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Chapter 94

INTRODUCTION TO LIE THEORY

A number of structures from Lie theory and the theory of Coxeter groups can be handled
by Magma. Specifically, facilities are provided for:
1. Coxeter matrices, Coxeter graphs, Cartan matrices, Dynkin diagrams, and Cartan’s

naming system for Coxeter groups;
2. Finite root systems and finite root data;
3. Coxeter groups in three different formats: as finitely presented groups, as permutation

groups, and as reflection groups;
4. Complex reflection groups;
4. Lie algebras, given as structure constant algebras, matrix algebras, or finitely generated

algebras;
5. Groups of Lie type (connected reductive algebraic groups);
5. Representations of Lie algebras and groups of Lie type;
6. Universal enveloping algebras and Quantum groups.

94.1 Descriptions of Coxeter Groups

A Coxeter system is a group G with finite generating set S = {s1, . . . , sn}, defined by the
power relations s2

i = 1 for i = 1, . . . , n and braid relations

sisjsi · · · = sjsisj · · ·

for i, j = 1, . . . , n with i < j, where each side of this relation has length mij ≥ 2. Although
traditionally mij = ∞ signifies that the corresponding relation is omitted, for technical
reasons, we use mij = 0 instead. Set mji = mij and mii = 1. The group G is called a
Coxeter group and S is called the set of Coxeter generators. Since every group in Magma
has a preferred generating set, no distinction is made between a Coxeter system and its
Coxeter group.

Due to the importance and ubiquity of Coxeter groups, a number of different ways of
describing these groups and their reflections have been developed. Functions for manipu-
lating these descriptions are described in Chapter 95.

Coxeter groups are usually described by a Coxeter matrix M = (mij)n
i,j=1, or by a

Coxeter graph with vertices 1, . . . , n and an edge connecting i and j labeled by mij whenever
mij ≥ 3.

Coxeter systems are mainly important because they provide presentations for the real
reflection groups. A Cartan matrix describes a particular reflection representation of a



2800 LIE THEORY Part XIV

Coxeter group. In certain cases, such a representation can be described by an integer-
labelled digraph, called the Dynkin digraph (this is equivalent to a Dynkin diagram, but
we have modified the definition for technical reasons).

For finite and affine Coxeter groups, the naming system due to Cartan is also used.
Hyperbolic Coxeter groups of degree larger than 3 are numbered.

94.2 Root Systems and Root Data

A (real) reflection is an automorphism of a real vector space that acts as negation on a
one-dimensional subspace while fixing a hyperplane pointwise. The subspace is described
by a vector called the root, while the hyperplane is described as the kernel of an element
of the dual space called the coroot.

A root system is a collection of root/coroot pairs that is closed under the action of the
corresponding reflections. Only finite root systems are supported at the present time. A
root system gives a much more detailed description of a reflection representation of a finite
Coxeter group.

Root systems are used to classify the semisimple Lie algebras. The closely related
concept of a root datum is used to classify the groups of Lie type.

This is described in Chapters 96 and 97.

94.3 Coxeter and Reflection Groups

Three different methods are provided for computing with a Coxeter group: the Coxeter
presentation, the permutation representation on roots, or a reflection representation.

For most purposes, the presentation will be the most useful of these descriptions. The
standard normal form is used for elements (the lexicographically least word of minimal
length). Robert Howlett has implemented his highly efficient method for normalising and
multiplying elements, based on ideas from [BH93].

If the Coxeter group is finite, it is often better to use the permutation representation.
Note that elements are represented as permutations on the set of roots. This is not the
minimal degree representation, but is more useful in many cases.

Finally, Coxeter groups can be represented as a reflection group over the reals (in prac-
tice over a number field, since the reals are not infinite precision). Although functions are
provided for creating reflection groups over an arbitrary field, fewer facilities are available
for such groups. In addition, functions are provided to construct all the finite complex
reflection groups.

Efficient functions are provided for converting between these three forms of Coxeter
group.

This is described in Chapters 98 and 99.
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94.4 Lie Algebras and Groups of Lie Type

Lie algebras can be constructed in three different ways in Magma: as structure constant
algebras, as Lie matrix algebras, or as finitely presented algebras. Most of our functionality
is for algebras of finite dimension over a field. Algorithms designed and implemented by
de Graaf [dG00] are available for determining the structure of a Lie algebra. In particular,
if the algebra is reductive, its root system and its highest-weight representations can be
determined.

We provide functionality for computing with groups of Lie type (i.e. reductive algebraic
groups and their split (untwisted) groups, given by the Steinberg presentation. A canonical
form for words in this group, and algorithms for computing with these words are given in
[CMT04, CHM08]. Twisted groups are given by a modified version of this presentation us-
ing Galois cohomology [Hal05]. Efficient algorithms have been implemented for arithmetic
with the Steinberg presentation and for converting between this presentation and matrix
representations over the base field. Note that these presentations are not in the category
GrpFP since the generators are parametrised by field elements and so the groups involved
are not necessarily finitely generated.

This is described in Chapter 100.

94.5 Highest Weight Representations

The representations of Lie algebras and connected reductive Lie groups are classified by
highest weights. In addition to being able to construct these representations [dG01], we
can compute the combinatorics of their weights. This includes all the functionality of the
LiE system [vLCL92]. This is described in Chapter 104.

94.6 Universal Enveloping Algebras and Quantum Groups

Given a semisimple Lie algebra over a field of characteristic zero, we can construct an
integral basis for its universal enveloping algebra. Functionality for computing in these
algebras is described in Section 100.17. Moreover, we provide functionality for comput-
ing in their quantised versions, which are called quantum groups. This is described in
Chapter 102.
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Chapter 95

COXETER SYSTEMS

95.1 Introduction
The functions in this chapter handle basic descriptions of Coxeter systems. A Coxeter
system is a group G with finite generating set S = {s1, . . . , sn}, defined by relations s2

i = 1
for i = 1, . . . , n and

sisjsi · · · = sjsisj · · ·
for i, j = 1, . . . , n with i < j, where each side of this relation has length mij ≥ 2. Tra-
ditionally, mij = ∞ signifies that the corresponding relation is omitted but for technical
reasons mij = 0 is used in Magma instead. The group G is called a Coxeter group and
S is called the set of Coxeter generators. Since every group in Magma has a preferred
generating set, no distinction is made between a Coxeter system and its Coxeter group.
See [Bou68] for more details on the theory of Coxeter groups.

The rank of the Coxeter system is n = |S|. A Coxeter system is said to be reducible
if there is a proper subset I of {1, . . . , n} such that mij = 2 or mji = 2 whenever i ∈ I
and j /∈ I. In this case, G is an (internal) direct product of the Coxeter subgroups
WI = 〈si | i ∈ I〉 and WIc = 〈si | i /∈ I〉. Note that an irreducible Coxeter group may
still be a nontrivial direct product of abstract subgroups (for example, W (G2) ∼= S2×S3).
Two Coxeter groups are Coxeter isomorphic if there is a group isomorphism between them
which takes Coxeter generators to Coxeter generators. In other words, the two groups are
the same modulo renumbering of the generators.

Coxeter groups and their representations as reflection groups have a number of useful
descriptions. In this chapter, Coxeter matrices, Coxeter graphs, Cartan matrices, and
Dynkin digraphs will be discussed. The classification of finite and affine Coxeter groups
provides a naming system for these groups. In Chapters 96 and 97, finite root systems
and root data, which provide a more detailed description of finite Coxeter groups, are dis-
cussed. Coxeter groups themselves are discussed in Chapter 98; reflection representations
of Coxeter groups are discussed in Chapter 99.

95.2 Coxeter Matrices
A Coxeter system is defined by the numbers mij ∈ {2, 3, . . . ,∞} for i, j = 1, . . . n and i < j,
as in the previous section. Setting mji = mij and mii = 1, yields a matrix M = (mij)n

i,j=1

that is called the Coxeter matrix .
Since ∞ is not an integer in Magma, it will be represented by 0 in Coxeter matrices.

IsCoxeterMatrix(M)

Returns true if, and only if, the matrix M is the Coxeter matrix of some Coxeter
group.
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CoxeterMatrix(G)

CoxeterMatrix(C)

CoxeterMatrix(D)

The Coxeter matrix corresponding to a Coxeter graph G, Cartan matrix C, or
Dynkin digraph D.

Example H95E1

> M := SymmetricMatrix([1, 3,1, 2,3,1]);

> M;

[1 3 2]

[3 1 3]

[2 3 1]

> IsCoxeterMatrix(M);

true

IsCoxeterIsomorphic(M1, M2)

Returns true if, and only if, the Coxeter matrices M1 and M2 give rise to Coxeter
isomorphic groups. If so, a sequence giving the permutation of the underlying basis
which takes M1 to M2 is also returned.

CoxeterGroupOrder(M)

CoxeterGroupFactoredOrder(M)

The (factored) order of the Coxeter group with Coxeter matrix M .

Example H95E2

> M1 := SymmetricMatrix([1, 3,1, 2,3,1]);

> M2 := SymmetricMatrix([1, 3,1, 3,2,1]);

> IsCoxeterIsomorphic(M1, M2);

true [ 2, 1, 3 ]

>

> CoxeterGroupOrder(M1);

24

IsCoxeterIrreducible(M)

Returns true if, and only if, the matrix M is the Coxeter matrix of an irreducible
Coxeter system. If the Coxeter matrix is reducible, this function also returns a
nontrivial subset I of {1, . . . , n} such that mij = 2 whenever i ∈ I, j /∈ I.

IsSimplyLaced(M)

Returns true if, and only if, the Coxeter matrix M is simply laced, i.e. all its entries
are 1, 2, or 3.
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Example H95E3

> M := SymmetricMatrix([1, 3,1, 2,3,1]);

> IsCoxeterIrreducible(M);

true

> M := SymmetricMatrix([1, 2,1, 2,3,1]);

> IsCoxeterIrreducible(M);

false { 1 }

95.3 Coxeter Graphs

A Coxeter graph is an undirected labelled graph describing a Coxeter system. Suppose a
Coxeter system has Coxeter matrix M = (mij)n

i,j=1. Then the Coxeter graph has vertices
1, . . . , n; whenever mij > 2 there is an edge connecting i and j labeled by the value of mij .
When mij = 3, the label is usually omitted.

Since ∞ is not an integer, it will be represented by 0 in our Coxeter graphs. Clearly a
Coxeter graph must be standard, i.e. its vertices must be the integers 1, 2, . . . , n for some
n. A Coxeter system is irreducible if, and only if, its Coxeter graph is connected. Two
Coxeter graphs give rise to Coxeter isomorphic groups if, and only if, they are isomorphic
as labelled graphs. See Chapter 149 for more information on graphs.

IsCoxeterGraph(G)

Returns true if, and only if, the graph G is the Coxeter graph of some Coxeter
group.

CoxeterGraph(M)

CoxeterGraph(C)

CoxeterGraph(D)

The Coxeter graph corresponding to a Coxeter matrix M , Cartan matrix C, or
Dynkin digraph D.

CoxeterGroupOrder(G)

CoxeterGroupFactoredOrder(G)

The (factored) order of the Coxeter group with Coxeter graph G.
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Example H95E4

> G := PathGraph(4);

> AssignLabel(G, 1,2, 4);

> AssignLabel(G, 3,4, 4);

> IsCoxeterGraph(G);

true

> CoxeterGroupOrder(G);

Infinity

>

> M := SymmetricMatrix([1, 3,1, 2,5,1]);

> G := CoxeterGraph(M);

> Labels(EdgeSet(G));

[ undef, 5 ]

IsSimplyLaced(G)

Returns true if, and only if, the Coxeter graph G is simply laced, i.e. unlabelled.

Example H95E5

> G := PathGraph(2);

> IsSimplyLaced(G);

true

> AssignLabel(G, 1,2, 6);

> IsSimplyLaced(G);

false
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95.4 Cartan Matrices

A Cartan matrix is a real valued matrix C = (cij)n
i,j=1 satisfying the properties:

1. cii = 2;
2. cij ≤ 0 for i 6= j;
3. cij = 0 if, and only if, cji = 0; and
4. if nij := cijcji < 4, then nij = 4 cos2(π/mij) for some integer mij ≥ 2.
In Magma, Cartan matrices can be defined over the integer ring (Chapter 18), the rational
field (Chapter 20), number fields (Chapter 34), and cyclotomic fields (Chapter 36). The
real field (Chapter 25) is not allowed since it is not infinite precision. A Cartan matrix is
called crystallographic if all its entries are integers.

Given a Cartan matrix, the corresponding Coxeter matrix M = (mij)n
i,j=1 is defined

by mii = 1; mij as in (4) if nij < 4; mij = ∞ (ie, 0) if nij ≥ 4. The significance of Cartan
matrices is due to the following construction: Let X be a real inner-product space with
basis α1, . . . , αn. Take the unique basis α?

1, . . . , α
?
n for X such that (αi, α

?
j ) = cij . Let si

be the reflection in αi and α?
i , i.e. si : V → V is defined by vsi = v − (v, α?

i )αi. Then the
group generated by s1, . . . , sn is a Coxeter group with Coxeter matrix M . In other words,
a Cartan matrix specifies a faithful representation of the Coxeter group as a real reflection
group. For more details on reflection groups see Chapter 99.

IsCartanMatrix(C)

RealInjection Any Default : false

Returns true if, and only if, the matrix C is a Cartan matrix.
Number field elements and cyclotomic field elements do not have a natural iden-

tification with real numbers. The RealInjection flag allows the user to provide
one. If the base field of C is a number field, the flag should be an injection into
the real field; if the base field is cyclotomic, the flag should be an injection into the
complex field taking real values on the entries of C. If no real injection is given,
conditions (2) and (4) of the definition are not checked.

CartanMatrix(M)

CartanMatrix(G)

Symmetric BoolElt Default : false

BaseField MonStgElt Default : "NumberField"

A Cartan matrix corresponding to the Coxeter matrix M or Coxeter graph G. Note
that the Cartan matrix of a Coxeter system is not unique. By default this function
returns the Cartan matrix with cij = −4 cos2(π/mij), cji = −1 when mij 6= 2
and i < j. This matrix is crystallographic whenever there exists a crystallographic
Cartan matrix corresponding to M .

If the Symmetric flag is set true, the symmetric Cartan matrix with

cij = cji = −2 cos(π/mij)
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is returned.
The BaseField flag determines the field over which the Cartan matrix is defined.

If the matrix is crystallographic however, it is defined over the integers regardless
of the value of this flag. The possible values are:
1. "NumberField": An algebraic number field. This is the default. See Chapter 34.
2. "Cyclotomic" or "SparseCyclotomic": A cyclotomic field with the sparse rep-

resentation for elements. See Chapter 36.
3. "DenseCyclotomic": A cyclotomic field with the dense representation for ele-

ments. See Chapter 36.

CartanMatrix(D)

The crystallographic Cartan matrix corresponding to the Dynkin digraph D.

Example H95E6

> C := Matrix(2,2, [ 2,-3, -1,2 ]);

> C;

> IsCartanMatrix(C);

true

> CoxeterMatrix(C);

[1 6]

[6 1]

>

> G := PathGraph(4);

> AssignLabel(G, 1,2, 4);

> AssignLabel(G, 3,4, 4);

> CartanMatrix(G);

[ 2 -2 0 0]

[-1 2 -1 0]

[ 0 -1 2 -2]

[ 0 0 -1 2]

> CartanMatrix(G : Symmetric, BaseField := "Cyclotomic");

[2 zeta(8)_8^3 - zeta(8)_8 0 0]

[zeta(8)_8^3 - zeta(8)_8 2 -1 0]

[0 -1 2 zeta(8)_8^3 - zeta(8)_8]

[0 0 zeta(8)_8^3 - zeta(8)_8 2]

IsCoxeterIsomorphic(C1, C2)

Returns true if, and only if, the Cartan matrices C1 and C2 give rise to Coxeter iso-
morphic Coxeter groups, i.e. their Coxeter matrices are equal modulo permutation
of the underlying basis. If so, a sequence giving the permutation of the underlying
basis which takes the Coxeter matrix of C1 to the Coxeter matrix of C2 is also
returned.
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IsCartanEquivalent(C1, C2)

Returns true if, and only if, the crystallographic Cartan matrices C1 and C2 are
Cartan equivalent, i.e. they are equal modulo permutation of the underlying basis.
If so, a sequence giving the permutation of the underlying basis which takes C1 to
C2 is also returned.

Example H95E7

Cartan equivalence is a stronger condition than Coxeter isomorphism.

> C1 := Matrix(2,2, [ 2,-2, -2,2 ]);

> C2 := Matrix(2,2, [ 2,-1, -5,2 ]);

> IsCoxeterIsomorphic(C1, C2);

true [ 1, 2 ]

> IsCartanEquivalent(C1, C2);

false

NumberOfPositiveRoots(C)

NumPosRoots(C)

The number of positive roots of the root system with Cartan matrix C. See Sub-
section 96.1.3 for the definition of positive roots.

CoxeterGroupOrder(C)

CoxeterGroupFactoredOrder(C)

The (factored) order of the Coxeter group with Cartan matrix C.

FundamentalGroup(C)

The fundamental group of the crystallographic Cartan matrix C, i.e. Zn/Γ where
n is the degree of C and Γ is the lattice generated by the rows of C. The natural
mapping Zn → Zn/Γ is the second returned value.

Example H95E8

> C := CartanMatrix(PathGraph(4));

> FundamentalGroup(C);

Abelian Group isomorphic to Z/5

Defined on 1 generator

Relations:

5*$.1 = 0

Mapping from: Standard Lattice of rank 4 and degree 4 to Abelian Group

isomorphic to Z/5

Defined on 1 generator

Relations:

5*$.1 = 0
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IsCoxeterIrreducible(C)

Returns true if, and only if, C is the Cartan matrix of an irreducible Coxeter system.
If the Coxeter matrix is reducible, this function also returns a nontrivial subset I of
{1, . . . , n} such that mij = 2 (i.e. cij = 0) whenever i ∈ I, j /∈ I.

IsCrystallographic(C)

Returns true if, and only if, the Cartan matrix C is crystallographic, i.e. C has
integral entries.

IsSimplyLaced(C)

Returns true if, and only if, the Cartan matrix C is simply laced, i.e. all the entries
in its Coxeter matrix are 1, 2, or 3.

Example H95E9

> C := Matrix(2,2, [ 2,-2, -2,2 ]);

> IsCoxeterIrreducible(C);

true

> IsCrystallographic(C);

true

> IsSimplyLaced(C);

false

95.5 Dynkin Digraphs

A Dynkin digraph is a directed labelled graph describing a crystallographic Cartan matrix
C = (cij)n

i,j=1. The Dynkin digraph has vertices 1, . . . , n; whenever cij < 0 there is an
edge from i to j labeled by the value −cij . When cij = −1, the label is usually omitted.

In the literature, the term Dynkin diagram is used, but here this will be reserved for a
printed display of the Dynkin digraph (or Coxeter graph) corresponding to a finite or affine
Coxeter group (see Section 95.6 below). For convenience, Dynkin digraphs have labelled
edges rather than multiple edges.

Clearly a Dynkin digraph must be standard, i.e. its vertices must be the integers
1, 2, . . . , n for some n. A Dynkin digraph has an edge from i to j if, and only if, it
has an edge from j to i (although the labels may be different). Hence strong and weak
connectivity are equivalent for these graphs. The Coxeter system is irreducible if, and only
if, the Dynkin digraph is connected. Two Dynkin digraphs give rise to Cartan equivalent
Cartan matrices if they are isomorphic as labelled digraphs. See Chapter 149 for more
information on digraphs.

Note that functions are not given for computing the Dynkin digraph of a Coxeter matrix
or Coxeter graph, since a particular choice of crystallographic Cartan matrix is required.



Ch. 95 COXETER SYSTEMS 2813

IsDynkinDigraph(D)

Returns true if, and only if, the digraph D is the Dynkin digraph of some crystal-
lographic Cartan matrix.

DynkinDigraph(C)

The Dynkin digraph of the crystallographic Cartan matrix C.

CoxeterGroupOrder(D)

CoxeterGroupFactoredOrder(D)

The (factored) order of the Coxeter group with Dynkin digraph D.

FundamentalGroup(D)

The fundamental group of the Dynkin digraph D, i.e. Zn/Γ where n is the degree
of D and Γ is the lattice generated by the rows of the corresponding Cartan matrix.
The natural mapping Zn → Zn/Γ is the second returned value.

IsSimplyLaced(D)

Returns true if, and only if, the Dynkin digraph D is simply laced, i.e. unlabelled.

Example H95E10

> D := Digraph< 4 | <1,{2,3,4}>, <2,{1}>, <3,{1}>, <4,{1}> >;

> AssignLabel(D, 1,2, 2);

> AssignLabel(D, 1,3, 5);

> IsDynkinDigraph(D);

true

> CartanMatrix(D);

[ 2 -2 -5 -1]

[-1 2 0 0]

[-1 0 2 0]

[-1 0 0 2]

> FundamentalGroup(D);

Abelian Group isomorphic to Z/2 + Z/8

Defined on 2 generators

Relations:

2*$.1 = 0

8*$.2 = 0

Mapping from: Standard Lattice of rank 4 and degree 4 to Abelian Group

isomorphic to Z/2 + Z/8

Defined on 2 generators

Relations:

2*$.1 = 0

8*$.2 = 0
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95.6 Finite and Affine Coxeter Groups
Functions related to the classification of finite and affine Coxeter groups are described in
this section. This classification is due to Cartan [Car52] and Coxeter [Cox34].

An affine reflection group is a group generated by reflections in affine space (in other
words, real reflections in a hyperplane that does not necessarily pass through the origin).
A Coxeter group is called affine if it is infinite and it has a representation as a discrete,
properly acting, affine reflection group (see [Bou68] for more details on discreteness and
proper action). Note that a Coxeter group is finite if, and only if, it has a representation
as a discrete, properly acting group of reflections of the sphere; hence finite Coxeter groups
are sometimes called spherical .

A Coxeter group is finite if, and only if, all its irreducible components are finite; a
Coxeter group is affine if, and only if, all its irreducible components are finite or affine,
and at least one component is affine. So it suffices to classify irreducible Coxeter groups.

The Dynkin diagrams of the irreducible finite crystallographic Coxeter groups are:

An 1---2---3- ... -n Bn 1---2- ... -(n-1)=>=n

(n-1)
/

Cn 1---2- ... -(n-1)=<=n Dn 1---1- ... -(n-2)
\
n

E6 1---3---4---5---6 E7 1---3---4---5---6---7
| |
2 2

E8 1---3---4---5---6---7---8
|
2

F4 1---2=>=3---4 G2 1=<=2
3

Due to the difficulty of drawing a triple bond with text characters, the edge for G2 is
labelled.

The only irreducible noncrystallographic finite Coxeter groups are H3, H4 and I2(m)
for m = 5 and m > 6. The Coxeter graphs of these groups are:

H3 1---2---3 H4 1---2---3---4
5 5
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I2(m) 1---2
m

Note that there is some redundancy in this classification; specifically A1 = B1 = C1 = D1,
A2 = I2(3), B2 = C2 = I2(4), D2 = A1 + A1, D3 = A3, G2 = I2(6). Furthermore, for
n ≥ 3, types Bn and Cn have identical Coxeter matrices but inequivalent crystallographic
Cartan matrices for n > 2.

All irreducible affine groups are crystallographic. There is one corresponding to each
irreducible crystallographic finite group. Their Dynkin diagrams are:

A~1 1-------2 A~n 1---2- ... -n
infty | |

----(n+1)----

1
\

B~n 2- ... -(n-1)=>=n
/

(n+1)

C~n (n+1)=>=1---1- ... -(n-1)=<=n

1 (n-1)
\ /

D~n 2- ... -(n-2)
/ \

(n+1) n

E~6 1---3---4---5---6 E~7 8---1---3---4---5---6---7
| |
2 2
|
7

E~8 1---3---4---5---6---7---8---9
|
2

F~4 5---1---2=>=3---4 G~2 1=<=2---3
3

The labels on the vertices of these diagrams show the standard vertex order used in
Magma, which is consistent with the order used in [Bou68].
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IsCoxeterFinite(M)

IsCoxeterFinite(G)

IsCoxeterFinite(C)

IsCoxeterFinite(D)

IsCoxeterFinite(N)

Returns true if, and only if, the corresponding Coxeter group is finite. The input
variable can be a Coxeter matrix M , Coxeter graph G, Cartan matrix C, Dynkin
digraph D, or Cartan name given by the string N .

IsCoxeterAffine(M)

IsCoxeterAffine(G)

IsCoxeterAffine(C)

IsCoxeterAffine(D)

IsCoxeterAffine(N)

Returns true if, and only if, the corresponding Coxeter group is affine. The input
variable can be a Coxeter matrix M , Coxeter graph G, Cartan matrix C, Dynkin
digraph D, or Cartan name given by the string N .

Example H95E11

> IsCoxeterAffine("A~2");

true

> IsCoxeterAffine("A~2B2");

true

> IsCoxeterAffine("A2B2");

false

> IsCoxeterFinite("A2B2");

true

CoxeterMatrix(N)

The Coxeter matrix with Cartan name given by the string N .

CoxeterGraph(N)

The Coxeter graph with Cartan name given by the string N .
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CartanMatrix(N)

Symmetric BoolElt Default : false

BaseField MonStgElt Default : "NumberField"

The Cartan matrix with Cartan name given by the string N . By default, the
crystallographic matrix is returned for crystallographic types; otherwise the Cartan
matrix with cij = −4 cos2(π/mij), cji = −1 when mij 6= 2 and i < j is returned.

If the Symmetric flag is set true, the symmetric Cartan matrix with cij = cji =
−2 cos(π/mij) is returned.

The BaseField flag determines the field over which the Cartan matrix is defined.
If the matrix is crystallographic however, it is defined over the integers regardless
of the value of this flag. The possible values are:

1. "NumberField": An algebraic number field. This is the default. See Chapter 34.

2. "Cyclotomic" or "SparseCyclotomic": A cyclotomic field with the sparse rep-
resentation for elements. See Chapter 36.

3. "DenseCyclotomic": A cyclotomic field with the dense representation for ele-
ments. See Chapter 36.

DynkinDigraph(N)

The Dynkin digraph with Cartan name given by the string N . The Cartan name
must be crystallographic, i.e. it cannot involve types H3, H4 and I2(m).

Example H95E12

> CoxeterMatrix("I2(7)");

[1 7]

[7 1]

> CoxeterGraph("A3");

Graph

Vertex Neighbours

1 2 ;

2 1 3 ;

3 2 ;

> CartanMatrix("H3" : Symmetric);

[ 2 -$.1 0]

[-$.1 2 -1]

[ 0 -1 2]

> DynkinDigraph("A~2");

Digraph

Vertex Neighbours

1 2 3 ;

2 1 3 ;
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3 1 2 ;

The code for interpreting a string as a Cartan name is quite flexible: letters and numbers must
alternate, except in type I where brackets must be used.

> M := CoxeterMatrix("A_5B3 c2I2 (5)");

> CartanName(M);

A5 B3 B2 I2(5)

IrreducibleCoxeterMatrix(X, n)

The irreducible Coxeter matrix with Cartan name Xn (or I2(n) if X ="I").

IrreducibleCoxeterGraph(X, n)

The irreducible Coxeter graph with Cartan name Xn (or I2(n) if X ="I").

IrreducibleCartanMatrix(X, n)

Symmetric BoolElt Default : false

BaseField MonStgElt Default : "NumberField"

The irreducible Cartan matrix with Cartan name Xn (or I2(n) if X ="I").
If the Symmetric flag is set true, the symmetric Cartan matrix with cij = cji =

−2 cos(π/mij) is returned.
The BaseField flag determines which field the Cartan matrix is defined over. If the
matrix is crystallographic however, it is defined over the integers regardless of the
value of this flag. The possible values are:

1. "NumberField": An algebraic number field. This is the default. See Chapter 34.

2. "Cyclotomic" or "SparseCyclotomic": A cyclotomic field with the sparse rep-
resentation for elements. See Chapter 36.

3. "DenseCyclotomic": A cyclotomic field with the dense representation for ele-
ments. See Chapter 36.

IrreducibleDynkinDigraph(X, n)

The irreducible Dynkin digraph with Cartan name Xn. The Cartan name must be
crystallographic, i.e. it cannot involve types H3, H4 or I2(m).



Ch. 95 COXETER SYSTEMS 2819

Example H95E13

These functions are useful in loops.

> for n in [1..5] do

> IsTree(IrreducibleCoxeterGraph("A~", n));

> end for;

true

false

false

false

false

> C := &join[ IrreducibleCoxeterGraph(t, 4) : t in ["A","B","C","D","F"] ];

IsCoxeterIsomorphic(N1, N2)

Returns true if, and only if, the Cartan names given by the strings N1 and N2

correspond to Coxeter isomorphic groups.

IsCartanEquivalent(N1, N2)

Returns true if, and only if, the Cartan names given by the strings N1 and N2

correspond to Cartan equivalent Cartan matrices. The Cartan names must be crys-
tallographic, i.e. they cannot involve types H3, H4 and I2(m).

Example H95E14

> IsCoxeterIsomorphic("A1A1", "D2");

true

> IsCoxeterIsomorphic("B5", "C5");

true

> IsCartanEquivalent("B5", "C5");

false

IsSimplyLaced(N)

Returns true if, and only if, the Coxeter matrix with Cartan name given by the
string N is simply laced, i.e. all its entries are 1, 2, or 3.

CoxeterGroupOrder(N)

CoxeterGroupFactoredOrder(N)

The (factored) order of the Coxeter group with Cartan name given by the string N .
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NumberOfPositiveRoots(N)

NumPosRoots(N)

The number of positive roots of the Coxeter group with Cartan name given by the
string N . See Subsection 96.1.3 for the definition of positive roots.

FundamentalGroup(N)

The fundamental group of the crystallographic Cartan matrix with Cartan name
given by the string N , i.e. Zn/Γ where Γ is the lattice generated by the rows of the
Cartan matrix. The natural mapping Zn → Zn/Γ is the second returned value.

Example H95E15

> CoxeterGroupOrder("F4");

1152

> CoxeterGroupFactoredOrder("F4");

[ <2, 7>, <3, 2> ]

> NumPosRoots("F4");

24

> #FundamentalGroup("F4");

1

CartanName(M)

CartanName(G)

CartanName(C)

CartanName(D)

The Cartan name of a Coxeter matrix M , Coxeter graph G, Cartan matrix C, or
Dynkin digraph D. If the corresponding Coxeter group is neither finite nor affine,
an error is flagged.

Example H95E16

> CartanName(SymmetricMatrix([1, 3,1, 2,3,1]));

A3

> CartanName(SymmetricMatrix([1, 3,1, 3,3,1]));

A~2

> CartanName(SymmetricMatrix([1, 3,1, 4,3,1]));

The component at rows and columns [ 1, 2, 3 ]

is not a finite or affine Coxeter matrix

> C := Matrix(4,4, [2,-2,0,0, -1,2,0,0, 0,0,2,-2, 0,0,-1,2] );

> C;

[ 2 -2 0 0]

[-1 2 0 0]

[ 0 0 2 -2]
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[ 0 0 -1 2]

DynkinDiagram(M)

DynkinDiagram(G)

DynkinDiagram(C)

DynkinDiagram(D)

DynkinDiagram(N)

Print the Dynkin diagram of a Coxeter matrix M , Coxeter graph G, Cartan matrix
C, Dynkin digraph D or Cartan name given by the string N . If the corresponding
group is neither affine nor crystallographic, an error is flagged.

Example H95E17

> DynkinDiagram("A~5 D4 BC3");

A~5 1 - 2 - 3 - 4 - 5

| |

------- 6 -------

D4 9

/

7 - 8

\

10

BC3 11 - 12 =>= 13

CoxeterDiagram(M)

CoxeterDiagram(G)

CoxeterDiagram(C)

CoxeterDiagram(D)

CoxeterDiagram(N)

Print the Coxeter diagram of a Coxeter matrix M , Coxeter graph G, Cartan matrix
C, Dynkin digraph D or Cartan name given by the string N . If the corresponding
group is not affine or is not crystallographic, an error is flagged.
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Example H95E18

> CoxeterDiagram("A~5 D4 BC3");

A~5 1 - 2 - 3 - 4 - 5

| |

------- 6 -------

D4 9

/

7 - 8

\

10

BC3 11 - 12 === 13

95.7 Hyperbolic Groups

A hyperbolic reflection group is a group generated by reflections in hyperbolic space. A
Coxeter group is called hyperbolic if it is infinite, nonaffine, and it has a representation as
a discrete, properly acting, hyperbolic reflection group whose Tits’ cone consists entirely
of vectors with negative norm (see [Bou68] for more details). A hyperbolic reflection group
is compact hyperbolic if it is hyperbolic with a compact fundamental region.

Every infinite nonaffine Coxeter group of rank 3 is hyperbolic. There are only 72
hyperbolic groups of rank larger than 3 which, for convenience, are numbered from 1 to
72. The numbering is essentially arbitrary.

IsCoxeterHyperbolic(M)

IsCoxeterCompactHyperbolic(M)

Returns true if, and only if, the matrix M is the Coxeter matrix of a (compact)
hyperbolic Coxeter group.

IsCoxeterHyperbolic(G)

IsCoxeterCompactHyperbolic(G)

Returns true if, and only if, the graph G is the Coxeter graph of a (compact)
hyperbolic Coxeter group.

HyperbolicCoxeterMatrix(i)

The Coxeter matrix of the ith hyperbolic Coxeter group of rank larger than 3.

HyperbolicCoxeterGraph(i)

The Coxeter graph of the ith hyperbolic Coxeter group of rank larger than 3.
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Example H95E19

> for i in [1..72] do

> if IsCoxeterCompactHyperbolic(HyperbolicCoxeterMatrix(i)) then

> printf "%o, ", i;

> end if;

> end for;

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

95.8 Related Structures

In this section functions for creating other structures from Coxeter matrices, Coxeter
graphs, Cartan matrices, Dynkin diagrams, and Cartan names are listed. The reader is
referred to the appropriate sections of the Handbook for more details.

