

> a2:= Matrix([

> [0, 0, 0, 282469/240411, 956/2163699, -26/2163699, 0, 0, 0],

> [0, 0, 0, -6486714/80137, -21029/240411, 956/2163699, 0, 0, 0],

> [0, 0, 0, 238511484/80137, -2766918/80137, -21029/240411, 0, 0, 0],

> [0, 0, 0, 0, 0, 0, -85879/240411, -4894/2163699, 64/6491097],

> [0, 0, 0, 0, 0, 0, 5322432/80137, 163145/240411, -4894/2163699],

> [0, 0, 0, 0, 0, 0, -1220999166/80137, -13720122/80137, 163145/240411],

> [-1183167/80137, -11814/80137, -14/80137, 0, 0, 0, 0, 0, 0],

> [-94306842/80137, -2653965/80137, -11814/80137, 0, 0, 0, 0, 0, 0],

> [-79581502242/80137, -1335450240/80137, -2653965/80137, 0, 0, 0, 0, 0, 0]]);

> M := MatrixAlgebra(Rationals(), 9);

> A := sub< M | [a1, a2] >;

> Dimension(A);

9

> JacobsonRadical(A);

Matrix Algebra [ideal of A] of degree 9 and dimension 0 with 0 generators over

Rational Field

> O := MaximalOrder(A);

> Discriminant(O);

1

> T :=MultiplicationTable(O);

> T[3][7];

[-16583482050411285785256, 5672389828626293786946, 1059868937213366777403,

55245368126632733561175, -41598423838438078787076, 1726223870812049536260,

66694491159819102489072, 76373181201401217517416, -114928189655490866071212]

2454 ALGEBRAS Part XII

81.4.2 Attributes

BaseRing(O)

CoefficientRing(O)

The base ring of the associative order O.

Algebra(O)

The container algebra of the associative order O.

Degree(O)

Dimension(O)

Returns the dimension (or degree) of the order O, equivalently the dimension of its
parent algebra as a vector space over its ground field.

Discriminant(O)

Returns the discriminant of the order O. If O is a quaternion order, returns the
reduced discriminant which is the square root of the usual discriminant.

FactoredDiscriminant(O)

Returns the factorization of the discriminant of the order O. If O is a quaternion
order, returns the factorization of the reduced discriminant which is the square root
of the usual discriminant.

MultiplicationTable(O)

Returns the multiplication table of the maximal order O. This is a three dimensional
table of structure constants. If T denotes this table, then T [i][j] is a sequence of
integers containing the coefficients of the product of the i-th and j-th basis elements
with respect to the basis of the order.

Module(O)

Return the pseudo matrix describing the basis of the associative order O over a
number ring.

TraceZeroSubspace(O)

Given an order O in a quaternion algebra, this computes the submodule of elements
with trace 0. A basis or a pseudo-basis for this submodule is returned, depending
whether the base field of the quaternion algebra is Q or a number field. (The base
ring of O is, respectively, either Z or an order in that number field.)

Ch. 81 ASSOCIATIVE ALGEBRAS 2455

81.4.3 Bases of Orders

Basis(O)

Returns a basis of the order O. All other elements of the order are integral linear
combinations of elements of this basis. Note that the elements of a basis will only
be elements of the parent algebra A and may not be elements of O because of the
existence of coefficient ideals.

PseudoBasis(O)

Returns the pseudobasis of the associative order O over a number ring.

PseudoMatrix(O)

Returns the pseudomatrix describing the pseudobasis of the associative order O over
a number ring.

ZBasis(O)

Returns a Z-basis for the order O.

Generators(O)

Returns a sequence of generators of O as a module over its base ring.

Example H81E7

We compute an order and show how a basis and a pseudobasis can differ.

> P<x> := PolynomialRing(Rationals());

> F := NumberField(x^3-3*x-1);

> Z_F := MaximalOrder(F);

> A := QuaternionAlgebra<F | -3,b>;

> O := Order([1/3*A.1, A.2], [ideal<Z_F | b^2+b+1>, ideal<Z_F | 1>]);

> O;

Order of Quaternion Algebra with base ring Field of Fractions of Z_F

with coefficient ring Maximal Equation Order with defining polynomial x^3 - 3*x

- 1 over its ground order

> Basis(O);

[Z_F.1, i, j, k]

> PseudoBasis(O);

[

<Principal Ideal of Z_F

Generator:

Z_F.1, Z_F.1>,

<Fractional Principal Ideal of Z_F

Generator:

1/3*Z_F.1 + 1/3*Z_F.2 + 1/3*Z_F.3, i>,

<Principal Ideal of Z_F

Generator:

Z_F.1, j>,

<Fractional Principal Ideal of Z_F

2456 ALGEBRAS Part XII

Generator:

1/3*Z_F.1 + 1/3*Z_F.2 + 1/3*Z_F.3, k>

]

> PseudoMatrix(O);

Pseudo-matrix over Maximal Equation Order with defining polynomial x^3 - 3*x

- 1 over its ground order

Principal Ideal of Z_F

Generator:

Z_F.1 * (Z_F.1 0 0 0)

Fractional Principal Ideal of Z_F

Generator:

1/3*Z_F.1 + 1/3*Z_F.2 + 1/3*Z_F.3 * (0 Z_F.1 0 0)

Principal Ideal of Z_F

Generator:

Z_F.1 * (0 0 Z_F.1 0)

Fractional Principal Ideal of Z_F

Generator:

1/3*Z_F.1 + 1/3*Z_F.2 + 1/3*Z_F.3 * (0 0 0 Z_F.1)

> ZBasis(O);

[Z_F.1, Z_F.2, Z_F.3, (1/3*Z_F.1 + 1/3*Z_F.2 + 1/3*Z_F.3)*i, (1/3*Z_F.1 +

4/3*Z_F.2 + 1/3*Z_F.3)*i, (1/3*Z_F.1 + 4/3*Z_F.2 + 4/3*Z_F.3)*i, j, Z_F.2*j,

Z_F.3*j, (1/3*Z_F.1 + 1/3*Z_F.2 + 1/3*Z_F.3)*k, (1/3*Z_F.1 + 4/3*Z_F.2 +

1/3*Z_F.3)*k, (1/3*Z_F.1 + 4/3*Z_F.2 + 4/3*Z_F.3)*k]

Note that the basis of O does not generate O—one needs to include the coefficient ideals.

81.4.4 Predicates

O1 eq O2

Return true if and only if the orders O1 and O2 are equal as subrings of the same
algebra.

x in O

x notin O

Return true (respectively, false) if the element x of an associative algebra is in
the associative order O.

Ch. 81 ASSOCIATIVE ALGEBRAS 2457

81.4.5 Operations with Orders

Adjoin(O, x)

Adjoin(O, x, I)

Returns the order obtained by adjoining the element x to the order O, optionally
with coefficient ideal I.

O1 + O2

Returns the sum of the orders O1 and O2.

O1 meet O2

Returns the intersection of the orders O1 and O2.

O ^ x

Returns the conjugate order x−1Ox.

Example H81E8

> P<x> := PolynomialRing(Rationals());

> F := NumberField(x^3-3*x-1);

> Z_F := MaximalOrder(F);

> F := FieldOfFractions(Z_F);

> A<alpha,beta,alphabeta> := QuaternionAlgebra<F | -3,b>;

> O := Order([alpha,beta]);

> O1 := Order([1/3*alpha,beta], [ideal<Z_F | b^2+b+1>, ideal<Z_F | 1>]);

> Discriminant(O1);

Principal Ideal of Z_F

Generator:

4/1*F.1 + 12/1*F.2 + 8/1*F.3

> xi := (1 + alpha + (7+5*b+6*b^2)*beta + (3+b+6*b^2)*alphabeta)/2;

> zeta := (-6-25*b-5*b^2)*alpha - 3*beta;

> O2 := Adjoin(O, xi);

> O := O1+O2;

> Discriminant(O);

Ideal of Z_F

Basis:

[2 0 4]

[0 2 4]

[0 0 6]

2458 ALGEBRAS Part XII

81.5 Elements of Orders

81.5.1 Creation of Elements

O ! 0

Zero(O)

The zero element of the associative order O.

O ! 1

One(O)

The identity element of the associative order O.

O . i

Given an associative order O and an integer i, returns the ith basis element as an
order over the base ring. Note that the element 1 may or may not be the first
element of a basis. These basis elements are returned as elements of the algebra of
O not as elements of O itself.

O ! x

Return an element of the associative order O described by x, where x may be a
sequence, an element of an associative order, an element coercible into the coefficient
ring of O or into the algebra of O.

Random(O)

Returns a “random” element of the associative order O with small coefficients.

81.5.2 Arithmetic of Elements

x + y

The sum of elements x and y of an order of an associative algebra.

x - y

The difference of elements x and y of an order of an associative algebra.

-x

The negation of element x of an order of an associative algebra.

x * y

The product of elements x and y of an associative algebra.

u * c

c * u

The product of the element u of an associative order by the scalar c.

Ch. 81 ASSOCIATIVE ALGEBRAS 2459

x / y

The quotient of x by the unit y in the parent algebra.

x div y

The exact division of x by y in the order containing them.

x ^ n

The product of the element x of an associative order with itself n times.

81.5.3 Predicates on Elements

x eq y

Returns true if and only if the elements x and y are equal.

x ne y

Returns true if and only if the elements x and y are not equal.

IsZero(x)

Return true if the element x of an associative order is the zero element.

IsUnit(a)

Return true if the element x of an associative order is a unit in that order.

IsScalar(x)

Returns true if and only if x is an element of the base ring of the order containing
it, and if so returns the coerced element.

81.5.4 Other Operations with Elements

ElementToSequence(x)

Eltseq(x)

Given an element x of an associative order O, returns the sequence of coordinates
of x in terms of the basis of O.

Norm(x)

The norm of the element x of an order as an element of its parent algebra.

Trace(x)

The trace of the element x of an order as an element of its parent algebra.

LeftRepresentationMatrix(e)

RightRepresentationMatrix(e)

The representation matrix describing left (right) multiplication by the element e of
an associative order.

2460 ALGEBRAS Part XII

RepresentationMatrix(a)

Side MonStgElt Default : “Left”

The representation matrix of the element a of an associative order. This describes
left multiplication unless the parameter Side is set to "Right".

CharacteristicPolynomial(x)

The characteristic polynomial of the element x of an order as an element of its
parent algebra.

MinimalPolynomial(x)

The minimal polynomial of the element x of an order as an element of its parent
algebra.

81.6 Ideals of Orders

81.6.1 Creation of Ideals

lideal< O | E >

rideal< O | E >

ideal< O | E >

For an associative order O, this constructs the left, right or two sided O-ideal gen-
erated by the elements in the given sequence E (these elements should be coercible
into O).

lideal< O | M >

rideal< O | M >

ideal< O | M >

Constructs a left, right or two sided ideal of the associative order O whose basis is
given by M , which may be either a matrix or a pseudo matrix.

O * e

e * O

The principal left (right) ideal of the associative order O generated by the element
e.

RandomRightIdeal(O)

Returns a “random” right ideal of the order O, generated by elements with small
coefficients.

Ch. 81 ASSOCIATIVE ALGEBRAS 2461

81.6.2 Attributes of Ideals

Algebra(I)

The container algebra of the associative ideal I.

Order(I)

The associative order the associative ideal I was created as an ideal of.

LeftOrder(I)

RightOrder(I)

The order which maps the associative ideal I to itself under left (right) multiplica-
tion.

Basis(I)

Basis(I, R)

The basis of the associative ideal I. This will be returned as elements of the order
or algebra R if this second argument is given, otherwise as elements of the algebra
of I.

BasisMatrix(I)

BasisMatrix(I, R)

The basis matrix of the associative ideal I. This will be with respect to the basis of
the order or algebra R if this second argument is given, otherwise with respect to
the basis of the order I was created as an ideal of.

PseudoBasis(I)

PseudoBasis(I, R)

Return a sequence of tuples of the coefficient ideals and the basis elements of the
associative ideal I. If a second argument is given, an order or algebra R, then the
basis elements will be in R, otherwise the algebra of I.

PseudoMatrix(I)

PseudoMatrix(I, R)

Return a pseudo matrix describing the basis of the associative ideal I. If a second
argument is given, an order or algebra R, then the basis matrix will be with respect
to the basis of R, otherwise the order I was created as an ideal of.

ZBasis(I)

Returns a Z-basis for the ideal I.

Generators(I)

Returns a sequence of generators for the ideal I as a module over its base ring.

2462 ALGEBRAS Part XII

Denominator(I)

Return the denominator of the ideal I. This is the minimal element d of the coeffi-
cient ring of O such that d ∗ I ⊆ O where O is the order I was created as an ideal
of.

81.6.3 Arithmetic for Ideals

I + J

The sum of the ideals I and J , which are ideals which share a side in equal orders.

I * J

The product of the ideals I and J , where I is a right ideal and J is a left ideal of
the same order O. Returns the product given the structure of left and right ideal.

a * I

I * a

Returns the product of a and I as an ideal.

Colon(J, I)

If I, J are left ideals, returns the colon (J : I) = {x ∈ A : xI ⊂ J}, similarly defined
if I, J are right ideals.

MultiplicatorRing(I)

Returns the colon (I : I) of the ideal I, the set of all elements which multiply I into
I.

81.6.4 Predicates on Ideals

IsLeftIdeal(I)

IsRightIdeal(I)

IsTwoSidedIdeal(I)

Return true if the associative ideal I is a left, right or two sided ideal (respectively).

I eq J

Return true if the associative ideals I and J are equal.

I subset J

Returns true if and only if the ideal I is contained in the ideal J .

a in I

a notin I

Return true (false) if the element a of an associative algebra is contained in the
associative ideal I.

Ch. 81 ASSOCIATIVE ALGEBRAS 2463

81.6.5 Other Operations on Ideals

Norm(I)

Returns the norm of the ideal I, the ideal of the base number ring of I generated
by the norms of the elements in I.

Example H81E9

> F<w> := CyclotomicField(3);

> R := MaximalOrder(F);

> A := Algebra(FPAlgebra<F, x, y | x^3-3, y^3+5, y*x-w*x*y>);

> O := Order([A.i : i in [1..9]]);

> MinimalPolynomial(O.2);

$.1^3 + 5/1*R.1

> I := rideal<O | O.2>;

> IsLeftIdeal(I), IsRightIdeal(I), IsTwoSidedIdeal(I);

false true false

> MultiplicatorRing(I) eq O;

true

> PseudoBasis(I);

[

<Principal Ideal of R

Generator:

R.1, (0 R.1 0 0 0 0 0 0 0)>,

<Principal Ideal of R

Generator:

R.1, (0 0 0 R.1 0 0 0 0 0)>,

<Principal Ideal of R

Generator:

R.1, (0 0 0 0 -R.1 - R.2 0 0 0 0)>,

<Principal Ideal of R

Generator:

R.1, (-5/1*R.1 0 0 0 0 0 0 0 0)>,

<Principal Ideal of R

Generator:

R.1, (0 0 0 0 0 0 -R.1 - R.2 0 0)>,

<Principal Ideal of R

Generator:

R.1, (0 0 0 0 0 0 0 R.2 0)>,

<Principal Ideal of R

Generator:

R.1, (0 0 5/1*R.1 + 5/1*R.2 0 0 0 0 0 0)>,

<Principal Ideal of R

Generator:

R.1, (0 0 0 0 0 0 0 0 R.2)>,

<Principal Ideal of R

Generator:

2464 ALGEBRAS Part XII

R.1, (0 0 0 0 0 -5/1*R.2 0 0 0)>

]

> ZBasis(I);

[[0 R.1 0 0 0 0 0 0 0], [0 R.2 0 0 0 0 0 0 0], [0 0 0 R.1 0 0 0 0 0], [0 0 0

R.2 0 0 0 0 0], [0 0 0 0 -R.1 - R.2 0 0 0 0], [0 0 0 0 R.1 0 0 0 0],

[-5/1*R.1 0 0 0 0 0 0 0 0], [-5/1*R.2 0 0 0 0 0 0 0 0]]

> Norm(I);

Principal Ideal of R

Generator:

15625/1*R.1

> J := rideal<O | O.3>;

> Norm(J);

Principal Ideal of R

Generator:

729/1*R.1

> A!1 in I+J;

false

> Denominator(1/6*I);

[1, 0]

> Colon(J,I);

Pseudo-matrix over Maximal Equation Order with defining polynomial x^2 + x + 1

over its ground order

Principal Ideal of R

Generator:

3/1*R.1 * (R.1 0 0 0 0 0 0 0 0)

Principal Ideal of R

Generator:

3/1*R.1 * (0 R.1 0 0 0 0 0 0 0)

Principal Ideal of R

Generator:

R.1 * (0 0 R.1 0 0 0 0 0 0)

Fractional Principal Ideal of R

Generator:

3/5*R.1 * (0 0 0 R.1 0 0 0 0 0)

Principal Ideal of R

Generator:

R.1 * (0 0 0 0 R.1 0 0 0 0)

Principal Ideal of R

Generator:

R.1 * (0 0 0 0 0 R.1 0 0 0)

Fractional Principal Ideal of R

Generator:

-1/5*R.1 * (0 0 0 0 0 0 R.1 0 0)

Principal Ideal of R

Generator:

R.1 * (0 0 0 0 0 0 0 R.1 0)

Fractional Principal Ideal of R

Generator:

Ch. 81 ASSOCIATIVE ALGEBRAS 2465

1/5*R.1 * (0 0 0 0 0 0 0 0 R.1)

81.7 Quaternionic Orders

The following intrinsics which take an argument of type AlgAssVOrd, AlgAssVOrdElt, or
AlgAssVOrdIdl, apply only to associative orders of quaternion algebras and are docu-
mented in that chapter, Chapter 86.

MaximalOrder(O) pMaximalOrder(O, p)

IsMaximal(O) IspMaximal(O, p)

pMatrixRing(O, p)

Embed(Oc, O)

LeftIdealClasses(S) RightIdealClasses(S)

TwoSidedIdealClasses(S)

TwoSidedIdealClassGroup(S)

OptimizedRepresentation(O) OptimisedRepresentation(O)

Units(S) MultiplicativeGroup(S) UnitGroup(S)

Conjugate(x)

Enumerate(O, A, B) Enumerate(O, B) Enumerate(I, B)

ReducedBasis(O) ReducedBasis(I)

IsIsomorphic(I, J) IsLeftIsomorphic(I, J)

IsRightIsomorphic(I, J) IsPrincipal(I)

2466 ALGEBRAS Part XII

81.8 Bibliography
[CIW97] Arjeh M. Cohen, Gábor Ivanyos, and David B. Wales. Finding the radical of

an algebra of linear transformations. J. Pure Appl. Algebra, 117/118:177–193, 1997.
Algorithms for algebra (Eindhoven, 1996).

[EG96] W. Eberly and M. Giesbrecht. Efficient decomposition of associative algebras.
In Y. N. Lakshman, editor, Proceedings of the 1996 International Symposium on Sym-
bolic and Algebraic Computation: ISSAC’96, pages 170–178, New York, 1996. ACM.

[Fri00] Carsten Friedrichs. Berechnung von Maximalordnungen über Dedekindringen.
Dissertation, Technische Universität Berlin, 2000.
URL:http://www.math.tu-berlin.de/∼kant/publications/diss/diss fried.pdf.gz.

[IR93] Gábor Ivanyos and Lajos Rónyai. Finding maximal orders in semisimple alge-
bras over Q. Comput. Complexity, 3(3):245–261, 1993.

82 FINITELY PRESENTED ALGEBRAS
82.1 Introduction 2469

82.2 Representation and Monomial
Orders 2469

82.3 Exterior Algebras 2470

82.4 Creation of Free Algebras and El-
ements 2470

82.4.1 Creation of Free Algebras 2470

FreeAlgebra(K, n) 2470
ExteriorAlgebra(K, n) 2470

82.4.2 Print Names 2470

AssignNames(∼F, s) 2470
Name(F, i) 2471

82.4.3 Creation of Polynomials 2471

. 2471
elt< > 2471
! 2471
elt< > 2471
One Identity 2471
Zero Representative 2471

82.5 Structure Operations 2471

82.5.1 Related Structures 2471

BaseRing(F) 2471
CoefficientRing(F) 2471
Category Parent PrimeRing 2471

82.5.2 Numerical Invariants 2471

Rank(F) 2471
Characteristic # 2471

82.5.3 Homomorphisms 2472

hom< > 2472
hom< > 2472

82.6 Element Operations 2473

82.6.1 Arithmetic Operators 2473

+ - 2473
+ - * ^ / div 2473
+:= -:= *:= div:= 2473

82.6.2 Equality and Membership 2473

eq ne 2473
in notin 2473

82.6.3 Predicates on Algebra Elements . . 2473

IsZero IsOne IsMinusOne 2473
IsNilpotent IsIdempotent 2473
IsUnit IsZeroDivisor IsRegular 2473
IsIrreducible IsPrime 2473
82.6.4 Coefficients, Monomials, Terms and

Degree 2474

Coefficients(f) 2474
LeadingCoefficient(f) 2474
TrailingCoefficient(f) 2474
MonomialCoefficient(f, m) 2474
Monomials(f) 2474
LeadingMonomial(f) 2474
Terms(f) 2474
LeadingTerm(f) 2475
TrailingTerm(f) 2475
Length(m) 2475
m[i] 2475
TotalDegree(f) 2475
LeadingTotalDegree(f) 2475

82.6.5 Evaluation 2476

Evaluate(f, s) 2476

82.7 Ideals and Gröbner Bases . . 2477

82.7.1 Creation of Ideals 2477

ideal< > 2477
lideal< > 2477
rideal< > 2477
Basis(I) 2477
BasisElement(I, i) 2478

82.7.2 Gröbner Bases 2478

Groebner(I: -) 2478
GroebnerBasis(I: -) 2479
GroebnerBasis(S: -) 2479
GroebnerBasis(S, d: -) 2479

82.7.3 Verbosity 2479

SetVerbose("Groebner", v) 2479
SetVerbose("Buchberger", v) 2480
SetVerbose("Faugere", v) 2480

82.7.4 Related Functions 2480

MarkGroebner(I) 2480
Reduce(S) 2480

82.8 Basic Operations on Ideals . . 2482

82.8.1 Construction of New Ideals 2483

+ 2483
* 2483
/ 2483
Generic(I) 2483

82.8.2 Ideal Predicates 2483

eq 2483
ne 2483
notsubset 2483
subset 2483
IsZero(I) 2483

82.8.3 Operations on Elements of Ideals . 2484

in 2484
NormalForm(f, I) 2484

2468 ALGEBRAS Part XII

NormalForm(f, S) 2484
notin 2484

82.9 Changing Coefficient Ring . . 2485

ChangeRing(I, S) 2485

82.10 Finitely Presented Algebras 2485

82.11 Creation of FP-Algebras . . 2485

quo< > 2485
quo< > 2485
/ 2486
FPAlgebra< > 2486

82.12 Operations on FP-Algebras . 2487

. 2487
CoefficientRing(A) 2487
Rank(A) 2487
DivisorIdeal(I) 2487
PreimageIdeal(I) 2487
PreimageRing(A) 2487
OriginalRing(A) 2487
IsCommutative(A) 2487
eq 2488
subset 2488
+ 2488
* 2488
IsProper(I) 2488
IsZero(I) 2488

82.13 Finite Dimensional FP-
Algebras 2488

Dimension(A) 2488
VectorSpace(A) 2488
MatrixAlgebra(A) 2488
Algebra(A) 2488
RepresentationMatrix(f) 2489
IsUnit(f) 2489

IsNilpotent(f) 2489
MinimalPolynomial(f) 2489

82.14 Vector Enumeration 2492

82.14.1 Finitely Presented Modules . . . 2492

82.14.2 S-algebras 2492

82.14.3 Finitely Presented Algebras . . . 2493

82.14.4 Vector Enumeration 2493

82.14.5 The Isomorphism 2494

82.14.6 Sketch of the Algorithm 2495

82.14.7 Weights 2495

82.14.8 Setup Functions 2496

FreeAlgebra(R, M) 2496
FreeAlgebra(R, G) 2496

82.14.9 The Quotient Module Function . 2496

QuotientModule(A, S) 2496

82.14.10 Structuring Presentations . . . 2496

82.14.11 Options and Controls 2497

82.14.12 Weights 2497

QuotientModule(A, S) 2497

82.14.13 Limits 2498

QuotientModule(A, S) 2498

82.14.14 Logging 2499

QuotientModule(A, S) 2499

82.14.15 Miscellaneous 2500

QuotientModule(A, S) 2500

82.15 Bibliography 2503

Chapter 82

FINITELY PRESENTED ALGEBRAS

82.1 Introduction

This chapter describes finitely presented algebras (FPAs) in Magma. An FPA is a quotient
of a free associative algebra by an ideal of relations. To compute with these ideals, one
constructs noncommutative Gröbner bases (GBs), which have many parallels with the
standard commutative GBs, discussed in Chapter 105. At the heart of the theory is a
noncommutative version of the Buchberger algorithm which computes a GB of an ideal of
an algebra starting from an arbitrary basis (generating set) of the ideal. One significant
difference with the commutative case is that a noncommutative GB may not be finite for a
finitely-generated ideal. For overviews of the theory and the basic algorithms, see [Mor94,
Li02].

Magma also contains an implementation of a noncommutative generalization of the
Faugere F4 algorithm (due to Allan Steel), based on sparse linear algebra techniques,
which usually performs dramatically better than the Buchberger algorithm, and so this is
used by Magma by default.

82.2 Representation and Monomial Orders

Let A be the free algebra K〈x1, . . . , xn〉 of rank n over a field K. A word in the underlying
monoid of A is simply an associative product of the letters (or variables) of A. For consis-
tency with the commutative case, we will call these monoid words monomials. Elements
of A, called noncommutative polynomials, are finite sums of terms, where a term is the
product of a coefficient from K and a monomial. The terms are sorted with respect to an
admissible order <, which satisfies, for monomials p, q, r, the following conditions:

(a) If p < q, then pr < qr and sp < sq.

(b)If p = qr then p > q and p > r.
Currently Magma only supports the noncommutative graded-lexicographical order

(glex), which first compares degrees and then uses a left-lexicographical comparison for
degree-ties. There is no admissible lexicographic order in the noncommutative case.

2470 ALGEBRAS Part XII

82.3 Exterior Algebras
Since V2.15 (December 2008), Magma has a special type for exterior algebras. Such an
algebra is skew-commutative and is a quotient of the free algebra K〈x1, . . . , xn〉 by the
relations x2

i = 0 and xixj = −xjxi for 1 ≤ i, j ≤ n, i 6= j. Because of these relations,
elements of the algebra can be written in terms of commutative monomials in the variables
(via a collection algorithm), and the associated algorithms are much more efficient than for
the general noncommutative case. Also, a Gröbner basis of an ideal of an exterior algebra
is always finite (in fact, the whole exterior algebra has dimension 2n as a K-vector space).

Exterior algebras may be constructed with the ExteriorAlgebra function below, and
all operations applicable to general FP algebras are also applicable to them (so will not
be duplicated here). Furthermore, modules over exterior algebras are also allowed: see
Chapter 109 for details.

82.4 Creation of Free Algebras and Elements

82.4.1 Creation of Free Algebras
Currently algebras may only be created over fields. Free algebras are objects of type AlgFr
with elements of type AlgFrElt.

FreeAlgebra(K, n)

Create a free algebra in n > 0 variables over the field K. The angle bracket
notation can be used to assign names to the indeterminates; e.g., F<a,b,c> :=
FreeAlgebra(GF(2), 3);.

ExteriorAlgebra(K, n)

Create an exterior algebra in n > 0 variables over the field K. The angle bracket
notation can be used to assign names to the indeterminates; The angle bracket
notation can be used to assign names to the indeterminates; e.g., F<a,b,c> :=
ExteriorAlgebra(GF(2), 3);.

82.4.2 Print Names
The AssignNames and Name functions can be used to associate names with the indetermi-
nates of free algebras after creation.

AssignNames(∼F, s)

Procedure to change the name of the indeterminates of a free algebra F . The i-
th indeterminate will be given the name of the i-th element of the sequence of
strings s (for 1 ≤ i ≤ #s); the sequence may have length less than the number
of indeterminates of F , in which case the remaining indeterminate names remain
unchanged.

This procedure only changes the name used in printing the elements of F . It
does not assign to identifiers corresponding to the strings the indeterminates in F ;
to do this, use an assignment statement, or use angle brackets when creating the
free algebra.

Ch. 82 FINITELY PRESENTED ALGEBRAS 2471

Name(F, i)

Given a free algebra F , return the i-th indeterminate of F (as an element of F).

82.4.3 Creation of Polynomials
The easiest way to create (noncommutative) polynomials in a given algebra is to use the
angle bracket construction to attach variables to the indeterminates, and then to use these
variables to create polynomials (see the examples). Below we list other options.

F . i

Return the i-th indeterminate for the free algebra F in n variables (1 ≤ i ≤ n) as
an element of F .

elt< R | a >

R ! s

elt< R | s >

This element constructor can only be used for trivial purposes in noncommutative
free algebras: given a free algebra F = R[x1, . . . , xn] and an element a that can be
coerced into the coefficient ring R, the constant polynomial a is returned; if a is in
F already it will be returned unchanged.

One(F) Identity(F) Zero(F) Representative(F)

82.5 Structure Operations

82.5.1 Related Structures
The main structure related to a free algebra is its coefficient ring. Multivariate free algebras
belong to the Magma category AlgFr.

BaseRing(F)

CoefficientRing(F)

Return the coefficient ring of the free algebra F .

Category(F) Parent(F) PrimeRing(F)

82.5.2 Numerical Invariants
Note that the # operator only returns a value for finite (quotients of) free algebras.

Rank(F)

Return the number of indeterminates of free algebra F over its coefficient ring.

Characteristic(F) # F

2472 ALGEBRAS Part XII

82.5.3 Homomorphisms
In its most general form, a homomorphism taking a free algebra K〈x1, . . . , xn〉 as domain
requires n+ 1 pieces of information, namely, a map (homomorphism) telling how to map
the coefficient ring K together with the images of the n indeterminates. The map for the
coefficient ring is optional.

hom< F -> S | f, y1, ..., yn >

hom< F -> S | y1, ..., yn >

Given a free algebra F = K〈x1, . . . , xn〉, a ring or associative algebra S (including
another FP-algebra or a matrix algebra), and a map f : K → S and n elements
y1, . . . , yn ∈ S, create the homomorphism g : F → S by applying the rules that
g(rxa1

1 · · ·xan
n) = f(r)ya1

1 · · · yan
n for monomials and linearity, that is, g(M + N) =

g(M) + g(N).
The coefficient ring map may be omitted, in which case the coefficients are

mapped into S by the coercion map.
No attempt is made to check whether the map defines a genuine homomorphism.

Example H82E1

In this example we map an algebra F first into F itself, and then into a matrix algebra.

> K := RationalField();

> F<x,y,z> := FreeAlgebra(K, 3);

> h := hom<F -> F | x*y, y*x, z*x>;

> h(x);

x*y

> h(y);

y*x

> h(x*y);

x*y^2*x

> h(x + y + z);

x*y + y*x + z*x

> A := MatrixAlgebra(K, 2);

> M := [A | [1,1,-1,1], [-1,3,4,1], [11,7,-7,8]];

> M;

[

[1 1]

[-1 1],

[-1 3]

[4 1],

[11 7]

[-7 8]

]

> h := hom<F -> A | M>;

> h(x);

Ch. 82 FINITELY PRESENTED ALGEBRAS 2473

[1 1]

[-1 1]

> h(y);

[-1 3]

[4 1]

> h(x*y - y*z);

[35 -13]

[-32 -38]

82.6 Element Operations

82.6.1 Arithmetic Operators
The usual unary and binary ring operations are available for noncommutative polynomials,
noting that multiplication is associative but noncommutative, of course.

+ a - a

a + b a - b a * b a ^ k a / b a div b

a +:= b a -:= b a *:= b a div:= b

82.6.2 Equality and Membership

a eq b a ne b

a in R a notin R

82.6.3 Predicates on Algebra Elements

IsZero(f) IsOne(f) IsMinusOne(f)

IsNilpotent(f) IsIdempotent(f)

IsUnit(f) IsZeroDivisor(f) IsRegular(f)

IsIrreducible(f) IsPrime(f)

2474 ALGEBRAS Part XII

82.6.4 Coefficients, Monomials, Terms and Degree
The functions in this subsection allow one to access noncommutative polynomials.

Coefficients(f)

Given a noncommutative polynomial f with coefficients in R, this function returns
a sequence of ‘base’ coefficients, that is, a sequence of elements of R occurring
as coefficients of the monomials in f . Note that the monomials are ordered, and
that the sequence of coefficients corresponds exactly to the sequence of monomials
returned by Monomials(f).

LeadingCoefficient(f)

Given a noncommutative polynomial f with coefficients in R, this function returns
the leading coefficient of f as an element of R; this is the coefficient of the leading
monomial of f , that is, the first among the monomials occurring in f with respect
to the ordering of monomials used in F .

TrailingCoefficient(f)

Given a noncommutative polynomial f with coefficients in R, this function returns
the trailing coefficient of f as an element of R; this is the coefficient of the trailing
monomial of f , that is, the last among the monomials occurring in f with respect
to the ordering of monomials used in F .

MonomialCoefficient(f, m)

Given a noncommutative polynomial f and a monomial m, this function returns the
coefficient with which m occurs in f as an element of R.

Monomials(f)

Given a noncommutative polynomial f ∈ F , this function returns a sequence of
the monomials (monoid words) occurring in f . Note that the monomials in F are
ordered, and that the sequence of monomials corresponds exactly to the sequence
of coefficients returned by Coefficients(f).

LeadingMonomial(f)

Given a noncommutative polynomial f ∈ F this function returns the leading mono-
mial of f , that is, the first monomial element of F that occurs in f , with respect to
the ordering of monomials used in F .

Terms(f)

Given a noncommutative polynomial f ∈ F , this function returns the sequence of
(non-zero) terms of f as elements of F . The terms are ordered according to the
ordering on the monomials in F . Consequently the i-th element of this sequence of
terms will be equal to the product of the i-th element of the sequence of coefficients
and the i-th element of the sequence of monomials.

Ch. 82 FINITELY PRESENTED ALGEBRAS 2475

LeadingTerm(f)

Given a noncommutative polynomial f ∈ F , this function returns the leading term
of f as an element of F ; this is the product of the leading monomial and the leading
coefficient that is, the first among the monomial terms occurring in f with respect
to the ordering of monomials used in F .

TrailingTerm(f)

Given a noncommutative polynomial f ∈ F , this function returns the trailing term
of f as an element of F ; this is the last among the monomial terms occurring in f
with respect to the ordering of monomials used in F .

Length(m)

Given a noncommutative monomial (word) m, return the length of m, i.e., the
number of letters of m. Note that this differs from the commutative case, where the
number of terms in a polynomial is returned.

m[i]

Given a noncommutative monomial (word) m of length l, and an integer i with
1 ≤ i ≤ l, return the i-th letter of m.

TotalDegree(f)

Given a noncommutative polynomial f , this function returns the total degree of f ,
which is the maximum of the lengths of all monomials that occur in f . If f is the
zero polynomial, the return value is −1.

LeadingTotalDegree(f)

Given a noncommutative polynomial, this function returns the leading total degree
of f , which is the length of the leading monomial of f .

Example H82E2

In this example we illustrate the above access functions.

> K := RationalField();

> F<x,y,z> := FreeAlgebra(K, 3);

> f := (3*x*y - 2*y*z)*(4*x - 7*z*y) + 23*x*y*z;

> f;

-21*x*y*z*y + 14*y*z^2*y + 12*x*y*x + 23*x*y*z - 8*y*z*x

> TotalDegree(f);

4

> Coefficients(f);

[-21, 14, 12, 23, -8]

> Monomials(f);

[

x*y*z*y,

y*z^2*y,

2476 ALGEBRAS Part XII

x*y*x,

x*y*z,

y*z*x

]

> Terms(f);

[

-21*x*y*z*y,

14*y*z^2*y,

12*x*y*x,

23*x*y*z,

-8*y*z*x

]

> MonomialCoefficient(f, x*y*z);

23

> LeadingTerm(f);

-21*x*y*z*y

> LeadingCoefficient(f);

-21

> m := Monomials(f)[1];

> m;

x*y*z*y

> Length(m);

4

> m[1];

x

> m[2];

y

82.6.5 Evaluation

Evaluate(f, s)

Given an element f of a free algebra F = R〈x1, . . . , xn〉 and a sequence or tuple
s of ring or algebra elements of length n, return the value of f at s, that is, the
value obtained by substituting xi = s[i]. This behaves in the same way as the hom
constructor above.

If the elements of s lie in a ring and can be lifted into the coefficient ring R,
then the result will be an element of R. If the elements of s cannot be lifted to the
coefficient ring, then an attempt is made to do a generic evaluation of f at s. In
this case, the result will be of the same type as the elements of s.

Ch. 82 FINITELY PRESENTED ALGEBRAS 2477

Example H82E3

In this example we illustrate the above access functions.

> K := RationalField();

> F<x,y,z> := FreeAlgebra(K, 3);

> g := x*y + y*z;

> g;

x*y + y*z

> Evaluate(g, [1,2,3]);

8

> Parent($1);

Rational Field

> Evaluate(g, [y,x,z]);

x*z + y*x

> Parent($1);

Finitely presented algebra of rank 3 over Rational Field

Non-commutative Graded Lexicographical Order

Variables: x, y, z

82.7 Ideals and Gröbner Bases
Magma supports left-sided, right-sided, and two-sided ideals of free algebras. In general,
there are not many operations applicable to single-sided ideals: quotients are supported
only in the case of two-sided ideals.

Within the general context of fp-algebras, the term “basis” will refer to an ordered
sequence of polynomials which generate an ideal. (Thus a basis may contain duplicates
and zero elements so it is dissimilar to a basis of a vector space.)

82.7.1 Creation of Ideals

ideal< A | L >

lideal< A | L >

rideal< A | L >

Given a free algebra A over a field K, return the two-sided (ideal), left-sided
(lideal), or right-sided (rideal) of A generated by the elements of A specified by
the list L. Each term of the list L must be an expression defining an object of one
of the following types:
(a)An element of A;
(b)A set or sequence of elements of A;
(c) An ideal of A;
(d)A set or sequence of ideals of A.

Basis(I)

2478 ALGEBRAS Part XII

Given an ideal I, return the current basis of I. If a Gröbner basis of I has been
computed, that is returned.

BasisElement(I, i)

Given an ideal I together with an integer i, return the i-th element of the current
basis of I. This the same as Basis(I)[i].

82.7.2 Gröbner Bases
Gröbner bases (GBs) may be computed for any kind of ideal (left-, right-, or two-sided),
but for single-sided ideals, the GBs are generally weak (i.e., they rarely differ much from
the original generators of the ideals).

Unfortunately, the GB of a given ideal may not be finite. Thus the Buchberger or F4

algorithms below will run forever in such cases. One can interrupt any GB computation
by pressing Ctrl-C. Alternatively, the function GroebnerBasis(S,d) below, which creates
a truncated degree-d Gröbner basis, can be used to set a limit on the degrees of the pairs
considered, so the computation will always terminate.

As in the commutative case, when Magma constructs a GB G of an ideal I, then G
is always the unique sorted minimal reduced GB of I. Before this happens, an ideal will
usually possess a basis which is not a Gröbner basis, but that will be changed into the
unique Gröbner basis when the GB is computed. Thus the original basis will be discarded.
See the procedure Groebner below for details on the algorithms available.

The unique Gröbner basis will be computed automatically when necessary; the
Groebner procedure below simply allows control of the algorithms used to compute the
Gröbner basis.

Groebner(I: parameters)

(Procedure.) Explicitly force a Gröbner basis (GB) for I to be constructed. This
procedure is normally not necessary, as Magma will automatically compute the GB
when needed, but it does allow one to control how the GB is constructed.

Faugere BoolElt Default : true

Magma has two algorithms for computing noncommutative GBs:
(1)A noncommutative generalization (due to Allan Steel) of the Faugère F4

algorithm [Fau99], which works by specialized sparse linear algebra and is
applicable to two-sided ideals defined over a finite field or the rational field;

(2)The noncommutative Buchberger algorithm [CLO96, Chap. 2, §7] for ideals
defined over any field.

If the parameter Faugere is set to true, then the Faugère F4 algorithm will be used
(if the field is a finite field or the rational field); otherwise the Buchberger algorithm
is used.

The current implementation of the Faugère algorithm is usually very much faster
than the Buchberger algorithm and usually does not take much more memory, so
that it is why it is selected by default. However, there may be examples for which it

Ch. 82 FINITELY PRESENTED ALGEBRAS 2479

may be more desirable to use the Buchberger algorithm (particularly to save some
memory).

GroebnerBasis(I: parameters)

Given an ideal I, force the Gröbner basis of I to be computed, and then return that.
The parameters are the same as those for the procedure Groebner.

GroebnerBasis(S: parameters)

Given a set or sequence S of polynomials, return the unique Gröbner basis of the two-
sided ideal generated by S as a sorted sequence. This function is useful for computing
Gröbner bases without the need to construct ideals. The parameters are the same
as those for the procedure Groebner. See also the function GroebnerBasis(S,d)
below, which creates a truncated degree-d Gröbner basis.

GroebnerBasis(S, d: parameters)

Given a set or sequence S of polynomials, return the degree-d Gröbner basis of the
ideal generated by S, which is the truncated Gröbner basis obtained by ignoring
S-polynomial pairs whose total degree is greater than d.

If the ideal is homogeneous, then it is guaranteed that the result is equal to the
set of all polynomials in the full Gröbner basis of the ideal whose total degree is less
than or equal to d, and a polynomial whose total degree is less than or equal to d
is in the ideal if and only if its normal form with respect to this truncated basis is
zero. But if the ideal is not homogeneous, these last properties may not hold, but
it may still be useful to construct the truncated basis.

The parameters are the same as those for the procedure Groebner.

82.7.3 Verbosity
This subsection describes the verbose flags available for the Gröbner basis algorithms.
There are separate verbose flags for each algorithm (Buchberger, etc.), but the all-
encompassing verbose flag Groebner includes all these flags implicitly.

For each procedure provided for setting one of these flags, the value false is equivalent
to level 0 (nothing), and true is equivalent to level 1 (minimal verbosity). For each
Set- procedure, there is also a corresponding Get- function to return the value of the
corresponding flag.

SetVerbose("Groebner", v)

(Procedure.) Change the verbose printing level for all Gröbner basis algorithms
to be v. This includes all of the algorithms whose verbosity is controlled by flags
subsequently listed, as well as some other minor related algorithms. Currently the
legal levels are 0, 1, 2, 3, or 4. One would normally set this flag to 1 for minimal
verbosity for Gröbner basis-type computations, and possibly also set one or more of
the following flags to levels higher than 1 for more verbosity.

2480 ALGEBRAS Part XII

SetVerbose("Buchberger", v)

(Procedure.) Change the verbose printing level for the Buchberger algorithm to be
v. Currently the legal levels are 0, 1, 2, 3, or 4. If the value w of the Groebner
verbose flag is greater than v, then w is taken to be the current value of this flag.

SetVerbose("Faugere", v)

(Procedure.) Change the verbose printing level for the Faugère algorithm to be v.
Currently the legal levels are 0, 1, 2, or 3. If the value w of the Groebner verbose
flag is greater than v, then w is taken to be the current value of this flag.

82.7.4 Related Functions
The following functions and procedures perform operations related to Gröbner bases.

MarkGroebner(I)

(Procedure.) Given an ideal I, mark the current basis of I to be the Gröbner basis
of the ideal with respect to the monomial order of the ideal. Note that the current
basis must exactly equal the unique (reverse) sorted minimal reduced Gröbner basis
for the ideal, as returned by the function GroebnerBasis. This procedure is useful
when one creates an ideal with a basis known to be the Gröbner basis of the ideal
from a previous computation or for other reasons. If the basis is not the unique
Gröbner basis, the results are unpredictable.

Reduce(S)

Given a set or sequence S of polynomials, return the sequence consisting of the
reduction of S. The reduction is obtained by reducing to normal form each element
of S with respect to the other elements and sorting the resulting non-zero elements
left. Note that all Gröbner bases returned by Magma are automatically reduced so
that this function would usually only be used just to simplify a set or sequence of
polynomials which is not a Gröbner basis.

Example H82E4

For a certain sequence B of noncommutative polynomials, we create the left-, right- and two-sided
ideals generated by B. We note that for the first two cases, the GB is no different from B, but
for the two-sided case, the GB contains several more elements.

> K := RationalField();

> F<x,y,z> := FreeAlgebra(K, 3);

> B := [x^2 - y*z, x*y - y*z, y*x - z^2, y^3 - x*z];

> I := lideal<F | B>;

> I;

Left ideal of Finitely presented algebra of rank 3 over Rational Field

Non-commutative Graded Lexicographical Order

Variables: x, y, z

Basis:

[

Ch. 82 FINITELY PRESENTED ALGEBRAS 2481

x^2 - y*z,

x*y - y*z,

y*x - z^2,

y^3 - x*z

]

> GroebnerBasis(I);

[

y^3 - x*z,

x^2 - y*z,

x*y - y*z,

y*x - z^2

]

> I := rideal<F | B>;

> GroebnerBasis(I);

[

y^3 - x*z,

x^2 - y*z,

x*y - y*z,

y*x - z^2

]

> I := ideal<F | B>;

> Groebner(I);

> I;

Two-sided ideal of Finitely presented algebra of rank 3 over Rational Field

Non-commutative Graded Lexicographical Order

Variables: x, y, z

Groebner basis:

[

y*z^2*y - y*z^2,

y*z^3 - y*z^2,

z*y*z^2 - y*z^2,

z^2*y^2 - y*z^2,

z^2*y*z - y*z^2,

z^3*y - y*z^2,

z^4 - y*z^2,

x*z*x - y*z^2,

x*z*y - z^3,

x*z^2 - y*z^2,

y^3 - x*z,

y^2*z - z^2*y,

y*z*x - y*z^2,

y*z*y - y*z^2,

z^2*x - z^2*y,

x^2 - y*z,

x*y - y*z,

y*x - z^2

]

> NormalForm(x*y, I);

2482 ALGEBRAS Part XII

y*z

> NormalForm(y*x, I);

z^2

Finally, we compute some truncated bases of the two-sided ideal. For degree 2, the truncated GB
has no new polynomials while for degree 3, some are added. Only at degree 5 do we obtain the
full GB.

> GroebnerBasis(B, 2);

[

y^3 - x*z,

x^2 - y*z,

x*y - y*z,

y*x - z^2

]

> GroebnerBasis(B, 3);

[

x*z^2 - y*z^2,

y^3 - x*z,

y^2*z - z^2*y,

y*z*x - y*z^2,

y*z*y - y*z^2,

z^2*x - z^2*y,

x^2 - y*z,

x*y - y*z,

y*x - z^2

]

> #GroebnerBasis(I);

18

> #GroebnerBasis(B, 4);

16

> #GroebnerBasis(B, 5);

18

> GroebnerBasis(B, 5) eq GroebnerBasis(I);

true

82.8 Basic Operations on Ideals

In the following, note that the free algebra F itself is a valid ideal (the ideal containing 1).

Ch. 82 FINITELY PRESENTED ALGEBRAS 2483

82.8.1 Construction of New Ideals

I + J

Given ideals I and J belonging to the same algebra F , return the sum of I and J ,
which is the ideal generated by the union of the generators of I and J .

I * J

Given ideals I and J belonging to the same algebra A, return the product of I and
J , which is the ideal generated by the products of the generators of I with those of
J .

F / J

Given an algebra F over a field and an ideal J of F , return the fp-algebra F/J (see
below).

Generic(I)

Given an ideal I of a generic algebra A, return A.

82.8.2 Ideal Predicates

I eq J

Given two ideals I and J belonging to the same algebra F , return whether I and J
are equal.

I ne J

Given two ideals I and J belonging to the same algebra F , return whether I and J
are not equal.

I notsubset J

Given two ideals I and J belonging to the same algebra F return whether I is not
contained in J .

I subset J

Given two ideals I and J belonging to the same algebra F return whether I is
contained in J .

IsZero(I)

Given an ideal I of the algebra F , return whether I is the zero ideal (contains zero
alone).

2484 ALGEBRAS Part XII

82.8.3 Operations on Elements of Ideals

f in I

Given a polynomial f from an algebra F , together with an ideal I of F , return
whether f is in I.

NormalForm(f, I)

Given a polynomial f from an algebra F , together with an ideal I of F , return the
unique normal form of f with respect to (the Gröbner basis of) I. The normal form
of f is zero if and only if f is in I.

NormalForm(f, S)

Given a polynomial f from an algebra F , together with a set or sequence S of
polynomials from F , return a normal form of f with respect to S. This is not
unique in general. If the normal form of f is zero then f is in the ideal generated
by S, but the converse is false in general. In fact, the normal form is unique if and
only if S forms a Groëbner basis.

f notin I

Given a polynomial f from an algebra F , together with an ideal I of F , return
whether f is not in I.

Example H82E5

We demonstrate the element operations with respect to an ideal of Q[x, y, z].

> F<x,y,z> := FreeAlgebra(RationalField(), 3);

> I := ideal<F | (x + y)^3, (y - z)^2, y^2*z + z>;

> NormalForm(y^2*z + z, I);

0

> NormalForm(x^3, I);

-x^2*y - x*y*x - x*y*z - x*z*y + x*z^2 - y*x^2 - y*x*y - y*z*x -

y*z*y - z*y*x - z*y*z + z^2*x + z^3

> NormalForm(z^4 + y^2, I);

z^4 + y*z + z*y - z^2

> x + y in I;

false

Ch. 82 FINITELY PRESENTED ALGEBRAS 2485

82.9 Changing Coefficient Ring

The ChangeRing function enables the changing of the coefficient ring of an algebra or ideal.

ChangeRing(I, S)

Given an ideal I of an algebra F = R[x1, . . . , xn] of rank n with coefficient ring
R, together with a ring S, construct the ideal J of the algebra Q = S[x1, . . . , xn]
obtained by coercing the coefficients of the elements of the basis of I into S. It is
necessary that all elements of the old coefficient ring R can be automatically coerced
into the new coefficient ring S. If R and S are fields and R is known to be a subfield
of S and the current basis of I is a Gröbner basis, then the basis of J is marked
automatically to be a Gröbner basis of J .

82.10 Finitely Presented Algebras

A finitely presented algebra (fp-algebra) in Magma is simply the quotient ring of a free
algebra F = R〈x1, . . . , xn〉 by an ideal J of F . It is an object of type AlgFP with elements
of type AlgFPElt.

The elements of fp-algebras are simply noncommutative polynomials which are always
kept reduced to normal form modulo the ideal J of “relations”. Practically all operations
which are applicable to noncommutative polynomials are also applicable in Magma to
elements of fp-algebras (when meaningful).

If an fp-algebra A has finite dimension, considered as a vector space over its coefficient
field, then extra special operations are available for A and its elements.

82.11 Creation of FP-Algebras

One can create an fp-algebra simply by forming the quotient of a free algebra by an ideal
(quo constructor or / function). A special constructor FPAlgebra is also provided to
remove the need to create the free algebra.

NOTE: When one creates an fp-algebra, the ideal of relations is left unchanged, but as
soon as one does just about any operation with elements of the algebra (such as printing
or multiplying), then the Gröbner basis of the underlying ideal will have to be computed
to enable Magma to compute a unique form of each element of the algebra.

quo< F | J >

quo< F | a1, ..., ar >

Given a free algebra F and a two-sided ideal J of F , return the fp-algebra (quotient
algebra) F/J . The ideal J may either be specified as an ideal or by a list a1, a2,
. . ., ar, of generators which all lie in F . The angle bracket notation can be used to
assign names to the indeterminates: A<q, r> := quo< I | I.1 + I.2, I.2^2 -
2, I.3^2 + I.4 >;.

2486 ALGEBRAS Part XII

F / J

Given a free algebra F and an ideal J of F , return the fp-algebra F/J .

FPAlgebra< K, X | L >

Given a field K, a list X of n identifiers, and a list L of noncommutative polynomials
(relations) in the n variables X, create the fp-algebra of rank n with base ring K
with given quotient relations; i.e., return K[X]/〈L〉. The angle bracket notation can
be used to assign names to the indeterminates.

Example H82E6

We illustrate equivalent ways of creating FP-algebras.

> K := RationalField();

> A<x,y> := FPAlgebra<K, x, y | x^2*y - y*x, x*y^3 - y*x>;

> A;

Finitely Presented Algebra of rank 2 over Rational Field

Non-commutative Graded Lexicographical Order

Variables: x, y

Quotient relations:

[

x^2*y - y*x,

x*y^3 - y*x

]

> x;

x

> x*y;

x*y

> x^2*y;

y*x

> A;

Finitely Presented Algebra of rank 2 over Rational Field

Non-commutative Graded Lexicographical Order

Variables: x, y

Quotient relations:

[

x*y*x^2 - y*x^2,

x*y*x*y - y^2*x,

x*y^2*x - y^2*x,

x*y^3 - y*x,

y*x^3 - y*x^2,

y*x*y*x - y^2*x,

y*x*y^2 - x*y*x,

y^2*x^2 - y^2*x,

y^2*x*y - y*x^2,

y^3*x - y*x^2,

x^2*y - y*x

Ch. 82 FINITELY PRESENTED ALGEBRAS 2487

]

The following is equivalent.

> K := RationalField();

> F<x,y> := FreeAlgebra(K, 2);

> A<x,y> := quo<F | x^2*y - y*x, x*y^3 - y*x>;

82.12 Operations on FP-Algebras

This section describes operations on fp-algebras. Most of the operations are very similar
to those for noncommutative free algebras; such operations are done by mapping the
computation to the preimage ideal and then by mapping the result back into the fp-algebra.
See the corresponding functions for the noncommutative free algebras for details.

A . i

Given an fp-algebra A, return the i-th indeterminate of A as an element of A.

CoefficientRing(A)

Return the coefficient ring of the fp-algebra A.

Rank(A)

Return the rank of the fp-algebra A (the number of indeterminates of A).

DivisorIdeal(I)

Given an ideal I of an fp-algebra A which is the quotient ring F/J , where F is a
free algebra and J an ideal of F , return the ideal J .

PreimageIdeal(I)

Given an ideal I of an fp-algebra A which is the quotient ring F/J , where F is a
free algebra and J an ideal of F , return the ideal I ′ of F such that the image of I ′

under the natural epimorphism F → A is I.

PreimageRing(A)

Given an fp-algebra A which is the quotient ring F/J , where F is a free algebra and
J an ideal of F , return the free algebra F .

OriginalRing(A)

Return the generic free algebra F such that A is F/J for some ideal J of F .

IsCommutative(A)

Return whether the algebra A is commutative.

2488 ALGEBRAS Part XII

I eq J

Given two ideals I and J of the same fp-algebra A, return true if and only if I and
J are equal.

I subset J

Given two ideals I and J of the same fp-algebra A, return true if and only if I is
contained in J .

I + J

Given two ideals I and J of the same fp-algebra A, return the sum I + J .

I * J

Given two ideals I and J of the same fp-algebra A, return the product I ∗ J .

IsProper(I)

Given an ideal I of the fp-algebra A, return whether I is proper; that is, whether I
is strictly contained in A.

IsZero(I)

Given an ideal I of the fp-algebra A, return whether I is the zero ideal. Note that
this is equivalent to whether the preimage ideal of I is the divisor ideal of A.

82.13 Finite Dimensional FP-Algebras

If an fp-algebra A has finite dimension, considered as a vector space over its coefficient
field, then extra special operations are available for A and the elements of A.

Dimension(A)

Given a finite dimensional fp-algebra A, return the dimension of A.

VectorSpace(A)

Given a finite dimensional fp-algebra A, construct the vector space V isomorphic to
A, and return V together with the isomorphism f from A onto V .

MatrixAlgebra(A)

Given a finite dimensional fp-algebra A, construct the matrix algebra M isomorphic
to A, and return M together with the isomorphism f from A onto M .

Algebra(A)

Given a finite dimensional fp-algebra A, construct the associative structure-constant
algebra S isomorphic to A, and return S together with the isomorphism f from A
onto S.

Ch. 82 FINITELY PRESENTED ALGEBRAS 2489

RepresentationMatrix(f)

Given an element f of a finite dimensional fp-algebra A, return the representation
matrix of f , which is a d by d matrix over the coefficient field of A which represents
f (where d is the dimension of A).

IsUnit(f)

Given an element f of a finite dimensional fp-algebra A defined over a field, return
whether f is a unit.

IsNilpotent(f)

Given an element f of a finite dimensional fp-algebra A defined over a field, return
whether f is nilpotent, and if so, return also the smallest q such that fq = 0.

MinimalPolynomial(f)

Given an element f of a finite dimensional fp-algebra A defined over a field, return
the minimal polynomial of f as a univariate polynomial over the coefficient field of
A.

Example H82E7

We demonstrate the functions available for finite-dimensional fp-algebras.

> K := RationalField();

> A<x,y,z> := FPAlgebra<K, x,y,z |

> x^2 - y*z*y + z, y^2 - y*x*y + 1, z^2 - y*x*y - x*z*x>;

> A;

Finitely Presented Algebra of rank 3 over Rational Field

Non-commutative Graded Lexicographical Order

Variables: x, y, z

Quotient relations:

[

y^4 - 7/2*z^2*x + z^3 - 1/2*x^2 + 2*y^2 + z*x + z^2 + x + 1,

z*y*x^2 + y^3 - z^2*y + y,

z^2*y*x - 1/2*z*y*z - z^2*y - 1/2*y*x,

z^2*y*z - 3/2*y*x^2 - 3/4*z*y*z - 3/2*z^2*y - 3/4*y*x - y*z - z*y,

z^3*x - 3/2*z^3 - 1/2*z*x,

z^3*y - 3/2*y*x^2 - 3/4*z*y*z - 3/2*z^2*y - 3/4*y*x - y*z - z*y,

z^4 - 2*z^2*x - 9/4*z^3 + 3/2*y^2 - 3/4*z*x - 1/2*z^2 + x + 3/2,

x^3 + 3/2*z^2*x - z^3 + 1/2*x^2 + z*x,

y^2*x - y^2 - 1,

y^2*z + 3/2*z^2*x - z^3 + 1/2*x^2 + z,

y*z*x - z*y*x,

y*z*y - x^2 - z,

y*z^2 - z^2*y,

z*x^2 + y^2 - z^2 + 1,

z*y^2 + 3/2*z^2*x - z^3 + 1/2*x^2 + z,

x*y - y*x,

2490 ALGEBRAS Part XII

x*z - z*x

]

> IsCommutative(A);

false

> y*z;

y*z

> z*y;

z*y

> U<u> := PolynomialRing(K);

> MinimalPolynomial(x);

u^8 - 7/2*u^7 + 4*u^6 - 3/2*u^5 - 1/2*u^4 + 2*u^3 - 2*u^2

> MinimalPolynomial(y);

u^16 - u^12 + 3*u^10 + u^8 - 10*u^6 - 15*u^4 - 9*u^2 - 2

> Dimension(A);

18

> V, Vf := VectorSpace(A);

> V;

Full Vector space of degree 18 over Rational Field

> Vf(x);

(0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

> [V.i@@Vf: i in [1 .. Dimension(V)]];

[

1,

z,

y,

x,

z^2,

z*y,

z*x,

y*z,

y^2,

y*x,

x^2,

z^3,

z^2*y,

z^2*x,

z*y*z,

z*y*x,

y^3,

y*x^2

]

> M, Mf := MatrixAlgebra(A);

> M;

Matrix Algebra of degree 18 with 4 generators over Rational Field

> M.1;

[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]

Ch. 82 FINITELY PRESENTED ALGEBRAS 2491

[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]

[-1 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]

[1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]

[0 0 0 0 0 0 -1 0 0 0 -1/2 1 0 -3/2 0 0 0 0]

[0 0 0 0 0 0 1/2 0 0 0 0 3/2 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 1/2 0 0 1 0 1/2 0 0 0]

[0 0 0 0 0 0 0 0 0 0 1/2 0 0 3/2 0 0 0 0]

[0 0 0 0 0 0 0 0 0 1/2 0 0 1 0 1/2 0 0 0]

[0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0]

[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 -1 0 1]

> M.1 eq RepresentationMatrix(x);

true

> MinimalPolynomial(M.1);

u^8 - 7/2*u^7 + 4*u^6 - 3/2*u^5 - 1/2*u^4 + 2*u^3 - 2*u^2

> FactoredMinimalPolynomial(M.1);

[

<u, 2>,

<u^6 - 7/2*u^5 + 4*u^4 - 3/2*u^3 - 1/2*u^2 + 2*u - 2, 1>

]

> N := Kernel(M.1);

> N;

Vector space of degree 18, dimension 4 over Rational Field

Echelonized basis:

(0 1 0 0 0 0 0 0 0 0 3/4 -1/2 0 3/4 0 0 0 0)

(0 0 0 1 3 0 0 0 0 0 0 0 0 -2 0 0 0 0)

(0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0)

(0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 0 0)

> a := N.1 @@ Vf;

> a;

3/4*z^2*x - 1/2*z^3 + 3/4*x^2 + z

> IsNilpotent(a);

true 3

> a^3;

0

> S, Sf := Algebra(A);

> S;

Associative Algebra of dimension 18 with base ring Rational Field

> Centre(S);

Associative Algebra of dimension 15 with base ring Rational Field

> J := JacobsonRadical(S);

> J;

Associative Algebra of dimension 4 with base ring Rational Field

2492 ALGEBRAS Part XII

> L := [J.i@@Sf: i in [1 .. 4]];

> L;

[

3/4*z^2*x - 1/2*z^3 + 3/4*x^2 + z,

-2*z^2*x + 3*z^2 + x,

-y*z + z*y,

-z*y*z + z^2*y

]

> [MinimalPolynomial(x): x in L];

[

u^3,

u^2,

u^3,

u^2

]

82.14 Vector Enumeration

Vector enumeration (originally misnamed module enumeration) is an algorithm for con-
verting a finitely-presented module for a finitely-presented algebra into a concrete vector
space on which the algebra has explicit matrix action. The algebra may be the group al-
gebra of an fp-group, in which case the resulting module will be a matrix representation of
the group, or it might be a more general fp-algebra, such as a Hecke algebra or a quotient
of a polynomial ring.

82.14.1 Finitely Presented Modules
For a ring R, let M be an R-module M , generated as an R-module by s elements
{m1, . . . ,ms}. There is an R-module epimorphism ψ : Rs 7→M , given by

(r1, . . . , rs) 7→ m1r1 + · · ·+msrs.

This shows that M is isomorphic to As/ kerψ.
If kerψ is generated as an R-module by a finite set L then we will say that M is

presented by s generators and the relators L.

82.14.2 S-algebras
Suppose there is another ring S, equipped with a ring homomorphism φ : S 7→ R, such
that φ(S) is central in R. In this situation any R-module can be described as an S-module,
on which R acts as a ring of S-module endomorphisms. We say that R is an S-algebra. In
particular, when S is a field k, any R-module is a k-vector space. If such a module V has
finite k-dimension n, then V is characterised by this dimension and R will act on it as a
subring of Mn(k).

Ch. 82 FINITELY PRESENTED ALGEBRAS 2493

82.14.3 Finitely Presented Algebras
Given a finite set X, and a ring S, we can define the free S-algebra A generated by X.
This can be seen either as the monoid algebra of the free monoid of words in X, or as all
expressions in X and k, combined by addition and multiplication.

Given a finite set R ⊂ A we can define

P =
A

〈ARA〉 .

We say that P is a finitely-presented S-algebra, with generators X and relators R, and
write it

P = 〈X | R〉 .
The monoid algebra of any finitely-presented monoid (or group, of course) is finitely-

presented, since

k 〈X | l1 = r1, . . . , lk = rk〉monoid = 〈X | l1 − r1, . . . , lk − rk〉k−algebra .

Furthermore, any quotient of a finitely-presented algebra by a finitely-generated two-sided
ideal is finitely-presented. This gives us the general form of a finitely-presented algebra in
Magma, as the quotient of the monoid algebra of an fp-monoid, by the two-sided ideal
generated by some additional relators.

82.14.4 Vector Enumeration
The vector enumeration algorithm explicitly reconciles these two descriptions of an R-
module, in the case where R is a finitely presented k-algebra for a field k, and M is a
finitely presented R-module, which also has finite k-dimension.

Given the presentation of R as k-algebra, and that of M as R-module, it computes the
k-dimension of M and the matrices giving the action of the generators of R on M . If M
has infinite k-dimension the algorithm will fail to terminate.

Example H82E8

We consider some examples in the abstract. Below we will see how these and other calculations
may be performed in Magma.
(1) A permutation module
In practice, it is always better to use the classical Todd-Coxeter algorithm to construct permuta-
tion representations of groups.
We know that the group with presentation

〈
a, b | a4 = b2 = (ab)2 = 1

〉

is the dihedral group of order 8. Its group algebra over any field k is thus the fp-k-algebra

〈
a, b, a′, b′ | aa′ − 1, a′a− 1, bb′ − 1, b′b− 1, a4 − 1, b2 − 1, (ab)2 − 1

〉
.

2494 ALGEBRAS Part XII

The permutation module of degree 4 of this algebra is presented by one generator (as it is transi-
tive) and the submodule generator b− 1.
Applying the algorithm to this case we obtain the matrices

a =




0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0


 b =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




and their inverses for a′ and b′.
(2) A quotient of a permutation module
Like all permutation modules, this one fixes the all-ones vector (1, 1, 1, 1), which we can see to be
an image of 1 + a′(1 + b + a′). We can construct the quotient of the permutation module by this
1-dimensional submodule by adding that word to the submodule generators. This gives

a =

(
0 0 1
1 0 0
−1 −1 −1

)
b =

(
1 0 0
0 0 1
0 1 0

)
.

(3) A non-cyclic module
A permutation module of a group-ring is cyclic (that is, generated as a module by one element) just
when the permutation representation is transitive. An intransitive permutation representation can
be easily constructed from its transitive components, but in general it is not so easy to construct
an arbitrary module from cyclic submodules. Accordingly it can be worthwhile to construct
non-cyclic modules directly.
As an example we take two copies of the representation constructed in example one, and fuse their
one-dimensional submodules. The generators and relators are as before, and now s = 2 and the
submodule generators are a2 = {(b− 1, 0), (0, b− 1), (1 + a′(1 + a′ + b),−1− a′(1 + a′ + b))}. We
obtain a representation of degree seven, given by

a =




0 0 0 1 0 0 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 −1 1 1 1 −1 −1




b =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0




.

82.14.5 The Isomorphism
In determining the k-dimension of M , and giving matrices representing the action of R
on M , the algorithm is, in effect, constructing a k-vector space, on which R has matrix
action, and which is R-module isomorphic to M , which is formally a quotient module of
Rs. The algorithm also computes this isomorphism, giving images in the vector space for
the s standard generators of Rs and pre-images in Rs of the basis of the vector space.

In example (1) above, we find that the module generator has image (1, 0, 0, 0), while
the basis vectors have pre-images 1, a′, a′2 and b.

In example (3) the images of the two module generators are (1, 0, 0, 0, 0, 0, 0) and
(0, 1, 0, 0, 0, 0, 0) while the basis vectors are images of (1, 0), (0, 1), (a′, 0) ,(a, 0), (a2, 0),
(0, a′) and (0, a).

Ch. 82 FINITELY PRESENTED ALGEBRAS 2495

82.14.6 Sketch of the Algorithm
The algorithm is based on the Haselgrove-Leech-Trotter (HLT) version of the Todd-Coxeter
algorithm, which we consider as a means of constructing the permutation representation
of a finitely-presented group on the cosets of a finitely generated subgroup.

The algorithm proceeds by manipulating a partial action of the free algebra on a vector
space. This is represented as a table, with columns indexed by the generators of the
algebra, and rows indexed by the basis of the space. Each entry is either a vector or ⊥,
signifying that no action is given.

We can extend this to a “complete action with side-effects”, by adding a new row to
the table whenever needed. We call this the action with defining.

The action of the fp-algebra P on M gives an action for the free algebra A, and our
objective is to modify out partial action until it becomes this action. We know certain
things about this action, which drive our modification process:
1. It is a complete action.
2. The relators of P annihilate every vector.
3. The images in the space of the relators of M are zero.
4. The space contains images of the R-module generators of M .
The algorithm begins by applying the fourth fact and creating s linearly independent
vectors. It then applies the third, computing the action with defining of the relators of
M (the set called L above). The fact that these images should be zero gives a linear
dependence among our basis vectors (called a coincidence), which we use to reduce their
number. As we do this, we have to take care not to lose the information already in the
table, which may give rise to further coincidences.

We now start to exploit the second fact aboutM , constructing the action (with defining)
of the relators of P , on the basis vectors, and applying the resulting coincidences. This
process may not terminate, as we are defining new basis vectors on the one hand, and
removing them through coincidences on the other. It is possible to prove, however, that if
M is in fact finite-dimensional then the process will terminate.

The first fact is applied by adding the relators x− x for each x ∈ X to the relators of
P , so that the image of every basis vector under each x is sure to be defined.

82.14.7 Weights
The above sketch leaves open the question of the order in which the relators are applied
to the basis vectors. The proof that the algorithm completes when M is finite-dimensional
imposes some rather loose constraints, but within these constraints there is considerable
choice.

The implementation in Magma uses a system of weights. Each relator r is assigned
a weight wr by the user, and each basis vector e has a weight we. There is a current
weight w, which increases as the computation progresses, and at weight w all basis vector,
relator pairs (b, r) such that wb + wr ≤ w, which have not been processed already, are
processed. New basis vectors defined during this process are assigned weight w. The
initial basis vectors and those defined during processing of the submodule generators are
assigned weight 1. See below for details of how to set the weights, and their default values.

2496 ALGEBRAS Part XII

82.14.8 Setup Functions
For V2.11, the following functions create the old representation for fp-algebras which are
necessary for the Vector Enumeration algorithm. These are compatible with older versions
of Magma. See the examples below for examples of how to use these functions.

FreeAlgebra(R, M)

FreeAlgebra(R, G)

Construct the special fp-algebra over the ring R and the monoid M or the group G,
for use in the Vector Enumeration algorithm.

82.14.9 The Quotient Module Function

QuotientModule(A, S)

Given an fp-k-algebra A, for a field k, with r generators, and a submodule N of the
free A-module of rank s specified by S, construct an A-module isomorphic to the
quotient module As/N together with the isomorphism.

The three values returned are:
M a sequence of r n× n matrices with entries in k;
I a sequence of s vectors of length n with entries in k;
P a sequence of n elements of the free A-module As.

The matrices M specify a homomorphism from A to Endk(kn), under which
kn becomes an A-module isomorphic to As/N . That isomorphism is given in one
direction by the vectors I, which are the images in kn of the s generators (1, 0, . . . , 0),
(0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1) of As. In the other direction, the elements P give
representatives for the images in As/N of the images of the n standard basis elements
of kn.

The submodule N may be specified by the parameter S in three ways:
(1)S may simply be N , a finitely generated submodule of a free A-module (except

that such an object cannot currently be created).
(2)S may be a finitely generated right ideal of A, in which case s = 1 and N is S

considered as a submodule of A considered as a right module for itself.
(3)S may be a sequence of elements of a free A-module As, in which case N is the

submodule that they generate (this is a stand in for 1 and could be removed
when 1 is implemented).

82.14.10 Structuring Presentations
The relations used by the vector enumeration algorithm come from three sources:
(1)The relations of the fp-group or fp-monoid underlying A.
(2)The relations of A itself.
(3)The generators of N .

Ch. 82 FINITELY PRESENTED ALGEBRAS 2497

The third group play the same role as subgroup generators in the Todd-Coxeter algorithm,
and are treated specially, while the first two groups are logically equivalent, forming the
relations of A in the variety of free finitely-generated associative algebras. However, when
the underlying monoid of A is actually an fp-group G, the vector enumeration algorithm
can use a more efficient technique to process the relations of G, and can take advantage of
the fact that the generators of G are known to be invertible.

This greatly improves the performance of the algorithm, and so users are recommended
to ensure as far as possible that:
(1) If the underlying monoid of an fp-algebra is in fact an fp-group then it should be

presented to Magma as such.
(2)Relations which can be written as equations between monomials should be given as

relations of the underlying monoid, rather than as relations of the algebra.

82.14.11 Options and Controls
The QuotientModule function supports a large selection of optional arguments.

82.14.12 Weights
The processing of the relations of A by the vector enumeration algorithm depends on
weights which are assigned to those relations (see above). The higher the weight of a
relation the later it will be processed. By default, all relations are given weight 3, except
those arising from relators of an fp-group, which are given weight equal to half the length
of the relator.

Separate weights are used in lookahead mode, with the same default values.

QuotientModule(A, S)

MonomialWeights [RngIntElt] Default :

MonWts [RngIntElt] Default :

This option sets the sequence of weights for the relations derived from the rela-
tions of the underlying monoid of A. The weights w1, w2, etc. are applied to the
relations in the order in which they appear. If there are fewer weights than relations
the remaining relations are assigned the default weight; if there are more weights
than relations the extra weights are silently discarded.

Unless the MonomialLookaheadweights or MonLWts parameters are present,
these weights are also used in lookahead mode.

MonomialLookaheadWeights

[RngIntElt] Default :

MonLWts [RngIntElt] Default :

This option sets the sequence of weights for the relations derived from the relations
of the underlying monoid of A in lookahead mode only. It is otherwise similar to
MonomialWeights.

AlgebraWeights [RngIntElt] Default :

2498 ALGEBRAS Part XII

AlgWts [RngIntElt] Default :

This option sets the sequence of weights for the relations given explicitly as relations
of the algebra A. It is otherwise similar to MonomialWeights.

AlgebraLookaheadWeights

[RngIntElt] Default :

AlgLWts [RngIntElt] Default :

This option sets the sequence of weights for the relations given explicitly as relations
of the algebra A in lookahead mode only. It is otherwise similar to AlgebraWeights.

82.14.13 Limits

QuotientModule(A, S)

Options in this group set limits on the progress of the algorithm. If the calculation
cannot be performed under these constraints the value undef is returned, unless the
ErrorOnFail option was set, in which case a run-time error is generated.

MaximumDimension RngIntElt Default : ∞
MaxDim [RngIntElt] Default : ∞
This sets a limit of n on the dimension of the vector-space constructed, and on

the dimension of the intermediate spaces used in the construction.
By default there is no limit, except for available memory.

MaximumTime FldReElt Default : ∞
MaxTime FldReElt Default : ∞

This sets a limit on the CPU time available for the vector enumeration. The limit
is given as a real number t and is measured in seconds.

This limit is only checked at certain points in the calculation, so it is possible
for a vector enumeration to over-run, possibly by a significant amount.

By default, there is no limit.

MaximumWeight RngIntElt Default : 100

MaxWt RngIntElt Default : 100

This sets a limit on the maximum weight of (basis vector, relation) pairs that will
be used by the algorithm.

The weight of a basis vector is the weight of the pair that was being processed
when it was defined. The weight of a pair is the weight of the basis vector plus the
weight of the relation (see above).

The default limit is 100.

Ch. 82 FINITELY PRESENTED ALGEBRAS 2499

82.14.14 Logging

QuotientModule(A, S)

There are a number of options to control the level of detail provided in the informa-
tional message from the vector enumerator. When multiple contradictory options
are given the first one given takes precedence.

NoLogging BoolElt Default : false

NoLog BoolElt Default : false

Silent BoolElt Default : false

This option turns off all the informational messages produced by the vector
enumerator.

MaximumLogging BoolElt Default : false

MaxLog BoolElt Default : false

This option turns on the highest possible level of detail in the informational mes-
sages. This is too detailed for almost all purposes except debugging.

LogActions RngIntElt Default : 0
LogAct RngIntElt Default : 0

This option sets the level of messages about the computation of the action of the
algebra on the vector space under construction. At level 0 (the default) no messages
are produced. All other levels produce copious output, with all levels above 2 being
equivalent.

LogCoincidences RngIntElt Default : 0
LogCoin RngIntElt Default : 0

This option sets the level of messages about the coincidences discovered and the
processing of them. At level 0 (the default) no messages are produced. At level 1
every coincidence and deduction is recorded when it is discovered and when it is
processed. At level 2 or higher the operation of finding the undeleted image of a
vector is also recorded.

LogInitialization RngIntElt Default : 0
LogInitialisation RngIntElt Default : 0
LogInit RngIntElt Default : 0

This option sets the level of messages about the initialisation of new basis vectors.
At level 0 (the default) no messages are produced. All other levels produce a message
whenever a new basis vector is defined.

LogPacking RngIntElt Default : 1
LogPack RngIntElt Default : 1

This option sets the level of messages about the reclamation of free space in the
tables used by the algorithm. At level 0 no messages are produced. At level 1 (the

2500 ALGEBRAS Part XII

default) it produces a message each time the pack routine is called. At level 2 or
higher it records the exact renaming used to reclaim the space.

LogPushes RngIntElt Default : 0
LogPush RngIntElt Default : 0

This option sets the level of messages about the pushing (or tracing) of (basis vector,
relation) pairs. At level 0 (the default) it produces no messages. At level 1 a message
is produced for each push that is started. At level 2 or higher the outcome of the
push is also recorded.

LogProgress RngIntElt Default : 0
LogStages RngIntElt Default : 0

This option sets the level of messages about the overall progress of the algorithm.
At level 0 no messages are produced. At level 1, simple messages are printed as the
algorithm passes through its major stages. At level 2 the relations are printed as
they are read in, and the complete action on the final module is printed. At level 3
or higher the action is also printed after the processing of submodule generators is
complete.

LogWeightChanges RngIntElt Default : 1
LogWt RngIntElt Default : 1

This option sets the level of messages about changes in the current weight (ie the
weight of (basis vector, relation pairs) currently being pushed. At level 0 no such
messages are produced. At level 1 (the default) or higher a message giving the new
weight and the current dimension is printed.

82.14.15 Miscellaneous

QuotientModule(A, S)

Lookahead BoolElt Default : true

This option controls whether, and to what extent, lookahead is used. If x is
false then lookahead is not used. If x is true, the default, the lookahead by the
default amount (two weights) is used. If x is a positive integer n then lookahead n
weights is used. A sufficiently large value of n is equivalent to complete lookahead.
Lookahead is commenced approximately every time the dimension doubles.

EarlyClosing BoolElt Default : false

Early BoolElt Default : false

This option permits the algorithm to stop as soon as the table represents a complete
action (but see below), without checking to see whether the action satisfies all the
relations. In practice this action is usually correct. The default behaviour is to
continue and check all the relations.

EarlyClosingMinimum RngIntElt Default :

ECMin RngIntElt Default :

Ch. 82 FINITELY PRESENTED ALGEBRAS 2501

This option sets a minimum dimension at which the algorithm may stop without
checking all the relators. It implies EarlyClosing.

EarlyClosingMaximum RngIntElt Default :

ECMax RngIntElt Default :

This option sets a maximum dimension at which the algorithm aamy stop without
checking all the relators. It implies EarlyClosing.

ConstructMorphism BoolElt Default : true

Morphism BoolElt Default : true

This option controls whether the third return value of the QuotientModule function
is in fact computed. A small overhead of time and space is required to compute it,
and many applications do not need it, so this option is provided. When b is true
(the default) the third return value is computed, when b is false it is not.

ErrorOnFail BoolElt Default :

ErrFail BoolElt Default :

This option controls the behaviour of the program if there is insufficient time or
space to complete the calculation, or if the calculation has not been completed
when the maximum weight is reached. If it is present a run-time error is generated,
otherwise the value undef is returned.

Example H82E9

First we repeat the examples above, in Magma. The permutation action of D8

> d8<a,b> := Group<a,b | a^4 = b^2 = (a*b)^2 = 1>;

> q := RationalField();

> a1<a,b> := FreeAlgebra(q,d8);

> i1 := rideal<a1 | b-1 >;

> mats, im, preim := QuotientModule(a1,i1);

Read Input

Done submodule generators

Starting weight 2 in define mode, 1 alive out of 2

Starting weight 3 in define mode, 1 alive out of 2

Looking ahead ...

Starting weight 4 in lookahead mode, 4 alive out of 5

Starting weight 5 in lookahead mode, 4 alive out of 5

...done

Packing 5 to 4

Starting weight 4 in define mode, 4 alive out of 4

Starting weight 5 in define mode, 4 alive out of 4

Starting weight 6 in define mode, 4 alive out of 4

Starting weight 7 in define mode, 5 alive out of 6

Starting weight 8 in define mode, 6 alive out of 7

Starting weight 9 in define mode, 4 alive out of 7

Starting weight 10 in define mode, 4 alive out of 7

Closed, 7 rows defined

2502 ALGEBRAS Part XII

Packing 7 to 4

4 live dimensions

Successful

> mats;

[

[0 0 1 0]

[1 0 0 0]

[0 0 0 1]

[0 1 0 0],

[1 0 0 0]

[0 0 1 0]

[0 1 0 0]

[0 0 0 1]

]

> im;

[

(1 0 0 0)

]

> preim;

[Id(), a^-1, a^-1 * b, a^-2]

>

Example H82E10

A quotient of that module.
We continue from the last example and set:

> d8<a,b> := Group<a,b | a^4 = b^2 = (a*b)^2 = 1>;

> q := RationalField();

> a1<a,b> := FreeAlgebra(q,d8);

> i2 := rideal<a1 | b-1, 1+a^3+a^3*b+a^2>;

> mats, im, preim := QuotientModule(a1,i2);

Read Input

Done submodule generators

Starting weight 2 in define mode, 4 alive out of 6

Starting weight 3 in define mode, 5 alive out of 7

Starting weight 4 in define mode, 3 alive out of 7

Starting weight 5 in define mode, 3 alive out of 7

Closed, 7 rows defined

Packing 7 to 3

3 live dimensions

Successful

> mats;

[

[0 1 0]

[0 0 1]

[-1 -1 -1],

Ch. 82 FINITELY PRESENTED ALGEBRAS 2503

[1 0 0]

[-1 -1 -1]

[0 0 1]

]

82.15 Bibliography
[CLO96] David Cox, John Little, and Donal O’Shea. Ideals, Varieties and Algorithms.

Undergraduate Texts in Mathematics. Springer, New York–Berlin–Heidelberg, 2nd
edition, 1996.

[Fau99] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases
(F4). Journal of Pure and Applied Algebra, 139 (1-3):61–88, 1999.

[Li02] Huishi Li. Noncommutative Gröbner Bases and Filtered-Graded Transfer, vol-
ume 1795 of Lecture Notes in Math. Springer-Verlag, Berlin–Heidelberg–New York,
2002.

[Mor94] Teo Mora. An introduction to commutative and noncommutative Gröbner
bases. Theoretical Computer Science, 134:134–173, 1994.

83 MATRIX ALGEBRAS
83.1 Introduction 2509

83.2 Construction of Matrix Algebras
and their Elements 2509

83.2.1 Construction of the Complete Matrix
Algebra 2509

MatrixAlgebra(S, n) 2509
MatrixRing(S, n) 2509

83.2.2 Construction of a Matrix 2509

elt< > 2509
! 2509
CambridgeMatrix(t, K, n, Q) 2510
CompanionMatrix(p) 2510
DiagonalMatrix(R, Q) 2510
MatrixUnit(R, i, j) 2510
Random(R) 2510
ScalarMatrix(R, t) 2510
! 2510
! 2510
! 2510
83.2.3 Constructing a General Matrix Alge-

bra 2511

MatrixAlgebra< > 2511
MatrixRing< > 2511

83.2.4 The Invariants of a Matrix Algebra 2512

. 2512
BaseRing(R) 2512
CoefficientRing(R) 2512
Degree(R) 2512
Generators(R) 2512
Generic(R) 2512
BaseModule(R) 2512
NumberOfGenerators(R) 2512
Ngens(R) 2512
Parent(a) 2512

83.3 Construction of Subalgebras,
Ideals and Quotient Rings . . 2513

sub< > 2513
ideal< > 2514
lideal< > 2514
rideal< > 2514

83.4 The Construction of Extensions
and their Elements 2515

83.4.1 The Construction of Direct Sums and
Tensor Products 2515

DirectSum(R, T) 2515
TensorProduct(A, B) 2515

83.4.2 Construction of Direct Sums and
Tensor Products of Elements . . . 2517

DirectSum(a, b) 2517
ExteriorSquare(a) 2517

ExteriorPower(a,r) 2517
SymmetricSquare(a) 2517
SymmetricPower(a,r) 2517
TensorProduct(a, b) 2517

83.5 Operations on Matrix Algebras 2518

Centre(A) 2518
Centralizer(A, S) 2518

83.6 Changing Rings 2518

ChangeRing(A, S) 2518
ChangeRing(A, S, f) 2518
hom< > 2518

83.7 Elementary Operations on Ele-
ments 2518

83.7.1 Arithmetic 2518

+ 2518
+ 2518
+ 2518
- 2518
- 2518
- 2519
- 2519
* 2519
* 2519
* 2519
* 2519
* 2519
* 2519
^ 2519
NumberOfColumns(a) 2519
Ncols(a) 2519
NumberOfRows(a) 2519
Nrows(a) 2519

83.7.2 Predicates 2519

eq 2520
ne 2520
IsDiagonal(a) 2520
IsMinusOne(a) 2520
IsOne(a) 2520
IsScalar(a) 2520
IsSymmetric(a) 2520
IsUnit(a) 2520
IsZero(a) 2520
IsNilpotent(a) 2520
IsUnipotent(a) 2521
Rank(a) 2521
Determinant(A) 2521
Trace(a) 2521
Transpose(a) 2521
Order(a) 2522
FactoredOrder(a) 2522
ProjectiveOrder(a) 2522
FactoredProjectiveOrder(a) 2522

2506 ALGEBRAS Part XII

CharacteristicPolynomial(a: -) 2522
MinimalPolynomial(a) 2522
HessenbergForm(a) 2522
Adjoint(a) 2522
Eigenvalues(a) 2523
Eigenspace(a, e) 2523

83.8 Elements of Mn as Homomor-
phisms 2523

Image(a) 2523
RowSpace(a) 2523
Kernel(a) 2523
NullSpace(a) 2523
RowNullSpace(a) 2523
NullspaceOfTranspose(a) 2523

83.9 Elementary Operations on Subal-
gebras and Ideals 2524

83.9.1 Bases 2524

Dimension(R) 2524
Basis(R) 2524
BasisElement(R, i) 2524
Coordinates(R, X) 2524

83.9.2 Intersection of Subalgebras 2524

meet 2524

83.9.3 Membership and Equality 2524

in 2524
subset 2524
subset 2524
notin 2525
notsubset 2525
notsubset 2525
eq 2525
ne 2525

83.10 Accessing and Modifying a
Matrix 2525

83.10.1 Indexing 2525

a[i] 2525
a[i] := u 2525
a[i, j] 2525
a[i, j] := t 2525
ElementToSequence(a) 2525
Eltseq(a) 2525

83.10.2 Extracting and Inserting Blocks . 2526

Submatrix(a, i, j, p, q) 2526
ExtractBlock(a, i, j, p, q) 2526
InsertBlock(∼a, b, i, j) 2526

83.10.3 Joining Matrices 2526

HorizontalJoin(X, Y) 2526
HorizontalJoin(Q) 2526
VerticalJoin(X, Y) 2526
VerticalJoin(Q) 2526
DiagonalJoin(X, Y) 2526
DiagonalJoin(Q) 2527

83.10.4 Row and Column Operations . . 2527

SwapRows(∼a, i, j) 2527
MultiplyRow(∼a, u, j) 2527
AddRow(∼a, u, i, j) 2527
SwapColumns(∼a, i, j) 2527
MultiplyColumn(∼a, u, i) 2527
AddColumn(∼a, u, i, j) 2527

83.11 Canonical Forms 2527
83.11.1 Canonical Forms for Matrices over

Euclidean Domains 2527

EchelonForm(a) 2527
ElementaryDivisors(a) 2528
HermiteForm(X) 2528
SmithForm(a) 2528
83.11.2 Canonical Forms for Matrices over

a Field 2529

PrimaryRationalForm(a) 2529
JordanForm(a) 2529
RationalForm(a) 2530
PrimaryInvariantFactors(a) 2530
InvariantFactors(a) 2530
IsSimilar(a, b) 2530

83.12 Diagonalising Commutative
Algebras over a Field . . . 2532

CommonEigenspaces(Q) 2532
CommonEigenspaces(A) 2532
Diagonalisation(Q) 2533
Diagonalization(Q) 2533
Diagonalisation(A) 2533
Diagonalization(A) 2533

83.13 Solutions of Systems of Linear
Equations 2534

IsConsistent(A, w) 2534
IsConsistent(A, W) 2534
Solution(A, w) 2534
Solution(A, W) 2534

83.14 Presentations for Matrix Alge-
bras 2535

83.14.1 Quotients and Idempotents . . . 2535

NaturalFreeAlgebraCover(A) 2535
SimpleQuotientAlgebras(A) 2535
PrimitiveIdempotentData(A) 2536
PrimitiveIdempotents(A) 2536
RanksOfPrimitiveIdempotents(A) 2536
NaturalFreeAlgebraCover(A) 2536
CondensedAlgebra(A) 2536

83.14.2 Generators and Presentations . . 2538

SemisimpleGeneratorData(A) 2538
AlgebraGenerators(A) 2539
AlgebraStructure(A) 2539
Presentation(A) 2540
StandardFormConjugationMatrices(A) 2540
CondensationMatrices(A) 2540
SequenceOfRadicalGenerators(A) 2540
CartanMatrix(A) 2540

Ch. 83 MATRIX ALGEBRAS 2507

83.14.3 Solving the Word Problem . . . 2542

WordProblemData(A) 2542

WordProblem(A, x) 2542

83.15 Bibliography 2544

Chapter 83

MATRIX ALGEBRAS

83.1 Introduction

Matrix algebras (or matrix rings) may be defined over any ring S. We shall regard such
a matrix algebra as an S-algebra. Let us denote the complete algebra of n × n matrices
over S by Mn(S). It will often be convenient to regard Mn(S) as the endomorphism ring
of the free S-module S(n). We will then speak of S(n) as the natural S-module associated
with Mn(S).

Matrix algebras have type AlgMat and their elements have type AlgMatElt. These types
inherit from AlgMatV and AlgMatVElt respectively (which cover both ordinary matrix
algebras and matrix Lie algebras).

83.2 Construction of Matrix Algebras and their Elements

83.2.1 Construction of the Complete Matrix Algebra

MatrixAlgebra(S, n)

MatrixRing(S, n)

Given a positive integer n and a ring S, create the complete matrix algebra Mn(S),
consisting of all n× n matrices with coefficients in the ring S.

83.2.2 Construction of a Matrix

elt< R | L >

Given a matrix algebra defined as a subalgebra of Mn(S), create the element of R
defined by the list L of n2 elements from S.

R ! Q

Given a matrix algebra R defined as a subalgebra of Mn(S) and a sequence Q =
[a11, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann] of n2 elements of S, return the matrix



a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann




as an element of R. Note that the algebra R must exist before an attempt is made
to create matrices.

2510 ALGEBRAS Part XII

CambridgeMatrix(t, K, n, Q)

This function creates a n by n matrix over the finite field K of cardinality q specified
in a “Cambridge” format in the general matrix algebra of degree n over K. The
parameter t specifies the type of the format. If t is 1, then q is assumed to be less
than 10 and the sequence Q must consist of n strings which give the n rows—each
string must have length n and contain the entries of that row (each entry is a digit
in the range [0, q − 1]). If t is 3 then Q must consist of n2 integers in the range
[0, q − 1] which give the entries in row-major order. In either format, if q = pe,
where p is prime and e > 1, then an entry x is written as a vector using the base-p
representation of length e of x and the corresponding element in K is used (see
the Finite Fields chapter for details). This function is principally provided for the
reading in of large matrices.

CompanionMatrix(p)

Given a monic polynomial p of degree n over a ring R, create the companion matrix
C for p as an element of Mn(R). The minimal and characteristic polynomial of C
is then p.

DiagonalMatrix(R, Q)

If R is a subalgebra of Mn(S) and Q is a sequence of n elements of S, create the
diagonal matrix diag(Q[1], Q[2], . . . , Q[n]).

MatrixUnit(R, i, j)

Create the matrix unit E(i, j) in the matrix algebra R, i.e. the matrix having the
one of the coefficient ring of R in position (i, j) and zeros elsewhere.

Random(R)

Create a random matrix of the matrix algebra R.

ScalarMatrix(R, t)

If R is a subalgebra of Mn(S) and t is an element of the ring S, create the scalar
matrix t ∗ I in R.

R ! 1

Create the identity matrix In of the matrix algebra R.

R ! 0

Create the zero matrix of the matrix algebra R.

R ! t

Create the scalar matrix t ∗ I of the matrix algebra R.

Ch. 83 MATRIX ALGEBRAS 2511

83.2.3 Constructing a General Matrix Algebra

MatrixAlgebra< S, n | L >

MatrixRing< S, n | L >

Given a commutative ring S and a positive integer n, create the S-algebra R con-
sisting of the n × n matrices over the ring S generated by the elements defined in
the list L. Let F denote the algebra Mn(S). Each term Li of the list L must be an
expression defining an object of one of the following types:
(a)A sequence of n2 elements of S defining an element of F .
(b)A set or sequence whose terms are sequences of type (a).
(c) An element of F .
(d)A set or sequence whose terms are elements of F .
(e) The null list.
The generators stored for R consist of the elements specified by terms Li together
with the stored generators for subalgebras specified by terms of Li. Repetitions of
an element and occurrences of scalar matrices are removed.

Example H83E1

We demonstrate the use of the matrix algebra constructor by creating an algebra of 3 × 3 lower-
triangular matrices over the rational field.

> Q := RationalField();

> A := MatrixAlgebra< Q, 3 | [1/3,0,0, 3/2,3,0, -1/2,4,3],

> [3,0,0, 1/2,-5,0, 8,-1/2,4] >;

> A:Maximal;

Matrix Algebra of degree 3 with 2 generators over Rational Field

Generators:

[1/3 0 0]

[3/2 3 0]

[-1/2 4 3]

[3 0 0]

[1/2 -5 0]

[8 -1/2 4]

> Dimension(A);

6

Example H83E2

We construct a 4 by 4 matrix over the finite field with 5 elements using the CambridgeMatrix
function.

> K := FiniteField(5);

> x := CambridgeMatrix(1, K, 4, ["1234", "0111", "4321", "1211"]);

2512 ALGEBRAS Part XII

> x;

[1 2 3 4]

[0 1 1 1]

[4 3 2 1]

[1 2 1 1]

83.2.4 The Invariants of a Matrix Algebra

R . i

The i-th defining generator for the matrix algebra R.

BaseRing(R)

CoefficientRing(R)

The coefficient ring S for the matrix algebra R.

Degree(R)

Given a matrix algebra R, return the degree n of R.

Generators(R)

The set consisting of the defining generators for the matrix algebra R.

Generic(R)

The complete matrix algebra Mn(S) in which the matrix algebra R is naturally
embedded.

BaseModule(R)

If R is a subring of the matrix algebra Mn(S), then R is considered to act on the
free S-module of rank n, consisting of n-tuples over S. The function BaseModule
returns this S-module.

NumberOfGenerators(R)

Ngens(R)

The number of defining generators for the matrix algebra R.

Parent(a)

Given an element a belonging to the matrix algebra R, return R, i.e. the parent
structure for a.

Ch. 83 MATRIX ALGEBRAS 2513

Example H83E3

We illustrate the use of these functions by applying them to the algebra of 3× 3 lower-triangular
matrices over the rational field constructed above.

> Q := RationalField();

> A := MatrixAlgebra< Q, 3 | [1/3,0,0, 3/2,3,0, -1/2,4,3],

> [3,0,0, 1/2,-5,0, 8,-1/2,4] >;

> CoefficientRing(A);

Rational Field

> Degree(A);

3

> Ngens(A);

2

> Generators(A);

{

[1/3 0 0]

[3/2 3 0]

[-1/2 4 3],

[3 0 0]

[1/2 -5 0]

[8 -1/2 4]

}

> Generic(A);

Full Matrix Algebra of degree 3 over Rational Field

> Dimension(A);

6

83.3 Construction of Subalgebras, Ideals and Quotient Rings

sub< R | L >

Given the matrix algebra R, defined as a subring of Mn(S), construct the subring
T of R generated by the elements specified by the list L, where L is a list of one or
more items of the following types:
(a)A sequence of n2 elements of S defining an element of R;
(b)An element of R;
(c) A set or sequence of elements of R;
(d)A subring of R;
(e) A set or sequence of subrings of R.
Each element or subalgebra specified by the list must belong to the same complete
matrix algebra. The subalgebra T will be constructed as a subalgebra of some

2514 ALGEBRAS Part XII

matrix algebra which contains each of the elements and subalgebras specified in the
list.

The generators of T consist of the elements specified by the terms of the list
L together with the stored generators for subalgebras specified by terms of the
list. Repetitions of an element and occurrences of the identity element are removed
(unless T is trivial).

The constructor returns the subalgebra T and the inclusion homomorphism f :
T → R.

ideal< R | L >

Given the matrix algebra R, construct the two-sided ideal I of R generated by the
elements of R specified by the list L, where the possibilities for L are the same as
for the sub-constructor.

lideal< R | L >

Given the matrix algebra R, construct the left ideal I of R generated by the elements
of R specified by the list L, where the possibilities for L are the same as for the
sub-constructor.

rideal< R | L >

Given the matrix algebra R, construct the right ideal I of R generated by the
elements of R specified in the list L, where the possibilities for L are the same as
for the sub-constructor.

Example H83E4

We construct the subalgebra of the matrix algebra A (defined above) that is generated by the first
generator.

> Q := RationalField();

> A := MatrixAlgebra< Q, 3 | [1/3,0,0, 3/2,3,0, -1/2,4,3],

> [3,0,0, 1/2,-5,0, 8,-1/2,4] >;

> B := sub< A | A.1 >;

> Dimension(B);

3

> B: Maximal;

Matrix Algebra of degree 3 and dimension 3 with 1 generator

over Rational Field

Generators:

[1/3 0 0]

[3/2 3 0]

[-1/2 4 3]

Basis:

[1 0 0]

[0 1 0]

Ch. 83 MATRIX ALGEBRAS 2515

[0 0 1]

[0 0 0]

[1 16/9 0]

[0 88/27 16/9]

[0 0 0]

[0 0 0]

[1 16/9 0]

83.4 The Construction of Extensions and their Elements

83.4.1 The Construction of Direct Sums and Tensor Products

DirectSum(R, T)

Given two matrix algebras R and T , where R and T have the same coefficient ring
S, return the direct sum D of R and T (with the action given by the direct sum of
the action of R and the action of T).

TensorProduct(A, B)

Given two unital matrix algebras A and B, where A and B have the same coefficient
ring S, construct the tensor product of A and B.

Example H83E5

We construct the direct product and tensor product of the matrix algebra A (defined above) with
itself.

> Q := RationalField();

> A := MatrixAlgebra< Q, 3 | [1/3,0,0, 3/2,3,0, -1/2,4,3],

> [3,0,0, 1/2,-5,0, 8,-1/2,4] >;

> AplusA := DirectSum(A, A);

> AplusA: Maximal;

Matrix Algebra of degree 6 with 4 generators over

Rational Field

Generators:

[1/3 0 0 0 0 0]

[3/2 3 0 0 0 0]

[-1/2 4 3 0 0 0]

[0 0 0 0 0 0]

[0 0 0 0 0 0]

[0 0 0 0 0 0]

[3 0 0 0 0 0]

[1/2 -5 0 0 0 0]

[8 -1/2 4 0 0 0]

2516 ALGEBRAS Part XII

[0 0 0 0 0 0]

[0 0 0 0 0 0]

[0 0 0 0 0 0]

[0 0 0 0 0 0]

[0 0 0 0 0 0]

[0 0 0 0 0 0]

[0 0 0 1/3 0 0]

[0 0 0 3/2 3 0]

[0 0 0 -1/2 4 3]

[0 0 0 0 0 0]

[0 0 0 0 0 0]

[0 0 0 0 0 0]

[0 0 0 3 0 0]

[0 0 0 1/2 -5 0]

[0 0 0 8 -1/2 4]

> AtimesA := TensorProduct(A, A);

> AtimesA: Maximal;

Matrix Algebra of degree 9 with 4 generators over

Rational Field

Generators:

[1/3 0 0 0 0 0 0 0 0]

[0 1/3 0 0 0 0 0 0 0]

[0 0 1/3 0 0 0 0 0 0]

[3/2 0 0 3 0 0 0 0 0]

[0 3/2 0 0 3 0 0 0 0]

[0 0 3/2 0 0 3 0 0 0]

[-1/2 0 0 4 0 0 3 0 0]

[0 -1/2 0 0 4 0 0 3 0]

[0 0 -1/2 0 0 4 0 0 3]

[3 0 0 0 0 0 0 0 0]

[0 3 0 0 0 0 0 0 0]

[0 0 3 0 0 0 0 0 0]

[1/2 0 0 -5 0 0 0 0 0]

[0 1/2 0 0 -5 0 0 0 0]

[0 0 1/2 0 0 -5 0 0 0]

[8 0 0 -1/2 0 0 4 0 0]

[0 8 0 0 -1/2 0 0 4 0]

[0 0 8 0 0 -1/2 0 0 4]

[1/3 0 0 0 0 0 0 0 0]

[3/2 3 0 0 0 0 0 0 0]

[-1/2 4 3 0 0 0 0 0 0]

[0 0 0 1/3 0 0 0 0 0]

[0 0 0 3/2 3 0 0 0 0]

[0 0 0 -1/2 4 3 0 0 0]

Ch. 83 MATRIX ALGEBRAS 2517

[0 0 0 0 0 0 1/3 0 0]

[0 0 0 0 0 0 3/2 3 0]

[0 0 0 0 0 0 -1/2 4 3]

[3 0 0 0 0 0 0 0 0]

[1/2 -5 0 0 0 0 0 0 0]

[8 -1/2 4 0 0 0 0 0 0]

[0 0 0 3 0 0 0 0 0]

[0 0 0 1/2 -5 0 0 0 0]

[0 0 0 8 -1/2 4 0 0 0]

[0 0 0 0 0 0 3 0 0]

[0 0 0 0 0 0 1/2 -5 0]

[0 0 0 0 0 0 8 -1/2 4]

83.4.2 Construction of Direct Sums and Tensor Products of Elements

DirectSum(a, b)

Given an element a of the matrix algebra Q and an element b of the matrix algebra
R, form the direct sum of matrices a and b. The square is returned as an element
of the matrix algebra T , which must be the direct sum of the parent of a and the
parent of b.

ExteriorSquare(a)

Given an element a of the matrix algebra Mn(S), form the exterior square of a as
an element of Mm(S), where m = n(n− 1)/2.

ExteriorPower(a,r)

Given an element a of the matrix algebra Mn(S), form the rth exterior power of a
as an element of Mm(S), where

(
m=n

r

)
.

SymmetricSquare(a)

Given an element a of the matrix algebra Mn(S), form the symmetric square of a
as an element of Mm(S), where m = n(n+ 1)/2.

SymmetricPower(a,r)

Given an element a of the matrix algebra Mn(S), form the rth symmetric power of
a as an element of Mm(S), for the appropriate m.

TensorProduct(a, b)

Given an element a belonging to a subalgebra of Mn1(S) and an element b belonging
to a subalgebra of Mn2(S), construct the tensor product of a and b as an element
of the matrix algebra Mn(S), where n = n1 ∗ n2.

2518 ALGEBRAS Part XII

83.5 Operations on Matrix Algebras

Centre(A)

Given a matrix algebra A whose base ring is a field, return the centre of A.

Centralizer(A, S)

Given a matrix algebra A whose base ring is a field, together with a subalgebra S
of A return the centralizer of S in A.

83.6 Changing Rings

ChangeRing(A, S)

Given a matrix algebra A with base ring R, together with a ring S, construct the
matrix algebra B with base ring S obtained by coercing the components of elements
of A into S, together with the homomorphism from A to B.

ChangeRing(A, S, f)

Given a matrix algebra A with base ring R, together with a ring S and a homomor-
phism f : R− > S, construct the matrix algebra B with base ring S obtained by
mapping the components of elements of R into S by f , together with the homomor-
phism from A to B.

hom< A -> B | f >

Given full matrix algebras A and B, together with a homomorphism f from the
base ring R of A to the base ring S of B, create the homomorphism from A to B
which, given a matrix in A, applies f to the entries of the matrix.

83.7 Elementary Operations on Elements

83.7.1 Arithmetic

a + b

Sum of the matrices a and b, where a and b belong to a common matrix algebra R.

a + t

t + a

Sum of the matrix a and the scalar matrix t ∗ I.
-a

Negation of the matrix a.

a - b

Difference of the matrices a and b, where a and b belong to the same matrix algebra
R.

Ch. 83 MATRIX ALGEBRAS 2519

a - t

t - a

Difference of the matrix a and the scalar matrix t ∗ I.

a * b

Product of the matrices a and b, where a and b belong to the same matrix algebra
R.

a * b

Given a matrix a belonging to a subalgebra of Mn(S) and an element b of a sub-
module of Hom(R(n), R(m)), construct the product of a and b as an element of
Hom(R(n), R(m)).

a * b

Given a matrix a belonging to a submodule of Hom(R(n), R(m)) and an element
b of a subalgebra of Mm(S), construct the product of a and b as an element of
Hom(R(n), R(m)).

t * a

a * t

Given an element a of the matrix algebra R, and an element t belonging to the
coefficient ring S of R, form their scalar product.

u * a

Given an element u belonging to the S-module S(n) and an element a belonging to
a subalgebra of Mn(S), form the element u ∗ a of Sn.

a ^ n

If n is positive, form the n-th power of a; if n is zero, form the identity matrix; if n
is negative, form the (−n)-th power of the inverse of a.

NumberOfColumns(a)

Ncols(a)

The number of columns in the matrix a.

NumberOfRows(a)

Nrows(a)

The number of rows in the matrix a.

83.7.2 Predicates

2520 ALGEBRAS Part XII

83.7.2.1 Comparison

a eq b

Returns true if the matrix a is equal to the matrix b, where a and b are elements
of a common matrix algebra R.

a ne b

Returns true if the matrix a is not equal to the matrix b, where a and b are elements
of a common matrix algebra R.

83.7.2.2 Properties of Elements
The functions given here test properties of matrices. See also the section in the Lattices
chapter for a description of the function IsPositiveDefinite and related functions.

IsDiagonal(a)

Returns true iff the element a belonging to the matrix algebra R is a diagonal
matrix; i.e. the only non-zero entries are on the diagonal.

IsMinusOne(a)

Returns true iff the element a belonging to the matrix algebra R is the negation of
the identity element for R.

IsOne(a)

Returns true iff the element a belonging to the matrix algebra R is the identity
element for R.

IsScalar(a)

Returns true iff the element a belonging to the matrix algebra R is a scalar matrix.

IsSymmetric(a)

Returns true iff the element a belonging to the matrix algebra R is a symmetric
matrix; i.e. the transpose of a equals a.

IsUnit(a)

Returns true iff the matrix a belonging to the matrix algebra R is a unit.

IsZero(a)

Returns true iff the element a belonging to the matrix algebra R is the zero element
for R.

IsNilpotent(a)

Return true if some power of the matrix a belonging to a matrix algebra is the zero
of the matrix algebra. Also returns the minimum exponent n such that an = 0.

Ch. 83 MATRIX ALGEBRAS 2521

IsUnipotent(a)

Return true if the matrix a belonging to a matrix algebra is the identity of that
algebra plus a nilpotent matrix. Also returns the index of nilpotence of a− I.

Rank(a)

Return the rank of the element a belonging to the matrix algebra R.

Determinant(A)

MonteCarloLevel RngIntElt Default : 0

Proof BoolElt Default : true

pAdic BoolElt Default : true

Divisor RngIntElt Default : 0

Given a square matrix A over the ring R, return the determinant of A as an element
of R. R may be any commutative ring. The determinant of the 0 × 0 matrix over
R is defined to be R!1.

If the coefficient ring is the integer ring Z or the rational field Q then a modular
algorithm based on that of Abbott et al. [ABM99] is used, which first computes a
divisor d of the determinant D using a fast p-adic nullspace computation, and then
computes the quotient D/d by computing the determinant D modulo enough small
primes to cover the Hadamard bound divided by d. This always yields a correct
answer.

If the parameter MonteCarloLevel is set to a small positive integer s, then a
probabilistic Monte-Carlo modular technique is used. Rather than using sufficient
primes to cover the Hadamard bound divided by the divisor d, this version of the
algorithm terminates when the constructed residue remains constant for s steps.
The probability of this being wrong is non-zero but extremely small, even if s is
only 1 or 2. If the level is set to 0, then the normal deterministic algorithm is used.
Setting the parameter Proof to falseis equivalent to setting MonteCarloLevel to
2.

If the coefficient ring is Z and the parameter Divisor is set to an integer d, then
d must be a known exact divisor of the determinant (the sign does not matter), and
the algorithm may be sped up because of this knowledge.

Trace(a)

Given an element a of a subalgebra of Mn(S), return the trace of a as an element
of S.

Transpose(a)

Given an element a of a subalgebra ofMn(S), return the transpose of a as an element
of Mn(S).

2522 ALGEBRAS Part XII

Order(a)

Given an invertible matrix a over any commutative ring, determine the order of a.
If a has infinite order, the function may become stuck indefinitely since it cannot
prove such.

FactoredOrder(a)

Given an invertible matrix a over a finite field, return the order of a in factored
form.

ProjectiveOrder(a)

Given an invertible matrix a over a finite field, return the projective order o of a
and a scalar s such that ao = sI.

FactoredProjectiveOrder(a)

Given an invertible matrix a over a finite field, return the projective order o of a in
factored form and a scalar s such that ao = sI.

CharacteristicPolynomial(a: parameters)

Al MonStgElt Default : “Modular”
Proof BoolElt Default : true

The characteristic polynomial of the element a belonging to the algebra Mn(R),
where R can be any commutative ring. The parameter Al may be used to specify
the algorithm used. The algorithm Modular (the default) can be used for matrices
over Z and Q—in such a case the parameter Proof can also be used to suppress proof
of correctness. The algorithm Hessenberg, allowed for matrices over fields, works
by first reducing the matrix to Hessenberg form. The algorithm Interpolation,
allowed for matrices over Z and Q, works by evaluating the characteristic matrix
of a at various points and then interpolating. The algorithm Trace, allowed for
matrices over fields, works by calculating the traces of powers of a.

MinimalPolynomial(a)

The minimal polynomial of the element a belonging to the module Mn(R), where
R is a field or Z.

HessenbergForm(a)

The Hessenberg form for the matrix a belonging to the algebra Mn(K), where the
coefficient ring K must be a field. The form has zero entries above the super-
diagonal. (This form is used in one of the characteristic polynomial algorithms.)

Adjoint(a)

The adjoint of the matrix a belonging to the algebra Mn(K), where the coefficient
ring K must be a ring with exact division whose characteristic must be zero or
greater than the degree of a.

Ch. 83 MATRIX ALGEBRAS 2523

Eigenvalues(a)

The eigenvalues of the matrix a returned as a set of pairs, each of which gives the
value of a distinct eigenvalue and its multiplicity. The coefficient ring must have a
polynomial roots algorithm.

Eigenspace(a, e)

The eigenspace of the matrix a, corresponding to the eigenvalue e, returned as a
submodule of the base module for the parent algebra of a (i.e. the kernel of a− eI).
If the ring element e is not a eigenvalue for the matrix a then the trivial space is
returned.

83.8 Elements of Mn as Homomorphisms

The matrix algebra Mn(S) may also be viewed as the module Hom(S(n), S(n)). At present
this will not happen automatically so that in order to treat elements of Mn(S) as homo-
morphisms, it is necessary to explicitly coerce the matrix into Hom(S(n), S(n)). However,
two fundamental homomorphism-type operators are provided for elements of Mn(S).

Image(a)

RowSpace(a)

Given an element of Mn(S), return the image of the module S(n) under the homo-
morphism represented by the matrix a (as an element of S(n)).

Kernel(a)

NullSpace(a)

Al MonStgElt Default : “Default”

Given an element of Mn(S), return the kernel of the homomorphism represented by
the matrix a (as an element of S(n)).

RowNullSpace(a)

NullspaceOfTranspose(a)

Given an element of Mn(S), return the row nullspace of the homomorphism repre-
sented by the matrix a (as an element of S(n)). This is equal to the kernel of the
transpose of a.

2524 ALGEBRAS Part XII

83.9 Elementary Operations on Subalgebras and Ideals

83.9.1 Bases
The functions described here assume that the matrix algebra R is defined over a ring S
with a matrix echelonization algorithm. Magma computes a basis for R considered as a
S-module when necessary so then operations like membership testing can be performed.
The following functions allow one to access this basis.

Dimension(R)

Assuming that R is a subalgebra of Mn(S), return the dimension of R, considered
as a S-module.

Basis(R)

Assuming that R is a subalgebra of Mn(S), return the S-basis of R, considered as
a S-module. The basis is returned as a sequence of matrices of R.

BasisElement(R, i)

Given R a subalgebra of Mn(S), return the i-th element of the S-basis of R, where
i must be between 1 and the dimension of R.

Coordinates(R, X)

Assuming that R is a subalgebra of Mn(S), and given an element X of R, return
the coordinates of X with respect to the basis of R. If R has dimension k over its
coefficient ring S, and R has basis U1, . . . , Uk, the coordinates are returned as the
unique sequence [a1, . . . , ak] of elements of S such that X = a1U1 + . . .+ arUr.

83.9.2 Intersection of Subalgebras

R meet T

Given algebras R and S that are subalgebras of the same complete algebra Mn(S),
where S is a PIR, this operator constructs their intersection.

83.9.3 Membership and Equality
The operations described here assume that the matrix algebra is defined over a principal
ideal ring.

x in R

X subset R

T subset R

Given a matrix x (set of matrices X, matrix algebra T) and a matrix algebra R all
belonging to a common matrix algebra defined over a PIR, return true if x (X, T ,
respectively) is contained in R, false otherwise.

Ch. 83 MATRIX ALGEBRAS 2525

x notin R

X notsubset R

T notsubset R

Given a matrix x (set of matrices X, matrix algebra T) and a matrix algebra R all
belonging to a common matrix algebra defined over a PIR, return true if x (X, T ,
respectively) is not contained in R, false otherwise.

R eq T

Given a matrix algebra R, and a matrix algebra T , return true if R is equal to T ,
false otherwise.

R ne T

Given a matrix algebra R and a matrix algebra T , return true if R is not equal to
T , false otherwise.

83.10 Accessing and Modifying a Matrix

83.10.1 Indexing

a[i]

Given an element a belonging to the matrix algebra R over the ring S, return the
i-th row of a as an element of the natural S-module associated with R.

a[i] := u

Given an element a belonging to the matrix algebra R over the ring S, an integer
i in the range [1, n] and an element u of the natural S-module associated with R,
replace the i-th row of a by the vector u.

a[i, j]

Given an element a belonging to the matrix algebra R over the ring S, return the
(i, j)-th entry of a as an element of S.

a[i, j] := t

Given an element a belonging to the matrix algebra R over the ring S, integers i
and j in the range [1, n], and an element t of S, replace the (i, j)-th entry of a by t.

ElementToSequence(a)

Eltseq(a)

Given an element a of the matrix algebra R over S, where a = (aij), 1 ≤ i, j ≤ n,
return a as the sequence of elements of S:

[a11, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann].

2526 ALGEBRAS Part XII

83.10.2 Extracting and Inserting Blocks

Submatrix(a, i, j, p, q)

ExtractBlock(a, i, j, p, q)

Given a matrix a belonging to a subalgebra of Mn(S) and integers i, j, p and q
satisfying the conditions, 1 ≤ i + p ≤ m, 1 ≤ j + q ≤ n, create the matrix b
consisting of the p × q submatrix of a whose first entry is the (i, j)-th entry of a.
If p 6= q, the matrix b is created as an element of Hom(P,Q), where Rank(P) = p,
Rank(Q) = q. Otherwise it is created as an element of Mp(S).

InsertBlock(∼a, b, i, j)

(Procedure.) Given that the matrix a belongs to a subalgebra of Mn(S) and the
p× q matrix b is also over S, the integers i, j, p and q must satisfy the conditions,
1 ≤ i + p ≤ m, 1 ≤ j + q ≤ n. This procedure modifies a so that the p × q block
beginning at the (i, j)-th entry of a is replaced by b.

83.10.3 Joining Matrices

HorizontalJoin(X, Y)

Given matrices X with r rows and c columns, and Y with r rows and d columns,
both over the same coefficient ring R, return the matrix over R with r rows and
(c + d) columns obtained by joining X and Y horizontally (placing Y to the right
of X).

HorizontalJoin(Q)

Given a sequence Q of matrices, each having the same number of rows and being
over the same coefficient ring R, return the matrix over R obtained by joining the
elements of Q horizontally in order.

VerticalJoin(X, Y)

Given matrices X with r rows and c columns and Y with s rows and c columns,
both over the same coefficient ring R, return the matrix with (r + s) rows and c
columns over R obtained by joining X and Y vertically (placing Y underneath X).

VerticalJoin(Q)

Given a sequence Q of matrices, each having the same number of columns and being
over the same coefficient ring R, return the matrix over R obtained by joining the
elements of Q vertically in order.

DiagonalJoin(X, Y)

Given matrices X with a rows and b columns and Y with c rows and d columns,
both over the same coefficient ring R, return the matrix with (a+c) rows and (b+d)
columns over R obtained by joining X and Y diagonally (placing Y diagonally to
the right of and underneath X, with zero blocks above and below the diagonal).

Ch. 83 MATRIX ALGEBRAS 2527

DiagonalJoin(Q)

Given a sequence Q of matrices, each being over the same coefficient ring R, return
the matrix over R obtained by joining the elements of Q diagonally in order.

83.10.4 Row and Column Operations
For the following operations, a is an element of a subring of the matrix algebra Mn(S), u is
a non-zero element of S, and i and j are integers in the range [1, n]. Each of the operations
described here acts on the matrix in place, and is therefore implemented as a procedure.

SwapRows(∼a, i, j)

Mutate the matrix a by interchanging rows i and j.

MultiplyRow(∼a, u, j)

Mutate the matrix a by multiplying row j by the scalar u.

AddRow(∼a, u, i, j)

Mutate the matrix a by adding u times row i to row j.

SwapColumns(∼a, i, j)

Mutate the matrix a by interchanging columns i and j.

MultiplyColumn(∼a, u, i)

Mutate the matrix a by multiplying column i by the scalar u.

AddColumn(∼a, u, i, j)

Mutate the matrix a by adding u times column i to column j.

83.11 Canonical Forms

83.11.1 Canonical Forms for Matrices over Euclidean Domains
The functions given here apply to matrices defined over Euclidean Domains. See also the
section on Reduction in the Lattices chapter for a description of the function LLL and
related functions.

EchelonForm(a)

The (row) echelon form of matrix a belonging to a submodule of the module Mn(S).
This function returns two values:

(a)The (row) echelon form e of a; and

(b)A matrix b such that b ∗ a = e, i.e. b is a product of elementary matrices that
transforms a into echelon form.

2528 ALGEBRAS Part XII

ElementaryDivisors(a)

The elementary divisors of the matrix a belonging to a submodule of the module
Mn(S). The divisors are returned as a sequence [e1, . . . , ed], ei|ei+1 (i = 1, . . . , d−1)
of d elements of R (which may include ones), where d is the rank of a. If R is a
field, the result is always the sequence of r ones, where r is the rank of a.

HermiteForm(X)

Al MonStg Default : “LLL”
Optimize BoolElt Default : true

Integral BoolElt Default : true

The row Hermite normal form of an matrix X belonging to the matrix algebra
Mn(R). The coefficient ring R must be an Euclidean domain. This function returns
two values:
(a)The Hermite normal form H of X; and
(b)A unimodular matrix T such that T ·X = H, i.e., T is the product of elementary

matrices which transforms X into Hermite normal form.
If R is the ring of integers Z and the matrix T is requested (i.e., if an assignment

statement is used with two variables on the left side), then the LLL algorithm will
be used by default to improve T (using the kernel of X) so that the size of its entries
are very small. If the parameter Optimize is set to false, then this will not happen
(which will be faster but the entries of T will not be as small). If the parameter
Integral is set to true, then the integral (de Weger) LLL method will be used in
the LLL step, instead of the default floating point method. The integral method
will often be faster if the rank of the kernel of X is very large (say 200 or more).

If R is the ring of integers Z and the parameter Al is set to the string "Sort", then
the sorting-gcd algorithm will be used. However, the new algorithm will practically
always perform better than the sorting-gcd algorithm.

SmithForm(a)

The Smith normal form for the matrix a belonging to a submodule of the module
Mn(S), where S is a Euclidean Domain. This function returns three values:
(a)The Smith normal form s of a; and
(b)Unimodular matrices b and c such that b ∗ a ∗ c = s, i.e. b and c are matrices

that transform a into Smith normal form.

Example H83E6

We illustrate some of these operations in the context of the algebra M4(K), where K is the field
F8.

> K<w> := FiniteField(8);

> M := MatrixAlgebra(K, 4);

> A := M ! [1, w, w^5, 0, w^3, w^4, w, 1, w^6, w^3, 1, w^4, 1, w, 1, w];

Ch. 83 MATRIX ALGEBRAS 2529

> A;

[1 w w^5 0]

[w^3 w^4 w 1]

[w^6 w^3 1 w^4]

[1 w 1 w]

> EchelonForm(A);

[1 0 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 0 1]

83.11.2 Canonical Forms for Matrices over a Field
The functions in this group apply to elements of matrix algebras whose coefficient rings
are fields which allow factorization of univariate polynomials over them.

PrimaryRationalForm(a)

The primary rational canonical form of a matrix a belonging to Mn(K), where the
coefficient ring K must be a field allowing factorization of univariate polynomials
over it. Each block corresponds to a power of an irreducible polynomial. This
function returns three values:

(a)The primary rational canonical form p of a;

(b)A non-singular matrix t such that t ∗ a ∗ t−1 = p;

(c) A sequence of pairs corresponding to the blocks of p where each pair consists of
the irreducible polynomial and multiplicity making up the block.

JordanForm(a)

The (generalized) Jordan canonical form for the matrix a belonging to the alge-
bra Mn(K), where the coefficient ring K must be a field allowing factorization of
univariate polynomials over it. This function returns three values:

(a)The (generalized) Jordan canonical form j of a;

(b)A non-singular matrix t such that t ∗ a ∗ t−1 = j;

(c) A sequence of pairs corresponding to the blocks of j where each pair consists of
the irreducible polynomial and multiplicity making up the block.

2530 ALGEBRAS Part XII

RationalForm(a)

The rational canonical form of a matrix a belonging to Mn(K), where the coefficient
ring K must be a field allowing factorization of univariate polynomials over it. For
each block before the last block, the polynomial corresponding to that block divides
the polynomial corresponding to the next block. This function returns three values:
(a)The rational canonical form f of a;
(b)A non-singular matrix t such that t ∗ a ∗ t−1 = f ;
(c) A sequence containing the polynomials corresponding to each block (each non-

last one dividing the next).

PrimaryInvariantFactors(a)

The primary invariant factors of the matrix a. This is the same as the third return
value of PrimaryRationalForm(a) or JordanForm(a). The coefficient ring must be
a field allowing factorization of univariate polynomials over it.

InvariantFactors(a)

The invariant factors of the matrix a. This is the same as the third return value
of RationalForm(a). The coefficient ring must be a field allowing factorization of
univariate polynomials over it.

IsSimilar(a, b)

Returns true iff the matrix a is similar to the matrix b. If a is similar to b, a
transformation matrix t is also returned with t ∗ a ∗ t−1 = b. The coefficient ring
must be a field allowing factorization of univariate polynomials over it.

Example H83E7

We consider the algebra M5(P), where P is the polynomial ring in indeterminate x over the field
F5. We take the matrix having xi + xj in its (i, j)-th position.

> K := GaloisField(5);

> P<x> := PolynomialAlgebra(K);

> M := MatrixAlgebra(P, 5);

> a := M ! [x^i + x^j: i, j in [1..5]];

> a;

[2*x x^2 + x x^3 + x x^4 + x x^5 + x]

[x^2 + x 2*x^2 x^3 + x^2 x^4 + x^2 x^5 + x^2]

[x^3 + x x^3 + x^2 2*x^3 x^4 + x^3 x^5 + x^3]

[x^4 + x x^4 + x^2 x^4 + x^3 2*x^4 x^5 + x^4]

[x^5 + x x^5 + x^2 x^5 + x^3 x^5 + x^4 2*x^5]

> ElementaryDivisors(a);

[

x,

x^3 + 3*x^2 + x

]

> Rank(a);

Ch. 83 MATRIX ALGEBRAS 2531

2

Example H83E8

We construct a 5 by 5 matrix over the finite field with 5 elements and then calculate various
canonical forms. We verify the correctness of the polynomial invariant factors corresponding to
the rational form by calculating the Smith form of the characteristic matrix of the original matrix.

> K := GF(5);

> P<x> := PolynomialRing(K);

> A := MatrixAlgebra(K, 5);

> a := A !

> [

> 0, 2, 4, 2, 0,

> 2, 2, 2, 3, 3,

> 3, 4, 4, 1, 3,

> 0, 0, 0, 0, 1,

> 0, 0, 0, 1, 0

>];

> a;

[0 2 4 2 0]

[2 2 2 3 3]

[3 4 4 1 3]

[0 0 0 0 1]

[0 0 0 1 0]

> PrimaryInvariantFactors(a);

[

<x + 1, 1>,

<x + 1, 1>,

<x + 4, 1>,

<x + 4, 1>,

<x + 4, 1>

]

> r, t, f := RationalForm(a);

> r;

[1 0 0 0 0]

[0 0 1 0 0]

[0 1 0 0 0]

[0 0 0 0 1]

[0 0 0 1 0]

> t;

[1 3 0 2 1]

[2 1 2 2 0]

[3 4 3 4 1]

[1 0 0 0 0]

[0 2 4 2 0]

> f;

[

2532 ALGEBRAS Part XII

x + 4,

x^2 + 4,

x^2 + 4

]

> PA := MatrixAlgebra(P, 5);

> ax := PA ! x - PA ! a;

> ax;

[x 3 1 3 0]

[3 x + 3 3 2 2]

[2 1 x + 1 4 2]

[0 0 0 x 4]

[0 0 0 4 x]

> SmithForm(ax);

[1 0 0 0 0]

[0 1 0 0 0]

[0 0 x + 4 0 0]

[0 0 0 x^2 + 4 0]

[0 0 0 0 x^2 + 4]

> ElementaryDivisors(ax);

[

1,

1,

x + 4,

x^2 + 4,

x^2 + 4

]

83.12 Diagonalising Commutative Algebras over a Field

The functions in this group apply to (elements of) matrix algebras whose coefficient rings
are fields which allow the construction of splitting fields of univariate polynomials over
them. Specifically, the base field must be the rationals, a number field, a finite field, or an
algebraically closed field.

CommonEigenspaces(Q)

The common eigenspaces of the sequence Q of pairwise-commuting matrices. If the
first sequence returned is V and the second is E, then E[i][j] is the eigenvalue of
Q[i] corresponding to the common eigenspace V [j].

CommonEigenspaces(A)

The common eigenspaces of the commutative matrix algebra A. If the first sequence
returned is V and the second is E, then E[i][j] is the eigenvalue of A.i corresponding
to the common eigenspace V [j].

Ch. 83 MATRIX ALGEBRAS 2533

Diagonalisation(Q)

Diagonalization(Q)

The diagonalisation of the sequence Q of pairwise-commuting matrices. That is, a
sequence of diagonal matrices of the form [P ∗Q[1] ∗ P−1, P ∗Q[2] ∗ P−1, . . .]. The
second value returned is the matrix P . Note that the returned values may have a
larger base field than the input.

Diagonalisation(A)

Diagonalization(A)

The diagonalisation of the commutative matrix algebra A. That is, an algebra with
diagonal generators [P ∗A.1 ∗P−1, P ∗A.2 ∗P−1, . . .]. The second value returned is
the matrix P .

Example H83E9

> M := MatrixAlgebra(Rationals(),2);

> x := M![0,1,-2,0];

> y := M![0,3,-6,0];

> CommonEigenspaces([x,y]);

[*

Vector space of degree 2, dimension 1 over Number Field with defining

polynomial $.1^2 + 2 over the Rational Field

Generators:

(1 1/2*r.1)

Echelonized basis:

(1 1/2*r.1),

Vector space of degree 2, dimension 1 over Number Field with defining

polynomial $.1^2 + 2 over the Rational Field

Generators:

(1 -1/2*r.1)

Echelonized basis:

(1 -1/2*r.1)

*] [

[

-r.1,

-3*r.1

],

[

r.1,

3*r.1

]

]

> Diagonalisation(sub<M|x,y>);

Matrix Algebra of degree 2 with 2 generators over Number Field with defining

polynomial $.1^2 + 2 over the Rational Field

2534 ALGEBRAS Part XII

[1 1/2*r.1]

[1 -1/2*r.1]

83.13 Solutions of Systems of Linear Equations

IsConsistent(A, w)

Given a matrix A belonging to Mn(R) and a vector w belonging to the tuple module
R(n), return true iff the system of linear equations v ∗ A = w is consistent. If the
system is consistent, then the function will also return:

(a)A particular solution v;

(b)The kernel K of A so that (v + k) ∗A = w for k ∈ K.

IsConsistent(A, W)

Given a matrix A belonging to Mn(R) and a sequence W of vectors belonging to the
tuple module R(m), return true iff the system of linear equations V [i] ∗ A = W [i]
for each i is consistent. If the systems are all consistent, then the function will also
return:

(a)A solution sequence V ;

(b)The kernel K of A so that (V [i] + k) ∗A = W [i] for k ∈ K.

Solution(A, w)

Given a matrix A belonging to Mn(R) and a vector w belonging to the tuple module
R(n), solve the system of linear equations v∗A = w. The function returns two values:

(a)A particular solution v;

(b)The kernel K of A so that (v + k) ∗A = w for k ∈ K.

Solution(A, W)

Given a matrix A belonging to Mn(R) and a sequence W of vectors belonging to
the tuple module R(n), solve the system of linear equations V [i] ∗A = W [i] for each
i. The function returns two values:

(a) A solution sequence V ;

(b) The kernel K of A so that (V [i] + k) ∗A = W [i] for k ∈ K.

Ch. 83 MATRIX ALGEBRAS 2535

83.14 Presentations for Matrix Algebras
Magma has the capability of constructing a presentation for an algebra A generated by a
collection α1, . . . , αt of n× n matrices over a finite field k. The presentation has the form

A ∼= P/I

where P is a free algebra in noncommuting variable and I is a two-sided ideal in P . The
presentation is obtained by computing a set of primitive idempotents for the algebra and
extracting generators for the radical of the algebra. For such an algebra there is a sequence

0 −→ Rad(A) −→ A −→ A/Rad(A) −→ 0

which is split in the sense that A/Rad(A) is a subalgebra A. Moreover, A/Rad(A) is a
direct sum of complete matrix algebras Ai over extensions Ki of the field k. Each complete
matrix algebra Ai is generated by two elements bi and ti. The element bi has minimal
rank and bni−1

i = ei is a primitive idempotent where ni is the number of elements in the
field Ki. That is, bi is a generator for the multiplicative group of nonzero elements of
eiAiei

∼= Ki. The element ti is conjugate to a permutation matrix of degree ni in Ai. The
elements z1, . . . , zs are generators of the radical of A. These elements are computed so as
to lie in the condensed algebra eAe where e =

∑
ei.

The calculation produces also a set of generators and relations for the condensed al-
gebra eAe. This algebra is Morita equivalent to A, and hence shares many of the same
homological properties of the algebra A.

In the course of obtaining the presentation, several aspects of the algebra are computed.

83.14.1 Quotients and Idempotents

NaturalFreeAlgebraCover(A)

Returns the map of a free algebra onto the matrix algebra A, such that the variables
of the free algebra go to the generators of A.

SimpleQuotientAlgebras(A)

The simple quotient algebras of the matrix algebra A. The output is a record
having the following fields:
(a)The actual simple algebras that are the quotients of the algebra A. The function

returns the sequence of mappings from the natural free-algebra cover of A to
the quotients. The variable corresponding to a generator of A is mapped to the
corresponding generator of the quotient. (field name SimpleQuotients)

(b)The degrees of the quotients as matrix algebras over their centers (field name
DegreesOverCenters).

(c) The degrees of the extension of center of the quotient algebra over the base field
of A (field name DegreesOfCenters).

(d)The number of elements in the center of the quotient algebra (field name
OrdersOfCenters).

2536 ALGEBRAS Part XII

PrimitiveIdempotentData(A)

The initial data for a decomposition of the matrix algebra A. The output is a
sequence of records, one for each simple quotient algebra of A, each consisting of
the following fields.
(a)AlgebraIdempotent : An idempotent whose image in the simple quotient is the

identity matrix.
(b)PrimitiveIdempotent : A primitive idempotents whose image in the quotient

is primitive.
(c) PrimitiveIdempotentOnQuotient : The image of the primitive idempotent in

the quotient algebra.
(d)FieldGenerator : A multiple of the primitive idempotent which is a field gen-

erator for the center of the algebra.
(e) FieldGeneratorOnQuotient : The image of the field generator in the quotient

algebra.
(f) GeneratingPolForCenter : The minimal polynomial for the matrix of the field

generator.

PrimitiveIdempotents(A)

A list of primitive idempotent for the matrix algebra A, one idempotent for each
irreducible module.

RanksOfPrimitiveIdempotents(A)

The sequence of ranks of the primitive idempotents for the matrix algebra A.

NaturalFreeAlgebraCover(A)

Returns the map of a free algebra onto the matrix algebra A, such that the variables
of the free algebra go the generators of the algebra.

CondensedAlgebra(A)

Returns the algebra eAe where e is a sum of primitive idempotents, one for each
simple A-module.

Example H83E10

We form a matrix algebra over the field with three elements generated by two elements. The
algebra is block upper triangular, where the upper left block is a field extension of degree three
and the lower block is a filed extension of degree 2.

> a1 := KMatrixSpace(GF(3),3,3)![0,1,0,0,0,1,-1,0,1];

> a2 := KMatrixSpace(GF(3),2,2)![0,1,-1,0];

> z1 := KMatrixSpace(GF(3),5,5)!0;

> z2 := InsertBlock(z1,a1,1,1);

> z2;

[0 1 0 0 0]

Ch. 83 MATRIX ALGEBRAS 2537

[0 0 1 0 0]

[2 0 1 0 0]

[0 0 0 0 0]

[0 0 0 0 0]

> z3 := InsertBlock(z1,a2,4,4);

z2 and z3 are the matrices of the field extensions. Next, add an entry to z3 that is an extension
class between the two algebras.

> z3[1][4] := 1;

> z3;

[0 0 0 1 0]

[0 0 0 0 0]

[0 0 0 0 0]

[0 0 0 0 1]

[0 0 0 2 0]

> A := MatrixAlgebra<GF(3),5|z2,z3>;

We can check to see if the quotients came out as expected.

> SimpleQuotientAlgebras(A);

rec<recformat<SimpleQuotients: SeqEnum, DegreesOverCenters:

SeqEnum, DegreesOfCenters: SeqEnum, OrdersOfCenters: SeqEnum> |

SimpleQuotients := [

Mapping from: Free associative algebra of rank 2 over

GF(3) to Matrix Algebra of degree 3 with 2

generators over GF(3),

Mapping from: Free associative algebra of rank 2 over

GF(3) to Matrix Algebra of degree 2 with 2

generators over GF(3)

],

DegreesOverCenters := [1, 1],

DegreesOfCenters := [3, 2],

OrdersOfCenters := [27, 9]

Here are the idempotents.

> PrimitiveIdempotents(A);

[

[1 0 0 0 0]

[0 1 0 0 0]

[0 0 1 0 2]

[0 0 0 0 0]

[0 0 0 0 0],

[0 0 0 0 0]

[0 0 0 0 0]

[0 0 0 0 1]

[0 0 0 1 0]

[0 0 0 0 1]

2538 ALGEBRAS Part XII

]

Finally we have the Cartan matrix.

> CartanMatrix(A);

[1 3]

[0 1]

83.14.2 Generators and Presentations
We use the idempotents as the first step in the presentation process. The generators of
the algebra consist of the field generators, each of which is a generator of the center of a
simple quotient algebra multiplied by a corresponding primitive idempotent, permutation
matrices, one for each simple quotient algebra and generators for the radical, all of which
can be taken to be in the subalgebra eAe where e is the sum of one primitive idempotent
for each simple quotient algebra.

For display purposes the variables for the free algebra of the presentations are given
names. The variables b.i represent field generators, while the t.i’s are permutation matrices
and the z.i’s are the generators of the radical. The reader should be warned that these
names are not suitable for input into other function.

SemisimpleGeneratorData(A)

The data on the semisimple generators of the algebra A, that is the generators in A
of A/Rad(A). Some of the output is intended for use in other functions. The return
is a sequence of records, one for each simple quotient algebra. Each record consists
of the following fields.

(a) PowersOfFieldGenerators : A record consisting of look-up tables for the pow-
ers of the field generators as elements both of the algebra A and the simple
quotient algebra.

(b) Permutation : The permutation matrix of the quotient algebra as an element
of A.

(c) PermutationOnQuotient : The permutation matrix on the quotient.

(d) FieldGenerator : The matrix of the field generator as an element of A.

(e) FieldGeneratorOnQuotient : The matrix of the field generator as an element
of the quotient algebra.

(f) PrimitiveIdempotent : The matrix of the primitive idempotent on A.

(g) PrimitiveIdempotentOnQuotient : The matrix of the primitive idempotent
on the quotient algebra.

(h) GeneratingPolForCenter : The Galois polynomial for the extension of the
center of the quotient algebra over the base ring.

Ch. 83 MATRIX ALGEBRAS 2539

AlgebraGenerators(A)

The standard generators of the matrix algebra A. The output is a record consisting
of the following fields.
(a) FieldGenerators : The sequence of matrices of the field generators, one for

each simple quotient algebra.
(b) PermutationMatrices : The sequence of permutation matrices for the quotient

algebras as elements of A, one for each quotient algebra.
(c) PrimitiveIdempotents : The sequence of primitive idempotents for A, one

for each quotient algebra.
(d) RadicalGenerators : A set of generators for the radical of A arranged as a list

of lists of generators of the radical of eiAej for ei and ej primitive idempotents.
(e) SequenceRadicalGenerators : A sequence of minimal generators of radical of

A.
(f) GeneratingPolynomialsForCenters : The galois polynomials of the centers

over the base field.
(g) StandardFormConjugationMatrices : The matrices which conjugate the ele-

ment of A into the standard form relative to the computed primitive idempo-
tents for A.

AlgebraStructure(A)

The accumulated structure of the matrix algebra A. The return is a record with the
following fields. Some of this information is saved to be used in other calculations.
(a) FreeAlgebra : The free algebra in the newly computed variables for the alge-

bra.
(b) RelationsIdeal : The ideal of relations among the new computed generators.
(c) StandardFreeAlgebraCover : The map from the free algebra to A.
(d) FieldGenerators : The matrices in A of the generators of the centers of the

simple quotient algebras of A.
(e) PermutationMatrices : The permutation matrices each of which together

with the corresponding field generator, generates a simple quotient algebra as
a subalgebra of A.