RootSystem(M)

RootSystem(G)

RootSystem(C)

RootSystem(D)

RootSystem(N)

The finite root system of a Coxeter matrix M , Coxeter graph G, Cartan matrix C,
Dynkin digraph D, or Cartan name given by the string N . If the corresponding
Coxeter group is infinite, an error is flagged. See Chapter 96.

RootDatum(C)

RootDatum(M)

RootDatum(G)

RootDatum(D)

RootDatum(N)

The finite root datum of a crystallographic Cartan matrix C, Coxeter matrix M ,
Coxeter graph G, Dynkin digraph D, or Cartan name given by the string N . If the
corresponding Coxeter group is infinite, an error is flagged. See Chapter 97.
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CoxeterGroup(GrpFPCox, M)

CoxeterGroup(GrpFPCox, G)

CoxeterGroup(GrpFPCox, C)

CoxeterGroup(GrpFPCox, D)

CoxeterGroup(GrpFPCox, N)

The Coxeter group of a Coxeter matrix M , Coxeter graph G, Cartan matrix C,
Dynkin digraph D, or Cartan name given by the string N . See Chapter 98.

CoxeterGroup(GrpPermCox, M)

CoxeterGroup(GrpPermCox, G)

CoxeterGroup(GrpPermCox, C)

CoxeterGroup(GrpPermCox, D)

CoxeterGroup(GrpPermCox, N)

The permutation Coxeter group of a Coxeter matrix M , Coxeter graph G, Car-
tan matrix C, Dynkin digraph D, or Cartan name given by the string N . If the
corresponding Coxeter group is infinite, an error is flagged. See Chapter 98.

CoxeterGroup(M)

CoxeterGroup(G)

CoxeterGroup(C)

CoxeterGroup(D)

CoxeterGroup(N)

The Coxeter group of a Coxeter matrix M , Coxeter graph G, Cartan matrix C,
Dynkin digraph D, or Cartan name given by the string N . If the corresponding
Coxeter group is finite, it is returned as a permutation group; otherwise it is returned
as a finitely presented group.

ReflectionGroup(M)

ReflectionGroup(G)

ReflectionGroup(C)

ReflectionGroup(D)

ReflectionGroup(N)

The reflection group of a Coxeter matrix M , Coxeter graph G, Cartan matrix C,
Dynkin digraph D, or Cartan name given by the string N . See Chapter 99.
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LieAlgebra(C, k)

LieAlgebra(D, k)

LieAlgebra(N, k)

The Lie algebra over the ring k of a crystallographic Cartan matrix C, Dynkin
digraph D, or Cartan name given by the string N . If the corresponding Coxeter
group is infinite, an error is flagged. See Chapter 100.

MatrixLieAlgebra(C, k)

MatrixLieAlgebra(D, k)

MatrixLieAlgebra(N, k)

The Lie algebra over the ring k of a crystallographic Cartan matrix C, Dynkin
digraph D, or Cartan name given by the string N . If the corresponding Coxeter
group is infinite, an error is flagged. See Chapter 100.

GroupOfLieType(C, k)

GroupOfLieType(D, k)

GroupOfLieType(N, k)

The group of Lie type over the ring k of a crystallographic Cartan matrix C, Dynkin
digraph D, or Cartan name given by the string N . If the corresponding Coxeter
group is infinite, an error is flagged. See Chapter 103.
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Chapter 96

ROOT SYSTEMS

96.1 Introduction
This chapter describes Magma functions for computing with finite real root systems. A
root system describes the reflections in a reflection group (Chapter 99). Root systems are
essential in the theories of finite Coxeter groups (Chapter 98) and Lie algebras (Chap-
ter 100). See [Bou68] for more details on the theory of root systems. The closely related
concept of a root datum is discussed in Chapter 97.

96.1.1 Reflections
Let X and Y be vector spaces over a field k with bilinear pairing 〈◦, ◦〉 : X × Y → k
that identifies Y with the dual of X. Given nonzero α ∈ X and α? ∈ Y , the linear map
sα : X → X is defined by

xsα = x− 〈x, α?〉α
and the linear map s?

α : Y → Y by

ys?
α = y − 〈α, y〉α?.

These maps are called reflections if one of the following equivalent properties hold:
〈α, α?〉 = 2; sα

2 = 1; 〈xsα, ys?
α〉 = 〈x, y〉 for all x ∈ X and y ∈ Y ; αsα = −α. The

mapping s?
α is also called a coreflection: this just means it is a reflection defined on Y in-

stead of X. Magma functions for computing with reflections are described in Section 99.2.
If X has an inner product, then we can take Y = X and use the inner product as our

pairing. In Magma, we generally take X = Y to be a row space, with the bilinear pairing
given by the standard inner product 〈x, y〉 = xyT . However, it is sometimes useful to allow
X and Y to be distinct subspaces of a row space.

For the purposes of this chapter, k will always be the rational field (Chapter 20), a
number field (Chapter 20), or a cyclotomic field (Chapter 36). The real field (Chapter 25)
is not allowed since it is not infinite precision.

96.1.2 Definition of a Root System
Suppose Φ is a finite subset of X \ {0}. For each α in Φ, suppose a corresponding nonzero
α? in Y is given; set Φ? = {α? | α ∈ Φ}. The tuple R = (X, Φ, Y, Φ?) is called a root
system if the following conditions are satisfied for every α in Φ
1. sα and s?

α are reflections;
2. Φ is closed under the action of sα; and
3. Φ? is closed under the action of s?

α.



2830 LIE THEORY Part XIV

The set X is called the root space and Y is called the coroot space. The elements of
Φ are called roots and the elements of Φ? are called coroots. A root system is said to
be crystallographic if 〈α, β?〉 is integral for every root α and coroot β?. A root system is
reduced, if α, β ∈ Φ with β a scalar product of α implies α = ±β. Note that it is possible
for the set of roots to be empty, in which case the system is called toral.

96.1.3 Simple and Positive Roots
A subset ∆ of Φ is called a set of simple roots if
1. ∆ is a basis for the span of the roots kΦ ≤ X; and
2. Φ = Φ+ ∪ Φ−, where Φ+ is the set of linear combinations of elements of ∆ with

nonnegative coefficients, and Φ− = −Φ+.
Every root system has a set of simple roots. Simple roots are frequently called fundamental
roots. The elements of Φ+ are called positive roots and the elements of Φ− are called
negative roots. The coroots corresponding to the simple (respectively, positive, negative)
roots are the simple (respectively, positive, negative) coroots.

The rank of a root system is the size of ∆, i.e. the dimension of the subspace kΦ. The
rank cannot be larger than the dimension of the root system (i.e. the dimension of X); if
the rank and dimension are equal, the root system is said to be semisimple.

Choose a basis e1, . . . , ed for X and a dual basis f1, . . . , fd for Y , so that 〈ei, fj〉 = δij .
A reduced root system is determined by a pair of real matrices A and B where the rows of
A are the simple roots and the rows of B are the corresponding coroots; i.e. Aij = 〈αi, fj〉
and Bij = 〈ej , α

?
i 〉.

96.1.4 The Coxeter Group
The group W generated by the reflections sα, for α a simple root, is a finite Coxeter group.
The Cartan matrix of a root system is

C =
(〈

αi, α
?
j

〉)n

i,j=1
= ABt.

Note that the root system is crystallographic if, and only if, its Cartan matrix is crys-
tallographic. As in Chapter 95, the Cartan matrix is used to define the Coxeter matrix,
Coxeter graph, and Dynkin digraph of a root system.

The classification of Section 95.6 applies to reduced semisimple root systems. The
isomorphism class of a reduced root system is determined by its Coxeter graph and its
dimension.

A Coxeter form is a W -invariant bilinear form on X. If R is reduced and irreducible,
then the roots can have at most two different lengths with respect to this form. We call
the roots long or short accordingly. The Coxeter form is normalised so that the short roots
in each component have length one. Note that, even if X = Y , this form will generally
not be the same as the pairing 〈◦, ◦〉; however it can be arranged for them to be the same
(see StandardRootSystem).
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96.1.5 Nonreduced Root Systems
A root system is reduced, if α, β ∈ Φ with β a scalar product of α implies α = ±β. A
root α with the property 2α /∈ Φ is called reduced. A root α with the property 1

2α ∈ Φ is
called divisible. If R is a root system, then the set R0 of indivisible roots in R form the
indivisible subsystem.

Let R be a nonreduced irreducible crystallographic root system of rank n. It can be
shown that R0 is irreducible of type of type Bn and every root is either in R0, or is two
times a short root of R0. The Cartan type of R in this case is BCn. For noncrystallographic
root systems the situation is more complex.

Note that the Cartan matrix, Coxeter matrix, Coxeter diagram, Coxeter group and
Dynkin diagram are the same for R and R0. Thus, when creating a non-reduced crystallo-
graphic root system for a given Cartan matrix, Coxeter matrix, Coxeter diagram, Coxeter
group or Dynkin diagram, one must specify the set of nonreduced simple roots. For exam-
ple, let C be a cartan matrix of type B2 × B3. Then the set of non-reduced fundamental
roots can be one of ∅, {2}, {5}, or {2, 5}, in which cases the root system will be of types
B2 ×B3, BC2 ×B3, B2 ×BC3, or BC2 ×BC3 respectively.

96.2 Constructing Root Systems
We first describe some optional parameters that are common to many functions described
in this section.

RealInjection Any Default : false

Number field elements and cyclotomic field elements do not have a natural iden-
tification with real numbers. The RealInjection flag allows the user to provide
one. If the base field of the Cartan matrix C is a number field, the flag should be
an injection into the real field; if the base field is cyclotomic, the flag should be an
injection into the complex field taking real values on the entries of C (see more in
Section 95.4).

Nonreduced SetEnum Default : {}
The optional argument Nonreduced is used to distinguish the reducedness of a root
system in case the input doesn’t uniquely determine it.

Symmetric BoolElt Default : false

If the Symmetric flag is set true, the symmetric Cartan matrix is used. For types
I2(m), H3, H4 the symmetric Cartan matrix is always used, since the root system
is nonreduced otherwise.

BaseField MonStgElt Default : "NumberField"

The BaseField flag determines the field over which the Cartan matrix is defined.
The possible values are:
1. "NumberField": An algebraic number field. This is the default. See Chapter 34.
2. "Cyclotomic" or "SparseCyclotomic": A cyclotomic field with the sparse rep-

resentation for elements. See Chapter 36.
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3. "DenseCyclotomic": A cyclotomic field with the dense representation for ele-
ments. See Chapter 36.

RootSystem(N)

Symmetric BoolElt Default : false

BaseField MonStgElt Default : "NumberField"

The root system with Cartan name given by the string N . In addition to the
Cartan names in Section 95.6, we allow "BCn" for the irreducible nonreduced system,
and "Tn" for the n-dimensional toral subsystem. Note that "Tn" is used for input
only and does not appear in the string returned by CartanName when applied to
the resulting root system (see example below). For descriptions of the parameters
Symmetric and BaseField see the beginning of this section

Example H96E1

> RootSystem("H3 E6");

Root system of type H3 E6

> RootSystem("A2 T1 I2(5)");

Root system of type A2 I2(5)

RootSystem(M)

RootSystem(G)

Nonreduced SetEnum Default : {}
Symmetric BoolElt Default : false

BaseField MonStgElt Default : "NumberField"

The semisimple root system with Coxeter matrix M or Coxeter graph G (see Chap-
ter 95). If the corresponding Coxeter group is infinite, an error is flagged. For
descriptions of the parameters Nonreduced, Symmetric, and BaseField see the be-
ginning of this section.

RootSystem(C)

RealInjection Any Default : false

Nonreduced SetEnum Default : {}
The semisimple root system with Cartan matrix C (see Chapter 95). If the cor-
responding Coxeter group is infinite, an error is flagged. For descriptions of the
parameters RealInjection and Nonreduced see the beginning of this section.
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RootSystem(D)

Nonreduced SetEnum Default : {}
The semisimple crystallographic root system with Cartan matrix C, or Dynkin
diagram D (see Chapter 95). If the corresponding Coxeter group is infinite, an
error is flagged. For a description of the parameter Nonreduced see the beginning
of this section.

Example H96E2

> M := SymmetricMatrix([1, 3,1, 2,3,1]);

> RootSystem(M);

Root system of type A3

> M := SymmetricMatrix([1, 3,1, 3,3,1]);

> RootSystem(M);

>> RootSystem(M);

^

Runtime error in ’RootSystem’: Not a finite root system in rows/columns

[ 1, 2, 3 ]

RootSystem(A, B)

RealInjection Any Default : false

Nonreduced SetEnum Default : {}
The root system with simple roots given by the rows of the matrix A and simple
coroots given by the rows of the matrix B. The matrices A and B must have the
following properties:
1. A and B must have the same number of rows and the same number of columns;

they must be defined over the same ring, which must be the integers, the rational
field, a number field, or a cyclotomic field;

2. the number of columns must be at least the number of rows; and
3. ABt must be the Cartan matrix of a finite Coxeter group.

For descriptions of the parameters RealInjection and Nonreduced see the be-
ginning of this section.

Example H96E3

The following code creates a nonsemisimple root system of type G2.

> A := Matrix(2,3, [1,-1,0, -1,1,-1]);

> B := Matrix(2,3, [1,-1,1, 0,1,-1]);

> RootSystem(A, B);

Root system of type G2
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IrreducibleRootSystem(X, n)

Symmetric BoolElt Default : false

BaseField MonStgElt Default : "NumberField"

The irreducible root system with Cartan name Xn (or I2(n) if X = “I”) given by the
string X and integer n. In addition to the Cartan names in Section 95.6, we allow
"BCn" for the irreducible nonreduced system. For descriptions of the parameters
Symmetric and BaseField see the beginning of this section.

StandardRootSystem(X, n)

The standard root system with Cartan name Xn (or I2(n) if X = “I”) given by
the string X and integer n, i.e. the root system whose Coxeter form is the same as
the standard inner product. In addition to the Cartan names in Section 95.6, we
allow "BCn" for the irreducible nonreduced system. For type An, the standard root
system is not semisimple.

Example H96E4

> Rs := { IrreducibleRootSystem("I", n) : n in [3..20] };

> { R : R in Rs | IsCrystallographic(R) };

{

Root system of type I2(3) ,

Root system of type I2(4) ,

Root system of type I2(6)

}

ToralRootSystem(n)

The toral root system of dimension n, i.e., the n-dimensional root system with no
roots or coroots.

TrivialRootSystem()

The trivial root system of dimension 0.
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96.3 Operators on Root Systems

R1 eq R2

Returns true if, and only if, the root systems R1 and R2 are identical.

IsIsomorphic(R1, R2)

Returns true if, and only if, root systems R1 and R2 are isomorphic.

IsCartanEquivalent(R1, R2)

Returns true if, and only if, the crystallographic root systems R1 and R2 are Cartan
equivalent, i.e. their Cartan matrices are the same modulo a permutation of the
underlying basis.

Example H96E5

Note that the root systems Bn and Cn are isomorphic but not Cartan equivalent. Hence Cartan
equivalence is not an invariant of a root system since it depends on the particular representation
of the (co)roots within the (co)root space.

> R := RootSystem("B4"); S := RootSystem("C4");

> IsIsomorphic(R, S);

true

> IsCartanEquivalent(R, S);

false

CartanName(R)

The Cartan name of the root system R (Section 95.6).

CoxeterDiagram(R)

Print the Coxeter diagram of the root system R (Section 95.6).

DynkinDiagram(R)

Print the Dynkin diagram of the root system R (Section 95.6). If R is not crystal-
lographic, an error is flagged.

CoxeterMatrix(R)

The Coxeter matrix of the root system R (Section 95.2).

CoxeterGraph(R)

The Coxeter graph of the root system R (Section 95.3).

CartanMatrix(R)

The Cartan matrix of the root system R (Section 95.4).

DynkinDigraph(R)

The Dynkin digraph of the root system R (Section 95.5). If R is not crystallographic,
an error is flagged.
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Example H96E6

> R := RootSystem("F4");

> DynkinDiagram(R);

F4 1 - 2 =>= 3 - 4

> CoxeterDiagram(R);

F4 1 - 2 === 3 - 4

BaseField(R)

BaseRing(R)

The field over which the root system R is defined.

RealInjection(R)

The real injection of the root system R (Section 96.2).

Rank(R)

The rank of the root system R, i.e. the number of simple (co)roots.

Dimension(R)

The dimension of the root system R, i.e. the dimension of the (co)root space. This
is always at least as large as the rank, with equality when R is semisimple.

CoxeterGroupOrder(R)

The order of the Coxeter group of the root system R.

Example H96E7

> R := RootSystem("I2(7)");

> BaseField(R);

Number Field with defining polynomial x^3 - x^2 - 2*x + 1 over the

Rational Field

> Rank(R) eq Dimension(R);

true

> CoxeterGroupOrder(R);

14
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96.4 Properties of Root Systems

IsIrreducible(R)

Returns true if, and only if, the root system R is irreducible.

IsProjectivelyIrreducible(R)

Returns true if, and only if, the root system R is a direct sum of a simple system
and a toral system. This is equivalent to R having a connected Coxeter diagram.

IsReduced(R)

Returns true if, and only if, the root system R is reduced.

IsSemisimple(R)

Returns true if, and only if, the root system R is semisimple, i.e. its rank is equal
to its dimension.

IsCrystallographic(R)

Returns true if, and only if, the root system R is crystallographic, i.e. its Cartan
matrix is integral.

IsSimplyLaced(R)

Returns true if, and only if, the root system R is simply laced, i.e. its Coxeter graph
contains no labelled edges.

Example H96E8

> R := RootSystem("A5 B2");

> IsIrreducible(R);

false

> IsSemisimple(R);

true

> IsCrystallographic(R);

true

> IsSimplyLaced(R);

false
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96.5 Roots and Coroots

The roots are stored as an indexed set

{@ α1, . . . , αN , αN+1, . . . , α2N @},

where α1, . . . , αN are the positive roots (in an order compatible with height), and
αN+1, . . . , α2N are the corresponding negative roots (i.e. αi+N = −αi). The simple roots
are α1, . . . , αn where n is the rank.

Many of these functions have an optional argument Basis which may take one of the
following values
1. "Standard": the standard basis for the (co)root space (this is the default); or
2. "Root": the basis of simple (co)roots.

96.5.1 Accessing Roots and Coroots

RootSpace(R)

CorootSpace(R)

The vector space containing the (co)roots of the root system R, i.e. X (respectively,
Y ).

SimpleRoots(R)

SimpleCoroots(R)

The simple (co)roots of the root system R as the rows of a matrix, i.e. A (respectively,
B).

Example H96E9

> R := RootSystem("G2");

> RootSpace(R);

Full Vector space of degree 2 over Rational Field

> CorootSpace(R);

Full Vector space of degree 2 over Rational Field

> SimpleRoots(R);

[1 0]

[0 1]

> SimpleCoroots(R);

[ 2 -3]

[-1 2]

> CartanMatrix(R);

[ 2 -1]

[-3 2]
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NumberOfPositiveRoots(R)

NumPosRoots(R)

The number of positive roots of the root system R. This is also the number of
positive coroots. The total number of (co)roots is twice the number of positive
(co)roots.

Roots(R)

Coroots(R)

Basis MonStgElt Default : "Standard"

The indexed set of (co)roots of the root system R, i.e. {@α1, . . . α2N @} (respectively,
{@ α?

1, . . . α
?
2N @}).

PositiveRoots(R)

PositiveCoroots(R)

Basis MonStgElt Default : "Standard"

The indexed set of positive (co)roots of the root system R, i.e. {@α1, . . . αN @}
(respectively, {@α?

1, . . . α
?
N @}).

Root(R, r)

Coroot(R, r)

Basis MonStgElt Default : "Standard"

The rth (co)root αr (respectively, α?
r) of the root system R.

RootPosition(R, v)

CorootPosition(R, v)

Basis MonStgElt Default : "Standard"

If v is a (co)root in the root system R, return its index; otherwise return 0. These
functions will try to coerce v, which can be a vector or a sequence representing a
vector, into the appropriate vector space; v should be written with respect to the
basis specified by the parameter Basis.

Example H96E10

> A := Matrix(2,3, [1,-1,0, -1,1,-1]);

> B := Matrix(2,3, [1,-1,1, 0,1,-1]);

> R := RootSystem(A, B);

> Roots(R);

{@

(1 -1 0),

(-1 1 -1),

(0 0 -1),

(1 -1 -1),
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(2 -2 -1),

(1 -1 -2),

(-1 1 0),

(1 -1 1),

(0 0 1),

(-1 1 1),

(-2 2 1),

(-1 1 2)

@}

> PositiveCoroots(R);

{@

(1 -1 1),

(0 1 -1),

(1 2 -2),

(2 1 -1),

(1 0 0),

(1 1 -1)

@}

> #Roots(R) eq 2*NumPosRoots(R);

true

> Root(R, 4);

(1 -1 -1)

> Root(R, 4 : Basis := "Root");

(2 1)

> RootPosition(R, [1,-1,-1]);

4

> RootPosition(R, [2,1] : Basis := "Root");

4

HighestRoot(R)

HighestCoroot(R)

Basis MonStgElt Default : "Standard"

The unique (co)root of greatest height in the irreducible root system R.

HighestLongRoot(R)

HighestLongCoroot(R)

Basis MonStgElt Default : "Standard"

The unique long (co)root of greatest height in the irreducible root system R.

HighestShortRoot(R)

HighestShortCoroot(R)

Basis MonStgElt Default : "Standard"

The unique short (co)root of greatest height in the irreducible root system R.
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Example H96E11

> R := RootSystem("G2");

> HighestRoot(R);

(3 2)

> HighestLongRoot(R);

(3 2)

> HighestShortRoot(R);

(2 1)

CoxeterForm(R)

DualCoxeterForm(R)

Basis MonStgElt Default : "Standard"

The matrix of an inner product on the (co)root space of the root system R which
is invariant under the action of the (co)roots. This inner product is uniquely deter-
mined up to a constant on each irreducible component of R. The inner product is
normalised so that the short roots in each crystallographic component have length
one.

96.5.2 Reflections
The root α acts on the root space via the reflection sα; the coroot α? acts on the coroot
space via the coreflection s?

α.

SimpleReflectionMatrices(R)

SimpleCoreflectionMatrices(R)

Basis MonStgElt Default : "Standard"

The sequence of matrices giving the action of the simple (co)roots of the root system
R on the (co)root space, i.e. the matrices of sα1 , . . . , sαn (respectively, s?

α1
, . . . , s?

αn
).

ReflectionMatrices(R)

CoreflectionMatrices(R)

Basis MonStgElt Default : "Standard"

The sequence of matrices giving the action of the (co)roots of the root system R on
the (co)root space, i.e. the matrices of sα1 , . . . , sα2N

(respectively, s?
α1

, . . . , s?
α2N

).

ReflectionMatrix(R, r)

CoreflectionMatrix(R, r)

Basis MonStgElt Default : "Standard"

The matrix giving the action of the rth (co)root of the root system R on the (co)root
space, i.e. the matrix of sαr (respectively, s?

αr
).
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SimpleReflectionPermutations(R)

The sequence of permutations giving the action of the simple (co)roots of the root
system R on the (co)roots. This action is the same for roots and coroots.

ReflectionPermutations(R)

The sequence of permutations giving the action of the (co)roots of the root system
R on the (co)roots. This action is the same for roots and coroots.

ReflectionPermutation(R, r)

The permutation giving the action of the rth (co)root of the root system R on the
(co)roots. This action is the same for roots and coroots.

ReflectionWords(R)

The sequence of words in the simple reflections for all the reflections of the root
system R. These words are given as sequences of integers. In other words, if
[a1, . . . , al] = ReflectionWords(R)[r], then sαr = sαa1

· · · sαal
.

ReflectionWord(R, r)

The word in the simple reflections for the rth reflection of the root system R.
The word is given as a sequence of integers. In other words, if [a1, . . . , al] =
ReflectionWord(R,r), then sαr = sαa1

· · · sαal
.

Example H96E12

> R := RootSystem("B3");

> mx := ReflectionMatrix(R, 4);

> perm := ReflectionPermutation(R, 4);

> wd := ReflectionWord(R, 4);

> RootPosition(R, Root(R,2) * mx) eq 2^perm;

true

> perm eq &*[ ReflectionPermutation(R, r) : r in wd ];

true

>

> mx := CoreflectionMatrix(R, 4);

> CorootPosition(R, Coroot(R,2) * mx) eq 2^perm;

true
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96.5.3 Operations and Properties for Roots and Coroot Indices

Sum(R, r, s)

The index of the sum of the rth and sth roots in the crystallographic root system
R, or 0 if the sum is not a root. In other words, if t = Sum(R,r,s) 6= 0 then
αt = αr + αs. We require αr 6= ±αs.

IsPositive(R, r)

Returns true if, and only if, the rth (co)root of the root system R is a positive root.

IsNegative(R, r)

Returns true if, and only if, the rth (co)root of the root system R is a negative
root.

Negative(R, r)

The index of the negative of the rth (co)root of the root system R. In other words,
if s = Negative(R,r) then αs = −αr.

Example H96E13

> R := RootSystem("G2");

> Sum(R, 1, Negative(R,5));

10

> IsPositive(R, 10);

false

> Negative(R, 10);

4

> P := PositiveRoots(R);

> P[1] - P[5] eq -P[4];

true

RootHeight(R, r)

CorootHeight(R, r)

The height of the rth (co)root of the root system R, i.e. the sum of the coefficients
of αr (respectively, α?

r) with respect to the simple (co)roots.

RootNorms(R)

CorootNorms(R)

The sequence of squares of the lengths of the (co)roots of the root system R.
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RootNorm(R, r)

CorootNorm(R, r)

The square of the length of the rth (co)root of the root system R.

IsLongRoot(R, r)

Returns true if, and only if, the rth root of the root system R is long. This only
makes sense for irreducible crystallographic root systems. Note that for non-reduced
root systems, the roots which are not indivisible are actually longer than the long
ones.

IsShortRoot(R, r)

Returns true if, and only if, the rth root of the root system R is short. This only
makes sense for irreducible crystallographic root systems.

IsIndivisibleRoot(R, r)

Returns true if, and only if, the rth root of the root system R is indivisible, ie,
αr/2 is not a root.

LeftString(R, r, s)

Indices in the crystallographic root system R of the left string through αs in the
direction of αr, i.e. the indices of αs − αr, αs − 2αr, . . . , αs − pαr. In other words,
this returns the sequence [r1, . . . , rp] where αri = αs− iαr and αs− (p+1)αr is not
a root. We require that αr 6= ±αs.

RightString(R, r, s)

Indices in the crystallographic root system R of the left string through αs in the
direction of αr, i.e. the indices of αs + αr, αs + 2αr, . . . , αs + qαr. In other words,
this returns the sequence [r1, . . . , rq] where αri

= αs + iαr and αs + (q +1)αr is not
a root. We require that αr 6= ±αs.

LeftStringLength(R, r, s)

The largest p such that αs − pαr is a root. We require that the root system R be
crystallographic and αs 6= ±αr.

RightStringLength(R, r, s)

The largest q such that αs + qαr is a root. We require that the root system R be
crystallographic and αs 6= ±αr.
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Example H96E14

> R := RootSystem("G2");

> RootHeight(R, 5);

4

> F := CoxeterForm(R);

> v := Root(R, 5);

> (v*F, v) eq RootNorm(R, 5);

true

> IsLongRoot(R, 5);

true

> LeftString(R, 1, 5);

[ 4, 3, 2 ]

> roots := Roots(R);

> for i in [1..3] do

> RootPosition(R, roots[5]-i*roots[1]);

> end for;

4

3

2

> R := RootSystem("BC2");

> Root(R,2), IsIndivisibleRoot(R,2);

(0 1) true

> Root(R,4), IsIndivisibleRoot(R,4);

(0 2) false

AdditiveOrder(R)

An additive order on the positive roots of the root system R, ie. a sequence contain-
ing the numbers 1, . . . , N in some order so that αr + αs = αt implies t is between r
and s. This is computed using the techniques of [Pap94].

IsAdditiveOrder(R, Q)

Returns true if, and only if, the sequence Q gives an additive order on a set of
positive roots of the root system R. Q must be a sequence of integers in the range
[1..N ], where N is the number of positive roots of R, with no gaps or repeats.
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Example H96E15

> R := RootSystem("A5");

> a := AdditiveOrder(R);

> Position(a, 2);

6

> Position(a, 3);

10

> Position(a, Sum(R, 2, 3));

7

96.6 Building Root Systems

sub< R | a >

The root subsystem of the root system R generated by the roots αa1 , . . . , αak
where

a = {a1, . . . , ak} is a set of integers.

sub< R | s >

The root subsystem of the root system R generated by the roots αs1 , . . . , αsk
where

s = [s1, . . . , sk] is a sequence of integers. In this version the roots must be simple in
the root subsystem (i.e. none of them may be a summand of another), otherwise an
error is signalled. The simple roots will appear in the subsystem in the given order.

R1 subset R2

Returns true if and only if the root system R1 is a subset of the root system R2. If
true, returns an injection as sequence of roots as second return value.

R1 + R2

DirectSum(R1, R2)

The direct sum of the root systems R1 and R2. The root space of the result is the
direct sum of the root spaces of R1 and R2.

R1 join R2

The union of the root systems R1 and R2. The root systems must have the same
root space, which will also be the root space of the result.
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Example H96E16

> R := RootSystem("A1A1");

> R1 := sub<R|[1]>;

> R2 := sub<R|[2]>;

> R1 + R2;

Root system of dimension 4 of type A1 A1

> R1 join R2;

Root system of dimension 2 of type A1 A1

> R1 := RootSystem("A3T2B4T3");

> R2 := RootSystem("T3G2T4BC3");

> R1 + R2;

Root system of dimension 24 of type A3 B4 G2 BC3

> R1 join R2;

Root system of dimension 12 of type A3 B4 G2 BC3

DirectSumDecomposition(R)

IndecomposableSummands(R)

The set of irreducible direct summands of the semisimple root system R.

Dual(R)

The dual of the root system R, obtained by swapping the roots and coroots.

IndivisibleSubsystem(R)

The root system consisting of all indivisible roots of the root system R.

Example H96E17

> R1 := RootSystem("H4");

> R2 := RootSystem("B4");

> R1 + Dual(R2);

Root system of type H4 C4

> R := RootSystem("BC2");

> I := IndivisibleSubsystem(R); I;

I: Root system of type B2

> I subset R;

true [ 1, 2, 3, 5, 7, 8, 9, 11 ]
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96.7 Related Structures
In this section functions for creating other structures from a root system are briefly listed.
The reader is referred to the appropriate chapters of the Handbook for more details.

RootDatum(R)

The (split) root datum corresponding to the root system R. The coefficients of
the simple roots and coroots must be integral; otherwise an error is signalled. See
Chapter 97

CoxeterGroup(GrpFPCox, R)

The Coxeter group with root system R. See Chapter 98. The braid group and
pure braid group can be computed from the Coxeter group using the commands in
Section 98.12.

CoxeterGroup(R)

CoxeterGroup(GrpPermCox, R)

The permutation Coxeter group with root system R. See Chapter 98.

ReflectionGroup(R)

CoxeterGroup(GrpMat, W)

The reflection group of the root system R. See Chapter 99.

LieAlgebra(R, k)

The Lie algebra of the root system R over the base ring k. See Chapter 100.

MatrixLieAlgebra(R, k)

The matrix Lie algebra of the root system R over the base ring k. See Chapter 100.

Example H96E18

> R := RootSystem("b3");

> SemisimpleType(LieAlgebra(R, Rationals()));

B3

> #CoxeterGroup(R);

48

96.8 Bibliography
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Chapter 97

ROOT DATA

97.1 Introduction

This chapter describes Magma functions for computing with (extended) root data. Root
data are fundamental to Lie theory: Lie algebras (Chapter 100) and groups of Lie type
(Chapter 103). Our description of split reduced root data follows [Dem65] and [Car93]
except that reflections act on the right as in customary in Magma. Our description of
extended root data follows [Sat71], [Sch69], and [Hal05]. Our description of split non-
reduced root data follows [Bou68].

The closely related concept of a root system is discussed in Chapter 96. When working
with Lie algebras or groups of Lie type, root data should be used. When working with
Coxeter groups (Chapter 98) or reflection groups (Chapter 99), it is likely that only root
systems are of interest.

97.1.1 Reflections
Let X and Y be free Z-modules with bilinear pairing 〈◦, ◦〉 : X × Y → Z that identifies
Y with the dual of X. Given nonzero α ∈ X and α? ∈ Y , we define the Z-linear map
sα : X → X by

xsα = x− 〈x, α?〉α
and the Z-linear map s?

α : Y → Y by

ys?
α = y − 〈α, y〉α?.

These maps are called reflections if one of the following equivalent properties hold:
〈α, α?〉 = 2; sα

2 = 1; 〈xsα, ys?
α〉 = 〈x, y〉 for all x ∈ X and y ∈ Y ; αsα = −α. The

map s?
α is also called a coreflection: this just means it is a reflection defined on Y instead

of X. Magma functions for computing with reflections are described in Section 99.2.
If X has an inner product, then we can take Y = X and use the inner product as our

pairing. In Magma, X and Y are usually standard Z-modules. However, it is sometimes
useful to allow X and Y to be distinct sublattices of a standard lattice. The bilinear
pairing is always given by the standard inner product: 〈x, y〉 = xyT .
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97.1.2 Definition of a Split Root Datum
Suppose Φ is a finite subset of X \ {0}. For each α in Φ, suppose there is a corresponding
α? in Y \ {0}; set Φ? = {α? | α ∈ Φ}. The datum R = (X, Φ, Y, Φ?) is said to be a (split)
root datum if the following conditions are satisfied for every α in Φ
1. sα and s?

α are reflections;
2. Φ is closed under the action of sα; and
3. Φ? is closed under the action of s?