(f) PrimitiveIdempotents : The primitive idempotents, each of which is a power
of the corresponding field generator.

(g) RadicalGenerators : A list of lists giving the generators of the radical of A
which are in eiAej where {ei} are the primitive idempotents.

(h) CondensedRadicalBasis : The condensed matrices in eAe of a basis for the
radical of the algebra. The output is a list of lists giving the basis for eiAej .
Each entry in the list of lists is a tuple consisting of a matrix in the condensed
algebra and the monomial which expresses this matrix as a product of the
generators.

2540 ALGEBRAS Part XII

(i) CondensedFieldGenerators : The condensed matrices in eAe of the field gen-
erators.

(j) FieldPolynomials : The sequence of minimal polynomials of the field gener-
ators.

(k) DegreesOfSimpleModules : The dimensions of the Simple modules of A.
(l) DegreeOfFieldExtensions : The degrees of the centers of simple quotient

algebras of A over the base field of A.
(m) SimpleQuotientAlgebras : The simple quotient algebras of A.
(n) StandardFormConjugationMatrices : The matrices which conjugate the al-

gebra A into standard form with respect to the computed system of primitive
idempotents.

Presentation(A)

The presentation in generators and relations of the matrix algebra A. The function
returns the free algebra and the relations ideal calculated in the algebra structure
program, as well as the map from the free algebra to A.

StandardFormConjugationMatrices(A)

Returns the pair (M and M−1) of matrices that conjugate the matrix algebra A
into standard form with respect to a chosen set of primitive idempotents.

CondensationMatrices(A)

The matrices, conjugating by which, gives the condensation of A.

SequenceOfRadicalGenerators(A)

The sequence of matrices of elements that generate the radical of A.

CartanMatrix(A)

The Cartan Matrix of the algebra A.

Example H83E11

In this example we form the permutation module M of the symmetric group G on seven letters by
the Young subgroup that is the direct product H of two copies of the symmetric group on three
letters. The algebra A is the image of the group algebra in the ring of endomorphisms of M .

> G := Sym(7);

> H := sub<G| G!(1,2,3),G!(1,2),G!(4,5,6), G!(4,5)>;

> M := PermutationModule(G, H, GF(5));

> M;

GModule M of dimension 140 over GF(5)

> A := Action(M);

We see that A has seven simple quotients.

> SimpleQuotientAlgebras(A);

Ch. 83 MATRIX ALGEBRAS 2541

rec<recformat<SimpleQuotients: SeqEnum, DegreesOverCenters:

SeqEnum, DegreesOfCenters: SeqEnum, OrdersOfCenters: SeqEnum> |

SimpleQuotients := [

Mapping from: Free associative algebra of rank 2 over

GF(5) to Matrix Algebra of degree 35 with 2

generators over GF(5),

Mapping from: Free associative algebra of rank 2 over

GF(5) to Matrix Algebra of degree 15 with 2

generators over GF(5),

Mapping from: Free associative algebra of rank 2 over

GF(5) to Matrix Algebra of degree 13 with 2

generators over GF(5),

Mapping from: Free associative algebra of rank 2 over

GF(5) to Matrix Algebra of degree 8 with 2

generators over GF(5),

Mapping from: Free associative algebra of rank 2 over

GF(5) to Matrix Algebra of degree 8 with 2

generators over GF(5),

Mapping from: Free associative algebra of rank 2 over

GF(5) to Matrix Algebra of degree 6 with 2

generators over GF(5),

Mapping from: Free associative algebra of rank 2 over

GF(5) to Matrix Algebra of degree 1 with 2

generators over GF(5)

],

DegreesOverCenters := [35, 15, 13, 8, 8, 6, 1],

DegreesOfCenters := [1, 1, 1, 1, 1, 1, 1],

OrdersOfCenters := [5, 5, 5, 5, 5, 5, 5]

>

> RanksOfPrimitiveIdempotents(A);

[1, 1, 3, 2, 1, 4, 3]

The condensed algbra of A is a much smaller object.

> B := CondensedAlgebra(A);

> B;

Matrix Algebra of degree 15 with 13 generators over GF(5)

> CartanMatrix(A);

[1 0 0 0 0 0 0]

[0 1 0 0 0 0 0]

[0 0 2 0 1 0 1]

[0 0 0 1 0 1 0]

[0 0 1 0 1 0 0]

[0 0 0 1 0 2 0]

[0 0 1 0 0 0 2]

From the Cartan Matrix we can see that A has four blocks. The first and second simple subalgebras
are in blocks by themselves. The subalgebras numbers 3, 5, and 7 form another block as do the

2542 ALGEBRAS Part XII

subalgebras 4 and 6. Note that B, being Morita equivalent to A, has the same Cartan Matrix
and the same block structure.

83.14.3 Solving the Word Problem
The presentation machinery also gives a test for membership in a matrix algebra. If A is
a subalgebra of the n× n matrices generated by some collection of matrices, Magma can
tell if any n× n matrix is an element of A. If the element is in A then Magma can write
the element as a polynomial in the polynomial ring of the presentation.

WordProblemData(A)

The data needed for the solution to the word problem. The output is a list of lists
of basis elements for the radical together with the corresponding monomials in the
generators of the free algebra.

WordProblem(A, x)

Returns true if the matrix x is in the subalgebra A, and if true returns also an
expression of the element x as a polynomial in the presentation of A.

Example H83E12

In this example we form the permutation module for the symmetric group G acting on the coset
space of the normalizer H of Sylow 3-subgroup of G. The coefficients are in the field with two
elements. The algebra A is the image of the group algebra in the endomorphism ring of the
permutation module.

> G := Sym(5);

> H := Normalizer(G,Sylow(G,3));

> M := PermutationModule(G,H, GF(2));

> M;

GModule M of dimension 10 over GF(2)

> A := Action(M);

Here we get the presentation of A.

> P, I, mu := Presentation(A);

> Dimension(P/I);

42

Thus the dimension of A is 42.

> CartanMatrix(A);

[1 0 1]

[0 1 0]

[1 0 2]

> B := CondensedAlgebra(A);

> Q, J, theta := Presentation(B);

The presentation of B has the form:

> J;

Ch. 83 MATRIX ALGEBRAS 2543

Two-sided ideal of Free associative algebra of rank 5 over GF(2)

Non-commutative Graded Lexicographical Order

Variables: b_1, b_2, b_3, z_1, z_2

Groebner basis:

[

b_2^2 + b_2,

b_2*b_3,

b_2*z_1,

b_2*z_2,

b_3*b_2,

b_3^2 + b_3,

b_3*z_1,

b_3*z_2 + z_2,

z_1*b_2,

z_1*b_3 + z_1,

z_1^2,

z_1*z_2,

z_2*b_2,

z_2*b_3,

z_2^2,

b_1 + b_2 + b_3 + 1

]

The matrix A.1 is the first of the original generators for A. We can check that A.1 is an element
of the algebra generated by the computed generators of A.

> boo, y := WordProblem(A,A.1);

> boo;

true

The element y is the expression of A.1 as a polynomial in the free algebra P in the new computed
generators for A.

> y;

t_1^4*b_1*t_1^3 + t_2^4*b_2*t_2^3 + t_1^4*b_1*t_1^2 +

t_2^3*b_2*t_2^3 + t_1^2*b_1*t_1^3 + t_1^4*b_1*t_1 +

t_2^2*b_2*t_2^3 + t_2^3*b_2*t_2^2 + t_2^4*b_2*t_2 +

t_1^2*b_1*t_1^2 + t_1^3*b_1*t_1 + t_1^4*b_1 + t_1^4*z_1 +

t_2*b_2*t_2^3 + t_2^2*b_2*t_2^2 + t_2^3*b_2*t_2 +

t_1*b_1*t_1^2 + t_1^3*b_1 + t_3*z_2*t_1^2 + t_1^2*b_1 +

t_2*b_2*t_2 + t_2^2*b_2 + t_1*b_1 + t_2*b_2 + t_3*b_3 +

t_3*z_2

The mapping mu is the function from the free algebra P into A.

> mu(y);

[0 1 0 0 0 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0 0]

[0 0 0 0 1 0 0 0 0 0]

[0 0 0 0 0 1 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0]

2544 ALGEBRAS Part XII

[0 0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 0 0 0 1]

[1 0 0 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 0 0]

The ultimate check of the accuracy of the computation is that the polynomial expressions give
back the original generators.

> mu(y) eq A.1;

true

Finally we can check whether a random 10× 10 matrix is an element of A.

> b := Random(Generic(A));

> WordProblem(A,b);

false

83.15 Bibliography
[ABM99] John Abbott, Manuel Bronstein, and Thom Mulders. Fast Deterministic

Computation of Determinants of Dense Matrices. In Sam Dooley, editor, Proceedings
ISSAC’99, pages 197–204, New York, 1999. ACM Press.

84 GROUP ALGEBRAS
84.1 Introduction 2547

84.2 Construction of Group Algebras
and their Elements 2547

84.2.1 Construction of a Group Algebra . 2547

GroupAlgebra(R, G: -) 2547
GroupAlgebra< > 2547

84.2.2 Construction of a Group Algebra El-
ement 2549

elt< > 2549
! 2549
! 2549
! 2549
Eta(A) 2549

84.3 Construction of Subalgebras,
Ideals and Quotient Algebras . 2550

sub< > 2550
lideal< > 2550
rideal< > 2551
ideal< > 2551
* 2551
* 2551
quo< > 2551
/ 2551

84.4 Operations on Group Algebras
and their Subalgebras 2552

84.4.1 Operations on Group Algebras . . 2552

Algebra(A) 2552
AugmentationMap(A) 2552
AugmentationIdeal(A) 2553
RepresentationType(A) 2553
ChangeRepresentationType(A, Rep) 2553
ConstructTable(A) 2553
CoefficientRing(A) 2553
BaseRing(A) 2553

84.4.2 Operations on Subalgebras of Group
Algebras 2553

! 2553
Group(S) 2553

GroupAlgebra(S) 2553
Module(S) 2553
CoefficientRing(A) 2554
BaseRing(A) 2554
BasisMatrix(S) 2554
Coordinates(S, a) 2554
IsLeftIdeal(S) 2554
IsRightIdeal(S) 2554
IsIdeal(S) 2554
Centraliser(S) 2554
Centralizer(S) 2554
Idealiser(S) 2554
Idealizer(S) 2554
LeftAnnihilator(S) 2554
RightAnnihilator(S) 2554

84.5 Operations on Elements . . . 2555

+ 2555
+ 2555
+ 2555
+ 2555
- 2555
- 2555
- 2556
- 2556
* 2556
* 2556
* 2556
* 2556
Support(a) 2556
Trace(a) 2556
Augmentation(a) 2556
Involution(a) 2556
Coefficient(a, g) 2556
a[g] 2556
ElementToSequence(a) 2556
Eltseq(a) 2556
Coefficients(a) 2556
Centraliser(a) 2557
Centralizer(a) 2557
Centraliser(S, a) 2557
Centralizer(S, a) 2557

Chapter 84

GROUP ALGEBRAS

84.1 Introduction
Group algebras (or group rings) may be defined over any unital ring R and any group G
in which elements have a canonical form (for example permutation groups, matrix groups
or polycyclic groups). Basic operations, such as simple arithmetic of elements, may be
applied in any such group algebra. Certain functions, however, place stricter requirements
on R and G, such as requiring that R have a matrix echelon algorithm in Magma.

84.2 Construction of Group Algebras and their Elements

84.2.1 Construction of a Group Algebra
There are two different representations of group algebra elements used in Magma. Which
is most suitable depends on the group G and on the operations required, and must be
decided upon when the algebra is created.

The first representation, which requires that G is not too large, is to choose (once and
for all) an ordering (g1, g2, . . . , gn) of the elements of G (where n = |G|), and then to
store elements of the group algebra A = R[G] as coefficient vectors relative to the basis
(g1, g2, . . . , gn) of A. So an element a = a1 ∗ g1 + a2 ∗ g2 + . . .+ an ∗ gn (ai ∈ R) of A will
be stored as the vector (a1, a2, . . . , an). This makes for fast arithmetic and allows the use
of matrix echelonization for dealing with subalgebras and ideals (if R has a matrix echelon
algorithm).

The alternative representation, necessary when dealing with large groups, stores an
element a ∈ A = R[G] as a pair of parallel arrays giving the terms of the element. One array
contains the nonzero coefficients of the element and the other contains their associated
group elements. This representation allows group algebras to be defined over any group
in which the elements have a canonical form, including potentially infinite matrix groups
over a ring of characteristic 0 or even free groups. Note however, that operations in such
algebras are limited, as the length of the representing arrays may grow exponentially with
the number of multiplications performed.

GroupAlgebra(R, G: parameters)

GroupAlgebra< R, G: parameters >

Rep MonStgElt Default :

Table BoolElt Default :

Given a unital ring R and a group G (which is not a finitely presented group),
create the group algebra R[G]. There are two optional arguments associated with
this creation function.

2548 ALGEBRAS Part XII

The optional parameter Rep can be used to specify which representation should
be chosen for elements of the algebra. Its possible values are "Vector" and "Terms".
If Rep is not assigned, then Magma chooses the vector representation if |G| ≤ 1000
and the term representation otherwise. If Rep is set to "Vector", Magma has to
compute the order of G. If it does not succeed in that or the order is too large to
construct vectors of this size, then an error message is displayed.

The second optional parameter Table can be used to specify whether or not the
multiplication table of the group should be computed and stored upon creation of the
algebra. Storing the multiplication table makes multiplication of algebra elements
(and all other group algebra operations using this) much faster. Building this table
does, however, increase the time needed to create the algebra. The table can only
be stored if the vector representation of elements is used. If the Table parameter is
not set, then Magma stores the multiplication table only if G ≤ 200.

Example H84E1

We first construct the default group algebra A = R[G] where R is the ring of integers and G is
the symmetric group on three points.

> G := SymmetricGroup(3);

> R := Integers();

> A := GroupAlgebra(R, G);

> A;

Group algebra with vector representation and stored multiplication table

Coefficient ring: Integer Ring

Group: Permutation group G acting on a set of cardinality 3

Order = 6 = 2 * 3

(1, 2, 3)

(1, 2)

Next we construct the group algebra A = R[G] where R = GF (5) and G is the dihedral group of
order 100, given as a polycyclic group. This time we specify that the term representation should
be used for elements.

> G := PCGroup(DihedralGroup(50));

> A := GroupAlgebra(GF(5), G: Rep := "Terms");

> A;

Group algebra with terms representation

Coefficient ring: Finite field of size 5

Group: GrpPC : G of order 100 = 2^2 * 5^2

PC-Relations:

G.1^2 = Id(G),

G.2^2 = Id(G),

G.3^5 = G.4,

G.4^5 = Id(G),

G.3^G.1 = G.3^4 * G.4^4,

G.4^G.1 = G.4^4

Ch. 84 GROUP ALGEBRAS 2549

84.2.2 Construction of a Group Algebra Element

elt< A | r, g >

Given a group algebra A = R[G], a ring element r ∈ R and a group element g ∈ G,
create the element r ∗ g of A.

A ! g

Given a group element g ∈ G create the element 1R∗g of the group algebra A = R[G].

A ! r

Given a ring element r ∈ R, create the element r∗1G of the group algebra A = R[G].

A ! [c1, . . . , cn]

Given a group algebra A = R[G] in vector representation and a sequence [c1, . . . , cn]
of n = |G| elements of R, create the element c1 ∗g1 + . . .+ cn ∗gn, where (g1, . . . , gn)
is the fixed basis of A.

Eta(A)

For a group algebra A = R[G] in vector representation, create the element
∑

g∈G 1R∗
g of A.

Example H84E2

We check that Eta(A)/|G| is an idempotent in A (provided the characteristic of R does not divide
the order of G).

> G := Alt(6);

> A := GroupAlgebra(GF(7), G);

> e := Eta(A) / #G;

> e^2 - e;

0

2550 ALGEBRAS Part XII

84.3 Construction of Subalgebras, Ideals and Quotient Algebras

Let A = R[G] be a group algebra defined in Magma, where R is a unital ring with
a matrix echelon algorithm and G is a group. If A was constructed to use the vector
representation for its elements, then subalgebras and left, right and two-sided ideals of A
can be constructed. If R is a field, then quotient algebras of A are also possible.

A subalgebra or ideal of a group algebra A is not in general a group algebra; hence,
a different type is needed for these objects. Two possibilities are provided in Magma.
The first is to construct the subalgebra or ideal to have type AlgGrpSub: a subalgebra
(which may be an ideal) of a group algebra. Its elements are elements of the group algebra
and it remains closely connected to its defining group algebra. By default, ideals of group
algebras will be of this type.

The alternative is to create the subalgebra or ideal as an associative algebra given by
structure constants (type AlgAss). The required structure constants are easily computable
from the group algebra. This is the default Magma uses when creating subalgebras of a
group algebra.

Regardless of the type given to a subalgebra or ideal, the inclusion map back into the
group algebra is also provided.

sub< cat : A | L >

cat Cat Default : AlgGrpSub

Create the subalgebra S of the group algebra A generated by the elements defined
by L, where L is a list of one or more items of the following types:

(a) an element of A;

(b)a set or sequence of elements of A;

(c) a subalgebra of A;

(d)a set or sequence of subalgebras of A;

(e) a sequence of ring elements specifying an element of A, as returned when the
ElementToSequence (or Eltseq) function is applied to the element.
The constructor returns the subalgebra as an element of the category cat, where

cat is either AlgGrpSub (the default) or AlgAss. As well as the subalgebra itself,
the constructor returns the inclusion homomorphism f : S → A.

lideal< cat : A | L >

cat Cat Default : AlgGrpSub

Create the left ideal of the group algebra A, generated by the elements defined by
L, where L is a list as for the sub constructor above.

The constructor returns the ideal as an element of the category cat, where cat is
either AlgGrpSub (the default) or AlgAss. As well as the ideal itself, the constructor
returns the inclusion homomorphism f : I → A.

Ch. 84 GROUP ALGEBRAS 2551

rideal< cat : A | L >

cat Cat Default : AlgGrpSub

Create the right ideal of the group algebra A generated by the elements defined by
L, where L is a list as for the sub constructor above.

The constructor returns the ideal as an element of the category cat, where cat is
either AlgGrpSub (the default) or AlgAss. As well as the ideal itself, the constructor
returns the inclusion homomorphism f : I → A.

ideal< cat : A | L >

cat Cat Default : AlgGrpSub

Create the (two-sided) ideal I of the group algebra A generated by the elements
defined by L, where L is a list as for the sub constructor above.

The constructor returns the ideal as an element of the category cat, where cat is
either AlgGrpSub (the default) or AlgAss. As well as the ideal itself, the constructor
returns the inclusion homomorphism f : I → A.

The above operations can also be applied with a subalgebra (type AlgGrpSub) S
in place of the group algebra A. In this case the subalgebra and ideal closures are
taken in S.

a * I

For a right ideal I of the group algebra A construct the right ideal {a ∗ b : b ∈ I}.

I * a

For a left ideal I of the group algebra A construct the left ideal {b ∗ a : b ∈ I}.

quo< A | L >

Create the quotient of the group algebra A by the ideal of A generated by the
elements defined by L, where L is a list as for the sub constructor above.

The constructor returns the quotient as an associative algebra. As well as the
quotient Q itself, the constructor returns the natural homomorphism f : A→ Q.

A / S

The quotient of the algebra A by the ideal closure of its subalgebra S.

Example H84E3

We demonstrate how the degrees of the absolutely irreducible characters of a group can be found
by computing the Wedderburn decomposition of the group algebra over a suitable finite field. Of
course, this is neither the smartest nor the quickest way to get this information. In the example
we deal with an extraspecial group of order 33.

> G := ExtraSpecialGroup(3, 1);

> Exponent(G);

2552 ALGEBRAS Part XII

3

We have to choose a finite field that contains the roots of unity that may be required by the
absolutely irreducible characters. This is the case for GF (q) if the exponent of G divides q − 1.
In our example, q = 4 or q = 7 are possible choices.

> FG := GroupAlgebra(GF(4), G);

> FG;

Group algebra with vector representation and stored multiplication table

Coefficient ring: Finite field of size 2^2

Group: Permutation group G acting on a set of cardinality 27

Order = 27 = 3^3

(1, 19, 10)(2, 20, 11)(3, 21, 12)(4, 22, 13)(5, 23, 14)(6, 24, 15)(7,

25, 16)(8, 26, 17)(9, 27, 18)

(1, 7, 4)(2, 8, 5)(3, 9, 6)(10, 18, 14)(11, 16, 15)(12, 17, 13)(19, 26,

24)(20, 27, 22)(21, 25, 23)

(1, 3, 2)(4, 6, 5)(7, 9, 8)(10, 12, 11)(13, 15, 14)(16, 18, 17)(19, 21,

20)(22, 24, 23)(25, 27, 26)

> MI := MinimalIdeals(FG);

> #MI;

11

The minimal ideals are the simple Wedderburn components of the group algebra, corresponding
to the absolutely irreducible characters of the group, and their dimensions are the squares of the
character degrees.

> [Isqrt(Dimension(I)) : I in MI];

[1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3]

Hence, there are 9 linear characters and two of degree 3 (which we might have concluded imme-
diately from the fact that the derived quotient of G has order 9).

84.4 Operations on Group Algebras and their Subalgebras

84.4.1 Operations on Group Algebras
The operations in this section can only be applied to a full group algebra. Functions
accepting also a subalgebra of type AlgGrpSub are dealt with in the next section.

Algebra(A)

For a group algebra A given in vector representation, construct the associative struc-
ture constant algebra B isomorphic to A together with the isomorphism A→ B.

AugmentationMap(A)

The augmentation map of A. That is, the map A→ R :
∑

g∈G rg ∗ g →
∑

g∈G rg.

Ch. 84 GROUP ALGEBRAS 2553

AugmentationIdeal(A)

The augmentation ideal of the group algebra A given in vector representation. This
is defined as the kernel of the augmentation map.

RepresentationType(A)

Given a group algebra A, return either "Vector" or "Terms" depending on which
representation is used for the elements of A.

ChangeRepresentationType(A, Rep)

Given a group algebra A, construct an isomorphic group algebra B in which the
elements are represented as specified by Rep which may be "Vector" or "Terms",
together with the homomorphism from A to B.

ConstructTable(A)

Procedure which, given a group algebra A = R[G] in vector representation, con-
structs the multiplication table for the group G to speed up multiplication in A. If
the multiplication table already exists, nothing is done.

CoefficientRing(A)

BaseRing(A)

The coefficient ring (base ring) of A.

84.4.2 Operations on Subalgebras of Group Algebras
The functions in this section can be applied to group algebras and their subalgebras of
type AlgGrpSub.

S ! 1

Create the identity element of the group algebra (subalgebra) S. Note that for a
proper subalgebra of the full group algebra this may be different from the identity
element of the group.

Group(S)

The group G for the group algebra (subalgebra) S.

GroupAlgebra(S)

The group algebra of which S is a subalgebra.

Module(S)

For a subalgebra S of the group algebra A = R[G], return the submodule of the
module underlying A which corresponds to S. This is an R-module of dimension
Dimension(S) and degree Dimension(A). Also returns (as a second return value)
the natural map from the subalgebra to the module.

2554 ALGEBRAS Part XII

CoefficientRing(A)

BaseRing(A)

The coefficient ring (base ring) of A.

BasisMatrix(S)

For a subalgebra S of the group algebra A = R[G] return the coefficient matrix
of the basis of S with respect to the basis of A. If S has dimension m this is an
m×|G|-matrix over R where the i-th row are the coefficients of the i-th basis vector
of S with respect to the fixed basis of A.

Coordinates(S, a)

Given an element a which lies in the subalgebra S, return a sequence giving the
coordinates of a with respect to the basis of S.

IsLeftIdeal(S)

Returns true if S is a left ideal of its group algebra; otherwise false.

IsRightIdeal(S)

Returns true if S is a right ideal of its group algebra; otherwise false.

IsIdeal(S)

Returns true if S is a (two-sided) ideal of its group algebra; otherwise false.

Centraliser(S)

Centralizer(S)

The centralizer of the subalgebra S of a group algebra A (in A).

Idealiser(S)

Idealizer(S)

The largest subalgebra T of A such that S is an ideal in T .

LeftAnnihilator(S)

For a subalgebra S of the group algebra A construct the left annihilator of S, that
is, the subalgebra of A consisting of all elements a such that a ∗ s = 0 for all s ∈ S.

RightAnnihilator(S)

For a subalgebra S of the group algebra A construct the right annihilator of S, that
is, the subalgebra of A consisting of all elements a such that s ∗ a = 0 for all s ∈ S.

Ch. 84 GROUP ALGEBRAS 2555

Example H84E4

We construct the group algebra of an elementary abelian group over GF (2) and get its Jacobson
ideal.

> A := AbelianGroup([2,2,2,2,2]);

> FG := GroupAlgebra(GF(2), A);

> J := JacobsonRadical(FG);

> J;

Ideal of dimension 31 of the group algebra FG

We now check that the Jacobson radical is nilpotent and get its nilpotency class.

> JPow := [J];

> I := J;

> while Dimension(I) ne 0 do

> I := I*J;

> Append(~JPow, I);

> end while;

> [Dimension(I) : I in JPow];

[31, 26, 16, 6, 1, 0]

Thus, J is nilpotent of class 6. However, every non-zero element of J is of course nilpotent of
class 2.

> IsNilpotent(Random(J));

true 2

84.5 Operations on Elements

The operations in this section can be applied to elements of either a group algebra or of a
group algebra subalgebra of type AlgGrpSub. Only those operations are listed, which are
additional to those available for general algebras.

a + r

r + a

The sum of the group algebra element a ∈ R[G] and the scalar r ∈ R.

a + g

g + a

The sum of the group algebra element a ∈ R[G] and the group element g ∈ G.

a - r

r - a

The difference of the group algebra element a ∈ R[G] and the scalar r ∈ R.

2556 ALGEBRAS Part XII

a - g

g - a

The difference of the group algebra element a ∈ R[G] and the group element g ∈ G.

a * r

r * a

The product of the group algebra element a ∈ R[G] and the scalar r ∈ R.

g * a

a * g

The product of the group algebra element a ∈ R[G] and the group element g ∈ G.

Support(a)

The support of a; that is, the sequence of group elements whose coefficients in a are
non-zero.

Trace(a)

The trace of a; that is, the coefficient of 1G in a.

Augmentation(a)

The augmentation of the group algebra element a; that is,
∑

g∈G rg where a =∑
g∈G rg ∗ g.

Involution(a)

If a =
∑

g∈G rg ∗ g, returns
∑

g∈G rg ∗ g−1.

Coefficient(a, g)

a[g]

The coefficient of g ∈ G in a ∈ R[G].

ElementToSequence(a)

Eltseq(a)

If a is an element from a group algebra A given in vector representation, this returns
the sequence of coefficients with respect to the fixed basis of A. If A is given in terms
representation, this returns a sequence of tuples, where the second entry is a group
element and the first is the coefficient of that group element in a.

Coefficients(a)

For an element a from a group algebra A given in vector representation, this returns
the sequence of coefficients with respect to the fixed basis of A.

Ch. 84 GROUP ALGEBRAS 2557

Centraliser(a)

Centralizer(a)

The centralizer in the group algebra A of the element a of A.

Centraliser(S, a)

Centralizer(S, a)

The centralizer of the element a (of a group algebra A) in the subalgebra S of A.

Example H84E5

We use the group algebra to determine the diameter of the Cayley graph of a group.

> G := Alt(6);

> QG := GroupAlgebra(Rationals(), G);

> e := QG!1 + &+[QG!g : g in Generators(G)];

> e;

Id(G) + (1, 2)(3, 4, 5, 6) + (1, 2, 3)

The group elements that can be expressed as words of length at most n in the generators of G
have non-zero coefficient in en. The following function returns for a group algebra element e a
sequence with the cardinalities of the supports of en and breaks when the group order is reached.

> wordcount := function(e)

> f := e;

> count := [#Support(f)];

> while count[#count] lt #Group(Parent(e)) do

> f *:= e;

> Append(~count, #Support(f));

> end while;

> return count;

> end function;

Now apply this function to the above defined element:

> wordcount(e);

[3, 7, 14, 26, 47, 83, 140, 219, 293, 345, 360]

Thus, every element in A6 can be expressed as a word of length at most 11 in the generators
(1, 2)(3, 4, 5, 6) and (1, 2, 3). A better 2-generator set is for example (1, 2, 3, 4, 5) and (1, 5, 3, 6, 4),
where all elements can be expressed as words of length at most 10 and this is in fact optimal. A
worst 2-generator set is given by (1, 2)(3, 4) and (1, 5, 3, 2)(4, 6).

> wordcount(QG!1 + G!(1,2,3,4,5) + G!(1,5,3,6,4));

[3, 7, 15, 31, 60, 109, 183, 274, 350, 360]

> wordcount(QG!1 + G!(1,2)(3,4) + G!(1,5,3,2)(4,6));

[3, 6, 11, 18, 28, 43, 63, 88, 119, 158, 206, 255, 297, 329, 352, 360]

2558 ALGEBRAS Part XII

Example H84E6

The group algebra can also be used to investigate the random distribution of words of a certain
length in the generators of the group.

> M11 := sub< Sym(11) | (1,11,9,10,4,3,7,2,6,5,8), (1,5,6,3,4,2,7,11,9,10,8) >;

> A := GroupAlgebra(RealField(16), M11 : Rep := "Vector");

> A;

Group algebra with vector representation

Coefficient ring: Real Field of precision 16

Group: Permutation group M11 acting on a set of cardinality 11

Order = 7920 = 2^4 * 3^2 * 5 * 11

(1, 11, 9, 10, 4, 3, 7, 2, 6, 5, 8)

(1, 5, 6, 3, 4, 2, 7, 11, 9, 10, 8)

> e := (A!M11.1 + A!M11.2) / 2.0;

> eta := Eta(A) / #M11;

For growing n, the words of length n in the generators of M11 converge towards a random distri-
bution iff en converges towards eta. We look at the quadratic differences of the coefficients of
en-eta for n = 10, 20, 30, 40, 50.

> e10 := e^10;

> f := A!1;

> for i in [1..5] do

> f *:= e10;

> print &+[c^2 : c in Eltseq(f - eta)];

> end for;

0.0012050667195213

1.289719354694155e-5

5.9390965208879e-7

3.394099291966e-8

2.19432454574986e-9

85 BASIC ALGEBRAS
85.1 Introduction 2563

85.2 Basic Algebras 2563

85.2.1 Creation 2563

BasicAlgebra(Q) 2563
BasicAlgebra(F,R,s,P) 2564
BasicAlgebra(F,R) 2564
TensorProduct(A, B) 2564
BasicAlgebra(G, k) 2564
BasicAlgebra(G, k) 2564
BasicAlgebra(G) 2564

85.2.2 Special Basic Algebras 2564

BasicAlgebra(A) 2565
BasicAlgebraOfMatrixAlgebra(A) 2565
BasicAlgebraOfEndomorphismAlgebra(M) 2565
BasicAlgebraOfHeckeAlgebra(G, H, F) 2565
BasicAlgebraOfSchurAlgebra(n, r, F) 2565
BasicAlgebraOfGroupAlgebra(G,F) 2565
BasicAlgebraOfGroupAlgebra(G,F) 2565
BasicAlgebraOfGroupAlgebra(G,F) 2565
BasicAlgebra(S) 2565
BasicAlgebraOfBlockAlgebra(S) 2566
BasicAlgebraOfPrincipalBlock(G,k) 2566
BasicAlgebraOfExtAlgebra(A) 2566
BasicAlgebraOfExtAlgebra(A) 2566
BasicAlgebraOfExtAlgebra(A) 2566
OppositeAlgebra(B) 2566

85.2.3 Access Functions 2570

. 2570
BaseRing(B) 2570
CoefficientRing(B) 2570
VectorSpace(B) 2570
KSpace(B) 2570
Dimension(B) 2570
Basis(B) 2570
Generators(B) 2570
IdempotentGenerators(B) 2570
IdempotentPositions(B) 2571
NonIdempotentGenerators(B) 2571
Random(B) 2571
NumberOfProjectives(B) 2571
NumberOfGenerators(B) 2571
Ngens(B) 2571
DimensionsOfProjectiveModules(B) 2571
DimensionsOfInjectiveModules(B) 2571

85.2.4 Elementary Operations 2571

+ 2571
* 2571
^ 2571

85.2.5 Boolean Functions 2575

IsDimensionCompatible(B) 2575
IsPathTree(B) 2575

IsCommutative(A) 2575
IsCentral(A,x) 2575

85.3 Homomorphisms 2575

hom< > 2575
Kernel(phi) 2576
Image(phi) 2576
IsAlgebraHomomorphism(A, B, psi) 2576
* 2576
IsAlgebraHomomorphism(A, B, psi) 2576
IsAlgebraHomomorphism(A, B, psi) 2576
IsAlgebraHomomorphism(A, B, psi) 2576
IsAlgebraHomomorphism(A, B, psi) 2576
IsAlgebraHomomorphism(psi) 2576

85.4 Subalgebras and Quotient Alge-
bras 2576

85.4.1 Subalgebras and their Constructions 2576

sub< > 2576
SubalgebraFromBasis(A, V) 2576
MaximalIdempotent(A, S) 2577
MinimalIdentity(A, S) 2577
Centre(A) 2577
Centralizer(A,S) 2577
MaximalCommutativeSubalgebra(A,S) 2577

85.4.2 Ideals and their Construction . . . 2577

ideal< > 2577
ideal< > 2577
LeftAnnihilator(A, S) 2577
RightAnnihilator(A, S) 2577
Annihilator(A,S) 2577
IsIdeal(A, S) 2577
IsLeftIdeal(A,S) 2578
IsRightIdeal(A, S) 2578
RandomIdealGeneratedBy(A, n) 2578

85.4.3 Quotient Algebras 2578

quo< > 2578
CoverAlgebra(A) 2578
GradedCoverAlgebra(A) 2578
TruncatedAlgebra(A,n) 2578

85.5 Minimal Forms and Gradings . 2579

MinimalGeneratorForm(A) 2579
MinimalGeneratorFormAlgebra(A) 2579
AssociatedGradedAlgebra(A) 2579
GradedCapHomomorphism(A) 2579
GradedCapHomomorphism(A, B, mu) 2579
BuildHomomorphismFromGraded

Cap(A, B, phi) 2579
ChangeIdempotents(A, S) 2579
ChangeIdempotents(A, S) 2579

85.6 Automorphisms and Isomorphisms
2581

2560 ALGEBRAS Part XII

GradedAutomorphismGroupMatching
Idempotents(A) 2581

GradedAutomorphismGroup(A) 2581
IsGradedIsomorphic(A, B) 2581
AutomorphismGroupMatching

Idempotents(A) 2581
AutomorphismGroup(A) 2582
IsIsomorphic(A, B) 2582

85.7 Modules over Basic Algebras . 2583

85.7.1 Indecomposable Projective Modules 2583

ProjectiveModule(B, i) 2583
PathTree(B, i) 2583
ActionGenerator(B, i) 2584
IdempotentActionGenerators(B, i) 2584
NonIdempotentActionGenerators(B, i) 2584
Injection(B, i, v) 2584

85.7.2 Creation 2584

AModule(B, Q) 2584
ProjectiveModule(B, S) 2584
IrreducibleModule(B, i) 2584
SimpleModule(B, i) 2584
ZeroModule(B) 2584
RightRegularModule(B) 2584
RegularRepresentation(v) 2585
Restriction(M, B, xi) 2585
ChangeAlgebra(M, B, xi) 2585
ChangeAlgebra(M, B, xi) 2585
JacobsonRadical(M) 2585
Socle(M) 2585

85.7.3 Access Functions 2585

Algebra(M) 2585
Dimension(M) 2585
Action(M) 2585
IsomorphismTypesOfRadicalLayers(M) 2585
IsomorphismTypesOfSocleLayers(M) 2585
IsomorphismTypesOfBasicAlgebra

Sequence(S) 2585

85.7.4 Predicates 2587

IsSemisimple(M) 2587
IsProjective(M) 2588
IsInjective(M) 2588

85.7.5 Elementary Operations 2588

* 2588

85.8 Homomorphisms of Modules . 2590

85.8.1 Creation 2590

AHom(M, N) 2590
PHom(M,N) 2590
ZeroMap(M, N) 2590
LiftHomomorphism(x, n) 2590
LiftHomomorphism(X, N) 2591
Pushout(M, f1, N1, f2, N2) 2591
Pullback(f1, M1, f2, M2, N) 2591

85.8.2 Access Functions 2591

IsModuleHomomorphism(f) 2591
Domain(f) 2591
Codomain(f) 2591
Kernel(f) 2591
Cokernel(f) 2591

85.8.3 Projective Covers and Resolutions . 2592

ProjectiveCover(M) 2592
ProjectiveResolution(M, n) 2592
CompactProjectiveResolution(M, n) 2593
CompactProjectiveResolutionsOf

SimpleModules(A,n) 2593
SyzygyModule(M, n) 2593
SimpleHomologyDimensions(M) 2593

85.9 Duals and Injectives 2596

Dual(M) 2596
BaseChangeMatrix(A) 2596

85.9.1 Injective Modules 2597

InjectiveModule(B, i) 2597
InjectiveHull(M) 2597
InjectiveResolution(M, n) 2597
CompactInjectiveResolution(M, n) 2597
InjectiveSyzygyModule(M, n) 2598
SimpleCohomologyDimensions(M) 2598

85.10 Cohomology 2600

CohomologyRingGenerators(P) 2600
CohomologyRightModule

Generators(P, Q, CQ) 2600
CohomologyLeftModule

Generators(P, CP, Q) 2601
DegreesOfCohomologyGenerators(C) 2601
CohomologyGenerator

ToChainMap(P, Q, C, n) 2601
CohomologyGeneratorTo

ChainMap(P, C, n) 2601

85.10.1 Ext-Algebras 2605

ExtAlgebra(A, n) 2605
BasicAlgebraOfExtAlgebra(ext) 2606
BasicAlgebraOfExtAlgebra(A) 2606
BasicAlgebraOfExtAlgebra(A, n) 2606
SumOfBettiNumbersOfSimple

Modules(A, n) 2606

85.11 Group Algebras of p-groups . 2607

85.11.1 Access Functions 2608

Group(A) 2608
PCGroup(A) 2608
PCMap(A) 2608
AModule(M) 2608
GModule(M) 2608
GModule(M) 2608

85.11.2 Projective Resolutions 2608

ResolutionData(A) 2608
CompactProjectiveResolution

PGroup(M, n) 2608
CompactProjectiveResolution(M, n) 2608

Ch. 85 BASIC ALGEBRAS 2561

ProjectiveResolutionPGroup(PR) 2609
ProjectiveResolution(M, n) 2609
ProjectiveResolution(PR) 2609

85.11.3 Cohomology Generators 2609

AllCompactChainMaps(PR) 2609
CohomologyElementToChainMap(P, d, n) 2609
CohomologyElementToCompact

ChainMap(PR, d, n) 2609

85.11.4 Cohomology Rings 2610

CohomologyRing(k, n) 2610
CohomologyRing(PR, AC) 2610
MinimalRelations(R) 2610

85.11.5 Restrictions and Inflations . . . 2610

RestrictionData(A,B) 2610
RestrictResolution(PR, RD) 2610
RestrictionChainMap(P1,P2) 2610
RestrictionOfGenerators(PR1, PR2, AC1,

AC2, REL2) 2611

InflationMap(PR2, PR1, AC2, AC1,
REL1, theta) 2611

85.12 A-infinity Algebra Structures
on Group Cohomology . . . 2614

AInfinityRecord(G,n) 2614
MasseyProduct(Aoo,terms) 2615
HighProduct(Aoo,terms) 2615
HighMap(Aoo,terms) 2615

85.12.1 Homological Algebra Toolkit . . 2616

ActionMatrix(A,x) 2616
CohomologyRingQuotient(CR) 2616
LiftToChainmap(P,f,d) 2616
NullHomotopy(f) 2616
IsNullHomotopy(f,H) 2616
ChainmapToCohomology(f,CR) 2616
CohomologyToChainmap(xi,CR,P) 2616

85.13 Bibliography 2618

Chapter 85

BASIC ALGEBRAS

85.1 Introduction

A basic algebra is a finite dimensional algebra A over a field, all of whose simple modules
have dimension one. In the literature such an algebra is known as a “split” basic algebra.
Every algebra is Morita equivalent to a basic algebra, though a field extension may be
necessary to obtain the split basic algebra. Magma has several functions that create the
basic algebras corresponding to algebras of different types.

The type AlgBas in Magma is optimized for the purposes of doing homological calcu-
lations. A basic algebra A is generated by elements a1, a2, . . . , at where a1, . . . , as are the
primitive idempotent generators and as+1, . . . , at are the nonidempotent generators. Each
nonidempotent generator, ak must have the property that ai ∗ ak ∗ aj = ak for specific
idempotent generators ai and aj . The projective indecomposable modules have the form
Pi = ai ·A for i = 1, . . . , s and the simple modules have the form Si = Pi/Rad(Pi), where
Rad(Pi) is the radical of Pi.

85.2 Basic Algebras

In the Magma implementation the algebra is given as the sequence of projective modules
P1, . . . , Ps together with a path tree for each projective module. A projective module
consists of a matrix for each generator a1, a2, . . . , at giving the action of the generator on
the vector space of the module. The basis b1, b2, . . . , bn for the vector space of Pi is chosen so
that each basis element is the image of a basis element of lower index under multiplication
by a nonidempotent generator of A. The structure of the basis is recorded in the path tree
which is a sequence [< 1, i >,< j, k >, . . .] of 2-tuples of length n = Dimension(Pi). The
first entry < 1, i > indicates that b1 = b1 ∗ ai where ai is the primitive idempotent in the
algebra A such that Pi = A · ai. Similarly, if entry number k in the path tree is 〈u, v〉 then
bk = bu ∗ av where v > s if k > 1.

85.2.1 Creation
The first function for creating a basic algebra is the most basic, in which the user supplies
the projective modules and the path trees directly.

BasicAlgebra(Q)

Given a sequence [Qi, . . . , Qs] of 2-tuples such that each Qi =< Mi, Ti > consisting
of a module for a matrix algebra Mi and a path tree Ti for Mi, the function creates
the basic algebra whose projective modules are the first entries M1, . . . ,Ms and the
path trees are the corresponding second entries.

2564 ALGEBRAS Part XII

The next two functions create a basic algebra from generators and relations. The
user must, additionally, specify the quiver with relations, giving the number of
idempotents and the beginning and end points of the arrows in the quiver.

BasicAlgebra(F,R,s,P)

Creates the basic algebra given by the presentation. Here F is a free algebra and
R is the sequence of relation for the nonidempotent generators of the algebra. If
the free algebra F is generated by elements a1, . . . , at, the function assumes that
a1, . . . , as are the mutually orthogonal primitive idempotents and it creates all of the
appropriate relations including a1 + . . .+as = 1. The nonidempotent generators are
then as+1, . . . , at. So `k = 〈i, j〉 for i, j ≤ s means that as+k = ai ∗ as+k ∗ aj . Each
of the relations in R is given as a linear combination of words in the nonidempotent
generators as+1, . . . , at ∈ F . The sequence P is a sequence of 2-tuples, one for each
nonidempotent generator, giving the beginning and ending nodes of the generator.
That is, each tuple is the pair of indices of the idempotents which multiply as the
identity on the nonidempotent generator on the left and on the right.

BasicAlgebra(F,R)

Creates the basic algebra of a local algebra from the presentation of the algebra.
Here F is a free algebra whose variable represent the nonidempotent generators and
R is the sequence of relations among those variables.

TensorProduct(A, B)

The tensor product of the basic algebras A and B.
The modular group algebra of a p-group is naturally a basic algebra. The next
function create the basic algebra from the group information.

BasicAlgebra(G, k)

BasicAlgebra(G, k)

BasicAlgebra(G)

Given a finite p-group G and a finite field k of characteristic p, returns the group
algebra kG in the form of a basic algebra. If no field k is supplied then the prime
field of characteristic p is assumed to be the field of coefficients.

85.2.2 Special Basic Algebras
There are several functions that create basic algebras of special interest. The most basic of
these creates the basic algebra that is Morita equivalent to a matrix algebra defined over
a finite field by first condensing the algebra and then splitting the irreducible modules as
needed.

Included among these constructions are the basic algebras of Schur algebras and Hecke
algebras over finite fields. The Schur algebras arise in the representation theory of symmet-
ric groups. The Schur algebras have finite global dimension and hence their ext-algebras
have finite dimension. By a Hecke algebra, we mean the algebra of endomorphisms of a
permutation module of a finite group.

Ch. 85 BASIC ALGEBRAS 2565

BasicAlgebra(A)

BasicAlgebraOfMatrixAlgebra(A)

This function creates the split basic algebra of the matrix algebra A. The function
first produces a presentation and condensed algebra for A. In the event that the
field of coefficients k of A is not a splitting field, then the returned basic algebra is
defined over the minimal extension of k that is a splitting field for A.

BasicAlgebraOfEndomorphismAlgebra(M)

Returns the split basic algebra of the endomorphism ring of the module M . In the
event that the field of coefficients of M is not a splitting field for M , then the field
is extended and the basic algebra is defined over the minimal extension needed to
split M .

BasicAlgebraOfHeckeAlgebra(G, H, F)

Returns the basic algebra of the Hecke algebra which is the algebra of endomor-
phisms of the permutation module over G with point stabilizer H and field of coef-
ficients F . In the event that F is not a splitting field then the field F is extended
to a splitting field which is the field of coefficients of the returned basic algebra.

BasicAlgebraOfSchurAlgebra(n, r, F)

Creates the basic algebra of the Schur algebra S(n, r) over the field F . The Schur
algebra is the algebra of endomorphisms of the module over the symmetric group
Sym(r) that is the tensor product of r copies of a vector space V over F of dimension
n, the group Sym(r) acting by permuting the r copies.

BasicAlgebraOfGroupAlgebra(G,F)

BasicAlgebraOfGroupAlgebra(G,F)

BasicAlgebraOfGroupAlgebra(G,F)

The function returns the basic algebra of the group algebra of G with coefficients
in the field F . The function requires the creation of the projective indecomposable
FG-modules. In the event that the field F is not a splitting field for the irreducible
FG-modules then the base ring of the returned algebra is the minimal extension of
F that is necessary to get a splitting field.

BasicAlgebra(S)

Returns the basic algebra of the action algebra on the module which is the direct
sum of the modules in the sequence S. In the event that the irreducible composition
factors of the modules in S are not absolutely irreducible, then the returned basic
algebra is defined over the splitting field for the irreducible modules.

2566 ALGEBRAS Part XII

BasicAlgebraOfBlockAlgebra(S)

Returns the basic algebra of the block algebra, the projective modules of which are
given in the sequence S. In the event that the irreducible composition factors of
the modules in S are not absolutely irreducible, then the returned basic algebra is
defined over the splitting field for the irreducible modules.

BasicAlgebraOfPrincipalBlock(G,k)

Returns the basic algebra of the principal block of the group algebra of G. If
the simple modules in the principal kG block are all absolutely simple, then the
ordering of the projective modules for the returned basic algebra is exactly the same
as the ordering of the projectives modules in the principal block returned by the
function IndecomposableProjectives. Otherwise, the base ring of the returned
basic algebra is the least extension of k necessary to split the simple modules in
the principal block and the simple modules of the returned algebra are ordered by
increasing dimension of the corresponding simple modules of kG.

BasicAlgebraOfExtAlgebra(A)

The function returns the basic algebra from a computed ext-algebra which is
Ext∗A(S, S), where S is the direct sum of the irreducible A-modules, of the basic
algebra A. If no ext-algebra for A has been computed or if the exalgebra is not
verified to be finite dimensional then an error is returned.

BasicAlgebraOfExtAlgebra(A)

The function returns the basic algebra for the ext-algebra, which is Ext∗A(S, S),
where S is the direct sum of the irreducible A-modules, of A computed to n steps.
If no ext-algebra for A to n steps has been computed then it will be computed. If
the ext-algebra is not verified to be finite dimensional by the computation, then an
error is returned.

BasicAlgebraOfExtAlgebra(A)

The function creates the basic algebra from a computed ext-algebra. The input ext
is the output of the ExtAlgebra function. If the ext-algebra is not verified to be
finite dimensional by the computation, then an error is returned.

OppositeAlgebra(B)

The opposite algebra of the basic algebra B. The opposite algebra of B is the algebra
with the same set of elements and the same addition but with multiplication ∗ given
by a ∗ b = ba for a and b in A.

Ch. 85 BASIC ALGEBRAS 2567

Example H85E1

We form the basic algebra of the group algebra of the alternating group on 6 letters in characteristic
2.

> G := AlternatingGroup(6);

> A := BasicAlgebraOfGroupAlgebra(G, GF(2));

> A;

Basic algebra of dimension 36 over GF(2^2)

Number of projective modules: 5

Number of generators: 9

Note that the field of coefficients has been extended in order to split the irreducible G-modules. A
great deal of information on the nature of the group algebra and its basic algebra can be obtained
from analysis such as the following.

> [Dimension(ProjectiveModule(A,i)): i in [1 .. 5]];

[9, 9, 16, 1, 1]

> prj := CompactProjectiveResolutionsOfAllSimpleModules(A,8);

> [x‘BettiNumbers:x in prj];

[

[

[1, 0, 0, 0, 0],

[0, 0, 1, 0, 0],

[1, 0, 0, 0, 0],

[1, 0, 0, 0, 0],

[0, 0, 1, 0, 0],

[1, 0, 0, 0, 0],

[1, 0, 0, 0, 0],

[0, 0, 1, 0, 0],

[1, 0, 0, 0, 0]

],

[

[0, 1, 0, 0, 0],

[0, 0, 1, 0, 0],

[0, 1, 0, 0, 0],

[0, 1, 0, 0, 0],

[0, 0, 1, 0, 0],

[0, 1, 0, 0, 0],

[0, 1, 0, 0, 0],

[0, 0, 1, 0, 0],

[0, 1, 0, 0, 0]

],

[

[0, 0, 3, 0, 0],

[1, 1, 2, 0, 0],

[0, 0, 3, 0, 0],

[0, 0, 2, 0, 0],

[1, 1, 1, 0, 0],

[0, 0, 2, 0, 0],

2568 ALGEBRAS Part XII

[0, 0, 1, 0, 0],

[1, 1, 0, 0, 0],

[0, 0, 1, 0, 0]

],

[

[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0],

[0, 0, 0, 1, 0]

],

[

[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0],

[0, 0, 0, 0, 1]

]

]

So we see that the last two simple modules are projective and hence in the group algebra FG,
they represent blocks of defect 0. From the information on the Betti numbers we observe that the
first two simple modules have periodic projective resolutions. Thus the third simple module for
the basic algebra corresponds to the trivial FG-module, which we know is neither projective nor
periodic.

Example H85E2

We construct the Schur algebra S(3, 7) with coefficients in a field of characteristic 2.

> A := BasicAlgebraOfSchurAlgebra(3,6,GF(2));

> A;

Basic algebra of dimension 58 over GF(2)

Number of projective modules: 7

Number of generators: 21

It is known that A has finite global dimension, hence its ext-algebra has finite dimension.

> B := BasicAlgebraOfExtAlgebra(A,10);

> B;

Basic algebra of dimension 56 over GF(2)

Number of projective modules: 7

Ch. 85 BASIC ALGEBRAS 2569

Number of generators: 25

We check to see if the ext-algebra of B might have finite dimension.

> SumOfBettiNumbersOfSimpleModules(B,5);

600

> SumOfBettiNumbersOfSimpleModules(B,6);

1334

> SumOfBettiNumbersOfSimpleModules(B,7);

3008

The sum of the Betti number would be the dimension of the ext-algebra computed to the indicated
degree. It would appear that the ext-algebra is infinite dimensional. Just to check, we look at a
particular simple module, chosen randomly.

> CompactProjectiveResolution(SimpleModule(B,4),10)‘BettiNumbers;

[

[8, 0, 81, 3, 61, 69, 55],

[3, 0, 36, 1, 26, 30, 24],

[1, 0, 16, 1, 11, 13, 10],

[1, 0, 7, 1, 5, 5, 4],

[1, 0, 3, 1, 2, 2, 1],

[1, 0, 1, 0, 1, 1, 0],

[0, 0, 0, 0, 1, 1, 0],

[0, 0, 0, 0, 1, 0, 1],

[0, 0, 0, 1, 0, 1, 0],

[1, 0, 0, 0, 0, 0, 1],

[0, 0, 0, 1, 0, 0, 0]

]

Thus we have strong evidence that the fourth simple module has infinite projective dimension. In
that case, the ext-algebra of B is not finite dimensional.
Now we consider the same example except in characteristic 3.

> A := BasicAlgebraOfSchurAlgebra(3,6,GF(3));

> A;

Basic algebra of dimension 48 over GF(3)

Number of projective modules: 7

Number of generators: 21

> B := BasicAlgebraOfExtAlgebra(A,10);

> B;

Basic algebra of dimension 98 over GF(3)

Number of projective modules: 7

Number of generators: 21

> SumOfBettiNumbersOfSimpleModules(B,5);

48

> SumOfBettiNumbersOfSimpleModules(B,6);

48

So we see that the algebra B has global dimension at most 5. We can compute its ext-algebra.

> C := BasicAlgebraOfExtAlgebra(B,10);

2570 ALGEBRAS Part XII

> C;

Basic algebra of dimension 48 over GF(3)

Number of projective modules: 7

Number of generators: 21

> D := BasicAlgebraOfExtAlgebra(C,10);

> D;

Basic algebra of dimension 98 over GF(3)

Number of projective modules: 7

Number of generators: 21

This provides evidence that A is isomorphic to its double ext-algebra. This would suggest that A
might be a Koszul algebra.

85.2.3 Access Functions
These functions return basic information, underlying structures and elements of the given
basic algebras.

B . i

The ith element in the standard basis for the underlying vector space of the algebra
B.

BaseRing(B)

CoefficientRing(B)

Given an algebra B over a field k the function returns k.

VectorSpace(B)

KSpace(B)

The underlying k-vector space of the algebra B. The space is the direct sum of the
underlying vector space of the indecomposable projective modules.

Dimension(B)

The dimension of the underlying vector space of the algebra B.

Basis(B)

A basis of the underlying vector space of the algebra B.

Generators(B)

The generators of the algebra B as a sequence of elements in the underlying vector
space of the algebra B.

IdempotentGenerators(B)

The sequence of mutually orthogonal idempotent generators of the basic algebra B
as elements in the underlying vector space of B.

Ch. 85 BASIC ALGEBRAS 2571

IdempotentPositions(B)

The sequenceN = [n1, . . . , ns] such that B.n1, . . . , B.ns are the mutually orthogonal
idempotent generators of the algebra B.

NonIdempotentGenerators(B)

The sequence of nonidempotent generators of the basic algebra B as elements in the
underlying vector space of the algebra B.

Random(B)

A random element of the algebra B as an element of the underlying vector space of
B.

NumberOfProjectives(B)

The number of nonisomorphic indecomposable projective modules in the basic al-
gebra B.

NumberOfGenerators(B)

Ngens(B)

The number of generators (idempotent and nonidempotent) of the basic algebra B.

DimensionsOfProjectiveModules(B)

The sequence of the dimensions of the projective modules of the basic algebra B.

DimensionsOfInjectiveModules(B)

The sequence of the dimensions of the injective modules of the basic algebra B.

85.2.4 Elementary Operations

a + b

The sum of the two elements a and b.

a * b

The product of the two elements a and b.

a ^ n

The nth power of the element a.

2572 ALGEBRAS Part XII

Example H85E3

We create the basic algebra of the quiver with three nodes and three arrows over the field with 7
elements. The first arrow (a) goes from node 1 to node 2, the second (b) from node 2 to node 1,
and (c) from node 2 to node 3. The arrows satisfy the relation that (a ∗ b)3 = 0.

> ff := GF(7);

> FA<e1,e2,e3,a,b,c> := FreeAlgebra(ff,6);

> rrr := [a*b*a*b*a*b];

> D := BasicAlgebra(FA,rrr,3,[<1,2>,<2,1>,<2,3>]);

> D;

Basic algebra of dimension 21 over GF(7)

Number of projective modules: 3

Number of generators: 6

> DimensionsOfProjectiveModules(D);

[9, 11, 1]

> DimensionsOfInjectiveModules(D);

[6, 7, 8]

So we can see that the algebra is not self-injective.
Now we can check the nilpotence degree of the radical of D. The radical of D is generated by the
nonidempotent generators.

> S := NonIdempotentGenerators(D);

> S;

[(0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0), (0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0), (0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0)]

> S2 := [x*y:x in S, y in S|x*y ne 0];

> #S2;

3

> S3 := [x*y:x in S2, y in S|x*y ne 0];

> #S3;

3

> S4 := [x*y:x in S3, y in S|x*y ne 0];

> #S4;

3

> S5 := [x*y:x in S4, y in S|x*y ne 0];

> #S5;

3

> S6 := [x*y:x in S5, y in S|x*y ne 0];

> #S6;

2

> S7 := [x*y:x in S6, y in S|x*y ne 0];

> #S7;

1

> S8 := [x*y:x in S7, y in S|x*y ne 0];

> #S8;

0

Ch. 85 BASIC ALGEBRAS 2573

Example H85E4

First we create the basic algebra for the symmetric group S3 over the field GF (3)

> FA<e1,e2,a,b> := FreeAlgebra(GF(3),4);

> MM:= [a*b*a, b*a*b];

> BS3 := BasicAlgebra(FA, MM, 2, [<1,2>,<2,1>]);

> BS3;

Basic algebra of dimension 6 over GF(3)

Number of projective modules: 2

Number of generators: 4

> DimensionsOfProjectiveModules(BS3);

[3, 3]

Next we create the basic algebra for the cyclic group of order 3.

> gg := CyclicGroup(3);

> BC3 := BasicAlgebra(gg,GF(3));

> BC3;

Basic algebra of dimension 3 over GF(3)

Number of projective modules: 1

Number of generators: 2

We create the basic algebra for the direct product C3 × S3.

> A := TensorProduct(BS3,BC3);

> A;

Basic algebra of dimension 18 over GF(3)

Number of projective modules: 2

Number of generators: 6

> DimensionsOfProjectiveModules(A);

[9, 9]

Example H85E5

We create the basic algebra for A4 over a field with 2 elements. The group algebra has two
nonisomorphic projective modules. We define the basic algebra by constructing the matrix algebra
for the projective modules and the path trees and entering this data into the BasicAlgebra

function.
Note that the matrices are sparse so we will define them by specifying the nonzero rows.

> ff := GF(2);

> MM6 := MatrixAlgebra(ff,6);

> e11 := MM6!0;

> e12 := MM6!0;

> VV6 := VectorSpace(GF(2),6);

> BB6 := Basis(VV6);

> e11[1] := BB6[1];

> e11[3] := BB6[3];

> e11[4] := BB6[4];

> e11[6] := BB6[6];

2574 ALGEBRAS Part XII

> e12[2] := BB6[2];

> e12[5] := BB6[5];

> a1 := MM6!0;

> b1 := MM6!0;

> c1 := MM6!0;

> d1 := MM6!0;

> a1[1] := BB6[2];

> b1[1] := BB6[3];

> c1[2] := BB6[4];

> a1[3] := BB6[5];

> b1[4] := BB6[6];

> c1[5] := BB6[6];

> A1 := sub< MM6 | [e11, e12, a1, b1, c1, d1] >;

> T1 := [<1,1>, <1,3>, <1,4>, <2,5>, <3,3>, <4,4>];

>

> VV5 := VectorSpace(ff,5);

> BB5 := Basis(VV5);

> MM5 := MatrixAlgebra(ff,5);

> e21 := MM5!0;

> e22 := MM5!0;

> e22[1] := BB5[1];

> e22[3] := BB5[3];

> e22[5] := BB5[5];

> e21[2] := BB5[2];

> e21[4] := BB5[4];

> a2 := MM5!0;

> b2 := MM5!0;

> c2 := MM5!0;

> d2 := MM5!0;

> f2 := MM5!0;

> g2 := MM5!0;

> c2[1] := BB5[2];

> d2[1] := BB5[3];

> b2[2] := BB5[4];

> d2[3] := BB5[5];

> a2[4] := BB5[5];

> A2 := sub< MM5 | [e21, e22, a2, b2, c2, d2] >;

> T2 := [<1,2>, <1,5>, <1,6>, <2,4>, <3,6>];

>

> C := BasicAlgebra([<A1, T1>, <A2, T2>]);

> C;

Basic algebra of dimension 11 over GF(2)

Number of projective modules: 2

Number of generators: 6

> DimensionsOfProjectiveModules(C);

[6, 5]

> DimensionsOfInjectiveModules(C);

Ch. 85 BASIC ALGEBRAS 2575

[6, 5]

85.2.5 Boolean Functions
A basic algebra in Magma is a sequence of matrix algebras, each with a path tree. When
a basic algebra is created by entering such a sequence, Magma does not check to see if
all of the properties of a basic algebra are satisfied, as this is an expensive operation. The
following two function check to see if the properties of a basic algebra are satisfied.

IsDimensionCompatible(B)

Returns true if the dimension of a basic algebra is the same as the dimension of the
matrix algebra of its action on itself. If false then the algebra is not a basic algebra.

IsPathTree(B)

Returns true if the basis elements of the projective modules in the basic algebra are
determined by the path tree. If false, then the algebra is not a true basic algebra.
Two other functions check commutativity.

IsCommutative(A)

Returns true if the basic algebra A is commutative.

IsCentral(A,x)

Returns true if the element x is in the center of the basic algebra A.

85.3 Homomorphisms

Magma has the capability of creating homomorphisms of basic algebras. A homomorphism
of a basic algebra has the type Map. The matrix of the homomorphism φ is accessed by
entering Matrix(phi). The kernel of a homomorphism is returned as a subspace of the
vector space of the domain of the algebra. This is a two-sided ideal. There is no special
type for ideals. They are subspaces of the underlying vector space of the algebra. They
can be generated from any given set of elements of the algebra

The image of a homomorphism is returned as a basic algebra, together with the em-
bedding homomorphism.

A homomorphism from a basic algebra A to a basic algebra B is normally created from
a matrix having dimension of A rows and dimension of B columns. Note that Magma
does not automatically check to see if the created map is an algebra homomorphism.

hom< A - >

The algebra homomorphism from basic algebra A to basic algebra B, whose matrix
is the matrix S. Given a map φ, a homomorphism of basic algebra, the matrix of
that map is recalled with the command Matrix(phi).

2576 ALGEBRAS Part XII

Kernel(phi)

The kernel of the map φ.

Image(phi)

The image of the homomorphism φ together with the embedding homomorphism of
the image into the codomain of φ.

IsAlgebraHomomorphism(A, B, psi)

Return true if the matrix ψ represents a homomorphism from basic algebra A to
basic algebra B.

X * Y

The composition of the maps X and Y .

IsAlgebraHomomorphism(A, B, psi)

IsAlgebraHomomorphism(A, B, psi)

IsAlgebraHomomorphism(A, B, psi)

IsAlgebraHomomorphism(A, B, psi)

Returns true, if the map ψ is a homomorphism of basic algebras

IsAlgebraHomomorphism(psi)

Returns true if the map ψ is a homomorphism of basic algebras.

85.4 Subalgebras and Quotient Algebras

A subalgebra is also returned with the embedding homomorphism, and a quotient algebra
is returned with the natural quotient map. These are needed for creating some standard
subalgebras such as the centre of the algebra.

85.4.1 Subalgebras and their Constructions

sub< A | S >

The subalgebra of A generated by the elements of the sequence S, together with the
inclusion map of the subalgebra into A. The subalgebra contains the idempotent of
minimal rank in A that acts as a multiplicative identity on the elements of S.

SubalgebraFromBasis(A, V)

Given a basic algebra A and the basis V of a subspace of A, the function returns
the basic algebra which is the subalgebra spanned by the subspace and the inclusion
matrix of the homomorphism embedding the subalgebra into A. Note that the space
V might not contain the identity element of V and in that case the minimal possible
identity element is added to the returned subalgebra.

Ch. 85 BASIC ALGEBRAS 2577

MaximalIdempotent(A, S)

Given a basic algebra A, a subspace S of the vector space of A that is closed under
multiplication, this function returns an idempotent in A which has maximal rank
among all idempotents contained in S.

MinimalIdentity(A, S)

Returns the idempotent of smallest rank that is a two sided identity for the elements
in the set S.

Centre(A)

The centre of the basic algebra as a basic algebra together with the inclusion homo-
morphism.

Centralizer(A,S)

Returns the centralizer in the basic algebra A of the elements in the sequence S,
along with the homomorphism embedding the centralizer into A.

MaximalCommutativeSubalgebra(A,S)

Returns a maximal commutative subalgebra of the basic algebra A that contains the
elements of the sequence S. An error occurs if the elements of S do not commute.

85.4.2 Ideals and their Construction

ideal< A | S >

ideal< A | S >

Returns the subspace of the vector space of the algebra A that is the ideal of the A
generated by the given sequence of elements S.

LeftAnnihilator(A, S)

Returns a basis for the left annihilator of the sequence S of elements in the basic
algebra A.

RightAnnihilator(A, S)

Returns a basis for the right annihilator of the sequence S of elements in the basic
algebra A.

Annihilator(A,S)

Returns a basis for the two-sided annihilator of the sequence of elements S of the
basic algebra A.

IsIdeal(A, S)

Returns true if the subspace spanned by the elements of S is a two-sided ideal of
the basic algebra A.

2578 ALGEBRAS Part XII

IsLeftIdeal(A,S)

Returns true if the subspace spanned by the elements of S is a left ideal of the basic
algebra A.

IsRightIdeal(A, S)

Returns true if the subspace spanned by the elements of S is a two-sided ideal of
the basic algebra A.

RandomIdealGeneratedBy(A, n)

Returns the ideal generated by n randomly selected elements in the Jacobson radical
of the basic algebra A.

85.4.3 Quotient Algebras

quo< A | S >

Returns the quotient algebra of A by the ideal S, which is a subspace of the vector
space of A, together with the quotient map.

CoverAlgebra(A)

Constructs the maximal extension B as in [0 → K → B → A → 0] such that B
acts trivially on K and B is an algebra with exactly the same minimal number of
generators as A. Returns B and the algebra homomorphism of B onto A.

GradedCoverAlgebra(A)

This assumes that we are given the truncated algebra of a graded algebra. It creates
the basic algebra of the natural cover of A and also returns the matrix of the cover
onto A.

TruncatedAlgebra(A,n)

The quotient of the algebra by the nth power of the radical of A. Returns also the
quotient map.

Ch. 85 BASIC ALGEBRAS 2579

85.5 Minimal Forms and Gradings
There are some standard ways of rewriting an algebra to an isomorphic form. We can
also constructed the associated graded algebra of a basic algebra. Also included here is a
function for rearranging the orders of idempotents in a basic algebra.

The first intrinsic is used extensively in the programs for computing automorphisms
and isomorphisms.

MinimalGeneratorForm(A)

Returns a record consisting of an isomorphic basic algebra having the property that
it is generated by a minimal number of elements and the projective modules are
filtered by radical layers. The record consists of the following fields:
(a) The algebra in minimal form (field algebra).
(b) The map from the minimal generator form algebra to A (field Homomorphism).
(c) The inverse map from A to the minimal generator form algebra (field

InverseHomomorphism).
(d) The dimensions of the radical layer (field RadicalDimensions).
(e) The dimensions of the filtration of the top radical layer by the socle layer (field

FilterDimensions).

MinimalGeneratorFormAlgebra(A)

Returns an isomorphic algebra having minimal generator form.

AssociatedGradedAlgebra(A)

Returns the basic algebra that is isomorphic to the associated graded algebra of A.

GradedCapHomomorphism(A)

Returns the matrix of the map from A/Rad(A) to X/Rad(X) where X is the asso-
ciated graded algebra of A.

GradedCapHomomorphism(A, B, mu)

Given an algebra homomorphism mu : A→ B, returns the induced homomorphism
A/Rad2(A) → B/Rad2(B), where Rad2 is the second power of the Jacobson radical.

BuildHomomorphismFromGradedCap(A, B, phi)

Returns the graded homomorphism from the associated graded algebra X of A to
the associated graded algebra Y of B, whose cap is φ. That is phi is the matrix of
the induced homomorphism of X/Rad2(X) to Y/Rad2(Y).

ChangeIdempotents(A, S)

ChangeIdempotents(A, S)

Returns the basic algebra isomorphic to A, obtained by permuting the order of the
idempotents by the permutation S. The permutation S can be given as an element
of the symmetric group or as the sequence of images of the permutation.

2580 ALGEBRAS Part XII

Example H85E6

In this examples we investigate properties of the basic algebra of a Schur algebra.

> A := BasicAlgebraOfSchurAlgebra(3,6,GF(3));

> A;

Basic algebra of dimension 48 over GF(3)

Number of projective modules: 7

Number of generators: 21

> B := BasicAlgebraOfExtAlgebra(A,10);

> B;

Basic algebra of dimension 98 over GF(3)

Number of projective modules: 7

Number of generators: 21

> C := BasicAlgebraOfExtAlgebra(B,10);

> C;

Basic algebra of dimension 48 over GF(3)

Number of projective modules: 7

Number of generators: 21

> boo,mat := IsIsomorphic(A,C);

> boo;

true

> IsAlgebraHomomorphism(mat);

true

So we see that A is isomorphic to its double ext-algebra, and it is graded since the double ext-
algebra is graded. Thus we know that the basic algebra A is a Koszul algebra.

Example H85E7

Here we see how to rearrange an algebra by changing the ordering on the primitive idempotents.