α.
The lattice X is called the full root lattice and Y the full coroot lattice. The vector

space X ⊗Q is called the root space and Y ⊗Q the coroot space. The elements of Φ are
called roots and the elements of Φ? are called coroots. A root datum is reduced, if α, β ∈ Φ
with β a scalar product of α implies α = ±β.

97.1.3 Simple and Positive Roots
A subset ∆ of Φ is called a set of simple roots if
1. ∆ is a basis for the rational span of the roots QΦ ≤ Q⊗X; and
2. Φ = Φ+ ∪ Φ−, where Φ+ is the set of linear combinations of elements of ∆ with

nonnegative coefficients, and Φ− = −Φ+.
Every root datum has a set of simple roots. Simple roots are frequently called fundamental
roots. The elements of Φ+ are called positive roots and the elements of Φ− negative roots.
The coroots corresponding to the simple (resp. positive, negative) roots are the simple
(respectively, positive, negative) coroots.

The rank of the root datum is the size of ∆, i.e. the dimension of the subspace QΦ.
The rank cannot be larger than the dimension of the root datum (i.e. the dimension of
Q⊗X). If the rank and dimension are equal, the root datum is said to be semisimple.

Choose a basis e1, . . . , ed for X and a dual basis f1, . . . , fd for Y , so that 〈ei, fj〉 = δij . A
reduced root system is determined by a pair of integral matrices A and B where the rows of
A are the simple roots and the rows of B are the corresponding coroots; i.e. Aij = 〈αi, fj〉
and Bij = 〈ej , α

?
i 〉.

97.1.4 The Coxeter Group
The group W generated by the reflections sα, for α a simple root, is a finite Coxeter group.
The Cartan matrix of a root datum is

C =
(〈

αi, α
?
j

〉)n

i,j=1
= ABt.

As in Chapter 95, the Cartan matrix is used to define the Coxeter matrix, Coxeter graph
and Dynkin digraph of a root datum.

A Coxeter form is a W -invariant bilinear form on X. If R is reduced and irreducible,
then the roots can have at most two different lengths with respect to this form. We call
the roots long or short accordingly. The Coxeter form is normalised so that the short roots
in each component have length one. Note that, even if X = Y , this form will generally
not be the same as the pairing 〈◦, ◦〉; however it can often be arranged for them to be the
same (see StandardRootSystem).
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97.1.5 Nonreduced Root Data
A root datum is reduced, if α, β ∈ Φ with β a scalar product of α implies α = ±β. A root
α with the property 2α /∈ Φ is called reduced. A root α with the property 1

2α ∈ Φ is called
divisible. If R is a root datum, then the set R0 of indivisible roots in R form the indivisible
subsystem.

Let R be a nonreduced irreducible root datum of rank n. It can be shown that R0 is
irreducible of type of type Bn and every root is either in R0, or is two times a short root
of R0. The Cartan type of R in this case is BCn.

Note that the Cartan matrix, Coxeter matrix, Coxeter diagram, Coxeter group and
Dynkin diagram are the same for R and R0. Thus, when creating a non-reduced root
datum for a given Cartan matrix, Coxeter matrix, Coxeter diagram, Coxeter group or
Dynkin diagram, one must specify the set of non-reduced fundamental roots. E.g., let C
be a cartan matrix of type B2 × B3. Then the set of nonreduced fundamental roots can
be one of ∅, {2}, {5} or {2, 5}, in which cases the root datum will be of types B2 × B3,
BC2 ×B3, B2 ×BC3 or BC2 ×BC3 respectively.

97.1.6 Isogeny of Split Reduced Root Data
The Dynkin digraph and dimension do not completely determine the isomorphism type of
a split root datum, as the Coxeter graph and dimension do for a root system. Two root
data with isomorphic Dynkin digraphs are said to be Cartan equivalent. We now describe
the isomorphism classes within each Cartan equivalence class of split reduced irreducible
root data. Since every semisimple reduced root datum is isogenous to a direct sum of
irreducible root data, this immediately gives a classification of the split semisimple root
data. Classifying nonsemisimple root data would be more complicated.

The weights of a root datum are the λ in QΦ ≤ X ⊗Q such that 〈λ, α?〉 ∈ Z for every
coroot α?. The weights form a lattice Λ called the weight lattice. We now have lattices
ZΦ ≤ X ≤ Λ (note that the second inclusion holds only for semisimple root data). The
isomorphism class of a root datum in a fixed Cartan equivalence class is determined by
the position of X between the root lattice ZΦ and the weight lattice Λ. Alternatively, the
isomorphism class is determined by the isogeny group X/ZΦ within the fundamental group
Λ/ZΦ. The fundamental group is determined by the Cartan matrix C: it is isometric to
Zn/Θ where Θ is the lattice generated by the rows of C. The fundamental groups of the
irreducible Cartan equivalence classes are

An: Z/(n + 1);
Bn, Cn, E7: Z/2;
Dn: Z/4 for n odd, Z/2× Z/2 for n even;
E6: Z/3;
E8, F4, G2: trivial.

If X = ZΦ the root datum is said to be adjoint; if X = Λ it is said to be simply connected.
The quotient Y/ZΦ? is called the coisogeny group; in the semisimple case it is isomorphic
to Λ/ZΦ.
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97.1.7 Extended Root Data
An extended root datum is a split root datum R = (X, Φ, Y, Φ?) and a permutation group
Γ with actions on X and Y that respect the pairing 〈◦, ◦〉.

Fix a set of simple roots ∆. Let O(χ) denote the orbit of χ ∈ X under the Γ-action.
Then, for α ∈ Φ either O(α) is contained in Φ+, or it is contained in Φ−, or the sum of
the roots of O(α) is zero. We call O(α) a positive, negative or zero orbit, respectively. Put

X0 := {χ ∈ X |
∑

γ∈Γ

χγ = 0}.

Let Φ0 := Φ ∩X0 and ∆0 := ∆ ∩X0. Then X0 is a submodule of X, Φ0 is a subsystem
of Φ, and ∆0 is a fundamental system of Φ0. Note that ∆0 is not necessarily a basis of
X0. Analogously, we define Y0 and Φ?

0. The subdatum R0 = (X0, Φ0, Y0, Φ?
0) is called the

anisotropic subdatum of R.
Set X̄ := X/X0 and let π : X → X̄ be the standard projection. Then X̄ is a free

Z-module and π is a homomorphism of modules. Let Φ̄ and ∆̄ be the images under π of
Φ \Φ0 and ∆ \∆0, respectively. Then Φ̄ is a root system and ∆̄ is a fundamental system
of it. We call Φ̄ the relative root system and ∆̄ the relative fundamental system. Note
that Φ̄ need not be irreducible nor reduced even if Φ is. The rank of the relative system is
|∆̄| and is called the relative rank, whereas the rank |∆| of Φ is called the absolute rank.
Let Φ̄+ and Φ̄− denote the images under π of Φ+ \ Φ0 and Φ− \ Φ0. When X0 = X, the
relative root system is an empty set and the form is called anisotropic.

Each γ ∈ Γ acts on X by χ 7→ χσw for some unique w ∈ W and σ a Dynkin diagram
symmetry. By α 7→ ασ for α ∈ ∆ we define the [Γ]-action on ∆. The extended root datum
is called inner if the [Γ]-action is trivial and outer otherwise. The orbits of the [Γ]-action,
that are not contained in X0 are called distinguished.

An extended root datum is called twisted if the Γ-action is not trivial.
The (split) Cartan name of an extended root datum is the name of the corresponding

split root datum. An extended root datum is absolutely irreducible if the corresponding
split datum is irreducible. It is irreducible if there is no direct sum decomposition of the
split datum which is preserved under the action of Γ. The twisted Cartan name of a root
datum is the Cartan name, with extra information describing the twist. The name mXn,e

indicates a root datum with split Cartan name Xn, where the kernel of the [Γ]-action has
index m in Γ, and e is the rank of the relative root system. The twisted Cartan name
describes absolutely irreducible root data up to isomorphism. This is not true for simple
root data however.

97.2 Constructing Root Data

We first describe some optional parameters that are common to many functions described
below.
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Isogeny Any Default : "Ad"

The optional parameter Isogeny specifies the isomorphism class of the root datum
within the Cartan equivalence class (see Subsection 97.1.6). For irreducible Cartan
names, Isogeny can be one of the following:

1. A string: "Ad" for adjoint or "SC" for simply connected.

2. An integer giving the size of the isogeny subgroup within the fundamental group.
The root datum must be absolutely irreducible. This does not work in type
Dn with n even and Isogeny = 2, since in this case there are three distinct
isomorphism classes (see the example below to create these data).

3. An injection of an abelian group into the fundamental group.

For compound Cartan names, Isogeny can be a string ("Ad" or "SC"); an injection
into the fundamental group; or a list of strings, integers and injections (one for each
direct summand).

Signs Any Default : 1

Many of the constants associated with root data depend on the choice of the sign εrs

for each extraspecial pair (r, s). This parameter allows the user to fix these signs
for the root datum R by giving a sequence s of length NumExtraspecialPairs(R)
consisting of integers 1 or −1. It is also possible to set Signs to 1 instead of a
sequence of all 1 and to −1 instead of a sequence of all −1.

Twist Any Default : 1

This optional parameter defines a Γ-action of an extended root datum and will
accept the following values:

1. a homomorphism from Γ into Sym(2*N), where N is the number of positive roots,
specifying the action of Γ on the (co)roots. (Only for semisimple root data).

2. an integer i giving the order of Γ, e.g., 1, 2, 3, 6 for 1D4, 2D4, 3D4, 6D4 (only if
i = 1 or the root datum is irreducible).

3. 〈D, i〉, where D is a set of distinguished orbits as sets of integers and i (integer)
is the order of the Dynkin diagram symmetry involved (only for irreducible root
data).

4. 〈Γ, ims〉, where Γ is the acting group and ims define images either as permuta-
tions of the simple roots or as permutation of all roots (only for semisimple root
data).

5. 〈Γ, imsR, imsC〉, where Γ is the acting group and imsR (imsC) is a sequence
of matrices defining the action of Γ on the root space (coroot space).

Nonreduced SetEnum Default : {}
The optional argument Nonreduced is used to give the set of indices of the nonre-
duced simple roots. Note that a root datum cannot be both twisted and nonreduced.
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RootDatum(N)

Isogeny Any Default : "Ad"

Signs Any Default : 1
Twist Any Default : 1

A root datum with Cartan name given by the string N (see Section 95.6). In addition
to the possible Cartan names described in Section 95.6, this function will also accept
"Tn" as a component of the Cartan name, which stands for an n-dimensional toral
subdatum. Note, however, that this addition is for input only and will not appear
in the string returned by CartanName when applied to the resulting root datum (see
example below).

If the optional parameter Isogeny is a list, its length should be equal to the total
number of components. Entries of this list corresponding to toral components will
be ignored.

If the corresponding Coxeter group is infinite affine, an error is flagged.

Example H97E1

Examples of adjoint and simply connected irreducible root data.

> RootDatum("E6");

Adjoint root datum of type E6

> RootDatum("E6" : Isogeny := "SC");

Simply connected root datum of type E6

With nonirreducible root data the isogeny can be given as a list.

> R := RootDatum("A5 B3" : Isogeny := [* 3, "Ad" *]);

> R : Maximal;

Root datum of type A5 B3 with simple roots

[1 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0]

[0 0 0 1 0 0 0 0]

[1 2 0 1 3 0 0 0]

[0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 0 1]

and simple coroots

[ 2 -1 0 0 0 0 0 0]

[-1 2 -1 0 -1 0 0 0]

[ 0 -1 2 -1 1 0 0 0]

[ 0 0 -1 2 -1 0 0 0]

[ 0 0 0 -1 1 0 0 0]

[ 0 0 0 0 0 2 -1 0]

[ 0 0 0 0 0 -1 2 -1]

[ 0 0 0 0 0 0 -2 2]

>
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> RootDatum("E6 A3 B4" : Isogeny := "SC");

Simply connected root datum of type E6 A3 B4

Nonsemisimple root data can be constructed by specifying a central torus.

> R := RootDatum("B3 T2 A2" : Isogeny := [* "SC", 0, "Ad" *]);

> R;

R: Root datum of type B3 A2

> Dimension(R), Rank(R);

7 5

> SimpleCoroots(R);

[ 1 0 0 0 0 0 0]

[ 0 1 0 0 0 0 0]

[ 0 0 1 0 0 0 0]

[ 0 0 0 0 0 2 -1]

[ 0 0 0 0 0 -1 2]

The following code creates the three root data of type D6 with isogeny groups of size 2 using
injections into the fundamental group.

> G< a, b > := FundamentalGroup("D6");

> G;

Abelian Group isomorphic to Z/2 + Z/2

Defined on 2 generators

Relations:

2*a = 0

2*b = 0

> _, inj1 := sub< G | a >;

> R1 := RootDatum("D6" : Isogeny := inj1);

> _, inj2 := sub< G | b >;

> R2 := RootDatum("D6" : Isogeny := inj2);

> _, inj3 := sub< G | a*b >;

> R3 := RootDatum("D6" : Isogeny := inj3);

Example H97E2

Examples of extended root data:

> R := RootDatum("A5" : Twist := 2 ); R;

R: Twisted adjoint root datum of type 2A5,3

> R eq RootDatum("A5" : Twist := < Sym(2), [Sym(5)|(1,5)(2,4)] > );

true

> R eq RootDatum("A5" : Twist := < {{1,5},{2,4},{3}}, 2 > );

true

> RootDatum("D4" : Twist := 1);

Adjoint root datum of type D4

> RootDatum("D4" : Twist := 2);

Twisted adjoint root datum of type 2D4,3

> RootDatum("D4" : Twist := 3);

Twisted adjoint root datum of type 3D4,2
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> RootDatum("D4" : Twist := 6);

Twisted adjoint root datum of type 6D4,2

>

> R := RootDatum("A2");

> TwistedRootDatum(R : Twist := 2);

Twisted adjoint root datum of type 2A2,1

RootDatum(C)

Isogeny Any Default : "Ad"

Signs Any Default : 1

Twist Any Default : 1

Nonreduced SetEnum Default : {}
A semisimple root datum with crystallographic Cartan matrix C. If the correspond-
ing Coxeter group is infinite, an error is flagged.

RootDatum(D)

Isogeny Any Default : "Ad"

Signs Any Default : 1

Twist Any Default : 1

Nonreduced SetEnum Default : {}
A semisimple root datum with Dynkin digraph D. If the corresponding Coxeter
group is infinite, an error is flagged.

RootDatum(A, B)

Signs Any Default : 1

Twist Any Default : 1

Nonreduced SetEnum Default : {}
The root datum with simple roots given by the rows of the matrix A and simple
coroots given by the rows of the matrix B. The matrices A and B must have the
following properties:

1. A and B must be integral matrices with the same number of rows and the same
number of columns;

2. the number of columns must be at least the number of rows; and

3. ABt must be the Cartan matrix of a finite Coxeter group.
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Example H97E3

An example of a nonsemisimple root system of type G2:

> A := Matrix(2,3, [1,-1,0, -1,1,-1]);

> B := Matrix(2,3, [1,-1,1, 0,1,-1]);

> RootDatum(A, B);

Root datum of type G2

An example of a non-reduced root datum and usage of Nonreduced argument:

> C := CoxeterMatrix("B2B2");

> RootDatum(C);

Adjoint root datum of type B2 B2

> RootDatum(C : Nonreduced:={2});

Adjoint root datum of type BC2 B2

> RootDatum(C : Nonreduced:={4});

Adjoint root datum of type B2 BC2

> RootDatum(C : Nonreduced:={2,4});

Adjoint root datum of type BC2 BC2

IrreducibleRootDatum(X, n)

Signs Any Default : 1
Twist Any Default : 1

The irreducible root datum with Cartan name Xn.

StandardRootDatum(X, n)

Signs Any Default : 1
Twist Any Default : 1

The standard root datum with Cartan name Xn, i.e. the root datum with the
standard inner product equal to the Coxeter form up to a constant. For technical
reasons, this is only possible for the classical types, i.e. X must be "A", "B", "C",
or "D". Note that the standard root datum is not semisimple for type An.

Example H97E4

These functions are useful in loops.

> for X in ["A","B","G"] do

> print NumPosRoots(IrreducibleRootDatum(X, 2));

> end for;

3

4

6
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ToralRootDatum(n)

Twist Any Default : 1
The toral root datum of dimension n, i.e., the n-dimensional root datum with no
roots or coroots.

Example H97E5

Toral root datum of dimension 3 and a twisted version of it:

> ToralRootDatum(3);

Toral root datum of dimension 3

> M := Matrix(Rationals(),3,3,[0,1,0,1,0,0,0,0,1]);M;

[0 1 0]

[1 0 0]

[0 0 1]

> ToralRootDatum(3 : Twist := <Sym(2),[M],[M]>);

Twisted toral root datum of dimension 3

TrivialRootDatum()

The trivial root datum of dimension 0.

97.2.1 Constructing Sparse Root Data
Sparse root data differ from the usual root data only in the internal representation of the
objects. The internal representation is less memory expensive and requires less time for
creation. Sparse root data have type RootDtmSprs, which is a subcategory of RootDtm.

There are some limitation on the root data which can have sparse representation. First,
sparse representation only makes sense for classical root data, that is of types A, B, C
and D. At the moment only root data with a connected Coxeter diagram may have sparse
representation and no twisted sparse root data can be constructed. T

SparseRootDatum(N)

SparseRootDatum(N)

SparseRootDatum(C)

SparseRootDatum(D)

SparseRootDatum(R)

SparseRootDatum(A, B)

SparseIrreducibleRootDatum(X, n)

SparseStandardRootDatum(X, n)

These functions have the same syntax as their counterparts without the “Sparse”
in the name (see Section 97.2). The root datum returned has sparse representation.
See [CHM08] for the algorithms used to construct sparse root data.
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Example H97E6

> SparseRootDatum("A2");

Sparse adjoint root datum of dimension 2 of type A2

> SparseStandardRootDatum("A", 2);

Sparse root datum of dimension 3 of type A2

> SparseRootDatum("A2") eq RootDatum("A2");

true

SparseRootDatum(R)

Return a sparse root datum equal to the root datum R.

RootDatum(R)

Return a non-sparse root datum equal to the root datum R.

Example H97E7

Due to the restrictions mentioned above, some operations that create new root data, will return
a non-sparse root datum even though the input was sparse.

> R := SparseRootDatum("A2");

> T := ToralRootDatum(3);

> R+T;

Sparse root datum of dimension 5 of type A2

> R+R;

Adjoint root datum of dimension 4 of type A2 A2
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97.3 Operations on Root Data

R1 eq R2

Returns true if, and only if, R1 and R2 are identical root data.

IsIsomorphic(R1, R2)

Returns true if, and only if, R1 and R2 are isomorphic root data. If true, the
second value returned is a sequence giving the simple root of R2 corresponding to
each simple root of R1, and the third value returned is an isomorphism R1 → R2.
This function is currently only implemented for semisimple root data.

IsCartanEquivalent(R1, R2)

Returns true if, and only if, the root data R1 and R2 are Cartan equivalent, i.e.
they have isomorphic Dynkin diagrams. If true, the second value returned is a
sequence giving the simple root of R2 corresponding to each simple root of R1.

IsIsogenous(R1, R2)

Returns true if, and only if, R1 and R2 are isogenous root data. If true, the subse-
quent values returned are: a sequence giving the simple root of R2 corresponding to
each simple root of R1, the corresponding adjoint root datum Rad, the morphisms
Rad → R1 and Rad → R2, the corresponding simply connected root datum Rsc,
and the morphisms R1 → Rsc and R2 → Rsc.

Example H97E8

An example of isogenous root data:

> R1 := RootDatum("A3");

> R2 := RootDatum("A3" : Isogeny := "SC");

> R1 eq R2;

false

> IsIsomorphic(R1, R2);

false

> IsCartanEquivalent(R1, R2);

true [ 1, 2, 3 ]

> IsIsogenous(R1, R2);

true [ 1, 2, 3 ]

Adjoint root datum of type A3

Mapping from: RootDtm: ad to RootDtm: ad

Mapping from: RootDtm: ad to RootDtm: sc

Simply connected root datum of type A3

Mapping from: RootDtm: ad to RootDtm: sc

Mapping from: RootDtm: sc to RootDtm: sc

An example of distinct isomorphic root data:

> C := CartanMatrix("B2");

> R1 := RootDatum(C);
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> R2 := RootDatum(Transpose(C));

> R1; R2;

Adjoint root datum of type B2

Adjoint root datum of type C2

> R1 eq R2;

false

> IsIsomorphic(R1, R2);

true [ 2, 1 ]

CartanName(R)

The Cartan name of the root datum R (Section 95.6).

TwistedCartanName(R)

The twisted Cartan name of the root datum R. E.g., "2A 3,2".

CoxeterDiagram(R)

Print the Coxeter diagram of the root datum R (Section 95.6).

DynkinDiagram(R)

Print the Dynkin diagram of the root datum R (Section 95.6).

CoxeterMatrix(R)

The Coxeter matrix of the root datum R (Section 95.2).

CoxeterGraph(R)

The Coxeter graph of the root datum R (Section 95.3).

CartanMatrix(R)

The Cartan matrix of the root datum R (Section 95.4).

DynkinDigraph(R)

The Dynkin digraph of the root datum R (Section 95.5).
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Example H97E9

> R := RootDatum("F4");

> DynkinDiagram(R);

F4 1 - 2 =>= 3 - 4

> CoxeterDiagram(R);

F4 1 - 2 === 3 - 4

Example H97E10

> R := RootDatum("G2");

> RootSpace(R);

Standard Lattice of rank 2 and degree 2

> CorootSpace(R);

Standard Lattice of rank 2 and degree 2

> // Add RootLattice, CorootLattice.

> // and maybe move (Co)RootSpace and (Co)RootLattice

> // to after introducing them

> SimpleRoots(R);

[1 0]

[0 1]

> SimpleCoroots(R);

[ 2 -3]

[-1 2]

> CartanMatrix(R);

[ 2 -1]

[-3 2]

> Rank(R) eq Dimension(R);

true

GammaAction(R)

The Γ-action of the root datum R. This is a record consisting of four elements:
gamma is the Group Γ acting on R, perm ac is the homomorphism defining the
permutation action of Γ on the set of all roots of R, finally mats rt and mats co
are sequences of matrices defining the action of Γ on the root and coroot spaces of
R.

GammaRootSpace(R)

GammaCorootSpace(R)

The fixed space Γ acting on the (co)root space of R.

GammaOrbitOnRoots(R,r)

The orbit through the rth root of the Γ-action on the root datum R.
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GammaOrbitsOnRoots(R)

PositiveGammaOrbitsOnRoots(R)

NegativeGammaOrbitsOnRoots(R)

ZeroGammaOrbitsOnRoots(R)

The sequence of all (respectively positive, negative and zero) orbits of the Γ-action
on the root datum R (Section 97.1.7).

GammaActionOnSimples(R)

The [Γ]-action on the simple (co)roots of the root datum R. (Section 97.1.7). This
function was called GammaActionPi in the last release.

OrbitsOnSimples(R)

The sequence of all orbits of the [Γ]-action on the simple (co)roots of the root datum
R (Section 97.1.7). This function was called OrbitsPi in the last release.

DistinguishedOrbitsOnSimples(R)

The sequence of distinguished orbits of the [Γ]-action on the simple (co)roots of the
root datum R (Section 97.1.7). This function was called DistinguishedOrbitsPi
in the last release.

BaseRing(R)

The base ring of the root datum R is the field of rational numbers.

Rank(R)

AbsoluteRank(R)

The (absolute) rank of the root datum R, i.e. the number of simple (co)roots.

RelativeRank(R)

The relative rank of the root datum R, i.e. the number of simple (co)roots of the
relative root system. This is the same as absolute rank for split root data.

Dimension(R)

The dimension of the root datum R, i.e. the dimension of the (co)root space. This
is at least as large as the rank, with equality when R is semisimple.

TwistingDegree(R)

The twisting degree of the root datum R, i.e. the order of Γ divided by the kernel
of the [Γ]-action.

AnisotropicSubdatum(R)

The anisitropic subdatum of the root datum R.
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Example H97E11

Consider the twisted root datum of type 2A3,1 with distinguished orbit {2}:
> R := RootDatum( "A3" : Twist := < {{2}}, 2 > );

First, print out the action of Γ on the root datum:

> GammaAction(R);

rec<recformat<gamma: GrpPerm, perm_ac: HomGrp, mats_rt, mats_co> |

gamma := Permutation group acting on a set of cardinality 4

Order = 4 = 2^2

(1, 2, 3, 4),

perm_ac := Homomorphism of GrpPerm: $, Degree 4, Order 2^2 into GrpPerm: $,

Degree 12, Order 2^10 * 3^5 * 5^2 * 7 * 11 induced by

(1, 2, 3, 4) |--> (1, 3, 7, 9)(2, 4, 6, 5)(8, 10, 12, 11),

mats_rt := [

[ 0 0 1]

[ 1 1 0]

[-1 0 0]

],

mats_co := [

[ 0 0 1]

[ 0 1 0]

[-1 1 0]

]

>

Compute the orbits of the Γ-action:

> PositiveGammaOrbitsOnRoots(R);

[

GSet{ 2, 4, 5, 6 }

]

> NegativeGammaOrbitsOnRoots(R);

[

GSet{ 8, 10, 11, 12 }

]

> ZeroGammaOrbitsOnRoots(R);

[

GSet{ 1, 3, 7, 9 }

]

> &+[ Root(R,r) : r in ZeroGammaOrbitsOnRoots(R)[1] ];

(0 0 0)

Compute the [Γ]-action and its orbits:

> GammaActionOnSimples(R);

Homomorphism of GrpPerm: $, Degree 4, Order 2^2 into GrpPerm: $,

Degree 3, Order 2 * 3 induced by

(1, 2, 3, 4) |--> (1, 3)
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> OrbitsOnSimples(R);

[

GSet{ 2 },

GSet{ 1, 3 }

]

> DistinguishedOrbitsOnSimples(R);

[

GSet{ 2 }

]

Absolute and relative rank and the twisting degree, as well as their appearance in the name of
the root datum:

> AbsoluteRank(R);

3

> RelativeRank(R);

1

> TwistingDegree(R);

2

> R;

R: Twisted adjoint root datum of type 2A3,1

anisotropic subdatum:

> A := AnisotropicSubdatum(R); A;

A: Twisted root datum of type 2(A1 A1)2,0

> GammaAction(A)‘perm_ac;

Homomorphism of GrpPerm: $, Degree 4, Order 2^2 into GrpPerm: $,

Degree 4, Order 2^2 induced by

(1, 2, 3, 4) |--> (1, 2, 3, 4)

CoxeterGroupOrder(R)

The order of the (split) Coxeter group of the root datum R.

GroupOfLieTypeOrder(R, q)

The order of the group of Lie type with split root datum R over the field of cardi-
nality q.

GroupOfLieTypeFactoredOrder(R, q)

The factored order of the group of Lie type with split root datum R over the field
of order q.
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Example H97E12

As well as accepting a specific prime power, these functions also take an indeterminate so that
the generic order formula can be computed.

> P<q> := PolynomialRing(Integers());

> R := RootDatum("F4");

> GroupOfLieTypeFactoredOrder(R, q);

[

<q - 1, 4>,

<q, 24>,

<q + 1, 4>,

<q^2 - q + 1, 2>,

<q^2 + 1, 2>,

<q^2 + q + 1, 2>,

<q^4 - q^2 + 1, 1>,

<q^4 + 1, 1>

]

>

> R := RootDatum("B2");

> ord := GroupOfLieTypeOrder(R, q);

> forall{ q : q in [2..200] | not IsPrimePower(q) or

> Evaluate(ord, q) eq GroupOfLieTypeOrder(R, q) };

true

FundamentalGroup(R)

The fundamental group Λ/ZΦ of the root datum R together with the projection
Λ → Λ/ZΦ. See Subsection 97.1.6.

IsogenyGroup(R)

The isogeny group X/ZΦ of the root datum R together with the projection X →
X/ZΦ. If R is semisimple, the injection X/ZΦ → Λ/ZΦ is also returned. See
Subsection 97.1.6.

CoisogenyGroup(R)

The coisogeny group Y/ZΦ? of the root datum R together with the projection
Y → Y/ZΦ?. If R is semisimple, the projection Y/ZΦ? → Λ/ZΦ is also returned.
See Subsection 97.1.6.
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Example H97E13

In the semisimple case, the fundamental group contains the isogeny group, with quotient isomor-
phic to the coisogeny group.

> R := RootDatum("A5" : Isogeny := 3);

> F := FundamentalGroup(R);

> G := IsogenyGroup(R);

> H := CoisogenyGroup(R);

> #G * #H eq #F;

true

Nonsemisimple root data have infinite isogeny groups.

> R := StandardRootDatum("A", 5);

> IsogenyGroup(R);

Abelian Group isomorphic to Z

Defined on 1 generator (free)

97.4 Properties of Root Data

IsFinite(R)

Returns true for any root datum R.

IsIrreducible(R)

Returns true if, and only if, the root datum R is irreducible.

IsAbsolutelyIrreducible(R)

Returns true if, and only if, the split version of the root datum R is irreducible.

IsProjectivelyIrreducible(R)

Returns true if, and only if, the quotient of the root datum R modulo its radical is
irreducible. This is equivalent for R to have a connected Coxeter diagram.

IsReduced(R)

Returns true if, and only if, the root datum R is reduced.

IsSemisimple(R)

Returns true if, and only if, the root datum R is semisimple, i.e. its rank is equal
to its dimension.

IsCrystallographic(R)

Returns true for any root datum R.
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IsSimplyLaced(R)

Returns true if, and only if, the root datum R is simply laced, i.e. its Dynkin
diagram contains no multiple bonds.

IsAdjoint(R)

Returns true if, and only if, the root datum R is adjoint, i.e. its isogeny group is
trivial.

IsWeaklyAdjoint(R)

Returns true if, and only if, the root datum R is weakly adjoint, i.e. its isogeny
group is isomorphic to Zn, where n is dim(R)− rk(R). Note that if R is semisimple
then this function is identical to IsAdjoint.

IsSimplyConnected(R)

Returns true if, and only if, the root datum R is simply connected, i.e. its isogeny
group is equal to the fundamental group, i.e. its coisogeny group is trivial.

IsWeaklySimplyConnected(R)

Returns true if, and only if, the root datum R is weakly simply connected, i.e. its
coisogeny group is isomorphic to Zn, where n is dim(R)− rk(R). Note that if R is
semisimple then this function is identical to IsSimplyConnected.

Example H97E14

> R := RootDatum("A5 B2" : Isogeny := "SC");

> IsIrreducible(R);

false

> IsSimplyLaced(R);

false

> IsSemisimple(R);

true

> IsAdjoint(R);

false

For some of the exceptional isogeny classes, there is only one isomorphism class of root data,
which is both adjoint and simply connected.

> R := RootDatum("G2");

> IsAdjoint(R);

true

> IsSimplyConnected(R);

true

There exist root data that are neither adjoint nor simply connected.

> R := RootDatum("A3" : Isogeny := 2);

> IsAdjoint(R), IsSimplyConnected(R);
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false false

Finally, we demonstrate a case where the root datum is not adjoint, but is weakly adjoint.

> R := RootDatum("A2T1");

> IsAdjoint(R), IsWeaklyAdjoint(R);

false true

> Dimension(R), Rank(R);

3 2

> G := IsogenyGroup(R); G;

Abelian Group isomorphic to Z

Defined on 1 generator (free)

IsReduced(R)

Returns true if, and only if, the root datum R is reduced.

IsSplit(R)

Returns true if, and only if, the root datum R is split, i.e. the Γ-action is trivial.

IsTwisted(R)

Returns true if, and only if, the root datum R is twisted, i.e. the Γ-action is not
trivial.

IsQuasisplit(R)

Returns true if, and only if, the root datum R is quasisplit, i.e. the anisotropic
subdatum is trivial.

IsInner(R)

IsOuter(R)

Returns true if, and only if, the root datum R is inner (resp. outer).

IsAnisotropic(R)

Returns true if, and only if, the root datum R is anisotropic, i.e. when X = X0.
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97.5 Roots, Coroots and Weights
The roots are stored as an indexed set

{@ α1, . . . , αN , αN+1, . . . , α2N @},
where α1, . . . , αN are the positive roots in an order compatible with height; and
αN+1, . . . , α2N are the corresponding negative roots (i.e. αi+N = −αi). The simple roots
are α1, . . . , αn where n is the rank.

Many of these functions have an optional argument Basis which may take one of the
following values
1. "Standard": the standard basis for the (co)root space. This is the default.
2. "Root": the basis of simple (co)roots.
3. "Weight": the basis of fundamental (co)weights (see Subsection 99.8.3 below).

97.5.1 Accessing Roots and Coroots

RootSpace(R)

CorootSpace(R)

The vector space containing the (co)roots of the root datum R, i.e. X ⊗Q (respec-
tively, Y ⊗Q).

FullRootLattice(R)

FullCorootLattice(R)

The lattice containing the (co)roots of the root datum R, i.e. X (respectively, Y ).
An inclusion map into the (co)root space of R is returned as the second value.

RootLattice(R)

CorootLattice(R)

The lattice spanned by the (co)roots of the root datum R. An inclusion map into
the (co)root space of R is returned as the second value.

Example H97E15

The root space, full root lattice and the root lattice of the standard root datum of type A2:

> R := StandardRootDatum("A",2);

> V := RootSpace(R);

> FullRootLattice(R);

Standard Lattice of rank 3 and degree 3

Mapping from: Standard Lattice of rank 3 and degree 3 to ModTupFld: V

> RootLattice(R);

Lattice of rank 2 and degree 3

Basis:

( 1 -1 0)

( 0 1 -1)

Mapping from: Lattice of rank 2 and degree 3 to ModTupFld: V
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IsRootSpace(V)

IsCorootSpace(V)

Return true if, and only if, V is the (co)root space of some root datum.

IsInRootSpace(v)

IsCorootSpace(v)

Return true if, and only if, V is an element of the (co)root space of some root
datum.