> A := BasicAlgebraOfSchurAlgebra(3,5,GF(3));

> A;

Basic algebra of dimension 11 over GF(3)

Number of projective modules: 5

Number of generators: 9

> B, uu := ChangeIdempotents(A,[2,4,5,1,3]);

> B;

Basic algebra of dimension 11 over GF(3)

Number of projective modules: 5

Number of generators: 9

> DimensionsOfProjectiveModules(A);

[2, 3, 2, 1, 3]

> DimensionsOfProjectiveModules(B);

[3, 1, 3, 2, 2]

> IsAlgebraHomomorphism(A,B,uu);

true

> uu;

[0 0 0 0 0 0 0 1 0 0 0]

Ch. 85 BASIC ALGEBRAS 2581

[0 0 0 0 0 0 0 0 1 0 0]

[1 0 0 0 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 0 0 0 0 1]

[0 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 1 0 0 0 0 0 0]

[0 0 0 0 0 1 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0]

We see that uu is a permutation matrix.

85.6 Automorphisms and Isomorphisms

Magma has the capability of computing automorphisms and isomorphisms of basic alge-
bras. Because the automorphism groups tend to be rather large, the functions work best
on small examples.

GradedAutomorphismGroupMatchingIdempotents(A)

Returns the group of graded automorphisms of the basic algebra A that preserve
the idempotents of A. Returns also the graded caps (matrices of homomorphisms
from X/Rad2(X) to itself, where X is the Associated Graded algebra of A) of the
generators of the automorphism group in two sequenced, nonunipotent generators
and unipotent generators.

GradedAutomorphismGroup(A)

Returns the group of graded automorphisms of the associated graded algebra X
of the basic algebra A. The function returns also the graded caps of the genera-
tors of the graded automorphism group. These are the induced automorphisms of
X/Rad2(X) to itself, and they are returned as two lists of nonunipotent and unipo-
tent generators that preserve the idempotents of X and a list of generators that
permute the idempotents.

IsGradedIsomorphic(A, B)

Returns true if the associated graded algebras of A and B are isomorphic, in which
case the isomorphism is returned.

AutomorphismGroupMatchingIdempotents(A)

Returns the group of all automorphism of the basic algebra A that preserve the
basic idempotent structure. That is, any element of this group induces the identity
automorphism on the quotient A/Rad(A) of A by its Jacobson radical.

2582 ALGEBRAS Part XII

AutomorphismGroup(A)

Returns the automorphism group of the basic AlgebraA, together with the sequences
of nonnilpotent generators preserving idempotents, nilpotent generators preserving
idempotents and generators that permute the idempotents.

IsIsomorphic(A, B)

Returns true if the basic algebra A is isomorphic to the basic algebra B and, if so,
the function also returns an isomorphism.

Example H85E8

We compute the automorphism group of a group algebra.

> A := BasicAlgebra(SmallGroup(81, 7));

> time ba := AutomorphismGroup(A);

Time: 6.260

> #ba;

343585013821340887357640753177080848468071681334

> Factorization(#ba);

[<2, 1>, <3, 99>]

As expected the automorphism group has a very large unipotent 3-subgroup.

Example H85E9

We can see if small changes in the presentation of an algebra affect the isomorphism type. We
define the algebras by generators and relations.

> F<e1,e2,z,y,x> := FreeAlgebra(GF(5),5);

> RR:= [(y*z)^3,x^4,x*y*z];

> A := BasicAlgebra(F,RR,2,[<1,2>,<2,1>,<2,2>]);

> A;

Basic algebra of dimension 49 over GF(5)

Number of projective modules: 2

Number of generators: 5

> RS:= [(y*z)^3-x^4,x^5,x*y*z,(z*y)^3];

> B := BasicAlgebra(F,RS,2,[<1,2>,<2,1>,<2,2>]);

> B;

Basic algebra of dimension 49 over GF(5)

Number of projective modules: 2

Number of generators: 5

> RT:= [(y*z)^3-2*x^4,x^5,x*y*z,(z*y)^3];

> C := BasicAlgebra(F,RS,2,[<1,2>,<2,1>,<2,2>]);

> C;

Basic algebra of dimension 49 over GF(5)

Number of projective modules: 2

Number of generators: 5

> time ab, x := IsIsomorphic(A,B);

Time: 0.100

Ch. 85 BASIC ALGEBRAS 2583

> ab;

false

> time ac, x := IsIsomorphic(A,C);

Time: 0.050

> print ac;

false

> time bc,x := IsIsomorphic(B,C);

Time: 2.350

> print bc;

true

Example H85E10

We can see which groups of order 32 have mod 2 group algebras that are graded. The algebra is
graded if and only if it is isomorphic to its associated graded algebra. So we make a list of those
algebras whose group algebras are graded. Note that there are 51 isomorphism classes of groups
of order 32. The last one (number 51) is elementary abelian and we know that its group algebra
is graded.

> graded := [];

> for i := 1 to 50 do

> A := BasicAlgebra(SmallGroup(32,i));

> B := AssociatedGradedAlgebra(A);

> boo, map := IsIsomorphic(A, B);

> if boo then Append(~graded, i); end if;

> end for;

> graded;

[1, 2, 3, 5, 9, 12, 14, 16, 18, 21, 22, 25, 36, 39, 45, 46]

85.7 Modules over Basic Algebras

A module M over a basic algebra B is presented as a sequence of matrices, one for each
generator of the algebra.

85.7.1 Indecomposable Projective Modules
The indecomposable projective modules are defined from the structure of the algebra and
have associated path trees that solve the homomorphism lifting problem.

ProjectiveModule(B, i)

The ith projective module of the basic algebra B.

PathTree(B, i)

The path tree of the ith projective module of the basic algebra B.

2584 ALGEBRAS Part XII

ActionGenerator(B, i)

The sequence of matrices for the generators of the basic algebra B acting on the ith

projective module of B.

IdempotentActionGenerators(B, i)

The sequence of matrices for the idempotent generators of the basic algebra B acting
on the ith projective module of B.

NonIdempotentActionGenerators(B, i)

The sequence of matrices for the nonidempotent generators of the basic algebra B
acting on the ith projective module of B.

Injection(B, i, v)

Given a vector v in in the ith projective module of the basic algebra B, the function
returns the image of inclusion of v into B.

85.7.2 Creation

AModule(B, Q)

Given a basic algebra B and a sequence Q of elements in a matrix algebra the
function returns the B-module M on which the generators of B act by multiplication
by the corresponding elements of Q.

ProjectiveModule(B, S)

Given a sequence S = [s1, s2, ...], the function returns a projective module which is
the direct sum of s1 copies of the first projective of the algebra B, s2 copies of the
second, etc. It also returns the sequence of inclusions and projections from and to
the indecomposable projective modules.

IrreducibleModule(B, i)

SimpleModule(B, i)

The ith irreducible module of the algebra B. The module is the quotient of the ith

projective module by its radical.

ZeroModule(B)

The zero B-module.

RightRegularModule(B)

The algebra B as a right module over itself. The module is the direct sum of the
projectives modules of B.

Ch. 85 BASIC ALGEBRAS 2585

RegularRepresentation(v)

If v is an element of a basic algebra given as a vector in the underlying space, then
the function computes the matrix of the action by right multiplication of the element
on the algebra.

Restriction(M, B, xi)

If B is a subalgebra of the basic algebra A, ξ is the embedding of B into A, and M
is an A-module, then the function returns the restriction of M to a B-module.

ChangeAlgebra(M, B, xi)

ChangeAlgebra(M, B, xi)

Given a module M over an algebra A and an algebra homomorphism ξ from B to
A, the function returns the module M as a B-module.

JacobsonRadical(M)

The Jacobson radical of the module M .

Socle(M)

The socle of the module M . The sum of the simple submodules of M .

85.7.3 Access Functions

Algebra(M)

Given a module M over a basic algebra B, the function returns B.

Dimension(M)

The dimension of the module M over its base ring.

Action(M)

The matrix algebra of the action of the algebra of M on M .

IsomorphismTypesOfRadicalLayers(M)

Given a module M over a basic algebra, returns the sequence of isomorphism types
of simple composition factors in each layer of the radical filtration of M .

IsomorphismTypesOfSocleLayers(M)

Given a module M over a basic algebra, returns a sequence of isomorphism types of
simple composition factors in each socle layer with reversed order, i. e. isomorphism
types of the socle of M will appear last.

IsomorphismTypesOfBasicAlgebraSequence(S)

Given a sequence of irreducible modules S for a basic algebra A, return a sequence
of isomorphism types comparing with the simple modules of A.

2586 ALGEBRAS Part XII

Example H85E11

We show the restriction of a module over an algebra A to a subalgebra of A.

> G := SmallGroup(32,7);

> A := BasicAlgebra(G);

> C, mu := Center(A);

> X := RightRegularModule(A);

> Z := JacobsonRadical(X);

> L := Restriction(Z,C,mu);

> L;

AModule L of dimension 31 over GF(2)

> A eq Algebra(L);

True

> IndecomposableSummands(L);

[

AModule of dimension 1 over GF(2),

AModule of dimension 30 over GF(2)

]

> Dimension(Socle(L));

16

Next we show how to pull back modules along a quotient map. We use the same algebra A.

> U := ideal<A|[A.13 +A.17]>;

> Q, theta := quo<A|U>;

> X := ProjectiveModule(Q,1);

> Y := ChangeAlgebras(X,A,theta);

> Y;

AModule Y of dimension 16 over GF(2)

Example H85E12

Here is another example of pulling back a module along a quotient map. This one involves algebras
with more than one idempotent.

> load m11;

Loading "/usr/local/dmagma/libs/pergps/m11"

M11 - Mathieu group on 11 letters - degree 11

Order 7 920 = 2^4 * 3^2 * 5 * 11; Base 1,2,3,4

Group: G

> A:= BasicAlgebraOfPrincipalBlock(G,GF(2));

> A;

Basic algebra of dimension 22 over GF(2)

Number of projective modules: 3

Number of generators: 9

> DimensionsOfProjectiveModules(A);

[8, 8, 6]

> I := ideal<A|[A.9]>;

> B, mu := quo<A|I>;

Ch. 85 BASIC ALGEBRAS 2587

> B;

Basic algebra of dimension 6 over GF(2)

Number of projective modules: 2

Number of generators: 5

> P := ProjectiveModule(B,1);

> P;

AModule P of dimension 3 over GF(2)

> Q := ChangeAlgebras(P,A,mu);

> Algebra(Q) eq A;

true

Example H85E13

In this example, we investigate the structure of the projective modules of a basic algebra.

> G := PSL(3,3);

> N := Normalizer(G,Sylow(G,2));

> A := BasicAlgebraOfHeckeAlgebra(G,N,GF(2));

> DimensionsOfProjectiveModules(A);

[1, 2, 3, 9, 9, 1, 1, 1, 1]

> IsomorphismTypesOfRadicalLayers(ProjectiveModule(A,4));

[

[4],

[2, 3, 4, 5],

[4, 4, 5],

[5]

]

> IsomorphismTypesOfSocleLayers(ProjectiveModule(A,4));

[

[4],

[3, 4, 5],

[2, 4, 5],

[4, 5]

]

So we see that, unlike a group algebra, a Hecke algebra can have indecomposable projective
modules whose socles are not simple.

85.7.4 Predicates
The following functions return a boolean value.

IsSemisimple(M)

Returns true if the module M is a semisimple module and false otherwise. If
true, then the function also returns a list of the ranks of the primitive idempotents
of the algebra. This is also a list of the multiplicities of the simple modules of the
algebra as composition factors in a composition series for the module.

2588 ALGEBRAS Part XII

IsProjective(M)

Returns true if the module M is projective. The function also returns a sequence
of multiplicities of the standard projective modules as direct summands of the pro-
jective cover of M .

IsInjective(M)

Returns true if the module M is injective. The function also returns a sequence of
multiplicities of the standard injective modules as direct summands of the injective
hull of M .

85.7.5 Elementary Operations

m * b

Given an element b in a basic algebra B and an element m in a module M over B,
m ∗ b is the product.

Example H85E14

We obtain the dimensions of the radical layers of the group algebra of an extra special group of
order 243 over a field of characteristic 3.

> G := ExtraSpecialGroup(3,2);

> G;

Permutation group G acting on a set of cardinality 243

> ff := GF(3);

> A := BasicAlgebra(G,ff);

> A;

Basic algebra of dimension 243 over GF(3)

Number of projective modules: 1

Number of generators: 6

> P := ProjectiveModule(A,1);

> P;

AModule P of dimension 243 over GF(3)

> R := JacobsonRadical(P);

> R;

AModule R of dimension 242 over GF(3)

> while Dimension(R) ne 0 do

> T := JacobsonRadical(R);

> print Dimension(R) - Dimension(T);

> R := T;

> end while;

4

11

20

30

36

39

Ch. 85 BASIC ALGEBRAS 2589

36

30

20

11

4

1

Example H85E15

We consider the mod-2 group algebra of an extraspecial group of order 128, and construct the mod-
ule induced from the trivial module on the subgroups of order 4 generated by the first generator
of the group.

> G := ExtraSpecialGroup(2,3);

> G;

Permutation group G acting on a set of cardinality 128

> F := GF(2);

> A := BasicAlgebra(G,F);

> A;

Basic algebra of dimension 128 over GF(2)

Number of projective modules: 1

Number of generators: 8

> A.1;

(1 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0)

Note that A.1 is the unique idempotent (identity element) in the group algebra, whereas A.2 is
G.1-1 where G.1 is the first generator of the group.

> A.2;

(0 1 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0)

> g := A.1+A.2;

Now we check the order of g.

> g^2;

(1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0)

> g^4;

(1 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0)

2590 ALGEBRAS Part XII

> g^4 eq A!1;

true

So g has order 4.

> P := ProjectiveModule(A,1);

> P;

AModule P of dimension 128 over GF(2)

Note that P is generated by P.1 which corresponds to the identity element of A if we think of P
as the algebra A as a module over itself. Now we create the induced module as the submodule
generated by (g− 1)3, since (g− 1)4 = 0.

> U := sub<P|P.1*A.6>;

> U;

AModule U of dimension 32 over GF(2)

Because the dimension is a quarter of the order of the group we can be sure that we have the
right thing by just checking that U is generated by a g fixed point.

> U.1*g eq U.1;

true

85.8 Homomorphisms of Modules

A homomorphism from module M to module N is simply a matrix that commutes with
the action of the algebra on M and N .

85.8.1 Creation

AHom(M, N)

The space of homomorphisms from module M to module N .

PHom(M,N)

The space of projective homomorphisms from module M to module N . That is, the
space of all homomorphisms that factor through a projective module.

ZeroMap(M, N)

The zero homomorphism from module M to module N .

LiftHomomorphism(x, n)

Given an element x in a module over a basic algebra and a natural number n, the
function returns the homomorphism from the nth projective module for the algebra
to the module with the property that the idempotent e of the projective module
maps to x ∗ e.

Ch. 85 BASIC ALGEBRAS 2591

LiftHomomorphism(X, N)

Given a sequence X = [x1, . . . , xt] of elements in a module M over a basic algebra
and a sequence N = [n1, . . . , ns] of nonnegative integers, such that n1 + . . .+ ns =
t, the function returns the homomorphism P → M from the projective module
P =

∑s
j=1 P

ni
j to M that takes the idempotent e for the ith summand in P to the

element xi ∗ e in M . Here Pj denotes the jth projective module for the algebra.

Pushout(M, f1, N1, f2, N2)

The pushout of the diagram
M

f1−→N1yf2

N2

The function returns the module L = (N1 ⊕ N2)/{(f1(m),−f2(m))|m ∈ M} and
the homomorphisms g1 : N1 −→ L and g2 : N2 −→ L such that f1g1 = f2g2.

Pullback(f1, M1, f2, M2, N)

The pullback of the diagram
M2yf2

M1
f1−→ N

The function returns the module L = {(m1,m2) ∈M1 ⊕M2|f1(m1) = f2(m2)} and
the homomorphisms g1 : L −→M1 and g2 : L −→M2 such that g1f1 = g2f2.

85.8.2 Access Functions

IsModuleHomomorphism(f)

Returns true if the map f is a homomorphism of modules over the algebra.

Domain(f)

The domain of f .

Codomain(f)

The codomain of f .

Kernel(f)

The kernel of f and the inclusion of the kernel in Domain(f).

Cokernel(f)

The cokernel of f and the quotient map from Codomain(f) onto the cokernel.

2592 ALGEBRAS Part XII

85.8.3 Projective Covers and Resolutions
A projective cover of a module M is a projective module P and a surjective homomorphism
φ : P −→ M such that P is minimal with respect to the property of having such a
surjective homomorphism to M . A projective resolution to n steps of an A-module M is
a pair consisting of a complex

Pn
∂n−→Pn−1 −→ . . . −→ P1

∂1−→P0

which is exact except at the ends, and an augmentation homomorphism ε : P0 → M that
is a projective cover of M . In addition, the image of ∂1 must equal the kernel of ε. The
resolution is minimal if each Pi is a projective cover of its image in Pi−1. In this case the
ith syzygy module is the image of ∂i.

In the implementation the main function is CompactProjectiveResolution. This
function computes a minimal projective resolution of a given module and stores the mini-
mal amount of information that is necessary to create the boundary maps and the terms
of the resolution. It runs relatively fast because it avoids the computation of the terms of
the projective resolution as modules over the algebra. Instead the terms in the compact
resolution are only vector spaces together with a sequence of types for the projective mod-
ules. The other information that is recorded is the sequence of images of the generators
for the indecomposable projective modules. That is, for the boundary map

Pn
∂n−→Pn−1

the module Pn
∼= ⊕m

i=1Qi where each Qi is an indecomposable projective module generated
by an element ai corresponding to the appropriate idempotent in the basic algebra. The
function records the images ∂n(ai) as a sequence of vectors in the vector space of the
module Pn−1.

ProjectiveCover(M)

The projective cover of the module M given as the projective module P , the sur-
jective homomorphism of P onto M , the sequences of inclusion and projection ho-
momorphism of P from and to its indecomposable direct summands and the iso-
morphism type of P in the form of a list of the number of copies of the projective
modules of the algebra of each type that make up P .

ProjectiveResolution(M, n)

The complex giving the minimal projective resolution of the module M out to n
steps together with the augmentation homomorphism from the projective cover of
M into M . Note that homomorphisms go from left to right so that last term of
the complex (in degree 0) is the projective cover of M and the cokernel of the last
homomorphism in the complex is M . The complex is constructed from the compact
projective resolution of M . The function creates the compact projective resolution
if it has not already been computed.

Ch. 85 BASIC ALGEBRAS 2593

CompactProjectiveResolution(M, n)

Returns a minimal projective resolution for the module M out to n steps in com-
pact form together with the augmentation map (P0 → M). The compact form of
the resolution is a list of the minimal pieces of information needed to reconstruct
the boundary maps in the resolution. That is the boundary map (Pi

∂i−→Pi−1) is
recorded as a matrix whose entries are the images of the generators for indecom-
posable projective modules making up Pi in the indecomposable projective modules
making up Pi−1. If a compact projective resolution has been previously computed
to degree m and m < n then the function extends that resolution by n−m steps. If
m ≥ n the function returns the previously computed compact projective resolution.
The function returns a record with the fields:
(a)The list of isomorphism types of the projective modules in the resolution, each

given as a sequence of integers giving the number of direct summands of each
indecomposable projective in the module (field name BettiNumbers).

(b)The record of the boundary maps (field name ResolutionRecord).
(c) The module M (field name Module).
(d)The augmentation map (field name AugmentationMap).
(e) The type of the resolution, whether projective or injective (field name Typ).

CompactProjectiveResolutionsOfSimpleModules(A,n)

Returns a sequence of the compact projective resolutions of the simple A-modules
computed to degree n.

SyzygyModule(M, n)

The nth syzygy module of the module M . The module is constructed from the
compact projective resolution of M . The compact resolution is constructed if it
does not already exist.

SimpleHomologyDimensions(M)

The sequence of sequences of dimensions of the homology groups Torj(Si,M) for
simple modules Si and module M , to the extent that they have been computed.

Example H85E16

We consider the basic algebra of a quiver with relation. The quiver has four nodes and 5 non-
idempotent generators (a, b, c, d, e). The first goes from node 1 to node 2, the second from 2 to 3,
the third from 3 to 4, the fourth from 3 to 2 and the last from 4 to 1. They satisfy the relations
bcfadbd = (abcf)5ab = (bd)2b = 0.

> ff := GF(8);

> FA<e1,e2,e3,e4,a,b,c,d,f> := FreeAlgebra(ff,9);

> rrr := [b*c*f*a*b*d*b,a*b*c*f*a*b*c*f*a*b*c*f*a*b*c*f*a*b*c*f*a*b,

> b*d*b*d*b];

> BA := BasicAlgebra(FA,rrr,4,[<1,2>,<2,3>,<3,4>,<3,2>,<4,1>]);

2594 ALGEBRAS Part XII

> BA;

Basic algebra of dimension 296 over GF(2^3)

Number of projective modules: 4

Number of generators: 9

Now we take the projective resolutions of the simple modules out to 5 steps. We print the type
of the projective module at each stage.

> for i := 1 to 4 do

> S := SimpleModule(BA,i);

> prj := CompactProjectiveResolution(S, 5);

> SimpleHomologyDimensions(S);

> end for;

[

[0, 0, 10, 0],

[0, 0, 5, 0],

[0, 0, 2, 0],

[0, 0, 1, 0],

[0, 1, 0, 0],

[1, 0, 0, 0]

]

[

[0, 0, 16, 0],

[0, 0, 8, 0],

[0, 0, 4, 0],

[0, 0, 2, 0],

[0, 0, 1, 0],

[0, 1, 0, 0]

]

[

[0, 0, 0, 0],

[0, 0, 0, 0],

[0, 0, 0, 0],

[0, 0, 0, 0],

[0, 1, 0, 1],

[0, 0, 1, 0]

]

[

[0, 0, 0, 0],

[0, 0, 0, 0],

[0, 0, 0, 0],

[0, 0, 0, 0],

[1, 0, 0, 0],

[0, 0, 0, 1]

]

So we see that the third and fourth simple modules have finite projective dimension. The projective
resolutions of the first and second simple modules appear to have exponential rates of growth but

Ch. 85 BASIC ALGEBRAS 2595

the terms after the second term are all direct sums of copies of the third projective module.

> for i := 1 to 4 do

> Dimension(Socle(ProjectiveModule(BA,i)));

> end for;

12

13

25

12

Notice that the socles of the projective modules have very large dimensions so the injective reso-
lutions are probably going to grow at a very rapid rate.

Example H85E17

We create the quotient of the group algebra of a p-group by the ideal generated by a central
element. In particular, we choose the group algebra of an extra special 3-group and factor out
the ideal generated by (z− 1)2 where z is a central element of order 3. Then we compare the size
of the projective resolution of the trivial module for the new algebra with that of the antecedent
group algebra.

> G := ExtraSpecialGroup(3,1);

> F := GF(3);

> B := BasicAlgebra(G,F);

> B;

Basic algebra of dimension 27 over GF(3)

Number of projective modules: 1

Number of generators: 4

> s := NonIdempotentGenerators(B)[3];

Now check that s is in the center.

> [s*x eq x*s: x in Generators(B)];

[true, true, true, true]

> P := ProjectiveModule(B,1);

> Q := quo<P|P.1*s^2>;

> Q;

AModule Q of dimension 18 over GF(3)

We need to create the path tree for the projective module of the matrix algebra of the action on Q.
In this case it is an easy exercise because the last 9 element of the basis of the projective module
for B span the submodule that we are factoring out. This can actually be seen from the path tree
for the projective module of B.

> PathTree(B,1);

[<1, 1>, <1, 2>, <2, 2>, <1, 3>, <2, 3>, <3, 3>, <4, 3>,

<5, 3>, <6, 3>, <1, 4>, <2, 4>, <3, 4>, <4, 4>, <5, 4>,

<6, 4>, <7, 4>, <8, 4>, <9, 4>, <10, 4>, <11, 4>, <12, 4>,

<13, 4>, <14, 4>, <15, 4>, <16, 4>, <17, 4>, <18, 4>]

So we get the path tree for the new module by truncation.

> PT := [PathTree(B,1)[j]: j in [1 .. 18]];

2596 ALGEBRAS Part XII

> PT;

[<1, 1>, <1, 2>, <2, 2>, <1, 3>, <2, 3>, <3, 3>,

<4, 3>, <5, 3>, <6, 3>, <1, 4>, <2, 4>, <3, 4>,

<4, 4>, <5, 4>, <6, 4>, <7, 4>, <8, 4>, <9, 4>]

Now form the new basic algebra.

> C := BasicAlgebra([<Action(Q),PT>]);

> C;

Basic algebra of dimension 18 over GF(3)

Number of projective modules: 1

Number of generators: 4

> S := SimpleModule(C,1);

> prj := CompactProjectiveResolution(S, 15);

> SimpleHomologyDimensions(S);

[92, 77, 70, 57, 51, 40, 35, 26, 22, 15, 12, 7, 5, 2, 1]

Now compare this with the projective resolution for the group algebra.

> T := SimpleModule(B,1);

> pj2 := CompactProjectiveResolution(T,15);

> SimpleHomologyDimensions(T);

[20, 18, 17, 16, 15, 14, 12, 10, 9, 8, 7, 6, 4, 2, 1]

85.9 Duals and Injectives

If k is the base ring for the algebra A then the k-dual Homk(M,k) for a right module M
over A is a right module over the opposite algebra OA of A. Furthermore, the dual of a
projective OA-module is an injective A-module and the dual of a projective OA-resolution
of a module M is an A-injective resolution of the dual of M .

Dual(M)

Given a module M defined over a basic algebra M , this function returns the dual
of M as a module over the opposite of the algebra of M . Note that the opposite of
the algebra of M is created if it does not already exist.

BaseChangeMatrix(A)

Given a basic algebra A that has opposite algebra O, the function creates the change
of basis matrix B from the vector space of A to the vector space of O, so that if x,
y are in A then (xy)B is the same as (yB)(xB) ∈ O.

Ch. 85 BASIC ALGEBRAS 2597

85.9.1 Injective Modules
Injective hulls, and injective resolutions of a module are computed by taking the projective
cover or projective resolution of the dual module over the opposite algebra and then again
taking the dual to retrieve modules or complexes over the original algebra. If the opposite
algebra of the module has not been computed then it will be created in the evaluation of
any of the injective module functions.

InjectiveModule(B, i)

The ith injective module of the algebra B.

InjectiveHull(M)

The injective hull of the module M is the injective module I of minimal dimension
such that there is an inclusion ι : M → I. The function returns I, ι, the sequences
of inclusions and projections from and to the indecomposable injective summands
of I, and the type of I as a sequence T := [t1 . . . , ts] where I has t1 summands of
type 1, t2 of type 2, etc.

InjectiveResolution(M, n)

The complex giving the minimal injective resolution of the module M together with
the inclusion homomorphism from M into its injective hull. Note that homomor-
phisms go from left to right so that the kernel of the first homomorphism in the
complex is M . The function computes the compact injective resolution and creates
the complex of the injective resolution from that.

CompactInjectiveResolution(M, n)

A minimal injective resolution for the module M out to n steps in compact form to-
gether with the coaugmentation map (M → I0). The compact form of the resolution
is a list of the minimal pieces of information needed to reconstruct the boundary
maps in the resolution. That is, the boundary map (Ii−1

∂i−→Ii) is recorded as a
matrix whose entries are the images of the generators for indecomposable injective
modules making up Ii−1 in the indecomposable projective modules making up Ii.
The actual return of the function is the compact projective resolution of the dual
module of M over the opposite algebra of the algebra of M . The return is a record
with the fields:
(a)The list of isomorphism types of the injective modules in the resolution, each

given as a sequence of integers giving the number of direct summands of each
indecomposable injective in the module (field name BettiNumbers).

(b)The record of the boundary maps (field name ResolutionRecord).
(c) The module M (field name Module).
(d)The coaugmentation map (field name CoaugmentationMap).
(e) The type of the resolution, whether projective or injective (field name Typ).

2598 ALGEBRAS Part XII

InjectiveSyzygyModule(M, n)

The nth injective-syzygy module of M . The module is constructed from the compact
injective resolution of M . The compact resolution is constructed if it does not
already exist.

SimpleCohomologyDimensions(M)

The sequence of sequences of dimensions of the cohomology groups Extj(Si,M) for
simple modules Si and module M , to the extent that they have been computed.

Example H85E18

We create the basic algebra of a quiver over a field with 8 elements. The quiver has two nodes
and three arrows, going from node 1 to node 2, from 2 to 1 and from 1 to 1. The relations are
given in the sequence rrr.

> ff := GF(8);

> FA<e1,e2,a,b,c> := FreeAlgebra(ff,5);

> rrr := [a*b*a*b*a, c*c*c*c, a*b*c - c*a*b];

> B := BasicAlgebra(FA,rrr,2,[<1,2>,<2,1>,<1,1>]);

> B;

Basic algebra of dimension 41 over GF(2^3)

Number of projective modules: 2

Number of generators: 5

> DimensionsOfProjectiveModules(B);

[20, 21]

> DimensionsOfInjectiveModules(B);

[24, 17]

> P1 := ProjectiveModule(B,1);

> Socle(P1);

AModule of dimension 1 over GF(2^3)

We consider the injective resolution of the first projective module.

> time in1 := CompactInjectiveResolution(P1,10);

reverse trees

Time: 3.850

Note that part of the time was required to create the opposite algebra of B.

> SimpleCohomologyDimensions(P1);

[

[1, 0],

[0, 4],

[4, 0],

[4, 0],

[4, 0],

[4, 0],

[4, 0],

[4, 0],

Ch. 85 BASIC ALGEBRAS 2599

[4, 0],

[4, 0]

]

The injective resolution appears to be periodic. Now we look at a module constructed from the
resolution.

> M := InjectiveSyzygyModule(P1,6);

> M;

AModule M of dimension 64 over GF(2^3)

Consider the space of endomorphisms of M.

> hh := AHom(M,M);

> hh;

KMatrixSpace of 64 by 64 matrices and dimension 128 over GF(2^3)

> [Rank(hh.i): i in [1 .. Dimension(hh)]];

[16, 16, 16, 16, 12, 12, 12, 12, 8, 8, 8, 8, 8, 8, 8, 8, 6, 6, 6, 6, 4, 4, 4,

4, 4, 4, 4, 4, 2, 2, 2, 2, 4, 8, 12, 16, 16, 12, 8, 4, 8, 4, 12, 16, 4, 8, 12,

16, 16, 16, 16, 16, 2, 4, 6, 8, 8, 6, 4, 2, 4, 2, 6, 8, 2, 4, 6, 8, 12, 12, 12,

12, 8, 8, 8, 8, 8, 8, 8, 8, 6, 6, 6, 6, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 16,

16, 16, 16, 12, 12, 12, 12, 8, 8, 8, 8, 8, 8, 8, 8, 6, 6, 6, 6, 4, 4, 4, 4, 4,

4, 4, 4, 2, 2, 2, 2]

Note that no generator of the endomorphism ring has rank more than 16. This would indicate
that the module is decomposable since the identity map must be a sum of homomorphisms of
smaller rank.
How can we produce a decomposition? One method is the following.

> vv := Random(hh);

> Rank(vv);

64

> vv*vv eq vv;

false

> [Rank(vv*vv-u*vv):u in ff];

[60, 64, 64, 64, 64, 64, 64, 64]

> [u:u in ff];

[1, ff.1, ff.1^2, ff.1^3, ff.1^4, ff.1^5, ff.1^6, 0]

> Rank(vv*vv - vv);

60

> U := vv*vv - vv;

> Rank(U);

60

> Rank(U*U);

56

> Rank(U*U*U);

52

> Rank(U*U*U*U);

48

> Rank(U*U*U*U*U);

48

2600 ALGEBRAS Part XII

> Rank(U*U*U*U*U*U);

48

> T := U*U*U*U;

> N1 := Kernel(T);

> N2 := Image(T);

> Dimension(N1);

16

> Dimension(N2);

48

> Dimension(N1+N2);

64

So the sum of N1 and N2 must be all of M and by counting dimensions, it must be a direct sum.

85.10 Cohomology

CohomologyRingGenerators(P)

Given a compact projective resolution P for a simple module S over a basic algebra
A, the function returns the chain maps in compact form of a minimal set of genera-
tors for the cohomology Ext∗A(S, S), as well as some other information. The record
that is returned has the following fields:
(a)The list of maps in compact form for the chain map of the generators (field name

ChainMapRecord).
(b)The sequence of degrees of cohomology generators (field name ChainDegrees).
(c) The tops of the chain maps (maps on modules modulo radicals) for the purposes

of computing products (field name TopsOfCohomologyGenerators).
(d)The tops of the chain maps representing monomials in the generators (field name

TopsOfCohomologyChainMaps).
(e) The original compact projective resolution (field name ProjectiveResolution).

CohomologyRightModuleGenerators(P, Q, CQ)

Given projective resolutions P and Q for simple modules S and T over a basic
algebra A and the cohomology generators CQ for T associated to the resolution Q,
the function returns the chain maps in compact form of the minimal generators for
the cohomology Ext∗A(S, T) as a right module over the cohomology ring Ext∗A(T, T).
The function returns a record consisting of the following fields.
(a)The list of maps in compact form for the chain map of each cohomology generator

(field name ChainMapRecord).
(b)The sequence of degrees of cohomology generators (field name ChainDegrees).
(c) The tops of the chain maps (maps on modules module radicals) for the purposes

of computing products (field name TopsOfCohomologyGenerators).

Ch. 85 BASIC ALGEBRAS 2601

CohomologyLeftModuleGenerators(P, CP, Q)

Given projective resolutions P and Q for simple modules S and T over a basic
algebra A and the cohomology generators CP for T associated to the resolution Q,
the function returns the chain maps in compact form of the minimal generators for
the cohomology Ext∗A(S, T) as a left module over the cohomology ring Ext∗A(S, S).
The function returns a record consisting of the following fields.
(a)The list of maps in compact form for the chain map of each cohomology generator

(field name ChainMapRecord).
(b)The sequence of degrees of cohomology generators (field name ChainDegrees).
(c) The tops of the chain maps (maps on modules module radicals) for the purposes

of computing products (field name TopsOfCohomologyGenerators).

DegreesOfCohomologyGenerators(C)

Given the generators C for cohomology, as either module generators or as ring
generators, the function returns the list of degrees of the minimal generators.

CohomologyGeneratorToChainMap(P, Q, C, n)

Given the projective resolutions P and Q of two modules M and N and the coho-
mology generators C of the cohomology module, Ext∗B(M,N), the function returns
the chain map from P to Q that lifts the nth generator of the cohomology module
and has degree equal to the degree of that generator.

CohomologyGeneratorToChainMap(P, C, n)

Given the projective resolution P of a module and the cohomology generators C of
the cohomology ring of that module, the function returns the chain map from P to
P that lifts the nth generator of the cohomology ring and has degree equal to the
degree of that generator.

Example H85E19

We create the Basic algebra for the principal block of the sporadic simple group M11 in character-
istic 2. The block algebra has three simple modules of dimension 1, 44, and 10. The basic algebra
has dimension 22.

> ff := GF(2);

> VV8 := VectorSpace(ff,8);

> BB8 := Basis(VV8);

> MM8 := MatrixAlgebra(ff,8);

> e11 := MM8!0;

> e12 := MM8!0;

> e13 := MM8!0;

> e11[1] := BB8[1];

> e11[4] := BB8[4];

> e11[5] := BB8[5];

> e11[8] := BB8[8];

2602 ALGEBRAS Part XII

> e12[2] := BB8[2];

> e12[7] := BB8[7];

> e13[3] := BB8[3];

> e13[6] := BB8[6];

> a1 := MM8!0;

> b1 := MM8!0;

> c1 := MM8!0;

> d1 := MM8!0;

> e1 := MM8!0;

> f1 := MM8!0;

> a1[1] := BB8[2];

> a1[5] := BB8[7];

> b1[1] := BB8[3];

> b1[4] := BB8[6];

> c1[2] := BB8[4];

> c1[7] := BB8[8];

> e1[3] := BB8[5];

> e1[6] := BB8[8];

> f1[3] := BB8[6];

> A1 := sub< MM8 | [e11, e12, e13, a1, b1, c1, d1, e1, f1] >;

> T1 := [<1,1>,<1,4>,<1,5>,<2,6>,<3,8>,<4,5>,<5,4>,<6,8>];

> VV6 := VectorSpace(ff,6);

> BB6 := Basis(VV6);

> MM6 := MatrixAlgebra(ff,6);

> e21 := MM6!0;

> e22 := MM6!0;

> e23 := MM6!0;

> e22[1] := BB6[1];

> e22[5] := BB6[5];

> e22[6] := BB6[6];

> e21[2] := BB6[2];

> e21[4] := BB6[4];

> e23[3] := BB6[3];

> a2 := MM6!0;

> b2 := MM6!0;

> c2 := MM6!0;

> d2 := MM6!0;

> e2 := MM6!0;

> f2 := MM6!0;

> a2[4] := BB6[6];

> b2[2] := BB6[3];

> c2[1] := BB6[2];

> d2[1] := BB6[5];

> d2[5] := BB6[6];

> e2[3] := BB6[4];

> A2 := sub< MM6 | [e21, e22, e23, a2, b2, c2, d2, e2, f2]>;

> T2 := [<1,2>, <1,6>, <2,5>, <3,8>, <1,7>, <5,7>];

> VV8 := VectorSpace(ff,8);

Ch. 85 BASIC ALGEBRAS 2603

> BB8 := Basis(VV8);

> MM8 := MatrixAlgebra(ff,8);

> e31 := MM8!0;

> e32 := MM8!0;

> e33 := MM8!0;

> e31[2] := BB8[2];

> e31[6] := BB8[6];

> e32[4] := BB8[4];

> e33[1] := BB8[1];

> e33[3] := BB8[3];

> e33[5] := BB8[5];

> e33[7] := BB8[7];

> e33[8] := BB8[8];

> a3 := MM8!0;

> b3 := MM8!0;

> c3 := MM8!0;

> d3 := MM8!0;

> e3 := MM8!0;

> f3 := MM8!0;a3[2] := BB8[4];

> b3[6] := BB8[8];

> b3[2] := BB8[7];

> c3[4] := BB8[6];

> e3[1] := BB8[2];

> e3[3] := BB8[6];

> f3[1] := BB8[3];

> f3[3] := BB8[5];

> f3[5] := BB8[7];

> f3[7] := BB8[8];

> A3 := sub< MM8 | [e31, e32, e33, a3, b3, c3, d3, e3, f3] >;

> T3 := [<1,3>,<1,8>,<1,9>,<2,4>,<3,9>,<4,6>,<5,9>,<6,5>];

>

> m11 := BasicAlgebra([<A1, T1>, <A2, T2>, <A3, T3>]);

> m11;

Basic algebra of dimension 22 over GF(2)

Number of projective modules: 3

Number of generators: 9

> s1 := SimpleModule(m11,1);

> s2 := SimpleModule(m11,2);

Now we compute the projective resolutions of the first and second simple modules. Then we find
the degrees of their cohomology ring generators.

> prj1 := CompactProjectiveResolution(s1,20);

> prj2 := CompactProjectiveResolution(s2,20);

> CR1 := CohomologyRingGenerators(prj1);

> CR2 := CohomologyRingGenerators(prj2);

> DegreesOfCohomologyGenerators(CR1);

[3, 4, 5]

> DegreesOfCohomologyGenerators(CR2);

2604 ALGEBRAS Part XII

[1, 2]

Finally we look at the cohomology Ext(s2, s1) as a left module over the cohomology ring of s1
and as a right module over the cohomology ring of s2.

> CR12 := CohomologyLeftModuleGenerators(prj1,CR1,prj2);

> DegreesOfCohomologyGenerators(CR12);

[1, 2, 3, 4]

> CR12 := CohomologyRightModuleGenerators(prj1,prj2,CR2);

> DegreesOfCohomologyGenerators(CR12);

[1]

So as a module over the cohomology ring of s1 it is generated by 4 elements. But as a module
over the cohomology ring of s2 it is generated by a single element.
Next we get the chain complex for the projective resolution of the first simple module and the
chain map for the third generator of the cohomology ring of the first simple module.

> pj1 := ProjectiveResolution(s1,20);

> pj1;

Basic algebra complex with terms of degree 20 down to 0

Dimensions of terms: 74 66 68 68 60 54 54 54 48 40 40 42 34 26 28 28 20 14 14

14 8

> gen113 := CohomologyGeneratorToChainMap(pj1,CR1,3);

> gen113;

Basic algebra chain map of degree -5

We can compose this with itself.

> gen113*gen113;

Basic algebra chain map of degree -10

Now compute the kernel and the dimensions of the homology of the kernel.

> Ker, phi := Kernel(gen113);

> Ker, phi;

Basic algebra complex with terms of degree 20 down to 0

Dimensions of terms: 20 15 19 20 20 17 17 20 22 15 17 22 20 15 19 20 20 14 14

14 8

Basic algebra chain map of degree 0

> DimensionsOfHomology(Ker);

[0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0]

We apply the same procedure in the case of the cokernel.

> Cok, mu := Cokernel(gen113);

> Cok, mu;

Basic algebra complex with terms of degree 20 down to 0

Dimensions of terms: 74 66 68 68 60 0 3 5 0 0 3 5 0 0 3 5 0 0 3 5 0

Basic algebra chain map of degree 0

> DimensionsOfHomology(Cok);

Ch. 85 BASIC ALGEBRAS 2605

[0, 0, 0, 27, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2]

We can also check the image.

> Imm, theta, gamma := Image(gen113);

> Imm;

Basic algebra complex with terms of degree 20 down to 0

Dimensions of terms: 0 0 0 0 0 54 51 49 48 40 37 37 34 26 25 23 20 14 11 9 8

> DimensionsOfHomology(Imm);

[0, 0, 0, 0, 27, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0]

We can check that certain things make sense.

> IsChainMap(theta);

true

> IsChainMap(gamma);

true

85.10.1 Ext-Algebras
The ext-algebra of an algebra B is the algebra Ext∗B(S, S) for S = S1 ⊕ . . . ⊕ Sn where
S1, . . . , Sn are all of the simple B-modules. In the event that the algebra B had finite
global dimension, this is a finite dimensional algebra and we can form its basic algebra.

ExtAlgebra(A, n)

The function computes the information on the ext-algebra B of the basic algebra A
where the projecive resolutions and cohomology have been computed to degree n.
The function returns a record carrying the data:

(i) A free algebra F ,

(ii) A list of relations in the elements of F , such that the ext-algebra is the quotient
F/I where I is the ideal generated by the relations,

(iii) The sequence of chain maps of the generators. Each chain map goes from the
projective resolution of one simple module to that of another.

(iv) The seqence of degrees of the generators.

(v) A sequence of sequences of sequences of basis element such the jth element of
the ith sequence is a basis of in Ext∗A(Si, Sj) where Si is the ith simple module.

(vi) A basis of the entire ext-algebra, the concatenation of the previous sequences.

(vii) The number of steps of the cohomology that were computed.

(viii)The global dimension that has been computed. This number is smaller than
the number of steps only in the case that the global dimension of A is less than
n, meaning that the nth step in the projective resolution of any simple module
is the zero module.

2606 ALGEBRAS Part XII

BasicAlgebraOfExtAlgebra(ext)

The function creates the basic algebra from a computed ext-algebra. The input is
the output of the ExtAlgebra function. If the ext-algebra is not verified to be finite
dimensional by the computation, then an error is returned.

BasicAlgebraOfExtAlgebra(A)

The function forms the basic algebra from a computed ext-algebra of the basic
algebra A. If no ext-algebra for A has been computed or if the ext-algebra is not
verified to be finite dimensional then an error is returned.

BasicAlgebraOfExtAlgebra(A, n)

The function creates the basic algebra for the ext-algebra of A computed to n steps.
If no ext-algebra for A to n steps has been computed then it computes one. If the
ext-algebra is not verified to be finite dimensional by the computation, then an error
is returned.

SumOfBettiNumbersOfSimpleModules(A, n)

This function computes the Betti numbers of all of simple A-modules out to degree
n. This is the dimension of the ext-algebra of A computed to degree n.

Example H85E20

We construct the basic algebra of the algebra B of lower triangular matrices over the field with
5 elements. Note that because the identity element of B is the sum of primitive idempotents of
rank 1, B is actually isomorphic to its basic algebra.

> A := MatrixAlgebra(GF(5),10);

> U := A!0;

> ElementaryMatrix := function(i,j);

> W := U;

> W[i,j] := 1;

> return W;

> end function;

> S := &cat[[ElementaryMatrix(i,j): i in [j .. 10]]:j in [1 .. 10]];

> B := sub<A|S>;

> B;

Matrix Algebra of degree 10 with 55 generators over GF(5)

> C := BasicAlgebra(B);

> C;

Basic algebra of dimension 55 over GF(5)

Number of projective modules: 10

Number of generators: 19

Note that C has the same dimension as B. The two are isomorphic, though they have different
types.

> SumOfBettiNumbersOfSimpleModules(C,9);

19

Ch. 85 BASIC ALGEBRAS 2607

> SumOfBettiNumbersOfSimpleModules(C,10);

19

From the above we see that C has global dimension at most 9. Consequently, we can compute
the basic algebra of its ext-algebra.

> D:= ExtAlgebra(C,10);

> E := BasicAlgebraOfExtAlgebra(D);

> E;

Basic algebra of dimension 19 over GF(5)

Number of projective modules: 10

Number of generators: 19

> SumOfBettiNumbersOfSimpleModules(E,8);

54

> SumOfBettiNumbersOfSimpleModules(E,9);

55

> SumOfBettiNumbersOfSimpleModules(E,10);

55

Here we see that E has global dimension 9. So we compute the basic algebra of its ext-algebra.

> F := BasicAlgebraOfExtAlgebra(E,10);

> F;

Basic algebra of dimension 55 over GF(5)

Number of projective modules: 10

Number of generators: 19

> G := BasicAlgebraOfExtAlgebra(F,10);

> G;

Basic algebra of dimension 19 over GF(5)

Number of projective modules: 10

Number of generators: 19

So it would appear that C and F are isomorphic as well as E and G.

85.11 Group Algebras of p-groups

There is a special type for the basic algebras which are the modular group algebras of p-
groups for p a prime. If G is a finite p and k is a field of characteristic p, then the commands
BasicAlgebra(G, k) and BasicAlgebra(G) automatically create a basic algebra of type
AlgBasGrpP. The type is optimized for the computation of cohomology rings. Included
for this type are restriction and inflation maps. Most of the functions for modules and
complexes are the same as for general basic algebras.

2608 ALGEBRAS Part XII

85.11.1 Access Functions
Group(A)

The group which defines the algebra A.

PCGroup(A)

The internal PC group of the algebra A.

PCMap(A)

The map from Group(A) to PCGroup(A) for an algebra A.

AModule(M)

Converts a GModule M over a p-group to a module over the basic algebra of that
group.

GModule(M)

Returns the standard module of the algebra A as a module over Group(A) and as a
module over PCGroup(A).

GModule(M)

Converts a module M for the basic algebra of a p-group into a module over the
p-group.

85.11.2 Projective Resolutions

ResolutionData(A)

Returns the data needed to compute the projective resolution of an A-module for
an algebra A. The data is given as a record with the fields:
(a)The matrices of the PCGenerators of the p-group on the standard indecompos-

able projective module for the algebra (field name PCgenMats).
(b)The matrices of the minimal generators of the p-group on the standard indecom-

posable projective module for the algebra (field name MingenMats).
(c) The algebra A (field name Algebra).

CompactProjectiveResolutionPGroup(M, n)

CompactProjectiveResolution(M, n)

Computes the projective resolution of the module M out to n steps. The function
returns a record with the fields:
(a)The list of the ranks of the projective modules in the resolution (field name

BettiNumbers).
(b)The record of the boundary maps (field name ResolutionRecord).
(c) The module M (field name Module).
(d)The augmentation map (field name AugmentationMap).
(e) The type of the resolution, whether projective or injective (field name Typ).

Ch. 85 BASIC ALGEBRAS 2609

ProjectiveResolutionPGroup(PR)

The projective resolution as a complex of modules over the basic algebra of the
group algebra, computed from the compact projective resolution PR.

ProjectiveResolution(M, n)

The projective resolution of the module M computed as a complex out to n steps.
The function also returns the augmentation map.

ProjectiveResolution(PR)

The projective resolution computed from a compact projective resolution PR as a
complex. The function also returns the augmentation map.

85.11.3 Cohomology Generators

AllCompactChainMaps(PR)

Creates the data on the chain maps for all generators of the cohomology of the simple
module k in degrees within the limits of the compact projective resolution PR of
the simple module. The function returns a record having the following information.

(a)The record of the chain maps of the generators of cohomology (field name
ChainMapRecord).

(b)The sequence of sizes of the chain map record (field name ChainSizes).

(c) The degrees of the chain maps (field name ChainDegrees).

(d)The list of cocycles representing the generators (field name Cocycles).

(e) The record of the products of the generators (field name ProductRecord).

(f) The locations of the products of the generators (field name ProductLocations).
Much of the information is for use in the computation of the cohomology ring.

CohomologyElementToChainMap(P, d, n)

Creates a chain map from the projective resolution P to itself for the element number
n in degree d of cohomology.

CohomologyElementToCompactChainMap(PR, d, n)

Creates a chain map in compact form from the compact projective resolution PR
to itself for the element number n in degree d of cohomology.

2610 ALGEBRAS Part XII

85.11.4 Cohomology Rings

CohomologyRing(k, n)

CohomologyRing(PR, AC)

The cohomology ring of the unique simple module k for the basic algebra of the
group algebra of a p-group. The input can be given either as the module k and the
number of steps n or as the compact projective resolution PR of k together with
AC, the calculation of the chain map generators of the cohomology. In the former
case the compact resolution and the chain map of the generators are computed in
the process. The ring is returned as a record having the following fields:
(a)The polynomial ring or free graded-commutative k-algebra R generated by the

cohomology generators (field name PolRing).
(b)The ideal of relations in R satisfied by the cohomology generators (field name

RelationsIdeal).
(c) The list of relations that have been computed (field name ComputedRelations).
(d)The chain maps giving the tops of the monomial in the cohomology generators

(field name MonomialData).
(e) The number of computed steps in the resolution (field name NumberOfSteps).

MinimalRelations(R)

A minimal set of relations generating the relations ideal of a cohomology ring R.

85.11.5 Restrictions and Inflations

RestrictionData(A,B)

Assuming that A is the basic algebra of a p-group G and that B is the basic algebra
of a subgroup of G, the function returns the change of basis matrix that make the
standard free module for A into a direct sum of standard free modules for B. It also
returns the inverse of the matrix and a set of coset representatives of the PCGroup(B)
in PCGroup(A).

RestrictResolution(PR, RD)

Takes the compact projective resolution PR for the trivial module of G and the
resolution data RD for the basic algebra of a subgroup H and returns the restriction
of the resolution to a complex of modules over the basic algebra for H.

RestrictionChainMap(P1,P2)

Computes the chain map from the resolution P2 of the simple module for the basic
algebra of a subgroup H of a group G to the restriction to H of the resolution P1
of the simple module for the basic algebra of G. The inputs P1 and P2 must be in
compact form.

Ch. 85 BASIC ALGEBRAS 2611

RestrictionOfGenerators(PR1, PR2, AC1, AC2, REL2)

Computes the sequence of images of the generators of the cohomology ring of G
restricted to a subgroup H. The input is the projective resolutions and cohomology
generators for the basic algebra of G (PR1 and AC1) and for the basic algebra of
the subgroup (PR2 and AC2), as well as the cohomology relations for the subgroup,
REL2.

InflationMap(PR2, PR1, AC2, AC1, REL1, theta)

Returns the images of the generators of the cohomology ring of a quotient group
Q in the cohomology ring of a group G. The input θ is the quotient map G → Q.
Other input is the projective resolutions and cohomology generators for the basic
algebra of G (PR1 and AC1) and for the quotient group Q (PR2 and AC2) as well
as the cohomology relations for G, REL1.

Example H85E21

We create the cohomology ring of a group G of order 64 and find a cyclic subgroup Z of the center
of G. We compute the restriction of the cohomology of G to the cohomology of Z and also the
inflation of the cohomology of G/Z to the cohomology ring of G.

> SetSeed(1);

> G := SmallGroup(64,7);

> Z := sub<G| Random(Center(G))>;

> G;

GrpPC : G of order 64 = 2^6

PC-Relations:

G.1^2 = G.4,

G.2^2 = G.5,

G.3^2 = G.5,

G.4^2 = G.6,

G.2^G.1 = G.2 * G.3,

G.3^G.1 = G.3 * G.5,

G.3^G.2 = G.3 * G.5

> #Z, [G!Z.i: i in [1 .. Ngens(Z)]];

4 [G.4]

So we see that Z has order 4 and is generated by the element G.4. Now construct the quotient
and the basic Algebras.

> Q, mu := quo<G|Z>;

> A := BasicAlgebra(G);

> B := BasicAlgebra(Q);

> C := BasicAlgebra(Z);

Next we want the simple modules and the cohomology rings. We compute the cohomology out to
17 steps which should be more than enough to get the generators and relations.

> k := SimpleModule(A,1);

> kk := SimpleModule(B,1);

2612 ALGEBRAS Part XII

> kkk := SimpleModule(C,1);

> time R := CohomologyRing(k,17);

Time: 2.060

> time S := CohomologyRing(kk,17);

Time: 0.140

> time T := CohomologyRing(kkk,17);

Time: 0.060

The structure of the cohomology rings can be read from the following outputs.

> R‘RelationsIdeal,S‘RelationsIdeal,T‘RelationsIdeal;

First the cohomology ring for G.

Ideal of Graded Polynomial ring of rank 6 over GF(2)

Lexicographical Order

Variables: $.1, $.2, $.3, $.4, $.5, $.6

Variable weights: 1 1 2 2 3 4

Basis:

[

$.1^2,

$.1*$.2,

$.2^3,

$.1*$.3,

$.2*$.5,

$.3^2,

$.1*$.5 + $.2^2*$.3,

$.3*$.5,

$.5^2

]

Now the cohomology ring for Q.

Ideal of Graded Polynomial ring of rank 4 over GF(2)

Lexicographical Order

Variables: $.1, $.2, $.3, $.4

Variable weights: 1 1 3 4

Basis:

[

$.1*$.2,

$.1^3,

$.1*$.3,

$.2^2*$.4 + $.3^2

]

And finally the cohomology ring for Z.

Ideal of Graded Polynomial ring of rank 2 over GF(2)

Lexicographical Order

Variables: $.1, $.2

Variable weights: 1 2

Basis:

[

Ch. 85 BASIC ALGEBRAS 2613

$.1^2

]

Next we require the inputs for the restriction and inflation maps.

> Pr1 := k‘CompactProjectiveResolution;

> Pr2 := kk‘CompactProjectiveResolution;

> Pr3 := kkk‘CompactProjectiveResolution;

> Ac1 := k‘AllCompactChainMaps;

> Ac2 := kk‘AllCompactChainMaps;

> Ac3 := kkk‘AllCompactChainMaps;

Now the inflation map from Q to G sends the generators of the cohomology of Q to the given list
of elements in the cohomology ring of G.

> inf := InflationMap(Pr2,Pr1,Ac2,Ac1,R,mu);

> inf;

[

$.2,

$.1,

$.5,

$.6

]

The restriction map from the cohomology ring of G to the cohomology ring of Z sends the
generators of R to the corresponding elements in the computed sequence.

> res := RestrictionOfGenerators(Pr1,Pr3,Ac1,Ac3,T);

> res;

[

0,

0,

0,

$.2,

0,

0

]

Finally, a set of minimal relations is determined for the cohomology ring R.

> MinimalRelations(R);

[

$.1^2,

$.1*$.2,

$.2^3,

$.1*$.3,

$.2*$.5,

$.3^2,

$.1*$.5 + $.2^2*$.3,

$.3*$.5,

$.5^2

2614 ALGEBRAS Part XII

]

85.12 A-infinity Algebra Structures on Group Cohomology

As described in [Kel01, ????], an A∞-algebra structure can be induced on H∗A for any
differential graded algebra A. Consider Ext∗R(S, S), for R a quiver algebra quotient and S
the direct sum of all simple R-modules. Regarded as the homology of the endomorphism
algebra of a projective resolution of S, Keller further demonstrates how this additional
algebraic structure allows recovery of R from Ext∗R(S, S).

An A∞-algebra structure on a vector space V consists of higher structural operations
m1, . . . defined as mi : V ⊗i → V fulfilling the Stasheff axioms for all n:

∑

i+j−1=n,0≤k≤n−j

±mi(a1, . . . , ak−1,mj(ak, . . . , ak+j), ak+j+1, . . . , an) = 0

An A∞-algebra homomorphism from an A∞-algebra A to an A∞-algebra B is a family
fi of maps A⊗i → B such that the homomorphism axioms hold for all n:

∑

i+j−1=n,0≤k≤n−j

±fi(a1, . . . , ak−1,mj(ak, . . . , ak+j), ak+j+1, . . . , an) =

∑

i1+...+ir=n

±mr(fi1(a1, . . . , ai1), . . . , fir (an−ir+1, . . . , an))

According to a theorem fundamental to the algebraic uses of A∞-techniques, for a
differential graded algebra A, there is an A∞-structure on H∗A and an A∞-algebra ho-
momorphism f : H∗A → A such that f1 is a quasiisomorphism of differential graded
algebras, and induced by the identity map on H∗A.

A blackbox method of calculation can be based on Kadeishvilis’ proof of this state-
ment, using the homomorphism axioms to recursively calculate any specific values that are
needed, and choosing the mi and fi in such a way as not to violate the axioms. The follow-
ing package implements this method for the special case of Ext∗kG(k, k) for G a p-group, k
a prime field of characteristic p and also the one-dimensional unique simple kG-module.

AInfinityRecord(G,n)

Constructs a record carrying all relevant information to calculate A∞-operations
on a group cohomology ring. Among the data carried can be found the cohomology
ring in R, the cohomology ring quotient in S, the projective resolution used in P, the
simple module resolved in k and the basic algebra in A.

Ch. 85 BASIC ALGEBRAS 2615

MasseyProduct(Aoo,terms)

HighProduct(Aoo,terms)

Given an A∞ object Aoo corresponding to a group cohomology ring, this intrinsic
calculates the structure map mi(t1 ⊗ . . .⊗ ti), where the i give the length of terms,
and t1, . . . , ti are the elements of terms.

HighMap(Aoo,terms)

Given an A∞ object Aoo corresponding to a group cohomology ring, this intrinsic
calculates the value of an A∞-quasiisomorphism f at the point t1 ⊗ . . .⊗ ti, where
the i gives the length of terms, and t1, . . . , ti are the elements of terms.

Example H85E22

The A∞-structures on the cohomology rings of cyclic p-groups are well known examples in the
literature: the A∞-structure on H∗(Cn, F2) has one single higher structure nontrivial operation,
namely mn, which takes any n-tuple of odd coclasses to the even coclass of appropriate degree.

In order to verify this for a specific example, we start by constructing an A∞ record that contains
all relevant information for the cohomology ring.

> Aoo := AInfinityRecord(CyclicGroup(4),10);

> S<x,y> := Aoo‘S;

> HighProduct(Aoo,[x,x,x,x]);

y

> HighMap(Aoo,[x,x,x,x]);

Basic algebra chain map of degree -1

Example H85E23

The code as written handles odd characteristics well, with the sign choices featured in Kadeishvilis
article [Kad80] embedded in the code.

> Aoo := AInfinityRecord(CyclicGroup(3),10);

> S<x,y> := Aoo‘S;

> HighProduct(Aoo,[x,x,x]);

y

> HighMap(Aoo,[x,x,x]);

Basic algebra chain map of degree -1

2616 ALGEBRAS Part XII

85.12.1 Homological Algebra Toolkit
For the computation of A∞-structures, several methods are used that would invite a wider
use in a generic homological algebra toolkit.

ActionMatrix(A,x)

Produces a matrix of the right action of the Basic algebra element described by x
in the Basic algebra A.

CohomologyRingQuotient(CR)

Computes the actual cohomology ring as a quotient ring of a multivariate polynomial
ring from a cohomology ring record.

LiftToChainmap(P,f,d)

Lifts the function described by f to a chain map from P to P of degree d.

NullHomotopy(f)

Constructs a null homotopy of the null homotopic chain map f . If f is not null
homotopic, the function will throw an error message, since in that case some of the
equations encountered on the way are not solvable.

IsNullHomotopy(f,H)

Confirms that H is a null homotopy of f , in other words that f = dH −Hd, with
d the differential of the corresponding chain complexes.

ChainmapToCohomology(f,CR)

Takes a chain map f and returns the element in the cohomology quotient ring to
which the chain map corresponds.

CohomologyToChainmap(xi,CR,P)

Takes an element xi of a cohomology quotient ring of the cohomology ring record
CR and a projective resolution corresponding to that cohomology ring, and returns
a chain map in the coclass represented by xi.

Example H85E24

To illustrate the code that generates null homotopies, we consider the cohomology ring of a cyclic
group, and pick out chain map representatives for the degree 1 coclass. Although this squares to
zero, the corresponding chainmaps do not compose to the zero chainmap.

> A := BasicAlgebra(CyclicGroup(4));

> k := SimpleModule(A,1);

> P := ProjectiveResolution(k,5);

> R := CohomologyRing(k,5);

> S<x,y> := CohomologyRingQuotient(R);

> xi := CohomologyToChainmap(x,R,P);

> x*x;

Ch. 85 BASIC ALGEBRAS 2617

0

> IsZero(xi*xi);

false

> ModuleMaps(xi*xi);

[*

[0 0 1 0]

[0 0 0 1]

[0 0 0 0]

[0 0 0 0],

[0 0 1 0]

[0 0 0 1]

[0 0 0 0]

[0 0 0 0],

[0 0 1 0]

[0 0 0 1]

[0 0 0 0]

[0 0 0 0],

[0 0 1 0]

[0 0 0 1]

[0 0 0 0]

[0 0 0 0]

*]

> H := NullHomotopy(xi*xi);

> ModuleMaps(H);

[*

[0 0 0 0]

[0 0 0 0]

[0 0 0 0]

[0 0 0 0],

[0 1 0 0]

[0 0 1 0]

[0 0 0 1]

[0 0 0 0],

[0 0 0 0]

[0 0 0 0]

[0 0 0 0]

[0 0 0 0],

[0 1 0 0]

[0 0 1 0]

[0 0 0 1]

[0 0 0 0],

2618 ALGEBRAS Part XII

[0 0 0 0]

[0 0 0 0]

[0 0 0 0]

[0 0 0 0]

*]

> IsNullHomotopy(xi*xi,H);

true

85.13 Bibliography
[Kad80] Tornike V. Kadeishvili. On the homology theory of fiber spaces. Russian Math.

Surveys, (35:3):231–238, 1980. arXiv:math/0504437v1.
[Kel01] Bernhard Keller. Introduction to A-infinity algebras and modules. Homology,

Homotopy and Applications, 3(1):1–35 (electronic), 2001.

86 QUATERNION ALGEBRAS

86.1 Introduction 2621

86.2 Creation of Quaternion Algebras2622

QuaternionAlgebra< > 2622
AssignNames(∼A, S) 2623
QuaternionAlgebra(N) 2623
QuaternionAlgebra(N) 2624
QuaternionAlgebra(I) 2624
QuaternionAlgebra(I, S) 2624
QuaternionAlgebra(S) 2624
QuaternionAlgebra(D1, D2, T) 2625

86.3 Creation of Quaternion Orders 2626

86.3.1 Creation of Orders from Elements . 2627

QuaternionOrder(S) 2627
QuaternionOrder(R, S) 2627
Order(R, S) 2627

86.3.2 Creation of Maximal Orders . . . 2628

MaximalOrder(A) 2628
MaximalOrder(O) 2629
pMaximalOrder(O, p) 2630
TameOrder(A) 2630

86.3.3 Creation of Orders with given Dis-
criminant 2630

Order(O, N) 2630
Order(O, N) 2630
GorensteinClosure(O) 2630

86.3.4 Creation of Orders with given Dis-
criminant over the Integers 2631

QuaternionOrder(A, M) 2631
QuaternionOrder(N) 2631
QuaternionOrder(N, M) 2631
QuaternionOrder(D1, D2, T) 2631

86.4 Elements of Quaternion Algebras2632

86.4.1 Creation of Elements 2632

! 2632
Zero(A) 2632
! 2632
One(A) 2632
. 2632
Name(A, i) 2632
! 2632

86.4.2 Arithmetic of Elements 2632

+ 2632
- 2632
* 2632
/ 2632
eq 2633
ne 2633
in 2633
notin 2633

Conjugate(x) 2633
ElementToSequence(x) 2633
Eltseq(x) 2633
Coordinates(x) 2633
Norm(x) 2633
Trace(x) 2633
CharacteristicPolynomial(x) 2633
MinimalPolynomial(x) 2633

86.5 Attributes of Quaternion Alge-
bras 2634

BaseField(A) 2634
BaseRing(A) 2634
Basis(A) 2634
RamifiedPrimes(A) 2635
RamifiedPlaces(A) 2635
FactoredDiscriminant(A) 2635
Discriminant(A) 2635
StandardForm(A) 2636

86.6 Hilbert Symbols and
Embeddings 2636

HilbertSymbol(a, b, p) 2636
HilbertSymbol(A, p) 2636
IsRamified(p, A) 2636
IsUnramified(p, A) 2636
pMatrixRing(A, p) 2638
pMatrixRing(O, p) 2638
IsSplittingField(K, A) 2638
HasEmbedding(K, A) 2638
Embed(K, A) 2638
Embed(Oc, O) 2639

86.7 Predicates on Algebras 2639

IsDefinite(A) 2639
IsIndefinite(A) 2639

86.8 Recognition Functions 2640

IsMatrixRing(A) 2640
MatrixRing(A, eps) 2640
MatrixAlgebra(A, eps) 2640
IsQuaternionAlgebra(B) 2640
MatrixRepresentation(A) 2642
MatrixRepresentation(R) 2642

86.9 Attributes of Orders 2642

Algebra(S) 2642
QuaternionAlgebra(S) 2642
BasisMatrix(S) 2642
EmbeddingMatrix(S) 2642
Discriminant(S) 2642
FactoredDiscriminant(S) 2643
Conductor(S) 2643
Level(S) 2643
Normalizer(S) 2643

2620 ALGEBRAS Part XII

86.10 Predicates of Orders 2643

IsMaximal(O) 2643
IspMaximal(O, p) 2643
IsEichler(O) 2643
IsEichler(O, p) 2643
EichlerInvariant(O, p) 2644
IsHereditary(O) 2644
IsHereditary(O, p) 2644
IsGorenstein(O) 2644
IsGorenstein(O, p) 2644

86.11 Operations with Orders . . 2644

meet 2644
^ 2644

86.12 Ideal Theory of Orders . . . 2645

86.12.1 Creation and Access Functions . 2645

LeftIdeal(S, X) 2645
lideal< > 2645
RightIdeal(S, X) 2645
rideal< > 2645
ideal< > 2645
PrimeIdeal(S, p) 2646
CommutatorIdeal(S) 2646
MaximalLeftIdeals(O, p) 2646
MaximalRightIdeals(O, p) 2646
LeftOrder(I) 2647
RightOrder(I) 2647

86.12.2 Enumeration of Ideal Classes . . 2648

Mass(S) 2648
LeftIdealClasses(S) 2648
RightIdealClasses(S) 2648
TwoSidedIdealClasses(S) 2649
TwoSidedIdealClassGroup(S : Support) 2649
ConjugacyClasses(S) 2649

86.12.3 Operations on Ideals 2651

* 2651
meet 2651
Conjugate(I) 2651
Norm(I) 2651
Factorization(I) 2651

86.13 Norm Spaces and Basis Reduc-
tion 2652

NormSpace(A) 2652
NormSpace(S) 2652
GramMatrix(S) 2652
GramMatrix(I) 2652
ReducedGramMatrix(S) 2652
ReducedBasis(S) 2652
ReducedGramMatrix(S) 2653
ReducedBasis(S) 2653
ReducedBasis(O) 2653
ReducedBasis(I) 2653
OptimizedRepresentation(O) 2654
OptimisedRepresentation(O) 2654
OptimizedRepresentation(A) 2654
OptimisedRepresentation(A) 2654
Enumerate(O, A, B) 2654
Enumerate(O, A, B) 2654
Enumerate(O, B) 2654

86.14 Isomorphisms 2654

86.14.1 Isomorphisms of Algebras . . . 2654

IsIsomorphic(A, B) 2654

86.14.2 Isomorphisms of Orders 2655

IsIsomorphic(S, T) 2655
IsConjugate(S, T) 2655
Isomorphism(S, T) 2655

86.14.3 Isomorphisms of Ideals 2655

IsIsomorphic(I, J) 2656
IsPrincipal(I) 2656
IsLeftIsomorphic(I, J) 2656
IsRightIsomorphic(I, J) 2656
IsLeftIsomorphic(I, J) 2656
IsRightIsomorphic(I, J) 2656
LeftIsomorphism(I, J) 2656
RightIsomorphism(I, J) 2656

86.14.4 Examples 2657

86.15 Units and Unit Groups . . . 2659

NormOneGroup(S) 2659
Units(S) 2659
MultiplicativeGroup(S) 2660
UnitGroup(S) 2660

86.16 Bibliography 2661

Chapter 86

QUATERNION ALGEBRAS

86.1 Introduction

A quaternion algebra A over a field K is a central simple algebra of dimension four over K,
or equivalently when K does not have characteristic 2, an algebra generated by elements
i, j which satisfy

i2 = a, j2 = b, ji = −ij
with a, b ∈ K∗. A quaternion algebra in Magma is a specialized type AlgQuat, which is
a subtype of associative algebra AlgAss defined over a field. Magma can recognize if an
associative algebra A is a quaternion algebra and will return a standard representation for
A with a, b as above.

Examples of quaternion algebras include the ring M2(K) of 2×2-matrices over K with
a = b = 1, as well as the division ring of Hamiltonians over K = R with a = b = −1.
Every quaternion algebra over a finite field or an algebraically closed field is isomorphic
to M2(K). Over a local field, there is a unique quaternion algebra (up to isomorphism)
which is a division ring.

Every quaternion algebra A over K not isomorphic to M2(K) is a division algebra.
Finding a zerodivisor in A is computationally equivalent to the problem of finding a K-
rational point on a conic. Given a zerodivisor in A, Magma will compute an explicit
isomorphism A → M2(K). If L is an extension field of K, then AL = A ⊗K L is a
quaternion algebra over L, and we say L is a splitting field if AL

∼= M2(L). If [L : K] = 2,
then L is a splitting field if and only if there exists a K-embedding L ↪→ A, and such an
embedding can be computed in Magma.

Further functionality is available for quaternion algebras A defined over number fields
K. Such an algebra is said to be unramified at a noncomplex place v of K if Kv is a
splitting field for A, otherwise A is ramified at v. Testing if an algebra is ramified at a
place is encoded in the Hilbert symbol, which can be computed for any such algebra. The
set S of ramified places of an algebra is finite and of even cardinality, and conversely,
given such a set S there exists a quaternion algebra which is ramified only at S. One
may compute the set of ramified places of A as well as constructing an algebra given its
ramification set.

In Magma, there are algorithms for quaternion algebras which are analogous to those
for number fields—computation of the ring of integers, class group, and unit group. One
may compute a maximal order O ⊂ A, a p-maximal order for a prime p of K, and orders
with given index in a maximal order. Secondly, a representative set of (right) ideal classes
in O can be enumerated, and one can test if two ideals are isomorphic (hence if a given
ideal is principal). Finally, for a definite quaternion algebra (defined over a totally real
field), one may compute the group of units of norm 1 in O. Over Q, these functions tie
into machinery for constructing the Brandt module, with applications to modular forms.

2622 ALGEBRAS Part XII

Orders for quaternion algebras over the rational numbers and over rational function
fields in Magma have type AlgQuatOrd and ideals have type AlgQuatOrdIdl. Over other
number rings, orders have the general type AlgAssVOrd and ideals AlgAssVOrdIdl which
is also the type for used for associative orders. The types AlgQuatOrd, AlgQuatOrdElt and
AlgQuatOrdIdl inherit from the types AlgAssVOrd, AlgAssVOrdElt and AlgAssVOrdIdl
respectively.

The main reference for material in this chapter is the book of Vignéras [Vig80]. Most
nontrivial algorithms for quaternion algebras over the rationals and over number fields are
described in [KV10].

IMPORTANT WARNING.
In Magma, the rationals are not considered to be a number field (the type FldRat is not
a subtype of FldNum). Much of the functionality for quaternion algebras, and particularly
for orders in quaternion algebras, is implemented only for algebras whose base field is a
FldNum (while some, but not all, also works for algebras over the FldRat). To compute
with algebras over Q, in many cases the best solution is to create Q as a number field
at the outset, using RationalsAsNumberField(), and create the algebra over this field
instead of Rationals().

86.2 Creation of Quaternion Algebras
A general constructor for a quaternion algebra over any field K creates a model in terms
of two generators x and y and three relations

x2 = a, y2 = b, yx = −xy
with a, b ∈ K∗ if K has characteristic different from 2, and

x2 + x = a, y2 = b, yx = (x+ 1)y

if K has characteristic 2. The printing names i, j, and k are assigned to the generators x,
y, and xy by default, unless the user assigns alternatives (see the function AssignNames
below, or the example which follows).

Special constructors are provided for quaternion algebras over Q, which return an
algebra with a more general set of three defining quadratic relations. In general, the third
generator need not be the product of the first two. This allows the creation of a quaternion
algebra A such that the default generators {1, i, j, k} form a basis for a maximal order.

QuaternionAlgebra< K | a, b >

For a, b ∈ K∗, this function creates the quaternion algebra A over the field K on
generators i and j with relations i2 = a, j2 = b, and ji = −ij or ji = (i + 1)j, as
char(K) 6= 2 or char(K) = 2, respectively. A third generator is set to k = ij. The
field K may be of any Magma field type; for inexact fields, such as local fields, one
should expect unstable results since one cannot test deterministically for element
equality.

Ch. 86 QUATERNION ALGEBRAS 2623

AssignNames(∼A, S)

Given a quaternion algebra A and sequence S of strings of length 3, this function
assigns the strings to the generators of A, i.e. the basis elements not equal to 1.
This function is called by the bracket operators < > at the time of creation of a
quaternion algebra.

Example H86E1

A general quaternion algebra can be created as follows. Note that the brackets < > can be used
to give any convenient names to the generators of the ring.

> A<x,y,z> := QuaternionAlgebra< RationalField() | -1, -7 >;

> x^2;

-1

> y^2;

-7

> x*y;

z

In the case of this constructor the algebra generators are of trace zero and are pairwise anticom-
muting. This contrasts with some of the special constructors for quaternion algebras over the
rationals described below.

Example H86E2

Similarly, we have the following for characteristic 2.

> A<i,j> := QuaternionAlgebra< GF(2) | 1, 1 >;

> i^2;

1 + i

> j^2;

1

QuaternionAlgebra(N)

Al MonStgElt Default : “TraceV alues”

Optimized BoolElt Default : true

Given a positive squarefree integer N , this function returns a rational quaternion
algebra of discriminant N . If the optional parameter Al is set to "Random", or N
is the product of an even number of primes (i.e. the algebra is indefinite), then a
faster, probabilistic algorithm is used. If Al is set to "TraceValues" and N is a
product of an odd number of primes, then an algebra basis is computed which also
gives a basis for a maximal order (of discriminant N). If Optimized is true then
an optimized representation of the algebra is returned.

2624 ALGEBRAS Part XII

QuaternionAlgebra(N)

Given a squarefree polynomial N ∈ Fq[x] for some odd q, this function returns a
quaternion algebra over Fq(x) of discriminant N .

QuaternionAlgebra(I)

Optimized BoolElt Default : true

Given an ideal I of a number field F with an even number of prime ideal factors,
the function returns the quaternion algebra A over F which is ramified exactly at
the primes dividing I. The ideal I is not required to be squarefree, so A will be
ramified at the radical of I. If Optimized is true then an optimized representation
of the algebra is returned.

QuaternionAlgebra(I, S)

Optimized BoolElt Default : true

Given an ideal I and a subset S of real places of a number field F such that the
number of prime ideal divisors of I has the same parity as S, the function returns the
quaternion algebra which is ramified exactly at the primes dividing I and at the real
places specified by the set S. If Optimized is true then an optimized representation
of the algebra is returned.

QuaternionAlgebra(S)

Optimized BoolElt Default : true

Given an even set S of noncomplex places of a number field F , this function returns
the quaternion algebra which is ramified exactly at S. If Optimized is true then
an optimized representation of the algebra is returned.

Example H86E3

We illustrate the above constructors in the case of a general number field.

> P<x> := PolynomialRing(Rationals());

> F := NumberField(x^3-3*x-1);

> Foo := InfinitePlaces(F);

> Z_F := MaximalOrder(F);

> I := ideal<Z_F | 6>;

> A := QuaternionAlgebra(I);

> FactoredDiscriminant(A);

[

Prime Ideal of Z_F

Two element generators:

[3, 0, 0]

[2, 1, 0],

Principal Prime Ideal of Z_F

Generator:

[2, 0, 0]

Ch. 86 QUATERNION ALGEBRAS 2625

]

[]

> A := QuaternionAlgebra(ideal<Z_F | 1>, Foo[1..2]);

> FactoredDiscriminant(A);

[]

[1st place at infinity, 2nd place at infinity]

QuaternionAlgebra(D1, D2, T)

This intrinsic creates the rational quaternion algebra Q〈i, j〉, where Z[i] and Z[j]
are quadratic suborders of discriminant D1 and D2, respectively, and Z[ij − ji] is a
quadratic suborder of discriminant D3 = D1D2−T 2. The values D1D2 and T must
have the same parity and D1, D2 and D3 must each be the discriminant of some
quadratic order, i.e. nonsquare integers congruent to 0 or 1 modulo 4.

Example H86E4

The above constructor is quite powerful for constructing quaternion algebras with given ramifi-
cation. For any i and j, a commutator element such as ij − ji has trace zero, so in the above
constructor, the minimal polynomial of this element is x2 + n, where n = (D1D2 − T 2)/4.
In the following example we construct such a ring, and demonstrate some of the relations satisfied
in this algebra. Note that the minimal polynomial is an element of the commutative polynomial
ring over the base field of the algebra.
In particular, we note that the algebra is not in standard form.

> A<i,j,k> := QuaternionAlgebra(-7,-47,1);

> PQ<x> := PolynomialRing(RationalField());

> MinimalPolynomial(i);

x^2 - x + 2

> MinimalPolynomial(j);

x^2 - x + 12

> MinimalPolynomial(k);

x^2 - x + 24

> i*j;

k

> i*j eq -j*i;

false

From their minimal polynomials, we see that the algebra generators i, j, and k generate commu-
tative subfields of discriminants −7, −47, and −95. The value 82 = (D1D2 − T 2)/4, however, is
a more important invariant of the ring. We give a preview of the later material by demonstrating
the functionality for computing the determinant and ramified primes of an algebra over Q.

> MinimalPolynomial(i*j-j*i);

x^2 + 82

> Discriminant(A);

41

> RamifiedPrimes(A);

2626 ALGEBRAS Part XII

[41]

A ramified prime must be inert or ramified in every subfield and must divide the norm of any
commutator element xy − yx.

> x := i;

> y := j;

> Norm(x*y-y*x);

82

> Factorization(82);

[<2, 1>, <41, 1>]

> x := i-k;

> y := i+j+k;

> Norm(x*y-y*x);

1640

> Factorization(1640);

[<2, 3>, <5, 1>, <41, 1>]

> KroneckerSymbol(-7,2), KroneckerSymbol(-47,2), KroneckerSymbol(-95,2);

1 1 1

> KroneckerSymbol(-7,41), KroneckerSymbol(-47,41), KroneckerSymbol(-95,41);

-1 -1 -1

The fact that the latter Kronecker symbols are −1, indicating that 41 is inert in the quadratic
fields of discriminants −7, −47, and −95, proves that 41 is a ramified prime, and 2 is not.

86.3 Creation of Quaternion Orders

Let R be a ring with field of fractions K, and let A be a quaternion algebra over K. An
R-order in A is a subring O ⊂ A which is a R-submodule of A with O ·K = A. An order
is maximal if it is not properly contained in any other order.

One can create orders for number rings R, for R = Z or for R = k[x] with k a field.
Unlike commutative orders, it is important to note that maximal orders O of quaternion
algebras are no longer unique: for any x ∈ A not in the normalizer of O, we have another
maximal order given by O′ = x−1Ox 6= O.

When R = Z or R = k[x], the order O has type AlgQuatOrd. When R inherits from
type RngOrd (a number ring), the order O has type AlgAssVOrd; see Section 81.4 for more
information on constructors and general procedures for these orders.

See above (86.1) for an important warning regarding quaternion algebras over the ra-
tionals.

Ch. 86 QUATERNION ALGEBRAS 2627

86.3.1 Creation of Orders from Elements
The creation of orders from elements of number rings is covered in Section 81.4. The
creation of quaternion orders over the integers and univariate polynomial rings is covered
in this section.

QuaternionOrder(S)

IsBasis BoolElt Default : false

Given S a sequence of elements in a quaternion algebra defined over Q or Fq(X),
this function returns the order generated by S over Z or Fq[X]. If the set S does
not generate an order, an error will be returned. If the parameter IsBasis is set to
true then S will be used as the basis of the order returned.

QuaternionOrder(R, S)

Order(R, S)

Check BoolElt Default : true

Given a ring R and a sequence S of elements of a quaternion algebra over Q or
Fq(X), this function returns the R-order with basis S. The sequence must have
length four.

Example H86E5

First we construct an order over a polynomial ring.

> K<t> := FunctionField(FiniteField(7));

> A<i,j,k> := QuaternionAlgebra< K | t, t^2+t+1 >;

> O := QuaternionOrder([i,j]);

> Basis(O);

[1, i, j, k]

Next we demonstrate how to construct orders in quaternion algebras generated by a given sequence
of elements. When provided with a sequence of elements of a quaternion algebra over Q, Magma

reduces the sequence so as to form a basis. When provided with the ring over which these elements
are to be interpreted, the sequence must be a basis with initial element 1, and the order having
this basis is constructed.

> A<i,j,k> := QuaternionAlgebra< RationalField() | -1, -3 >;

> B := [1, 1/2 + 1/2*j, i, 1/2*i + 1/2*k];

> O := QuaternionOrder(B);

> Basis(O);

[1, 1/2*i + 1/2*k, 1/2 - 1/2*j, -1/2*i + 1/2*k]

> S := QuaternionOrder(Integers(),B);

> Basis(S);

[1, 1/2 + 1/2*j, i, 1/2*i + 1/2*k]

2628 ALGEBRAS Part XII

86.3.2 Creation of Maximal Orders

MaximalOrder(A)

A maximal order is constructed in the quaternion algebra A. The algebra A must
be defined over a field K where K is either a number field, Q, Fq(X) with q odd, or
the field of fractions of a number ring. Over Fq(X) we use the standard algorithm
[Fri97, IR93]. Over the rationals or over a number field, we use a variation of this
algorithm optimized for the case of quaternion algebras. First, a factorization of
the discriminant of a tame order (see below) is computed. Then, for each prime p
dividing the discriminant, a p-maximal order compatible with the existing order is
computed. The method used corresponds to Algorithm 4.3.8 in [Voi05]. See also
[Voi11].

Example H86E6

The following is an example of a quaternion algebra which is unramified at all finite primes.

> P<x> := PolynomialRing(Rationals());

> F := NumberField(x^3-3*x-1);

> A<alpha,beta,alphabeta> := QuaternionAlgebra<F | -3,b>;

> O := MaximalOrder(A);

> Factorization(Discriminant(O));

[]

Hence the algebra A has a maximal order of discriminant 1, or equivalently, A is unramified at
all finite places of F .
Since we are working over a general order of a number field, we can no longer guarantee that
an order will have a free basis, so it must be represented by a pseudomatrix. For more on
pseudomatrices, see Section 55.10.

> Z_F := BaseRing(O);

> PseudoBasis(O);

[

<Principal Ideal of Z_F

Generator:

Z_F.1, Z_F.1>,

<Fractional Ideal of Z_F

Two element generators:

Z_F.1

2/3*Z_F.1 + 1/6*Z_F.2 + 1/6*Z_F.3, 3/1*Z_F.1 + i>,

<Principal Ideal of Z_F

Generator:

Z_F.1, j>,

<Fractional Ideal of Z_F

Two element generators:

Z_F.1

11/2*Z_F.1 + 1/6*Z_F.2 + 35/6*Z_F.3, 3/1*Z_F.1 - i + 3/1*Z_F.1*j + k>

Ch. 86 QUATERNION ALGEBRAS 2629

]

The wide applicability of the above algorithm, is demonstrated by examining a “random” quater-
nion algebra over a “random” quadratic number field.

> for c := 1 to 10 do

> D := Random([d : d in [-100..100] | not IsSquare(d)]);

> K<w> := NumberField(x^2-D);

> Z_K := MaximalOrder(K);

> K<K1,w> := FieldOfFractions(Z_K);

> a := Random([i : i in [-50..50] | i ne 0]) + Random([-50..50])*w;

> b := Random([i : i in [-50..50] | i ne 0]) + Random([-50..50])*w;

> printf "D = %o, a = %o, b = %o\n", D, a, b;

> A := QuaternionAlgebra<K | a,b>;

> O := MaximalOrder(A);

> ds := [<pp[1],pp[2],HilbertSymbol(A,pp[1])> :

> pp in Factorization(Discriminant(O))];

> print ds;

> for d in ds do

> if d[3] eq 1 then

> break c;

> end if;

> end for;

> end for;

D = 5, a = -46/1*K1 + 25/1*w, b = -10/1*K1 - 7/1*w

[

<Prime Ideal of Z_K

Two element generators:

[31, 0]

[5, 2], 2, -1>,

<Prime Ideal of Z_K

Two element generators:

[11, 0]

[6, 2], 2, -1>

]

...

For each such “random” quaternion algebra, we verify that the Hilbert symbol evaluated at each
prime dividing the discriminant of the maximal order is −1, indicating that the algebra is indeed
ramified at the prime.

MaximalOrder(O)

For O a quaternion order defined over Z, Fq[X] with q odd or a number ring, this
function returns a maximal order containing O.

2630 ALGEBRAS Part XII

pMaximalOrder(O, p)

For O a quaternion order defined over Z, Fq[X] with q odd or a number ring and a
prime (ideal) p, this function returns a p-maximal order O′ containing the order O.
The p-adic valuation of the discriminant of O′ (which is either 0 or 1) is returned
as a second return value.

TameOrder(A)

Given a quaternion algebra A, this function returns an order O having the property
that the odd reduced discriminant of O is squarefree. The algebra A must be defined
over a number field or field of fractions of a number ring. The algorithm ignores
even primes and does not test the remaining odd primes for maximality.

86.3.3 Creation of Orders with given Discriminant
The following two functions together with the maximal order algorithms of the previous
subsection allow the construction of arbitrary Eichler orders.

Order(O, N)

Given an order O in a quaternion algebra A over the rationals or Fq(x) with q odd,
and some element N in the base ring of O, this function returns a suborder O′ of O
having index N . Currently, N and the level of O must be coprime and N must have
valuation at most 1 at each ramified prime of A. The order O′ is locally Eichler at
all prime divisors of N that are not ramified in A. In particular, if O is Eichler and
N is coprime to the discriminant of A, so is O′.

Order(O, N)

Given a maximal quaternion order O over a number ring, this function returns an
Eichler order of level N inside O.

GorensteinClosure(O)

Given a quaternion order O over the integers, Fq[x] with q odd or a number ring,
this function returns the smallest Gorenstein order containing O.

Example H86E7

First we construct a quaternion algebra A over F5(x) ramified at x2 +x+1, then a maximal order
M in A and finally an Eichler O order of discriminant (x2 + x + 1)(x3 + x + 1)5.

> P<x> := PolynomialRing(GF(5));

> A := QuaternionAlgebra(x^2+x+1);

> M := MaximalOrder(A);

> O := Order(M, (x^3+x+1)^5);

> FactoredDiscriminant(O);

[

<x^2 + x + 1, 1>,

<x^3 + x + 1, 5>

]

Ch. 86 QUATERNION ALGEBRAS 2631

86.3.4 Creation of Orders with given Discriminant over the Integers

When constructing quaternion orders over the integers, several shortcuts are available.

QuaternionOrder(A, M)

Given a quaternion algebra A and a positive integer M , this function returns an
order of index M in a maximal order of the quaternion algebra A defined over Q.
The second argument M can have at most valuation 1 at any ramified prime of A.

QuaternionOrder(N)

QuaternionOrder(N, M)

Given positive integers N and M , this function returns an order of index M in
a maximal order of the rational quaternion algebra A of discriminant N . The
discriminant N must be a product of an odd number of distinct primes, and the
argument M can be at most of valuation 1 at any prime dividing N . If M is omitted,
the integer M defaults to 1, i.e., the function will return a maximal order.

QuaternionOrder(D1, D2, T)

This intrinsic constructs the quaternion order Z〈x, y〉, where Z[x] and Z[y] are
quadratic subrings of discriminant D1 and D2, respectively, and Z[xy − yx] is a
quadratic subring of discriminant D1D2 − T 2.

Note that the container algebra of such a quaternion order is not usually in
standard form (see the example below).

Example H86E8

The above constructors permit the construction of Eichler orders over Z, if the discriminant N
and the index M are coprime. More generally they allow the construction of an order whose index
in an Eichler order divides the discriminant.

> A := QuaternionOrder(103,2);

> Discriminant(A);

206

> Factorization($1);

[<2, 1>, <103, 1>]

> _<x> := PolynomialRing(Rationals());

> [MinimalPolynomial(A.i) : i in [1..4]];

[

x - 1,

x^2 + 1,

x^2 - x + 52,

x^2 + 104

]

The constructor QuaternionOrder(D1, D2, T) may return an order whose container algebra is
not in standard form.

> A := QuaternionOrder(-4, 5, 2);

2632 ALGEBRAS Part XII

> B := Algebra(A);

> B.1 * B.2 eq - B.2 * B.1;

false

86.4 Elements of Quaternion Algebras

For more information about elements of orders of associative algebras, see Section 81.4.

86.4.1 Creation of Elements

A ! 0

Zero(A)

The zero element of the quaternion algebra A.

A ! 1

One(A)

The identity element of the quaternion algebra A.

A . i

Name(A, i)

Given a quaternion algebra A and an integer 1 ≤ i ≤ 3, returns the ith generator
of A as an algebra over the base ring. Note that the element 1 is always the first
element of a basis, and is never returned as a generating element.

A ! x

Return an element of the quaternion algebra A described by x, where x may be
an algebra element, a module element, a sequence, an element of an order of an
associative algebra or be coercible into the coefficient ring of A.

86.4.2 Arithmetic of Elements

x + y

The sum of x and y.

x - y

The difference of x and y.

x * y

The product of x and y.

x / y

The quotient of x by the unit y in the quaternion algebra.

Ch. 86 QUATERNION ALGEBRAS 2633

x eq y

Returns true if the elements x and y are equal; otherwise false.

x ne y

Returns true if and only if the elements x and y are not equal.

x in A

Returns true if and only if x is in the algebra A.

x notin A

Returns true if and only if x is not in the algebra A.

Conjugate(x)

The conjugate x̄ of the element x of a quaternion algebra, defined so that the reduced
trace and reduced norm are x̄+ x and x̄x, respectively.

ElementToSequence(x)

Eltseq(x)

Coordinates(x)

Given an element x of a quaternion algebra or order, this function returns the
sequence of coordinates of x in terms of the basis of its parent.

Norm(x)

The reduced norm N(x) of the element x of a quaternion algebra, defined so that
the characteristic polynomial for x is x2 − Tr(x)x + N(x) = 0, where Tr(x) is the
reduced trace.

Trace(x)

The reduced trace Tr(x) of the element x of a quaternion algebra, defined so that
the characteristic polynomial for x is x2 − Tr(x)x + N(x) = 0, where N(x) is the
reduced norm.

CharacteristicPolynomial(x)

The characteristic polynomial of degree 2 for the element x of a quaternion algebra
over the base ring of its parent.

MinimalPolynomial(x)

The minimal polynomial of degree 1 or 2 for the element x of a quaternion algebra
over the base ring of its parent.

2634 ALGEBRAS Part XII

Example H86E9

We demonstrate the relation between characteristic polynomial, and reduced trace and norm in
the following example.

> A := QuaternionAlgebra< RationalField() | -17, -271 >;

> x := A![1,-2,3,0];

> Trace(x);

2

> Norm(x);

2508

> x^2 - Trace(x)*x + Norm(x);

0

Note that trace and norm of an element x of any algebra can be defined as the trace and norm
of the linear operator corresponding to right-multiplication by x. The reduced trace and norm in
a quaternion algebra A are taken instead to be the corresponding trace and determinant in any
two-dimensional matrix representation of A, or equivalently, the sum and product of an element
with its conjugate. The definition of norm and trace used for a general algebra can be realised in
a quaternion algebra by the following code.

> P<X> := PolynomialRing(RationalField());

> M := RepresentationMatrix(x, A);

> M;

[1 -2 3 0]

[34 1 0 3]

[-813 0 1 2]

[0 -813 -34 1]

> Trace(M);

4

> Factorization(CharacteristicPolynomial(M));

[

<X^2 - 2*X + 2508, 2>

]

The general definition of trace (for the algebra) is twice the reduced trace, and the general defi-
nition of norm is the square of the reduced norm.

86.5 Attributes of Quaternion Algebras

BaseField(A)

BaseRing(A)

The base field of the quaternion algebra A.

Basis(A)

The basis of the algebra A.

Ch. 86 QUATERNION ALGEBRAS 2635

RamifiedPrimes(A)

Given a quaternion algebra A over Q or Fq(X) with q odd, this function returns
a list of primes or normalized irreducible polynomials corresponding to the finite
ramified places of A.

Example H86E10

The sequence of ramified primes of a quaternion algebra A over Q determines the isomorphism
class of the algebra.

> A := QuaternionAlgebra(-436,-503,22);

> RamifiedPrimes(A);

[17]

Provided the discriminant is of a size which can be factored, the ramified primes are determined
efficiently using Hilbert symbols.

RamifiedPlaces(A)

FactoredDiscriminant(A)

Given a quaternion algebra A over Q or Fq(X) with q odd or a number field, this
function returns the finite as well as infinite places where A is ramified.

Note: The first return value of these functions is always a list of ideals, even if
the algebra is given over Q or Fq(X).

Example H86E11

This example shows the (minor) difference between RamifiedPrimes and RamifiedPlaces.

> F<x> := RationalFunctionField(GF(5));

> A := QuaternionAlgebra< F | 2, x >;

> R<x>:= Integers(F);

> RamifiedPrimes(A);

[x]

> RamifiedPlaces(A);

[

Ideal of Univariate Polynomial Ring in x over GF(5) generated by x

]

[Infinity]

Discriminant(A)

The reduced discriminant of a quaternion algebra A over Q, Fq(X) with q odd or a
number field. In the first two cases, the functions return the product of the ramified
primes. Over number fields, they return the product of the ramified prime ideals as
well as the sequence of ramified infinite places.

2636 ALGEBRAS Part XII

StandardForm(A)

Returns integers a and b in the base field F of the given quaternion algebra A such
that there exists elements i, j ∈ A where i2 = a, j2 = b, and ji = −ij. The third ob-
ject returned is the standard quaternion algebra B = QuaternionAlgebra<F|a,b>,
and the fourth object is the homomorphism from A to B.

86.6 Hilbert Symbols and Embeddings
Let A be a quaternion algebra overQ, Fq(X) (with q odd) or a number field F with defining
elements a, b, and let v be a place of F . If v is unramified in A (i.e. A ⊗F Fv

∼= M2(Fv),
we define the Hilbert symbol (a, b)v to be 1, and otherwise we define (a, b)v = −1.

HilbertSymbol(a, b, p)

HilbertSymbol(A, p)

Al MonStgElt Default : “NormResidueSymbol”
Computes the Hilbert symbol for the quaternion algebra A over F , namely (a, b)p,
where a, b ∈ F and p is either a prime (if a, b ∈ Q or Fq(X)) or a prime ideal. If
a, b ∈ Q, by default table-lookup is used to compute the Hilbert symbol; one can
optionally insist on using the full algorithm by setting the parameter Al to the value
"Evaluate".

IsRamified(p, A)

IsUnramified(p, A)

Returns true if and only if the prime or prime ideal p is ramified (unramified) in
the quaternion algebra A.

Example H86E12

We first verify the correctness of all Hilbert symbols over the rationals.

> QQ := Rationals();

> for a,b in [1..8] do

> bl := HilbertSymbol(QQ ! a, QQ ! b,2 : Al := "Evaluate")

> eq NormResidueSymbol(a,b,2);

> print <a,b,bl>;

> if not bl then

> break a;

> end if;

> end for;

<1, 1, true>

<1, 2, true>

<1, 3, true>

...

For a second test, we input a quaternion algebra which is unramified at all finite places.

> P<x> := PolynomialRing(Rationals());

Ch. 86 QUATERNION ALGEBRAS 2637

> F := NumberField(x^3-3*x-1);

> Z_F := MaximalOrder(F);

> A := QuaternionAlgebra<F | -3,b>;

> symbols := [];

> for p in [p : p in [2..100] | IsPrime(p)] do

> pps := Decomposition(Z_F,p);

> for pp in pps do

> Append(~symbols,HilbertSymbol(A,pp[1]));

> end for;

> end for;

> symbols;

[1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Finally, we test “random” quaternion algebras over quadratic extensions at even primes, the
hardest case. We use the fact that the quaternion algebra (a, b) is ramified at a prime ideal p if
and only if b is a norm from the extension F (

√
a), so we can test this condition using IsLocalNorm.

Note that this takes substantially more time.

> for c in [2,-2,6,-6,-1,3,-3] do

> K<s> := NumberField(x^2-c);

> Z_K := MaximalOrder(K);

> Z_Kmod8, f8 := quo<Z_K | 8>;

> PPK<xK> := PolynomialRing(K);

> for i := 1 to 10 do

> S := [x+y*Z_K.2 : x,y in [0..7] | x*y ne 0];

> a := Random(S);

> b := Random(S);

> A := QuaternionAlgebra<K | a,b>;

> for pp in Decomposition(Z_K,2) do

> hsym := HilbertSymbol(A,pp[1]);

> if not IsIrreducible(xK^2-a) then

> print <c, a, b, hsym eq 1>;

> if hsym ne 1 then

> break c;

> end if;

> else

> lclsym := IsLocalNorm(AbelianExtension(ext<K | xK^2-a>),Z_K ! b,pp[1]);

> bl := (hsym eq 1) eq lclsym;

> print <c, a, b, bl>;

> if not bl then

> break c;

> end if;

> end if;

> end for;

> end for;

> end for;

<2, 5/1*Z_K.1 + 3/1*Z_K.2, Z_K.1 + 7/1*Z_K.2, true>

<2, 6/1*Z_K.1 + 4/1*Z_K.2, 4/1*Z_K.1 + Z_K.2, true>

2638 ALGEBRAS Part XII

<2, 7/1*Z_K.1 + Z_K.2, 2/1*Z_K.1 + 2/1*Z_K.2, true>

...

pMatrixRing(A, p)

pMatrixRing(O, p)

Precision RngIntElt Default :

Let A be a quaternion algebra A over a field F where F is the rationals, a number
field of Fq(x) with q odd. Given A and a prime (ideal) p of the ring of integers R
of F such that p is unramified in A, this function returns the matrix ring over the
completion Fp of F at p, a map from A→M2(Fp) and the embedding F → Fp.

Given a p-maximal order O in A, the map from A → M2(Fp) induces a map
from O → M2(Rp).

IsSplittingField(K, A)

HasEmbedding(K, A)

ComputeEmbedding BoolElt Default : false

Given a quaternion algebra A defined over Q, Fq(X) (with q odd) or a number field
F and K a quadratic extension of F , the function returns true if and only if there
exists an embedding K → A over F . This is done by comparison of ramified places
in K and A (see [Vig80, Cor. III.3.5]). If no embedding exists, the second return
value will be a witness place. If an embedding exists and the optional argument
ComputeEmbedding is set to true, the second and third return values contain the
result of a call to Embed as described below.

Embed(K, A)

Al MonStgElt Default : “NormEquation”

Given a quaternion algebra A defined over Q, Fq(X) (with q odd) or a number field
F and K a quadratic extension of F , returns an embedding K → A over F , given
as an element of A, the image of the primitive generator of K, and the map K → A.

The algorithm by default involves solving a relative norm equation. Alterna-
tively, a naive search algorithm may be selected by setting the optional parameter
Al:="Search".

If there is no embedding, a runtime error occurs (or the "Search" runs forever).
To check whether an embedding exists, use HasEmbedding (see immediately above).

Ch. 86 QUATERNION ALGEBRAS 2639

Embed(Oc, O)

Al MonStgElt Default : “NormEquation”
Given a quadratic order Oc with base number ring R and a quaternion order O with
base ring R, the function computes an embedding Oc ↪→ O over R. It returns the
image of the second generator Oc.2 of Oc; secondly it returns the embedding map
Oc → O.

The algorithm by default involves solving a relative norm equation. Alterna-
tively, a naive search algorithm may be selected by setting the optional parameter
Al:="Search".

Notes. Let K be the number field containing Oc.
(i) Oc.1, Oc.2 are the generators of Oc as a module, and Oc.2 is unrelated to

K.1, where K is the number field containing Oc.
(ii) To check whether an embedding of K into the algebra exists, one can use

HasEmbedding(K, Algebra(O) : ComputeEmbedding:=false).

Example H86E13

> F := NumberField(Polynomial([1,-3,0,1]));

> A := QuaternionAlgebra<F | -3, b>;

> K := ext<F | Polynomial([2,-1,1])>;

> mu, iota := Embed(K, A);

> mu;

1/2 + 1/6*(-2*b^2 + 2*b + 7)*i + 1/2*(2*b^2 + b - 6)*j + 1/6*(-2*b^2 - b + 4)*k

> MinimalPolynomial(mu);

$.1^2 - $.1 + 2

> iota(K.1) eq mu;

true

86.7 Predicates on Algebras

A quaternion algebra A over a number field F with [F : Q] = h is definite (or totally
definite) if F is totally real and A ⊗Q R ∼= Hh, where H is the division ring of real
Hamiltonians, otherwise A is indefinite.

A quaternion algebra A over Fq(X) is called definite if the place corresponding to the
degree valuation is ramified.

IsDefinite(A)

IsIndefinite(A)

Given a quaternion algebra A over a number field, Q or Fq(X) with q odd, re-
turns true if and only if A is a (totally) definite or indefinite quaternion algebra,
respectively.

2640 ALGEBRAS Part XII

86.8 Recognition Functions
A quaternion algebra A over a field K is isomorphic to the matrix ring M2(K) if and only if
there exists a zerodivisor ε in A. Given such an ε, we can exhibit an explicit isomorphism;
otherwise a zerodivisor will be computed first by finding a point on a conic (see [Vig80,
Cor. I.2.4]).

Given an associative algebra, we also have an algorithm to recognize if the algebra is a
quaternion algebra, and, if so, return an isomorphism to a quaternion algebra in standard
form.

IsMatrixRing(A)

Isomorphism BoolElt Default : false

Returns true if and only if the quaternion algebra A with base field F is isomorphic
to M2(F), or equivalently if A has no ramified places. The field F has to be Q,
Fq(X) (with q odd) or a number field.

If A is isomorphic to M2(F) and Isomorphism is set to true, then M2(F) and
an isomorphism A→M2(F) are also returned.

MatrixRing(A, eps)

MatrixAlgebra(A, eps)

Given a quaternion algebra A and a zerodivisor ε ∈ A, the function returns the
matrix algebra M2(F) and an isomorphism A→M2(F).

Example H86E14

> A := QuaternionAlgebra<Rationals() | -1, 1>;

> eps := A.3-1;

> MinimalPolynomial(eps), Norm(eps);

x^2 + 2*x

0

Thus, since ε has reduced norm 0, it is a zerodivisor: indeed, ε(ε + 2) = 0.

> M2F, phi := MatrixRing(A,eps);

> [<MinimalPolynomial(A.i), MinimalPolynomial(phi(A.i))> : i in [1..3]];

[

<x^2 + 1, x^2 + 1>,

<x^2 - 1, x^2 - 1>,

<x^2 - 1, x^2 - 1>

]

IsQuaternionAlgebra(B)

Returns true if and only if the associative algebra B is a quaternion algebra; if
true, it returns the associated quaternion algebra A in standard form and an algebra
homomorphism from B to A. The algorithm used is [Voi05, Algorithm 4.2.9].

Ch. 86 QUATERNION ALGEBRAS 2641

Example H86E15

We create an associative algebra which is known to be a quaternion algebra A and then recover
A (or an isomorphic algebra).

> A := AssociativeAlgebra(QuaternionAlgebra<Rationals() | -1,1>);

> vecs := [&+[Random(10)*A.i : i in [1..4]] : j in [1..4]];

> Mchange := Matrix(Rationals(),4,4,&cat[Eltseq(vecs[i]) : i in [1..4]]);

> Mchange := Mchange^(-1);

> seq := [<i,j,k,((vecs[i]*vecs[j])*Mchange)[k]> : i,j,k in [1..4]];

> A := AssociativeAlgebra<Rationals(),4 | seq>;

> bl, Aquat, phi := IsQuaternionAlgebra(A);

> bl;

true

> Aquat;

Quaternion Algebra with base ring Rational Field

> Aquat.1^2, Aquat.2^2;

25 -3924/25

> phi;

Mapping from: AlgAss: A to AlgQuat: Aquat given by a rule

We now verify the functionality when a zerodivisor is encountered.

> A := Algebra(MatrixAlgebra(Rationals(),2));

> IsQuaternionAlgebra(A);

true Quaternion Algebra with base ring Rational Field

Mapping from: AlgAss: A to Quaternion Algebra with base ring Rational Field

given by a rule

The algebra k < x, y > with x2 = y2 = xy + yx = 0 is not semisimple; the ideal generated by x, y
is a nontrivial two-sided ideal. Similarly, a commutative algebra is not a quaternion algebra.

> A := Algebra(FPAlgebra<Rationals(), x,y | x^2, y^2, x*y+y*x>);

> IsQuaternionAlgebra(A);

false

> A := Algebra(FPAlgebra<Rationals(), x | x^4+x^2+1>);

> IsQuaternionAlgebra(A);

false

In characteristic 2, the algorithm also performs correctly, both for an associative but non-
quaternion algebra and for the “universal” example of a quaternion algebra.

> A := Algebra(FPAlgebra<GF(2), x,y | x^2, y^2, x*y+y*x+1>);

> IsQuaternionAlgebra(A);

false

> F<a,b,x,y,z,w> := FieldOfFractions(PolynomialRing(GF(2),6));

> M := [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1],

> [0,1,0,0],[a,1,0,0],[0,0,0,1],[0,0,a,1],

> [0,0,1,0],[0,0,1,1],[b,0,0,0],[b,b,0,0],

> [0,0,0,1],[0,0,a,0],[0,b,0,0],[a*b,0,0,0]];

> A<alpha,beta> := AssociativeAlgebra<F,4 | M>;

2642 ALGEBRAS Part XII

> alpha^2+alpha+a;

(0 0 0 0)

> beta^2+b;

(0 0 0 0)

>

> bl, Aquat, phi := IsQuaternionAlgebra(A);

> bl;

true

> Aquat;

Quaternion Algebra with base ring Multivariate rational function field of

rank 6 over GF(2)

> theta := phi(x+y*alpha+z*beta+w*alpha*beta);

> Trace(theta);

y

> Norm(theta);

a*b*w^2 + a*y^2 + b*z^2 + b*z*w + x^2 + x*y

MatrixRepresentation(A)

MatrixRepresentation(R)

Given a quaternion algebra A over Q or a quaternion order R over Z, this function
returns a 2× 2-matrix representation of A, defined over a quadratic extension.

86.9 Attributes of Orders

For further information about orders of associative algebras, see Section 81.4.
For a quaternion order S over Z or Fq[X], Magma additionally defines the following

functions.

Algebra(S)

QuaternionAlgebra(S)

The quaternion algebra for which S is an order.

BasisMatrix(S)

EmbeddingMatrix(S)

Returns the basis matrix of the quaternion order S over Z or Fq[X]. The rows of
the matrix give the basis elements of S with respect to the basis of the container
algebra.

Discriminant(S)

Given an order S over Z or Fq[X], this function returns the reduced discriminant
of S as a positive integer or a normalized polynomial.

Ch. 86 QUATERNION ALGEBRAS 2643

FactoredDiscriminant(S)

Given a quaternion order S, this function returns the factorisation of the reduced
discriminant of S (that is, Factorization(Discriminant(S))).

Conductor(S)

Level(S)

Given an order S over Z or Fq[X] in a quaternion algebra A, this function returns
the reduced index of S in a maximal order of A containing it. Together with the
reduced discriminant of the order, this serves to classify the local isomorphism class
of an Eichler order.

Normalizer(S)

Let S be an order in a definite quaternion algebra A over a field F where F is
the rationals, Fq(t) or a number field. This function returns a matrix group G
isomorphic to the normalizer of S in A∗ modulo F ∗. A homomorphism from G to
A∗ is also returned.

86.10 Predicates of Orders

Let O be a quaternion order with base ring Z, Fq[X] with q odd, or a number ring. Then
Magma can test the following predicates.

IsMaximal(O)

Returns true if and only if the order O is maximal.

IspMaximal(O, p)

Returns true if and only if the order O is maximal at the prime or prime ideal p.

IsEichler(O)

MaximalOrders BoolElt Default : false

Returns true if and only if the order O is Eichler, that is an intersection of two
(not necessarily distinct) maximal orders. The function calls the EichlerInvariant
intrinsic explained below.

If the optional argument MaximalOrders is set to true, the algorithm also returns
two maximal orders such that O is their intersection.

IsEichler(O, p)

MaximalOrders BoolElt Default : false

Returns true if and only if the completion of the order O at the prime (ideal) p is
Eichler.

If the optional argument MaximalOrders is set to true, the algorithm also returns
two p-maximal orders such that O is their intersection.

2644 ALGEBRAS Part XII

EichlerInvariant(O, p)

Returns the local Eichler invariant of O at some prime (ideal) p which divides the
discriminant of O. Let R be the base ring of O and let J be the Jacobson radical of
the R/p-algebra O/pO. If J has dimension 3 then the Eichler invariant is defined to
be 0. Otherwise the quotient of O/pO by J is either isomorphic to a direct sum of
two copies of R/p or a quadratic field extension of R/p. In the first case the Eichler
invariant is 1, in the latter it is −1.

IsHereditary(O)

Returns true if and only if the order O is a hereditary order in a quaternion algebra
A. That is, every lattice in A of full rank such that O is contained in its left order is a
projective left O-module. The hereditary orders are precisely those with squarefree
discriminant.

IsHereditary(O, p)

Returns true if and only if the completion of the order O at the prime (ideal) p is
hereditary.

IsGorenstein(O)

Returns true if and only if the order O is a Gorenstein order. That is, the dual of
O with respect to the trace bilinear form is a projective O-module.

IsGorenstein(O, p)

Returns true if and only if the completion of the order O at the prime (ideal) p is
Gorenstein.

86.11 Operations with Orders

O1 meet O2

This returns the order obtained by intersecting the quaternion orders O1 and O2.

O ^ x

This returns the conjugate of the order O by an element x in the associative algebra
A for which O is an order (in other words the order x−1Ox).

Ch. 86 QUATERNION ALGEBRAS 2645

86.12 Ideal Theory of Orders

The right (or left) ideals of an R-order O in a quaternion algebra A defined over a number
field fall into finitely many isomorphism classes. Already, for the case of number rings, it
is a computationally difficult problem to compute the class group, and due to the noncom-
mutativity of quaternion algebras, the problem of enumerating ideal classes of quaternion
orders is even more difficult because this set does not have the structure of a group.

All orders in this section are required to be Eichler. The reader should recall that this
includes the maximal orders.

The algorithms underpinning the intrinsics described in this section, in particular, those
for determining ideal classes, are described in [KV10]. The methods depend on whether A
is definite or indefinite. For a definite algebra, we use a variation of Kneser’s neighbouring
method together with Eichler’s mass formula (see [Vig80, Chapter 5] and [DG88]) to
construct sufficient ideals to represent all ideal classes. We then test if two right (or left)
ideals I, J are isomorphic (Section 86.14.3).

For an indefinite quaternion algebra, we use a theorem of Eichler [Rei03, Th. 35.14]
which states that the reduced norm gives rise to an bijection of sets between the class
groups of the order and the number ring. (Over Z or Fq[X], therefore, every ideal of an
indefinite quaternion order is principal.) We may compute representative ideals I of O
whose reduced norm is in a specified ideal class. We then reduce the problem of testing
for an isomorphism I ∼= J between two ideals to the similar problem over R. Here, the
problem of explicitly computing such an isomorphism is much less difficult, as an order
(or ideal) will have infinitely many elements of bounded norm, and in most cases a search
amongst reduced bases will find a desired element.

Ideals of quaternion orders belong to the types AlgQuatOrdIdl and AlgAssVOrdIdl
according as to whether the order O is defined over Z or Fq[X] (both of type AlgQuatOrd)
or over a number ring (of type AlgAssVOrd). For more on the constructions and functions
for ideals of the latter type, see Section 81.4.

86.12.1 Creation and Access Functions

LeftIdeal(S, X)

lideal< S | X >

RightIdeal(S, X)

rideal< S | X >

ideal< S | X >

These intrinsics construct a left, right or two-sided ideal of the order S generated by
the sequence X, which should contain elements that are coercible into the algebra
of S.

In the case of the constructors lideal< | > and rideal< | >, the right hand
side may also be a matrix or pseudo-matrix giving the basis of the ideal with respect
to the basis of S.

2646 ALGEBRAS Part XII

PrimeIdeal(S, p)

Given a quaternion order S over Z or Fq[X], the function returns the unique two-
sided (integral) prime ideal P of S over the prime p of Z or Fq[X]. If p exactly divides
the discriminant of S, then P properly contains pS and need not be principal, and
otherwise P is equal to pS.

CommutatorIdeal(S)

The two-sided ideal of the quaternion order S generated by elements of the form
xy − yx.

MaximalLeftIdeals(O, p)

MaximalRightIdeals(O, p)

The integral ideals of norm p with left or right order O.

Example H86E16

We demonstrate the construction of the 2-sided prime ideals and their relationship with the
commutator ideal.

> S := QuaternionOrder(2*5*11);

> P := PrimeIdeal(S, 2);

> I := ideal< S | [2] cat [x*y-y*x : x, y in Basis(S)] >;

> P eq I;

true

> Q := PrimeIdeal(S, 5);

> R := PrimeIdeal(S, 11);

> P*Q*R eq CommutatorIdeal(S);

true

By way of explanation, we note that the composition of ideals is well-defined, since each of these
ideals is a 2-sided ideal for S, that is, a left ideal whose right order is also S. The collection of
all prime ideals over the ramified primes of a maximal order forms an elementary 2-abelian class
group, and the commutator ideal is the product of these prime ideals.

Example H86E17

First we create an integral ideal I of norm 2.

> QQ:= Rationals();

> A<i,j> := QuaternionAlgebra< QQ | -1, -11 >;

> S := MaximalOrder(A);

> P<x> := PolynomialRing(QQ);

> P ! MinimalPolynomial(i);

x^2 + 1

> I := lideal< S | 2, 1+i >;

> Norm(I);

2

> I in MaximalLeftIdeals(S, 2);

Ch. 86 QUATERNION ALGEBRAS 2647

true

We now examine the basis of the ideal I.

> Basis(I);

[2, 1 + i, i + k, 3/2 + 1/2*i + 1/2*j + 1/2*k]

> [Eltseq(x) : x in Basis(I)];

[

[2, 0, 0, 0],

[1, 1, 0, 0],

[0, 1, 0, 1],

[3/2, 1/2, 1/2, 1/2]

]

> BasisMatrix(I, A);

[2 0 0 0]

[1 1 0 0]

[0 1 0 1]

[3/2 1/2 1/2 1/2]

If the ideal I is printed, the rational coordinates with respect to the basis of the quaternion order
S will be shown, We can get this base change matrix if we call BasisMatrix with no additional
parameters.

> I;

Left Ideal with basis Pseudo-matrix over Integer Ring

[2 0 0 0]

[1 1 0 0]

[0 0 2 0]

[1 0 1 1]

> BasisMatrix(I);

[2 0 0 0]

[1 1 0 0]

[0 0 2 0]

[1 0 1 1]

LeftOrder(I)

Given an ideal I of a quaternion order defined over Z, Fq[X] or a number ring,
this function returns the left order of I, defined as the ring of all elements of the
quaternion algebra of I mapping I to itself under left multiplication.

RightOrder(I)

Given an ideal I of a quaternion order defined over Z, Fq[X] or a number ring,
this function returns the right order of I, defined as the ring of all elements of the
quaternion algebra of I mapping I to itself under right multiplication.

2648 ALGEBRAS Part XII

Example H86E18

> K := NumberField(Polynomial([5,0,1]));

> K;

Number Field with defining polynomial $.1^2 + 5 over the Rational Field

> A := QuaternionAlgebra<K | 3, K.1>;

> O := MaximalOrder(A);

> I := lideal<O | O.2, Norm(O.2)>;

> Norm(I);

Principal Ideal

Generator:

2/1*$.1

> LeftOrder(I) eq O;

true

> RightOrder(I) eq O;

true

86.12.2 Enumeration of Ideal Classes
The tools provided for calculating ideal classes in the case of a maximal or, more generally,
an Eichler order S in a quaternion algebra over Q, Fq(X) (with q odd) or a number field
are described in this section.

Mass(S)

Given a definite order S of level N over R, this function returns the mass

∑

i

hi/[S∗i : R∗]

where S1, . . . , St represent the conjugacy classes of Eichler orders of level N and hi

denotes the number of two-sided ideal classes of Si.

LeftIdealClasses(S)

RightIdealClasses(S)

Support [RngOrdIdl] Default :

These intrinsics find representatives for the left or right locally free ideal classes of
S, where S is an order in a quaternion algebra A defined over Q, Fq(X) (with q
odd) or a number field. The algorithms are guaranteed to work correctly only when
S is a maximal order or an Eichler order.

For definite algebras, the support of the returned ideals may be specified using
parameter Support; this should be a sequence of primes or prime ideals in the base
ring which generate the narrow class group and which do not ramify in A. In this
case, the routine will find ideal class representatives whose norms are divisible only
by primes in the specified support. The algorithm usually runs faster if the support

Ch. 86 QUATERNION ALGEBRAS 2649

is either not specified or if the support includes the prime divisors of the discriminant
of S.

For indefinite algebras, the representatives are obtained from a ray class group
of the base field.

TwoSidedIdealClasses(S)

Support [RngOrdIdl] Default :

Given an order S in a quaternion algebra, this function returns a sequence containing
representatives for the two-sided locally free ideal classes of S. The algorithm is only
guaranteed to work when S is a maximal order or an Eichler order.

If the optional argument Support is specified, Magma tries to construct rep-
resentatives that have norm divisible by primes or prime ideals in the specified
support. If this is not possible, the set specified using parameter Support will be
enlarged by the prime divisors of the discriminant of S. If this enlarged set is still
not large enough (which can only happen if the set does not generate the class of
group of the base ring of S) an error will be raised.

TwoSidedIdealClassGroup(S : Support)

Support [RngOrdIdl] Default :

Given an order S in a quaternion algebra, this returns the two-sided ideal class group
of S as an abstract abelian group, together with a map from the group to the set
of two-sided ideal classes of S. Inverses with respect to this map can be calculated
in a very efficient way and thus may be used to compute discrete logarithms. The
algorithm is only guaranteed to work when S is a maximal order or an Eichler order.

The optional parameter Support may be used to specify a support: this should
be a sequence of primes or prime ideals in the base ring which generate the narrow
class group and which do not ramify in the parent algebra.

ConjugacyClasses(S)

Given a maximal order (or an Eichler order S of level N) in a quaternion algebra
A, this function returns representatives for the conjugacy classes of maximal orders
(or orders of level N) in A.

For definite algebras, the algorithm involves computing the right ideal classes (in
fact, the two problems are computationally equivalent in practice).

Example H86E19

In the following example we construct a maximal order in the quaternion algebra ramified at 37,
and enumerate its left ideal classes.

> S := QuaternionOrder(37);

> ideals := LeftIdealClasses(S);

> [Basis(I) : I in ideals];

[

[1, i, j, k],

2650 ALGEBRAS Part XII

[2, 2*i, 1 + i + j, i + k],

[2, 2*i, i + j, k]

]

We now compute the right orders of the two nontrivial left ideal classes.

> _, I, J := Explode(ideals);

> R1 := RightOrder(I);

> R2 := RightOrder(J);

> IsIsomorphic(R1,R2);

true

Although the ideals I and J are non-isomorphic left ideals over S, they have isomorphic right
orders. In the example following the next section we explore this phenomenon further.

Example H86E20

In this example, we enumerate ideal classes for a definite quaternion algebra (over a totally real
field).

> P<x> := PolynomialRing(Rationals());

> F := NumberField(x^3-3*x-1);

> Z_F := MaximalOrder(F);

> Foo := InfinitePlaces(F);

> pp := Decomposition(Z_F, 17)[1][1];

> A := QuaternionAlgebra(pp, Foo);

> O := MaximalOrder(A);

> time Rideals := RightIdealClasses(O);

Time: 0.870

> #Rideals;

2

Example H86E21

In this example the classgroup of the base field is not trivial and there are some ramified prime
ideals in the algebra. Hence we expect nontrival two-sided ideal classes.

> K:= QuadraticField(401);

> A:= QuaternionAlgebra< K | -1, -1>;

> RamifiedPlaces(A);

[

Prime Ideal

Two element generators:

2

$.2 + 1,

Prime Ideal

Two element generators:

2

$.2 + 2

]

Ch. 86 QUATERNION ALGEBRAS 2651

[1st place at infinity, 2nd place at infinity]

> M:= MaximalOrder(A);

> #TwoSidedIdealClasses(M);

10

> time #RightIdealClasses(M);

140

Time: 6.470

86.12.3 Operations on Ideals
In addition to operations on ideals of orders over more general rings (see Section 81.4), the
following operations are defined for ideals of quaternion orders over Z, Fq[X] and number
rings.

I * J

The composite of I and J , where the right order of I equals the left order of J .

I meet J

Given ideals or orders I and J , this function returns the intersection I ∩ J .

Conjugate(I)

Given an ideal I (of a quaternion algebra), this function returns the conjugate ideal.

Norm(I)

Given an ideal I over Z, this function returns the reduced norm of the ideal, defined
as the positive generator of the image of the reduced norm map in Q.

Given an ideal I over Fq[X], this function returns the reduced norm of the ideal,
defined as the normalized generator of the image of the reduced norm map in Fq(X).

Given an ideal I over a commutative order, this function returns the reduced
norm of I as a fractional ideal of the order.

Factorization(I)

Given a two-sided ideal I of an hereditary order O, this function returns the unique
factorization of I into two-sided O-ideals. The result is a sequence of tuples. The
first entry of each tuple is a two-sided ideal of O, the second is its exponent. (If the
base ring of I is Fq[X], then q is currently required to be odd.)

2652 ALGEBRAS Part XII

86.13 Norm Spaces and Basis Reduction

For definite quaternion orders or ideals one can compute reduced bases and Gram matrices.
If the base ring of the order or ideal is Z or Fq[X] with q odd, the Gram matrices can

be made unique up to isomorphism. In fact, in these cases, the isomorphism testing of
ideals and orders is based on this reduction.

NormSpace(A)

Given a quaternion algebra A over any field F not of characteristic 2, this function
returns the underlying F -space with inner product the norm form. A map from A
into the structure is returned as second value.

NormSpace(S)

Given a quaternion order S over Z or Fq[X] (with q odd), this function returns the
underlying module over its base ring, with inner product respect to the norm. A
map from O into the structure is returned as second value.

GramMatrix(S)

GramMatrix(I)

The Gram matrix of the quaternion order S or ideal I over Z or Fq[X] with respect
to the norm on the basis for S.

ReducedGramMatrix(S)

Given an order or ideal S over Z in a definite quaternion algebra, this function
returns the Gram matrix G of the corresponding lattice.

The quaternion ideal machinery makes use of a Minkowski basis reduction algo-
rithm which returns a unique normalized reduced Gram matrix G for any definite
quaternion ideal. This forms the core of the isomorphism testing for quaternion
ideals.

ReducedBasis(S)

Given an order or ideal S over Z in a definite quaternion algebra, this function
returns some basis B of S the Gram matrix G of the corresponding lattice associated
with S. Note that while there exists a unique Minkowski-reduced Gram matrix G,
the basis B is not unique.

Example H86E22

Recall that Minkowski basis reduction is used which returns a unique normalized reduced Gram
matrix G for any definite quaternion ideal. This forms the core of the isomorphism testing for
quaternion ideals. We illustrate this by applying it to representatives of the set of left ideal classes
of an order.

> A := QuaternionOrder(19,2);

> ideals := LeftIdealClasses(A);

> #ideals;

5

Ch. 86 QUATERNION ALGEBRAS 2653

> [(1/Norm(I))*ReducedGramMatrix(I) : I in ideals];

[

[2 0 1 1]

[0 2 1 1]

[1 1 20 1]

[1 1 1 20],

[6 0 1 3]

[0 6 3 1]

[1 3 8 1]

[3 1 1 8],

[6 0 1 3]

[0 6 3 1]

[1 3 8 1]

[3 1 1 8],

[4 0 1 -1]

[0 4 1 1]

[1 1 10 0]

[-1 1 0 10],

[4 0 1 -1]

[0 4 1 1]

[1 1 10 0]

[-1 1 0 10]

]

ReducedGramMatrix(S)

ReducedBasis(S)

Canonical BoolElt Default : false

Given an order or ideal S over Fq[X] in a quaternion algebra A, this function returns
a Gram matrix and/or a basis of S whose Gram matrix is in dominant diagonal form
(see the function DominantDiagonalForm in Section 31.2.1). The Gram matrix will
not be unique unless A is definite and Canonical is set to true.

ReducedBasis(O)

ReducedBasis(I)

Returns a “reduced” basis for the order O or the ideal I over some number ring.
If O or I arise from a definite quaternion algebra, then this basis is LLL-reduced
with respect to the norm form; otherwise, the basis is reduced with respect to a
Minkowski-like embedding (see [KV10, Section 4]).

2654 ALGEBRAS Part XII

OptimizedRepresentation(O)

OptimisedRepresentation(O)

Given an order O contained in a quaternion algebra A over Q or a number field F ,
this function returns a new quaternion algebra A′ such that A′ = ((a, b)/F) where
a and b are small (with respect to O), and, as second return value, an isomorphism
A→ A′.

OptimizedRepresentation(A)

OptimisedRepresentation(A)

Given a quaternion algebra A over Q or a number field F , this function returns a
new quaternion algebra A′ such that A′ = ((a, b)/F) where a and b are small. An
isomorphism A→ A′ is returned as second value.

Enumerate(O, A, B)

The sequence of all elements x (up to sign) in the definite quaternion order O or
ideal I over Z such that the reduced norm of x lies in the interval [A, . . . B] or
[0, . . . B], respectively.

Enumerate(O, A, B)

Enumerate(O, B)

The sequence of elements x (up to sign) in the definite quaternion order O or ideal I
over a number ring such that the absolute trace of the norm of x lies in the interval
[A, . . . B] or [0, . . . B], respectively.

86.14 Isomorphisms

86.14.1 Isomorphisms of Algebras
Two quaternion algebras A,B over a common field F are isomorphic algebras if and only
if they share the same ramified places. Finding an explicit isomorphism is much harder.
Currently Magma embeds the first standard generator of A into B and then finds another
element perpendicular to that image having the correct minimal polynomial. In particular,
this requires the construction of two points on a conic (or equivalently, the solution of two
norm equations) over quadratic extensions of F .

IsIsomorphic(A, B)

Isomorphism BoolElt Default : false

Given two quaternion algebras A,B over Q, Fq(X) with q odd or a number field,
this function returns true if and only if they are isomorphic.

If the algebras are isomorphic and Isomorphism is set to true, an isomorphism
A→ B is also returned.

Ch. 86 QUATERNION ALGEBRAS 2655

86.14.2 Isomorphisms of Orders
Two orders S, T in a quaternion algebra A are isomorphic if and only if they are conjugate
in A.

In a definite algebra, we use the fact that this conjugation induces an isometry of the
quadratic Z- or Fq[X]-modules S and T equipped with the (absolute) norm form. Over
an indefinite algebra, we use the fact that any connecting ideal I having left order S and
right order T must be isomorphic to a right ideal of T . See [KV10] for details.

IsIsomorphic(S, T)

IsConjugate(S, T)

FindElement BoolElt Default : false

ConnectingIdeal AlgAssVOrdIdl Default :

Given orders S and T in a quaternion algebra A over Q, Fq(X) (with q odd) or a
number field, this function returns true if and only if S and T are isomorphic.

For indefinite algebras, the orders are currently required to be maximal.
If FindElement is set, the second return value is an isomorphism from S to T

and the third return value is an element a with T = a−1Sa, inducing the isomor-
phism. For indefinite algebras, this search is expensive and may sometimes fail (as
in IsIsomorphic for ideals, see below).

For indefinite algebras defined over number fields, part of the computation may
be faster when a connecting ideal is specified using the parameter ConnectingIdeal;
this should be an ideal with left order S and right order T .

Isomorphism(S, T)

Given two isomorphic definite quaternion orders S, T over Z or Fq[X] (with q odd),
this function returns an algebra isomorphism. For orders over number rings the
intrinsic IsIsomorphic should be used with the optional argument FindElement
set.

86.14.3 Isomorphisms of Ideals
Two right (left) ideals I, J of an order O in a quaternion algebra A are isomorphic O-
modules if and only if xI = J (Ix = J) for some x ∈ A∗.

To decide whether I and J are isomorphic, we test whether the colon ideal (J : I) =
{x ∈ A : xI ⊂ J} (similarly defined if I, J are left ideals) is principal, or not.

Over Z, to accomplish this task we compute a Minkowski-reduced Gram matrix of
(J : I) which produces an element of smallest norm. Over Fq[X] we compute a Gram
matrix which has dominant diagonal form (see [Ger03]) which also produces a suitable
element. Over other number rings R, we search (J : I) for an element of the required norm
by computing a reduced basis. This method runs very quickly for “reasonably small”
input. (See [KV10, DD08] for further details.)

2656 ALGEBRAS Part XII

IsIsomorphic(I, J)

Given ideals I and J of the same order O in a quaternion algebra A over Q, Fq(X)
(with q odd) or a number field, this function returns true if and only if the quater-
nion ideals I and J are isomorphic (left or right) O-ideals. If I and J are isomorphic,
there exists some x ∈ A such that xI = J (in the case of right O-ideals) or Ix = J
(for left ideals). For definite algebras, such an element x is always returned. For
indefinite algebras over Z or a number ring, a search for such an element is made,
and if one is found then it is returned.

IsPrincipal(I)

Given a left (or right) ideal I over Z,Fq[X] or a number ring, this function returns
true if and only if I is a principal ideal; if so, a generator is returned as the second
value.

IsLeftIsomorphic(I, J)

IsRightIsomorphic(I, J)

Given two definite ideals over Z or Fq[X] (with q odd) with the same left (or right)
order S, this function returns true if and only if they are isomorphic as S-modules.
The isomorphism and the transforming scalar in the quaternion algebra are returned
as second and third values if true.

IsLeftIsomorphic(I, J)

IsRightIsomorphic(I, J)

Given two left (or right) ideals I and J over a number ring, with the same left order
O, this function returns true if and only if they are isomorphic as O-modules. The
isomorphism is given by multiplication as a second return value.

LeftIsomorphism(I, J)

Given two isomorphic left ideals over a definite order S over Z or Fq[X], this func-
tion returns the S-module isomorphism between them, followed by the quaternion
algebra element which defines the isomorphism by right-multiplication.

RightIsomorphism(I, J)

Given two isomorphic right ideals over a definite order S over Z or Fq[X], this func-
tion returns the S-module isomorphism between them, followed by the quaternion
algebra element which defines the isomorphism by left-multiplication.

Ch. 86 QUATERNION ALGEBRAS 2657

86.14.4 Examples

Example H86E23

In this example, we create two quaternion algebras over F7, show that they are isomorphic and
find an isomorphism between them.

> F<x> := RationalFunctionField(GF(7));

> Q1 := QuaternionAlgebra< F | (x^2+x-1)*(x+1), x >;

> a := x^3 + x^2 + 3;

> b := x^13 + 4*x^11 + 2*x^10 + x^9 + 6*x^8 + 4*x^5 + 3*x^4 + x;

> Q2:= QuaternionAlgebra< F | a, b >;

> ok, phi:= IsIsomorphic(Q1, Q2 : Isomorphism);

> ok;

true

> forall{ <x,y> : x,y in Basis(Q1) | phi(x*y) eq phi(x)*phi(y) };

true

Example H86E24

In this example, we create two ideals, show that they have isomorphic right orders, and then
explicitly exhibit the isomorphism.

> A := QuaternionAlgebra(37);

> S := MaximalOrder(A);

> ideals := LeftIdealClasses(S);

> _, I, J := Explode(ideals);

> R := RightOrder(I);

> Q := RightOrder(J);

> IsIsomorphic(R,Q);

true

> // Get the x which conjugates R to Q:

> _, pi := Isomorphism(R,Q);

> Norm(pi);

37

> J := lideal< S | [x*pi : x in Basis(J)] >;

> RightOrder(J) eq R;

true

Example H86E25

We construct two non-isomorphic left ideals with the same left and right orders, then investigate
their isomorphisms as right ideals.

> S := QuaternionOrder(37);

> ideals := LeftIdealClasses(S);

> _, I, J := Explode(ideals);

> R := RightOrder(I);

> _, pi := Isomorphism(R,RightOrder(J));

2658 ALGEBRAS Part XII

> J := lideal< S | [x*pi : x in Basis(J)] >;

> IsLeftIsomorphic(I,J);

false

> IsRightIsomorphic(I,J);

true Mapping from: AlgQuatOrd: I to AlgQuatOrd: J given by a rule [no inverse]

1 + i - 2*k

> h, x := RightIsomorphism(I,J);

> y := [1,2,-1,3];

> y := &+[y[i]*b[i] : i in [1 .. 4]] where b is Basis(I);

> h(y);

[-73 15 31 4]

> x*y;

-73 + 15*i + 31*j + 4*k

The existence of an isomorphism as a right ideal is due to the fact that the two-sided ideals of R
do not have non-isomorphic counterparts in S.

> TwoSidedIdealClasses(R);

[Ideal with basis Pseudo-matrix over Integer Ring

1 * [1 0 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 0 1]

, Ideal with basis Pseudo-matrix over Integer Ring

1 * [37 0 32 18]

[0 37 10 2]

[0 0 1 0]

[0 0 0 1]

]

> TwoSidedIdealClasses(S);

[Ideal with basis Pseudo-matrix over Integer Ring

1 * [1 0 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 0 1]

]

Thus while Conjugate(I)*J is in the non-principal R-ideal class, the ideal I*Conjugate(J) rep-
resents the unique principal ideal class of S.

Example H86E26

We exhibit isomorphism testing for ideals of orders over number rings.

> P<x> := PolynomialRing(Rationals());

> F := NumberField(x^3-3*x-1);

> Z_F := MaximalOrder(F);

> F := FieldOfFractions(Z_F);

> A<alpha,beta,alphabeta> := QuaternionAlgebra<F | -3, b>;

> O := Order([alpha,beta,alphabeta]);

Ch. 86 QUATERNION ALGEBRAS 2659

> O;

Order of Quaternion Algebra with base ring F

with coefficient ring Maximal Equation Order with defining polynomial x^3 - 3*x

- 1 over its ground order

> I := ideal<O | 2>;

> I eq (I + ideal<O | 2>);

true

> I eq (I + ideal<O | 3>);

false

>

> Foo := InfinitePlaces(F);

> A := QuaternionAlgebra(ideal<Z_F | 2*3*5>, Foo);

> IsDefinite(A);

true

> O := MaximalOrder(A);

> I := rideal<O | Norm(O.2), O.2>;

> J := rideal<O | Norm(O.3), O.3>;

> IsIsomorphic(I, J);

true (F.2 + F.3) + (27/9190*F.1 - 143/9190*F.2 - 73/9190*F.3)*i +

(-251/27570*F.1 + 7/2757*F.2 + 10/2757*F.3)*k

86.15 Units and Unit Groups

Let S be a definite quaternion order over Z, Fq[X] with q odd, or a number ring. In the
first two cases, the unit group of S is finite and can be read off any reduced Gram matrix
of S. If the base ring of S is some number ring R, then an explicit description of the finite
quotient S∗/R∗ is given in [Vig76].

NormOneGroup(S)

ModScalars BoolElt Default : false

Returns a group G isomorphic to the group S1 of elements in S with reduced norm
1 (unless ModScalars is set, in which case G is isomorphic to S1 modulo {±1}).

The second object returned is a map from G to S expressing the isomorphism.

Units(S)

This intrinsic computes the set of units S∗ for the definite order S. When the base
ring of S is Z or Fq[X], the returned sequence contains all units of S; when the base
field is a number field, the returned sequence contains representatives modulo the
unit group of the base ring (since the unit group is infinite in general).

2660 ALGEBRAS Part XII

MultiplicativeGroup(S)

UnitGroup(S)

This intrinsic computes the unit group S∗ of the definite quaternion order S. The
function returns an abstract group G, and a map from G to S. When the base ring
of S is Z or Fq[X], G represents the full group of units of S; when the base field is
a number field, G represents the unit group of S modulo the unit group of the base
ring (since the unit group is infinite in general).

Example H86E27

The following example illustrates the unit group computation for an order in a definite quaternion
algebra over Q.

> A := QuaternionAlgebra< RationalField() | -1, -1 >;

> S1 := MaximalOrder(A);

> S2 := QuaternionOrder(A,2);

> G1, h1 := UnitGroup(S1);

> #G1;

24

> [A | h1(g) : g in G1];

[1, -1, -j, -k, i, -1/2 + 1/2*i - 1/2*j - 1/2*k, 1/2 + 1/2*i - 1/2*j + 1/2*k,

-1/2 - 1/2*i - 1/2*j + 1/2*k, -1/2 + 1/2*i + 1/2*j + 1/2*k, 1/2 - 1/2*i - 1/2*j

- 1/2*k, 1/2 + 1/2*i + 1/2*j - 1/2*k, 1/2 - 1/2*i + 1/2*j + 1/2*k, -1/2 - 1/2*i

+ 1/2*j - 1/2*k, 1/2 - 1/2*i + 1/2*j - 1/2*k, -1/2 + 1/2*i + 1/2*j - 1/2*k, 1/2

+ 1/2*i - 1/2*j - 1/2*k, -1/2 - 1/2*i - 1/2*j - 1/2*k, 1/2 + 1/2*i + 1/2*j +

1/2*k, -1/2 - 1/2*i + 1/2*j + 1/2*k, -1/2 + 1/2*i - 1/2*j + 1/2*k, 1/2 - 1/2*i -

1/2*j + 1/2*k, k, -i, j]

> G2, h2 := UnitGroup(S2);

> #G2;

8

> [A | h2(g) : g in G2];

[1, -1, -j, j, k, -k, -i, i]

The unit groups of orders in indefinite quaternion algebras A are infinite arithmetic groups, which
are twisted analogues of the groups SL2(Z) and their families of subgroups. These are studied in
relation to their actions on the upper half complex plane, via an embedding in GL2(R) provided
by some isomorphism A⊗R ∼= M2(R).