RootDatum(V)

If V is the (co)root space of some root datum, this returns the datum.

Example H97E16

> R := RootDatum("a3");

> V := RootSpace(R);

> v := V.1;

> IsRootSpace(V);

true

> RootDatum(V);

R: Adjoint root datum of dimension 3 of type A3

> IsInRootSpace(v);

true

ZeroRootLattice(R)

ZeroRootSpace(R)

For the given root datum R, return the lattice X0 and the vector space X0 ⊗ Q,
respectively (see Section 97.1.7).

RelativeRootSpace(R)

For the given root datum R, return the vector space X̄ = (X ⊗ Q)/(X0 ⊗ Q)
containing the relative roots (see Section 97.1.7). The projection from X ⊗Q onto
X̄ is returned as second return value.

SimpleRoots(R)

SimpleCoroots(R)

The simple (co)roots of the root datum R as the rows of a matrix, i.e. A (respectively,
B).
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NumberOfPositiveRoots(R)

NumPosRoots(R)

The number of positive roots of the root datum R. This is also the number of
positive coroots. The total number of (co)roots is twice the number of positive
(co)roots.

Roots(R)

Coroots(R)

Basis MonStgElt Default : "Standard"

The indexed set of (co)roots of the root datum R, i.e. {@ α1, . . . α2N @} (respectively,
{@ α?

1, . . . α
?
2N @}).

PositiveRoots(R)

PositiveCoroots(R)

Basis MonStgElt Default : "Standard"

The indexed set of positive (co)roots of the root datum R, i.e. {@α1, . . . αN @}
(respectively, {@α?

1, . . . α
?
N @}).

Root(R, r)

Coroot(R, r)

Basis MonStgElt Default : "Standard"

The rth (co)root αr (respectively, α?
r) of the root datum R.

RootPosition(R, v)

CorootPosition(R, v)

Basis MonStgElt Default : "Standard"

If v is a (co)root in the root datum R, return its index; otherwise return 0. These
functions will try to coerce v into the appropriate lattice; v should be written with
respect to the basis specified by the parameter Basis.

BasisChange(R,v)

InBasis MonStgElt Default : "Standard"

OutBasis MonStgElt Default : "Standard"

Coroots BoolElt Default : false

Changes the basis of the vector v contained in the space spanned by the (co)roots
of the root datum R. The vector v is considered as an element of the root space
by default. If the parameter Coroots is set to true, v is considered as an element
of the coroot space. The optional arguments InBasis and OutBasis may take the
same values as the parameter Basis as described at the beginning of the current
section.
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Example H97E17

> R := RootDatum("A3" : Isogeny := 2);

> Roots(R);

{@

(1 0 0),

(0 1 0),

(1 0 2),

(1 1 0),

(1 1 2),

(2 1 2),

(-1 0 0),

(0 -1 0),

(-1 0 -2),

(-1 -1 0),

(-1 -1 -2),

(-2 -1 -2)

@}

> PositiveCoroots(R);

{@

(2 -1 -1),

(-1 2 0),

(0 -1 1),

(1 1 -1),

(-1 1 1),

(1 0 0)

@}

> #Roots(R) eq 2*NumPosRoots(R);

true

> Coroot(R, 4);

(1 1 -1)

> Coroot(R, 4 : Basis := "Root");

(1 1 0)

> CorootPosition(R, [1,1,-1]);

4

> CorootPosition(R, [1,1,0] : Basis := "Root");

4

> BasisChange(R, [1,0,0] : InBasis:="Root");

(1 0 0)

> BasisChange(R, [1,0,0] : InBasis:="Root", Coroots);

( 2 -1 -1)
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IsInRootSpace(R,v)

IsInCorootSpace(R,v)

Returns true if and only if the vector v is contained in the (co)root space of the
root datum R.

HighestRoot(R)

HighestCoroot(R)

Basis MonStgElt Default : "Standard"

The unique (co)root of greatest height in the irreducible root datum R.

HighestLongRoot(R)

HighestLongCoroot(R)

Basis MonStgElt Default : "Standard"

The unique long (co)root of greatest height in the irreducible root datum R.

HighestShortRoot(R)

HighestShortCoroot(R)

Basis MonStgElt Default : "Standard"

The unique short (co)root of greatest height in the irreducible root datum R.

Example H97E18

> R := RootDatum("G2");

> HighestRoot(R);

(3 2)

> HighestLongRoot(R);

(3 2)

> HighestShortRoot(R);

(2 1)

RelativeRoots(R)

PositiveRelativeRoots(R)

NegativeRelativeRoots(R)

SimpleRelativeRoots(R)

The indexed set of all (resp. positive, negative, simple) relative roots of the root
datum R. Note that the relative roots are returned in the order induced by the
standard ordering on the (nonrelative) roots of R.
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RelativeRootDatum(R)

The relative root datum of the root datum R.

GammaOrbitsRepresentatives(R, delta)

The preimage of a relative root δ is a disjoint union of Γ-orbits on the set of all roots
of the root datum R. This intrinsic returns a sequence of representatives of these
orbits.

Example H97E19

We first consider the twisted root datum of type 2E6, which is quasisplit:

> DynkinDiagram(RootDatum("E6"));

E6 1 - 3 - 4 - 5 - 6

|

2

>

> R := RootDatum("E6" : Twist:=2 ); R;

R: Twisted adjoint root datum of type 2E6,4

> OrbitsOnSimples(R);

[

GSet{ 2 },

GSet{ 4 },

GSet{ 1, 6 },

GSet{ 3, 5 }

]

> DistinguishedOrbitsOnSimples(R) eq OrbitsOnSimples(R);

true

> AnisotropicSubdatum(R);

Twisted toral root datum of dimension 6

[]

> RR := RelativeRootDatum(R);RR;

RR: Adjoint root datum of type F4

> _,pi := RelativeRootSpace(R);

> DynkinDiagram(RR);

F4 1 - 2 =>= 4 - 3

> [ Position(Roots(RR), pi(Root(R,i)) ) : i in [1,6, 3,5, 4, 2]];

[ 3, 3, 4, 4, 2, 1 ]

now one with distinguished orbits {2} and {4}:
> R := RootDatum("E6" : Twist := <{{2},{4}},2> ); R;

R: Twisted adjoint root datum of type 2E6,2

> OrbitsOnSimples(R);

[

GSet{ 2 },

GSet{ 4 },

GSet{ 1, 6 },

GSet{ 3, 5 }
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]

> DistinguishedOrbitsOnSimples(R);

[

GSet{ 2 },

GSet{ 4 }

]

> AnisotropicSubdatum(R);

Twisted root datum of type 2(A2 A2)4,0

[ 1, 3, 5, 6, 7, 11, 37, 39, 41, 42, 43, 47 ]

> RR := RelativeRootDatum(R);RR;

RR: Adjoint root datum of type G2

> DynkinDiagram(RR);

G2 2 =<= 1

3

> _,pi := RelativeRootSpace(R);

> [ Position(Roots(RR), pi(Root(R,i)) ) : i in [2,4]];

[ 1, 2 ]

and now the one with distinguished orbits {2} and {1, 6}, which has a non-reduced relative root
datum:

> R := RootDatum("E6" : Twist := <{{2},{1,6}},2> ); R;

R: Twisted adjoint root datum of dimension 6 of type 2E6,2

> OrbitsOnSimples(R);

[

GSet{ 2 },

GSet{ 4 },

GSet{ 1, 6 },

GSet{ 3, 5 }

]

> DistinguishedOrbitsOnSimples(R);

[

GSet{ 2 },

GSet{ 1, 6 }

]

> AnisotropicSubdatum(R);

Twisted root datum of type 2A3,0

[ 3, 4, 5, 9, 10, 15, 39, 40, 41, 45, 46, 51 ]

> RR := RelativeRootDatum(R);RR;

RR: Adjoint root datum of type BC2

> DynkinDiagram(RR);

BC2 1 =>= 2

> _,pi := RelativeRootSpace(R);

> [ Position(Roots(RR), pi(Root(R,i)) ) : i in [2, 1,6]];

[ 1, 2, 2 ]

Finally, the twisted root Datum of type 6D4,1:

> T := RootDatum( "D4" : Twist:=<{{2}},6> );

> T;
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T: Twisted adjoint root datum of dimension 4 of type 6D4,1

> RelativeRootDatum(T);

Adjoint root datum of type BC1

> GammaOrbitsRepresentatives(T,1);

[ 11, 5 ]

> GammaOrbitsRepresentatives(T,2);

[ 12 ]

CoxeterForm(R)

DualCoxeterForm(R)

Basis MonStgElt Default : "Standard"

The matrix of an inner product on the (co)root space of the root datum R which
is invariant under the action of the (co)roots. The inner product is normalised so
that the short roots in each irreducible component have length one.

97.5.2 Reflections
The root α acts on the root space via the reflection sα; the coroot α? acts on the coroot
space via the coreflection s?

α.

SimpleReflectionMatrices(R)

SimpleCoreflectionMatrices(R)

Basis MonStgElt Default : "Standard"

The sequence of matrices giving the action of the simple (co)roots of the root datum
R on the (co)root space, i.e. the matrices of sα1 , . . . , sαn (respectively, s?

α1
, . . . , s?

αn
).

ReflectionMatrices(R)

CoreflectionMatrices(R)

Basis MonStgElt Default : "Standard"

The sequence of matrices giving the action of the (co)roots of the root datum R on
the (co)root space, i.e. the matrices of sα1 , . . . , sα2N

(respectively, s?
α1

, . . . , s?
α2N

).

ReflectionMatrix(R, r)

CoreflectionMatrix(R, r)

Basis MonStgElt Default : "Standard"

The matrix giving the action of the rth (co)root of the root datum R on the (co)root
space, i.e. the matrix of sαr (respectively, s?

αr
).

SimpleReflectionPermutations(R)

The sequence of permutations giving the action of the simple (co)roots of the root
datum R on the (co)roots. This action is the same for roots and coroots.
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ReflectionPermutations(R)

The sequence of permutations giving the action of the (co)roots of the root datum
R on the (co)roots. This action is the same for roots and coroots.

ReflectionPermutation(R, r)

The permutation giving the action of the rth (co)root of the root datum R on the
(co)roots. This action is the same for roots and coroots.

ReflectionWords(R)

The sequence of words in the simple reflections for all the reflections of the root
datum R. These words are given as sequences of integers. In other words, if a =
[a1, . . . , al] = ReflectionWords(R)[r], then sαr = sαa1

· · · sαal
.

ReflectionWord(R, r)

The word in the simple reflections for the rth reflection of the root datum R. The
word is given as a sequence of integers. In other words, if a = [a1, . . . , al] =
ReflectionWord(R,r), then sαr = sαa1

· · · sαal
.

Example H97E20

> R := RootDatum("A3" : Isogeny := 2);

> mx := ReflectionMatrix(R, 4);

> perm := ReflectionPermutation(R, 4);

> wd := ReflectionWord(R, 4);

> RootPosition(R, Root(R,2) * mx) eq 2^perm;

true

> perm eq &*[ ReflectionPermutation(R, r) : r in wd ];

true

>

> mx := CoreflectionMatrix(R, 4);

> CorootPosition(R, Coroot(R,2) * mx) eq 2^perm;

true
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97.5.3 Operations and Properties for Root and Coroot Indices

Sum(R, r, s)

The index of the sum of the rth and sth roots in the root datum R, or 0 if the
sum is not a root. In other words, if t = Sum(R,r,s) 6= 0 then αt = αr + αs. The
condition αr 6= ±αs must be satisfied.

IsPositive(R, r)

Returns true if, and only if, the rth (co)root of the root datum R is a positive root.

IsNegative(R, r)

Returns true if, and only if, the rth (co)root of the root datum R is a negative root.

Negative(R, r)

The index of the negative of the rth (co)root of the root datum R. In other words,
if s = Negative(R,r) then αs = −αr.

LeftString(R, r, s)

Indices in the root datum R of the left string through αs in the direction of αr,
i.e. the indices of αs − αr, αs − 2αr, . . . , αs − pαr. In other words, this returns the
sequence [r1, . . . , rp] where αri = αs − iαr and αs − (p + 1)αr is not a root. The
condition αr 6= ±αs must be satisfied.

RightString(R, r, s)

Indices in the root datum R of the left string through αs in the direction of αr,
i.e. the indices of αs + αr, αs + 2αr, . . . , αs + qαr. In other words, this returns the
sequence [r1, . . . , rq] where αri = αs + iαr and αs + (q + 1)αr is not a root. The
condition αr 6= ±αs must be satisfied.

LeftStringLength(R, r, s)

The largest p such that αs − pαr is a root of the root datum R. The condition
αs 6= ±αr must be satisfied.

RightStringLength(R, r, s)

The largest q such that αs + qαr is a root of the root datum R. The condition
αs 6= ±αr must be satisfied.
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Example H97E21

> R := RootDatum("G2");

> Sum(R, 1, Negative(R,5));

10

> IsPositive(R, 10);

false

> Negative(R, 10);

4

> P := PositiveRoots(R);

> P[1] - P[5] eq -P[4];

true

RootHeight(R, r)

CorootHeight(R, r)

The height of the rth (co)root of the root datum R, i.e. the sum of the coefficients
of αr (respectively, α?

r) with respect to the simple (co)roots.

RootNorms(R)

CorootNorms(R)

The sequence of squares of the lengths of the (co)roots of the root datum R.

RootNorm(R, r)

CorootNorm(R, r)

The square of the length of the rth (co)root of the root datum R.

IsLongRoot(R, r)

Returns true if, and only if, the rth root of the root datum R is long. This only
makes sense for irreducible crystallographic root data. Note that for non-reduced
root data, the roots which are not indivisible, are actually longer than the long ones.

IsShortRoot(R, r)

Returns true if, and only if, the rth root of the root datum R is short. This only
makes sense for irreducible crystallographic root data.

IsIndivisibleRoot(R, r)

Returns true if, and only if, the rth root of the root system R is indivisible.
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Example H97E22

Note that the Coxeter form is defined over the rationals. Since it is not possible to multiply a
lattice element by a rational matrix, (co)roots must be coerced into a rational vector space first.

> R := RootDatum("G2");

> RootHeight(R, 5);

4

> F := CoxeterForm(R);

> v := VectorSpace(Rationals(),2) ! Root(R, 5);

> (v*F, v) eq RootNorm(R, 5);

true

> IsLongRoot(R, 5);

true

> LeftString(R, 1, 5);

[ 4, 3, 2 ]

> roots := Roots(R);

> for i in [1..3] do

> RootPosition(R, roots[5]-i*roots[1]);

> end for;

4

3

2

RootClosure(R, S)

The closure in the root datum R of the set S of root indices. That is the indices of
every root that can be written as a sum of roots with indices in S.

AdditiveOrder(R)

An additive order on the positive roots of the root datum R, ie. a sequence containing
the numbers 1, . . . , N in some order such that αr + αs = αt implies t is between r
and s. This is computed using the techniques of [Pap94]

IsAdditiveOrder(R, Q)

Returns true if, and only if, Q gives an additive order on a set of positive roots of
R. Q must be a sequence of integers in the range [1..N ] with no gaps or repeats.
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Example H97E23

> R := RootDatum("A5");

> a := AdditiveOrder(R);

> Position(a, 2);

6

> Position(a, 3);

10

> Position(a, Sum(R, 2, 3));

7

97.5.4 Weights

WeightLattice(R)

The weight lattice Λ of the root datum R. i.e. the λ in QΦ ≤ Q ⊗ X such that
〈λ, α?〉 ∈ Z for every coroot α?.

CoweightLattice(R)

The coweight lattice Λ? of the root datum R, i.e. the λ? in QΦ? ≤ Q⊗Y such that
〈α, λ?〉 ∈ Z for every root α.

FundamentalWeights(R)

Basis MonStgElt Default : "Standard"

The fundamental weights λ1, . . . , λn of the root datum R given as the rows of a
matrix. This is the basis of the weight lattice Λ dual to the simple coroots, i.e.
〈λi, α

?
j 〉 = δij .

FundamentalCoweights(R)

Basis MonStgElt Default : "Standard"

The fundamental coweights λ?
1, . . . , λ

?
n of the root datum R given as the rows of a

matrix. This is the basis of the coweight lattice Λ? dual to the simple roots, i.e.
〈αi, λ

?
j 〉 = δij .
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Example H97E24

> R := RootDatum("E6");

> WeightLattice(R);

Lattice of rank 6 and degree 6

Basis:

(4 3 5 6 4 2)

(3 6 6 9 6 3)

(5 6 10 12 8 4)

(6 9 12 18 12 6)

(4 6 8 12 10 5)

(2 3 4 6 5 4)

Basis Denominator: 3

> FundamentalWeights(R);

[ 4/3 1 5/3 2 4/3 2/3]

[ 1 2 2 3 2 1]

[ 5/3 2 10/3 4 8/3 4/3]

[ 2 3 4 6 4 2]

[ 4/3 2 8/3 4 10/3 5/3]

[ 2/3 1 4/3 2 5/3 4/3]

IsDominant(R, v)

Basis MonStgElt Default : "Standard"

Returns true if, and only if, v is a dominant weight for the root datum R, ie, a
nonnegative integral linear combination of the fundamental weights.

DominantWeight(R, v)

Basis MonStgElt Default : "Standard"

The unique dominant weight in the same W -orbit as the weight v, where W is the
Weyl group of the root datum R. The second value returned is a Weyl group element
taking v to the dominant weight. The weight v can be given either as a vector or
as a sequence representing the vector and is coerced into the weight lattice first.

WeightOrbit(R, v)

Basis MonStgElt Default : "Standard"

The W -orbit of the weight v as an indexed set, where W is the Weyl group of the
root datum R. The first element in the orbit is always dominant. The second value
returned is a sequence of Weyl group elements taking the dominant weight to the
corresponding element of the orbit. The weight v can be given either as a vector or
as a sequence representing the vector and is coerced into the weight lattice first.
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Example H97E25

> R := RootDatum("B3");

> DominantWeight(R, [1,-1,0] : Basis:="Weight");

(1 0 0)

[ 2, 3, 2, 1 ]

> #WeightOrbit(R, [1,-1,0] : Basis:="Weight");

6

97.6 Building Root Data

sub< R | a >

The root subdatum of the root datum R generated by the roots αa1 , . . . , αak
where

a = {a1, . . . , ak} is a set of integers.

sub< R | s >

The root subdatum of the root datum R generated by the roots αs1 , . . . , αsk
where

s = [s1, . . . , sk] is a sequence of integers. In this version the roots must be simple in
the root subdatum (i.e. none of them may be a summand of another) otherwise an
error is signalled. The simple roots will appear in the subdatum in the given order.

Example H97E26

> R := RootDatum("A4");

> PositiveRoots(R);

{@

(1 0 0 0),

(0 1 0 0),

(0 0 1 0),

(0 0 0 1),

(1 1 0 0),

(0 1 1 0),

(0 0 1 1),

(1 1 1 0),

(0 1 1 1),

(1 1 1 1)

@}

> s := sub< R | [6,1,4] >;

> s;

Root datum of type A3

> PositiveRoots(s);

{@

(0 1 1 0),

(1 0 0 0),
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(0 0 0 1),

(1 1 1 0),

(0 1 1 1),

(1 1 1 1)

@}

> s := sub< R | [1,5] >;

Error: The given roots are not simple in a subdatum

> s := sub< R | {1,5} >;

> s;

Root datum of type A2

> PositiveRoots(s);

{@

(1 0 0 0),

(0 1 0 0),

(1 1 0 0)

@}

R1 subset R2

Returns true if and only if the root datum R1 is a subset of the root datum R2. If
true, returns an injection as sequence of roots as second return value.

R1 + R2

DirectSum(R1, R2)

The external direct sum of the root data R1 and R2. The full (co)root space of the
result is the direct sum of the full (co)root spaces of R1 and R2.

R1 join R2

The internal direct sum of the root data R1 and R2. The root data must have the
same full (co)root space, which will also be the full (co)root space of the result. The
root data must have disjoint (co)root spaces.

Example H97E27

> R := RootDatum("A1A1");

> R1 := sub<R|[1]>;

> R2 := sub<R|[2]>;

> R1 + R2;

Root datum of dimension 4 of type A1 A1

> R1 join R2;

R: Adjoint root datum of dimension 2 of type A1 A1
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DirectSumDecomposition(R)

IndecomposableSummands(R)

Returns a sequence Q of irreducible root data, a root datum S which is the direct
sum of the terms of Q, and an isogeny map φ : S → R. The root datum R must
be semisimple. Note that a semisimple root datum R need not be a direct sum of
simple root data, but it is isogenous to a direct sum of root data S.

Example H97E28

If the root datum in adjoint or simply connected, then it is a direct sum of simples. In this case
we get S = R.

> R := RootDatum("A4B5" : Isogeny:="SC");

> Q, S := DirectSumDecomposition( R );

> R eq S;

true

> R eq Q[1] join Q[2];

true

The join of the summands of the direct sum decomposition is the original root datum again:

> R eq &join DirectSumDecomposition(R);

true

> R eq &+ DirectSumDecomposition(R);

false

> R1 := RootDatum("A3T2B4T3");

> R2 := RootDatum("T3G2T4BC3");

> R1 + R2;

Adjoint root datum of dimension 24 of type A3 B4 G2 BC3

> R1 join R2;

Root datum of dimension 12 of type A3 B4 G2 BC3

Here is an example of a semisimple root datum which is not a direct sum of simple subdata. Note
that a simple root datum of type A1 is either simply connected or adjoint.

> G<a,b>:=FundamentalGroup("A1A1");

> _,inj:=sub<G|a*b>;

> R:=RootDatum("A1A1":Isogeny:=inj);

> ad := RootDatum( "A1" : Isogeny:="Ad" );

> sc := RootDatum( "A1" : Isogeny:="SC" );

> IsIsomorphic( R, DirectSum(ad,ad) );

false

> IsIsomorphic( R, DirectSum(ad,sc) );

false

> IsIsomorphic( R, DirectSum(sc,sc) );

false

> Q, S := DirectSumDecomposition( R );

> R eq S;
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false

Dual(R)

The dual of the root datum R, obtained by swapping the roots and coroots. The
second value returned is the dual morphism from R to its dual.

SimplyConnectedVersion(R)

The simply connected version of the root datum R. If R is semisimple then the
injection of the simply connected version into R is returned as the second value.

AdjointVersion(R)

The adjoint version of the root datum R. If R is semisimple then the projection
from R to its adjoint version is returned as the second value.

IndivisibleSubdatum(R)

The root datum consisting of all indivisible roots of the root datum R.

Radical(R)

The radical of the root datum R, ie, the toral subdatum whose root (resp. coroot)
space consists of the vectors perpendicular to every coroot (resp. root).

Example H97E29

An adjoint or simply connect root datum is always a direct sum of irreducible subdata. In these
cases we take S = R.

> R1 := RootDatum("A5");

> R2 := RootDatum("B4");

> R := DirectSum(R1, Dual(R2));

> DirectSumDecomposition(R);

{

Root datum of type A5 ,

Root datum of type C4

}

> R := RootDatum("BC2");

> I := IndivisibleSubdatum(R); I;

I: Root datum of type B2

> I subset R;

true [ 1, 2, 3, 5, 7, 8, 9, 11 ]

> R := StandardRootDatum("A", 3);

> Radical(R);

Toral root datum of dimension 1



2892 LIE THEORY Part XIV

TwistedRootDatum(R)

TwistedRootDatum(N)

Twist Any Default : 1
Create a twisted root datum from the root datum R, or from the semisimple root
datum with Cartan name N . The twist may be specified in any of the following
ways:
• An integer, specifying the order of the twist;
• A permutation, specifying the action of the primitive roots;
• A pair < D, i >, where D is a set of distinguished orbits as sets of integers, and

i is the order of the Dynkin diagram symmetry;
• A pair < Γ, Q >, where Γ is the acting group, and Q is a sequence containing

the permutation of the primitive roots for each of the generators of Γ;
• A homomorphism from Γ to the symmetric group whose order is the number of

roots of R, describing how the acting group Γ acts on the roots.

Example H97E30

We construct a twisted root datum in a number of ways.

> S := TwistedRootDatum("D4" : Twist := 3);

> S;

S: Twisted adjoint root datum of dimension 4 of type 3D4,2

> R := RootDatum("A1A3");

> DynkinDiagram(R);

A1 1

A3 2 - 3 - 4

> S := TwistedRootDatum(R : Twist := Sym(4)!(2,4));

> S;

S: Twisted adjoint root datum of dimension 4 of type 2(A1 A3)4,3

> S := TwistedRootDatum("A4" : Twist := <{{1,4},{2,3}}, 2>);

> S;

S: Twisted adjoint root datum of dimension 4 of type 2A4,2

> R := RootDatum("E6" : Isogeny := "SC");

> DynkinDiagram(R);

E6 1 - 3 - 4 - 5 - 6

|

2

> S := TwistedRootDatum(R : Twist := <Sym(2) ,[ Sym(6)!(1,6)(3,5) ]>);

> S;
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S: Twisted simply connected root datum of dimension 6 of type 2E6,4

> R := RootDatum("D4");

> DynkinDiagram(R);

D4 3

/

1 - 2

\

4

> Gamma := Sym(3);

> Gamma.1, Gamma.2;

(1, 2, 3)

(1, 2)

> S := TwistedRootDatum(R : Twist := <Gamma, [ Sym(4) | (1,3,4), (1,4) ]>);

> S;

S: Twisted adjoint root datum of dimension 4 of type 6D4,2

> R := RootDatum("A2");

> DynkinDiagram(R);

A2 1 - 2

> Roots(R);

{@

(1 0),

(0 1),

(1 1),

(-1 0),

( 0 -1),

(-1 -1)

@}

> S6 := Sym(#Roots(R));

> phi := hom<Sym(2) -> S6 | S6!(1,2)(4,5)>;

> S := TwistedRootDatum(R : Twist := phi);

UntwistedRootDatum(R)

SplitRootDatum(R)

The split version of the (twisted) root datum R.
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97.7 Morphisms of Root Data

Morphisms are currently only defined for split root data. Let Ri = (Xi, Φi, Yi, Φ?
i ) be a

root datum for i = 1, 2. A morphism of root data φ : R1 → R2 consists of a pair of Z-linear
maps φX : X1 → X2 and ΦY : Y1 → Y2 satisfying

1. φX(Φ1) ⊆ Φ2 ∪ {0}; and

2. φY (α?) = φX(α)? (with the convention that 0? = 0).
A fractional morphism is similar, except that it consists of Q-linear maps on the (co)root

spaces X1⊗Q → X2⊗Q and Y1⊗Q → Y2⊗Q. The main examples of fractional morphisms
are isogeny maps (Section 97.1.6). A dual morphism is similar, except that the maps are
X1 → Y2 and Y1 → X2. This is clearly equivalent to a morphism from R1 to the dual of
R2. Finally we define a dual fractional morphism in the obvious way.

A (fractional) morphism φ : R1 → R2 also stores a sign corresponding to each simple
root of R1. This has no effect on the action of φ on roots or coroots, but does effect the
definition of the corresponding homomorphisms of Lie algebras and groups of Lie type.

hom< R -> S | phiX, phiY >

hom< R -> S | phiX, phiY >

Construct a (fractional) morphism of root data R → S with the given linear maps
or matrices of linear maps.

hom< R -> S | Q >

Construct a (fractional) morphism of root data R → S with the given sequence
of root images. The sequence Q must have length 2N and consist of elements in
the range [0, . . . , 2M ], where N is the number of positive roots of R and M is the
number of positive roots of S. The domain R must be semisimple.

Morphism(R, S, phiX, phiY)

Morphism(R, S, phiX, phiY)

SimpleSigns . Default : 1

Check BoolElt Default : true

Construct a (fractional) morphism of root data R → S with the given sequence
of root images. The sequence Q must have length 2N and consist of elements in
the range [0, . . . , 2M ], where N is the number of positive roots of R and M is the
number of positive roots of S. The domain R must be semisimple.

SimpleSigns is a sequence of signs corresponding to the simple roots, or ±1
to indicate a constant sequence. If Check is set to false, the function does not
check that the maps send (co)roots to (co)roots. This function is the same as the
constructor hom, except for these optional parameters.
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Morphism(R, S, Q)

SimpleSigns . Default : 1

Check BoolElt Default : true

Construct a (fractional) morphism of root data R → S with the given sequence
of root images. The sequence Q must have length 2N and consist of elements in
the range [0, . . . , 2M ], where N is the number of positive roots of R and M is the
number of positive roots of S. The domain R must be semisimple.

SimpleSigns is a sequence of signs corresponding to the simple roots, or ±1
to indicate a constant sequence. If Check is set to false, the function does not
check that the maps send (co)roots to (co)roots. This function is the same as the
constructor hom, except for these optional parameters.

DualMorphism(R, S, phiX, phiY)

DualMorphism(R, S, phiX, phiY)

Check BoolElt Default : true

Construct a (fractional) dual morphism of root data R → S with the given linear
maps or matrices of linear maps. If Check is set to false, the function does not
check that the maps send (co)roots to (co)roots.

DualMorphism(R, S, Q)

Check BoolElt Default : true

Construct a (fractional) dual morphism of root data R → S with the given sequence
of root images. The sequence Q must have length 2N and consist of elements in
the range [0, . . . , 2M ], where N is the number of positive roots of R and M is the
number of positive roots of S. The domain R must be semisimple. If Check is set
to false, the function does not check that the maps send (co)roots to (co)roots.

RootImages(phi)

The indices of the root images of the (dual) (fractional) morphism φ.

RootPermutation(phi)

The indices of the root images of the automorphism φ.

IsIsogeny(phi)

Returns true if the morphism φ is an isogeny, ie, φY is onto with finite kernel.

IdentityMap(R)

IdentityAutomorphism(R)

The identity morphism R → R.
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Example H97E31

We construct the fractional morphism from the standard root datum of type A3 onto the adjoint
root datum of type A3. This will allow us to construct the algebraic projection GL4 → PGL4 in
Section 103.11.

> RGL := StandardRootDatum( "A", 3 );

> RPGL := RootDatum( "A3" );

> A := VerticalJoin( SimpleRoots(RGL), Vector([Rationals()|1,1,1,1]) )^-1 *

> VerticalJoin( SimpleRoots(RPGL), Vector([Rationals()|0,0,0]) );

> B := VerticalJoin( SimpleCoroots(RGL), Vector([Rationals()|1,1,1,1]) )^-1 *

> VerticalJoin( SimpleCoroots(RPGL), Vector([Rationals()|0,0,0]) );

> phi := hom< RGL -> RPGL | A, B >;

> v := Coroot(RGL,1);

> v; phi(v);

( 1 -1 0 0)

( 2 -1 0 )

97.8 Constants Associated with Root Data

In this section functions for a number of constants associated with root data will be de-
scribed. These constants are needed to define Lie algebras and groups of Lie type. The
notation of [Car72] will be used, except that the constants are defined for right actions
rather than left actions [CMT04].

ExtraspecialPairs(R)

The sequence of extraspecial pairs of the root datum R (see [Car72, page 58]). That
is the sequence [(ri, si)]N−n

i=1 where ri is minimal such that αri + αsi = αi+n (n is
the rank of R and N is the number of positive roots).

NumExtraspecialPairs(R)

The number of extraspecial pairs of the root datum R. This function doesn’t
actually compute the extraspecial pairs, thus is much more efficient than calling
#ExtraspecialPairs(R) in case extraspecial pairs are not yet computed.

ExtraspecialPair(R,r)

The extraspecial pair of the rth root in the root datum R. That is the pair (s, t)
where s is minimal such that αs + αt = αr.

ExtraspecialSigns(R)

Return the sequence of extraspecial signs of the root datum R.
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LieConstant p(R, r, s)

The constant prs for the root datum R, i.e. the largest p such that αs − pαr is a
root. This is the same as LeftStringLength. The condition αs 6= ±αr must be
satisfied.

LieConstant q(R, r, s)

The constant qrs for the root datum R, i.e. the largest q such that αs + qαr is a
root. This is the same as RightStringLength. The condition αs 6= ±αr must be
satisfied.

CartanInteger(R, r, s)

The Cartan integer 〈αr, α
?
s〉 for the root datum R.

LieConstant N(R, r, s)

The Lie algebra structure constant Nrs for the root datum R. The condition αs 6=
±αr must be satisfied.

LieConstant epsilon(R, r, s)

The constant εrs = Sign(Nrs) for the root datum R. The condition αs 6= ±αr must
be satisfied.

LieConstant M(R, r, s, i)

The constant Mrsi = 1
i!Ns0r · · ·Nsi−1r where αsi = iαr + αs for the root datum R.

The condition αs 6= ±αr must be satisfied.

LieConstant C(R, i, j, r, s)

The Lie group structure constant Cijrs for the root datum R. The conditions
αs 6= ±αr and αr + αs ∈ Φ must be satisfied.

LieConstant eta(R, r, s)

The constant
ηrs = (−1)prs

εr,s−pr · · · εr,s−r

εr,s−pr · · · εr,s+(q−p−1)r

for the root datum R. The condition αs 6= ±αr must be satisfied.

StructureConstants(R)

The Lie algebra structure constants for the reductive Lie algebra with root datum
R in the sparse format described in Section 100.2.
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Example H97E32

The code below verifies some standard formulas in the root datum of type F4:

> R := RootDatum("F4");

> N := NumPosRoots(R);

> r := Random([1..N]);

> s := Random([1..r-1] cat [r+1..r+N-1] cat [r+N+1..2*N]);

1. Agreement of the Cartan matrix with the Cartan integers.

> C := CartanMatrix(R);

> C[2,3] eq CartanInteger(R,2,3);

true

2. prs is the length of the left string through αs in the direction of αr.

> LieConstant_p(R,r,s) eq #LeftString(R,r,s);

true

3. qrs is the length of the right string through αs in the direction of αr.

> LieConstant_q(R,r,s) eq #RightString(R,r,s);

true

4. 〈αs, α
?
r〉 = prs − qrs.