Example H86E28

Now we exhibit unit group computations over a number ring.

> P<x> := PolynomialRing(Rationals());

> F := NumberField(x^3-3*x-1);

> Z_F := MaximalOrder(F);

> Foo := InfinitePlaces(F);

We use SetSeed since the following line makes random choices.

> SetSeed(1);

Ch. 86 QUATERNION ALGEBRAS 2661

> A := QuaternionAlgebra(ideal<Z_F | 2>, Foo);

> IsDefinite(A);

true

> O := MaximalOrder(A);

> U, h := UnitGroup(O);

> U;

Permutation group U acting on a set of cardinality 12

Order = 12 = 2^2 * 3

Id(U)

(1, 2, 4)(3, 6, 7)(5, 9, 10)(8, 12, 11)

(1, 3)(2, 5)(4, 8)(6, 11)(7, 9)(10, 12)

> #Units(O);

12

86.16 Bibliography
[DD08] L. Dembele and S. Donnelly. Computing Hilbert Modular Forms Over Fields

With Nontrivial Class Group. In S. Pauli F. Hess and M.Pohst, editors, ANTS VIII,
volume 5011 of LNCS. Springer-Verlag, 2008.

[DG88] M. Denert and J. Van Geel. The Class Number of Hereditary Orders in Non-
Eichler Algebras over Global Fields. Math. Ann., 282:379–393, 1988.

[Fri97] Carsten Friedrichs. Berechnung relativer Ganzheitsbasen mit dem Round-2-
Algorithmus. Diplomarbeit, Technische Universität Berlin, 1997.
URL:http://www.math.tu-berlin.de/∼kant/publications/diplom/friedrichs.ps.gz.

[Ger03] Larry J. Gerstein. Definite quadratic forms over Fq[X]. J. Algebra, 268(1):252–
263, 2003.

[IR93] Gábor Ivanyos and Lajos Rónyai. Finding maximal orders in semisimple algebras
over Q. Comput. Complexity, 3(3):245–261, 1993.

[KV10] M. Kirschmer and J. Voight. Algorithmic enumeration of ideal classes for quater-
nion orders. SIAM J. Comput. (SICOMP), 39(5):1714–1747, 2010.

[Rei03] Irving Reiner. Maximal Orders, volume 28 of LMS Monographs. Oxford Univer-
sity Press, 2003.

[Vig76] M.-F. Vignéras. Simplification pour les ordres des corps de quaternions totale-
ment définits. J. Reine Angew. Math., 286-287:257–277, 1976.

[Vig80] M.-F. Vignéras. Arithmétique des Algèbres de Quaternions, volume 800 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin, 1980.

[Voi05] John Voight. Quadratic forms and quaternion algebras: Algorithms and
arithmetic. Dissertation, University of California, Berkeley, 2005.

[Voi11] John Voight. Identifying the matrix ring: algorithms for quaternion algebras
and quadratic forms. 2011.

87 ALGEBRAS WITH INVOLUTION
87.1 Introduction 2665

87.2 Algebras with Involution . . . 2665

87.2.1 Reflexive Forms 2666

IsometryGroup(F : -) 2666
SimilarityGroup(F : -) 2666

87.2.2 Systems of Reflexive Forms 2666

PGroupToForms(G) 2667
PGroupToForms(G) 2667

87.2.3 Basic Attributes of ∗-Algebras . . 2667

IsStarAlgebra(A) 2667
IsStarAlgebra(A) 2667
Star(A) 2667
Star(A) 2667

87.2.4 Adjoint Algebras 2668

AdjointAlgebra(S : -) 2668

87.2.5 Group Algebras 2669

StarOnGroupAlgebra(A) 2669
GroupAlgebraAsStarAlgebra(R, G) 2669

87.2.6 Simple ∗-Algebras 2670

SimpleStarAlgebra(name, d, K) 2670

87.3 Decompositions of ∗-Algebras . 2671

WedderburnDecomposition(A) 2671
WedderburnDecomposition(A) 2671
TaftDecomposition(A) 2671
TaftDecomposition(A) 2671

87.4 Recognition of ∗-Algebras . . 2672

87.4.1 Recognition of Simple ∗-Algebras . 2672

RecogniseClassicalSSA(A) 2672
RecogniseExchangeSSA(A) 2672

87.4.2 Recognition of Arbitrary ∗-Algebras 2673

RecogniseStarAlgebra(A) 2673
RecogniseStarAlgebra(A) 2673
IsSimpleStarAlgebra(A) 2673
IsSimpleStarAlgebra(A) 2673
SimpleParameters(A) 2674
SimpleParameters(A) 2674
NormGroup(A) 2674

87.5 Intersections of Classical Groups2675

IsometryGroup(S : -) 2676
ClassicalIntersection(S) 2676

87.6 Bibliography 2677

Chapter 87

ALGEBRAS WITH INVOLUTION

87.1 Introduction

In this chapter we describe techniques for computing with ∗-algebras, namely algebras
equipped with an anti-automorphism x 7→ x∗ of order at most 2 (an involution or star).
For further information on involutions and the structure of ∗-algebras see [Alb61] and
[KMRT98].

The principal application of these techniques is currently to isometry groups of systems
of reflexive forms (and the intimately related study of intersections of classical groups).
However, it is also possible to use the techniques to compute with group algebras of mod-
erate dimension.

To any set of reflexive forms defined on a common vector space (a system of forms) one
may associate a matrix ∗-algebra called the adjoint algebra of the system. The group of
units of this adjoint algebra contains a natural subgroup of unitary elements, namely those
elements x satisfying the condition x∗ = x−1. The group of unitary elements coincides
with the group of isometries of the system of forms, which is also the intersection of the
general classical groups associated with these forms.

The StarAlgebras package provides functions that enable the user to investigate the struc-
ture of ∗-algebras. It also provides functions to compute and determine the structure of
the group of isometries of a system of reflexive forms, and to compute intersections of
arbitrary collections of classical groups defined on a common vector space.

The algorithms are mainly due to Peter Brooksbank and James Wilson [BW11a,
BW11b].

87.2 Algebras with Involution

This section introduces two general constructions for ∗-algebras:

(i) The algebra of adjoints of a system of reflexive (alternating, reflexive, or Hermitian)
forms [φ1, . . . , φe] defined on a common vector space V .

(ii) The group algebra K[G], where K is any ring and G is a finite group.
We also provide a constructor function for simple ∗-algebras.

2666 ALGEBRAS Part XII

87.2.1 Reflexive Forms
A reflexive form on a K-vector space V is a bilinear function φ : V × V → K such that,
whenever φ(u, v) = 0 for u, v ∈ V , we also have φ(v, u) = 0. Reflexive forms φ and ψ
on V are isometric if φ(u, v) = ψ(u, v) for all u, v ∈ V ; they are similar if there exists
a ∈ K such that φ and aψ are isometric. The radical of a reflexive form φ is the subspace
radφ = {u ∈ V : φ(u, V) = 0}, and φ is nondegenerate if radφ = 0.

A fundamental result of Birkhoff and von Neumann states that there are three similarity
classes of reflexive forms: alternating, symmetric, and Hermitian. Each such form φ is
represented by a matrix and an automorphism of K. Specifically, regarding V as the space
of row vectors, we specify F and α such that φ(u, v) = uαFvtr, where α is the identity
if φ is bilinear, or the automorphism x 7→ x of order 2 if φ is Hermitian. Thus a matrix
g ∈ GL(d,K) is an isometry (respectively similarity) of the reflexive form if gαFgtr = F
(respectively gαFgtr = aF).

IsometryGroup(F : parameters)

Auto RngIntElt Default : 0
The group of isometries of the (possibly degenerate) reflexive form represented by
the matrix F with entries in a finite field Fpe . The field automorphism associated
with F is specified by the parameter Auto, which represents the exponent f in the
map x 7→ xpf

. The default is that F is bilinear on its base ring.

SimilarityGroup(F : parameters)

Auto RngIntElt Default : 0
The group of similarities of the (possibly degenerate) reflexive form represented by
the matrix F with entries in a finite field Fpe . The field automorphism associated
with F is specified by the parameter Auto, which represents the exponent f in the
map x 7→ xpf

. The default is that F is bilinear on its base ring.

87.2.2 Systems of Reflexive Forms
A system of forms is a sequence [φ1, . . . , φe], where each φi is a reflexive form on a common
K-vector space V . The radical of a system of forms is the intersection of the radicals of
the individual forms in the system; A system is nondegenerate if its radical is zero.

A classical group on a K-vector space V preserves a reflexive form on V that is unique
up to similarity. Hence systems of forms arise naturally from sets of classical groups having
V as their common defining module.

Systems of forms also arise naturally from the study of p-groups. Let G be a finite
p-group. Let G = γ1(G) > γ2(G) > . . . > γm(G) = 1 denote the lower central series of
G, and let 1 = ζ1(G) < ζ2(G) < . . . < ζn(G) = G denote its upper central series. Let
Φ(G) be the Frattini subgroup of G, and put N := 〈Φ(G), ζn−1(G)〉. Then V = G/N and
W = γ2(G)/γ3(G) are GF(p)-vector spaces and commutation in G induces a bilinear map
V × V →W . One now obtains a system of forms associated to G by choosing bases for V
and W .

Just as matrices are useful representations of bilinear forms, so are systems of forms
convenient computational models for bilinear maps.

Ch. 87 ALGEBRAS WITH INVOLUTION 2667

PGroupToForms(G)

PGroupToForms(G)

Return a system of forms associated to the p-group G. For matrix groups, the input
must be a class 2 p-group.

Example H87E1

We construct a system of forms associated to a Sylow 7-subgroup of GL(3, 7).

> S := ClassicalSylow(GL (3, 7), 7);

> G := PCGroup(S);

> Forms := PGroupToForms(G);

> Forms;

[

[0 1]

[6 0]

]

Now we apply the same construction working directly with the matrix group as a p-group of class
2.

> Forms := PGroupToForms(S);

> Forms;

[

[0 1]

[6 0]

]

It is preferable to input a PC-group if such a representation can readily be obtained. The option
to use a matrix group for p-groups of class 2 enables the user to construct an associated system of
forms in situations where it requires considerably more time to first construct a PC-representation.

87.2.3 Basic Attributes of ∗-Algebras
Using the following functions one can ascertain whether or not a given algebra has an
assigned involution, and also access the map if it has.

IsStarAlgebra(A)

IsStarAlgebra(A)

Return true if and only if A has an assigned involution.

Star(A)

Star(A)

Return the involution associated to the ∗-algebra A.

2668 ALGEBRAS Part XII

87.2.4 Adjoint Algebras
Let S = [φ1, . . . , φe] be a system of reflexive forms on a K-vector space V . Let R denote
the algebra EndK(V) and Rop denote its opposite ring. Then the algebra of adjoints of S
is defined as follows:

Adj(S) = {(x, y) ∈ R×Rop : φi(ux, v) = φi(u, yv) ∀u, v ∈ V, ∀i ∈ {1, . . . , e}}.

As the φi are reflexive forms, (x, y) ∈ Adj(S) if and only if (y, x) ∈ Adj(S). If S is
nondegenerate, then y is uniquely determined by x; thus we identify Adj(S) with its
projection onto R and the assignment x∗ := y equips Adj(S) with an involution.

The function to compute Adj(S) is an implementation of the algorithms in [BW11a,
Proposition 5.1] and [BW11b, Section 5].

AdjointAlgebra(S : parameters)

Autos SeqEnum Default : [0, .., 0]
Given a sequence S containing a nondegenerate system of reflexive forms, this func-
tion returns the ∗-algebra of adjoints of the forms in S. The parameter Autos is
used to specify a list of Frobenius exponents associated with the given forms. By
default all forms are considered to be bilinear over their common base ring, which
must be a finite field. Note that the individual forms in the system are allowed to
be degenerate.

Example H87E2

We construct the algebra of adjoints of a particular pair of forms on a vector space of dimension
3 over GF(52). The matrices have entries in GF(5) but we regard them as forms over the larger
field, and define the first (symmetric) form to be Hermitian over the larger field.

> MA := MatrixAlgebra(GF (25), 3);

> F := MA![1,2,0,2,3,4,0,4,1];

> G := MA![0,1,0,4,0,0,0,0,0];

> A := AdjointAlgebra([F, G] : Autos := [1, 0]);

> IsStarAlgebra(A);

true

> Degree(A);

6

> BaseRing(A);

Finite field of size 5

Observe that the function has converted the given system of forms to a new system over GF(5)
and returned an algebra of degree 6 over the subfield. Now we access the involution on A and
apply it to a generator of A.

> star := Star(A);

> A.3;

[1 0 2 0 2 0]

[0 1 0 2 0 2]

Ch. 87 ALGEBRAS WITH INVOLUTION 2669

[1 0 4 0 4 0]

[0 1 0 4 0 4]

[0 0 0 0 0 0]

[0 0 0 0 0 0]

> A.3@star;

[4 0 3 0 3 0]

[0 4 0 3 0 3]

[4 0 1 0 1 0]

[0 4 0 1 0 1]

[0 0 0 0 0 0]

[0 0 0 0 0 0]

87.2.5 Group Algebras
If G is a finite group and R is any ring, then the group algebra A = R[G] possesses a
natural involution. Thus each group algebra may be regarded as a ∗-algebra.

StarOnGroupAlgebra(A)

The natural involution on the group algebra A induced by inversion on the under-
lying group. Specifically, if a =

∑
g∈G αgg ∈ A, then a∗ =

∑
g∈G αgg

−1.

GroupAlgebraAsStarAlgebra(R, G)

Construct the group algebra R[G] equipped with the natural involution afforded by
inversion in G.

Example H87E3

We construct the group algebra Z[S3] as a ∗-algebra.

> G := SymmetricGroup(3);

> K := Integers();

> A := GroupAlgebraAsStarAlgebra(K, G);

> IsStarAlgebra(A);

true;

Now access the involution on A and apply it to an element of A.

> star := Star(A);

> a := A![0,0,1,0,3,0];

> a;

(1, 3, 2) + 3*(1, 2)

> a@star;

(1, 2, 3) + 3*(1, 2)

Alternatively, Z[S3] can be constructed using the standard constructor and the involution can be
attached later.

> A := GroupAlgebra(K, G);

2670 ALGEBRAS Part XII

> IsStarAlgebra(A);

false

> StarOnGroupAlgebra(A);

Mapping from: AlgGrp: A to AlgGrp: A given by a rule [no inverse]

> IsStarAlgebra(A);

true

87.2.6 Simple ∗-Algebras
The Artinian simple ∗-algebras – those having no proper ∗-invariant ideals – were classified
by Albert [Alb61]. They come in two basic flavours: classical and exchange. The classical
types are simple as algebras and arise as adjoints of nondegenerate reflexive forms. A simple
∗-algebra of exchange type is a direct sum of two isomorphic simple algebras where the
involution interchanges the two factors. Naturally extending the Magma classification of
reflexive forms (see the manual entry for the function ClassicalForms) a simple ∗-algebra
S is assigned a name as follows:

"symplectic" if S is defined by an alternating form;
"orthogonalcircle" if S is defined by a symmetric form in odd dimension;
"orthogonalplus" if S is defined by a symmetric form of maximal Witt index;
"orthogonalminus" if S is defined by a symmetric form of non-maximal Witt index;
"unitary" if S is defined by an Hermitian form; and
"exchange" if S has exchange type.

Every simple ∗-algebra is isomorphic to a standard simple ∗-algebra having one of these
six names defined naturally on a suitable vector space.

We note that involutions on simple ∗-algebras are often classified as being “of the first
kind” or “of the second kind” according to whether or not they induce the identity on the
center of the algebra. Thus, involutions of the second kind are unitary and exchange, and
the others are all involutions of the first kind [KMRT98].

SimpleStarAlgebra(name, d, K)

Given a name, a positive integer d, and a field K, this function constructs the
standard copy of the simple ∗-algebra of type name defined naturally on a K-vector
space of dimension d.

Example H87E4

We construct the standard copy of the simple ∗-algebra of exchange type on the vector space of
dimension 4 over GF(16).

> K := GF(16);

> S := SimpleStarAlgebra("exchange", 4, K);

> Dimension(S);

8

> IsStarAlgebra(S);

Ch. 87 ALGEBRAS WITH INVOLUTION 2671

true;

> w := K.1;

> s := S.1 * S.2 + w * S.1;

> s;

[K.1 1 0 0]

[0 0 0 0]

[0 0 0 0]

[0 0 0 0]

> star := Star(S);

> s@star;

[0 0 0 0]

[0 0 0 0]

[0 0 K.1 0]

[0 0 1 0]

87.3 Decompositions of ∗-Algebras

Every finite-dimensional K-algebra A has a decomposition A = J ⊕W , where J is the
Jacobson radical of A and W is a semisimple subring of A. We refer to such decompositions
as Wedderburn decompositions. The procedure that computes Wedderburn decompositions
is adapted from an analogous Magma function written by W. de Graaf for algebras defined
by structure constants.

If A is a ∗-algebra and the characteristic of K is not 2, then it follows from a result of
Taft [Taf57] that A has a Wedderburn decomposition of the form A = J ⊕T in which T is
invariant under the involution of A. We refer to such decompositions as Taft decomposi-
tions. The procedure that computes Taft decompositions is based on Taft’s original proof,
and is described in [BW11a, Proposition 4.3].

WedderburnDecomposition(A)

WedderburnDecomposition(A)

A Wedderburn decomposition is constructed for the ∗-algebra A. Specifically, the
Jacobson radical, J , of A, and a semisimple complement, W , to J in A are computed.
Here A may be either a matrix algebra or a group algebra over any field.

TaftDecomposition(A)

TaftDecomposition(A)

A Taft decomposition is constructed for the ∗-algebra A. Specifically, the Jacobson
radical, J , of A and a ∗-invariant Wedderburn complement to J in A are computed.
This function requires that the base ring of A has characteristic different from 2.
Here A may be either a matrix ∗-algebra or a group algebra.

2672 ALGEBRAS Part XII

Example H87E5

We compute a Wedderburn decomposition of the group algebra GF(5)[A5] equipped with its
natural involution.

> K := GF(5);

> G := AlternatingGroup(5);

> A := GroupAlgebraAsStarAlgebra(K, G);

> J, W := WedderburnDecomposition(A);

We check dimensions and the ∗-invariance of T .

> Dimension(J); Dimension(W);

25

35

> forall { i : i in [1..Ngens (W)] | W.i@Star(A) in W };

false

Now find a ∗-invariant decomposition.

> J, T := TaftDecomposition(A);

> Dimension(J); Dimension(W);

25

35

> forall { i : i in [1..Ngens(T)] | T.i@Star(A) in T };

true

87.4 Recognition of ∗-Algebras
In this section we describe methods that facilitate structural examinations of ∗-algebras.
All of the functions in this section require that the base ring of the given algebra is a finite
field of odd order. The functions are implementations of the methods described in [BW11a,
Sections 4.2 and 4.3].

87.4.1 Recognition of Simple ∗-Algebras
If A is a simple ∗-algebra, then we constructively recognise A by finding an explicit inverse
isomorphisms between A and the standard copy of the simple ∗-algebra which is isomorphic
to A. The latter is the output of the function SimpleStarAlgebra with the appropriate
input parameters.

RecogniseClassicalSSA(A)

Given a matrix ∗-algebra A, this function first decides whether or not A is a simple
∗-algebra of classical type. If it is, the standard ∗-algebra, T , corresponding to A, a
∗-isomorphism from A to T , and its inverse from T to A are returned.

RecogniseExchangeSSA(A)

Given a matrix ∗-algebra A, this function first decides whether or not A is a simple
∗-algebra of exchange type. If it is, the standard ∗-algebra, T , corresponding to A,
a ∗-isomorphism from A to T , and its inverse from T to A are returned.

Ch. 87 ALGEBRAS WITH INVOLUTION 2673

Example H87E6

We build a particular simple ∗-algebra of symplectic type and recognise it constructively.

> MA := MatrixAlgebra(GF(7), 4);

> F := MA![0,1,3,4,6,0,0,1,4,0,0,2,3,6,5,0];

> F;

[0 1 3 4]

[6 0 0 1]

[4 0 0 2]

[3 6 5 0]

> A := AdjointAlgebra([F]);

> isit, T, f, g := RecogniseClassicalSSA(A);

> isit;

true;

A quick check that f is, as claimed, a ∗-isomorphism.

> (A.1 + A.2)@f eq (A.1@f) + (A.2@f);

true

> (A.1 * A.2)@f eq (A.1@f) * (A.2@f);

true

> (A.2@Star(A))@f eq (A.2@f)@Star(T);

true

87.4.2 Recognition of Arbitrary ∗-Algebras
If A is an arbitrary ∗-algebra, then we constructively recognise A as follows:
(i) Find a decomposition A = J ⊕ T , where J is the Jacobson radical of A and T is a

∗-invariant semisimple complement to J in A;
(ii) Find a decomposition T = I1 ⊕ . . .⊕ It of T into minimal ∗-ideals; and
(iii) For each j ∈ {1, . . . , t} constructively recognise the simple ∗-algebra Ij .

RecogniseStarAlgebra(A)

RecogniseStarAlgebra(A)

Constructively recognise the ∗-algebra A given as a matrix ∗-algebra or a group
algebra.

There are several functions available that permit easy access to structural infor-
mation about a ∗-algebra that has been constructively recognised. (In fact all of
these functions also initiate a constructive recognition of the input ∗-algebra if the
recognition has not already been carried out.) For all of the access functions A can
be either a matrix ∗-algebra or a group algebra.

IsSimpleStarAlgebra(A)

IsSimpleStarAlgebra(A)

Return true if and only if A is a simple ∗-algebra.

2674 ALGEBRAS Part XII

SimpleParameters(A)

SimpleParameters(A)

Given a ∗-algebra A, this function returns the parameters that determine (up to
∗-isomorphism) the minimal ∗-ideals of the semisimple quotient A/J , where J is the
Jacobson radical of A. The parameters are returned in the form of a sequence.

NormGroup(A)

Given a ∗-algebra A, this function returns the group of unitary elements of A,
namely the group consisting of all units in A satisfying the condition x∗ = x−1. The
function is based on methods described in [BW11a, Section 5].

Example H87E7

Our first example illustrates how the ∗-algebra machinery may be used to distinguish between
group algebras over GF(5) for the dihedral and quaternion groups of order 8. Those group algebras
are isomorphic as algebras, but the example shows that they are nonisomorphic as ∗-algebras.

> K := GF(5);

> G1 := SmallGroup(8, 3);

> G2 := SmallGroup(8, 4);

> A1 := GroupAlgebraAsStarAlgebra(K, G1);

> A2 := GroupAlgebraAsStarAlgebra(K, G2);

> J1, T1 := TaftDecomposition(A1);

> J2, T2 := TaftDecomposition(A2);

> Dimension(J1); Dimension(J2);

0

0

Thus (as we know from Maschke’s theorem) both GF(5)[D8] and GF(5)[Q8] are semisimple. We
now recognise them as ∗-algebras and examine their minimal ∗-ideals.

> RecogniseStarAlgebra(A1);

true

> RecogniseStarAlgebra(A2);

true

> SimpleParameters(A1);

[<"orthogonalcircle", 1, 5>, <"orthogonalcircle", 1, 5>,

<"orthogonalcircle", 1, 5>, <"orthogonalcircle", 1, 5>,

<"orthogonalplus", 2, 5>]

> SimpleParameters(A2);

[<"orthogonalcircle", 1, 5>, <"orthogonalcircle", 1, 5>,

<"orthogonalcircle", 1, 5>, <"orthogonalcircle", 1, 5>,

<"symplectic", 2, 5>

]

Both group algebras decompose into four 1-dimensional ∗-ideals, and one 4-dimensional ∗-ideal.
However, the latter has type "orthogonalplus" for GF(5)[D8], but type "symplectic" for
GF(5)[Q8].

Ch. 87 ALGEBRAS WITH INVOLUTION 2675

Example H87E8

Our second example shows how to use ∗-algebra functions to distinguish between two p-groups of
class 2 and order 436. The first group is a Sylow 43-subgroup of GL(3, 432).

> P1 := ClassicalSylow(GL(3, 43^2), 43);

> Forms1 := PGroupToForms(P1);

> A1 := AdjointAlgebra(Forms1);

> RecogniseStarAlgebra(A1);

true

> SimpleParameters(A1);

[<"symplectic", 2, 1849>]

The second group is constructed as a subgroup of GL(3, GF(43)[x]/(x2)).

> R<x> := PolynomialRing(GF(43));

> S, f := quo< R | x^2 >;

> G := GL(3, S);

> Ua := G![1,1,0,0,1,0,0,0,1];

> Wa := G![1,0,0,0,1,1,0,0,1];

> Ub := G![1,x@f,0,0,1,0,0,0,1];

> Wb := G![1,0,0,0,1,x@f,0,0,1];

> P2 := sub< G | [Ua, Wa, Ub, Wb] >;

> Forms2 := PGroupToForms(P2);

> A2 := AdjointAlgebra(Forms2);

> RecogniseStarAlgebra(A2);

true

> SimpleParameters(A2);

[<"symplectic", 2, 43>]

Since A1 and A2 are non-isomorphic ∗-algebras, it follows that P1 and P2 are non-isomorphic
groups.

87.5 Intersections of Classical Groups

The main application of the ∗-algebra machinery is to the study of the group preserving
each form in a system of forms; the so-called isometry group of the system. An essentially
equivalent (but perhaps more familiar) problem is that of computing the intersection of a
set of classical groups defined on a common vector space. The main functions are imple-
mentations of the algorithms presented in [BW11a, Theorem 1.2] and [BW11b, Theorem
1.1].

2676 ALGEBRAS Part XII

IsometryGroup(S : parameters)

Autos SeqEnum Default : [0, .., 0]
DisplayStructure BoolElt Default : false

Given a sequence S containing a system of reflexive forms, this function returns the
group of isometries of the system. In addition to allowing the individual forms to
be degenerate, the function handles degenerate systems.

The field automorphisms associated to the individual forms are specified using
the parameter Autos; the default is that all forms in the system are bilinear over their
common base ring. As well as finding generators for the isometry group, the pro-
cedure determines the structure of this group. The parameter DisplayStructure
may be used to display this structure.

Example H87E9

We compute the isometry group of the system of forms associated to a particular p-group.

> G := ClassicalSylow(Sp (4, 5^2), 5);

> S := PGroupToForms(G);

> Parent(S[1]);

Full Matrix Algebra of degree 6 over GF(5)

> I := IsometryGroup(S : DisplayStructure := true);

G

| GL (1 , 5 ^ 1)

*

| 5 ^ 4 (unipotent radical)

1

> #I;

2500

ClassicalIntersection(S)

Given a sequence S containing a number of classical groups, each one of which
preserves (up to similarity) a unique nondegenerate reflexive form on a common
finite vector space V , this function returns the intersection of the groups. It is not
required that a classical group G in S be the full group of isometries.

Example H87E10

In our final example we intersect two quasisimple classical groups. First we construct a symplectic
group Sp(F1) for a particular skew-symmetric matrix F1.

> K := GF(3);

> M := UpperTriangularMatrix

> (K,[0,2,1,0,1,2,1,1,1,2,0,0,1,2,1,0,1,0,1,2,2]);

> F1 := M - Transpose(M);

Ch. 87 ALGEBRAS WITH INVOLUTION 2677

> G1 := IsometryGroup(F1);

First check that G1 is a group of isometries.

> forall{ g : g in Generators(G1) | g*F1*Transpose(g) eq F1 };

true

Next we construct a quasisimple orthogonal group Ω−(F2) for a particular symmetric matrix F2.

> F2 := SymmetricMatrix

> (K, [1,2,0,1,2,2,1,0,2,2,1,0,0,0,1,2,1,1,0,1,0]);

> C := TransformForm(F2, "orthogonalminus");

> G := OmegaMinus(6, 3);

> G2 := G^(C^-1);

First check that G2 is a group of isometries.

> forall { g : g in Generators(G2) | g*F2*Transpose(g) eq F2 };

true

Finally compute the intersection of G1 and G2 and ask for the order of this intersection group.

> I := ClassicalIntersection([G1, G2]);

> #I;

14

87.6 Bibliography
[Alb61] A. Adrian Albert. Structure of Algebras. American Mathematical Society,

Providence, RI, 1961. Revised printing.
[BW11a] Peter A. Brooksbank and James B. Wilson. Computing isometry groups of

Hermitian maps. Transactions of the American Mathematical Society, 2011. to appear.
[BW11b] Peter A. Brooksbank and James B. Wilson. Intersecting two classical groups.

Preprint, 2011.
[KMRT98] Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre

Tignol. The Book of Involutions. American Mathematical Society, Providence, RI,
1998. Preface by Jacques Tits.

[Taf57] E.J. Taft. Invariant Wedderburn factors. Illinois Journal of Mathematics,
1:565–573, 1957.

88 CLIFFORD ALGEBRAS
88.1 Introduction 2681

88.2 Clifford Algebras and their Ele-
ments 2681

CliffordAlgebra(Q) 2681
CliffordAlgebra(V) 2682

88.2.1 Elements of a Clifford Algebra . . 2682

elt< > 2682
! 2682
BasisProduct(A, i, j) 2682
BasisElement(C, L) 2682

88.3 Bibliography 2682

Chapter 88

CLIFFORD ALGEBRAS

88.1 Introduction
Given a quadratic form Q defined on a vector space V over a field F , the Clifford algebra
of Q is an associative F -algebra C with a vector space homomorphism f : V → C such
that f(v)2 = Q(v) for all v ∈ V . Furthermore, the triple (C, V, f) has the universal
property that if A is any associative algebra with a homomorphism g : V → A such that
g(v)2 = Q(v) for all v ∈ V , then there is a unique algebra homomorphism h : C → A such
that hf = g. It can be shown that f is injective and therefore we may identify V with its
image in C. If the dimension of V is n, then the dimension of C is 2n.

The primary references for quadratic forms and Clifford algebras are [Che97] and
[Art57].

88.2 Clifford Algebras and their Elements
Clifford algebras are represented in Magma as structure constant algebras and so many
of the functions described in Chapter 79 apply to Clifford algebras. The Magma type of
a Clifford algebra is AlgClff and all Clifford algebras have the attributes

space: the quadratic space from which the Clifford is derived;
embedding: the standard embedding of the quadratic space into the Clifford algebra;
mainInvolutionMatrix: the matrix of the antiautomorphism of the Clifford algebra
that reverses the multiplication.

Let C be the Clifford algebra of the quadratic form Q defined on the vector space V . If
e1, e2, . . . , en is a basis for V , a basis for C is the set of all products ei1

1 e
i2
2 · · · vin

n , where
ik is 0 or 1 for all k. The function k 7→ ik is the characteristic function of a subset of
{1, 2, . . . , n}, namely S = {k | ikeq1}. The map S 7→ 1+

∑
k∈S 2k−1 is a bijection between

the subsets of {1, 2, . . . , n} and the integers in the interval [1 . . . 2n].
Thus the elements of C can be represented by a sequence of pairs 〈S, a〉 where S is a

subset of {1, 2, . . . , n} and a is a field element. Multiplication is determined by the fact
that for all u, v ∈ V we have

v2 = Q(v) · 1 and uv + vu = β(u, v) · 1,
where β is the polar form of Q.

CliffordAlgebra(Q)

This function returns a triple C, V , f , where C is the Clifford algebra of the
quadratic form Q, V is the quadratic space of Q, and f is the standard embed-
ding of V into C.

2682 ALGEBRAS Part XII

CliffordAlgebra(V)

If V is a quadratic space with quadratic form Q, this function returns the pair C, f ,
where C is the Clifford algebra of Q and f is the standard embedding of V into C.

88.2.1 Elements of a Clifford Algebra

elt< C | r1, r2, . . . , rm >

Given a Clifford algebra C of dimension m = 2n over a field F , and field elements
r1, r2, . . . , rm ∈ F construct the element r1 ∗C.1 + r2 ∗C.2 + · · ·+ rm ∗C.m of C.

C ! L

Given a Clifford algebra C of dimension m = 2n and a sequence L = [r1, r2, . . . , rm]
of elements of the base ring R of C, construct the element r1 ∗C.1+ r2 ∗C.2+ · · ·+
rm ∗ C.m of C.

BasisProduct(A, i, j)

Return the product of the i-th and j-th basis element of the Clifford algebra C.

BasisElement(C, L)

The basis element C.j of the Clifford algebra C corresponding to the subset L of
{1, 2, . . . , n} where j = 1+

∑
k∈L 2k−1. If e1, e2, . . . , en is the standard basis for the

vector space on which C is based, this corresponds to the product ei1 ∗ ei2 ∗ · · · ∗ eih
,

where L = {i1, i2, . . . , ih} and i1 < i2 < · · · < ih.

88.3 Bibliography
[Art57] E. Artin. Geometric Algebra. Interscience Publishers, New York, 1957.
[Che97] Claude Chevalley. The algebraic theory of spinors and Clifford algebras.

Springer-Verlag, Berlin, 1997. Collected works. Vol. 2, Edited and with a foreword by
Pierre Cartier and Catherine Chevalley, With a postface by J.-P. Bourguignon.

PART XII
REPRESENTATION THEORY

89 MODULES OVER AN ALGEBRA 2685

90 K[G]-MODULES AND GROUP REPRESENTATIONS 2721

91 CHARACTERS OF FINITE GROUPS 2757

92 REPRESENTATIONS OF SYMMETRIC GROUPS 2779

93 MOD P GALOIS REPRESENTATIONS 2787

89 MODULES OVER AN ALGEBRA
89.1 Introduction 2687

89.2 Modules over a Matrix Algebra 2688

89.2.1 Construction of an A-Module . . . 2688

RModule(A) 2688
RModule(Q) 2688
GModule(G, Q) 2689
PermutationModule(G, K) 2689

89.2.2 Accessing Module Information . . 2689

. 2689
CoefficientRing(M) 2689
BaseRing(M) 2689
Generators(M) 2689
Parent(u) 2689
Action(M) 2690
RightAction(M) 2690
MatrixGroup(M) 2690
ActionGenerator(M, i) 2690
NumberOfActionGenerators(M) 2690
Ngens(M) 2690
Group(M) 2690

89.2.3 Standard Constructions 2691

ChangeRing(M, S) 2692
ChangeRing(M, S, f) 2692
DirectSum(M, N) 2692
DirectSum(Q) 2692
^ 2692
89.2.4 Element Construction and

Operations 2692

elt< > 2692
! 2693
Zero(M) 2693
! 2693
Random(M) 2693
ElementToSequence(u) 2693
Eltseq(u) 2693
* 2693
* 2693
+ 2693
- 2693
- 2693
* 2693
* 2693
/ 2694
u[i] 2694
u[i] := x 2694
IsZero(u) 2694
Support(u) 2694

89.2.5 Submodules 2694

sub< > 2694
ImageWithBasis(X, M) 2695
Morphism(M, N) 2695

in 2696
subset 2696
eq 2696
+ 2696
meet 2696

89.2.6 Quotient Modules 2697

quo< > 2697
Morphism(M, N) 2697

89.2.7 Structure of a Module 2698

Meataxe(M) 2698
IsIrreducible(M) 2698
IsAbsolutelyIrreducible(M) 2698
AbsolutelyIrreducibleModule(M) 2698
MinimalField(M) 2699
IsPermutationModule(M) 2699
CompositionSeries(M) 2699
CompositionFactors(M) 2699
Constituents(M) 2700
ConstituentsWithMultiplicities(M) 2700
IsSemisimple(M) 2702
MaximalSubmodules(M) 2702
JacobsonRadical(M) 2702
MinimalSubmodules(M) 2702
MinimalSubmodules(M, F) 2702
MinimalSubmodule(M) 2702
Socle(M) 2702
SocleSeries(M) 2703
SocleFactors(M) 2703

89.2.8 Decomposability and Complements 2704

IsDecomposable(M) 2704
DirectSumDecomposition(M) 2704
IndecomposableSummands(M) 2704
Decomposition(M) 2704
HasComplement(M, S) 2704
IsDirectSummand(M, S) 2704
Complements(M, S) 2704

89.2.9 Lattice of Submodules 2706

SubmoduleLattice(M) 2706
SubmoduleLatticeAbort(M, n) 2706
SetVerbose("SubmoduleLattice", i) 2706
Submodules(M) 2706
2707
! 2707
! 2707
Bottom(L) 2707
Random(L) 2707
Top(L) 2707
! 2708
+ 2708
meet 2708
eq 2708
subset 2708
MaximalSubmodules(e) 2708

2686 REPRESENTATION THEORY Part XIII

MinimalSupermodules(e) 2708
Module(e) 2708
Dimension(e) 2708
JacobsonRadical(e) 2708
Morphism(e) 2708

89.2.10 Homomorphisms 2710

hom< > 2711
! 2711
IsModuleHomomorphism(X) 2711
Hom(M, N) 2711
AHom(M, N) 2711
GHomOverCentralizingField(M, N) 2711
EndomorphismAlgebra(M) 2714
EndomorphismRing(M) 2714
CentreOfEndomorphismRing(M) 2714
AutomorphismGroup(M) 2714
IsIsomorphic(M, N) 2714

89.3 Modules over a General Algebra2716

89.3.1 Introduction 2716

89.3.2 Construction of Algebra Modules . 2716

Module(A, m) 2716

89.3.3 The Action of an Algebra Element . 2717

^ 2717
^ 2717
ActionMatrix(M, a) 2717

89.3.4 Related Structures of an Algebra
Module 2717

Algebra(M) 2717
CoefficientRing(M) 2717
Basis(M) 2717

89.3.5 Properties of an Algebra Module . 2718

IsLeftModule(M) 2718
IsRightModule(M) 2718
Dimension(M) 2718

89.3.6 Creation of Algebra Modules from
other Algebra Modules 2718

DirectSum(Q) 2718
SubalgebraModule(B, M) 2718
ModuleWithBasis(Q) 2718
sub< > 2719
sub< > 2719
quo< > 2719
quo< > 2719

Chapter 89

MODULES OVER AN ALGEBRA

89.1 Introduction
Let A be an algebra over a field K and let M be a vector space over K. We say that M is
a (right) A-module if for each a ∈ A and m ∈M , a product ma ∈M is defined such that

(m+ n)a = ma+ na,m(a+ b) = ma+mb,

m(ab) = (ma)b,m1 = m,

m(ka) = (ma)k = (mk)a,

for all a, b ∈ A,m, n ∈M,k ∈ K.
Recall that a representation of an algebra A over a field K is an algebra homomorphism

ofA into HomK(M,M), for someK-moduleM . TakingM to be an A-module, and defining
a mapping ρ : M →M by

ρ(m) := ma (a ∈ A,m ∈M)

then it is an easy exercise to show that ρ is a representation of A. A matrix representation
of degree n of the algebra A is an algebra homomorphism of A into Mn(K), the complete
matrix algebra of degree n over K. Suppose M has finite K-dimension n and choose a
basis for M . If, for each a ∈ A, we associate the matrix corresponding to the action of a
on the basis elements, we obtain a matrix representation of A. Thus, each A-module of
finite K-dimension affords a matrix representation of the algebra A. An important special
case occurs when A = K[G], the group algebra of a group G. In this case the theory of
A-modules coincides with the theory of group representations.

Throughout this chapter we shall use the term A-module when referring to modules as
defined above. For Magma V2.19, A-modules are restricted to one of the following cases:

(i) A matrix algebra A defined over a field.

(ii) A matrix algebra A defined over a field corresponding to a representation of a group
G of finite degree. In this case the user is (implicitly) computing with the group
algebra K[G].

(iii) A matrix algebra A defined over an Euclidean Domain R. However, as currently
the action of A may be used only in the construction of submodules, discussion will
be limited to the case in which the coefficient ring is a field.

Note that in all of the above cases A has finite K-dimension.

Magma provides a range of facilities for defining and computing with A-modules. In
particular, extensive machinery is provided for creating K[G]-modules which is described
in the following chapter. It should be noted however, that many advanced functions only
apply when A is an algebra over a finite field. Since the R-module of n-tuples, R(n),
underlies an A-module, the operations for R(n) are also applicable.

2688 REPRESENTATION THEORY Part XIII

89.2 Modules over a Matrix Algebra

This section describes function dealing with modules over a matrix algebra, for which there
are the most number of operations available.

89.2.1 Construction of an A-Module

89.2.1.1 General Constructions

RModule(A)

Given a subalgebra A of Mn(K), create the right A-module M with underlying
vector space K(n), where the action of a ∈ A is given by m ∗ a, m ∈M .

RModule(Q)

Given the subalgebra A of Mn(K) generated by the terms of the sequence Q, create
the right A-module M with underlying vector space K(n), where the action of a ∈ A
is given by m ∗ a, m ∈M .

Example H89E1

We construct the 6-dimensional module over F2 with an action given by the matrices




1 0 0 1 0 1
1 0 0 1 0 1
0 1 1 1 1 0
0 0 0 1 1 0
0 0 0 1 0 1
0 1 0 1 0 0







1 0 0 1 0 1
0 1 0 0 1 1
0 1 1 1 1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




> A := MatrixAlgebra<GF(2), 6 |

> [1,0,0,1,0,1,

> 0,1,0,0,1,1,

> 0,1,1,1,1,0,

> 0,0,0,1,1,0,

> 0,0,0,1,0,1,

> 0,1,0,1,0,0],

> [0,1,1,0,1,0,

> 0,0,1,1,1,1,

> 1,0,0,1,0,1,

> 0,0,0,1,0,0,

> 0,0,0,0,1,0,

> 0,0,0,0,0,1] >;

> M := RModule(A);

> M;

RModule M of dimension 6 over GF(2)

Ch. 89 MODULES OVER AN ALGEBRA 2689

89.2.1.2 Constructions for K[G]-Modules
Although K[G]-modules are discussed in the next chapter, it is convenient to use them as
examples in this chapter and so we give two basic constructions here. The reader is referred
to the K[G]-module chapter for many other techniques for constructing these modules.

GModule(G, Q)

Check BoolElt Default : true

Let G be a group defined on r generators and let Q be a sequence of r invertible
elements of Mn(K) or GL(n,K). It is assumed that the mapping from G to Q
defined by φ(G.i) 7→ Q[i], for i = 1, . . . , r, is a group homomorphism from G into
GL(n,K). The function constructs a K[G]-module M of dimension n, where the
action of the generators of G is given by the terms of Q.

PermutationModule(G, K)

Given a permutation group G and a field K, create the natural permutation module
for G over K.

89.2.2 Accessing Module Information
This section deals with the underlying vector space of a module M , which is a module over
the algebra A.

89.2.2.1 The Underlying Vector Space

M . i

Given an A-module M and a positive integer i, return the i-th generator of M .

CoefficientRing(M)

BaseRing(M)

Given an A-module M , where A is an algebra over the field K, return K.

Generators(M)

The generators for the A-module M , returned as a set.

Parent(u)

Given an element u belonging to the A-module M , return M .

2690 REPRESENTATION THEORY Part XIII

89.2.2.2 The Algebra

Action(M)

RightAction(M)

Given an A-module M , return the matrix algebra A giving the action of A on M .

MatrixGroup(M)

Check BoolElt Default : true

Given an R[G]-module M , return the matrix group whose generators are the (in-
vertible) generators of the acting algebra of M .

ActionGenerator(M, i)

The i-th generator of the (right) acting matrix algebra for the module M .

NumberOfActionGenerators(M)

Ngens(M)

The number of action generators (the number of generators of the algebra) for the
A-module M .

Group(M)

Given an R[G]-module M , return the group G.

Example H89E2

We illustrate the use of several of these access functions by applying them to the 6-dimensional
representation of a matrix algebra defined over F2.

> F2 := GF(2);

> F := MatrixAlgebra(F2, 6);

> A := sub< F |

> [1,0,0,1,0,1,

> 0,1,0,0,1,1,

> 0,1,1,1,1,0,

> 0,0,0,1,1,0,

> 0,0,0,1,0,1,

> 0,1,0,1,0,0],

> [0,1,1,0,1,0,

> 0,0,1,1,1,1,

> 1,0,0,1,0,1,

> 0,0,0,1,0,0,

> 0,0,0,0,1,0,

> 0,0,0,0,0,1] >;

> T := RModule(F2, 6);

> M := RModule(T, A);

> Dimension(M);

6

Ch. 89 MODULES OVER AN ALGEBRA 2691

> BaseRing(M);

Finite field of size 2

We set R to be the name of the matrix ring associated with M . Using the generator subscript
notation, we can access the matrices giving the (right) action of A.

> R := RightAction(M);

> R.1;

[1 0 0 1 0 1]

[0 1 0 0 1 1]

[0 1 1 1 1 0]

[0 0 0 1 1 0]

[0 0 0 1 0 1]

[0 1 0 1 0 0]

> R.2;

[0 1 1 0 1 0]

[0 0 1 1 1 1]

[1 0 0 1 0 1]

[0 0 0 1 0 0]

[0 0 0 0 1 0]

[0 0 0 0 0 1]

We display full details of the module.

> M: Maximal;

Module M of dimension 6 with base ring GF(2)

Generators of acting algebra:

[1 0 0 1 0 1]

[0 1 0 0 1 1]

[0 1 1 1 1 0]

[0 0 0 1 1 0]

[0 0 0 1 0 1]

[0 1 0 1 0 0]

[0 1 1 0 1 0]

[0 0 1 1 1 1]

[1 0 0 1 0 1]

[0 0 0 1 0 0]

[0 0 0 0 1 0]

[0 0 0 0 0 1]

89.2.3 Standard Constructions
Given one or more existing modules, various standard constructions are available to con-
struct new modules.

2692 REPRESENTATION THEORY Part XIII

89.2.3.1 Changing the Coefficient Ring

ChangeRing(M, S)

Given an A-module M with base ring R, together with a ring S, such that there is
a natural homomorphism from R to S, construct the module N with base ring S
where N is obtained from M by coercing the components of the vectors of M into
N . The corresponding homomorphism from M to N is returned as a second value.

ChangeRing(M, S, f)

Given a module M with base ring R, together with a ring S, and a homomor-
phism f : R → S, construct the module N with base ring S, where N is obtained
from M by applying f to the components of the vectors of M . The corresponding
homomorphism from M to N is returned as a second value.

89.2.3.2 Direct Sum

DirectSum(M, N)

Given R-modules M and N , construct the direct sum D of M and N as an R-
module. The embedding maps from M into D and from N into D respectively
and the projection maps from D onto M and from D onto N respectively are also
returned.

DirectSum(Q)

Given a sequence Q of R-modules, construct the direct sum D of these modules.
The embedding maps from each of the elements of Q into D and the projection
maps from D onto each of the elements of Q are also returned.

89.2.3.3 Changing Basis

M ^ T

Given a K[G]-module M of dimension n over the field K, and a nonsingular n× n
matrix T over K, construct the K[G]-module N which corresponds to taking the
rows of T as a basis for M .

89.2.4 Element Construction and Operations

89.2.4.1 Construction of Module Elements

elt< M | a1, ..., an >

Given a module M with underlying vector space K(n), and elements a1, . . . , an

belonging to K, construct the element m = (a1, . . . , an) of M . Note that if m is not
an element of M , an error will result.

Ch. 89 MODULES OVER AN ALGEBRA 2693

M ! Q

Given the module M with underlying vector space Kn, and a sequence Q =
[a1, . . . , an] with universe K, construct the element m = (a1, . . . , an) of M . Note
that if m is not an element of M , an error will result.

Zero(M)

M ! 0

The zero element for the A-module M .

Random(M)

Given a module M defined over a finite ring or field, return a random vector.

89.2.4.2 Deconstruction of Module Elements

ElementToSequence(u)

Eltseq(u)

Given an element u belonging to the A-module M , return u in the form of a sequence
Q of elements of K.

89.2.4.3 Action of the Algebra on the Module

u * a

Given a vector u belonging to an A-module M , and an element a ∈ A return the
image of u under the action of a.

u * g

Given a vector u belonging to an K[G]-module M , and an element g belonging to
the group G, return the image of u under the action of K[G] on the module M .

89.2.4.4 Arithmetic with Module Elements

u + v

Sum of the elements u and v, where u and v lie in the same A-module M .

-u

Additive inverse of the element u.

u - v

Difference of the elements u and v, where u and v lie in the same A-module M .

k * u

Given an element u in an A-module M , where A is a K-algebra and an element
k ∈ K, return the scalar product k ∗ u as an element of M .

u * k

Given an element u in an A-module M , where A is a K-algebra and an element
k ∈ K, return the scalar product u ∗ k as an element of M .

2694 REPRESENTATION THEORY Part XIII

u / k

Given an element u in an A-module M , where A is a K-algebra and a non-zero
element k ∈ K, return the scalar product u ∗ (1/k) as an element of M .

89.2.4.5 Indexing

u[i]

Given an element u belonging to a submoduleM of the R-module R(n) and a positive
integer i, 1 ≤ i ≤ n, return the i-th component of u (as an element of the ring R).

u[i] := x

Given an element u belonging to a submodule M of the R-module T = R(n), a
positive integer i, 1 ≤ i ≤ n, and an element x of the ring R, redefine the i-th
component of u to be x. The parent of u is changed to T (since the modified
element u need not lie in M).

89.2.4.6 Properties of Module Elements

IsZero(u)

Returns true if the element u of the A-module M is the zero element.

Support(u)

A set of integers giving the positions of the non-zero components of the vector u.

89.2.5 Submodules

89.2.5.1 Construction

sub< M | L >

Given an A-module M , construct the submodule N generated by the elements of
M specified by the list L. Each term Li of the list L must be an expression defining
an object of one of the following types:

(a)A sequence of n elements of R defining an element of M ;

(b)A set or sequence whose terms are elements of M ;

(c) A submodule of M ;

(d)A set or sequence whose terms are submodules of M .

The generators stored forN consist of the elements specified by terms Li together
with the stored generators for submodules specified by terms of Li. Repetitions of
an element and occurrences of the zero element are removed (unless N is trivial).

The constructor returns the submodule N as an A-module together with the
inclusion homomorphism f : N →M .

Ch. 89 MODULES OVER AN ALGEBRA 2695

ImageWithBasis(X, M)

Check BoolElt Default : true

Given a basis matrixX for a A-submodule of theA-moduleM , return the submodule
N of M such that the morphism of N into M is X.

Morphism(M, N)

If the A-moduleM was created as a submodule of the moduleN , return the inclusion
homomorphism φ : M → N as an element of HomA(M,N). Thus, φ gives the
correspondence between elements of M (represented with respect to the standard
basis of M) and elements for N .

Example H89E3

We construct a submodule of the permutation module for L(3, 4) in its representation of degree
21.

> G := PSL(3, 4);

> M := PermutationModule(G, GF(2));

> x := M![0,0,0,1,0,1,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1];

> N := sub< M | x >;

> N:Maximal;

GModule N of dimension 9 over GF(2)

Generators of acting algebra:

[1 0 0 0 1 0 1 0 1]

[0 1 0 1 1 1 0 0 0]

[0 0 1 1 1 1 1 0 1]

[0 0 0 0 0 1 1 0 0]

[0 0 0 1 0 0 1 0 0]

[0 0 0 0 1 0 1 0 0]

[0 0 0 1 1 1 0 0 0]

[0 0 0 0 1 1 0 0 1]

[0 0 0 1 0 1 0 1 1]

[0 0 0 0 0 1 0 1 1]

[1 0 0 0 0 0 0 0 1]

[0 1 1 0 0 1 0 0 1]

[0 0 0 0 0 1 0 0 0]

[0 0 1 0 0 1 0 0 0]

[0 0 1 0 1 1 0 0 1]

[0 0 1 1 0 0 0 0 1]

[0 0 1 0 0 0 0 0 1]

[0 0 0 0 0 0 1 0 0]

Note that as a F2-module V has dimension 1, while as a K[G]-module it has dimension 9. The
submodule N is defined on a reduced basis so we use Morphism to see N embedded in M .

> phi := Morphism(N, M);

2696 REPRESENTATION THEORY Part XIII

> [phi(x) : x in Basis(N)];

[

M: (1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1),

M: (0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1),

M: (0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 0),

M: (0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1),

M: (0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0 0 0 0 1 1),

M: (0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1 0 1 0 0),

M: (0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1 0 1 0),

M: (0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1 0 1),

M: (0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1)

]

89.2.5.2 Membership and Equality
The operators described below refer to the underlying vector space.

u in M

Returns true if the element u lies in the A-module M .

N subset M

Returns true if the A-module N is contained in the A-module M .

N eq M

Returns true if the A-modules N and M are equal, where N and M are contained
in a common A-module.

89.2.5.3 Operations on Submodules

M + N

Sum of the submodules M and N , where M and N belong to a a common A-module.

M meet N

Intersection of the submodules M and N , where M and N belong to a common
A-module.

Ch. 89 MODULES OVER AN ALGEBRA 2697

89.2.6 Quotient Modules

quo< M | L >

Given an A-module M , construct the quotient module P = M/N as an A-module,
where N is the submodule generated by the elements of M specified by the list L.
Each term Li of the list L must be an expression defining an object of one of the
following types:

(a)A sequence of n elements of R defining an element of M ;

(b)A set or sequence whose terms are elements of M ;

(c) A submodule of M ;

(d)A set or sequence whose terms are submodules of M .

The generators constructed for N consist of the elements specified by terms Li

together with the stored generators for submodules specified by terms of Li. The
constructor returns the quotient module P as an A-module together with the natural
homomorphism f : M → P .

Morphism(M, N)

If the A-module N was created as a quotient module of the module M , return the
natural homomorphism φ : M → N as an element of HomR(M,N). Thus φ gives
the correspondence between elements of M and elements of N (represented with
respect to the standard basis for N).

Example H89E4

We construct a quotient module of the permutation module for L(3, 4) considered above.

> G := PSL(3, 4);

> M := PermutationModule(G, GF(2));

> x := M![0,0,0,1,0,1,0,0,0,1,1,0,0,0,1,0,1,1,0,0,1];

> N := sub< M | x >;

> N;

GModule N of dimension 9 over GF(2)

> Q, phi := quo< M | x >;

> Q;

GModule Q of dimension 12 over GF(2)

We locate the kernel of the epimorphism φ and check that it is the same as N .

> K := Kernel(phi);

GModule Ker of dimension 9 over GF(2)

> K eq N;

true

Given an element x in the codomain Q of the epimorphism φ, the value returned as the preimage
of x is a representative element of the coset of the kernel that is the actual preimage of x. Since

2698 REPRESENTATION THEORY Part XIII

we are working in a module over a finite field, we can explicitly construct the full preimage PreIm

of x.

> x := Q![0,0,0,1,1,0,0,0,0,1,0,0];

> PreIm := { x@@phi + k : k in K };

> #PreIm;

512

89.2.7 Structure of a Module
Most of the functions described in this section assume that the base ring is a finite field.

89.2.7.1 Reducibility

Meataxe(M)

Given an A-module M with base ring a finite field attempt to find a proper sub-
module N of M or else prove that M is irreducible. If a splitting of M is found,
three values are returned:
(a)An A-module N corresponding to the induced action of A on S;
(b)An A-module P corresponding to the induced action of A on the quotient space

M/N ;
(c) Let ρ, ν and π denote the representations of A afforded by modules M , N and P ,

respectively. The third value returned is an invertible matrix T which conjugates
the matrices of ρ(A) into reduced form. Specifically, if a ∈ A, then

T ∗ ρ(a) ∗ T−1 =
(
ν(a) 0
∗ π(a)

)

If M is proved to be irreducible, the function simply returns M . The fact that
M is irreducible is recorded as part of the data structure for M .

IsIrreducible(M)

Returns true if and only if theA-moduleM is irreducible. IfM is reducible, a proper
submodule S of M together with the corresponding quotient module Q = M/S, are
also returned.

IsAbsolutelyIrreducible(M)

Returns true if and only if the A-module M is absolutely irreducible. Return also
a matrix algebra generator for the endomorphism algebra E of M (a field), as well
as the dimension of E.

AbsolutelyIrreducibleModule(M)

Let A be an algebra over a field K. Given an irreducible A-module M that is not
absolutely irreducible over K, return an irreducible module N that is a constituent
of the module M considered as a module over the splitting field for M . Note that
the module N , while not unique, is absolutely irreducible.

Ch. 89 MODULES OVER AN ALGEBRA 2699

Example H89E5

Consider the group O5(3) given as a permutation group of degree 45. We construct the permuta-
tion module, and we apply the Meataxe manually to find an irreducible constituent.

> SetSeed(3);

> O53 := PermutationGroup<45 |

> (2,3)(4,6)(7,9)(8,11)(12,16)(13,14)(15,19)(18,22)(20,25)(21,26)(27,33)

> (28,35) (29,34)(31,38)(36,43)(39,41),

> (1,2,4,7,10,14,16,3,5)(6,8,12,17,21,27,34,41,44)(9,13,18,23,29,37,33,40,43)

> (11,15,20)(19,24,30,25,31,22,28,36,38)(26,32,39)(35,42,45)>;

>

> P := PermutationModule(O53, GF(2));

> A, B := Meataxe(P); A; B;

GModule A of dimension 20 over GF(2)

GModule B of dimension 25 over GF(2)

> A, B := Meataxe(A); A; B;

GModule A of dimension 14 over GF(2)

GModule B of dimension 6 over GF(2)

> IsIrreducible(A);

true

MinimalField(M)

Let A be an algebra over a finite field K. Given an A-module M over K, return the
smallest subfield of K, over which M can be realised.

IsPermutationModule(M)

Returns true if and only if the generators of the matrix algebra A are permutation
matrices, for a given A-module M .

89.2.7.2 Composition Series

CompositionSeries(M)

Given an A-module M , construct a composition series by repeatedly applying the
meataxe. The function returns three values:
(a)The composition series as a sequence of A-modules;
(b)The composition factors as a sequence of A-modules in the order determined by

the composition series (a);
(c) A transformation matrix t such that for each a ∈ A, t∗a∗ t−1 is in reduced form.

CompositionFactors(M)

Given an A-module M , construct the composition factors by repeatedly applying
the meataxe. The composition factors are returned in the form of a sequence of R-
modules in the order determined by a composition series for M . If M is irreducible,
the function returns a sequence containing M alone.

2700 REPRESENTATION THEORY Part XIII

Constituents(M)

Given an A-module M , construct the constituents C of M , i.e., a sequence of rep-
resentatives for the isomorphism classes of composition factors of M . A sequence I
of indices is also returned, so that that i-th element of C is the I[i]-th composition
factor of M .

ConstituentsWithMultiplicities(M)

Given an A-module M , return the constituents of M , together with their multiplic-
ities. A sequence I of indices is also returned, so that that i-th element of C is the
I[i]-th composition factor of M .

Example H89E6

We continue with the O5(3) example from the previous section. We notice that the constituent
of dimension of 8 is not absolutely irreducible, so we lift it to over an extension field.

> O53 := PermutationGroup<45 |

> (2,3)(4,6)(7,9)(8,11)(12,16)(13,14)(15,19)(18,22)(20,25)(21,26)(27,33)

> (28,35) (29,34)(31,38)(36,43)(39,41),

> (1,2,4,7,10,14,16,3,5)(6,8,12,17,21,27,34,41,44)(9,13,18,23,29,37,33,40,43)

> (11,15,20)(19,24,30,25,31,22,28,36,38)(26,32,39)(35,42,45)>;

>

> P := PermutationModule(O53, GaloisField(2));

> Constituents(P);

[

GModule of dimension 1 over GF(2),

GModule of dimension 6 over GF(2),

GModule of dimension 8 over GF(2),

GModule of dimension 14 over GF(2)

]

> ConstituentsWithMultiplicities(P);

[

<GModule of dimension 1 over GF(2), 3>,

<GModule of dimension 6 over GF(2), 1>,

<GModule of dimension 8 over GF(2), 1>,

<GModule of dimension 14 over GF(2), 2>

]

> S, F := CompositionSeries(P);

> S, F;

[

GModule of dimension 14 over GF(2),

GModule of dimension 20 over GF(2),

GModule of dimension 21 over GF(2),

GModule of dimension 29 over GF(2),

GModule of dimension 30 over GF(2),

GModule of dimension 31 over GF(2),

GModule P of dimension 45 over GF(2)

]

Ch. 89 MODULES OVER AN ALGEBRA 2701

[

GModule of dimension 14 over GF(2),

GModule of dimension 6 over GF(2),

GModule of dimension 1 over GF(2),

GModule of dimension 8 over GF(2),

GModule of dimension 1 over GF(2),

GModule of dimension 1 over GF(2),

GModule of dimension 14 over GF(2)

]

> IndecomposableSummands(P);

[

GModule of dimension 1 over GF(2),

GModule of dimension 44 over GF(2)

]

> C := Constituents(P);

> C;

[

GModule of dimension 1 over GF(2),

GModule of dimension 6 over GF(2),

GModule of dimension 8 over GF(2),

GModule of dimension 14 over GF(2)

]

> [IsAbsolutelyIrreducible(M): M in C];

[true, true, false, true]

> DimensionOfEndomorphismRing(C[3]);

2

> L := GF(2^2);

> E := ChangeRing(C[3], L);

> E;

GModule E of dimension 8 over GF(2^2)

> CE := CompositionFactors(E);

> CE;

[

GModule of dimension 4 over GF(2^2),

GModule of dimension 4 over GF(2^2)

]

> IsAbsolutelyIrreducible(CE[1]);

true

> IsIsomorphic(CE[1], CE[2]);

false

2702 REPRESENTATION THEORY Part XIII

89.2.7.3 Socle Series

IsSemisimple(M)

Given an A-module M , which is a K[G]-module (ModGrp) for a field K, return
whether M is semisimple.

If M is a semisimple module defined over a matrix algebra, the function returns
as second return value a list of the ranks of the primitive idempotents of the algebra.
This is also a list of the multiplicities of the simple modules of the algebra as
composition factors in a composition series for the module.

MaximalSubmodules(M)

Given an A-module M , return a sequence containing the maximal submodules of
M .

Limit RngIntElt Default : 0

If a limit L is provided, only up L submodules are calculated, and the second return
value indicates whether all of the submodules are returned.

JacobsonRadical(M)

The Jacobson radical of the A-module M .

MinimalSubmodules(M)

Given an A-module M , return a sequence containing the minimal submodules of
M .

Limit RngIntElt Default : 0

If a limit L is provided, only up L submodules are calculated, and the second return
value indicates whether all of the submodules are returned.

MinimalSubmodules(M, F)

Given an A-module M and an irreducible module F , return a sequence containing
those minimal submodules of M , each of which is isomorphic to F .

Limit RngIntElt Default : 0

If a limit L is provided, only up L submodules are calculated, and the second return
value indicates whether all of the submodules are returned.

MinimalSubmodule(M)

Given an A-module M , return a single minimal (or irreducible) submodule of M ; if
M is itself irreducible, M is returned.

Socle(M)

Given a A-module M , return its socle, i.e. the sum of the minimal submodules of
M .

Ch. 89 MODULES OVER AN ALGEBRA 2703

SocleSeries(M)

A socle series S for the A-module M , together with the socle factors corresponding
to the terms of S and a matrix T giving the transformation of M into (semi-simple)
reduced form. The socle series, as returned, does not include the trivial module but
does include M .

SocleFactors(M)

The factors corresponding to the terms of a socle series for the A-module M . The
factors are returned in the form of a sequence of A-modules in the order deter-
mined by a socle series for M . If M is irreducible, the function returns a sequence
containing M alone.

Example H89E7

We continue with the O5(3) example from the previous section.

> O53 := PermutationGroup<45 |

> (2,3)(4,6)(7,9)(8,11)(12,16)(13,14)(15,19)(18,22)(20,25)(21,26)(27,33)

> (28,35) (29,34)(31,38)(36,43)(39,41),

> (1,2,4,7,10,14,16,3,5)(6,8,12,17,21,27,34,41,44)(9,13,18,23,29,37,33,40,43)

> (11,15,20)(19,24,30,25,31,22,28,36,38)(26,32,39)(35,42,45)>;

>

> P := PermutationModule(O53, FiniteField(2));

> MaximalSubmodules(P);

[

GModule of dimension 31 over GF(2),

GModule of dimension 44 over GF(2)

]

> JacobsonRadical(P);

GModule of dimension 30 over GF(2)

> MinimalSubmodules(P);

[

GModule of dimension 1 over GF(2),

GModule of dimension 14 over GF(2)

]

> Soc := Socle(P);

> Soc;

GModule Soc of dimension 15 over GF(2)

> SocleSeries(P);

[

GModule of dimension 15 over GF(2),

GModule of dimension 22 over GF(2),

GModule of dimension 30 over GF(2),

GModule of dimension 31 over GF(2),

GModule P of dimension 45 over GF(2)

]

> SocleFactors(P);

[

2704 REPRESENTATION THEORY Part XIII

GModule of dimension 15 over GF(2),

GModule of dimension 7 over GF(2),

GModule of dimension 8 over GF(2),

GModule of dimension 1 over GF(2),

GModule of dimension 14 over GF(2)

]

89.2.8 Decomposability and Complements
The functions in this section currently apply only in the case in which A is an algebra over
a finite field.

IsDecomposable(M)

Given an A-module M , return true iff M is decomposable. If M is decomposable
and defined over a finite field, the function also returns proper submodules S and
T of M such that M = S ⊕ T .

DirectSumDecomposition(M)

IndecomposableSummands(M)

Decomposition(M)

Given an A-module M , return a sequence Q of indecomposable summands of M .
Each element of Q is an indecomposable submodule of M and M is equal to the
(direct) sum of the terms of Q. If M is indecomposable, the sequence Q consists of
M alone.

HasComplement(M, S)

IsDirectSummand(M, S)

Given an A-module M and a submodule S of M , determine whether S has a A-
invariant complement in M . If this is the case, the value true is returned together
with a submodule T of M such that M = S ⊕ T ; otherwise the value false is
returned.

Complements(M, S)

Given an A-module M and a submodule S of M , return all A-invariant complements
of S in M .

Ch. 89 MODULES OVER AN ALGEBRA 2705

Example H89E8

> A := MatrixAlgebra<GF(2), 6 |

> [1,0,0,1,0,1,

> 0,1,0,0,1,1,

> 0,1,1,1,1,0,

> 0,0,0,1,1,0,

> 0,0,0,1,0,1,

> 0,1,0,1,0,0],

> [0,1,1,0,1,0,

> 0,0,1,1,1,1,

> 1,0,0,1,0,1,

> 0,0,0,1,0,0,

> 0,0,0,0,1,0,

> 0,0,0,0,0,1] >;

> M := RModule(RSpace(GF(2), 6), A);

> M;

RModule M of dimension 6 over GF(2)

> IsDecomposable(M);

false

> MM := DirectSum(M, M);

> MM;

RModule MM of dimension 12 over GF(2)

> l, S, T := IsDecomposable(MM);

> l;

true;

> S;

RModule S of dimension 6 over GF(2)

> HasComplement(MM, S);

true

> Complements(MM, S);

[

RModule of dimension 6 over GF(2),

RModule of dimension 6 over GF(2)

]

> IndecomposableSummands(MM);

[

RModule of dimension 6 over GF(2),

RModule of dimension 6 over GF(2)

]

> Q := IndecomposableSummands(MM);

> Q;

[

RModule of dimension 6 over GF(2),

RModule of dimension 6 over GF(2)

]

> Q[1] meet Q[2];

RModule of dimension 0 over GF(2)

2706 REPRESENTATION THEORY Part XIII

> Q[1] + Q[2];

RModule MM of dimension 12 over GF(2)

89.2.9 Lattice of Submodules
Let M be an A-module. Magma can construct the lattice L of all submodules of M if
this is not too large. Various properties of the lattice L may then be examined. The
elements of L are called submodule-lattice elements and are numbered from 1 to n where
n is the cardinality of L. Once the lattice has been constructed, the result of various
lattice operations, such as meet and intersection, are available without the need for any
module-theoretic calculation. Certain information about M and its submodules may then
be obtained by analyzing L. Given an element of L, one can easily create the submodule
N of M corresponding to it and one can also create the element of L corresponding to any
submodule of M .

The functions is this section currently apply only in the case in which A is an algebra
over a finite field.

89.2.9.1 Creating Lattices

SubmoduleLattice(M)

Limit RngIntElt Default : 0

CodimensionLimit RngIntElt Default : −1

Given an A-module M , construct the lattice L of submodules of M . If a limit
n is provided, at most n submodules are calculated, and the second return value
indicates whether the returned lattice L is the full lattice of submodules of M .

SubmoduleLatticeAbort(M, n)

Given an A-moduleM and a positive integer n, construct the lattice L of submodules
of M , provided that the number of submodule does not exceed n. In this case the
value true and the lattice L are returned. If M has more than n submodules, the
function aborts and returns the value false.

SetVerbose("SubmoduleLattice", i)

Control verbose printing for the submodule lattice algorithm. The level i can be
2 for maximal printing or 1 for moderate printing. The algorithm works down a
composition series of the module and a summary is printed for each level.

Submodules(M)

CodimensionLimit RngIntElt Default : Dimension(M)

Given an A-module M , return a sequence containing all submodules of M sorted
by dimension.

Ch. 89 MODULES OVER AN ALGEBRA 2707

Example H89E9

We create the lattice of submodules for the A-module F3[Z6] with level 1 verbose printing turned
on.

> M := PermutationModule(CyclicGroup(6), GF(3));

> SetVerbose("SubmoduleLattice", 1);

> L := SubmoduleLattice(M);

Submodule Lattice; Dimension: 6, Composition length: 6

Starting level 4; Current number of modules: 2

Starting level 3; Current number of modules: 3

Starting level 2; Current number of modules: 6

Starting level 1; Current number of modules: 9

Starting level 0; Current number of modules: 12

Change basis time: 0.010

Jacobson radical time: 0.060

Complement time: 0.070

Total time: 0.250

> #L;

16

89.2.9.2 Operations on Lattices
In the following, L is the lattice of submodules for a module M .

#L

The cardinality of L, i.e. the number of submodules of M .

L ! i

Create the i-th element of the lattice L. The number i is insignificant (i.e. the
elements of L are not numbered in any special way), but this allows one to uniquely
identify each element of the lattice L.

L ! S

Create the element of the lattice L corresponding to the submodule S of M .

Bottom(L)

Create the bottom of the lattice L, i.e. the element of L corresponding to the zero-
submodule ofM . If the lattice was created with a limit on the number of submodules
and the lattice is partial, the bottom of the lattice may not be the zero submodule.

Random(L)

Create a random element of L.

Top(L)

Create the top of the lattice L, i.e. the element of L corresponding to M .

2708 REPRESENTATION THEORY Part XIII

89.2.9.3 Operations on Lattice Elements
In the following, L is the lattice of submodules for a moduleM . Elements of L are identified
with the integers [1..#L] but not in any particular order.

IntegerRing() ! e

The integer corresponding to lattice element e.

e + f

The sum of lattice elements e and f , i.e. the lattice element corresponding to the
sum of the modules corresponding to e and f .

e meet f

The intersection of lattice elements e and f .

e eq f

Returns true if and only if lattice elements e and f are equal.

e subset f

Returns true if and only if e is under f in the lattice L, i.e. the submodule corre-
sponding to e is a submodule of the submodule corresponding to f .

MaximalSubmodules(e)

The maximal submodules of e, returned as a set of lattice elements.

MinimalSupermodules(e)

The minimal supermodules of e, returned as a set of lattice elements.

Module(e)

The submodule of M corresponding to the element e of the lattice L.

89.2.9.4 Properties of Lattice Elements

Dimension(e)

The dimension of the submodule of M corresponding to e.

JacobsonRadical(e)

The Jacobson radical of e, i.e. the lattice element corresponding to the Jacobson
radical of the submodule corresponding to e.

Morphism(e)

The morphism from the module corresponding to e to M .

Ch. 89 MODULES OVER AN ALGEBRA 2709

Example H89E10

We create the lattice of submodules for the A-module F3[Z6].

> SetSeed(1);

> M := PermutationModule(CyclicGroup(6), GF(3));

> L := SubmoduleLattice(M);

> #L;

16

> T := Top(L);

> B := Bottom(L);

> T;

16

> B;

1

> // Check that element of L corresponding to M is T

> L ! M;

1

> (L ! M) eq T;

true

> // Check that module corresponding to B is zero-submodule of M

> Module(B);

GModule of dimension 0 with base ring GF(3)

We next find the minimal supermodules (immediate parents) of B in L and then determine the
actual A-submodules to which they correspond.

> S := MinimalSupermodules(B);

> S;

{ 2, 3 }

> Module(L ! 2);

GModule of dimension 1 with base ring GF(3)

> Module(L ! 3);

GModule of dimension 1 with base ring GF(3)

> Dimension(L ! 2);

1

> Morphism(L ! 2);

[1 1 1 1 1 1]

> Morphism(L ! 3);

[1 2 1 2 1 2]

> // Set A to the sum of these elements

> A := L!2 + L!3;

> A;

5;

> // Note that A has dimension 2 and its morphism is the sum of the previous

> Dimension(A);

2

> Morphism(A);

[1 0 1 0 1 0]

[0 1 0 1 0 1]

2710 REPRESENTATION THEORY Part XIII

> MaximalSubmodules(A);

{ 2, 3}

> S!2 subset A;

true

We now find the maximal submodules of L, and examine one, S, in detail.

> MaximalSubmodules(T);

{ 14, 15 }

> A := L ! 14;

> Dimension(A);

5

> Morphism(A);

[1 0 0 0 0 1]

[0 1 0 0 0 2]

[0 0 1 0 0 1]

[0 0 0 1 0 2]

[0 0 0 0 1 1]

> S := Module(A);

> S;

GModule S of dimension 5 with base ring GF(3)

Finally, we compute the Jacobson radical of S directly, and also obtain it from the lattice, checking
that the two methods match.

> J := JacobsonRadical(S);

> J;

GModule J of dimension 3 with base ring GF(3)

> L ! J;

8

> JacobsonRadical(A);

8

89.2.10 Homomorphisms
Let M and N be A-modules where A is an algebra defined over a field K. Then HomA(M ,
N) consists of all K-homomorphisms from M to N which commute with the action of A.
The type of such (matrix) homomorphisms, called A-homs, is ModMatGrpElt.

The functions is this section currently apply only in the case in which A is an algebra
over a finite field.

Ch. 89 MODULES OVER AN ALGEBRA 2711

89.2.10.1 Creating Homomorphisms

hom< M -> N | X >

Given A-modules M and N , create the (map) homomorphism from M to N given
by matrix X.

H ! f

Given matrix space H, which is HomA(M , N) for A-modules M and N , together
with a homomorphism f from M to N , create the matrix corresponding to the map
f .

IsModuleHomomorphism(X)

Given a matrix X belonging to HomK(M,N), where M and N are A-modules,
return true if X is an A-homomorphism.

89.2.10.2 Hom(M,N)

Hom(M, N)

Given A-modules M and N , construct the vector space of homomorphisms,
HomK(M,N), where K is the field over which A is defined.

AHom(M, N)

Given A-modules M and N , construct the vector space of homomorphisms,
HomA(M,N), as a submodule of HomK(M , N).

GHomOverCentralizingField(M, N)

Given A-modules M and N , construct HomL[G](M , N) as a subspace of HomK(M ,
N) where L is the centralizing field of M .

Example H89E11

We construct a 12-dimensional module M and a 9-dimensional submodule P of M for a soluble
group of order 648 over F3. We then construct H = HomA(M, N) and perform map operations
on elements of H.

> G := PermutationGroup< 12 |

> (1,6,7)(2,5,8,3,4,9)(11,12),

> (1,3)(4,9,12)(5,8,10,6,7,11) >;

> K := GF(3);

> P := PermutationModule(G, K);

> M := sub< P | [1,0,0,0,0,1,0,0,1,0,0,1] >;

> M;

GModule M of dimension 9 over GF(3)

> H := AHom(P, M);

> H: Maximal;

KMatrixSpace of 12 by 9 GHom matrices and dimension 2 over GF(3)

Echelonized basis:

2712 REPRESENTATION THEORY Part XIII

[1 1 1 0 0 0 0 0 0]

[1 1 1 0 0 0 0 0 0]

[1 1 1 0 0 0 0 0 0]

[0 0 0 1 1 0 0 0 0]

[0 0 0 1 1 0 0 0 0]

[0 0 0 1 1 0 0 0 0]

[0 0 0 0 0 1 1 0 0]

[0 0 0 0 0 1 1 0 0]

[0 0 0 0 0 1 1 0 0]

[0 0 0 0 0 0 0 1 1]

[0 0 0 0 0 0 0 1 1]

[0 0 0 0 0 0 0 1 1]

[0 0 0 1 1 1 1 1 1]

[0 0 0 1 1 1 1 1 1]

[0 0 0 1 1 1 1 1 1]

[1 1 1 0 0 1 1 1 1]

[1 1 1 0 0 1 1 1 1]

[1 1 1 0 0 1 1 1 1]

[1 1 1 1 1 0 0 1 1]

[1 1 1 1 1 0 0 1 1]

[1 1 1 1 1 0 0 1 1]

[1 1 1 1 1 1 1 0 0]

[1 1 1 1 1 1 1 0 0]

[1 1 1 1 1 1 1 0 0]

> // We write down a random homomorphism from M to P.

> f := 2*H.1 + H.2;

> f;

[2 2 2 1 1 1 1 1 1]

[2 2 2 1 1 1 1 1 1]

[2 2 2 1 1 1 1 1 1]

[1 1 1 2 2 1 1 1 1]

[1 1 1 2 2 1 1 1 1]

[1 1 1 2 2 1 1 1 1]

[1 1 1 1 1 2 2 1 1]

[1 1 1 1 1 2 2 1 1]

[1 1 1 1 1 2 2 1 1]

[1 1 1 1 1 1 1 2 2]

[1 1 1 1 1 1 1 2 2]

[1 1 1 1 1 1 1 2 2]

> Ker := Kernel(f);

> Ker;

GModule Ker of dimension 8 with base ring GF(3)

If we print the morphism associated with Ker, we see generators for Ker as a submodule of P .

> Morphism(Ker, P);

[1 0 2 0 0 0 0 0 0 0 0 0]

[0 1 2 0 0 0 0 0 0 0 0 0]

Ch. 89 MODULES OVER AN ALGEBRA 2713

[0 0 0 1 0 2 0 0 0 0 0 0]

[0 0 0 0 1 2 0 0 0 0 0 0]

[0 0 0 0 0 0 1 0 2 0 0 0]

[0 0 0 0 0 0 0 1 2 0 0 0]

[0 0 0 0 0 0 0 0 0 1 0 2]

[0 0 0 0 0 0 0 0 0 0 1 2]

> // Examine the image of f and its morphism to P.

> Im := Image(f);

> Im;

GModule Im of dimension 4 with base ring GF(3)

> Morphism(Im, P);

[1 1 1 0 0 0 0 0 0 0 0 0]

[0 0 0 1 1 1 0 0 0 0 0 0]

[0 0 0 0 0 0 1 1 1 0 0 0]

[0 0 0 0 0 0 0 0 0 1 1 1]

Example H89E12

We construct a G-homomorphism module H1 for a G-module and then the homomorphism module
H = Hom(H1, H1) with right matrix action which is equivalent to (the right representation of)
the endomorphism module of H.

> P := GModule(CyclicGroup(11), GF(3));

> F := Constituents(P);

> F;

[

GModule of dimension 1 over GF(3),

GModule of dimension 5 over GF(3),

GModule of dimension 5 over GF(3)

]

> H1 := GHom(P, F[2]);

> H1;

KMatrixSpace of 2 by 3 matrices and dimension 1 over Rational Field

> H := Hom(H1, H1, "right");

> H: Maximal;

KMatrixSpace of 5 by 5 matrices and dimension 5 over GF(3)

Echelonized basis:

[1 0 0 0 0]

[0 1 0 0 0]

[0 0 1 0 0]

[0 0 0 1 0]

[0 0 0 0 1]

[0 1 0 0 0]

[1 1 1 2 1]

[2 0 2 1 1]

[2 1 0 0 0]

2714 REPRESENTATION THEORY Part XIII

[0 2 1 0 0]

[0 0 1 0 0]

[2 0 2 1 1]

[2 2 2 2 2]

[2 0 1 0 2]

[1 0 1 2 1]

[0 0 0 1 0]

[2 1 0 0 0]

[2 0 1 0 2]

[2 2 1 2 2]

[2 1 1 0 1]

[0 0 0 0 1]

[0 2 1 0 0]

[1 0 1 2 1]

[2 1 1 0 1]

[2 1 0 0 2]

89.2.10.3 Endo– and Automorphisms

EndomorphismAlgebra(M)

EndomorphismRing(M)

Direct BoolElt Default : false

Given a A-module M with base ring K, construct E = EndA(M) as a subring E of
the complete matrix ring K(n×n).

CentreOfEndomorphismRing(M)

Given a A-module M with base ring K, construct the centre of EndA(M)
as a subring Z of the complete matrix ring K(n×n). This is equivalent to
Centre(EndomorphismRing(M)) but will often be much faster.

AutomorphismGroup(M)

Given a A-module M with base ring K, construct Aut(M) as a subgroup G of the
general linear group GL(n,K). Thus, G is the group of units of End(M).

IsIsomorphic(M, N)

Returns true if the A-modules M and N are isomorphic, false otherwise. If M and
N are isomorphic, the function also returns a matrix T such that MT = N . Note
that the action generators of M and N must match, so the function effectively deter-
mines whether there is an invertible matrix T such that T^-1*ActionGenerator(M,
i)*T equals ActionGenerator(N, i) for each i.

Ch. 89 MODULES OVER AN ALGEBRA 2715

Example H89E13

We construct the endomorphism ring for a permutation module over F3 for a soluble group of
order 648.

> G := PermutationGroup< 12 |

> (1,6,7)(2,5,8,3,4,9)(11,12),

> (1,3)(4,9,12)(5,8,10,6,7,11) >;

> P := PermutationModule(G, GF(3));

> time End := EndomorphismAlgebra(P);

Time: 0.000

> End;

Matrix Algebra of degree 12 and dimension 3 over GF(3)

Thus, the permutation module P has 27 endomorphisms.

> time Aut := AutomorphismGroup(P);

Time: 0.010

> Aut;

MatrixGroup(12, GF(3))

Generators:

[1 0 0 1 1 1 1 1 1 1 1 1]

[0 1 0 1 1 1 1 1 1 1 1 1]

[0 0 1 1 1 1 1 1 1 1 1 1]

[1 1 1 1 0 0 1 1 1 1 1 1]

[1 1 1 0 1 0 1 1 1 1 1 1]

[1 1 1 0 0 1 1 1 1 1 1 1]

[1 1 1 1 1 1 1 0 0 1 1 1]

[1 1 1 1 1 1 0 1 0 1 1 1]

[1 1 1 1 1 1 0 0 1 1 1 1]

[1 1 1 1 1 1 1 1 1 1 0 0]

[1 1 1 1 1 1 1 1 1 0 1 0]

[1 1 1 1 1 1 1 1 1 0 0 1]

[2 1 1 0 0 0 0 0 0 0 0 0]

[1 2 1 0 0 0 0 0 0 0 0 0]

[1 1 2 0 0 0 0 0 0 0 0 0]

[0 0 0 2 1 1 0 0 0 0 0 0]

[0 0 0 1 2 1 0 0 0 0 0 0]

[0 0 0 1 1 2 0 0 0 0 0 0]

[0 0 0 0 0 0 2 1 1 0 0 0]

[0 0 0 0 0 0 1 2 1 0 0 0]

[0 0 0 0 0 0 1 1 2 0 0 0]

[0 0 0 0 0 0 0 0 0 2 1 1]

[0 0 0 0 0 0 0 0 0 1 2 1]

[0 0 0 0 0 0 0 0 0 1 1 2]

[0 1 1 0 0 0 0 0 0 0 0 0]

[1 0 1 0 0 0 0 0 0 0 0 0]

[1 1 0 0 0 0 0 0 0 0 0 0]

2716 REPRESENTATION THEORY Part XIII

[0 0 0 0 1 1 0 0 0 0 0 0]

[0 0 0 1 0 1 0 0 0 0 0 0]

[0 0 0 1 1 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 1 1 0 0 0]

[0 0 0 0 0 0 1 0 1 0 0 0]

[0 0 0 0 0 0 1 1 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 1 1]

[0 0 0 0 0 0 0 0 0 1 0 1]

[0 0 0 0 0 0 0 0 0 1 1 0]

> #Aut;

18

> IsAbelian(Aut);

true

> AbelianInvariants(Aut);

[3, 6]

The module has 18 automorphisms. The automorphism group is isomorphic to the abelian group
Z2 × Z3 × Z3.

89.3 Modules over a General Algebra

89.3.1 Introduction
This section describes the functionality for modules over general algebras in Magma. A
left-module over an algebra A is a module M together with a bilinear map A×M →M .
A right-module over A is a module M together with a bilinear map M ×A→M . Magma
provides functionality for both kinds of modules.

89.3.2 Construction of Algebra Modules

Module(A, m)

For an algebra A this function creates a module over A. If the module will be a
left-module then m is a map from the Cartesian product A×M to M . If the module
will be a right-module then m is a map from M × A to M . Here M has to be an
R-module, where R is the coefficient field of A.

Example H89E14

We create the right-module over the full matrix algebra of 3 × 3 - matrices acting on its natural
module.

> A:= MatrixAlgebra(Rationals(), 3);

> V:= RModule(Rationals(), 3);

> m:= map< CartesianProduct(V, A) -> V | t :-> t[1]*t[2] >;

> Module(A, m);

Right Module of Full Matrix Algebra of degree 3 over Rational Field

Ch. 89 MODULES OVER AN ALGEBRA 2717

89.3.3 The Action of an Algebra Element

a ^ v

Given an element v of a left-module over an algebra A, and an element a of A
computes the result of letting a act on v.

v ^ a

Given an element v of a right-module over an algebra A and an element a of A
computes the result of letting a act on v.

ActionMatrix(M, a)

Given a module M over an algebra A and an element a of A returns the matrix of
the action of a on M . If M is a left-module then the i-th column of this matrix
contains the coordinates of the image of a acting on the i-th basis element of M . If
A is a right-module then the rows contain these coordinates.

Example H89E15

> A:= MatrixAlgebra(Rationals(), 3);

> V:= RModule(Rationals(), 3);

> m:= map< CartesianProduct(V, A) -> V | t :-> t[1]*t[2] >;

> M:=Module(A, m);

> M.1^A.1;

M: (1 0 0)

> ActionMatrix(M, A.2);

[0 1 0]

[0 0 1]

[1 0 0]

89.3.4 Related Structures of an Algebra Module

Algebra(M)

This returns the algebra over which the algebra module M is defined.

CoefficientRing(M)

Returns the ground field of the algebra module M .

Basis(M)

Returns a sequence containing the basis vectors of the algebra module M .

2718 REPRESENTATION THEORY Part XIII

89.3.5 Properties of an Algebra Module

IsLeftModule(M)

This returns true if the algebra module M is a left-module, and false if it is a
right module.

IsRightModule(M)

This returns true if the algebra module M is a right-module, and false if it is a
left module.

Dimension(M)

The dimension of the algebra module M .

89.3.6 Creation of Algebra Modules from other Algebra Modules

DirectSum(Q)

Given a sequence Q of algebra modules (all defined over the same algebra, and all
left (respectively right) modules), returns the module M that is the direct sum of
the modules in Q. Furthermore, two sequences of mappings are returned. The i-th
element of the first sequence is the embedding of the i-th element of Q into M . The
i-th element of the second sequence is the projection of M onto the i-th element of
Q.

SubalgebraModule(B, M)

Given an algebra module M over the algebra A, and a subalgebra B of A, return
M as a B-module.

ModuleWithBasis(Q)

Given a sequence Q containing the elements of a particular basis of an algebra
module M , create an algebra module that is isomorphic to M , but with basis Q.
(Or, more precisely, the basis vectors of the module V that is returned are in bijection
withQ. The action of an algebra element on the i-th basis vector of V is computed by
computing it on the i-th vector inQ and expressing the result as a linear combination
of the elements of Q. The resulting coordinates are used to form the corresponding
element of V .) This can be used to compute the action of algebra elements with
respect to a given basis of M .

Ch. 89 MODULES OVER AN ALGEBRA 2719

Example H89E16

> A:= MatrixAlgebra(Rationals(), 3);

> V:= RModule(Rationals(), 3);

> m:= map< CartesianProduct(V, A) -> V | t :-> t[1]*t[2] >;

> M:=Module(A, m);

> N:=DirectSum([M, M]);

> ActionMatrix(N, A.1);

[1 0 0 0 0 0]

[0 0 0 0 0 0]

[0 0 0 0 0 0]

[0 0 0 1 0 0]

[0 0 0 0 0 0]

[0 0 0 0 0 0]

> W:= ModuleWithBasis([M.1+M.2+M.3, M.2+M.3, M.3]);

> ActionMatrix(W, A.1);

[1 -1 0]

[0 0 0]

[0 0 0]

sub< M | S >

sub< M | e1, ..., en >

Return the submodule of M containing the elements in the sequence S or the ele-
ments e1, . . ., en.

quo< M | S >

quo< M | e1, ..., en >

Construct the quotient module of M by the submodule S of M , the submodule
containing the elements in the sequence S or the elements e1, ..., en.

90 K[G]-MODULES
AND GROUP REPRESENTATIONS

90.1 Introduction 2723

90.2 Construction of K[G]-Modules . 2723

90.2.1 General K[G]-Modules 2723

GModule(G, A) 2723
GModule(G, Q) 2723
TrivialModule(G, K) 2723

90.2.2 Natural K[G]-Modules 2725

GModule(G, K) 2725
GModule(G) 2726

90.2.3 Action on an Elementary Abelian
Section 2726

GModule(G, A, B) 2726
GModule(G, A) 2726

90.2.4 Permutation Modules 2727

PermutationModule(G, H, K) 2727
PermutationModule(G, K) 2727
PermutationModule(G, V) 2727
PermutationModule(G, u) 2727

90.2.5 Action on a Polynomial Ring . . . 2729

GModule(G, P, d) 2729
GModule(G, I, J) 2729
GModule(G, Q) 2729

90.3 The Representation Afforded by
a K[G]-module 2730

GModuleAction(M) 2730
Representation(M) 2730
ActionGenerator(M, i) 2731
RightActionGenerator(M, i) 2731
ActionGenerators(M) 2731
NumberOfActionGenerators(M) 2731
Nagens(M) 2731
ActionGroup(M) 2731
Sections (G) 2731

90.4 Standard Constructions . . . 2732

90.4.1 Changing the Coefficient Ring . . 2732

ChangeRing(M, S) 2732
ChangeRing(M, S, f) 2732

90.4.2 Writing a Module over a Smaller
Field 2733

IsRealisableOverSmallerField(M) 2733
IsRealisableOverSubfield(M, F) 2733
WriteOverSmallerField(M, F) 2733
AbsoluteModuleOverMinimal

Field(M, F) 2733
AbsoluteModuleOverMinimal

Field(M) 2733
Minimize(R) 2734
AbsoluteModulesOverMinimal

Field(Q, F) 2734
ModuleOverSmallerField(M, F) 2734
ModulesOverSmallerField(Q, F) 2734
ModulesOverCommonField(M, N) 2735
WriteGModuleOver(M, K) 2735
WriteRepresentationOver(R, K) 2735

90.4.3 Direct Sum 2737

DirectSum(M, N) 2737
DirectSum(Q) 2737

90.4.4 Tensor Products of K[G]-Modules . 2737

TensorProduct(M, N) 2737
TensorPower(M, n) 2737
ExteriorSquare(M) 2737
SymmetricSquare(M) 2737

90.4.5 Induction and Restriction 2738

Dual(M) 2738
Induction(M, G) 2738
Induction(R, G) 2738
Restriction(M, H) 2738

90.4.6 The Fixed-point Space of a Module 2739

Fix(M) 2739

90.4.7 Changing Basis 2739

^ 2739

90.5 The Construction of all
Irreducible Modules 2740

90.5.1 Generic Functions for Finding Irre-
ducible Modules 2740

IrreducibleModules(G, K : -) 2740
AbsolutelyIrreducible

Modules(G, K : -) 2740

90.5.2 The Burnside Algorithm 2743

AbsolutelyIrreducibleModules
Burnside(G, K : -) 2743

IrreducibleModules
Burnside(G, K : -) 2743

AbsolutelyIrreducible
Constituents(M) 2743

90.5.3 The Schur Algorithm for Soluble
Groups 2744

IrreducibleModules(G, K : -) 2744
AbsolutelyIrreducible

ModulesSchur(G, K: -) 2744
IrreducibleModulesSchur(G, K: -) 2745

2722 REPRESENTATION THEORY Part XIII

AbsolutelyIrreducibleRepresentations

Init(G, F : -) 2746
AbsolutelyIrreducibleModules

Init(G, F : -) 2746
IrreducibleRepresentations

Init(G, F : -) 2746
IrreducibleModulesInit(G, F : -) 2746
NextRepresentation(P) 2746
NextModule(P) 2746
AbsolutelyIrreducibleRepresentation

ProcessDelete(∼P) 2746

90.5.4 The Rational Algorithm 2747

IrreducibleModules(G, Q : -) 2747
RationalCharacterTable(G) 2748

90.6 Extensions of Modules 2750

Ext(M, N) 2750
Extension(M, N, e) 2750
MaximalExtension(M, N, E) 2750

90.7 The Construction of Projective
Indecomposable Modules . . . 2751

ProjectiveIndecomposable
Dimensions(G, K) 2752

ProjectiveIndecomposableModule(I: -) 2752
ProjectiveIndecomposable

Modules(G, K) 2752
CartanMatrix(G, K) 2754
AbsoluteCartanMatrix(G, K) 2754
DecompositionMatrix(G, K) 2754
ProjectiveCover(M) 2755
CohomologicalDimension(M, n) 2755
CohomologicalDimensions(M, n) 2755

Chapter 90

K[G]-MODULES
AND GROUP REPRESENTATIONS

90.1 Introduction
A module over a group algebra, K[G], where K is a field and G is a group, is an important
special case of modules over an algebra. This case coincides with the theory of group
representations. Magma provides extensive machinery for constructing K[G]-modules. It
should be noted however, that some advanced functions apply only when K is a finite field.

In this chapter the machinery for constructions peculiar to K[G]-modules will be de-
scribed. In addition, a number of operations that apply only to K[G]-modules are de-
scribed. All of the operations for A-modules also apply to K[G]-modules and are not
repeated in this chapter.

90.2 Construction of K[G]-Modules
The following functions provide for the construction of finite-dimensional K[G]-modules
for a group G, where the action of G is given in terms of a matrix representation of G.
Note that an Euclidean Domain may appear in place of the field K.

90.2.1 General K[G]-Modules

GModule(G, A)

Let G be a group defined on r generators and let A be a subalgebra of the ma-
trix algebra Mn(K), also defined by r non-singular matrices. It is assumed that
the mapping from G to A defined by φ(G.i) 7→ A.i, for i = 1, . . . , r, is a group
homomorphism. Let M be an n-dimensional vector space over K. The function
constructs a K[G]-module M of dimension n, where the action of the i-th generator
of G on M is given by the i-th generator of A.

GModule(G, Q)

Let G be a group defined on r generators and let Q be a sequence of r invertible
elements of Mn(K) or GL(n,K). It is assumed that the mapping from G to Q
defined by φ(G.i) 7→ Q[i], for i = 1, . . . , r, is a group homomorphism from G into
the matrix algebra A defined by the terms of Q. The function constructs a K[G]-
module M of dimension n, where the action of G is defined by the matrix algebra
A.

TrivialModule(G, K)

Create the trivial K[G]-module for the group G.

2724 REPRESENTATION THEORY Part XIII

Example H90E1

We construct a 3-dimensional module for PSL(2, 7) over F2. The action of the group on M is
described in terms of two elements, x and y, belonging to the ring of 3× 3 matrices over F2.

> PSL27 := PermutationGroup< 8 | (2,3,5)(6,7,8), (1,2,4)(3,5,6) >;

> S := MatrixAlgebra< FiniteField(2), 3 |

> [0,1,0, 1,1,1, 0,0,1], [1,1,1, 0,1,1, 0,1,0] >;

> M := GModule(PSL27, S);

> M: Maximal;

GModule M of dimension 3 with base ring GF(2)

Generators of acting algebra:

[0 1 0]

[1 1 1]

[0 0 1]

[1 1 1]

[0 1 1]

[0 1 0]

Example H90E2

We write a function which, given a matrix algebra A, together with a matrix group G acting on
A by conjugation (so A is closed under action by G), computes the G-module M representing the
action of G on A. We then construct a particular (nilpotent) upper-triangular matrix algebra A,
a group G = 1 + A which acts on A, and finally construct the appropriate G-module M .

> MakeMod := function(A, G)

> // Make G-module M of G acting on A by conjugation

> k := CoefficientRing(A);

> d := Dimension(A);

> S := RMatrixSpace(A, k);

> return GModule(

> G,

> [

> MatrixAlgebra(k, d) |

> &cat[

> Coordinates(S, S.j^g): j in [1 .. d]

>] where g is G.i: i in [1 .. Ngens(G)]

>]

>);

> end function;

>

> MakeGroup := function(A)

> // Make group G from upper-triangular matrix algebra A

> k := CoefficientRing(A);

> n := Degree(A);

> return MatrixGroup<n, k | [Eltseq(1 + A.i): i in [1 .. Ngens(A)]]>;

Ch. 90 K[G]-MODULES AND GROUP REPRESENTATIONS 2725

> end function;

>

> k := GF(3);

> n := 4;

> M := MatrixAlgebra(k, n);

> A := sub<M |

> [0,2,1,1, 0,0,1,1, 0,0,0,1, 0,0,0,0],

> [0,1,0,0, 0,0,2,2, 0,0,0,1, 0,0,0,0]>;

> G := MakeGroup(A);

> G;

MatrixGroup(4, GF(3)) of order 3^4

Generators:

[1 2 1 1]

[0 1 1 1]

[0 0 1 1]

[0 0 0 1]

[1 1 0 0]

[0 1 2 2]

[0 0 1 1]

[0 0 0 1]

> M := MakeMod(A, G);

> M: Maximal;

GModule M of dimension 5 over GF(3)

Generators of acting algebra:

[1 1 1 2 0]

[0 1 1 0 0]

[0 0 1 0 0]

[0 0 0 1 0]

[0 0 0 0 1]

[1 2 2 2 0]

[0 1 1 0 0]

[0 0 1 0 0]

[0 0 0 1 0]

[0 0 0 0 1]

90.2.2 Natural K[G]-Modules
The following functions provide for the construction of K[G]-modules for a group G in one
of its natural actions. Note that an Euclidean Domain may be used in place of the field K.

GModule(G, K)

Given a finite permutation group G and a ring K, create the natural permutation
module for G over K.

2726 REPRESENTATION THEORY Part XIII

GModule(G)

Given a matrix group G defined as a subgroup of the group of units of the ring
Matn(K), where K is a field, create the natural K[G]-module for G.

Example H90E3

Given the Mathieu group M11 presented as a group of 5 × 5 matrices over F3, we construct the
natural K[G]-module associated with this representation.

> G := MatrixGroup<5, FiniteField(3) |

> [2,1,2,1,2, 2,0,0,0,2, 0,2,0,0,0, 0,1,2,0,1, 1,0,2,2,1],

> [2,1,0,2,1, 1,2,0,2,2, 1,1,2,1,1, 0,2,0,1,1, 1,1,2,2,2] >;

> Order(G);

7920

>

> M := GModule(G);

> M : Maximal;

GModule M of dimension 5 with base ring GF(3)

Generators of acting algebra:

[2 1 2 1 2]

[2 0 0 0 2]

[0 2 0 0 0]

[0 1 2 0 1]

[1 0 2 2 1]

[2 1 0 2 1]

[1 2 0 2 2]

[1 1 2 1 1]

[0 2 0 1 1]

[1 1 2 2 2]

90.2.3 Action on an Elementary Abelian Section

GModule(G, A, B)

GModule(G, A)

Given a group G, a normal subgroup A of G and a normal subgroup B of A such
that the section A/B is elementary abelian of order pn, create the K[G]-module M
corresponding to the action of G on A/B, where K is the field Fp. If B is trivial, it
may be omitted. The function returns

(a) the module M ; and

(b)the homomorphism φ : A/B →M .

Ch. 90 K[G]-MODULES AND GROUP REPRESENTATIONS 2727

Example H90E4

We construct a module M for the wreath product G of the alternating group of degree 4 with the
cyclic group of degree 3. The module is given by the action of G on an elementary abelian normal
subgroup H of order 64.

> G := WreathProduct(AlternatingGroup(4), CyclicGroup(3));

> G := PCGroup(G);

> A := pCore(G, 2);

> A;

GrpPC of order 64 = 2^6

Relations:

A.1^2 = Id(A),

A.2^2 = Id(A),

A.3^2 = Id(A),

A.4^2 = Id(A),

A.5^2 = Id(A),

A.6^2 = Id(A)

> M := GModule(G, A, sub<G|>);

> M;

GModule of dimension 6 with base ring GF(2)

90.2.4 Permutation Modules
The following functions provide for the construction of permutation modules for a group
G. Note that an Euclidean Domain may be used in place of the field K.

PermutationModule(G, H, K)

Given a group G, a subgroup H of finite index in G and a field K, create the
K[G]-module for G corresponding to the permutation action of G on the cosets of
H.

PermutationModule(G, K)

Given a permutation group G and a field K, create the natural permutation module
for G over K.

PermutationModule(G, V)

Given a permutation group G of degree n and an n-dimensional vector space V ,
create the natural permutation module for G over K.

PermutationModule(G, u)

Given a permutation group G of degree n, and a vector u belonging to the vector
space V = K(n), construct the K[G]-module corresponding to the action of G on
the K-subspace of V generated by the set of vectors obtained by applying the
permutations of G to the vector u.

2728 REPRESENTATION THEORY Part XIII

Example H90E5

We construct the permutation module for the Mathieu group M12 over the field F2.

> M12 := PermutationGroup<12 |

> (1,2,3,4,5,6,7,8,9,10,11),

> (1,12,5,2,9,4,3,7)(6,10,11,8) >;

> M := PermutationModule(M12, FiniteField(2));

> M : Maximal;

GModule M of dimension 12 with base ring GF(2)

Generators of acting algebra:

[0 1 0 0 0 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0 0 0 0]

[0 0 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 0 1 0 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0 0]

[0 0 0 0 0 0 0 1 0 0 0 0]

[0 0 0 0 0 0 0 0 1 0 0 0]

[0 0 0 0 0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 0 0 0 0 1 0]

[1 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 1]

[0 0 0 0 0 0 0 0 0 0 0 1]

[0 0 0 0 0 0 0 0 1 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0 0]

[0 0 1 0 0 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 1 0 0]

[1 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 1 0 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 0 1 0 0 0 0]

[0 0 0 0 1 0 0 0 0 0 0 0]

Example H90E6

We construct the constituent of the permutation module for the alternating group of degree 7
that contains the vector (1, 0, 1, 0, 1, 0, 1).

> A7 := AlternatingGroup(7);

> V := VectorSpace(FiniteField(2), 7);

> x := V![1,0,1,0,1,0,1];

> M := PermutationModule(A7, x);

> M : Maximal;

GModule of dimension 6 with base ring GF(2)

Ch. 90 K[G]-MODULES AND GROUP REPRESENTATIONS 2729

Generators of acting algebra:

[1 0 1 0 0 0]

[0 0 1 0 1 0]

[0 1 1 0 0 0]

[0 0 1 0 0 0]

[0 0 1 1 0 0]

[0 0 1 0 0 1]

[0 0 0 0 0 1]

[0 1 0 0 0 0]

[1 0 0 0 0 0]

[0 0 0 1 0 0]

[0 0 0 0 1 0]

[0 0 1 0 0 0]

90.2.5 Action on a Polynomial Ring

GModule(G, P, d)

Let G be a permutation group of degree n or a or matrix group of degree n over a
finite field, P = K[x1, . . . , xn] a polynomial ring over a field K in n variables, and
d a non-negative integer. This function creates the K[G]-module M corresponding
to the action of G on the space of homogeneous polynomials of degree d of the
polynomial ring P . The function also returns the isomorphism f between the space
of homogeneous polynomials of degree d of P and M , together with an indexed set
of monomials of degree d of P which correspond to the columns of M .

GModule(G, I, J)

Let G be a permutation group of degree n or a or matrix group of degree n over
a finite field, I an ideal of a multivariate polynomial ring P = K[x1, . . . , xn] in n
variables over a fieldK, and J a zero-dimensional subideal of I. This function creates
the K[G]-module M corresponding to the action of G on the finite-dimensional
quotient I/J . The function also returns the isomorphism f between the quotient
space I/J and M , together with an indexed set of monomials of P , forming a (vector
space) basis of I/J , and which correspond to the columns of M .

GModule(G, Q)

Let G be a permutation group of degree n or a or matrix group of degree n over a
finite field and Q = I/J a finite-dimensional quotient ring of a multivariate polyno-
mial ring P = K[x1, . . . , xn] in n variables over a field K. This function creates the
K[G]-module M corresponding to the action of G on the finite-dimensional quotient
Q. The function also returns the isomorphism f between the quotient ring Q and
M , together with an indexed set of monomials of P , forming a (vector space) basis
of Q, and which correspond to the columns of M .

2730 REPRESENTATION THEORY Part XIII

Example H90E7

Let T be the polynomial ring in five indeterminates over GF (5). We create the representation of
the alternating group of degree 5 that corresponds to its action on the space H4 of homogeneous
polynomials of degree 4 of T .

> G := Alt(5);

> R<[x]> := PolynomialRing(GF(5), 5);

> M, f := GModule(G, R, 4);

> M;

GModule M of dimension 70 over GF(5)

Thus, the action of Alt(5) on H4 yields a 70-dimensional module. We find its irreducible con-
stituents.

> Constituents(M);

[

GModule of dimension 1 over GF(5),

GModule of dimension 3 over GF(5),

GModule of dimension 5 over GF(5)

]

> t := x[1]^4 + x[2]^4 + x[3]^4 + x[4]^4 + x[5]^4;

> v := f(t); v;

M: (1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1)

> v@@f;

x[1]^4 + x[2]^4 + x[3]^4 + x[4]^4 + x[5]^4

90.3 The Representation Afforded by a K[G]-module

GModuleAction(M)

Given a K[G]-module M , return the action of G on M as homomorphism f of G
into the matrix group GLn(K).

Representation(M)

Given a K[G]-module M , return the action of G on M as homomorphism f of G
into the matrix algebra Mn(K).

Ch. 90 K[G]-MODULES AND GROUP REPRESENTATIONS 2731

Example H90E8

The function Representation allows the easy calculation of group characters. We illustrate this
with the 6-dimension module for the group A7 constructed above.

> A7 := AlternatingGroup(7);

> M := PermutationModule(A7, Vector(GF(11), [1,0,1,0,1,0,1]));

> phi := Representation(M);

> [Trace(phi(c[3])) : c in Classes(A7)];

[7, 3, 4, 1, 1, 2, 0, 0, 0]

Example H90E9

We present a procedure which, given a K[G]-module M , constructs its dual D.

> DualModule := function(M)

> G := Group(M);

> f := Representation(M);

> return GModule(G, [Transpose(f(G.i))^-1 : i in [1 .. Ngens(G)]]);

> end function;

ActionGenerator(M, i)

RightActionGenerator(M, i)

The i-th generator of the (right) acting matrix algebra for the module M . That is,
the image of the i-th group generator in the corresponding representation.

ActionGenerators(M)

Return the matrices giving the action on the module M as a sequence. These are
the images of the generators of the group in the corresponding representation.

NumberOfActionGenerators(M)

Nagens(M)

The number of action generators (the number of generators of the algebra) for the
R[G]-module M .

ActionGroup(M)

The matrix group generated by the action generators of M .

Sections (G)

Given a matrix group G defined over a finite field K, return the action of G on each
composition factor of the natural K[G]-module for G.

2732 REPRESENTATION THEORY Part XIII

Example H90E10

We construct the tensor square T of the natural module M of the matrix group G = SL(3, 5) and
then determine the action of G on each composition factor of T .

> G := SL(3, 5);

> M := GModule(G);

> T := TensorProduct(M, M);

> A := ActionGroup(T);

> S := Sections(A);

> #S;

2

There are just two composition factors of T , the symmetric square and the exterior square of M .

> S[2];

MatrixGroup(3, GF(5))

Generators:

[1 0 0]

[0 2 0]

[0 0 3]

[0 1 0]

[1 0 1]

[1 0 0]

90.4 Standard Constructions
Given one or more existing modules, various standard constructions are available to con-
struct new modules.

90.4.1 Changing the Coefficient Ring
In this collection of functions will be found utilities for changing the base ring of the
module. Note that several of the functions for rewriting over a minimal field are restricted
to rings K[G] where K is a finite field.

ChangeRing(M, S)

Given an A-module M with base ring R, together with a ring S, such that there is
a natural homomorphism from R to S, construct the module N with base ring S
where N is obtained from M by coercing the components of the vectors of M into
N . The corresponding homomorphism from M to N is returned as a second value.

ChangeRing(M, S, f)

Given a module M with base ring R, together with a ring S, and a homomor-
phism f : R → S, construct the module N with base ring S, where N is obtained
from M by applying f to the components of the vectors of M . The corresponding
homomorphism from M to N is returned as a second value.

Ch. 90 K[G]-MODULES AND GROUP REPRESENTATIONS 2733

90.4.2 Writing a Module over a Smaller Field
The functions in this section currently only apply to K[G]-modules defined over a finite
field K.

IsRealisableOverSmallerField(M)

Given a K[G]-module M , where K is a finite field, return true if M can be realised
over a proper subfield F of K. The equivalent F [G]-module is also returned. The
Glasby-Howlett algorithm is used to determine the smallest field over which M can
be realised.

IsRealisableOverSubfield(M, F)

Let M be a K[G]-module, where K is a finite field of characteristic p, and let F be
a finite field also of characteristic p. If it is possible to realise M over the subfield
F of K, return true and the equivalent F [G]-module.

WriteOverSmallerField(M, F)

Given a module M of dimension d over a finite field E having degree e and a subfield
F of E having degree f , write the action of M as d ∗ e/f by d ∗ e/f matrices over
F and return the module and the isomorphism.

AbsoluteModuleOverMinimalField(M, F)

Let M be a K[G]-module, where K is a finite field of characteristic p, and let F
be a finite field also of characteristic p. This function returns the module obtained
by writing M over the smallest possible field containing F subject to the condition
that the dimension of M does not increase. The Glasby-Howlett algorithm is used
to determine the smallest field over which M can be realised.

AbsoluteModuleOverMinimalField(M)

Verbose Reduce Maximum : 2

Verbose Cohomology Maximum : 2

Verbose GrunwaldWang Maximum : 2

Let M be a K[G]-module, where K is a finite field of characteristic p or a number
field. This function returns the module obtained by writingM over a field of smallest
possible degree subject to the condition that the dimension of M does not increase.
For modules over finite fields, a field of smallest degree is always a subfield of K,
in this case, the Glasby-Howlet algorithm is used. For number fields, a different
field might be necessary and a combination of Plesken’s method and a constructive
version of the Grunwald-Wang theorem is used.

2734 REPRESENTATION THEORY Part XIII

Minimize(R)

All BoolElt Default : false

Char AlgChtrElt Default : false

FindSmallest BoolElt Default : false

Verbose Reduce Maximum : 2

Verbose Cohomology Maximum : 2

Verbose GrunwaldWang Maximum : 2

Let R : G→ Gl(n,K) be an absolutely irreducible representation over some number
field K. This function tries to find minimal subfields k of K that afford R, ie. it tries
to write the representation over a smaller field. In general however, there might be
number field k not contained in K of smaller degree that afford R. If All is given,
then instead of a single representation over a minimal degree subfield of K, a list
of representations over all minimal subfields of K is returned instead. If Char is
given, it should be set to the character of the representation. If FindSmallest is
given, the field K will be extended by some auxiliary field A such that KA will
contain a minimal degree field affording R. This involves a constructive version of
the Grunwald-Wang theorem and can be computationally expensive if the degree of
KA is too large.

AbsoluteModulesOverMinimalField(Q, F)

Let Q be a sequence of K[G]-modules, where K is a finite field of characteristic
p, and let F be a finite field also of characteristic p. This function returns the
sequence of modules obtained by writing each module M of Q over the small-
est possible field containing F subject to the condition that the dimension of
M does not increase. Thus, the effect of the function is to apply the function
AbsoluteModuleOverMinimalField to each module of Q. The Glasby-Howlett al-
gorithm is used to determine the smallest field over which the modules M of Q can
be realised.

ModuleOverSmallerField(M, F)

Let M be a K[G]-module of dimension d, where K is a finite field of characteristic
p, and let F be a subfield of K of index n. This function returns the F [G]-module
N obtained by writing the action of M as dn× dn matrices over F .

ModulesOverSmallerField(Q, F)

Let Q be a sequence of K[G]-modules, where K is a finite field of characteristic
p, and let F be a subfield of K of index n. This function returns the sequence R
of F [G]-modules obtained by applying the function ModuleOverSmallerField to
each term of Q. That is, each term N of R is formed by writing the action of the
corresponding term of Q as dn× dn matrices over F .

Ch. 90 K[G]-MODULES AND GROUP REPRESENTATIONS 2735

ModulesOverCommonField(M, N)

Given K[G]-modules M and N , change their base fields to K, where K is the
smallest field containing the base fields of M and N .

WriteGModuleOver(M, K)

Char AlgChtrElt Default : false

Subfield BoolElt Default : false

Verbose Reduce Maximum : 2
Verbose Cohomology Maximum : 2
Verbose GrunwaldWang Maximum : 2

Given a L[G] module M and some number field K, try to write M over K. If Char
is specified, it should be set to the character of this module. If Subfield is given,
the module will be rewritten over a minimal degree subfield of K.

WriteRepresentationOver(R, K)

Char AlgChtrElt Default : false

Subfield BoolElt Default : false

Verbose Reduce Maximum : 2
Verbose Cohomology Maximum : 2
Verbose GrunwaldWang Maximum : 2

Given an absolutely irreducible representation R : G → Gl(n,L) and some normal
number field K, try to write R over K. If Char is specified, it should be set to the
character of this representation. If Subfield is given, the representation will be
rewritten over a minimal degree subfield of K.

Example H90E11

We will work with the G-module and character of the unique 2-dimensional character of Q8. It is
well known that, while the character is defined over Q, the corresponding representation can only
be defined over fields where −1 is the sum of 2 squares.

> G := TransitiveGroup(8, 5);

> TransitiveGroupDescription(G);

Q_8(8);

> R := AbsolutelyIrreducibleModules(G, Rationals());

> R;

[

GModule of dimension 1 over Rational Field,

GModule of dimension 1 over Rational Field,

GModule of dimension 1 over Rational Field,

GModule of dimension 1 over Rational Field,

GModule of dimension 2 over Cyclotomic Field

of order 4 and degree 2

]

2736 REPRESENTATION THEORY Part XIII

> R := R[5];

> WriteGModuleOver(R, CyclotomicField(5));

GModule of dimension 2 over Cyclotomic Field

of order 5 and degree 4

So Q(ζ5) is an example of a field affording the module but having no minimal degree subfield (of
degree 2 here) affording R!.

> AbsoluteModuleOverMinimalField($1);

GModule of dimension 2 over Number Field with

defining polynomial Qx.1^2 - Qx.1 + 1 over the

Rational Field

Note that the base field returned here is Q(ζ3) which is of degree 2 but different from Q(ζ4) that
was found initially. In general there are infinetely many minimal degree splitting fields.
If we try to realize R over a field where −1 cannot be written as a sums of two squares we get an
error:

> WriteGModuleOver(R, QuadraticField(3));

>> WriteGModuleOver(R, QuadraticField(3));

^

Runtime error in ’WriteGModuleOver’: The G-module

cannot be realised over K

We can try to find a minimal field containing Q(
√

3) by computing the local Schur-indices and
then obtain a splitting field:

> k := QuadraticField(3);

> SchurIndices(Character(R), k);

[<1st place at infinity, 2>, <2nd place at

infinity, 2>]

> A := SplittingField($1);

> A;

FldAb, defined by (<3>, [1 2])

of structure: Z/2

So the splitting field is returned as an abelian extension. We can see that A is of degree 2 over
k and will be ramified at most at 3 and both infinite places. In order to use it to rewrite the
module, we need to convert to a number field over Q first:

> A := NumberField(A);

> A;

Number Field with defining polynomial $.1^2 + 1

over k

> A := AbsoluteField(A);

> A;

Number Field with defining polynomial Qx.1^4 -

4*Qx.1^2 + 16 over the Rational Field

> WriteGModuleOver(R, A);

GModule of dimension 2 over A

> WriteGModuleOver(R, A:Subfield);

Ch. 90 K[G]-MODULES AND GROUP REPRESENTATIONS 2737

GModule of dimension 2 over Number Field with

defining polynomial Qx.1^2 - Qx.1 + 1 over the

Rational Field

90.4.3 Direct Sum

DirectSum(M, N)

Given K[G]-modules M and N , construct the direct sum D of M and N as an
K[G]-module. The embedding maps from M into D and from N into D respectively
and the projection maps from D onto M and from D onto N respectively are also
returned.

DirectSum(Q)

Given a sequence Q of K[G]-modules, construct the direct sum D of these modules.
The embedding maps from each of the elements of Q into D and the projection
maps from D onto each of the elements of Q are also returned.

90.4.4 Tensor Products of K[G]-Modules

TensorProduct(M, N)

Let M and N be two K[G] modules. This function constructs the tensor product,
M ⊗A N , with diagonal action.

TensorPower(M, n)

Given a K[G]-module M and an integer n ≥ 1, construct the n-th tensor power of
M .

ExteriorSquare(M)

Given a K[G]-module M , construct the A-submodule of M ⊗A M consisting of the
skew tensors.

SymmetricSquare(M)

Given a K[G]-module M , construct the A-submodule of M ⊗A M consisting of the
symmetric tensors.

2738 REPRESENTATION THEORY Part XIII

90.4.5 Induction and Restriction

Dual(M)

Given an K[G]-module M , construct the K[G]-module which is the K-dual,
HomK(M,K), of M .

Induction(M, G)

Given a K[H]-module M and a supergroup G of H, construct the K[G]-module
obtained by inducing M up to G.

Induction(R, G)

Given a representation R of a subgroup of G, construct the representation of G
obtained by inducing R up to G.

Restriction(M, H)

Given a K[G]-module M and a subgroup H of G, form the K[H]-module corre-
sponding to the restriction of M to the subgroup H.

Example H90E12

Starting with the permutation module M over F2 for the Mathieu group M22, we apply the
induction and restriction functions to find new irreducible modules for M22.

> SetSeed(1);

> G := PermutationGroup< 22 |

> (1,2,4,8,16,9,18,13,3,6,12)(5,10,20,17,11,22,21,19,15,7,14),

> (1,18,4,2,6)(5,21,20,10,7)(8,16,13,9,12)(11,19,22,14,17),

> (1,18,2,4)(3,15)(5,9)(7,16,21,8)(10,12,20,13)(11,17,22,14) >;

> M := PermutationModule(G, GaloisField(2));

> M;

GModule M of dimension 22 with base ring GF(2)

> CM := Constituents(M);

> CM;

[

GModule of dimension 1 over GF(2),

GModule of dimension 10 over GF(2),

GModule of dimension 10 over GF(2)

]

We restrict the module M to the stabilizer of a point in M22 and then induce back up, a constituent
of the restriction.

> L34 := Stabilizer(G, 1);

> N := Restriction(M, L34);

> N;

GModule N of dimension 22 with base ring GF(2)

> CN := Constituents(N);

> CN;

[

Ch. 90 K[G]-MODULES AND GROUP REPRESENTATIONS 2739

GModule of dimension 1 over GF(2),

GModule of dimension 9 over GF(2),

GModule of dimension 9 over GF(2)

]

> Ind1 := Induction(CN[1], G);

> Ind1;

GModule Ind1 of dimension 22 over GF(2)

> Constituents(Ind1);

[

GModule of dimension 1 over GF(2),

GModule of dimension 10 over GF(2),

GModule of dimension 10 over GF(2)

]

> Ind2 := Induction(CN[2], G);

> Ind2;

GModule Ind2 of dimension 198 over GF(2)

> Constituents(Ind2);

[

GModule of dimension 1 over GF(2),

GModule of dimension 10 over GF(2),

GModule of dimension 10 over GF(2),

GModule of dimension 34 over GF(2),

GModule of dimension 98 over GF(2)

]

Thus, inducing up the 1-dimensional constituent of N gives us irreducible modules for G having
the same dimensions as those appearing as constituents of M . However, inducing up the 9-
dimensional module gives us irreducible modules of new dimensions: 34 and 98. Hence starting
out with only the permutation module for M22 over F2, we have found 5 irreducible modules for
the group.

90.4.6 The Fixed-point Space of a Module

Fix(M)

Given an K[G]-module M , construct the largest submodule of M on which G acts
trivially, i.e. the fixed-point space of M .

90.4.7 Changing Basis

M ^ T

Given a K[G]-module M of dimension n over the field K, and a nonsingular n× n
matrix T over K, construct the K[G]-module N which corresponds to taking the
rows of T as a basis for M .

2740 REPRESENTATION THEORY Part XIII

90.5 The Construction of all Irreducible Modules

The construction of all irreducible K[G]-modules for a finite group G is of major interest.
If G is soluble there is a very effective method that dates back to Schur. This proceeds by
working up a composition series for G and constructing the irreducibles for each subgroup
by inducing or extending representations from the previous subgroup. This works equally
well over finite fields and over fields of characteristic zero. If G is non-soluble the situation
is more difficult. Starting with a faithful representation, by a theorem of Burnside, it is
possible to construct all representations by splitting tensor powers of the faithful represen-
tation. An algorithm based on this idea developed by Cannon and Holt uses the Meataxe
to split representations and works well over small finite fields. A similar algorithm for
rational representations using a different method for splitting representations is under de-
velopment by Steel. Methods based on the theorem of Burnside, will be referred to as
Burnside algorithms.

90.5.1 Generic Functions for Finding Irreducible Modules
The functions described in this section construct all irreducible representations of a finite
group. The choice of algorithm depends upon the type of group and the kind of field
given. The individual algorithms may be invoked directly by means of intrinsic functions
described in subsequent sections.

IrreducibleModules(G, K : parameters)

AbsolutelyIrreducibleModules(G, K : parameters)

Let G be a finite group and let K be a field. If G is soluble then K may be either a
finite field, the rational field or a cyclotomic field whose order divides the exponent
of G. If G is non-soluble, then currently K is restricted to being a finite field
or the rational field. These functions construct all of the irreducible or absolutely
irreducible G-modules over K. Since V2.16, if K is the rational field, then by default
a new algorithm is used. Otherwise, if G is soluble, Schur’s algorithm is normally
used while if G is non-soluble, the Burnside method is used.

Alg MonStgElt Default :

The parameter Alg may be used to override the usual choice of algorithm if
desired. Note that Schur’s algorithm may only be applied to soluble groups, while,
for the time being, Burnside’s method requires that the field K is finite.

The Schur algorithm is usually very fast and is often able to find the complex
representations more quickly than it is possible to compute the character table.
The speed of the Burnside algorithm is determined firstly by the maximal degree
of the irreducible modules and secondly by the number of irreducible modules. It
will start to become quite slow if G has modules of dimension in excess of 1000.
In order to prevent the Burnside method from wasting huge amounts of time, the
algorithm takes a parameter which controls the degree of the largest module that
will be consider for splitting.

DimLim RngInt Default : 2000

Ch. 90 K[G]-MODULES AND GROUP REPRESENTATIONS 2741

The parameter DimLim only affects the Burnside algorithm where it is used to
limit the dimension of the modules which will be considered for splitting. If this
limit prevents all irreducibles being found, a warning message is output and those
irreducibles that have been found will be returned. This possibility allows the user
to determine a sample of low degree modules without using excessive time.

Example H90E13

We take a group of order 416 = 2513 and compute its irreducible modules over various fields.

> G := SmallGroup(416, 136);

> G;

GrpPC : G of order 416 = 2^5 * 13

PC-Relations:

G.1^2 = Id(G),

G.2^2 = G.5,

G.3^2 = Id(G),

G.4^2 = G.5,

G.5^2 = Id(G),

G.6^13 = Id(G),

G.3^G.1 = G.3 * G.5,

G.3^G.2 = G.3 * G.4,

G.4^G.2 = G.4 * G.5,

G.4^G.3 = G.4 * G.5,

G.6^G.1 = G.6^12

We first compute the K[G]-modules for the finite fields K = GF (p), where p runs through the
primes dividing the order of G.

> IrreducibleModules(G, GF(2));

[

GModule of dimension 1 over GF(2),

GModule of dimension 12 over GF(2)

]

> IrreducibleModules(G, GF(13));

[

GModule of dimension 1 over GF(13),

GModule of dimension 1 over GF(13),

GModule of dimension 1 over GF(13),

GModule of dimension 1 over GF(13),

GModule of dimension 1 over GF(13),

GModule of dimension 1 over GF(13),

GModule of dimension 1 over GF(13),

GModule of dimension 1 over GF(13),

GModule of dimension 2 over GF(13),

GModule of dimension 2 over GF(13),

GModule of dimension 4 over GF(13)

2742 REPRESENTATION THEORY Part XIII

]

We now compute the K[G]-modules where K is the rational field.

> time L := IrreducibleModules(G, Rationals());

Time: 16.170

> L;

[

GModule of dimension 1 over Rational Field,

GModule of dimension 1 over Rational Field,

GModule of dimension 1 over Rational Field,

GModule of dimension 1 over Rational Field,

GModule of dimension 1 over Rational Field,

GModule of dimension 1 over Rational Field,

GModule of dimension 1 over Rational Field,

GModule of dimension 1 over Rational Field,

GModule of dimension 2 over Rational Field,

GModule of dimension 2 over Rational Field,

GModule of dimension 8 over Rational Field,

GModule of dimension 12 over Rational Field,

GModule of dimension 12 over Rational Field,

GModule of dimension 12 over Rational Field,

GModule of dimension 12 over Rational Field,

GModule of dimension 24 over Rational Field,

GModule of dimension 96 over Rational Field

]

Finally, we compute the K[G]-modules taking K to be the splitting field over the rationals and
verify that the number of irreducibles is equal to the number of conjugacy classes of G.

> Exponent(G);

104

> mods := IrreducibleModules(G, CyclotomicField(104));

> #mods;

53;

> #Classes(G);

53

> [Dimension(N) : N in mods];

[1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4,

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]

> X := CharacterTable(G);

> [Degree(x) : x in X];

[1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4,

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]

Ch. 90 K[G]-MODULES AND GROUP REPRESENTATIONS 2743

90.5.2 The Burnside Algorithm
The Burnside algorithm finds all irreducible K[G]-modules with a faithful K[G]-module
P and looks for the distinct irreducibles among the tensor powers of P . Both irreducible
and absolutely irreducible modules may be found. At present the algorithm is restricted to
finite fields. In more detail the algorithm starts with a some faithful permutation module
over the given field, splits it into irreducibles using the meataxe, and constructing further
modules to split as tensor products of those already found. A warning is printed if all
irreducible modules are not found.

AbsolutelyIrreducibleModulesBurnside(G, K : parameters)

DimLim RngIntElt Default : 2000
Given a finite group G and a finite field K, this function constructs the absolutely
irreducible K[G]-modules over extensions of K. Currently, the group G is restricted
to a permutation group. The maximum dimension of a module considered for split-
ting is controlled by the parameter DimLim, which has default value 2000.

IrreducibleModulesBurnside(G, K : parameters)

DimLim RngIntElt Default : 2000
Given a finite group G and a finite field K, this function constructs the irreducible
K[G]-modules over K. Currently, the group G is restricted to a permutation group.
The maximum dimension of a module considered for splitting is controlled by the
parameter DimLim, which has default value 2000.

AbsolutelyIrreducibleConstituents(M)

Given an irreducible module M , return M if it is already absolutely irreducible, else
return the absolutely irreducible modules obtained by finding the constituents of M
after extending the base field of M to a splitting field.

Example H90E14

We find all irreducible modules for M11 over GF (2), and all absolutely irreducible modules of
characteristic 2. The Burnside algorithm is used by default.

> load m11;

Loading "/home/magma/libs/pergps/m11"

M11 - Mathieu group on 11 letters - degree 11

Order 7 920 = 2^4 * 3^2 * 5 * 11; Base 1,2,3,4

Group: G

> IrreducibleModules(G, GF(2));

[

GModule of dimension 1 over GF(2),

GModule of dimension 10 over GF(2),

GModule of dimension 44 over GF(2),

GModule of dimension 32 over GF(2)

]

> AbsolutelyIrreducibleModules(G, GF(2));

2744 REPRESENTATION THEORY Part XIII

[

GModule of dimension 1 over GF(2),

GModule of dimension 10 over GF(2),

GModule of dimension 44 over GF(2),

GModule of dimension 16 over GF(2^2),

GModule of dimension 16 over GF(2^2)

]

90.5.3 The Schur Algorithm for Soluble Groups
This collection of functions allows the user to find all irreducible modules of a finite soluble
group. The group is first replaced by an isomorphic group defined by a power-conjugate
presentation. The irreducibles are then found using Schur’s method of working up the
composition series for G defined by the pc-presentation.

IrreducibleModules(G, K : parameters)

AbsolutelyIrreducibleModulesSchur(G, K: parameters)

Let G be a finite soluble group and let K be one the following types of field: a
finite field, the rational field or a cyclotomic field. The order of a cyclotomic field
must divide the exponent of G. The function constructs all absolutely irreducible
representations of G over appropriate extensions or subfields of the field K. The
modules returned are non-isomorphic and consist of all distinct modules, subject to
the conditions imposed. In the case when K is a finite field, the Glasby-Howlett
algorithm is used to determine the minimal field over which an irreducible module
may be realised. If K has characteristic 0, the field over which an irreducible module
is given may not be minimal.

The irreducible modules are found using Schur’s method of climbing the compo-
sition series for G defined by the pc-presentation.

Process BoolElt Default : true

If the parameter Process is set true then the list is a list of pairs comprising an
integer and a representation. This list or any sublist of it is a suitable value for
the argument L in the last versions of the function, and in this case only the repre-
sentations in L will be extended up the series. This allows the user to inspect the
representations produced along the way and cull any that are uninteresting.

GaloisAction MonStgElt Default : “Y es”
Possible values are “Yes”, “No” and “Relative”. The default is “Yes” for interme-
diate levels and “No” for the whole group. The value “Yes” means that it only
lists one irreducible from each orbit of the action of the absolute Galois group
Gal(K/primefield(K)). Setting this parameter to “No” turns this reduction off
(thus listing all inequivalent representations), while setting it to “Relative” uses the
group Gal(K/k).

MaxDimension RngIntElt Default :

Ch. 90 K[G]-MODULES AND GROUP REPRESENTATIONS 2745

Restrict the irreducible to those of dimension ≤ MaxDimension. Default is no
restriction.

ExactDimension SetEnum Default :

If ExactDimension is assigned a set S of positive integers, attention is restricted to
irreducible having dimensions lying in the set S. The default is equivalent to taking
the set of all positive integers.

If both MaxDimension and ExactDimension are assigned values, then irre-
ducible having dimensions that are either bounded by MaxDimension or contained
in ExactDimension are produced.

IrreducibleModulesSchur(G, K: parameters)

Compute irreducible modules for G over the given field K. All arguments and
parameters are as for the absolutely irreducible case.

The computation proceeds by first computing the absolutely irreducible repre-
sentations subject to the given conditions, then rewriting over the field K, with a
consequent change of dimension of the representation.

Example H90E15

We compute representations of the dihedral group of order 20.

> G := DihedralGroup(GrpPC, 10);

> FactoredOrder(G);

[<2, 2>, <5, 1>]

First some modular representations with characteristic 2.

> r := IrreducibleModulesSchur(G, GF(2));

> r;

[*

GModule of dimension 1 over GF(2),

GModule of dimension 4 over GF(2)

*]

> r := AbsolutelyIrreducibleModulesSchur(G, GF(2));

> r;

[*

GModule of dimension 1 over GF(2),

GModule of dimension 2 over GF(2^2),

GModule of dimension 2 over GF(2^2)

*]

> r := AbsolutelyIrreducibleModulesSchur(G, GF(2) : GaloisAction:="Yes");

> r;

[*

GModule of dimension 1 over GF(2),

GModule of dimension 2 over GF(2^2)

*]

The irreducible representation of dimension 4 is not absolutely irreducible, as over GF (4) it splits
into two Galois-equivalent representations.

2746 REPRESENTATION THEORY Part XIII

Finding irreducible modules over the complex field is straightforward, despite not being able to
use the complex field as the field argument. We could instead specify the cyclotomic field having
order equal to the exponent of G, but it is preferable to ask for all absolutely irreducible modules
over the rationals.

> r := AbsolutelyIrreducibleModulesSchur(G, Rationals());

> r;

[*

GModule of dimension 1 over Rational Field,

GModule of dimension 1 over Rational Field,

GModule of dimension 1 over Rational Field,

GModule of dimension 1 over Rational Field,

GModule of dimension 2 over Cyclotomic Field of order 5 and degree 4,

GModule of dimension 2 over Cyclotomic Field of order 5 and degree 4,

GModule of dimension 2 over Cyclotomic Field of order 5 and degree 4,

GModule of dimension 2 over Cyclotomic Field of order 5 and degree 4

*]

> Representation(r[6])(G.2);

[zeta_5^3 0]

[0 zeta_5^2]

AbsolutelyIrreducibleRepresentationsInit(G, F : parameters)

AbsolutelyIrreducibleModulesInit(G, F : parameters)

IrreducibleRepresentationsInit(G, F : parameters)

IrreducibleModulesInit(G, F : parameters)

Initialize a Process for calculating all linear representations of a soluble group G
over the field F . The field F is restricted to either a finite field or the rationals.
The parameters are as described above.

NextRepresentation(P)

NextModule(P)

Return true and the next representation from the process P , if there is one, or just
false if the process is exhausted.

AbsolutelyIrreducibleRepresentationProcessDelete(∼P)

Free all data associated with the process P .

Ch. 90 K[G]-MODULES AND GROUP REPRESENTATIONS 2747

90.5.4 The Rational Algorithm
Magma V2.16 contains a new algorithm for constructing irreducible rational representa-
tions of an arbitrary finite group. This algorithm is now selected by default in the function
IrreducibleModules(G, K) when the field K is Q.

Given an irreducible complex character for a group G, the sum of its Galois orbit gives
an irreducible rational character for G. The Schur index of an irreducible rational character
χ is defined to be the Schur index of an irreducible complex character whose Galois orbit
sum is χ.

We call the sequence of all possible irreducible rational characters for G (sorted
by degree) the rational character table of G. The irreducible modules returned by
IrreducibleModules(G, RationalField()) always match the rational character table.

IrreducibleModules(G, Q : parameters)

Given a finite group G, this function returns a sequence L of all irreducible rational
K[G]-modules, and also the rational character table of G as a sequence C, which
matches L. The character of the i-th module L[i] is always si · C[i], where si

is the Schur index of C[i]. Thus the dimension of the irreducible module L[i] is
si·Deg(C[i]).

MaxDegree RngIntElt Default : 0
Setting the parameter MaxDegree to a positive integer D instructs the algo-

rithm not to spend effort on constructing irreducible modules whose corresponding
irreducible rational characters have degree greater than D. Note that irreducible
modules whose character degrees greater than D may be returned in any case, if
they are easily constructed (often as side effects of operations used to construct
smaller-dimensional modules).

Characters [AlgChtrElt] Default :

Setting the parameter Characters to a set or sequence S of characters for the
groupG instructs the algorithm to attempt to construct only the irreducible modules
whose characters are in S. Each character in S may either be an irreducible rational
character, or a (complex) ordinary character χ, in which case the irreducible rational
character corresponding to χ (the orbit sum of χ) is used. As for the parameter
MaxDegree, irreducible modules whose characters are not in S may be returned in
any case, if they are easily constructed or are needed as intermediate modules to
construct the desired modules.

CharacterDegrees [RngIntElt] Default :

Setting the parameter CharacterDegrees to a set or sequence I of positive in-
tegers instructs the algorithm to attempt to construct only the irreducible mod-
ules whose character degrees are in S. This is equivalent to setting the parameter
Characters to [c: c in RationalCharacterTable(G) | Degree(c) in I].

UseInduction BoolElt Default : true

By default, as the algorithm proceeds, it automatically searches for subgroups
Hi of G such that irreducible rational Hi-modules may be induced up to G to yield

2748 REPRESENTATION THEORY Part XIII

G-modules from which irreducible G-modules may be computed. In general, this
method is very effective (and often yields modules for G with small entries) but
can be very slow for some groups (particularly when G has many subgroups). Thus
setting the parameter UseInduction to false will force the algorithm not to use
induction.

RationalCharacterTable(G)

Given a finite group G, return the rational character table of G as a sequence C of
the irreducible rational characters of G (sorted by degree), and also a index sequence
I, such that for each i, C[i] is the sum of the Galois orbit of T [I[i]], where T is the
ordinary (complex) character table of G.

Example H90E16

We compute all irreducible rational modules for PSL(3, 3) and note that the characters of the
resulting modules match the entries in the rational character table.

> G := PSL(3, 3); #G;

5616

> T := CharacterTable(G); [Degree(x): x in T];

[1, 12, 13, 16, 16, 16, 16, 26, 26, 26, 27, 39]

> C := RationalCharacterTable(G); C;

[

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

(12, 4, 3, 0, 0, 1, 0, 0, -1, -1, -1, -1),

(13, -3, 4, 1, 1, 0, -1, -1, 0, 0, 0, 0),

(26, 2, -1, -1, 2, -1, 0, 0, 0, 0, 0, 0),

(27, 3, 0, 0, -1, 0, -1, -1, 1, 1, 1, 1),

(39, -1, 3, 0, -1, -1, 1, 1, 0, 0, 0, 0),

(52, -4, -2, -2, 0, 2, 0, 0, 0, 0, 0, 0),

(64, 0, -8, 4, 0, 0, 0, 0, -1, -1, -1, -1)

]

> time L := IrreducibleModules(G, RationalField());

Time: 0.760

> L;

[

GModule of dimension 1 over Rational Field,

GModule of dimension 12 over Rational Field,

GModule of dimension 13 over Rational Field,

GModule of dimension 26 over Rational Field,

GModule of dimension 27 over Rational Field,

GModule of dimension 39 over Rational Field,

GModule of dimension 52 over Rational Field,

GModule of dimension 64 over Rational Field

]

> [Character(M): M in L];

[

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

Ch. 90 K[G]-MODULES AND GROUP REPRESENTATIONS 2749

(12, 4, 3, 0, 0, 1, 0, 0, -1, -1, -1, -1),

(13, -3, 4, 1, 1, 0, -1, -1, 0, 0, 0, 0),

(26, 2, -1, -1, 2, -1, 0, 0, 0, 0, 0, 0),

(27, 3, 0, 0, -1, 0, -1, -1, 1, 1, 1, 1),

(39, -1, 3, 0, -1, -1, 1, 1, 0, 0, 0, 0),

(52, -4, -2, -2, 0, 2, 0, 0, 0, 0, 0, 0),

(64, 0, -8, 4, 0, 0, 0, 0, -1, -1, -1, -1)

]

Example H90E17

For large groups, one can use the parameter MaxDegree to compute the irreducible modules of
reasonable dimension.