> CartanInteger(R,s,r) eq

> LieConstant_p(R,r,s) - LieConstant_q(R,r,s);

true

5. Nrs = εrs(prs + 1).

> LieConstant_N(R,r,s) eq

> LieConstant_epsilon(R,r,s) * (LieConstant_p(R,r,s) + 1);

true
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97.9 Related Structures
In this section functions for creating other structures from a root datum are briefly listed.
See the appropriate chapters of the Handbook for more details.

RootSystem(R)

The root system corresponding to the root datum R. See Chapter 96.

CoxeterGroup(GrpFPCox, R)

The (split) Coxeter group with root datum R. See Chapter 98. The braid group
and pure braid group can be computed from the Coxeter group using the commands
described in Section 98.12.

CoxeterGroup(R)

CoxeterGroup(GrpPermCox, R)

The permutation Coxeter group with root datum R. See Chapter 98.

ReflectionGroup(R)

CoxeterGroup(GrpMat, R)

The reflection group of the root datum R. See Chapter 99.

LieAlgebraHomorphism(phi,k)

The homomorphism of reductive Lie algebras over the ring k corresponding to the
root datum morphism φ. See Chapter 100.

LieAlgebra(R, k)

The reductive Lie algebra over the ring k with root datum R. See Chapter 100.

GroupOfLieType(R, k)

The group of Lie type over the ring k with root datum R. See Chapter 103.

GroupOfLieTypeHomomorphism(phi, k)

The algebraic homomorphism of groups of Lie type over the ring k corresponding
to the root datum morphism φ. See Chapter 103.

Example H97E33

> R := RootDatum("b3");

> SemisimpleType(LieAlgebra(R, Rationals()));

B3

> #CoxeterGroup(R);

48

> GroupOfLieType(R, Rationals());

$: Group of Lie type B3 over Rational Field
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Chapter 98

COXETER GROUPS

98.1 Introduction
This chapter describes Magma functions for computing with Coxeter groups. A Coxeter
system is a group G with finite generating set S = {s1, . . . , sn}, defined by relations s2

i = 1
for i = 1, . . . , n and

sisjsi · · · = sjsisj · · ·
for i, j = 1, . . . , n with i < j, where each side of this relation has length mij ≥ 2. Tra-
ditionally, mij = ∞ signifies that the corresponding relation is omitted but, for technical
reasons, mij = 0 is used in Magma instead. The group G is called a Coxeter group and
S is called the set of Coxeter generators. Since every group in Magma has a preferred
generating set, no distinction is made between a Coxeter system and its Coxeter group.
See [Bou68] for more details on the theory of Coxeter groups.

The rank of the Coxeter system is n = |S|. A Coxeter system is said to be reducible
if there is a proper subset I of {1, . . . , n} such that mij = 2 or mji = 2 whenever i ∈ I
and j /∈ I. In this case, G is an (internal) direct product of the Coxeter subgroups
WI = 〈si | i ∈ I〉 and WIc = 〈si | i /∈ I〉. Note that an irreducible Coxeter group may
still be a nontrivial direct product of abstract subgroups (for example, W (G2) ∼= S2×S3).
Two Coxeter groups are Coxeter isomorphic if there is a group isomorphism between them
which takes Coxeter generators to Coxeter generators. In other words, the two groups are
the same modulo renumbering of the generators.

Magma provides three methods for working with Coxeter groups:
1. As a finitely presented group with the standard presentation given above. These groups

have type GrpFPCox. See Chapter 70 for general functions for finitely presented groups.
2. As a permutation group acting on the roots of the root system. Clearly the group must

be finite. These groups have type GrpPermCox. See Chapter 58 for general functions
for permutation groups.

3. As a reflection group, i.e. a matrix group generated by reflections. These groups have
the same type as general matrix groups (GrpMat). They can be distinguished with the
IsReflectionGroup function.
The first two methods are described in this chapter. The third is described in Chap-

ter 99.
A permutation Coxeter group always has an underlying root system or root datum,

and so many commands involving roots also work for these groups. A finitely presented
Coxeter group does not have such an underlying structure.

The code for Coxeter groups as permutation groups was originally modelled on the
corresponding part of the Chevie package of GAP [GHL+96] by Meinholf Geck, Frank
Lübeck, Jean Michel and Götz Pfeiffer.
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98.1.1 The Normal Form for Words
Every element w of a Coxeter group W can be written as a word

w = r1r2 · · · rl

with each ri in S. A reduced expression for w is such a word with l minimal; in this case,
l is defined to be the length of w.

An ordering on words in S is obtained by taking the lexicographic (alphabetic) order
induced by the existing ordering on S. The normal form for w in W is the smallest reduced
expression for w with respect to this ordering. Algorithms for efficiently computing this
normal form have been developed and implemented by R. B. Howlett. These algorithms
are based on the concept of a minimal root [Bri98, BH93].

The main difference of the category of Coxeter groups (GrpFPCox) from the category
of finitely presented groups (GrpFP) is that that all words are automatically put into this
normal form. In particular, this means that two words are equal if, and only if, they are
equal as group elements. Coxeter groups can also be constructed in the category GrpFP if
the user wishes to avoid automatic normalisation of elements (see Section 98.3).

98.2 Constructing Coxeter Groups

It is possible to specify the category GrpFPCox or GrpPermCox when constructing a Coxeter
group. If the category is not specified, then a GrpPermCox is returned for finite groups and
a GrpFPCox is returned for infinite groups. If the category GrpPermCox is specified for an
infinite group, an error is signalled.

CoxeterGroup(GrpFPCox, N)

CoxeterGroup(GrpPermCox, N)

CoxeterGroup(N)

The finite or affine Coxeter group with Cartan name given by the string N (see
Section 95.6).

IrreducibleCoxeterGroup(GrpFPCox, X, n)

The finite or affine irreducible Coxeter group with Cartan name Xn, or I2(n) if
X ="I" (see Section 95.6).

Example H98E1

> CoxeterGroup(GrpFPCox, "B3");

Coxeter group: Finitely presented group on 3 generators

Relations

$.1 * $.2 * $.1 = $.2 * $.1 * $.2

$.1 * $.3 = $.3 * $.1

($.2 * $.3)^2 = ($.3 * $.2)^2
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$.1^2 = Id($)

$.2^2 = Id($)

$.3^2 = Id($)

> CoxeterGroup("A2B2");

Coxeter group: Permutation group acting on a set of cardinality 14

Order = 48 = 2^4 * 3

(1, 8)(2, 5)(9, 12)

(1, 5)(2, 9)(8, 12)

(3, 10)(4, 6)(11, 13)

(3, 7)(4, 11)(10, 14)

CoxeterGroup(GrpFPCox, M)

CoxeterGroup(GrpPermCox, M)

CoxeterGroup(M)

The Coxeter group with Coxeter matrix M (see Chapter 95).

CoxeterGroup(GrpFPCox, G)

CoxeterGroup(GrpPermCox, G)

CoxeterGroup(G)

The Coxeter group with Coxeter graph G (see Chapter 95).

CoxeterGroup(GrpFPCox, C)

CoxeterGroup(GrpPermCox, C)

CoxeterGroup(C)

The Coxeter group with Cartan matrix C (see Chapter 95).

CoxeterGroup(GrpFPCox, D)

CoxeterGroup(GrpPermCox, D)

CoxeterGroup(D)

The Coxeter group with Dynkin digraph D (see Chapter 95).
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Example H98E2

> M := SymmetricMatrix([ 1, 4,1, 3,4,1 ]);

> G<a,b,c> := CoxeterGroup(M);

> G;

Coxeter group: Finitely presented group on 3 generators

Relations

(a * b)^2 = (b * a)^2

a * c * a = c * a * c

(b * c)^2 = (c * b)^2

a^2 = Id($)

b^2 = Id($)

c^2 = Id($)

> M := SymmetricMatrix([ 1, 3,1, 2,3,1 ]);

> G<a,b,c> := CoxeterGroup(M);

> G;

Coxeter group: Permutation group G acting on a set of cardinality 12

Order = 24 = 2^3 * 3

(1, 7)(2, 4)(5, 6)(8, 10)(11, 12)

(1, 4)(2, 8)(3, 5)(7, 10)(9, 11)

(2, 5)(3, 9)(4, 6)(8, 11)(10, 12)

> G<a,b,c> := CoxeterGroup(GrpFPCox, M);

> G;

Coxeter group: Finitely presented group on 3 generators

Relations

a * b * a = b * a * b

a * c = c * a

b * c * b = c * b * c

a^2 = Id($)

b^2 = Id($)

c^2 = Id($)

Note that a Coxeter group does not have a unique Cartan matrix.

> C := CartanMatrix("G2");

> W := CoxeterGroup(GrpFPCox, C);

> CartanMatrix(W);

>> CartanMatrix(W);

^

Runtime error in ’CartanMatrix’: Bad argument types

Argument types given: GrpFPCox

CoxeterGroup(GrpFPCox, R)

CoxeterGroup(GrpPermCox, R)

CoxeterGroup(R)

The finite Coxeter group with root system or root datum R (see Chapters 96 and 97).
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CoxeterGroup(A, B)

The permutation Coxeter group with roots given by the rows of the matrix A and
coroots given by the rows of the matrix B. The matrices A and B must have the
following properties:
1. A and B must have same number of rows and the same number of columns; they

must be defined over the same field, which must be the rational field, a number
field, or a cyclotomic field; the entries must be real;

2. the number of columns must be at least the number of rows; and
3. ABt must be the Cartan matrix of a finite Coxeter group.

Example H98E3

> R := RootDatum("A3" : Isogeny := 2);

> CoxeterGroup(R);

Coxeter group: Permutation group acting on a set of cardinality 12

Order = 24 = 2^3 * 3

(1, 7)(2, 4)(5, 6)(8, 10)(11, 12)

(1, 4)(2, 8)(3, 5)(7, 10)(9, 11)

(2, 5)(3, 9)(4, 6)(8, 11)(10, 12)

98.3 Converting Between Types of Coxeter Group
In this section, we describe functions for converting between the various descriptions of
Coxeter groups available in Magma.

Since a finitely presented Coxeter group W does not come with an in-built reflection
representation, the optional parameters A, B, and C can be used to specify the repre-
sentation. They are respectively the matrix whose rows are the simple roots, the matrix
whose rows are the simple coroots, and the Cartan matrix. These must have the following
properties:
1. A and B must have same number of rows and the same number of columns; they must

be defined over the same field, which must be the rational field, a number field, or a
cyclotomic field; the entries must be real;

2. the number of columns must be at least the number of rows; and
3. C = ABt must be a Cartan matrix for W .

It is not necessary to specify all three matrices, since any two of them will determine
the third. If these matrices are not given, the default is to take A to be the identity and
to take C to be the standard Cartan matrix described in Section 95.4.

CoxeterGroup(GrpFPCox, W)

The finitely presented Coxeter group W ′ isomorphic to the permutation Coxeter
group W , together with the isomorphism W → W ′.
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CoxeterGroup(GrpFPCox, W)

The finitely presented Coxeter group W ′ isomorphic to the real reflection group W
(see Chapter 99).

CoxeterGroup(GrpPermCox, W)

A Mtrx Default :

B Mtrx Default :

C Mtrx Default :

The permutation Coxeter group W ′ isomorphic to the finitely presented Coxeter
group W , together with the isomorphism W → W ′. If W is infinite, an error is
flagged.

CoxeterGroup(GrpPermCox, W)

The permutation Coxeter group W ′ isomorphic to the real reflection group W ,
together with the isomorphism W → W ′ (see Chapter 99). If W is infinite, an error
is flagged.

Example H98E4

> W<a,b> := CoxeterGroup(GrpFPCox, "G2");

> Wp, h := CoxeterGroup(GrpPermCox, W);

> a*b;

a * b

> h(a*b);

(1, 11, 12, 7, 5, 6)(2, 4, 3, 8, 10, 9)

ReflectionGroup(W)

CoxeterGroup(GrpMat, W)

A Mtrx Default :

B Mtrx Default :

C Mtrx Default :

A reflection group W ′ of the Coxeter group W , together with the isomorphism
W → W ′.

ReflectionGroup(W)

CoxeterGroup(GrpMat, W)

The reflection group W ′ isomorphic to the permutation Coxeter group W , together
with the isomorphism W → W ′. There are no optional parameters A, B, and C
in this case because every permutation Coxeter group has a root system, and this
determines the reflection representation.
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Example H98E5

> W<a,b,c> := CoxeterGroup(GrpFPCox, "B3");

> G, h := CoxeterGroup(GrpMat, W);

> a*b; h(a*b);

a * b

[-1 -1 0]

[ 1 0 0]

[ 0 1 1]

CoxeterGroup(GrpFP, W)

The finitely presented group W ′ isomorphic to the finitely presented Coxeter group
W , together with the isomorphism W → W ′.

CoxeterGroup(GrpFP, W)

The finitely presented group W ′ isomorphic to the permutation Coxeter group W ,
together with the isomorphism W → W ′.

CoxeterGroup(GrpFP, W)

The finitely presented group W ′ isomorphic to the real reflection group W , together
with the isomorphism W → W ′ (see Chapter 99).

CoxeterGroup(GrpPerm, W)

The permutation group W ′ isomorphic to the finitely presented Coxeter group W ,
together with the isomorphism W → W ′. If W is infinite, an error is flagged.

CoxeterGroup(GrpPerm, W)

The permutation group W ′ isomorphic to the permutation Coxeter group W , to-
gether with the isomorphism W → W ′.

CoxeterGroup(GrpPerm, W)

The permutation group W ′ isomorphic to the real reflection group W , together with
the isomorphism W → W ′ (see Chapter 99). If W is infinite, an error is flagged.
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98.4 Operations on Coxeter Groups

See Chapter 70 for general functions for finitely presented groups, or Chapter 58 for general
functions for permutation groups.

IsIsomorphic(W1, W2)

Returns true if, and only if, W1 and W2 are isomorphic as abstract groups. This is
only implemented for permutation Coxeter groups.

IsCoxeterIsomorphic(W1, W2)

Returns true if, and only if, W1 and W2 are isomorphic as Coxeter groups. If true,
a sequence giving the permutation of the generators which takes W1 to W2 is also
returned.

IsCartanEquivalent(W1, W2)

Returns true if, and only if, the crystallographic Coxeter groups W1 and W2 have
Cartan equivalent Cartan matrices. This only makes sense for permutation Coxeter
groups.

Example H98E6

> W1 := CoxeterGroup(GrpFPCox, "B4");

> W2 := CoxeterGroup(GrpFPCox, "C4");

> IsCoxeterIsomorphic(W1, W2);

true [ 1, 2, 3, 4 ]

An example of abstractly isomorphic Coxeter groups which are not Coxeter isomorphic:

> W1 := CoxeterGroup("G2");

> W2 := CoxeterGroup("A1A2");

> IsIsomorphic(W1, W2);

true

> IsCoxeterIsomorphic(W1, W2);

false

An example of Coxeter isomorphic groups which are not Cartan equivalent:

> W1 := CoxeterGroup("B3");

> W2 := CoxeterGroup("C3");

> IsIsomorphic(W1, W2);

true

> IsCoxeterIsomorphic(W1, W2);

true [ 1, 2, 3 ]

> IsCartanEquivalent(W1, W2);

false
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RootSystem(W)

The underlying root system of the permutation Coxeter group W .

RootDatum(W)

The root datum of the permutation Coxeter group W . If W does not have a root
datum, an error is flagged.

Example H98E7

> W := CoxeterGroup("C5");

> RootSystem(W);

Root system of type C5

> RootDatum(W);

Root datum of type C5

>

> W := CoxeterGroup("H4");

> RootSystem(W);

Root system of type H4

> RootDatum(W);

Error: This group does not have a root datum

CartanName(W)

The Cartan name of the finite or affine Coxeter group W (Section 95.6).

CoxeterDiagram(W)

Print the Coxeter diagram of the finite or affine Coxeter group W (Section 95.6).

DynkinDiagram(W)

Print the Dynkin diagram of the permutation Coxeter group W . If W is not crys-
tallographic, an error is flagged.

Example H98E8

> W := CoxeterGroup("F4");

> CartanName(W);

F4

> DynkinDiagram(W);

F4 1 - 2 =>= 3 - 4

> CoxeterDiagram(W);

F4 1 - 2 === 3 - 4
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CoxeterMatrix(W)

The Coxeter matrix of the Coxeter group W .

CoxeterGraph(W)

The Coxeter graph of the Coxeter group W .

CartanMatrix(W)

The Cartan matrix of the permutation Coxeter group W .

DynkinDigraph(W)

The Dynkin digraph of the permutation Coxeter group W .

Rank(W)

NumberOfGenerators(W)

The rank of the Coxeter group W .

NumberOfPositiveRoots(W)

NumPosRoots(W)

The number of positive roots of the Coxeter group W .

Dimension(W)

The dimension of the permutation Coxeter group W , ie. the dimension of the root
space.

Example H98E9

> R := StandardRootSystem("A", 4);

> W := CoxeterGroup(R);

> Rank(W);

4

> Dimension(W);

5

ConjugacyClasses(W)

The conjugacy classes of the finite Coxeter group W . This uses the algorithm of
[GP00].

FundamentalGroup(W)

The fundamental group of the permutation Coxeter group W . The roots and coroots
of W must have integral components.



Ch. 98 COXETER GROUPS 2913

IsogenyGroup(W)

The isogeny group of the permutation Coxeter group W . The roots and coroots of
W must have integral components.

CoisogenyGroup(W)

The coisogeny group of the permutation Coxeter group W . The roots and coroots
of W must have integral components.

BasicDegrees(W)

The degrees of the basic invariant polynomials of the Coxeter group W . These are
computed using the table in [Car72, page 155].

BasicCodegrees(W)

The basic codegrees of the Coxeter group W . These are computed using the algo-
rithm in [LT09].

Example H98E10

The product of the basic degrees is the order of the Coxeter group; the sum of the basic degrees
is the sum of the rank and the number of positive roots.

> W := CoxeterGroup("E6");

> degs := BasicDegrees(W);

> degs;

[ 2, 5, 6, 8, 9, 12 ]

> &*degs eq #W;

true

> &+degs eq NumPosRoots(W) + Rank(W);

true

BruhatLessOrEqual(x, y)

If Coxeter group element x is less than or equal to y in the Bruhat order [Deo77].
Suppose x is an element of the Coxeter group W . The Bruhat order is the partial
order generated by the relations: x ≤ xw if l(x) < l(xw), and xw ≤ x if l(xw) < l(x),
for x ∈ W and w a reflection. If l(xw) = l(x)+1, then x is called a Bruhat descendant
of xw. The algorithm used is a straightforward recursive procedure.
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BruhatDescendants(x)

z GrpPermElt Default :

Let x be an element of the Coxeter group W , then the returned set S contains the
Bruhat descendants of x. If l(yw) = l(y) + 1, then y is called a Bruhat descendant
of yw. If the optional parameter z is set, only those descendants y with z ≤ y
are returned. Algorithm: For each fundamental reflection in x it is tested whether
leaving it out decreases the length of x by exactly 1. If so, it is included in the
result. In particular, this algorithm does not use BruhatLessOrEqual.

BruhatDescendants(X)

z GrpPermElt Default :

Let X consist of elements of the Coxeter group W , then the returned set S contains
the Bruhat descendants of every element of X.

If the optional parameter z is set, only those w are returned for which z ≤ w in
the Bruhat ordering.

Example H98E11

Bruhat descendants:

> R := RootDatum("D4" : Isogeny := "SC");

> W := CoxeterGroup(GrpPermCox, R);

> Wfp,phi := CoxeterGroup(GrpFPCox, W);

> x := W.1*W.3*W.2*W.4*W.2*W.2*W.2*W.1;

> Eltseq(phi(x));

[ 1, 3, 2, 4, 2, 1 ]

> S := BruhatDescendants(x);

> { Eltseq(phi(w)) : w in S };

{

[ 1, 3, 2, 4, 2 ],

[ 3, 2, 4, 2, 1 ],

[ 1, 2, 4, 2, 1 ],

[ 1, 3, 2, 1, 4 ],

[ 1, 3, 4, 2, 1 ]

}
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98.5 Properties of Coxeter Groups

IsFinite(W)

Returns true if, and only if, the Coxeter group W is finite.

IsAffine(W)

Returns true if, and only if, the Coxeter group W is affine (Section 95.6).

IsHyperbolic(W)

Returns true if, and only if, the Coxeter group W is hyperbolic (Section 95.7).

IsCompactHyperbolic(W)

Returns true if, and only if, the Coxeter group W is compact hyperbolic (Sec-
tion 95.7).

IsIrreducible(W)

Returns true if, and only if, the Coxeter group W is irreducible.

IsSemisimple(W)

Returns true if, and only if, the permutation Coxeter group W is semisimple, i.e.
its rank is equal to its dimension.

IsCrystallographic(W)

Returns true if, and only if, the permutation Coxeter group W is crystallographic,
i.e. if the corresponding reflection representation is defined over the integers.

IsSimplyLaced(W)

Returns true if, and only if, the Coxeter group W is simply laced, i.e. its Coxeter
graph has no labels.

Example H98E12

> W := CoxeterGroup(GrpFPCox, HyperbolicCoxeterMatrix(22));

> IsFinite(W);

false

> IsAffine(W);

false

> IsHyperbolic(W);

true

> IsCompactHyperbolic(W);

true

> IsIrreducible(W);

true

> IsSimplyLaced(W);

true
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> W := CoxeterGroup("A2 D4");

> IsIrreducible(W);

false

> IsSemisimple(W);

true

> IsCrystallographic(W);

true

> IsSimplyLaced(W);

true

98.6 Operations on Elements

See Chapter 70 for general functions for finitely presented groups or Chapter 58 for general
functions for permutation groups.

Unlike groups of type GrpFP, elements of a group of type GrpFPCox are always converted
into the normal form of Section 98.1.1.

Example H98E13

Arithmetic with words.

> W<[s]> := CoxeterGroup(GrpFPCox, "G2");

> w1 := W![2,1,2,1,2] ;

> w1;

s[2] * s[1] * s[2] * s[1] * s[2]

> w2 := W![1,2,2,1,2,1];

> w2;

s[2] * s[1]

> w1 * w2;

s[1] * s[2] * s[1]

> W![1,2,1,2,1,2] eq W![2,1,2,1,2,1];

true

#w

Length(w)

CoxeterLength(W, w)

The length of w as an element of the Coxeter group W , ie. the number of positive
roots of W which become negative under the action of w. The # operator does not
work for permutation Coxeter group elements.

LongestElement(W)

The unique longest element of the Coxeter group W .
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CoxeterElement(W)

The Coxeter element of the Coxeter group W , ie. the product of the generators of
W .

CoxeterNumber(W)

The Coxeter number of the irreducible Coxeter group W (see [Car93, page 20]).

Example H98E14

> W<[s]> := CoxeterGroup(GrpFPCox, "F4");

> LongestElement(W);

s[1] * s[2] * s[1] * s[3] * s[2] * s[1] * s[3] * s[2] * s[3] * s[4] * s[3] *

s[2] * s[1] * s[3] * s[2] * s[3] * s[4] * s[3] * s[2] * s[1] * s[3] * s[2] *

s[3] * s[4]

> CoxeterElement(W);

s[1] * s[2] * s[3] * s[4]

> W := CoxeterGroup("E8");

> Length(W, LongestElement(W));

120

> Length(W, CoxeterElement(W));

8

The Coxeter number can be described in a variety of ways.

> W := CoxeterGroup("D5");

> CoxeterNumber(W) eq Order(CoxeterElement(W));

true

> CoxeterNumber(W) eq #Roots(W) / Rank(W);

true

> R := RootDatum(W);

> CoxeterNumber(W) eq &+Eltseq(HighestRoot(R)) + 1;

true

LeftDescentSet(W, w)

The set of indices r of simple roots of the Coxeter group W such that the length of
the product srw is less than that of the element w.

RightDescentSet(W, w)

The set of indices r of simple roots of the Coxeter group W such that the length of
the product wsr is less than that of the element w.
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Example H98E15

> W := CoxeterGroup("A5");

> x := W.1*W.2*W.4*W.5;

> LeftDescentSet(W, x);

{ 1, 4 }

> RightDescentSet(W, x);

{ 2, 5 }

98.7 Roots, Coroots and Reflections

The functions in this section give access to the underlying root system (or datum) of a
permutation Coxeter group. These functions do not apply to finitely presented Coxeter
groups

Roots are stored as an indexed set

{@ α1, . . . , αN , αN+1, . . . , α2N @},

where α1, . . . , αN are the positive roots in an order compatible with height; and
αN+1, . . . , α2N are the corresponding negative roots (i.e. αi+N = −αi). The simple roots
are α1, . . . , αn where n is the rank.

Many of these functions have an optional argument Basis which may take one of the
following values

1. "Standard": the standard basis for the (co)root space. This is the default.

2. "Root": the basis of simple (co)roots.

3. "Weight": the basis of fundamental (co)weights (see Subsection 99.8.3 below).

98.7.1 Accessing Roots and Coroots

RootSpace(W)

CorootSpace(W)

The (co)root space of the Coxeter group W . This can be a vector space over a field
of characteristic zero (Chapter 28), or an integer lattice in the crystallographic case
(Chapter 30). The (co)reflection group of W acts on the (co)root space.

SimpleRoots(W)

SimpleCoroots(W)

The simple (co)roots of the Coxeter group W as the rows of a matrix.
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Example H98E16

> W := CoxeterGroup("G2");

> RootSpace(W);

Full Vector space of degree 2 over Rational Field

> CorootSpace(W);

Full Vector space of degree 2 over Rational Field

> SimpleRoots(W);

[1 0]

[0 1]

> SimpleCoroots(W);

[ 2 -3]

[-1 2]

> CartanMatrix(W);

[ 2 -1]

[-3 2]

NumberOfPositiveRoots(W)

NumPosRoots(W)

The number of positive roots of the Coxeter group W .

Roots(W)

Coroots(W)

Basis MonStgElt Default : “Standard”
An indexed set containing the (co)roots of the Coxeter group W .

PositiveRoots(W)

PositiveCoroots(W)

Basis MonStgElt Default : “Standard”
An indexed set containing the positive (co)roots of the Coxeter group W .

Root(W, r)

Coroot(W, r)

Basis MonStgElt Default : “Standard”
The rth (co)root of the Coxeter group W .

RootPosition(W, v)

CorootPosition(W, v)

Basis MonStgElt Default : “Standard”
If v is a (co)root of the Coxeter group W , this returns its position; otherwise it
returns 0. These functions will try to coerce v, which can be a vector or a sequence
representing a vector, into the appropriate vector space; v should be written with
respect to the basis specified by the parameter Basis.
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Example H98E17

> A := Matrix(2,3, [1,-1,0, -1,1,-1]);

> B := Matrix(2,3, [1,-1,1, 0,1,-1]);

> W := CoxeterGroup(A, B);

> Roots(W);

{@

(1 -1 0),

(-1 1 -1),

(0 0 -1),

(1 -1 -1),

(2 -2 -1),

(1 -1 -2),

(-1 1 0),

(1 -1 1),

(0 0 1),

(-1 1 1),

(-2 2 1),

(-1 1 2)

@}

> PositiveCoroots(W);

{@

(1 -1 1),

(0 1 -1),

(1 2 -2),

(2 1 -1),

(1 0 0),

(1 1 -1)

@}

> #Roots(W) eq 2*NumPosRoots(W);

true

> Root(W, 4);

(1 -1 -1)

> Root(W, 4 : Basis := "Root");

(2 1)

> RootPosition(W, [1,-1,-1]);

4

> RootPosition(W, [2,1] : Basis := "Root");

4

HighestRoot(W)

HighestLongRoot(W)

Basis MonStgElt Default : “Standard”
The unique (long) root of greatest height of the irreducible Coxeter group W .
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HighestShortRoot(W)

Basis MonStgElt Default : “Standard”
The unique short root of greatest height of the irreducible Coxeter group W .

Example H98E18

> W := RootDatum("G2");

> HighestRoot(W);

(3 2)

> HighestLongRoot(W);

(3 2)

> HighestShortRoot(W);

(2 1)

CoxeterForm(W)

DualCoxeterForm(W)

Basis MonStgElt Default : “Standard”
The matrix of an inner product on the (co)root space of the finite Coxeter group
W which is invariant under the action of W . This inner product is uniquely deter-
mined up to a constant on each irreducible component of W . The inner product is
normalised so that the short roots in each crystallographic component have length
one.

AdditiveOrder(W)

An additive order on the positive roots of the finite Coxeter group W , i.e. a sequence
containing the numbers 1, . . . , N in some order such that αr + αs = αt implies t is
between r and s. This is computed using the techniques of [Pap94].

98.7.2 Operations and Properties for Root and Coroot Indices

Sum(W, r, s)

The index of the sum of the rth and sth roots in the Coxeter group W , or 0 if
the sum is not a root. In other words, if t = Sum(W,r,s) 6= 0 then αt = αr + αs.
The condition αr 6= ±αs must be satisfied. If W is noncrystallographic, an error is
flagged.

IsPositive(W, r)

Returns true if, and only if, the rth (co)root of the Coxeter group W is a positive
root.

IsNegative(W, r)

Returns true if, and only if, the rth (co)root of the Coxeter group W is a negative
root.
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Negative(W, r)

The index of the negative of the rth (co)root of the Coxeter group W . In other
words, if s = Negative(W,r) then αs = −αr.

LeftString(W, r, s)

Root indices in the Coxeter group W of the left string through αs in the direction
of αr, i.e. the indices of αs−αr, αs−2αr, . . . , αs−pαr. In other words, this returns
the sequence [r1, . . . , rp] where αri

= αs − iαr and αs − (p + 1)αr is not a root.
The condition αr 6= ±αs must be satisfied. If W is noncrystallographic, an error is
flagged.

RightString(W, r, s)

Root indices of the Coxeter group W of the left string through αs in the direction
of αr, i.e. the indices of αs +αr, αs +2αr, . . . , αs + qαr. In other words, this returns
the sequence [r1, . . . , rq] where αri = αs + iαr and αs + (q + 1)αr is not a root.
The condition αr 6= ±αs must be satisfied. If W is noncrystallographic, an error is
flagged.

LeftStringLength(W, r, s)

The largest p such that αs − pαr is a root of the Coxeter group W . The condition
αr 6= ±αs must be satisfied. If W is noncrystallographic, an error is flagged.

RightStringLength(W, r, s)

The largest q such that αs + qαr is a root of the Coxeter group W . The condition
αr 6= ±αs must be satisfied. If W is noncrystallographic, an error is flagged.

Example H98E19

> W := RootDatum("G2");

> Sum(W, 1, Negative(W,5));

10

> IsPositive(W, 10);

false

> Negative(W, 10);

4

> P := PositiveRoots(W);

> P[1] - P[5] eq -P[4];

true
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RootHeight(W, r)

CorootHeight(W, r)

The height of the rth (co)root of the Coxeter group W , i.e. the sum of the coefficients
of αr (respectively, α?

r) with respect to the simple (co)roots.

RootNorms(W)

CorootNorms(W)

The sequence of squares of the lengths of the (co)roots of the Coxeter group W .

RootNorm(W, r)

CorootNorm(W, r)

The square of the length of the rth (co)root of the Coxeter group W .

IsLongRoot(W, r)

Returns true if, and only if, the rth root of the Coxeter group W is long, i.e. the
rth coroot is short. An error is flagged unless W is irreducible and crystallographic.

IsShortRoot(W, r)

Returns true if, and only if, the rth root of the Coxeter group W is short, i.e. the
rth coroot is long. An error is flagged unless W is irreducible and crystallographic.

Example H98E20

> W := RootDatum("G2");

> RootHeight(W, 5);

4

> F := CoxeterForm(W);

> v := VectorSpace(Rationals(),2) ! Root(W, 5);

> (v*F, v) eq RootNorm(W, 5);

true

> IsLongRoot(W, 5);

true

> LeftString(W, 1, 5);

[ 4, 3, 2 ]

> roots := Roots(W);

> for i in [1..3] do

> RootPosition(W, roots[5]-i*roots[1]);

> end for;

4

3

2



2924 LIE THEORY Part XIV

98.7.3 Weights

WeightLattice(W)

CoweightLattice(W)

The (co)weight lattice of the Coxeter group W . The roots and coroots of W must
have integral components.

FundamentalWeights(W)

FundamentalCoweights(W)

Basis MonStgElt Default : “Standard”
The fundamental (co)weights of the Coxeter group W . The roots and coroots of W
must have integral components.

IsDominant(R, v)

Basis MonStgElt Default : “Standard”
Returns true if, and only if, v is a dominant weight for the root datum R, ie, a
nonnegative integral linear combination of the fundamental weights.

DominantWeight(W, v)

Basis MonStgElt Default : “Standard”
The unique element in the W -orbit of the weight v which lies in the fundamental
Weyl chamber, and the word in the generators which sends v to this element. The
Coxeter group W must have a root datum. The weight v can be given either as a
vector or as a sequence representing the vector and is coerced into the weight lattice
first.

WeightOrbit(W, v)

Basis MonStgElt Default : “Standard”
The orbit of the weight v under the action of W . The Coxeter group W must
have a root datum. The weight v can be given either as a vector or as a sequence
representing the vector and is coerced into the weight lattice first.

Example H98E21

> W := CoxeterGroup("B3");

> DominantWeight(W, [1,-1,0] : Basis:="Weight");

(1 0 0)

[ 2, 3, 2, 1 ]

> #WeightOrbit(W, [1,-1,0] : Basis:="Weight");

6
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98.8 Reflections

An element of a Coxeter group is called a reflection if it is conjugate to one of the Coxeter
generators.

In a permutation Coxeter group, the root α acts on the root space via the reflection
sα; the coroot α? acts on the coroot space via the coreflection s?

α.

IsReflection(w)

Returns true if, and only if, w is a reflection, i.e. w is conjugate to a Coxeter
generator. If w is in a permutation Coxeter group, the root, coroot and root index
are also returned.

Reflections(W)

The sequence of reflections in the finite Coxeter group W . If W is a permutation
Coxeter group, the rth reflection in the sequence corresponds to the rth (co)root.