> load m23;

Loading "/home/magma/libs/pergps/m23"

M23 - Mathieu group on 23 letters - degree 23

Order 10 200 960 = 2^7 * 3^2 * 5 * 7 * 11 * 23; Base 1,2,3,4,5,6

Group: G

> T := CharacterTable(G); [Degree(x): x in T];

[1, 22, 45, 45, 230, 231, 231, 231, 253, 770, 770,

896, 896, 990, 990, 1035, 2024]

> C := RationalCharacterTable(G); C;

[

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

(22, 6, 4, 2, 2, 0, 1, 1, 0, 0, 0, -1, -1, -1, -1, -1, -1),

(90, -6, 0, 2, 0, 0, -1, -1, -2, 2, 2, 1, 1, 0, 0, -2, -2),

(230, 22, 5, 2, 0, 1, -1, -1, 0, -1, -1, 1, 1, 0, 0, 0, 0),

(231, 7, 6, -1, 1, -2, 0, 0, -1, 0, 0, 0, 0, 1, 1, 1, 1),

(253, 13, 1, 1, -2, 1, 1, 1, -1, 0, 0, -1, -1, 1, 1, 0, 0),

(462, 14, -6, -2, 2, 2, 0, 0, -2, 0, 0, 0, 0, -1, -1, 2, 2),

(1035, 27, 0, -1, 0, 0, -1, -1, 1, 1, 1, -1, -1, 0, 0, 0, 0),

(1540, -28, 10, -4, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1),

(1792, 0, -8, 0, 2, 0, 0, 0, 0, -1, -1, 0, 0, 2, 2, -2, -2),

(1980, -36, 0, 4, 0, 0, -1, -1, 0, 0, 0, -1, -1, 0, 0, 2, 2),

(2024, 8, -1, 0, -1, -1, 1, 1, 0, 0, 0, 1, 1, -1, -1, 0, 0)

]

> Q := RationalField();

> time L := IrreducibleModules(G, Q: MaxDegree := 253);

Time: 23.400

> L;

[

GModule of dimension 1 over Rational Field,

GModule of dimension 22 over Rational Field,

GModule of dimension 90 over Rational Field,

GModule of dimension 230 over Rational Field,

GModule of dimension 231 over Rational Field,

GModule of dimension 253 over Rational Field,

2750 REPRESENTATION THEORY Part XIII

undef,

undef,

undef,

undef,

GModule of dimension 1980 over Rational Field

]

Note that the module of dimension 1980 is included (it was easily constructed as the tensor product
of modules of dimension 20 and 90).

90.6 Extensions of Modules
For K[G]-modules M and N , the K-vector Ext(M,N) of equivalence classes of K[G]-
module extensions

0 → N → L→M → 0

of N by M can be computed, and corresponding extensions L constructed.

Ext(M, N)

Given K[G]-modules M and N , construct the K-vector space Ext(M,N) of equiv-
alence classes of K[G]-module extensions of N by M .

Extension(M, N, e)

Construct a K[G]-module extension L of N by M corresponding to the element e
of E, where E must be the vector space returned by a previous call of Ext(M,N).
The insertion N → L and projection L→M are also returned.

MaximalExtension(M, N, E)

Again E must be the vector space returned by a previous call of Ext(M,N). Construct
the largest possible K[G]-module extension L of a direct sum of copies of N by M ,
such that none of the submodules of L that are isomorphic to N has a complement
in L.

Example H90E18

> G := Alt(5);

> I := IrreducibleModules(G, GF(2));

> I;

[

GModule of dimension 1 over GF(2),

GModule of dimension 4 over GF(2),

GModule of dimension 4 over GF(2)

]

> M1 := rep{M: M in I | Dimension(M) eq 1};

> M4 := rep{M: M in I | Dimension(M) eq 4 and not IsAbsolutelyIrreducible(M)};

> M4; assert not IsAbsolutelyIrreducible(M4);

Ch. 90 K[G]-MODULES AND GROUP REPRESENTATIONS 2751

GModule M of dimension 4 over GF(2)

> E, rho := Ext(M4, M1);

> E;

Full Vector space of degree 2 over GF(2)

> Extension(M4, M1, E.1, rho);

GModule of dimension 5 over GF(2)

[0 0 0 0 1]

[1 0 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 0 1]

[0 0 0 0]

> E := MaximalExtension(M4, M1, E, rho);

> E;

GModule E of dimension 6 over GF(2)

> CompositionFactors(E);

[

GModule of dimension 1 over GF(2),

GModule of dimension 1 over GF(2),

GModule of dimension 4 over GF(2)

]

90.7 The Construction of Projective Indecomposable Modules

For a finite group G and a finite field K, the projective indecomposable K[G]-modules
are in one-one correspondence with the irreducible K[G]-modules, where the projective
indecomposable module P corresponding to the irreducible module I has the property
that Socle(P) and P/JacobsonRadical(P) are both isomorphic to I.

Magma functions for the construction of the irreducible modules were described in
Subsection 90.5.1. The functions described in this section may be used to construct the
corresponding projective indecomposables for finite groups of moderate order – up to
around 106, depending on the example. Large-dimensional projective indecomposable
modules can sometimes be constructed by using condensation techniques, which allow
many of the necessary computations to be carried out in condensed modules, which may
have significantly smaller dimension than their standard uncondensed equivalents. As with
the computation of irreducible modules, these methods work best for permutation groups
and PC-groups.

The verbose flag "KGModule" may be set to 1 or 2 to show details of the computations.

2752 REPRESENTATION THEORY Part XIII

ProjectiveIndecomposableDimensions(G, K)

The K-dimensions of the projective indecomposable K[G]-modules corresponding to
the irreducible K[G]-modules returned by IrreducibleModules(G,K). (These can
be computed quickly from the Brauer characters of the irreducible modules, using
the Cartan matrix discussed below.)

ProjectiveIndecomposableModule(I: parameters)

Construct and return the projective indecomposable K[G]-module P corresponding
to the irreducible K[G]-module I. Note that Socle(P) and P/JacobsonRadical(P)
are both isomorphic to I.

condensation BoolElt Default : false

If set to true, then an attempt is made to find a subgroup of G which allows
computations to be carried out in condensed versions of the modules involved.

ProjectiveIndecomposableModules(G, K)

Construct the complete list of projective indecomposable K[G]-modules correspond-
ing to the irreducible K[G]-modules returned by IrreducibleModules(G,K).

condensation BoolElt Default : false

If set to true, then an attempt is made to find a subgroup of G which allows
computations to be carried out in condensed versions of the modules involved.

Example H90E19

We compute the projective indecomposable modules for the alternating group of degree 8 over
the field of order 2.

> G := Alt(8);

> K := GF(2);

> IrreducibleModules(G, K);

[

GModule of dimension 1 over GF(2),

GModule of dimension 4 over GF(2),

GModule of dimension 4 over GF(2),

GModule of dimension 6 over GF(2),

GModule of dimension 14 over GF(2),

GModule of dimension 20 over GF(2),

GModule of dimension 20 over GF(2),

GModule of dimension 64 over GF(2)

]

> ProjectiveIndecomposableDimensions(G, K);

[448, 192, 192, 320, 320, 192, 192, 64]

> time proj := ProjectiveIndecomposables(G, K);

Time: 22.070

> proj;

[

Ch. 90 K[G]-MODULES AND GROUP REPRESENTATIONS 2753

GModule of dimension 448 over GF(2),

GModule of dimension 192 over GF(2),

GModule of dimension 192 over GF(2),

GModule of dimension 320 over GF(2),

GModule of dimension 320 over GF(2),

GModule of dimension 192 over GF(2),

GModule of dimension 192 over GF(2),

GModule of dimension 64 over GF(2)

]

> CompositionFactors(proj[1]);

[

GModule of dimension 1 over GF(2),

GModule of dimension 20 over GF(2),

GModule of dimension 20 over GF(2),

GModule of dimension 1 over GF(2),

GModule of dimension 14 over GF(2),

GModule of dimension 6 over GF(2),

GModule of dimension 1 over GF(2),

GModule of dimension 20 over GF(2),

GModule of dimension 20 over GF(2),

GModule of dimension 1 over GF(2),

GModule of dimension 14 over GF(2),

GModule of dimension 4 over GF(2),

GModule of dimension 4 over GF(2),

GModule of dimension 14 over GF(2),

GModule of dimension 6 over GF(2),

GModule of dimension 1 over GF(2),

GModule of dimension 4 over GF(2),

GModule of dimension 4 over GF(2),

GModule of dimension 20 over GF(2),

GModule of dimension 20 over GF(2),

GModule of dimension 1 over GF(2),

GModule of dimension 14 over GF(2),

GModule of dimension 6 over GF(2),

GModule of dimension 1 over GF(2),

GModule of dimension 6 over GF(2),

GModule of dimension 14 over GF(2),

GModule of dimension 6 over GF(2),

GModule of dimension 1 over GF(2),

GModule of dimension 20 over GF(2),

GModule of dimension 4 over GF(2),

GModule of dimension 20 over GF(2),

GModule of dimension 1 over GF(2),

GModule of dimension 1 over GF(2),

GModule of dimension 1 over GF(2),

GModule of dimension 14 over GF(2),

GModule of dimension 1 over GF(2),

GModule of dimension 20 over GF(2),

2754 REPRESENTATION THEORY Part XIII

GModule of dimension 1 over GF(2),

GModule of dimension 6 over GF(2),

GModule of dimension 4 over GF(2),

GModule of dimension 20 over GF(2),

GModule of dimension 14 over GF(2),

GModule of dimension 4 over GF(2),

GModule of dimension 4 over GF(2),

GModule of dimension 1 over GF(2),

GModule of dimension 20 over GF(2),

GModule of dimension 6 over GF(2),

GModule of dimension 20 over GF(2),

GModule of dimension 1 over GF(2),

GModule of dimension 6 over GF(2),

GModule of dimension 14 over GF(2),

GModule of dimension 1 over GF(2)

]

CartanMatrix(G, K)

Let k be the number of irreducible K[G]-modules. The Cartan Matrix C for
G over K is a k × k matrix of integers, in which the entry Cij is equal to
the number of times that the j-th irreducible K[G]-module is a constituent of
the i-th projective indecomposable K[G]-module. This can be computed quickly
from the Brauer characters of the irreducible K[G]-modules, and is used in
ProjectiveIndecomposableDimensions.

(Note that, unlike the absolute Cartan matrix discussed below, C need not be
symmetric.)

AbsoluteCartanMatrix(G, K)

This is the Cartan matrix of G over an extension L of K that is large enough for all
irreducible L[G]-modules to be absolutely irreducible. Its rows and columns corre-
spond to the K[G]-modules returned by AbsolutelyIrreducibleModules(G,K).

It is a symmetric matrix with integer entries, and is equal to the Cartan matrix
for G in the characteristic p of K, as defined in textbooks on modular representation
theory.

DecompositionMatrix(G, K)

The decomposition matrix D of G in the characteristic p of K, as defined in text-
books on modular representation theory. The entry Dij is equal to the number of
times that the j-th absolutely irreducible K[G]-module occurs as a constituent of
the i-th ordinary irreducible G-module over the complex numbers reduced modulo
p. Note that DTD is equal to the absolute Cartan matrix.

Ch. 90 K[G]-MODULES AND GROUP REPRESENTATIONS 2755

ProjectiveCover(M)

Compute the projective cover P of K[G]-module M together with a K[G]-module
epimorphism P →M returned as a matrix.

If Pi is the projective indecomposable K[G]-module corresponding to the irre-
ducible K[G]-module Ii and M/JacobsonRadical(M) is isomorphic to ⊕t

j=1Iij
then

P is isomorphic to ⊕t
j=1Pij

.

CohomologicalDimension(M, n)

For K[G]-module M (with K a finite field and G a finite group), compute and return
the K-dimension of the cohomology group Hn(G,M) for n ≥ 0. For n = 0 and 1,
this is carried out by using the functions described in Chapter 68. For n ≥ 2, it
is done recursively using projective covers and dimension shifting to reduce to the
case n = 1. (In particular, for n = 2, the method is different from that employed
by the corresponding function for a cohomology module described in Chapter 68.)

CohomologicalDimensions(M, n)

For K[G]-module M (with K a finite field and G a finite group), compute and return
the sequence of K-dimensions of the cohomology groups Hk(G,M) for 1 ≤ k ≤ n.
On account of the recursive method used, this is quicker than computing them
individually.

Example H90E20

We compute the cohomology of the irreducible modules for Alt(8) over the field of order 2 com-
puted in the previous example.

> G := Alt(8);

> K := GF(2);

> irr := IrreducibleModules(G, K);

> [CohomologicalDimension(I, 1) : I in irr];

[0, 0, 0, 1, 1, 1, 1, 0]

> time [CohomologicalDimension(I, 2) : I in irr];

[1, 1, 1, 0, 2, 0, 0, 0]

Time: 0.440

> time [CohomologicalDimension(I, 3) : I in irr];

[2, 1, 1, 1, 1, 1, 1, 0]

Time: 15.070

> time [CohomologicalDimension(I, 4) : I in irr];

[2, 1, 1, 2, 3, 2, 2, 0]

Time: 99.500

> time CohomologicalDimensions(irr[1], 6);

[0, 1, 2, 2, 3, 6]

Time: 139.270

91 CHARACTERS OF FINITE GROUPS
91.1 Creation Functions 2759

91.1.1 Structure Creation 2759

ClassFunctionSpace(G) 2759
CharacterRing(G) 2759

91.1.2 Element Creation 2759

elt< > 2759
! 2759
! 2760
Id(R) 2760
Identity(R) 2760
One(R) 2760
PrincipalCharacter(G) 2760
Zero(R) 2760

91.1.3 The Table of Irreducible Characters 2760

KnownIrreducibles(G) 2761
CharacterTable(G :-) 2761
CharacterTableDS(G :-) 2761
Basis(R) 2762
CharacterTableConlon(G) 2762
LinearCharacters(G) 2762
CharacterDegrees(G) 2762
CharacterDegrees(G) 2762
CharacterDegrees(G) 2762
CharacterDegrees(G) 2762
CharacterDegrees(G, z, p) 2763
CharacterDegreesPGroup(G) 2763
RationalCharacterTable(G) 2763

91.2 Character Ring Operations . . 2764

91.2.1 Related Structures 2764

Parent Category 2764
Group(R) 2764
Centre(x) 2764
CoefficientField(x) 2764
Kernel(x) 2765

91.3 Element Operations 2765

91.3.1 Arithmetic 2765

+ - 2765
+ - * 2765
* ^ 2765

91.3.2 Predicates and Booleans 2765

in 2765
notin 2765
in notin 2765
eq ne 2765
IsCharacter(x) 2765
IsGeneralizedCharacter(x) 2766
IsIrreducible(x) 2766
IsLinear(x) 2766
IsFaithful(x) 2766
IsReal(x) 2766

IsOne IsMinusOne IsZero 2766

91.3.3 Accessing Class Functions 2766

T[i] 2766
T[i][j] 2766
2766
x(g) 2766
@ 2766
x[i] 2766
2767

91.3.4 Conjugation of Class Functions . . 2767

^ 2767
^ 2767
GaloisConjugate(x, j) 2767
GaloisOrbit(x) 2767
ClassPowerCharacter(x, j) 2767

91.3.5 Functions Returning a Scalar . . . 2767

Degree(x) 2767
InnerProduct(x, y) 2767
Order(x) 2767
Norm(x) 2768
Schur(x, k) 2768
Indicator(x) 2768
StructureConstant(G, i, j, k) 2768

91.3.6 The Schur Index 2768

SchurIndex(x) 2768
SchurIndex(x, F) 2768
SchurIndices(x) 2768
SchurIndices(x, F) 2768
SchurIndices(C, s, F) 2768
SchurIndexGroup(n: -) 2771
CharacterWithSchurIndex(n: -) 2771

91.3.7 Attribute 2771

AssertAttribute(x,
"IsCharacter", b) 2771

91.3.8 Induction, Restriction and Lifting . 2771

Induction(x, G) 2771
LiftCharacter(c, f, G) 2771
LiftCharacters(T, f, G) 2772
Restriction(x, H) 2772

91.3.9 Symmetrization 2772

Symmetrization(x, p) 2772
OrthogonalComponent(x, p) 2772
SymplecticComponent(x, p) 2772
SymmetricComponents(x, n) 2772
OrthogonalComponents(x, n) 2772
SymplecticComponents(x, n) 2773

91.3.10 Permutation Character 2773

PermutationCharacter(G) 2773
PermutationCharacter(G, H) 2773

91.3.11 Composition and Decomposition 2773

2758 REPRESENTATION THEORY Part XIII

Composition(T, q) 2773
Decomposition(T, y) 2773

91.3.12 Finding Irreducibles 2773

RemoveIrreducibles(I, C) 2774
ReduceCharacters(I, C) 2774

91.3.13 Brauer Characters 2776

BrauerCharacter(x, p) 2776
Blocks(T, p) 2776

91.4 Bibliography 2778

Chapter 91

CHARACTERS OF FINITE GROUPS

Assume that G is a finite group of exponent m with k conjugacy classes of elements. The
operators discussed here are concerned with the ring of class functions on G, defined to be
the ring of complex-valued functions on G that are constant on conjugacy classes. This
ring is made into a C-algebra by identifying c ∈ C with the constant function that is c
everywhere. In fact we will restrict ourselves to functions with values that are elements of
cyclotomic fields.

Elements of the ring, ie. objects of type AlgChtrElt, are represented by the k values
(elements of some cyclotomic field Q(ζn)) on the classes. The numbering of those elements
matches the numbering of the classes as returned by Classes applied to the underlying
group G: Thus X[i] is the value of the character X on the i-th class, ie. Classes(G)[i].

91.1 Creation Functions

91.1.1 Structure Creation

ClassFunctionSpace(G)

CharacterRing(G)

Given a finite group G, create the ring of complex-valued class functions. This
function will trigger the computation of the conjugacy classes of G if these are not
yet known. Information about the irreducible characters is stored in the ring when
it is computed.

91.1.2 Element Creation
The elementary constructions for class functions are listed. Other useful ways of defining
class functions and characters are defined in sections discussing the permutation charac-
ter, the (de)composition functions, and the sections on the conjugating, restricting and
inducing of class functions.

elt< R | a1, ..., ak :parameters >

R ! [a1, ..., ak]

Given the ring of class functions R of a finite group G with k conjugacy classes and
k elements ai contained in some common cyclotomic field, create a class function
on G for which the value on the i-th class is equal to the i-th term ai.

Character BoolElt Default : false

If Character := true, then the resulting character is flagged to be a proper char-
acter.

2760 REPRESENTATION THEORY Part XIII

R ! a

Define a constant class function for the ring of class functions R of the group G.
Here a is allowed to be an integer, a rational field element or a cyclotomic field
element.

Id(R)

Identity(R)

One(R)

PrincipalCharacter(G)

Given the finite groupG or its ring of class functions R, create the principal character
(which takes on the value 1 on every element of G).

Zero(R)

Given a ring of class functions R create its zero element (which is the class function
that takes on the value 0 on every element of the group).

91.1.3 The Table of Irreducible Characters
The function CharacterTable can be invoked to determine the complete or a partial table
of irreducible characters on a finite group G. If necessary, an existing character table can
be supplemented by another call to the function. The known irreducible characters are
stored in the character ring of G.

The default algorithm for character tables is Unger’s Induce/Reduce algorithm, de-
scribed in detail in [Ung06]. Computing character tables assumes that the classes of the
group can be computed and stored, along with a class representative for each class, as
well as the power map of the group. Unger’s algorithm constructs elementary subgroups
of the group (where elementary means direct product of cyclic group with p-group), and
constructs characters of these subgroups (using Conlon’s algorithm for the character ta-
ble of the p-part of the group). Following Brauer’s theorem on induced characters, these
characters are induced to the full group and all irreducible characters of the full group are
found in the integral span of the induced characters (using LLL reduction to maintain a
manageable basis of the character space found). The two potentially most time-consuming
parts of the algorithm are the computation of fusion in the elementary subgroups, which is
necessary for induction, and repeated use of LLL to maintain a basis of the space of gen-
eralised characters found to date. Arithmetic with generalised characters is done quickly
by using a finite field representation of these characters, as in Dixon’s work [Dix67], but
here the prime used may be twice the length of Dixon’s.

The Dixon-Schneider algorithm for computing character tables [Dix67, Sch90] is also
available. See below for details on how to access it. This was the previous default algorithm
for character tables. As indicated above, Conlon’s algorithm for the character table of a
p-group [Con90a] is also implemented, and may be accessed directly as indicated below.

The functions in this section return character tables, which are enumerated sequences
of characters that are flagged to allow printing in a special format.

Ch. 91 CHARACTERS OF FINITE GROUPS 2761

KnownIrreducibles(G)

Given a finite group G, or a class function space R of G, return the table of irre-
ducible characters currently stored. Such a table is a sequence of characters with
specially formatted printing.

It should be noted that characters are stored with some information about
whether they are characters, generalized characters or class functions. From this
information, it is often possible to deduce with little effort that a character is, in
fact, irreducible. When a new irreducible is found this way, it is immediately inserted
into the table of irreducible characters.

CharacterTable(G :parameters)

Construct the table of ordinary irreducible characters for the group G.
Al MonStgElt Default : “Default”
This parameter controls the algorithm used. The string "DS" forces use of

the Dixon-Schneider algorithm. The string "IR" forces the use of Unger’s In-
duce/Reduce algorithm [Ung06]. The string "Conlon" forces the use of Conlon’s
algorithm. This last is only valid when the group is a p-group. The "Default"
algorithm is to use Dixon-Schneider for groups of order ≤ 5000, Conlon’s algorithm
for larger p-groups and Unger’s algorithm for other groups. This may change in
future.

DSSizeLimit RngIntElt Default : 0
When the algorithm selected is either “Default” or “IR”, a positive value n

for DSSizeLimit means that before using ithe Induce/Reduce algorithm, the full
possible character space is split by some passes of the Dixon-Schneider algorithm,
restricted to using class matrices corresponding to conjugacy classes with size at
most n.

CharacterTableDS(G :parameters)

ClassMatrices SeqEnum Default : []
ClassMatrixLimit RngIntElt Default : ∞
ClassSizeLimit RngIntElt Default : ∞
MinChars RngIntElt Default : ∞
Modulus RngIntElt Default : 0

Given a finite group G, construct the table of irreducible characters of G using
the Dixon-Schneider algorithm [Dix67, Sch90]. The conjugacy classes of G will be
computed if necessary; if the user wishes to exert control over the computation of the
classes, the function Classes can be invoked on G before calling CharacterTableDS.

There are several optional parameters for CharacterTableDS. Assigning a non-
negative integer value m to MinChars, indicates that the computation is to be ter-
minated as soon as m or more additional characters have been found. By setting
ClassMatrixLimit to a positive integer n, the user can limit the number of class
matrices used. If the calculation of all irreducible characters (or at least m of them

2762 REPRESENTATION THEORY Part XIII

if MinChars has been set) cannot be completed by using k class matrices, an incom-
plete character table is returned. Setting ClassSizeLimit to an integer n restricts
the algorithm to computing class matrices corresponding to classes of size at most
n. Again, if the calculation of all irreducible characters cannot be completed using
class matrices from these small classes, an incomplete character table is returned.
The optional argument ClassMatrices (a sequence of integers in the range 1 . . . k,
where k is the number of conjugacy classes of G) can be used to specify a preference
for the order in which class matrices should be used. Finally the Modulus argument
can be used to set which prime field is used for the internal computations of the
Dixon-Schneider algorithm. The value used must be a prime equivalent to 1 modulo
the group exponent and greater than twice the square root of the group order.

The second return argument is the sequence of unsplit character spaces remaining
at the point the algorithm terminated. This is empty when the algorithm returns a
complete character table, but may be useful when an incomplete character table is
returned.

Basis(R)

The function Basis takes the character ring R of G as input and performs the same
computation to find the basis for R consisting of the irreducible characters.

Both CharacterTable and Basis return a character table, which is an enumer-
ated sequence of elements of the character ring over G (if necessary, the ring is
created) that only differs from arbitrary sequences of class functions with respect to
printing.

CharacterTableConlon(G)

Compute the character table of group G using Conlon’s algorithm for p-groups. The
group group G must thus be a p-group for some prime p.

LinearCharacters(G)

Given a finite group G, determine the (partial) character table containing only the
linear characters.

CharacterDegrees(G)

CharacterDegrees(G)

CharacterDegrees(G)

CharacterDegrees(G)

Returns the degrees of the ordinary irreducible characters of the finite group G. The
sequence returned has form [< d1, c1 >,< d2, c2 >, . . .] where ci is the number of
characters of degree di. For p-groups Slattery’s algorithm is used, for other soluble
groups Conlon’s counting algorithm is used, and for insoluble groups the character
table of G is computed.

Ch. 91 CHARACTERS OF FINITE GROUPS 2763

CharacterDegrees(G, z, p)

Returns the degrees of the absolutely irreducible characters of G lying over a faithful
linear character of 〈z〉, where z is a central element of G and p is zero or a prime.

CharacterDegreesPGroup(G)

Returns the degrees of the ordinary irreducible characters of the finite p-group G.
The sequence returned has form [c0, c1, c2 . . .], where ci is the number of characters
of degree pi. Slattery’s counting algorithm is used.

RationalCharacterTable(G)

Returns a sequence of minimal rational characters of G. These are the sums of the
Galois orbits on the character table of G.

Example H91E1

We use the CharacterTable function and print the resulting table. Character tables have a special
print format.

> G := Alt(5);

> CT := CharacterTable(G);

> CT;

Character Table of Group G

Class | 1 2 3 4 5

Size | 1 15 20 12 12

Order | 1 2 3 5 5

p = 2 1 1 3 5 4

p = 3 1 2 1 5 4

p = 5 1 2 3 1 1

X.1 + 1 1 1 1 1

X.2 + 3 -1 0 Z1 Z1#2

X.3 + 3 -1 0 Z1#2 Z1

X.4 + 4 0 1 -1 -1

X.5 + 5 1 -1 0 0

Explanation of Character Value Symbols

denotes algebraic conjugation, that is,

2764 REPRESENTATION THEORY Part XIII

#k indicates replacing the root of unity w by w^k

Z1 = (CyclotomicField(5: Sparse := true)) ! [

RationalField() | 1, 0, 1, 1]

> CT[2];

(3, -1, 0, zeta(5)_5^3 + zeta(5)_5^2 + 1, -zeta(5)_5^3 -

zeta(5)_5^2)

> CT[2]:Minimal;

(3, -1, 0, Z1, Z1#2)

The character table is represented as a sequence of characters. Non-rational values in a character
table are printed symbolically. This same printing can be forced on an individual character by
using Minimal printing.

Example H91E2

The CharacterTable algorithm can handle quite large groups. We illustrate this by computing
the character table of the almost simple group PΓU5(4).

> G := PGammaU(5,4);

> G;

Permutation group G acting on a set of cardinality 17425

Order = 2^22 * 3^2 * 5^5 * 13 * 17 * 41

> time CT := CharacterTable(G);

Time: 205.150

> #CT;

160

> Degree(CT[160]);

5227500

91.2 Character Ring Operations

91.2.1 Related Structures

Parent(R) Category(R)

Group(R)

Given the ring R of class functions on a finite group G, return G.

Centre(x)

The centre of the character x of G, i.e. the subgroup of G consisting of those classes
C of G for which |x(g)|, g in C, is equal to the degree of x.

CoefficientField(x)

The (minimal) coefficient field Qm of the class function x.

Ch. 91 CHARACTERS OF FINITE GROUPS 2765

Kernel(x)

The kernel of the character x of G, i.e. the normal subgroup of G consisting of those
elements g for which x(g) = x(1).

91.3 Element Operations

91.3.1 Arithmetic

In the list of arithmetic operations below x and y denote class functions in the same ring,
and a denotes a scalar, which is any element coercible into a cyclotomic field. Also, j
denotes an integer.

+ y - y

x + y x - y x * y

a * x x ^ j

91.3.2 Predicates and Booleans
The following Boolean-valued functions are available. Note that with the exception of in,
notin, IsReal and IsFaithful, these functions use the table of irreducible characters,
which will be created if it is not yet available.

x in y

Returns true if the inner product of class functions x and y is non-zero, otherwise
false. If x is irreducible and y is a character, this tests whether or not x is a
constituent of y.

x notin y

Returns true if the inner product of class functions x and y is zero, otherwise
false. If x is irreducible and y is a character, this tests whether or not x is not a
constituent of y. Returns true if the character x is not a constituent of the character
y, otherwise false.

a in F a notin F

x eq y x ne y

IsCharacter(x)

Returns true if the class function x is a character, otherwise false. A class function
is a character if and only if all inner products with the irreducible characters are
non-negative integers.

2766 REPRESENTATION THEORY Part XIII

IsGeneralizedCharacter(x)

Returns true if the class function x is a generalized character, otherwise false. A
class function is a generalized character if and only if all inner products with the
irreducible characters are integers.

IsIrreducible(x)

Returns true if the character x is an irreducible character, otherwise false.

IsLinear(x)

Returns true if the character x is a linear character, otherwise false.

IsFaithful(x)

Returns true if the character x is faithful, i.e. has trivial kernel, otherwise false.

IsReal(x)

Returns true if the character x is a real character, i.e. takes real values on all of
the classes of G, otherwise false.

IsOne(x) IsMinusOne(x) IsZero(x)

91.3.3 Accessing Class Functions
In this subsection T is a character table, and x is any class function. A character table
is an enumerated sequence of characters that has a special print function attached. In
particular, its entries can be accessed with the ordinary sequence indexing operations.

T[i]

Given the table T of ordinary characters of G, return the i-th character of G, where
i is an integer in the range [1...k].

T[i][j]

The value of the i-th irreducible character (from the character table T) on the j-th
conjugacy class of G.

#T

Given a character table T (or any sequence of characters), return the number of
entries.

x(g)

g @ x

The value of the class function x on the element g of G.

x[i]

The value of the class function x on the i-th conjugacy class of G.

Ch. 91 CHARACTERS OF FINITE GROUPS 2767

#x

Given a class function x on G return its length (which equals the number of conju-
gacy classes of the group G).

91.3.4 Conjugation of Class Functions

x ^ g

Given a class function x on a normal subgroup N of the group G, and an element
g of G, construct the conjugate class function xg of x which is defined as follows:
xg(n) = x(g−1ng), for all n in N .

x ^ H

Given a class function x on a normal subgroup N of the group G, and a subgroup
H of G, construct the sequence of conjugates of x under the action of the subgroup
H. The action of an element of H on x is that defined in the previous function.

GaloisConjugate(x, j)

Let Q(x) be the subfield of Q(ζm) generated by Q and the values of the G-character
x. This function returns the Galois conjugate xj of x under the action of the element
of the Galois group Gal(Q(x)/Q) determined by the integer j. The integer j must
be coprime to m.

GaloisOrbit(x)

Let Q(x) be the subfield of Q(ζm) generated by Q and the values of the G-character
x. This function returns the sequence of Galois conjugates of x under the action of
the Galois group Gal(Q(x)/Q).

ClassPowerCharacter(x, j)

Given a class function x on the group G and a positive integer j, construct the class
function xj which is defined as follows: xj(g) = x(gj).

91.3.5 Functions Returning a Scalar

Degree(x)

The degree of the class function x, i.e. the value of x on the identity element of G.

InnerProduct(x, y)

The inner product of the class functions x and y, where x and y are class functions
belonging to the same character ring.

Order(x)

Given a linear character of the group G, determine the order of x as an element of
the group of linear characters of G.

2768 REPRESENTATION THEORY Part XIII

Norm(x)

Norm of the class function x (which is the inner product with itself).

Schur(x, k)

Indicator(x)

Given class function x and a positive integer k, return the generalised Frobenius–
Schur indicator which is defined as follows: Suppose g is some element of G, and
set Tk(g) = |{h ∈ G|hk = g}|. The value of Schur(x, k) is the coefficient ax in
the expression Tk =

∑
x∈Irr(G) axx.

The call Indicator(x) is equivalent to Schur(x,2).

StructureConstant(G, i, j, k)

The structure constant ai,j,k for the centre of the group algebra of the group G. If
Ki is the formal sum of the elements of the i-th conjugacy class, ai,j,k is defined by
the equation Ki ∗Kj =

∑
k ai,j,k ∗Kk.

91.3.6 The Schur Index
Magma incorporates functions for computing the Schur index of an ordinary irreducible
character over various number fields and local fields. The routines below are all based on
the function SchurIndices(x), which computes the Schur Indices of the given character
over all the completions of the rationals.

The algorithm is based on calculations with characters, groups and fields, and does not
compute representations.

The algorithm was devised by Gabi Nebe and Bill Unger, with code written by Bill
Unger. The extension to compute a Schur index over a number field was written by Claus
Fieker.

SchurIndex(x)

SchurIndex(x, F)

The Schur index of the character x over the given field. When no field is given,
the Schur index over the rationals is returned. The character x must be a complex
irreducible character. The field F must be an absolute number field.

SchurIndices(x)

SchurIndices(x, F)

SchurIndices(C, s, F)

Compute the Schur indices of the character x over the completions of the given field.
The character x must be a complex irreducible character. The field F must be an
absolute number field. When no field is specified the rational field is assumed. The
last form takes the character field, C, and the output from SchurIndices(x), s,
as well as a number field. This is sufficient to compute the Schur indices over the
number field without repeating group and character computations when a number
of fields are being considered for one character.

Ch. 91 CHARACTERS OF FINITE GROUPS 2769

The return value is a sequence of pairs. Each pair gives a completion at which
the Schur index is not 1, followed by the Schur index over the complete field. For
the rational field, a completion is specified by an integer. The integer zero specifies
the archimedean completion (the real numbers), while a prime p specifies the p-adic
field Qp. When a number field is given, the completions are specified by a place of
the field, an object of type PlcNumElt.

If the character has Schur index 1 over the given field the return value will be an
empty sequence. Otherwise the Schur index over the given field is the least common
multiple of the second entries of the tuples returned.

Example H91E3

We first look at the faithful irreducible character of the Dihedral group of order 8. It has Schur
index 1.

> T := CharacterTable(SmallGroup(8, 3));

> T[5];

(2, -2, 0, 0, 0)

> SchurIndex(T[5]);

1

> SchurIndices(T[5]);

[]

The corresponding character of the quaternion group of order 8 has non-trivial Schur index.

> T := CharacterTable(SmallGroup(8, 4));

> T[5];

(2, -2, 0, 0, 0)

> SchurIndex(T[5]);

2

> SchurIndices(T[5]);

[<0, 2>, <2, 2>]

The Schur index is 2 over the real numbers and Q2. For all odd primes p, the Schur index over
Qp is 1. We look at the Schur index of this character over some number fields. First we look at
some cyclotomic fields.

> [SchurIndex(T[5], CyclotomicField(n)):n in [3..20]];

[1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1]

> SchurIndices(T[5], CyclotomicField(7));

[<Place at Prime Ideal

Two element generators:

[2, 0, 0, 0, 0, 0]

[1, 1, 0, 1, 0, 0], 2>, <Place at Prime Ideal

Two element generators:

[2, 0, 0, 0, 0, 0]

2770 REPRESENTATION THEORY Part XIII

[1, 0, 1, 1, 0, 0], 2>]

The cyclotomic field of order 7 gives Schur index 2. An archimedean completion of this field is
necessarily the field of complex numbers, hence no infinite places give Schur index greater than 1.
There are now two 2-adic completions which give Schur index 2.

> P<t> := PolynomialRing(Rationals());

> F := ext<Rationals()|t^3-2>;

> SchurIndex(T[5], F);

2

> SchurIndices(T[5], F);

[<1st place at infinity, 2>, <Place at Prime Ideal

Two element generators:

[2, 0, 0]

[0, 1, 0], 2>]

For the non-normal field F , one archimedean completion is real, the other complex. Thus the real
field features in the output of SchurIndices, along with the 2-adic completion.

Example H91E4

We will use a general construction for a character with given Schur index over the rationals to
construct a character with Schur index 6. Given an integer n ≥ 1, we select a prime p such that
p = kn + 1 where k and n are coprime. We take an integer a such that a has order n modulo p.
We then consider the metacyclic group

G = 〈< x, y|xn2
, yp, yx = ya〉.

The order of G is n2p. The subgroup of G generated by xn and y is cyclic, normal and self-
centralizing in G with order np. If λ is any faithful linear character of this subgroup, then λG is
an irreducible character of G with Schur index n over the rational field. The correctness of this
construction is proved in Lemma 3 of [Tur01].
We construct G in two stages. First as a finitely presented group as described above. Then we
convert to a PC-presentation for further computations. We take n = 6, p = 7 and a = 3.

> G1 := Group<x,y|x^36, y^7, y^x = y^3>;

> G, f := SolubleQuotient(G1, 36*7);

> x := f(G1.1); y := f(G1.2);

> C := sub<G|x^6,y>;

> IsCyclic(C);

true

> IsNormal(G, C);

true

> Centralizer(G,C) eq C;

true

> exists(l){l:l in LinearCharacters(C)|IsFaithful(l)};

true;

> c := Induction(l, G);

> IsIrreducible(c);

true

> Degree(c);

Ch. 91 CHARACTERS OF FINITE GROUPS 2771

6

> CharacterField(c);

Cyclotomic Field of order 3 and degree 2 in sparse

representation

> SchurIndex(c);

6

The construction of the previous example is used in the following two intrinsics.

SchurIndexGroup(n: parameters)

Prime RngIntElt Default :

Return a group having a faithful character with Schur index n over the rational
field. The construction used is as in the previous example. The parameter Prime
may be used to supply the prime p. (The necessary conditions on p are not checked.
If these conditions are not met, an error is possible.) If Prime is not set, then the
least prime meeting the conditions is used.

CharacterWithSchurIndex(n: parameters)

Prime RngIntElt Default :

Return a character with Schur index n over the rational field. The construction used
is as in the previous example. The second return value is the group of the character,
equal to SchurIndexGroup(n). The parameter Prime is as for SchurIndexGroup.

91.3.7 Attribute

AssertAttribute(x, "IsCharacter", b)

Procedure that, given a class function x and a Boolean value b, stores with x the
information that the value of the predicate IsCharacter(x) equals b.

91.3.8 Induction, Restriction and Lifting

Induction(x, G)

Given a class function x on the subgroup H of the group G, construct the class
function obtained by induction of x to G. Note that if x is a character of H, then
Induction(x, G) will return a character of G.

The Induction command may also be used to induce a sequence of characters
of a particular subgroup (such as a character table) to the given supergroup.

LiftCharacter(c, f, G)

Given a class function c of the quotient group Q of the group G and the natural
homomorphism f : G→ Q, lift c to a class function of G.

2772 REPRESENTATION THEORY Part XIII

LiftCharacters(T, f, G)

Given a sequence T of class functions of the quotient group Q of the group G and
the natural homomorphism f : G → Q, lift T to a sequence of corresponding class
functions of G. Since a character table is just a sequence of class functions which is
printed in a special way, this intrinsic may also be applied to it.

Restriction(x, H)

Given a class function x on the group G and a subgroup H of G, construct the
restriction of x to H (a class function). Note that if x is a character of G, then
Restriction(x, H) will return a character of H.

91.3.9 Symmetrization
See [Mur58] or [Fra82] for more details.

Symmetrization(x, p)

Given a class function x and a partition p of n (2 ≤ n ≤ 6), this function returns
the symmetrized character with respect to p; the partition must be specified in the
form of a sequence of positive integers (adding up to n).

OrthogonalComponent(x, p)

Given a class function x and a partition p of n (2 ≤ n ≤ 6), this function returns
the Murnaghan component of the orthogonal symmetrization of x with respect to p;
the partition must be specified in the form of a sequence of positive integers (adding
up to n). Here x may not be a linear character, and its Frobenius–Schur indicator
must be 1.

SymplecticComponent(x, p)

Given a class function x and a partition p of n (2 ≤ n ≤ 6), this function returns
the Murnaghan component of the symplectic symmetrization of x with respect to p;
the partition must be specified in the form of a sequence of positive integers (adding
up to n). Here x may not be a linear character, and its Frobenius–Schur indicator
must be −1.

SymmetricComponents(x, n)

Given a class function x and an integer n, return the set of symmetrizations of x by
all partitions of m with 2 < m ≤ n ≤ 5.

OrthogonalComponents(x, n)

Given a class function x, return the set of Murnaghan components for orthogonal
symmetrizations of x by all partitions of m with 2 < m ≤ n ≤ 6. Here x may not
be a linear character, and its Frobenius–Schur indicator must be 1.

Ch. 91 CHARACTERS OF FINITE GROUPS 2773

SymplecticComponents(x, n)

Given a class function x, return the set of Murnaghan components for symplectic
symmetrizations of x by all partitions of m with 2 < m ≤ n ≤ 5. Here x may not
be a linear character, and its Frobenius–Schur indicator must be −1.

91.3.10 Permutation Character

PermutationCharacter(G)

Given group G represented as a permutation group, construct the character of G
afforded by the defining permutation representation of G.

PermutationCharacter(G, H)

Given a group G and some subgroup H of G, construct the character of G afforded
by the permutation representation of G given by the action of G on the right cosets
of H in G.

91.3.11 Composition and Decomposition

Composition(T, q)

Given a sequence or table of characters T for the group G and a sequence q of k
elements of Q(ζm) (possibly Q), create the class function q1 ∗ T1 + · · · + qk ∗ Tk,
where Ti is the i-th character in T .

Decomposition(T, y)

Given a sequence or table of class functions T for G of length l and a class function
y on G, attempt to express y as a linear combination of the elements of T .

The function returns two values: a sequence q = [q1, . . . , ql] of cyclotomic field
elements and a class function z. For 1 ≤ i ≤ l, the i-th term of q is defined to
be the ratio of inner products (y, Ti)/(Ti, Ti), where Ti is the i-th entry of T . The
sequence q determines a class function x = q1 · T1 + · · · + ql · Tl which will equal y
if T is the complete table of irreducible characters. The difference z = y − x is the
second return value. If the entries in T are mutually orthogonal, then z is the zero
class function if and only if y is a linear combination of the Ti.

91.3.12 Finding Irreducibles
A common approach to finding the irreducible characters of a group is to start with an
irreducible character and generate new characters by applying SymmetricComponents,
OrthogonalComponents or SymplecticComponents. Then, by examining norms and inner
products, it is often possible to identify irreducible characters or at least characters with
smaller norms. There are two Magma intrinsics available to help with this task.

2774 REPRESENTATION THEORY Part XIII

RemoveIrreducibles(I, C)

Remove occurrences of the irreducible characters in the sequence I from the char-
acters in the sequence C and look for characters of norm 1 among the reduced
characters. Return a sequence of new irreducibles found and the sequence of re-
duced characters.

ReduceCharacters(I, C)

Make the norms of the characters in the sequence C smaller by computing the
differences of appropriate pairs. Return a sequence of new irreducibles found and a
sequence of reduced characters.

Example H91E5

We conclude this section with an example, showing how the above functions can be used to
construct the character table for A5 (compare Isaacs, p64), using only characters on subgroups.

> A := AlternatingGroup(GrpPerm, 5);

> R := CharacterRing(A);

The first character will be the principal character

> T1 := R ! 1;

> T1;

(1, 1, 1, 1, 1)

Next construct the permutation character

> pc := PermutationCharacter(A);

> T2 := pc - T1;

> InnerProduct(pc, T1), InnerProduct(T2, T2);

1 1

> T2;

(4, 0, 1, -1, -1)

It follows that pc - T1 is an irreducible character

> B := Stabilizer(A, 5);

> r := RootOfUnity(3, CyclotomicField(3));

> S := CharacterRing(B);

> lambda := S ! [1, 1, r, r^2];

> IsLinear(lambda);

true

This defines a linear character on a subgroup of index 5 in A

> T3 := Induction(lambda, A);

> InnerProduct(T3, T3);

1

> T3;

Ch. 91 CHARACTERS OF FINITE GROUPS 2775

(5, 1, -1, 0, 0)

Finally we use characters on the cyclic subgroup of order 5:

> K := sub<A | (1,2,3,4,5) >;

> Y := CharacterTable(K);

> Y;

Character Table of Group K

Class | 1 2 3 4 5

Size | 1 1 1 1 1

Order | 1 5 5 5 5

p = 5 1 1 1 1 1

X.1 + 1 1 1 1 1

X.2 0 1 Z1 Z1#2 Z1#3 Z1#4

X.3 0 1 Z1#2 Z1#4 Z1 Z1#3

X.4 0 1 Z1#3 Z1 Z1#4 Z1#2

X.5 0 1 Z1#4 Z1#3 Z1#2 Z1

Explanation of Symbols:

denotes algebraic conjugation, that is,

k indicates replacing the root of unity w by w^k

Z1 = -1 - zeta 5 - zeta 5^2 - zeta 5^3

> mu := Induction(Y[2], A);

We subtract what we already know from mu and get a new irreducible. We use decomposition
with respect to a sequence.

> _, T4 := Decomposition([T1, T2, T3], mu);

> InnerProduct(T4, T4);

1

> T4;

(3, -1, 0, (1 + zeta_5^2 + zeta_5^3), (-zeta_5^2 - zeta_5^3))

> T5 := GaloisConjugate(T4, 2);

> T5;

(3, -1, 0, (-zeta_5^2 - zeta_5^3), (1 + zeta_5^2 + zeta_5^3))

Compare this to the standard character table:

> CharacterTable(A);

Character Table of Group A

2776 REPRESENTATION THEORY Part XIII

Class | 1 2 3 4 5

Size | 1 15 20 12 12

Order | 1 2 3 5 5

p = 2 1 1 3 5 4

p = 3 1 2 1 5 4

p = 5 1 2 3 1 1

X.1 + 1 1 1 1 1

X.2 + 3 -1 0 Z1 Z1#2

X.3 + 3 -1 0 Z1#2 Z1

X.4 + 4 0 1 -1 -1

X.5 + 5 1 -1 0 0

Explanation of Symbols:

denotes algebraic conjugation, that is,

k indicates replacing the root of unity w by w^k

Z1 =(1 + zeta_5^2 + zeta_5^3)

91.3.13 Brauer Characters
Magma has some support for the calculation of Brauer characters. These functions are
noted in this section. We anticipate considerable change to the functionality described
here in the near future.

A Brauer character modulo p in Magma is represented as a class function (that is,
element of a character ring) which is zero on p-singular group elements. In this format
the standard character operations of addition, multiplication, induction and restriction all
apply directly to Brauer characters as they do to other class functions.

Note that problems associated with choice of lifting from finite fields to complex roots
of unity have not yet been dealt with.

BrauerCharacter(x, p)

The Brauer character modulo the prime p obtained by setting the value of x on
p-singular elements to be zero.

Blocks(T, p)

When T is the full ordinary character table of a group, return the partition of T into
p-blocks, where p is a given prime. The partition is returned as a sequence of sets of
integers which give the blocks by the positions of the characters in T . The second
return value is the corresponding sequence of defects of the blocks. The blocks are
ordered first by decreasing defect, second by first character in the block.

Ch. 91 CHARACTERS OF FINITE GROUPS 2777

Example H91E6

We give an example of the use of these Brauer character functions. We consider the 3-modular
characters of the Higman-Sims simple group.

> load hs176;

> T := CharacterTable(G);

> Blocks(T,3);

[

{ 1, 2, 5, 10, 18, 19, 21, 23, 24 },

{ 3, 4, 6, 7, 11, 12, 14, 15, 20 },

{ 8, 13, 16 },

{ 9 },

{ 17 },

{ 22 }

]

[2, 2, 1, 0, 0, 0]

The characters T [8], T [13], T [16] are the ordinary irreducible characters in a 3-block of defect one.
In such a small block the two ordinary irreducibles of minimal degree will restrict to modular
irreducibles.

> [Degree(T[i]): i in [8, 13, 16]];

[231, 825, 1056]

> BrauerCharacter(T[8], 3);

(231, 7, -9, 0, 15, -1, -1, 6, 1, 1, 0, 0, 0, -1, -1, -1,

2, 1, 0, 0, 0, 0, 0, 0)

> BrauerCharacter(T[13], 3);

(825, 25, 9, 0, -15, 1, 1, 0, -5, 0, 0, 0, -1, 1, 1, 1, 0,

-1, 0, 0, 0, 0, 0, 0)

> $1 + $2 eq BrauerCharacter(T[16], 3);

true

The projective indecomposable characters corresponding to these Brauer irreducible characters
are as follows.

> T[8] + T[16];

(1287, 39, -9, 0, 15, -1, -1, 12, -3, 2, 0, 0, -1, -1, -1,

-1, 4, 1, 0, 0, 0, 0, 0, 0)

> T[13] + T[16];

(1881, 57, 9, 0, -15, 1, 1, 6, -9, 1, 0, 0, -2, 1, 1, 1, 2,

-1, 0, 0, 0, 0, 0, 0)

2778 REPRESENTATION THEORY Part XIII

91.4 Bibliography
[Con90] S. B. Conlon. Calculating characters of p-groups. J. Symbolic Comp., 9:535–550,

1990.
[Dix67] J. D. Dixon. High–speed computation of group characters. Numerische Math-

ematik, 10:446–450, 1967.
[Fra82] J. S. Frame. Recursive computation of tensor power components. Bayreuth.

Math. Schr., (10):153–159, 1982.
[Mur58] F. D. Murnaghan. The orthogonal and symplectic groups. Comm. Dublin Inst.

Adv. Studies. Ser. A, no., 13:146, 1958.
[Sch90] G. J. A. Schneider. Dixon’s Character Table Algorithm Revisited. J. Symbolic

Computation, 9:601–606, 1990.
[Tur01] A. Turull. Schur indices of perfect groups. Proc. Amer. Math. Soc., 130(2):

367–370, 2001.
[Ung06] W.R. Unger. Computing the character table of a finite group. J. Symbolic

Comp., 41(8):847–862, 2006.

92 REPRESENTATIONS
OF SYMMETRIC GROUPS

92.1 Introduction 2781

92.2 Representations of the Symmet-
ric Group 2781

92.2.1 Integral Representations 2781

SymmetricRepresentation(pa, pe) 2781

92.2.2 The Seminormal and Orthogonal
Representations 2782

SymmetricRepresentation
Seminormal(pa, pe) 2782

SymmetricRepresentation
Orthogonal(pa, pe) 2782

92.3 Characters of the Symmetric
Group 2783

92.3.1 Single Values 2783

SymmetricCharacterValue(pa, pe) 2783

92.3.2 Irreducible Characters 2783

SymmetricCharacter(pa) 2783

92.3.3 Character Table 2783

SymmetricCharacterTable(d) 2783

92.4 Representations of the Alternat-
ing Group 2783

92.5 Characters of the Alternating
Group 2784

92.5.1 Single Values 2784

AlternatingCharacterValue(pa, pe) 2784
AlternatingCharacterValue(pa, i, pe) 2784

92.5.2 Irreducible Characters 2784

AlternatingCharacter(pa) 2784
AlternatingCharacter(pa, i) 2784

92.5.3 Character Table 2784

AlternatingCharacterTable(d) 2784

92.6 Bibliography 2785

Chapter 92

REPRESENTATIONS
OF SYMMETRIC GROUPS

92.1 Introduction
This chapter describes functions available in Magma for computations concerning the
non modular representation theory of the symmetric group and the alternating group. It
is possible to compute different matrix representations, complete character tables using
special routines, single irreducible characters or the value of an irreducible character on an
element of the group.

92.2 Representations of the Symmetric Group
For the symmetric group of degree n the irreducible representations can be indexed by
partitions of weight n. For more information on partitions see Section 145.2.

92.2.1 Integral Representations
It is possible to define representing matrices of the symmetric group over the integers.

SymmetricRepresentation(pa, pe)

Al MonStgElt Default : “JamesKerber”
Given a partition pa of weight n and a permutation pe in a symmetric group of
degree n, return an irreducible representing matrix for pe, indexed by pa, over the
integers. If Al is set to the default "JamesKerber" then the method described in
[JK81] is used. If Al is set to "Boerner" the method described in the book of
Boerner [Boe67] is used. If Al is set to "Specht" then the method used is a direct
implementation of that used by Specht in his paper from 1935 [Spe35].

Example H92E1

We compute a representing matrix of a permutation using two different algorithms and check
whether the results have the same character.

> a:=SymmetricRepresentation([3,2],Sym(5)!(3,4,5) : Al := "Boerner");a;

[0 0 1 -1 0]

[1 0 0 -1 0]

[0 1 0 -1 0]

[0 0 0 -1 1]

[0 0 0 -1 0]

> b:=SymmetricRepresentation([3,2],Sym(5)!(3,4,5) : Al := "Specht");b;

2782 REPRESENTATION THEORY Part XIII

[0 1 0 -1 0]

[0 0 1 0 -1]

[1 0 0 0 0]

[0 0 0 0 -1]

[0 0 0 1 -1]

> IsSimilar(Matrix(Rationals(), a), Matrix(Rationals(), b));

true

The matrices are similar as they should be.

92.2.2 The Seminormal and Orthogonal Representations
The seminormal and orthogonal representations involve matrices which are not necessarily
integral. The method Magma uses to construct these matrices is described in [JK81,
Section 3.3];

SymmetricRepresentationSeminormal(pa, pe)

Given a partition pa of weight n and a permutation pe in a symmetric group of
degree n, return the matrix of the seminormal representation for pe, indexed by pa,
over the rationals.

SymmetricRepresentationOrthogonal(pa, pe)

Given a partition pa of weight n and a permutation pe in a symmetric group of
degree n, return the matrix of the orthogonal representation for pe, indexed by pa.
An orthogonal basis is used to compute the matrix which may have entries in a
cyclotomic field.

Example H92E2

We compare the seminormal and orthogonal representations of a permutation and note that they
are similar.

> g:=Sym(5)!(3,4,5);

> a:=SymmetricRepresentationSeminormal([3,2],g);a;

[-1/2 0 -3/4 0 0]

[0 1/2 0 3/4 0]

[1 0 -1/2 0 0]

[0 1/3 0 -1/6 8/9]

[0 1 0 -1/2 -1/3]

> b:=SymmetricRepresentationOrthogonal([3,2],g);b;

[-1/2 0 zeta(24)_8^2*zeta(24)_3 + 1/2*zeta(24)_8^2 0 0]

[0 1/2 0 -zeta(24)_8^2*zeta(24)_3 - 1/2*zeta(24)_8^2 0]

[-zeta(24)_8^2*zeta(24)_3 - 1/2*zeta(24)_8^2 0 -1/2 0 0]

[0 -1/3*zeta(24)_8^2*zeta(24)_3 - 1/6*zeta(24)_8^2 0

-1/6 2/3*zeta(24)_8^3 - 2/3*zeta(24)_8]

[0 2/3*zeta(24)_8^3*zeta(24)_3 + 1/3*zeta(24)_8^3

+ 2/3*zeta(24)_8*zeta(24)_3 + 1/3*zeta(24)_8 0

Ch. 92 REPRESENTATIONS OF SYMMETRIC GROUPS 2783

-1/3*zeta(24)_8^3 + 1/3*zeta(24)_8 -1/3]

> IsSimilar(a,b);

true

They should both be of finite order, 3.

> IsOne(a^Order(g));

true

> IsOne(b^Order(g));

true

>

92.3 Characters of the Symmetric Group

92.3.1 Single Values
The method used to compute the value of a character on a permutation is the recursion
formula of Murnaghan and Nakayama [JK81, p. 60], except when computing the value of
a character on the identity permutation a formula for the dimension of the representation
indexed by a partition is used, [JK81, p. 56].

SymmetricCharacterValue(pa, pe)

Computes the value of the irreducible character of the symmetric group of degree n
indexed by the partition pa of weight n on the permutation pe. When computing the
value of the character on the identity permutation, i.e. the degree of the character,
the dimension (hook) formula is used on the partition pa.

92.3.2 Irreducible Characters

SymmetricCharacter(pa)

Return the character of the representation of the symmetric group of degree n
indexed by the partition pa where pa has weight n.

92.3.3 Character Table

SymmetricCharacterTable(d)

Return the character table of the symmetric group of degree d.

92.4 Representations of the Alternating Group

2784 REPRESENTATION THEORY Part XIII

92.5 Characters of the Alternating Group

There is a special routine which computes the character table of the alternating group, as
well as routines which compute values of alternating characters and the characters them-
selves. These routines make use of the fact that in most cases the irreducible characters of
the symmetric group, which can be computed quickly, are also irreducible in the alternating
group. So the irreducible characters of the alternating group may be indexed by partitions
in the same way as those of the symmetric group. As the restriction of the irreducible
character indexed by the partition λ is equal to the restriction of the character indexed
by the conjugate partition, we only need to take one from each of these pairs of partitions
to form a full set of irreducible characters. When a partition is conjugate to itself the
character of the symmetric group indexed by that partition is no longer irreducible but is
the sum of two irreducibles. This method is described in [JK81].

92.5.1 Single Values

AlternatingCharacterValue(pa, pe)

Return the value of the character of the alternating group of degree n indexed by the
partition pa of weight n on the permutation pe. The partition pa and its conjugate
should be distinct.

AlternatingCharacterValue(pa, i, pe)

Return the value of the ith character of the alternating group of degree n indexed
by the self conjugate partition pa of weight n on the permutation pe. Since there
are two possible irreducible characters indexed by such partitions i must be either
1 or 2.

92.5.2 Irreducible Characters

AlternatingCharacter(pa)

Return the character of the alternating group of degree n indexed by the partition
pa of weight n. The partition pa and its conjugate should be distinct.

AlternatingCharacter(pa, i)

Return the ith character of the alternating group of degree n indexed by the self
conjugate partition pa of weight n. Since there are two possible irreducible characters
indexed by such partitions i must be either 1 or 2.

92.5.3 Character Table

AlternatingCharacterTable(d)

Returns the character table of the alternating group of degree d.

Ch. 92 REPRESENTATIONS OF SYMMETRIC GROUPS 2785

92.6 Bibliography
[Boe67] H. Boerner. Darstellungen von Gruppen. 2. Aufl. Berlin-Heidelberg-New York:

Springer-Verlag. XIV, 317 S. , 1967.
[JK81] Gordon James and Adalbert Kerber. The representation theory of the symmetric

group. Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P.
M. Cohn, With an introduction by Gilbert de B. Robinson.

[Spe35] Wilhelm Specht. Die irreduziblen Darstellungen der symmetrischen Gruppe.
Math. Z., 39:696–711, 1935.

93 MOD P GALOIS REPRESENTATIONS
93.1 Introduction 2789

93.1.1 Motivation 2789

93.1.2 Definitions 2789

93.1.3 Classification of ϕ-modules 2790

93.1.4 Connection with Galois Representa-
tions 2790

93.2 ϕ-modules and Galois Represen-
tations in Magma 2790

93.2.1 ϕ-modules 2791

PhiModule(M) 2791
ElementaryPhiModule(S,d,h) 2791
PhiModuleElement(x,D) 2791
Dimension(D) 2791
CoefficientRing(D) 2791
FrobeniusMatrix(D) 2791

IsEtale(D) 2791
ChangePrecision(∼D, prec) 2791
DirectSum(D1, D2) 2791
BaseChange(∼D, P) 2792
RandomBaseChange(∼D) 2792
Phi(D, x) 2792
SemisimpleDecomposition(D) 2792
Slopes(D) 2792
SSGaloisRepresentation(D) 2792

93.2.2 Semisimple Galois Representations 2792

SSGaloisRepresentation(E,K,w,P) 2792
CoefficientRing(V) 2793
FixedField(V) 2793
Weights(V) 2793
SSGaloisRepresentation(D) 2793

93.3 Examples 2793

Chapter 93

MOD P GALOIS REPRESENTATIONS

93.1 Introduction
This package provides tools to work with ϕ-modules over k((u)) where k is a finite field, and
representations of the absolute Galois group of k((u)) with coefficients in a finite field. The
main functionality of the package computes the semisimplification of a given ϕ-module,
and the semisimplification of the Galois representation that is naturally attached to it. In
particular, the slopes of the ϕ-module, corresponding to the tame inertia weights of the
Galois representation, can be computed using this package.

93.1.1 Motivation
Let K be a p-adic field and let GK be the absolute Galois group of K. Representations
of this group naturally arise from geometry, namely from the p-adic étale cohomology of a
scheme over K.

The study of these representations is a central topic in arithmetic, and a motivation
for creating this package is the following: let V be a Qp-representation of GK , i.e. a
Qp-vector space endowed with a continuous, linear action of GK . Now let T ⊂ V be any
Zp-lattice stable under the action of GK . There always exists such a lattice. Moreover, the
quotient T/pT has a natural structure of Fp-representation of GK . This representation
depends on the choice of T , but its semisimplification (T/pT)ss does not, according to the
Brauer-Nesbitt theorem. Recall the semisimplification of a representation is the direct sum
of the composition factors appearing in any Jordan-Holder sequence of this representation.
Therefore, it is an interesting question to determine properties of (T/pT)ss in terms of V .
Although the Fontaine-Laffaille theory completely addresses this question for some V , the
general case remains an open question. Some computations concerning this problem can
be performed in Magma using this package.

93.1.2 Definitions
Let k be a finite field of characteristic p, and let K = k((u)) be the field of Laurent series
with coefficients in k. Let s ≥ 0 and b ≥ 2 be integers. We define a “Frobenius” map σ on
K by the following formula:

σ

(∑

i∈Z

aiu
i

)
=

∑

i∈Z

aps

i u
bi.

A ϕ-module over K is the data of a finite-dimensional K-vector space D, endowed with
an endomorphism ϕ : D → D that is semilinear with respect to σ. This means that for
all λ ∈ K, x ∈ D, we have the identity ϕ(λx) = σ(λ)ϕ(x).

A ϕ-module is said to be étale if the map ϕ is injective. A ϕ-module can be described
by the matrix representing the action of ϕ on some basis of D, and it is étale if and only
if this matrix is invertible.

2790 REPRESENTATION THEORY Part XIII

93.1.3 Classification of ϕ-modules
Some ϕ-modules play a crucial role in the theory because they are the simple objects in
the category of étale ϕ-modules over the maximal unramified extension Kur of K.

Let d ≥ 1, h ∈ Z, λ ∈ k̄. We define the ϕ-module D(d, s, λ) as the ϕ-module of
dimension d whose matrix in some basis is the companion matrix of the polynomial T d−uh.
We also write D(d, h) = D(d, h, 1). Note that in general there are several ways to extend
the action of σ on Kur, but we may only distinguish the cases where σ acts as identity
on k, and the case where is does not. We say that a couple (d, h) is reduced if there is no

divisor d′ of d (except d) such that bd′−1
bd−1

is a divisor of h. The main classification results
are the following:

If σ 6= id, the simple objects of the category of étale ϕ-modules over Kur are the D(d, h)
for (d, h) reduced, and if σ = id, the simple objects of the category of étale ϕ-modules over
Kur are the D(d, h, λ) for (d, h) reduced.

By definition, the slope of a simple ϕ-module isomorphic to D(d, h, λ) is the rational
number h

bd−1
, up to the equivalence relation “x ∼ y ⇔ ∃m,n∈ N such that bmx−bny ∈ Z”.

With this equivalence relation, the definition does not depend on the choice of (d, h).
If D is a ϕ-module over K, the slopes of D are the collection of the slopes of the

composition factors of Kur ⊗K D (this notion does not depend on how σ is extended to
Kur). Note that even though the algorithms that we present can give decompositions over
K, for most practical uses the knowledge of the slopes should be sufficient.

93.1.4 Connection with Galois Representations
Let us explain the link between Galois representations and ϕ-modules over K. In this
section, we assume that σ is the classical Frobenius x 7→ xp. Let Ksep be a separable
closure of K and let GK = Gal(Ksep/K) be the absolute Galois group of K.

A theorem of Katz states that there is an equivalence of categories between the étale
ϕ-modules over K and the Fp-representations of GK .

Under this equivalence of categories, the ϕ-module D(d, h) corresponds to the “funda-
mental character of level d” to the power h, ωh

d , seen as a Fp-representation. The figures
of h in base p are called the tame inertia weights of the representation, because they de-
scribe the action of the tame inertia group on the representation. These weights can be
recovered from the slope of the ϕ-module. It is worth noting that if F is a p-adic field
whose residue field is k, and F∞ is the extension of F generated by a compatible sequence
of pn-th roots of the uniformizer for all n, then GF∞ is isomorphic to GK . Moreover, the
tame inertia weights of a Fp-representation of GF are the same as the tame inertia weights
of its restriction to GF∞ , seen as a representation of GK . Hence, working with ϕ-modules
will enable us to study representations of p-adic Galois groups.

93.2 ϕ-modules and Galois Representations in Magma

Let us now give an overview of the functionalities of the package.

Ch. 93 MOD P GALOIS REPRESENTATIONS 2791

93.2.1 ϕ-modules

93.2.1.1 Category
In Magma, ϕ-modules have type PhiMod. Elements of ϕ-modules have type PhiModElt.

93.2.1.2 Creation functions

PhiModule(M)

F SeqEnum Default : [1, p]
Create the ϕ-module whose matrix is given by M in some basis. The optional
argument F describes the action of the Frobenius on coefficients: if F = [s, b] then
ϕ acts by a 7→ aps

on the residue field and maps the variable u to ub. The default
value is [1, p] where p is the characteristic of the base field, corresponding to the
absolute Frobenius.

ElementaryPhiModule(S,d,h)

F SeqEnum Default : [1, p]
Create the ϕ-module D(d, s) whose matrix is the companion matrix of T d − us.

PhiModuleElement(x,D)

Create the element of the ϕ-module D whose coordinates are given by the vector x.

93.2.1.3 Attributes of ϕ-modules

Dimension(D)

The dimension of a ϕ-module.

CoefficientRing(D)

The coefficient ring of a ϕ-module.

FrobeniusMatrix(D)

Return the matrix of the action of ϕ on D in the current basis.

93.2.1.4 Basic operations and properties of ϕ-modules

IsEtale(D)

Return true if the action of ϕ on D is injective. This is only possible up to the
precision of the coefficient ring of D.

ChangePrecision(∼D, prec)

Change the precision of the coefficient ring of D to prec.

DirectSum(D1, D2)

The direct sum of two ϕ-modules. The coefficient rings and Frobenius action on the
coefficients must be the same.

2792 REPRESENTATION THEORY Part XIII

BaseChange(∼D, P)

Change the basis of D. The base change matrix is P , meaning that if G is the
current matrix of ϕ, the new matrix will be P−1Gϕ(P).

RandomBaseChange(∼D)
Randomly change the basis of D.

Phi(D, x)

Compute the image of x ∈ D under the action of ϕ.

93.2.1.5 Reduction of ϕ-modules and Galois Representations

SemisimpleDecomposition(D)

Compute a Jordan-Holder sequence for the ϕ-module D. The result G,P, sl, pol
is as follows: G is the matrix of ϕ in a basis where it is block upper triangular,
with diagonal blocks corresponding to simple ϕ-modules. The matrix P gives the
corresponding basis. The list sl is the list of the slopes of D, and the list pol is a
list of polynomials. The isomorphism class of a simple block of G is determined by
the corresponding slope and polynomial.

Slopes(D)

Compute the list of slopes of D (with multiplicities).

SSGaloisRepresentation(D)

Compute the semisimplification of the Galois representation corresponding to D.

93.2.2 Semisimple Galois Representations
This part is dedicated to the study of representations of absolute Galois groups of fields of
the form k((u)) with k finite, and with coefficients in finite fields. The implementation is
for semisimple representations, and these are described by their tame inertia weights and
polynomials giving the action of the Frobenius on the unramified part.

93.2.2.1 Category
In Magma, semisimple Galois representations have type SSGalRep.

93.2.2.2 Creation functions

SSGaloisRepresentation(E,K,w,P)

Create the semisimple representation of the absolute Galois group of K with coeffi-
cients in E, tame inertia weights given by w, and action of the Frobenius described
by the elements of the list P .

Ch. 93 MOD P GALOIS REPRESENTATIONS 2793

93.2.2.3 Basic operations

CoefficientRing(V)

The coefficient ring.

FixedField(V)

The fixed field of the absolute Galois group of which V is a representation.

Weights(V)

The tame inertia weights of V .

93.2.2.4 Representation associated to a ϕ-module

SSGaloisRepresentation(D)

If D is a ϕ-module over a field K of Laurent series this returns the semisimplification
of the representation associated to D.

93.3 Examples

Example H93E1

We create two ϕ-modules D1, D2, build their direct sum, and compute its slopes and corresponding
representation.

> k<e9> := GF(3,2);

> S<u> := LaurentSeriesRing(k,20);

> D1 := ElementaryPhiModule(S,3,2);

> D1;

Phi-module of dimension 3 over Laurent series field in u over GF(3^2)

with fixed relative precision 20 with matrix

[O(u^20) O(u^20) u^2 + O(u^20)]

[1 + O(u^20) O(u^20) O(u^20)]

[O(u^20) 1 + O(u^20) O(u^20)] and Frobenius [1,3]

> M := Matrix(S,2,2,[0,k.1*u,1,0]);

> D2 := PhiModule(M);

> D2;

Phi-module of dimension 2 over Laurent series field in u over GF(3^2)

with fixed relative precision 20 with matrix

[O(u^20) e9*u^2 + O(u^20)]

[1 + O(u^20) O(u^20)] and Frobenius [1,3]

> D := DirectSum(D1,D2);

> Slopes(D);

[

[2, 1],

[3, 2]

]

> SSGaloisRepresentation(D);

2794 REPRESENTATION THEORY Part XIII

Semisimple representation of the absolute Galois group of

Laurent series field in u over GF(3^2) with fixed relative

precision 20 with coefficients in Finite field of size 3 and

components [

[3, 18],

[2, 3]

]