Example H98E22

> W<a,b> := CoxeterGroup(GrpFPCox, "A2");

> Reflections(W);

[ a, b, a * b * a, a, b, a * b * a ]

> IsReflection(a*b);

false

SimpleReflections(W)

The sequence of simple reflections in the Coxeter group W , ie, the generators of W .

SimpleReflectionPermutations(W)

The sequence of simple reflections in the permutation Coxeter group W , ie, the
generators of W .

Reflection(W, r)

ReflectionPermutation(W, r)

The reflection in permutation Coxeter group W corresponding to the rth (co)root.
If r = 1, . . . , n, this is a generator of W .

SimpleReflectionMatrices(W)

SimpleCoreflectionMatrices(W)

Basis MonStgElt Default : “Standard”
The matrices giving the action of the simple (co)roots on the (co)root space of the
permutation Coxeter group W .
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ReflectionMatrices(W)

CoreflectionMatrices(W)

Basis MonStgElt Default : “Standard”

The matrices giving the action of the (co)roots on the (co)root space of the permu-
tation Coxeter group W .

ReflectionMatrix(W, r)

CoreflectionMatrix(W, r)

Basis MonStgElt Default : “Standard”

The matrix giving the action of the rth (co)root on the (co)root space of the per-
mutation Coxeter group W .

ReflectionWords(W)

The sequence of words in the simple reflections for all the reflections of the Coxeter
group W . These words are given as sequences of integers. In other words, if a =
[a1, . . . , al] = ReflectionWords(W)[r], then sαr = sαa1

· · · sαal
.

ReflectionWord(W, r)

The word in the simple reflections for the rth reflection of the Coxeter group W .
The word is given as a sequence of integers. In other words, if a = [a1, . . . , al] =
ReflectionWord(W,r), then sαr = sαa1

· · · sαal
.

Example H98E23

> W := CoxeterGroup("B3");

> IsReflection(W.1*W.2);

false

> mx := ReflectionMatrix(W, 4);

> perm := Reflection(W, 4);

> wd := ReflectionWord(W, 4);

> rt := VectorSpace(Rationals(), 3) ! Root(W,2);

> RootPosition(W, rt * mx) eq 2^perm;

true

> perm eq &*[ Reflection(W, r) : r in wd ];

true

>

> mx := CoreflectionMatrix(W, 4);

> CorootPosition(W, Coroot(W,2) * mx) eq 2^perm;

true
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98.9 Reflection Subgroups
A reflection subgroup of a Coxeter group is a subgroup which is generated by a set of
reflections. Note that reflection subgroups are also Coxeter groups. The most important
class of reflection subgroups are the standard parabolic subgroups, which are generated by
a subset of the simple roots. Given a set of indices J ⊆ {1, . . . , Rank(W)}, the corresponding
standard parabolic is denoted WJ . A parabolic subgroup is a subgroup which is conjugate
to a standard parabolic subgroup. Note that in a reflection subgroup, the elements are
given as permutations of the roots of the larger group.

Most of the functions in this section are currently only implemented for permutation
Coxeter groups with a root datum (rather than a root system).

ReflectionSubgroup(W, a)

The reflection subgroup of the permutation Coxeter group W generated by the roots
αa1 , . . . , αak

where a = {a1, . . . , ak} is a set of integers. This only works if W has
an underlying root datum.

ReflectionSubgroup(W, s)

The reflection subgroup of the permutation Coxeter group W generated by simple
roots αs1 , . . . , αsk

where s = [s1, . . . , sk] is a sequence of integers. In this version the
roots must be simple in the root subdatum (ie. none of them may be a summand
of another) otherwise an error is signalled. The simple roots will appear in the
reflection subgroup in the given order. This only works if W has an underlying root
datum.

StandardParabolicSubgroup(W, J)

The standard parabolic subgroup of the Coxeter group W generated by the simple
roots αj1 , . . . , αjk

where J = {j1, . . . , jk} ⊆ {1, . . . , Rank(W)}. This function works
for both finitely presented and permutation Coxeter groups.

IsReflectionSubgroup(W, H)

Returns true if, and only if, H is a reflection subgroup of the permutation Coxeter
group W .

IsParabolicSubgroup(W, H)

Returns true if, and only if, H is a parabolic subgroup of the permutation Coxeter
group W .

IsStandardParabolicSubgroup(W, H)

Returns true if, and only if, H is a standard parabolic subgroup of the permutation
Coxeter group W .

Overgroup(H)

The overgroup of H, ie. the Coxeter group whose roots are permuted by the elements
of the permutation Coxeter subgroup H.
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Overdatum(H)

The root datum whose roots are permuted by the elements of the permutation
Coxeter subgroup H.

LocalCoxeterGroup(H)

Given a Coxeter subgroup H this returns the Coxeter group L isomorphic to H but
acting on the roots of H itself rather than the roots of its overgroup, together with
the isomorphism L → H.

Example H98E24

> W := CoxeterGroup("A4");

> P := StandardParabolicSubgroup(W, {1,2});

> Overgroup(P) eq W;

true

> L, h := LocalCoxeterGroup(P);

> hinv := Inverse(h);

> L.1;

(1, 4)(2, 3)(5, 6)

> h(L.1);

(1, 11)(2, 5)(6, 8)(9, 10)(12, 15)(16, 18)(19, 20)

> hinv(h(L.1));

(1, 4)(2, 3)(5, 6)

Transversal(W, H)

The indexed set of (right) coset representatives of the reflection subgroup H of the
Coxeter group W . This contains the unique element of shortest length in each coset.
The algorithm is due to Don Taylor (personal communication).

TransversalWords(W, H)

The indexed set of words of (right) coset representatives of the reflection subgroup
H of the Coxeter group W . The algorithm is due to Don Taylor (personal commu-
nication).

TransversalElt(W, H, x)

The representative of the coset Hx in the Coxeter group W . This is the unique
element of Hx of shortest length in W and also the unique element of Hx which
sends every positive root of H to another positive root. The algorithm is due to
Don Taylor (personal communication).
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Example H98E25

> W := CoxeterGroup("A4");

> P := StandardParabolicSubgroup(W, {1,2});

> x := W.1 * W.2 * W.3;

> x := TransversalElt(W, P, x);

> x eq W.3;

true

> x in Transversal(W, P);

true

TransversalElt(W, x, H)

The representative of the coset xH in the Coxeter group W . This is the unique
element of xH of shortest length in W and also the unique element of xH which
sends every positive root of H to another positive root.

TransversalElt(W, H, x, J)

The representative of the coset HxJ in the Coxeter group W . This is the unique
element of HxJ of shortest length in W and also the unique element of HxJ which
sends every positive root of HJ to another positive root.

Transversal(W, J)

Transversal(W, J, L)

The set of right coset representatives of minimal length for the standard parabolic
subgroup WJ ≤ W . In the first form W must be finite and the result is a full
transversal. In the second form W may be infinite, but the transversal produced is
limited to words of length at most L.

Transversal(W, J, K)

The sequence of WJ ,WK-double cosets representatives of minimal length in W .
Restricted to W finite. The second return value gives the generators of the standard
parabolic subgroup WJ ∩W d

K for each double coset representative d.

DirectProduct(W1, W2)

The direct product of the Coxeter groups W1 and W2.

Dual(W)

The dual of the Coxeter group W , obtained by swapping the roots and coroots.
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Example H98E26

> W1 := CoxeterGroup("G2");

> W2 := CoxeterGroup("C3");

> DirectProduct(W1, Dual(W2));

Coxeter group: Permutation group acting on a set of cardinality 30

Order = 576 = 2^6 * 3^2

(1, 7)(2, 5)(3, 4)(8, 11)(9, 10)

(1, 3)(2, 8)(5, 6)(7, 9)(11, 12)

(13, 22)(14, 16)(17, 20)(19, 21)(23, 25)(26, 29)(28, 30)

(13, 16)(14, 23)(15, 17)(18, 21)(22, 25)(24, 26)(27, 30)

(14, 19)(15, 24)(16, 21)(23, 28)(25, 30)

> W1 := CoxeterGroup(GrpFPCox, "G2");

> W2 := CoxeterGroup(GrpFPCox, "A2");

> DirectProduct(W1, W2);

Coxeter group: Finitely presented group on 4 generators

Relations

$.1 * $.2 * $.1 = $.2 * $.1 * $.2

$.1 * $.3 = $.3 * $.1

$.1 * $.4 = $.4 * $.1

$.2 * $.3 = $.3 * $.2

$.2 * $.4 = $.4 * $.2

$.3 * $.4 * $.3 = $.4 * $.3 * $.4

$.1^2 = Id($)

$.2^2 = Id($)

$.3^2 = Id($)

$.4^2 = Id($)

98.10 Root Actions

The functions in this section give access to the action on the underlying root system (or
datum) of a permutation Coxeter group. These functions do not apply to finitely presented
Coxeter groups

In the following functions, the optional parameter Basis determines which basis the
roots are given with respect to: "Standard" for the standard basis of the root space;
"Root" for the basis of simple (co)roots; "Weight" for the basis of simple (co)weights.

RootGSet(W)

CorootGSet(W)

Basis MonStgElt Default : “Standard”

The G-set of the Coxeter group W acting on the (co)roots.
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Example H98E27

> W := CoxeterGroup("B3");

> X := RootGSet(W);

> r := Root(W, 5);

> r;

(0 1 1)

> Image(W.1, X, r);

(1 1 1)

RootAction(W)

CorootAction(W)

Basis MonStgElt Default : “Standard”
The map X ×W → X giving the action of the Coxeter group W on the (co)root
space X.

Example H98E28

> W := CoxeterGroup("B3");

> act := CorootAction(W);

> act([1,-2,1], W.1);

(-1 -1 1)

ReflectionGroup(W)

CoreflectionGroup(W)

Basis MonStgElt Default : “Standard”
The Coxeter group W as a real reflection group (ie. as a matrix group over some
subfield of R) acting on the (co)root space, and the isomorphism from W to the
(co)reflection group.

Example H98E29

> W := CoxeterGroup("B3");

> _, h := ReflectionGroup(W);

> W.1*W.3;

(1, 10)(2, 8)(3, 12)(4, 7)(5, 6)(11, 17)(13, 16)(14, 15)

> h(W.1*W.3);

[-1 0 0]

[ 1 1 2]

[ 0 0 -1]
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98.11 Standard Action

Every finite Coxeter group W has a standard action. For example, the standard action
group of a Coxeter group of type An is the symmetric group of degree n + 1 acting on
{1, . . . , n}.

StandardAction(W)

The standard action of the finite Coxeter group W .

StandardActionGroup(W)

The group G of the standard action of the finite Coxeter group W , together with
an isomorphism W → G.

Example H98E30

> W := CoxeterGroup("A3");

> G, h := StandardActionGroup(W);

> IsSymmetric(G);

true

> h(W.1); h(W.2); h(W.3);

(1, 2)

(2, 3)

(3, 4)

98.12 Braid Groups

BraidGroup(W)

The braid group B of the Coxeter group W as an finitely presented group, together
with the natural map W → B. Words in the braid group are not automatically nor-
malised. However, the braid group of type An with normalisation can be constructed
with the command BraidGroup(n+1) (see Chapter 73).

PureBraidGroup(W)

Returns the pure braid group of the Coxeter group W , ie. the kernel of the epimor-
phism from the braid group of W to W . Words in the pure braid group are not
automatically normalised.
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Example H98E31

> W<a,b,c> := CoxeterGroup(GrpFPCox, "B3");

> W;

Coxeter group: Finitely presented group on 3 generators

Relations

a * b * a = b * a * b

a * c = c * a

(b * c)^2 = (c * b)^2

a^2 = Id($)

b^2 = Id($)

c^2 = Id($)

> B<x,y,z> := BraidGroup(W);

> B;

Finitely presented group B on 3 generators

Relations

x * y * x = y * x * y

x * z = z * x

(y * z)^2 = (z * y)^2

> P := PureBraidGroup(W);

> P;

Finitely presented group P on 3 generators

Generators as words in group B

P.1 = x^2

P.2 = y^2

P.3 = z^2

98.13 W -graphs

Given a Coxeter system (W,S), a W -graph is a (directed or undirected) graph with vertex
labels and edge weights. The label attached to a vertex v is a subset of S (called the
descent set of v) and the edge weights are scalars (usually integers).

A W -graph must determine a representation of the Hecke algebra H = H〈q〉 of the
associated Coxeter system. The vertices of the W -graph can be identified with basis
elements of the representation space, and by the conventions adopted here the action of
the generator Ts of H associated with an element s ∈ S on a basis element v is given by

v ∗ Ts =
{

(−q−1) ∗ v if s is in the descent set of v,
q ∗ v +

∑′(m ∗ u) if s is not in the descent set of v,

where
∑′ indicates the sum over all edges with terminal vertex equal to v for which s is

in the descent set of the initial vertex u, and m is the weight of the edge.
For the Coxeter group calculations involved in these functions we need to know how

the generators s ∈ S act on the set of elementary roots (see [Bri98]).
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Magma has a function ReflectionTable that provides the necessary information.
Specifically, let W be a finitely presented Coxeter group with N elementary roots (num-
bered from 1 to N) and r simple reflections (numbered 1 to r). If we define

eltroots:=ReflectionTable(W);

then for i ∈ {1, . . . , r} and j ∈ {1, . . . , N}, eltroots[i,j] = k if the i-th simple reflection
takes the j-th elementary root to the k-th elementary root, or to a non-elementary root if
k = 0, or to a negative root if k < 0. (This last alternative occurs if and only if j = i and
k = −i.) Knowing the table eltroots makes it quick and easy to do symbolic computation
with elements of W , represented as sequences of integers in {1, . . . , r} (corresponding to
words in S).

SetVerbose("WGraph", v)

Set the verbose printing to level v for all W -graph related functions. A level of 2
means that informative messages and progress information will be printed durng a
computation.

Sometimes it is convenient to use ‘mij-sequences’ to specify Coxeter groups. The mij-
sequence consists of the on or below diagonal entries in the Coxeter matrix. Thus if seq
is the mij-sequence and M the Coxeter matrix then

M := SymmetricMatrix(seq);
and

seq := &cat[[M[i,j] : j in [1..i]] : i in [1..Rank(W)]];

Mij2EltRootTable(seq)

Return the elementary root action table for the Coxeter group defined by the given
mij-sequence.

Name2Mij(name)

The mij-sequence of the Coxeter groups of type name.

Example H98E32

> e6:=[1,3,1,2,3,1,2,3,2,1,2,2,2,3,1,2,2,3,2,2,1];

> E6 := CoxeterGroup(GrpFPCox, SymmetricMatrix(e6) );

> ReflectionTable(E6) eq Mij2EltRootTable(e6);

true

The functions defined in this section are mainly concerned with W -graph posets. The
motivating example for this concept is the set of all standard tableaux corresponding to a
given partition, the partial order being dominance. By definition, if P is a W -graph poset
then P must be in one-to-one correspondence with a basis for an H-module V (where H
is the Hecke algebra associated with the given Coxeter system). In the standard tableaux
example, this module is the Specht module; hence in the general case we refer to the
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module V as GSM(P ) (for generalized Specht module). For each v ∈ P the set S must be
the disjoint union of two sets A(v) and D(v), the ascents and descents of v. There must
be a function (s, v) 7→ sv from S × P to P such that the action of H on GSM(P) satisfies
the following rules (for all s ∈ S and v ∈ P ):

v ∗ Ts =





sv if sv > v,
sv + (q − q−1) ∗ v if sv < v,
−q−1 ∗ v if sv = v and s ∈ D(v),
q ∗ v + q ∗ 〈earlier〉 if sv = v and s ∈ A(v),

where 〈earlier〉 denotes a linear combination of {u ∈ P | u < v} with coefficients that are
polynomials in q. For each s ∈ A(v) either sv = v or sv > v, and for each s ∈ D(v)
either sv < v or sv = v. This (admittedly strange) definition is motivated by the fact that
Specht modules satisfy it. If v is a standard tableau corresponding to a partition of n then
a number i in {1, . . . , n− 1} is an ascent of v if i + 1 is in a later column of t than i, and
is a descent of v if i + 1 is in a lower row of t than i. The fact that Specht modules satisfy
the formulas above is proved in the literature (e.g. Mathas’ book), except that in the
“weak ascent” case (sv = v and s ∈ A(v)) it is not proved that the polynomial coefficients
of {u ∈ P | u < v} are all divisible by q. The fact that they are is a theorem of V. M.
Nguyen (PhD thesis, University of Sydney, 2010). It turns out that there is an algorithm by
which a W -graph may be constructed from a W -graph poset, the W -graph being uniquely
determined by the function (s, v) 7→ sv from S×P → P and the descent/ascent sets. The
polynomial coefficients in the weak ascent case are not required. Of course the H-module
determined by the resulting W -graph is isomorphic to GSM(P ).

Partition2WGtable(pi)

Returns the W -graph table and the Weyl group for the partition pi, where pi is
a nonincreasing sequence [a1, a2, . . . , ak] of positive integers. It returns the table
corresponding to the W -graph poset of standard tableaux of the given shape and
the finitely presented Coxeter group of type An, where n + 1 =

∑
ai.

WGtable2WG(table)

Convert a W -graph table to a W -graph.

TestWG(W,wg)

This procedure can be used to test whether a presumed undirected or directed W -
graph is indeed a W -graph. Two input values are required: the Coxeter group W
and the W -graph. When applied to the W -graph produced by the WGtable2WG
function, this tests whether the input table did genuinely correspond to a W -graph
poset.

For example,
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Example H98E33

> wtable, W :=Partition2WGtable([4,4,3,1]);

> wg := WGtable2WG(wtable);

> TestWG(W,wg);

which should cause the word true to be printed 66 times (as the defining relations of the
Hecke algebra are checked).

Given a Coxeter system (W,S) and an element w ∈ W , let P be the set {x ∈ W |
length(wx−1) = length(w)− length(x)}, considered as a poset under the Bruhat order on
W . Given also a subset J of {t ∈ S | length(wt) > length(w)}, for each x ∈ P we define
D(x) to be union of {s ∈ S | length(sx) < length(x)} and {s ∈ S | sx = xt for some t ∈ J}.
If P is now a W -graph poset with the sets D(x) as the descent sets then we say that w is
a W -graph determining element relative to J .

For example, suppose that (W,S) is of type An, and given a partition of n + 1 let t be
the (unique) standard tableau whose column group is generated by a subset of S. Let w be
the maximal length element such that the tableau wt is standard. Then w is a W -graph
determining element with respect to the set J consisting of those s ∈ S that are in the
column stabilizer of t.

Other examples (for any Coxeter system with finite W ) are provided by the distin-
guished left coset representatives of maximal length for standard parabolic subgroups WK

(where the set J may be taken to be either K or the empty set).

WGelement2WGtable(g,K)

Returns the W -graph table and W -graph ideal of a W -graph determining element
g, subset K.

Example H98E34

> b5 := [1,4,1,2,3,1,2,2,3,1,2,2,2,3,1];

> b5mat := SymmetricMatrix(b5);

> W := CoxeterGroup(GrpFPCox, b5mat );

> table, _ := WGelement2WGtable(W![5,4,3,2,1,2,3,4,5],{});

> wg := WGtable2WG(table);

> TestWG(W,wg);

true <1, 2> 4

true <2, 3> 3

true <3, 4> 3

true <4, 5> 3

GetCells(wg)

Return the cells of the W -graph.
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InduceWG(W,wg,seq)

Induce a W -graph from a standard parabolic subgroup.

InduceWGtable(J, table, W)

Returns the table of the W -graph induced from the table of a parabolic subgroup
defined by J .

IsWGsymmetric(dwg)

Test a W -graph for symmetry. If the graph is symmetric the second return value is
the undirected version of the W -graph.

MakeDirected(uwg)

Convert an undirected W -graph to a directed W -graph.

TestHeckeRep(W,r)

Tests whether the matrices in r satisfy the defining relations of the Hecke algebra of
the Coxeter group W .

WG2GroupRep(wg)

The matrix representation of a W -graph.

WG2HeckeRep(W,wg)

Returns a sequence of sparse matrices that satisfy the defining relations of the Hecke
algebra.

WGidealgens2WGtable(dgens,K)

Returns the W -graph table and W -graph ideal of a W -graph determining generators
dgens and subset K.

Example H98E35

In type E6 we start with a rank 3 standard parabolic subgroup. The set of minimal coset rep-
resentatives is a (single-generator) W -graph ideal, corresponding to the representation induced
from the trivial representation of the parabolic. We compute the W -graph and find the cells. The
bottom cell is necessarily an ideal in the weak order. It turns out that 3 elements are required to
generate it; we can use them to test the function WGidealgens2WGtable.

> mij:=[1,3,1,2,3,1,2,3,2,1,2,2,2,3,1,2,2,3,2,2,1];

> E6 := CoxeterGroup(GrpFPCox, SymmetricMatrix(mij) );

> J := {1,3,5};

> drs := Transversal(E6,J);

> ttt := WGidealgens2WGtable([drs[1398],drs[156],drs[99]],J);

> nwg := WGtable2WG(ttt);

> TestWG(E6,nwg);

true <1, 2> 3

true <2, 3> 3
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true <2, 4> 3

true <4, 5> 3

true <3, 6> 3

WriteWG(file,uwg)

WriteWG(file,dwg)

Writes the W -graph to a file.

98.14 Related Structures

In this section functions for creating other structures from a permutation Coxeter group
are briefly listed. See the appropriate chapters of the Handbook for more details.

CoxeterGroup(GrpFP, W)

Presentation(W)

The finitely presented group isomorphic to the permutation Coxeter group W . See
Chapter 70.

ReflectionGroup(W)

CoxeterGroup(GrpMat, W)

The reflection group isomorphic to the Coxeter group W . See Chapter 99.

LieAlgebra(W, R)

The reductive Lie algebra over the ring R with Weyl group W . If W is noncrystal-
lographic, an error is flagged. See Section 100.5.1.

GroupOfLieType(W, R)

The group of Lie type over the ring R with Weyl group W . The roots and coroots
of W must have integral components. See Chapter 103.
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Chapter 99

REFLECTION GROUPS

99.1 Introduction
A reflection is a diagonalisable linear transformation of finite order whose space of fixed
points is a hyperplane. A reflection group is a finite dimensional linear group over a field
F , which is generated by a finite number of reflections.

There are no restrictions on the field F and there is no requirement for a reflection to
be a transformation of order two. However, if F is a real field, every reflection does have
order two and there is a much richer theory. In particular, every Coxeter group is a real
reflection group (see Chapter 98).

The books [LT09], [Bro10] or [Kan01] are useful references for complex reflection groups.
Standard references for the theory of real reflection groups include [Bou68, Chapters 4, 5,
6] and [Hum90].

99.2 Construction of Pseudo-reflections
Let V be a vector space of dimension n over a field F . As defined in Bourbaki [Bou68],
a pseudo-reflection in Magma is a linear transformation of V whose space of fixed points
is a subspace of dimension n− 1, namely a hyperplane. (Some authors require a pseudo-
reflection to be invertible and diagonalisable.)

A reflection, as defined above, is a pseudo-reflection and so too is a transvection. The
Magma package described in this chapter includes code for the construction of transvec-
tions but the emphasis is on groups generated by reflections.

If r is a pseudo-reflection, then dim(im(1− r)) = 1 and a basis element of im(1− r) is
called a root of r.

Let a be a root of the pseudo-reflection r and let H = ker(1− r) be the hyperplane of
fixed points of r. For all v ∈ V there exists φ(v) ∈ F such that v − vr = φ(v)a. Then
φ ∈ V ∗ and kerφ = H. This means that every pseudo-reflection has the form

vr = v − φ(v)a

and its determinant is 1− φ(a). The linear functional φ is a coroot of r.
• If φ(a) = 1, then r is not invertible; it is the projection of V onto H along a.
• If φ(a) = 0 (equivalently, a ∈ H), then r is by definition a transvection.
• If φ(a) 6= 0, 1, then r is called a reflection. For the most part we consider only reflections

of finite order, but not necessarily of order two.
In Magma both V and its dual space V ∗ are identified with the space Fn of row vectors

of length n and the standard bilinear pairing between V and V ∗ is (a, b) 7→ abtr, where btr

denotes the column vector which is the transpose of b.
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The row vector b which represents the coroot φ is also called a coroot of the pseudo-
reflection; it is uniquely determined by r and a. The matrix of r is

I − btra

and, in particular, ar = (1 − abtr)a. Thus r is a reflection of finite order d if and only if
abtr 6= 0, 1 and 1− abtr is a d-th root of unity.

PseudoReflection(a, b)

The matrix of the pseudo-reflection with root a and coroot b.

Transvection(a, b)

The matrix of the transvection with root a and coroot b. The input is checked to
ensure that the root and coroot define a transvection.

Reflection(a, b)

The matrix of the reflection with root a and coroot b. The input is checked to ensure
that the root and coroot define a reflection.

IsPseudoReflection(r)

Returns true if r is the matrix of a pseudo-reflection, in which case a root and a
coroot are returned as well.

IsTransvection(r)

Returns true if r is the matrix of a transvection, in which case a root and a coroot
are returned as well.

IsReflection(r)

Returns true if r is the matrix of a reflection, in which case a root and a coroot are
returned as well.

IsReflectionGroup(G)

Returns true if G is a group generated by reflections.

Example H99E1

Create a pseudo-reflection directly and then check that it is a transvection.

> V := VectorSpace(GF(5), 3);

> t := PseudoReflection(V![1,0,0],V![0,1,0]);

> t;

[1 0 0]

[4 1 0]

[0 0 1]

> IsTransvection(t);

true (1 0 0)

(0 1 0)

> IsReflection(t);

false
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Example H99E2

An example of a group which can be generated by reflections even though not every given generator
is a reflection.

> F<omega> := CyclotomicField(3);

> r := Matrix(F,2,2,[1,omega^2,0,omega]);

> IsReflection(r);

true ( 0 -omega + 1)

(1/3*(2*omega + 1) 1)

> s := Matrix(F,2,2,[0,-1,1,0]);

> IsReflection(s);

false

> G := MatrixGroup<2,F | r,s >;

> IsReflectionGroup(G);

true

> #G;

24

To find reflection generators for this group we look for a reflection which, together with the
reflection r, generates G. (This is a rather special example; not every finite reflection group of
rank two can be generated by two reflections.)

> exists(t){ t : t in G | IsReflection(t) and G eq sub<G|r,t> };

true

> t;

[ 0 omega + 1]

[ 1 -omega]

>

Example H99E3

The groups SL(n, q) are generated by transvections. To illustrate this we find representatives for
the conjugacy classes of GL(3, 25) which are transvections and then check that the normal closure
is SL(3, 25).

> G := GL(3,25);

> ccl := Classes(G);

> T := [ c : c in ccl | IsTransvection(c[3]) ];

> #T;

1

> t := T[1][3]; t;

[ 1 0 0]

[ 0 1 1]

[ 0 0 1]

> S := ncl< G | t >;

> S eq SL(3,25);

true
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99.2.1 Pseudo-reflections Preserving Reflexive Forms
Let J be the matrix of a non-degenerate reflexive bilinear or sesquilinear form β on the
vector space V over a field F . Then β is either a symmetric, alternating or hermitian form.

We may assume that F is equipped with an automorphism σ such that σ2 = 1. If
β is a symmetric or alternating form, σ is the identity; if β is hermitian, the order of
σ : α 7→ ᾱ is two and J = J̄ tr. If a is the row vector (α1, α2, . . . , αn), define σ(a) =
(σ(α1), σ(α2), . . . , σ(αn)).

If a is a root of a pseudo-reflection r and if r preserves β, then the coroot of r is ασ(a)J tr

for some α ∈ F . Thus the matrix of r is I − αJ trσ(a)tra.

SymplecticTransvection(a, alpha)

The symplectic transvection with root a and multiplier α with respect to the form
attached to the parent of a. If the form is not alternating a runtime error is gener-
ated.

If β is a non-degenerate alternating form preserved by a pseudo-reflection r, then
the dimension of V is even and r must be a transvection. If a is a root of r, the
coroot is αaJ tr and the matrix of r is I − αJatra, for some α 6= 0 in F .

UnitaryTransvection(a, alpha)

The unitary transvection with root a and multiplier α with respect to the hermitian
form attached to the parent of a.

The matrix of the unitary transvection is I − αJātra, where a is isotropic and
the trace of α is 0; that is, aJātr = 0 and α + ᾱ = 0.

A runtime error is generated if the form is not hermitian, if a is not isotropic, or
if the trace of α is not 0.

UnitaryReflection(a, zeta)

The unitary reflection with root a and determinant ζ, where ζ is a root of unity.
The reflection preserves the hermitian form attached to the ambient space of a and
sends a to ζa.

In the case of a unitary reflection r with matrix I−αJ trσ(a)tra, the root a must be
non-isotropic and ar = ζa, where ζ is a root of unity. Therefore, α = (1− ζ)/aJātr.

The vector a∨ = ᾱa is the coroot of a and the definition of r becomes

vr = v − β(v, a∨)a.

OrthogonalReflection(a)

The reflection determined by a non-singular vector a of a quadratic space.

A quadratic space is a vector space V equipped with a quadratic form Q (see Chapter 88
for more details). The polar form of Q is the symmetric bilinear form β(u, v) = Q(u+v)−
Q(u)−Q(v). Thus β(v, v) = 2Q(v) and therefore, if the characteristic of F is not two, Q
is uniqely determined by β.
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If a is non-singular (that is, Q(a) 6= 0), the formula

vr = v −Q(a)−1β(v, a)a

defines a pseudo-reflection. If the characteristic of F is 2, this is a transvection; in all other
cases it is a reflection. However, in characteristic 2 there is a certain ambivalence in the
literature and the pseudo-reflections just defined are often called reflections.

The coroot of a is a∨ = Q(a)−1a. If the characteristic of F is not two, then a∨ =
2a/β(a, a) and this coincides with the usual notion of coroot, as found in [Hum90], for
example. In particular, if β(u, v) is the standard inner product (u, v) = uvtr, then the
inner product and the pairing between V and its dual are essentially the same and the
concepts of coroot and coroot coincide.

Example H99E4

We create an hermitian space by attaching an hermitian form J to a vector space V over a field
with complex conjugation. The vector a = (1, 0, 0, 0) is isotropic with respect to this form and
therefore we can use it to create a unitary transvection.

> K<i> := CyclotomicField( 4 );

> sigma := hom< K -> K | x :-> ComplexConjugate(x) >;

> J := Matrix(4,4,[K|0,0,0,1, 0,0,1,0, 0,1,0,0, 1,0,0,0]);

> V := UnitarySpace(J,sigma);

> a := V![1,0,0,0];

> t := UnitaryTransvection(a,i);

> t;

[ 1 0 0 0]

[ 0 1 0 0]

[ 0 0 1 0]

[-i 0 0 1]

Continuing the previous example we note that b = (1, 1, 1, 1) is non-isotropic and we create a
unitary reflection of order 4 with b as root.

> b := V![1,1,1,1];

> InnerProduct(b,b);

4

> r := UnitaryReflection(b,i);

> r, Eigenvalues(r);

[1/4*(i + 3) 1/4*(i - 1) 1/4*(i - 1) 1/4*(i - 1)]

[1/4*(i - 1) 1/4*(i + 3) 1/4*(i - 1) 1/4*(i - 1)]

[1/4*(i - 1) 1/4*(i - 1) 1/4*(i + 3) 1/4*(i - 1)]

[1/4*(i - 1) 1/4*(i - 1) 1/4*(i - 1) 1/4*(i + 3)]

{

<i, 1>,

<1, 3>

}
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99.3 Construction of Reflection Groups
In Magma a pseudo-reflection group is a group generated by a finite set of invertible
pseudo-reflections. A convenient way to provide the generators for a pseudo-reflection
group W is via a finite collection of roots and coroots. In this context the roots and
coroots of the generators are called the basic roots and basic coroots of W .

In the most general case, even when the pseudo-reflection group W is generated by
reflections, there are no known distinguished generating reflections whose roots have prop-
erties analogous to simple roots in Weyl groups or Coxeter groups. Therefore, one should
be careful to distinguish between the basic roots as defined here and the simple (or funda-
mental) roots of real reflection groups

See Section 99.4 for the construction of real reflection groups and Section 99.5 for the
construction of finite complex reflection groups.

PseudoReflectionGroup(A, B)

The pseudo-reflection group with the basic roots and corresponding coroots given
by the rows of the matrices A and B.

Example H99E5

A direct construction of the Shephard and Todd group G(14, 1, 2) with user supplied roots and
coroots.

> F<z> := CyclotomicField(7);

> A := Matrix(F,2,3,[[z,0,1],[0,1,0]]);

> B := Matrix(F,2,3,[[1,1,1],[1,2,1]]);

> G<x,y> := PseudoReflectionGroup(A,B);

> IsReflectionGroup(G);

true

> Order(x),Order(y),Order(x*y);

14 2 28

> #G;

392

99.4 Construction of Real Reflection Groups
The only root of unity in the real field is −1, hence every pseudoreflection over the real field
is a reflection. We call a reflection group real if it is defined over the reals and its simple
roots and simple coroots are linearly independent. We allow real reflection groups to be
defined as matrix groups over the integer ring (Chapter 18), the rational field (Chapter 20),
number fields (Chapter 34), and cyclotomic fields (Chapter 36); the real field (Chapter 25)
is not allowed since it is not infinite precision.

The real reflection groups are just the reflection representations of the Coxeter groups
(Chapter 98). This allows us to compute many more properties for these groups than for
general reflection groups. Note that the classification of finite real reflection groups is given
in Section 95.6.
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ReflectionGroup(M)

ReflectionGroup(G)

ReflectionGroup(C)

ReflectionGroup(D)

The reflection group with Coxeter matrix M , Coxeter graph G, Cartan matrix C,
or Dynkin digraph D (see Chapter 95).

ReflectionGroup(N)

The finite or affine reflection group with Cartan name given by the string N (see
Section 95.6).

IrreducibleReflectionGroup(X, n)

The finite or affine irreducible reflection group with Cartan name Xn (see Sec-
tion 95.6).

Example H99E6

> C := CartanMatrix("B3" : Symmetric);

> G := ReflectionGroup(C);

> G;

MatrixGroup(3, Number Field with defining polynomial x^2 - 2 over the Rational

Field) of order 48 = 2^4 * 3

Generators:

[-1 0 0]

[ 1 1 0]

[ 0 0 1]

[ 1 1 0]

[ 0 -1 0]

[ 0 $.1 1]

[ 1 0 0]

[ 0 1 $.1]

[ 0 0 -1]

ReflectionGroup(R)

The finite reflection group with root system or root datum R (see Chapters 96
and 97).
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Example H99E7

> R := RootDatum("B3");

> ReflectionGroup(R);

MatrixGroup(3, Integer Ring) of order 48 = 2^4 * 3

Generators:

[-1 0 0]

[ 1 1 0]

[ 0 0 1]

[ 1 1 0]

[ 0 -1 0]

[ 0 1 1]

[ 1 0 0]

[ 0 1 2]

[ 0 0 -1]

ReflectionGroup(W)

A Mtrx Default :

B Mtrx Default :

C Mtrx Default :

A reflection group W ′ of the Coxeter group W , together with the isomorphism
W → W ′ (see Chapter 98). Since a Coxeter group W does not come with an in-
built reflection representation, the optional parameters A, B, and C can be used
to specify the representation. They are respectively the matrix whose rows are the
simple roots, the matrix whose rows are the simple coroots, and the Cartan matrix.
These must have the following properties:
1. A and B must have same number of rows and the same number of columns; they

must be defined over the same field, which must be the rational field, a number
field, or a cyclotomic field; the entries must be real;

2. the number of columns must be at least the number of rows; and
3. C = ABtr must be a Cartan matrix for W .

It is not necessary to specify all three matrices: any two of them will determine
the third. If C is not determined, it is taken to be the standard matrix described in
Section 95.4.

ReflectionGroup(W)

The reflection group W ′ isomorphic to the permutation Coxeter group W , together
with the isomorphism W → W ′ (see Chapter 98). There are no optional parameters
A, B, and C in this case because every permutation Coxeter group has a root system,
and this determines the reflection representation.
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Example H99E8

> W<a,b,c> := CoxeterGroup(GrpFPCox, "B3");

> G, h := CoxeterGroup(GrpMat, W);

> a*b; h(a*b);

a * b

[-1 -1 0]

[ 1 0 0]

[ 0 1 1]

99.5 Construction of Finite Complex Reflection Groups
In this section, we describe the classification and construction of finite complex reflection
groups.

A finite complex reflection group has a finite root system but there is no known analogue
of a set of simple roots as in the theory of finite Coxeter groups. To illustrate the difficulty,
one of the examples in this section constructs a complex reflection group of rank 4 which
cannot be generated by fewer than 5 generators.

Nevertheless, it is possible to generalise the concept of root datum to the complex case
and construct all complex reflection groups via their root data.

Let D be the ring of integers of a number field F which admits a well-defined operation
of complex conjugation (which in the case of a real number field will be the identity
automorphism). Let µ(D) be the group of roots of unity in D and let V = F ×D L.

A complex root datum is a 4-tuple (L,L∗, Φ, ρ), where
• L and L∗ are free D-modules of rank n which are in duality via a pairing

L× L∗ → D : (a, φ) 7→ 〈 a, φ 〉;
• Φ is a finite subset of L and ρ : Φ → L∗.
For all a ∈ Φ we have:

1. for all λ ∈ F , we have λa ∈ Φ if and only if λ ∈ µ(D);
2. for all λ ∈ D, we have ρ(λa) = λρ(a);
3. f(a) = 1− 〈 a, ρ(a) 〉 ∈ µ(D) \ {1};
4. the reflection ra of V defined by vra = v − 〈 v, ρ(a) 〉a and the reflection r∗a of V ∗

defined by φr∗a = φ− 〈 a, φ 〉ρ(a) satisfy:
• Φra ⊆ Φ and Φ∗r∗a ⊆ Φ∗, where Φ∗ = ρ(Φ).
• f(arb) = f(a) for all a, b ∈ Φ.

Put a∗ = ρ(a) and V ∗ = F ⊗D L∗. Then ρ : Φ → Φ∗ is a bijection and the map

p := V → V ∗ : v 7→
∑

a∈Φ

〈 v, a∗ 〉a∗

is semilinear. Furthermore, β(u, v) = 〈u, p(v) 〉 defines a non-degenerate hermitian form
on the span of Φ.
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The group W generated by the reflections {ra | a ∈ Φ} is the Weyl group of the root
datum. For any set {r1, r2, . . . , rk} of reflections that generate W , every reflection in W
is conjugate to a power of some ri. The set Φ is a root system for W and Φ∗ is the set of
coroots.

If a1, a2, . . . , ak ∈ Φ are roots of the reflections r1, r2, . . . , rn which generate W , then
C = (〈 ai, a

∗
j 〉) is a complex Cartan matrix and the ai and a∗j are basic roots and coroots

of W .
Even though there is no satisfactory notion of ‘simple roots’, a complex reflection group

can nevertheless be described by means of a complex Cartan matrix. In Magma if the
roots are the rows of a matrix A and if the coroots are the rows of a matrix B, then
C = ABtr. The matrices A and B are called basic root and coroot matrices.

The complex Cartan matrix can be described by a diagram similar to the Dynkin
diagram of a Coxeter group. This notation was suggested by Coxeter and used by Cohen
in [Coh76]. (There is a different type of diagram used by Broué, Malle and others.)

Cohen’s naming scheme for the diagrams extends the standard notation An, Bn, . . . ,
H3, H4 used for Coxeter groups. Magma uses a slight variation of Cohen’s scheme; that
is, in Magma, Cohen’s group EN4 is referred to as O4.

The original numbering system for the primitive complex reflection groups is due to
Shephard and Todd [ST54].

ShephardTodd(n)

NumFld BoolElt Default : false

This function returns the primitive reflection group Gn using the Shephard and
Todd numbering.

By default the matrices are written over the ring of integers of the smallest cyclo-
tomic field which contains the character values of the reflections. If the parameter
NumFld is set to true, the number field generated by the character values of the
reflections is used.

The groups available via this function include all finite primitive complex reflec-
tion groups other than the symmetric groups Sym(n) for n ≥ 5. The groups are
listed below.

Nineteen 2-dimensional primitive complex reflection groups:
Tetrahedral family: G4, . . . , G7

Octahedral family: G8, . . . , G15

Icosahedral family: G16, . . . , G22

Five 3-dimensional complex reflection groups:
G23: W (H3) = Z2 × PSL(2, 5), order 120.
G24: W (J3(4)) = Z2 × PSL(2, 7), order 336.
G25: W (L3) = 31+2 · SL(2, 3), order 648; Hessian group.
G26: W (M3) = Z2 × 31+2 · SL(2, 3), order 1296; Hessian group.
G27: W (J3(5)) = Z2 × (Z3 · Alt(6)), order 2160, where Z3 · Alt(6) denotes the

non-split extension of Z3 by Alt(6).
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Five 4-dimensional complex reflection groups in addition to Sym(5):

G28: W (F4) = (SL(2, 3) ◦ SL(2, 3)) · (Z2 × Z2), order 1152.
G29: W (N4) = (Z4 ◦ 21+4) · Sym(5), order 7680 (splits).
G30: W (H4) = (SL(2, 5) ◦ SL(2, 5)) · Z2, order 14 400.
G31: W (O4) = (Z4 ◦ 21+4) · Sp(4, 2), order 46 080 (non-split) 5 generators.
G32: W (L4) = Z3 × Sp(4, 3), order 155 520 = 27 × 35 × 5.

One 5-dimensional complex reflection group in addition to Sym(6):

G33: W (K5) = Z2×Ω(5, 3) = Z2×PSp(4, 3) = Z2×PSU(4, 2), order 51 840 =
27 × 34 × 5.

Two 6-dimensional complex reflection groups in addition to Sym(7):

G34: W (K6) = Z3 · Ω̂−(6, 3), order 39 191 040 = 29×37×5×7 (non-split), where
Ω̂−(6, 3) is a semidirect product of Ω−(6, 3) by Z2.

G35: W (E6) = SO(5, 3) = O−(6, 2) = PSp(4, 3) · Z2 = PSU(4, 2) · Z2, order
51 840 = 27 × 34 × 5.

One 7-dimensional complex reflection group in addition to Sym(8):

G36: W (E7) = Z2 × Sp(6, 2), order 2 903 040 = 210 × 34 × 5× 7.

One 8-dimensional complex reflection group in addition to Sym(9):

G37: W (E8) = Z2 ·O+(8, 2), order 696 729 600 = 214 × 35 × 52 × 7 (non-split).

Example H99E9

We verify that the complex reflection group G24 is isomorphic to Z2 × Ω(3, 7).

> W := ShephardTodd(24);

> G := sub<GL(3,7) | Omega(3,7), -GL(3,7)!1>;

> IsIsomorphic(W,G):Minimal;

true Homomorphism of MatrixGroup(3, Cyclotomic Field of order 7 and degree 6)

of order 2^4 * 3 * 7 into MatrixGroup(3, GF(7)) of order 2^4 * 3 * 7

ComplexReflectionGroup(C)

Reduced BoolElt Default : true

This function returns the complex reflection group defined by the (complex) Cartan
matrix C. When the optional parameter Reduced is true (the default), the roots
and coroots are computed modulo the null space of C.
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ComplexReflectionGroup(X, n)

NumFld BoolElt Default : false

This function returns the primitive reflection group of type X and rank n, using the
Cohen/Coxeter naming scheme.

By default the matrices are written over the ring of integers of the smallest cyclo-
tomic field which contains the character values of the reflections. If the parameter
NumFld is set to true, the number field generated by the character values of the
reflections is used.

Example H99E10

In this example we find (up to conjugacy) all subgroups of G = W (O4) = G31 that are generated
by reflections. This shows that G cannot be generated by fewer than 5 reflections.
We begin by checking that G has only one class of reflections.

> G := ComplexReflectionGroup("O",4);

> print #[c[3] : c in Classes(G) | IsReflection(c[3])];

1

> R := Class(G,G.1); #R;

60

> #G;

46080

We proceed by building the list of reflection subgroups in ‘layers’, where the n-th layer consists
of representatives of the subgroups generated by n reflections.

> L := [sub<G|G.1>];

> layers := [L];

> n := 0;

> while true do

> n +:= 1;

> nextlayer := [];

We extend each group in layer n by adjoining one additional reflection. The resulting subgroup
will be generated by n or n + 1 reflections. If we haven’t seen it before we add it to the list.

> for H in layers[n] do

> for A in {sub<G|H,s> : s in R | s notin H} do

> if forall{B : B in L | not IsConjugate(G,A,B)} then

> Append(~nextlayer,A);

> Append(~L,A);

> end if;

> end for;

> end for;

> if IsEmpty(nextlayer) then break; end if;

> Append(~layers,nextlayer);

After the construction of each layer we print the orders of the subgroups.

> print n+1,"generators";
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> print [#A : A in nextlayer];

> end while;

2 generators

[ 4, 4, 8, 6 ]

3 generators

[ 8, 8, 16, 24, 12, 16, 24, 48, 16, 96 ]

4 generators

[ 192, 16, 32, 96, 16, 192, 32, 48, 1536, 384, 64, 64, 32,

7680, 1152, 36, 384, 120, 120, 192, 192 ]

5 generators

[ 64, 384, 3072, 128, 46080 ]

6 generators

[ 256 ]

Looking at the orders we see that the first time the group G31 appears is in layer 5. That is, it
cannot be generated by 4 or fewer reflections. It is interesting to note that there is one subgroup
which requires 6 generators; namely the imprimitive group G(4, 2, 2)×G(4, 2, 2).

ShephardTodd(m, p, n)

ImprimitiveReflectionGroup(m, p, n)

NumFld BoolElt Default : false

Let B be the direct product of n copies of the cyclic group Cm of order m and
represent the elements of B by diagonal matrices diag(θ1, θ2, . . . , θn). The elements
of the symmetric group Sym(n) can be represented by n× n permutation matrices
and in this guise it acts on the group B; the resulting semidirect product is also
known as the wreath product Cm o Sym(n).

For each divisor p of m define

A(m, p, n) := {diag(θ1, θ2, . . . , θn) ∈ B | (θ1θ2 · · · θn)m/p = 1 }.

It is immediately clear that A(m, p, n) is a subgroup of index p in B that is invariant
under the action of Sym(n). The semidirect product of A(m, p, n) by the symmetric
group Sym(n) is the group G(m, p, n). These groups are imprimitive when m ≥ 2.
The group G(1, 1, n) is the symmetric group Sym(n) acting as permutation matrices.

Shephard and Todd proved that every irreducible imprimitive complex reflection
subgroup of GL(n,C) is conjugate to G(m, p, n) for some m and p.

This function returns the Shephard and Todd group G(m, p, n) ⊂ GL(n, F ),
where p divides m. In general, G(m, p, n) is irreducible but if m = p = 1, the
function returns Sym(n) in its natural permutation representation, which is not
irreducible.

By default the matrices are written over the ring of integers of the smallest cyclo-
tomic field which contains the character values of the reflections. If the parameter
NumFld is set to true, the number field generated by the character values of the
reflections is used.
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Example H99E11

> ShephardTodd(6, 3, 3);

MatrixGroup(3, Cyclotomic Field of order 6 and degree 2)

Generators:

[0 1 0]

[1 0 0]

[0 0 1]

[1 0 0]

[0 0 1]

[0 1 0]

[1 0 0]

[0 0 z]

[0 -z + 1 0]

[1 0 0]

[0 1 0]

[0 0 -1]

Mapping from: MatrixGroup(3, Cyclotomic Field of order 6 and degree 2) to GL(3,

CyclotomicField(6))

ComplexRootMatrices(k)

ComplexRootMatrices(m, p, n)

NumFld BoolElt Default : false

Given an integer n (4 ≤ n ≤ 37) the first form of the function returns basic root
and coroot matrices for the primitive Shephard-Todd group Gn.

Given three positive integers m, p and n such that p divides m, the second
version returns basic root and coroot matrices for the imprimitive complex reflection
group G(m, p, n). In both cases the functions return an invariant hermitian form, a
generator for the group of roots of unity of the ring of definition, and the order of
the generator.

By default the matrices are written over the ring of integers of the smallest cyclo-
tomic field which contains the character values of the reflections. If the parameter
NumFld is set to true, the number field generated by the character values of the
reflections is used.
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Example H99E12

> A,B,J,gen,ordgen := ComplexRootMatrices(13);

> A,B;

[ 1 0]

[ -z^2 - z - 1 1]

[z^2 + 2*z + 1 -z^2 - z - 1]

[ 2 -z^3 + z + 2]

[ z^2 z^3 + z^2 + 1]

[-z^3 + z^2 - 1 z^2 - 1]

> gen,ordgen;

-z^3

8

> G := PseudoReflectionGroup(A,B);

> #G;

96

ComplexCartanMatrix(k)

ComplexCartanMatrix(m, p, n)

NumFld BoolElt Default : false

If A and B are the basic root and coroot matrices returned by ComplexRootMatrices
above, then this function returns ABtr, where Btr is the transpose of B. The
meaning of the optional parameter NumFld has been described above.

BasicRootMatrices(C)

Reduced BoolElt Default : true

This function returns a matrix A of roots and a matrix B of coroots such that
C = ABtr. The default, when the optional parameter Reduced is true, is to compute
the roots and coroots modulo the null space of C.

CohenCoxeterName(k)

Cohen’s string name and rank of the Shephard and Todd group Gk. This is an
extension of the naming scheme for Coxeter groups. For example, the Shephard and
Todd group G37 is the Coxeter group of type E8 whereas the Shephard and Todd
group G32 has Cohen name L4.
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ShephardToddNumber(X, n)

Given a string X and an integer n, this function returns the Shephard and Todd
number of the complex reflection group W (Xn) of type X and rank n. The rank is
the dimension of the space on which the group acts; it is not always the number of
generators.

The Shepard and Todd numbers range from 1 to 37. All symmetric groups
(type A) have Shephard and Todd number 1, all imprimitive groups G(m, p, n)
have Shephard and Todd number 2, and all cyclic groups have Shephard and Todd
number 3. The primitive complex reflection groups of rank 2 have Shepard and
Todd numbers in the range 4 to 22. Except for the group G4 which has type L2,
the rank 2 groups do not have Cohen–Coxeter names.

The Shephard and Todd numbers in the range 23 to 37 refer to the Cohen–
Coxeter groups W (E6), W (E7), W (E8), W (F4), W (H3), W (H4), W (J3(4)),
W (J3(5)), W (K5), W (K6), W (L3), W (L4), W (M3), W (N4), and EW (N4). Note
that in Magma the types of the rank 3 groups W (J3(4)) and W (J3(5)) are J4 and
J5; and the type of the rank 4 group EW (N4) is O.

As a matrix group the Coxeter group of type A is returned by the function
CoxeterGroup(GrpMat,"A",n), where n is the rank. The groups of types B, C and
D are Coxeter groups and imprimitive complex reflection groups. Thus, as matrix
groups, they can be obtained via the function ShephardTodd(2,p,n), where p = 1
for type B or C and p = 2 for type D.

Example H99E13

The type of the group G31 is O and its rank is 4. This is the notation used in [LT09].

> ShephardToddNumber("J5",3);

27

> CohenCoxeterName(31);

O 4

Example H99E14

To construct a complex reflection group with a given name, first convert the name to its Shephard
and Todd number.

> G := ShephardTodd(ShephardToddNumber("L",4));

> G;

MatrixGroup(4, Cyclotomic Field of order 3 and degree 2)

Generators:

[ omega 0 0 0]

[-omega - 1 1 0 0]

[ 0 0 1 0]

[ 0 0 0 1]

[ 1 omega + 1 0 0]

[ 0 omega 0 0]
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[ 0 omega + 1 1 0]

[ 0 0 0 1]

[ 1 0 0 0]

[ 0 1 -omega - 1 0]

[ 0 0 omega 0]

[ 0 0 -omega - 1 1]

[ 1 0 0 0]

[ 0 1 0 0]

[ 0 0 1 omega + 1]

[ 0 0 0 omega]

ComplexRootDatum(k)

ComplexRootDatum(m, p, n)

NumFld BoolElt Default : false

A root datum for the Shephard and Todd group Gk or, in the second form of the
function, the imprimitive group G(m, p, n). This is returned as a 5-tuple Φ, Φ∗, ρ,
W , J , where Φ is the sequence of roots, Φ∗ the sequence of coroots, ρ : A → B is
a bijective map, W is the complex reflection group of the root datum, and J is an
hermitian form preserved by W .

99.6 Operations on Reflection Groups
See Chapter 59 for general functions for matrix groups. Note that most of the functions
in this section only work for real reflection groups.

IsCoxeterIsomorphic(W1, W2)

Returns true if, and only if, the real reflection groups W1 and W2 are isomorphic
as Coxeter groups.

IsCartanEquivalent(W1, W2)

Returns true if, and only if, the crystallographic real reflection groups W1 and W2

have Cartan equivalent Cartan matrices.

Example H99E15

> W1 := ReflectionGroup("B3");

> W2 := ReflectionGroup("C3");

> IsCoxeterIsomorphic(W1, W2);

true [ 1, 2, 3 ]

> IsCartanEquivalent(W1, W2);

false
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CartanName(W)

The Cartan name of the finite or affine real reflection group W (Section 95.6).

CoxeterDiagram(W)

A display of the Coxeter diagram of the real reflection group W (Section 95.6). If
W is not affine or finite, an error is flagged.

DynkinDiagram(W)

A display of the Coxeter diagram of the real reflection group W (Section 95.6). If
W is not affine or finite, or if W is not crystallographic, an error is flagged.

Example H99E16

> G := CompleteGraph(3);

> W := ReflectionGroup(G);

> CartanName(W);

A~2

> CoxeterDiagram(W);

A~2 1 - 2

| |

- 3 -

RootSystem(W)

The root system of the finite real reflection group W (Chapter 96). If W is infinite,
an error is flagged.

RootDatum(W)

The root datum of the finite real reflection group W (Chapter 97). The roots and
coroots of W must have integral components, and W must be finite.

CoxeterMatrix(W)

The Coxeter matrix of the real reflection group W (Section 95.2).

CoxeterGraph(W)

The Coxeter graph of the real reflection group W (Section 95.3).

CartanMatrix(W)

The Cartan matrix of the real reflection group W (Section 95.4).

DynkinDigraph(W)

The Dynkin digraph of the real reflection group W (Section 95.5).

Rank(W)

NumberOfGenerators(W)

The rank of the reflection group W .
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Example H99E17

> R := StandardRootSystem("A", 4);

> W := ReflectionGroup(R);

> Rank(W);

4

> Dimension(W);

5

FundamentalGroup(W)

The fundamental group of the real reflection group W (Subsection 97.1.6). The
roots and coroots of W must have integral components.

IsogenyGroup(W)

The isogeny group of the real reflection group W , together with the injection into
the fundamental group (Subsection 97.1.6). The roots and coroots of W must have
integral components.

CoisogenyGroup(W)

The fundamental group of the real reflection group W together with the projection
onto the fundamental group (Subsection 97.1.6). The roots and coroots of W must
have integral components.

BasicDegrees(W)

The degrees of the basic invariant polynomials of the reflection group W . These are
computed using the table in [Car72, page 155] if the group is real, and using the
algorithm of [LT09] in other cases. If W is infinite, an error is flagged.

BasicCodegrees(W)

The basic codegrees of the reflection group W . These are computed using the
algorithm of [LT09]. If W is infinite, an error is flagged.

Example H99E18

The product of the basic degrees is the order of the Coxeter group; the sum of the basic degrees
is the sum of the rank and the number of positive roots.

> W := ReflectionGroup("E6");

> degs := BasicDegrees(W);

> degs;

[ 2, 5, 6, 8, 9, 12 ]

> &*degs eq #W;

true

> &+degs eq NumPosRoots(W) + Rank(W);

true
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LongestElement(W)

The unique longest element in the finite real reflection group W .

CoxeterElement(W)

The Coxeter element in the reflection group W , ie. the product of the generators.

CoxeterNumber(W)

The order of the Coxeter element in the real reflection group W .

Example H99E19

Operations on groups.

> W := ReflectionGroup("A4");

> LongestElement(W);

[ 0 0 0 -1]

[ 0 0 -1 0]

[ 0 -1 0 0]

[-1 0 0 0]

> CoxeterElement(W);

[-1 -1 -1 -1]

[ 1 0 0 0]

[ 0 1 0 0]

[ 0 0 1 0]

LeftDescentSet(W, w)

The set of indices r of simple roots of the finite real reflection group W such that
the length of the product srw is less than that of the element w.

RightDescentSet(W, w)

The set of indices r of simple roots of the finite real reflection group W such that
the length of the product wsr is less than that of the element w.

Example H99E20

> W := ReflectionGroup("A5");

> x := W.1*W.2*W.4*W.5;

> LeftDescentSet(W, x);

{ 1, 4 }

> RightDescentSet(W, x);

{ 2, 5 }
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99.7 Properties of Reflection Groups

See Chapter 59 for general functions for matrix groups.

IsReflectionGroup(G)

Returns true if G is a group generated by reflections. It need not be the case that
all the group elements returned by Generators(G) are reflections.

RootsAndCoroots(G)

Returns the orders of the reflections, the roots and the coroots of the reflection
group G.

IsRealReflectionGroup(G)

Returns true if, and only if, the matrix group G is a real reflection group. If true,
the simple orders, roots, and coroots are also returned.

Example H99E21

> W := ComplexReflectionGroup("A", 4);

> IsReflectionGroup(W);

true

> IsRealReflectionGroup(W);

true

[1 0 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 0 1]

[ 2 -1 0 0]

[-1 2 -1 0]

[ 0 -1 2 -1]

[ 0 0 -1 2]

> W := ComplexReflectionGroup("M", 3);

> IsReflectionGroup(W);

true

> IsRealReflectionGroup(W);

^

Runtime error in ’IsRealReflectionGroup’: The group must be defined over the

reals

IsCrystallographic(W)

Returns true if, and only if, the real reflection group W is crystallographic, i.e. its
Cartan matrix has integral entries.
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IsSimplyLaced(W)

Returns true if, and only if, the real reflection group W is simply laced, i.e. its
Coxeter graph has no labels.

Example H99E22

> W := ReflectionGroup("A~2 D4");

> IsFinite(W);

false

> IsCrystallographic(W);

true

> IsSimplyLaced(W);

true

Dual(G)

The dual of the reflection group G, ie, the reflection group gotten by swapping roots
with coroots.

Overgroup(H)

The overgroup of H, ie. the reflection group whose roots are permuted by the ele-
ments of the reflection subgroup H.

Overdatum(H)

The root datum whose roots are permuted by the elements of the reflection subgroup
H.

Every Coxeter group W has a standard action. For example, the standard action group of
a Coxeter group of type An is the symmetric group of degree n + 1 acting on {1, . . . , n}.

StandardAction(W)

The standard action of the reflection group W .

StandardActionGroup(W)

The group G of the standard action of the reflection group W , together with an
isomorphism W → G.
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99.8 Roots, Coroots and Reflections
Many of these functions have an optional argument Basis which may take one of the
following values
1. "Standard": the standard basis for the (co)root space. This is the default.
2. "Root": the basis of simple (co)roots.
3. "Weight": the basis of fundamental (co)weights (see Subsection 99.8.3 below).

99.8.1 Accessing Roots and Coroots

RootSpace(W)

CorootSpace(W)

The base space of the reflection group W . If W is not a reflection group, an error
occurs.

Example H99E23

> W := ComplexReflectionGroup("M", 3);

> RootSpace(W);

Full Vector space of degree 3 over Cyclotomic Field of order 24 and degree 8

SimpleOrders(W)

The sequence of simple orders of the reflection group W . If W is not a reflection
group, an error is flagged.

SimpleRoots(W)

SimpleCoroots(W)

The simple (co)roots of the reflection group W as the rows of a matrix, i.e. A (resp.
B).

NumberOfPositiveRoots(W)

NumPosRoots(W)

The number of positive roots of the real reflection group W . This is also the number
of positive coroots. The total number of (co)roots is twice the number of positive
(co)roots. This number is finite if, and only if, W is finite.

Roots(W)

Coroots(W)

Basis MonStgElt Default : “Standard”
The indexed set of (co)roots of the real reflection group W , i.e. {@α1, . . . α2N @}
(resp. {@ α?

1, . . . α
?
2N @}). If W is infinite, an error is flagged.
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PositiveRoots(W)

PositiveCoroots(W)

Basis MonStgElt Default : “Standard”
The indexed set of positive (co)roots of the real reflection group W , that is,
{@ α1, . . . αN @} (resp. {@ α?

1, . . . α
?
N @}). If W is infinite, an error is flagged.

Root(W, r)

Coroot(W, r)

Basis MonStgElt Default : “Standard”
The rth (co)root αr (resp. α?

r) of the real reflection group W . If W is infinite, an
error is flagged.

RootPosition(W, v)

CorootPosition(W, v)

Basis MonStgElt Default : “Standard”
If v is a (co)root in the finite real reflection group W , return its index; otherwise
return 0. These functions will try to coerce v into the appropriate lattice; v should
be written with respect to the basis specified by the parameter Basis. If W is
infinite, an error is flagged.

Example H99E24

> W := ReflectionGroup("A3");

> Roots(W);

{@

(1 0 0),

(0 1 0),

(0 0 1),

(1 1 0),

(0 1 1),

(1 1 1),

(-1 0 0),

(0 -1 0),

(0 0 -1),

(-1 -1 0),

(0 -1 -1),

(-1 -1 -1)

@}

> PositiveCoroots(W);

{@

(2 -1 0),

(-1 2 -1),

(0 -1 2),

(1 1 -1),
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(-1 1 1),

(1 0 1)

@}

> #Roots(W) eq 2*NumPosRoots(W);

true

> Root(W, 4);

(1 1 0)

> Root(W, 4 : Basis := "Root");

(1 1 0)

> RootPosition(W, [1,1,0]);

4

> W := ReflectionGroup("A3");

> Roots(W);

{@

(1 0 0),

(-1 -1 -3),

(1 2 4),

(0 -1 -3),

(0 1 1),

(1 1 1),

(-1 0 0),

(1 1 3),

(-1 -2 -4),

(0 1 3),

(0 -1 -1),

(-1 -1 -1)

@}

> PositiveCoroots(W);

{@

(2 -1 0),

(-1 2 -1),

(0 1 0),

(1 1 -1),

(-1 3 -1),

(1 2 -1)

@}

> #Roots(W) eq 2*NumPosRoots(W);

true

> Root(W, 4);

(0 -1 -3)

> Root(W, 4 : Basis := "Root");

(1 1 0)

> RootPosition(W, [0,-1,-3]);

4
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99.8.2 Reflections
The root α acts on the root space via the reflection sα; the coroot α? acts on the coroot
space via the coreflection s?

α.

ReflectionMatrices(W)

CoreflectionMatrices(W)

Basis MonStgElt Default : “Standard”
The sequence of reflections in the finite real reflection group W . The rth reflection
in the sequence corresponds to the rth (co)root.

SimpleReflectionMatrices(W)

SimpleCoreflectionMatrices(W)

Basis MonStgElt Default : “Standard”
The matrices giving the action of the simple (co)roots on the (co)root space of the
finite real reflection group W .

ReflectionMatrix(W, r)

CoreflectionMatrix(W, r)

Basis MonStgElt Default : “Standard”
The reflection in finite real reflection group W corresponding to the rth (co)root. If
r = 1, . . . , n, this is a generator of W .

SimpleReflectionPermutations(W)

The sequence of permutations giving the action of the simple (co)roots of the finite
reflection group W on the (co)roots. This action is the same for roots and coroots.

ReflectionPermutations(W)

The sequence of permutations giving the action of the (co)roots of the finite reflection
group W on the (co)roots. This action is the same for roots and coroots.

ReflectionPermutation(W, r)

The permutation giving the action of the rth (co)root of the finite reflection group
W on the (co)roots. This action is the same for roots and coroots.

ReflectionWords(W)

The sequence of words in the simple reflections for all the reflections of the real
reflection group W . These words are given as sequences of integers. In other words,
if a = [a1, . . . , al] = ReflectionWords(W)[r], then sαr = sαa1

· · · sαal
.

ReflectionWord(W, r)

The word in the simple reflections for the rth reflection of the real reflection group
W . The word is given as a sequence of integers. In other words, if a = [a1, . . . , al] =
ReflectionWord(W,r), then sαr = sαa1

· · · sαal
.
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Example H99E25

> Q := RationalField();

> W := ReflectionGroup("A3");

> mx := ReflectionMatrix(W, 4);

> perm := ReflectionPermutation(W, 4);

> RootPosition(W, Vector(Q, Eltseq(Root(W,2))) * mx) eq 2^perm;

true

> mx := CoreflectionMatrix(W, 4);

> CorootPosition(W, Coroot(W,2) * mx) eq 2^perm;

true

Length(w)

CoxeterLength(w)

The length of w as an element of the Coxeter group W , ie. the number of positive
roots of W which become negative under the action of w.

99.8.3 Weights

WeightLattice(W)

CoweightLattice(W)

The (co)weight lattice of the real reflection group W . The roots and coroots of W
must have integral components.

FundamentalWeights(W)

FundamentalCoweights(W)

Basis MonStgElt Default : “Standard”
The fundamental weights of the real reflection group W given as the rows of a
matrix. The roots and coroots of W must have integral components.

Example H99E26

> W := ReflectionGroup("E6");

> WeightLattice(W);

Lattice of rank 6 and degree 6

Basis:

(4 3 5 6 4 2)

(3 6 6 9 6 3)

(5 6 10 12 8 4)

(6 9 12 18 12 6)

(4 6 8 12 10 5)

(2 3 4 6 5 4)

Basis Denominator: 3
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> FundamentalWeights(W);

[ 4/3 1 5/3 2 4/3 2/3]

[ 1 2 2 3 2 1]

[ 5/3 2 10/3 4 8/3 4/3]

[ 2 3 4 6 4 2]

[ 4/3 2 8/3 4 10/3 5/3]

[ 2/3 1 4/3 2 5/3 4/3]

IsDominant(R, v)

Basis MonStgElt Default : “Standard”

Returns true if, and only if, v is a dominant weight for the root datum R, ie, a
nonnegative integral linear combination of the fundamental weights.

DominantWeight(W, v)

Basis MonStgElt Default : “Standard”

The unique dominant weight in the same W -orbit as v, where W is a real reflection
group and v is a weight given as a vector or a sequence representing a vector. The
second value returned is a Coxeter group element taking v to the dominant weight.

WeightOrbit(W, v)

Basis MonStgElt Default : “Standard”

The W -orbit of v as an indexed set, where W is a real reflection group and v is a
weight given as a vector or a sequence representing a vector. The first element in the
orbit is always dominant. The second value returned is a sequence of Coxeter group
elements taking the dominant weight to the corresponding element of the orbit.

Example H99E27

> W := CoxeterGroup("B3");

> DominantWeight(W, [1,-1,0] : Basis:="Weight");

(1 0 0)

$.2 * $.3 * $.2 * $.1

> #WeightOrbit(W, [1,-1,0] : Basis:="Weight");

6
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99.9 Related Structures
In this section we briefly list functions for creating other structures from a reflection group.
See the appropriate chapters of the Handbook for more details.

CoxeterGroup(GrpFPCox, W)

The Coxeter group isomorphic to the real reflection group W . See Chapter 98.

CoxeterGroup(GrpPermCox, W)

The permutation Coxeter group isomorphic to the finite real reflection group W .
See Chapter 98.

LieAlgebra(W, R)

The reductive Lie algebra over the ring R with Weyl group W . Unless W is finite,
real, and crystallographic, an error is flagged. See Section 100.5.1.

GroupOfLieType(W, k)

The group of Lie type over the field k with Weyl group W . Unless W is finite, real,
and crystallographic, an error is flagged. The roots and coroots of W must also have
integral components. See Chapter 103.
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Chapter 100

LIE ALGEBRAS

100.1 Introduction
This chapter is concerned with finite dimensional Lie algebras. A large number of spe-
cialised functions are provided for these algebras. We refer to [dG00] for a general in-
troduction to the theory of Lie algebras and their algorithms. For some of the functions
described here that rely on a non-trivial algorithm we will indicate a precise reference.

Lie algebras are viewed as free modules over a base ring R with a multiplication satis-
fying the usual Lie axioms. Some functions require additional conditions on the base ring;
for example, many functions require that the base ring be a field.

The main computational machinery in Magma for Lie algebras assumes that they are
given either as structure constant algebras or as matrix algebras. Functions are provided
which, given a finitely presented finite dimensional Lie algebra, will attempt to construct an
isomorphic structure constant Lie algebra. As a structure constant algebra, the Lie algebra
L of dimension n over a ring R is defined in Magma by giving the n3 structure constants
ak

ij ∈ R(1 ≤ i, j, k ≤ n) such that, if {e1, e2, . . . , en} is the basis of L, ei∗ej =
∑n

k=1 ak
ij ∗ek.

In Magma V2.19 there is more functionality for Lie algebras defined by structure con-
stants than for matrix Lie algebras. Throughout this chapter the algebra representation
appropriate for a given intrinsic will be noted. For information on matrix algebras consid-
ered as associative algebras see Chapter 83.

In addition, some functions are provided for finitely presented Lie algebras and Lie
algebras generated by extremal elements, and databases of solvable Lie algebras, nilpotent
Lie algebras, and nilpotent orbits in simple Lie algebras are available.

100.1.1 Guide for the Reader
As mentioned above, the most extensively supported Lie algebras in Magma are structure
constant Lie algebras and matrix Lie algebras. The methods for constructing these (by
explicitly specifying structure constants or matrices) are described in Sections 100.2.

Well known simple finite Lie algebras can be more easily constructed by specifying the
type. The classical, reductive, Lie algebras (An, Bn, Cn, Dn, E6, E7, E8, F4, G2) and their
twisted variants are described in Section 100.5.1, the Witt Lie algebras and its derivatives
(of Cartan-Type) in Section 100.5.2, and the Melikian Lie algebras in Section 100.5.3.
Those interested primarily in classical Lie algebras may want to skip to Section 100.5.1,
which includes a number of examples to get started.

Elementary properties of these Lie algebras (bases, types, Weyl group, etc.) are de-
scribed in Section 100.8. This section also contains information about isomorphism testing.
Other properties (nilpotency, simplicity) are discussed in Section 100.10. Some further op-
erations that only apply to matrix Lie algebras may be found in Section 100.13.
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Constructors such as direct sums, subalgebras, centralisers, Cartan subalgebras, derived
series, etc. are treated in Sections 100.7 and 100.9; construction of homomorphisms can
be found in Section 100.14. The construction of elements of Lie algebras is described in
Section 100.6, and operations on them in Section 100.11.

In addition to these Lie algebras Magma supports two other types of Lie algebras.
Firstly finitely presented Lie algebras, as free Lie algebras modulo a set of relations, de-
scribed in Section 100.3. Secondly Lie algebras generated by extremal elements, described
in Section 100.4.

More specialistic functions for structure constant Lie algebras are described in Sec-
tions 100.12 (the natural module), 100.15 (automorphisms of classical-type Lie algebras),
100.16 (restrictable Lie algebras), and 100.17 (universal enveloping algebras).

Magma also provides databases and recognition procedures for small-dimensional solv-
able and nilpotent Lie algebras (described in Section 100.18), a database of semisimple sub-
algebras of simple Lie algebras (described in Section 100.19), and a database of nilpotent
orbits in simple Lie algebras (described in Section 100.20).

Other chapters that may be of interest are Chapter 101 on Kac-Moody Lie algebras and
Chapter 102 on Quantum Groups. Furthermore, Chapter 104 deals with representations
of Lie algebras and groups of Lie type. Of particular importance is Section 104.3.1, dealing
with the construction of representations of Lie algebras.

100.2 Constructors for Lie Algebras

The construction of a Lie algebra defined by structure constants is identical to that of
a general structure constant algebra. Most constructors take two optional parameters:
Check and Rep.

By default, the conditions for the algebra to be a Lie algebra are checked. If the user
decides to omit this check, by setting the parameter Check to false, and the algebra is
not actually Lie then functions in this section will fail or give incorrect answers.

The optional parameter Rep can be used to select the internal representation of the
structure constants. The possible values for Rep are “Dense”, “Sparse” and “Partial”,
with the default being “Dense”. In the dense format, the n3 structure constants are
stored as n2 vectors of length n. This is the best representation if most of the structure
constants are non-zero. The sparse format, intended for use when most structure constants
are zero, stores the positions and values of the non-zero structure constants. The partial
format stores the vectors, but records for efficiency the positions of the non-zero structure
constants.

LieAlgebra< R, n | Q : parameters >

LieAlgebra< M | Q : parameters >

Check BoolElt Default : true

Rep MonStgElt Default : “Dense”
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This function creates the Lie structure constant algebra L over the free module
M = Rn, with standard basis {e1, e2, . . . , en}, and structure constants ak

ij being
given by the sequence Q. The sequence Q can be of any of the following three
forms. Note that in all cases the actual ordering of the structure constants is the
same: the only difference is that their partitioning into blocks varies.
(i) A sequence of n sequences of n sequences of length n. The j-th element of

the i-th sequence is the sequence [a1
ij , . . . , a

n
ij ], or the element (a1

ij , . . . , a
n
ij) of

M , giving the coefficients of the product ei ∗ ej .
(ii) A sequence of n2 sequences of length n, or n2 elements of M . Here the

coefficients of ei ∗ ej are given by position (i− 1)n + j of Q.
(iii) A sequence of n3 elements of the ring R. The sequence elements are the

structure constants themselves, in the order a1
11, a

2
11, . . . , a

n
11, a

1
12, a

2
12, . . . , a

n
nn.

So ak
ij lies in position (i− 1)n2 + (j − 1)n + k of Q.

LieAlgebra< R, n | T : parameters >

Check BoolElt Default : true

Rep MonStgElt Default : “Dense”
This function creates the Lie structure constant algebra L with standard basis
{e1, e2, . . . , en} over the ring R. The sequence T contains quadruples < i, j, k, ak

ij >
giving the non-zero structure constants. All other structure constants are defined
to be 0.

LieAlgebra< t | T : parameters >

Check BoolElt Default : true

Rep MonStgElt Default : “Dense”
This function creates the Lie structure constant algebra L over the integers, with
standard basis {e1, e2, . . . , en}. The sequence T contains quadruples < i, j, k, ak

ij >

(where the ak
ij are integers) giving the non-zero structure constants. All other struc-

ture constants are defined to be 0. The argument t is a sequence of length n con-
sisting of nonnegative integers giving the moduli of the basis elements. Thus let ti
denote the i-th element of t; then tiei = 0. So if ti = 0, then kei 6= 0 for all integers
k.

LieAlgebra(A)

Given an associative structure-constant algebra A, create the Lie algebra L consist-
ing of the elements in A with the induced Lie product (x, y) → x ∗ y − y ∗ x. As a
second value the map identifying the elements of L and A is returned.

LieAlgebra(A)

Given an associative matrix algebra A, create a structure-constant Lie algebra L
isomorphic to A with the induced Lie product (x, y) → x ∗ y − y ∗ x.
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AbelianLieAlgebra(R, n)

Rep MonStgElt Default : “Sparse”

Create the abelian Lie algebra of dimension n over the ring R.

Example H100E1

We construct the Heisenberg Lie algebra, then a Lie algebra from an associative algebra, and
finally a Lie algebra over the integers (also called a Lie ring).

> T:= [ <1,2,3,1>, <2,1,3,-1> ];

> LieAlgebra< Rationals(), 3 | T >;

Lie Algebra of dimension 3 with base ring Rational Field

> A:= Algebra( GF(27), GF(3) );

> LieAlgebra(A);

Lie Algebra of dimension 3 with base ring GF(3)

> T:= [ <1,2,2,2>, <2,1,2,2> ];

> t:= [0,4];

> K:= LieAlgebra< t | T : Rep:= "Dense" >; K;

Lie Algebra of dimension 2 with base ring Integer Ring

Column moduli: [0, 4]

> LowerCentralSeries( K );

[

Lie Algebra of dimension 2 with base ring Integer Ring

Column moduli: [0, 4],

Lie Algebra of dimension 1 with base ring Integer Ring

Column moduli: [2],

Lie Algebra of dimension 0 with base ring Integer Ring

]

ChangeBasis(L, B)

Rep MonStgElt Default : “Dense”

Create a new Lie structure constant algebra L′, isomorphic to L, by recomputing
the structure constants with respect to the basis B. The basis B can be specified
as a set or sequence of elements of L, a set or sequence of vectors, or a matrix. The
second returned value is the isomorphism from L to L′.

As above, the optional parameter Rep can be used to select the internal repre-
sentation of the structure constants. Note that the default is dense representation,
regardless of the representation used by L.

MatrixLieAlgebra(R, n)

Given a ring R and an integer n, create the full Lie algebra of matrices of degree d
over R.
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MatrixLieAlgebra(A)

Given an associative matrix algebra A, create the matrix Lie algebra L consisting
of the elements in A with the induced Lie product (x, y) → x ∗ y − y ∗ x.

Algebra(M)

LieAlgebra(M)

Return a structure-constant Lie algebra isomorphic to the matrix Lie algebra M .

Example H100E2

We construct the subalgebra of the matrix Lie algebra of 2 × 2 matrices, consisting of upper
triangular matrices.

> L:= MatrixLieAlgebra( Rationals(), 2 );

> a:= L!Matrix( [[1,0],[0,0]] );

> b:= L!Matrix( [[0,0],[1,0]] );

> c:= L!Matrix( [[0,0],[0,1]] );

> K:= sub< L | [ a, b, c ] >;

> Dimension(K);

3

> IsSolvable(K);

true

> IsNilpotent(K);

false

100.3 Finitely Presented Lie Algebras
A finitely presented Lie algebra is constructed as the quotient of a free Lie algebra on a
finite number of generators. Denote the set of generators by X = {x1, . . . , xn}. Let F
denote the base ring. Then the free Lie algebra generated by the xi over the ring F is
denoted by LF (X). The free magma on X is the set of the xi together with all bracketed
expressions in the xi, e.g., ((x1, x2), ((x1, x3), x2))). The free Lie algebra LF (X) is spanned
by M(X). However, the elements of this set are not linearly independent. It is a nontrivial
problem to describe a basis of the free Lie algebra. One of several possibilities is the well-
known Hall basis. Currently Magma does not support calculations involving bases of the
free Lie algebra, as they are of little use for our main problem: the construction of a basis
and multiplication table for a finitely-presented Lie algebra.

It is convenient to define an ordering on the elements of M(X). First of all, each
generator is assigned a degree. Usually, the degree of all xi is taken to be one, but it is also
possible to assign different degrees. The degree of a bracket (a, b) is defined to be the sum
of the degrees of a and b. Let m,m′ be two elements of M(X). Then define m < m′ if the
degree of m is less than the degree of m′. If their degrees are equal, then define m < m′ if
m = xi and m′ = (a′, b′), for some a′, b′ in M(X). If both m and m′ are generators of the
same degree, so that m = xi, m′ = xj , then define m < m′ if i < j. Finally, if both m and
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m′ are bracketed expressions, that is, m = (a, b) and m′ = (a′, b′), then define m < m′ if
a < a′ or a = a′ and b < b′.

In the free Lie algebra, the relations (a, b) = −(b, a), and (a, a) = 0 hold. In Magma
this is used to rewrite an arbitrary element as a linear combination of elements of the form
(a, b) with a < b. If instead we were to work relative to a basis for LF (X), then the use
of the Jacobi identity when rewriting elements can lead to rather large expressions. Thus,
mathematically speaking, in Magma rather than work in the free Lie algebra, we actually
work in the free nonassociative anticommutative algebra. However, as our main interest
lies in finitely-presented Lie algebras, this is usually not a problem.

100.3.1 Construction of the Free Lie Algebra

FreeLieAlgebra(F, n)

Given a ring F and a positive integer n, this function creates the free n-generator
Lie algebra over the ring F . The generators are ordered, with the first generator
being the biggest in the ordering, and the last generator the smallest. The angle
bracket notation can be used to assign names to the generators.

Example H100E3

The following statement creates the Magma object corresponding to the free Lie algebra on three
generators over the field F2.

> L<a,b,c>:= FreeLieAlgebra(GF(2), 3);

100.3.2 Properties of the Free Lie Algebra

Rank(L)

The number of generators of the free Lie algebra L.

CoefficientRing(L)

BaseRing(L)

The coefficient ring of L.
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100.3.3 Operations on Elements of the Free Lie Algebra
Once a free Lie algebra has been created the user can construct a bracketed expression
(a, b), either by simply typing it literally as (a,b), or by using the multiplication operator
as in a*b. Recall that Magma rewrites elements so they are in the form (a, b) with a < b.
On some occasions this can lead to the introduction of a minus sign. Also, if an element
contains a subexpression of the form (a, a), it will be rewritten to 0.

We can multiply and add elements, and multiply them by scalars.

x + y x - y x * y

L ! 0

Zero(L)

The zero element of the free Lie algebra L.

Example H100E4

> L<z,y,x> := FreeLieAlgebra(Rationals(), 3);

> x*y;

(x, y)

> (x, y);

(x, y)

> ((x*y)*z);

-(z, (x, y))

> ((x, y), z);

-(z, (x, y))

> ((x, y),(y, x));

0

> 2*((x, y), z) - ((x, z), (y, z)) + 1/2*(x, (x, (y, z)));

-((x, z), (y, z)) + 1/2*(x, (x, (y, z))) - 2*(z, (x, y))

IsLeaf(m)

Given a monomial element m of the free Lie algebra L, return true if m is a generator
and false otherwise. If the result is true then the second return value is an integer
i such that m is L.i. If the result is false then a, b ∈ L are also returned such that
m is a multiple of (a, b).

Note that in the latter case m is not equal to (a, b), but merely equal to a
scalar multiple of (a, b). See the example for a possible method of retrieving the
appropriate scalar.
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Example H100E5

> L<z,y,x>:= FreeLieAlgebra(Rationals(), 3);

> IsLeaf(x);

true 3

> m := 2*((x, y), z);

> m;

-2*(z, (x, y))

> il, a, b := IsLeaf(m);

> il, a, b;

false z

(x, y)

> m eq (a, b);

false

> m eq LeadingCoefficient(m)*(a,b);

true

100.3.4 Construction of a Finitely-Presented Lie Algebra

LieAlgebra(R)

Given a set or sequence R of elements of a free Lie algebra L, let I be the ideal of
L generated by the elements of R. It is assumed that the quotient algebra Q = L/I
is finite dimensional. This function returns the structure constant Lie algebra K
isomorphic to the quotient Q. If the quotient Q is infinite dimensional then the
program will not terminate. (The question of determining whether the quotient is
finite dimensional is known to be undecidable.) The function can be interrupted by
pressing Ctrl-C. The elements of R are referred to as relations.

This function works if the base ring is either a field or equal to the ring of integers.
In these two cases slightly different objects are returned.

If the base ring is a field then four values are returned:
(a)A structure constant algebra K isomorphic to the quotient Q;
(b)A sequence G comprising sequences of integers;
(c) A sequence B of elements of the free Lie algebra L;
(d)A map f : B ×B → L.

The sequence B maps to a basis of the quotient algebra, so it is a basis of a
complement of the ideal I in the free Lie algebra L. The elements of B are in
one-to-one correspondence with the basis elements of K.

If all the relations of R are homogeneous (i.e., if they are linear combinations of
elements of the same degree), then Q is graded. The sequence G contains information
about the grading. It consists of sequences of length two. The first element of each
subsequence is the degree of a homogeneous subspace H, while the second element is
the dimension of H. The basis elements of K are ordered with respect to increasing
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degree. So from G it is straightforward to read off the degree of each basis element.
If the relations are not homogeneous then the sequence G is empty. Finally, f is a
map that takes two elements from B as arguments, and returns their product (in
L) modulo the ideal I. The algorithm used is described in [dG00], §7.4.

Secondly, in the case in which the base ring is the ring of integers, four values
are returned:
(a)A structure constant algebra K isomorphic to the quotient Q;
(b)A sequence G comprising sequences of integers;
(c) A sequence B that is always empty;
(d)A map f : K → L.

Here the structure constant algebra is defined over the ring of integers, so it may
have torsion. The sequence G is nonempty only if the input relations are homo-
geneous in which case it contains the dimensions of the homogeneous components.
The function f is a map that takes an element u of K and returns an element of
the free algebra L that maps to u under the projection map (from the free algebra
to the quotient).

Example H100E6

In this example we compute the subalgebra K of E7 spanned by the positive root spaces.

> L<x7,x6,x5,x4,x3,x2,x1>:= FreeLieAlgebra(RationalField(), 7);

> pp:= { [1,3], [3,4], [2,4], [4,5], [5,6], [6,7] };

> R:= [ ];

> g:= [ L.i : i in [1..7] ];

> for i in [1..7] do

> for j in [i+1..7] do

> if [i,j] in pp then

> a:= (g[i],(g[i],g[j]));

> Append( ~R, a );

> Append( ~R, (g[j],(g[j],g[i])) );

> else

> Append( ~R, (g[i],g[j]) );

> end if;

> end for;

> end for;

> R;

[

-(x6, x7), -(x7, (x5, x7)), (x5, (x5, x7)), -(x4, x7),

-(x3, x7), -(x2, x7), -(x1, x7), -(x5, x6), -(x6, (x4, x6)),

(x4, (x4, x6)), -(x3, x6), -(x2, x6), -(x1, x6), -(x5, (x4, x5)),

(x4, (x4, x5)), -(x3, x5), -(x2, x5), -(x1, x5), -(x4, (x3, x4)),

(x3, (x3, x4)), -(x2, x4), -(x1, x4), -(x3, (x2, x3)), (x2, (x2, x3)),

-(x1, x3), -(x2, (x1, x2)), (x1, (x1, x2))

]

> time K, G, B, f := LieAlgebra(R);
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Time: 0.280

> K;

Lie Algebra of dimension 63 with base ring Rational Field

> #B;

63

> B[63];

(x7, (x5, (x4, (x3, (x2, (x1, (x6, (x4, (x3, (x2, (x5, (x4,

(x3, (x6, (x4, (x5, x7))))))))))))))))

Example H100E7

In this example we construct a finitely presented Lie ring (i.e., Lie algebra over the integers).

> L<y,x>:= FreeLieAlgebra( Integers(), 2 );

> R:= [ x*(x*(x*y))-2*x*y, 2*y*(x*(x*y)), 3*y*(y*(x*y))-x*(x*y),

> x*(y*(x*(y*(x*y)))) ];

> K,g,b,f:= LieAlgebra( R );

> K;

Lie Algebra of dimension 8 with base ring Integer Ring

Column moduli: [2, 2, 2, 8, 8, 8, 0, 0]

> f(K.4);

(y, (x, y))

> LowerCentralSeries( K );

[

Lie Algebra of dimension 8 with base ring Integer Ring

Column moduli: [2, 2, 2, 8, 8, 8, 0, 0],

Lie Algebra of dimension 6 with base ring Integer Ring

Column moduli: [2, 2, 2, 8, 8, 8],

Lie Algebra of dimension 6 with base ring Integer Ring

Column moduli: [2, 2, 2, 4, 8, 8],

Lie Algebra of dimension 6 with base ring Integer Ring

Column moduli: [2, 2, 2, 4, 4, 8],

Lie Algebra of dimension 6 with base ring Integer Ring

Column moduli: [2, 2, 2, 4, 4, 4],

Lie Algebra of dimension 5 with base ring Integer Ring

Column moduli: [2, 2, 2, 4, 4],

Lie Algebra of dimension 4 with base ring Integer Ring

Column moduli: [2, 2, 2, 4],

Lie Algebra of dimension 3 with base ring Integer Ring

Column moduli: [2, 2, 2],

Lie Algebra of dimension 2 with base ring Integer Ring

Column moduli: [2, 2],

Lie Algebra of dimension 1 with base ring Integer Ring

Column moduli: [2],

Lie Algebra of dimension 0 with base ring Integer Ring

]
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quo< L | R >

This function is similar to the function LieAlgebra in that it constructs a structure
constant Lie algebra K isomorphic to the quotient L/I, where I is the ideal of
L generated by the elements (relations) of the sequence R. In addition to K, an
invertible map from L to K is returned.

Example H100E8

In this example we demonstrate the use of the quotient constructor for finitely presented Lie
algebras.

> L<x,y> := FreeLieAlgebra(Rationals(), 2);

> R := [ x*(x*y)-2*x, y*(y*x)-2*y ];

> K, phi := quo<L | R>;

> K;

Lie Algebra of dimension 3 with base ring Rational Field

> SemisimpleType(K);

A1

> [ b @@ phi : b in Basis(K) ];

[

y,

x,

(y, x)

]

> phi(x*y);

( 0 0 -1)

NilpotentQuotient(R, d)

Given a set or sequence R of elements of a free Lie algebra L, let I be the ideal of
L generated by the elements of R. Let d be a positive integer or Infinity(). This
function constructs the class d nilpotent quotient of the Lie algebra L/I, a finite
dimensional algebra. The function returns the same values as LieAlgebra.

This function is similar to the function LieAlgebra except that the quotient is
constructed in the free nilpotent Lie algebra of class d. All elements of degree strictly
larger than d will be added to the ideal, so the quotient will be finite-dimensional
and nilpotent of class at most d.

Example H100E9

In this example, we compute a nilpotent quotient.

> L<y,x> := FreeLieAlgebra(Rationals(), 2);

> R := [(x, (x, (x, y))) - (y, (y, (x, y)))];

> time K, G, B, f := NilpotentQuotient(R, 10);

Time: 0.040

> K;
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Lie Algebra of dimension 109 with base ring Rational Field

> #B;

109

> B[100];

(y, (x, (x, (y, (x, (y, (x, (x, (x, y)))))))))

> G;

[

[ 1, 2 ],

[ 2, 1 ],

[ 3, 2 ],

[ 4, 2 ],

[ 5, 4 ],

[ 6, 5 ],

[ 7, 10 ],

[ 8, 15 ],

[ 9, 26 ],

[ 10, 42 ]

]

> f(B[3], B[13]);

-(y, (x, (x, (x, (x, (y, (x, y))))))) + (x, (y, (x, (x, (x, (y, (x, y)))))))

100.3.5 Homomorphisms of the Free Lie Algebra

hom< L -> M | Q >

Given a free Lie algebra L of dimension n over R and either a Lie algebra M over
R or a module M over R, construct the homomorphism from L to M specified by
Q. The sequence Q must have length Rank(L) and be of the form [m1, . . . ,mn]
(mi ∈ M) indicating that the i-th generator of L maps to mi.

Note that this is in general only a module homomorphism, and it is not checked
whether it is an algebra homomorphism.

Example H100E10

We construct the Lie algebra of type A1 as quotient of a free Lie algebra, using homomorphisms
between a free Lie algebra and a structure constant Lie algebra. First, we construct the free Lie
algebra and a structure constant Lie algebra of type A1. The elements of a Chevalley basis are
obtained by a call to ChevalleyBasis.

> L<e,f> := FreeLieAlgebra(Rationals(), 2);

> M := LieAlgebra("A1", Rationals() : Isogeny := "SC");

> pos, neg, cart := ChevalleyBasis(M);

> pos, neg, cart;

[ (0 0 1) ]

[ (1 0 0) ]
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[ (0 1 0) ]

Next, we construct a homomorphism from L to M that sends e to the positive root element, and
f to the negative root element. We construct a map from M to L that sends the positive root to
e, the negative root to f , and the Cartan element to −(e, f).

> phi := hom<L -> M | [ pos[1], neg[1] ]>;

> phi(e), phi(f), phi(e*f);

(0 0 1) (1 0 0) ( 0 -1 0)

> imgs := [ L | f, (f,e), e];

> psi := map<M -> L | x :-> &+[ x[i]*imgs[i] : i in [1..3] ]>;

> psi(cart[1]);

-(f, e)

> psi(phi((e,(e,f))));

-2*e

> assert forall{b : b in Basis(M) | phi(psi(b)) eq b };

Finally, we create a sequence of relations showing that the maps phi and psi are each others
inverses for a small set of elements of L. We then compute the quotient of the free Lie algebra
with respect to these relations.

> R := { x - psi(phi(x)) : x in {e, f, (e,f), (e,(e,f)), (f,(f,e))} };

> L2 := quo<L | R>;

> L2;

Lie Algebra of dimension 3 with base ring Rational Field

> SemisimpleType(L2);

A1

100.4 Lie Algebras Generated by Extremal Elements

A non-zero element x of a Lie algebra L over the field K is extremal if [x, [x, y]] ∈ Kx
for all y ∈ L. If x is extremal, the existence of a linear map fx : L → K such that
[x, [x, y]] = fx(y)x for all y ∈ L immediately follows from linearity of [·, ·].

In this section we describe functions for computing with Lie algebras generated by
such extremal elements. For a simple connected undirected finite graph Γ we consider an
algebraic variety X over K whose K-points parametrize Lie algebras generated by extremal
elements. Here the generators of the Lie algebras correspond to the vertices of the graph,
and we prescribe commutation relations corresponding to the nonedges of Γ.

Details of the setup may be found in [Roo11]; we describe the essential ingredients here.
Assume that Γ is a connected undirected finite graph with n vertices, without loops or

multiple bonds, and that K is a field of characteristic distinct from 2. We let Π be the
vertex set of Γ and denote adjacency of two vertices x, y ∈ Π by i ∼ j.

We denote by F (K, Γ) the quotient of the free Lie algebra over K generated by Π modulo
the relations [x, y] = 0 for all x, y ∈ Π with x 6∼ y. We write F ∗ for the space of all K-
linear functions on F . For every f ∈ (F ∗)Π we denote by L(K, Γ, f) (often abbreviated to
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L(f)) the quotient of F (K, Γ) by the ideal I(f) generated by the infinitely many elements
[x, [x, y]]− fx(y)x for x ∈ Π, y ∈ F .

By construction L(f) is a Lie algebra generated by |Π| = n extremal elements, the
extremal generators corresponding to the vertices of Γ and commuting whenever they are
not adjacent. The element fx ∈ F ∗ is a parameter expressing the extremality of x ∈ Π.

In the Lie algebra L(0) the elements of Π map to sandwich elements. This algebra is
finite-dimensional, by [ZK90] this Lie algebra is finite-dimensional; for general f ∈ (F ∗)Π

we have dim(L(f)) ≤ dim(L(0)) by [CSUW01, Lemma 4.3]. It is therefore natural to focus
on the Lie algebras L(f) of maximal possible dimension, i.e., those of dimension dim(L(0)).
We define the set X := {f ∈ (F ∗)Π | dim(L(f)) = dim(L(0))}, the parameter space for all
maximal-dimensional Lie algebras of the form L(f).

The functions currently implemented in Magma allow computation of X and L(f), for
any f , for the cases where X is an affine space (which is unproven, but true in all currently
known cases).

Lie algebras generated by extremal elements are of type AlgLieExtr. The verbose flag
"AlgLieExtr" may be set between 1 and 5 to show details and progress of the various
computations.

100.4.1 Constructing Lie Algebras Generated by Extremal Elements

ExtremalLieAlgebra(K, n)

CommGens SeqEnum Default : []

HeisenbergPairs SeqEnum Default : []

Construct the Lie algebra over the field K generated by n extremal elements. The
characteristic of K must be distinct from 2.

The optional argument CommGens contains pairs of integers (i, j), with 1 ≤ i, j ≤
n, describing that generators xi and xj commute, i.e., [xi, xj ] = 0.

The optional argument HeisenbergPairs contains pairs of integers (i, j), with
1 ≤ i ≤ n and 1 ≤ j ≤ dim(L(0)), describing that fxi(bj) should be taken equal
to 0. (Note that if it is required to have j > n it would be necessary to have prior
knowledge about the basis of L(0)).

ExtremalLieAlgebra(K, G)

HeisenbergPairs SeqEnum Default : []

Construct the Lie algebra over the field K whose extremal generators are described
by the graph G, i.e., with |V (G)| generators, and xi and xj commute whenever
vertices xi and xj of G are not adjacent.

See ExtremalLieAlgebra above for a description of the optional argument
HeisenbergPairs.
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100.4.2 Properties of Lie Algebras Generated by Extremal Elements

NumberOfGenerators(L)

The number of generators of L.

CoefficientRing(L)

BaseRing(L)

The coefficient ring of L. Immediately after construction, this is equal to the field K
provided as argument to ExtremalLieAlgebra. However, after the multiplication
table has been computed (see below), the coefficient ring would in general be a
multivariate polynomial ring over K describing the parameter space.

CommutatorGraph(L)

The graph describing the extremal generators of L and their commutator relations.

Example H100E11

We construct a Lie algebra generated by 4 extremal elements in two different manners.

> QQ := Rationals();

> L := ExtremalLieAlgebra(QQ, BipartiteGraph(2,2));

> Ngens(L), CoefficientRing(L);

4 Rational Field

> G := CommutatorGraph(L); G;

Graph

Vertex Neighbours

1 3 4 ;

2 3 4 ;

3 1 2 ;

4 1 2 ;

> L := ExtremalLieAlgebra(QQ, 4 : CommGens := [<1,2>,<3,4>]);

> Ngens(L), CoefficientRing(L);

4 Rational Field

> G := CommutatorGraph(L); G;

Graph

Vertex Neighbours

1 3 4 ;

2 3 4 ;

3 1 2 ;

4 1 2 ;
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Basis(L)

Compute a monomial basis for L(0) (this is also a monomial basis for L(f) for any
f ∈ X; see the introduction of Section 100.4).

The first return value is a sequence consisting of monomials of the free Lie algebra
over K with n generators, where K is the coefficient ring of L and n is the number
of generators. The second return value is a sequence consisting of functions c. Each
of these functions may be applied to a sequence of generators and a composition
function. These may be used to construct the basis elements in other environments.

The algorithm used in this function is due to W. de Graaf.

ZBasis(L)

For L a Lie algebra generated by extremal elements over the field of rational num-
bers, compute a basis of the corresponding Lie ring over the integers.

This function returns three sequences B, T , C, respectively, describing bases
for L(0) over any field K. B is a not necessarily monomial basis, with torsion
described by T . It is such that if T [i] is nonzero, m say, then B[i] is zero unless the
characteristic of K divides m.

The third sequence, C, is a sequence of monomials that linearly span L(0) over
any field K. Note, however, that if T contains nonzero elements, then C would in
general contain superfluous elements and therefore not be a basis.

The algorithm used in this function is due to W. de Graaf. The only currently
known case with nontrivial torsion is for Γ(L) = K5.

Dimension(L)

The dimension of L(0). This value is computed via a basis computation, so poten-
tially quite time-consuming.

Example H100E12

We continue the previous example H100E11 and demonstrate the computation of a basis of L(0).

> B, C := Basis(L);

> B;

[

$.1,

$.2,

$.3,

$.4,

($.4, $.2),

($.4, $.1),

($.3, $.2),

($.3, $.1),

($.4, ($.3, $.2)),

($.4, ($.3, $.1)),

($.2, ($.4, $.1)),

($.2, ($.3, $.1)),
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($.4, ($.2, ($.3, $.1))),

($.3, ($.2, ($.4, $.1))),

($.2, ($.4, ($.3, $.1)))

]

> [ c(["x","y","z","u"], func<i,j|i cat j>) : c in C ];

[ x, y, z, u, uy, ux, zy, zx, uzy, uzx, yux, yzx, uyzx, zyux, yuzx ]

> A := FreeAlgebra(Rationals(), 4);

> [ c([A.1,A.2,A.3,A.4], func<x,y|x*y>) : c in C ];

[

$.1,

$.2,

$.3,

$.4,

$.4*$.2,

$.4*$.1,

$.3*$.2,

$.3*$.1,

$.4*$.3*$.2,

$.4*$.3*$.1,

$.2*$.4*$.1,

$.2*$.3*$.1,

$.4*$.2*$.3*$.1,

$.3*$.2*$.4*$.1,

$.2*$.4*$.3*$.1

]

> #B, #C, Dimension(L);

15 15 15

MultiplicationTable(∼L)
HowMuch MonStgElt Default : “Auto”
MemLimit RngIntElt Default : ∞
FullJacobi BoolElt Default : false

Force computation of a general multiplication table for L, i.e., one that may be used
for constructing L(f) for any f ∈ X (see the introduction to this section 100.4).
This computation is necessary for constructing instances as described in Section
100.4.3, but it will be done automatically if needed. Data about the variety X is
computed concurrently and stored internally; see Section 100.4.4 for the relevant
functions in accessing that information.

The optional parameters may be used to influence the computation, although
the defaults should generally work well. HowMuch may be set to “Auto” (the de-
fault), “Top” or “Full” and prescribes whether only the first Ngens(L) rows of the
multiplication table are computed (“Top”), or all entries (“Full”). If set to “Auto”
some fraction of the multiplication table is computed depending on the dimension
of L and the other parameters.
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MemLimit may be set to a positive integer m, and if given Magma will attempt
to limit its memory usage to m MB, by limiting the portion of the multiplication
table that is being computed.

FullJacobi may be set to true in order to force checking the Jacobi identity
for all basis elements, thus providing more certainty with regards to the information
about the parameter space X. Note that even if this parameter is set to true a
heuristic (Monte-Carlo) method is used, as considering all dim(L(0))3 triples quickly
becomes infeasible as the dimension grows.

The verbose flag "AlgLieExtr" may be set to 3 or more to obtain some infor-
mation about the default choices Magma makes with regards to these parameters.

MultiplicationTable(L)

Rep MonStgElt Default : “Auto”
Check BoolElt Default : true

A general multiplication table for L.
If Rep is set to “Dense” it will be returned as a sequence of sequences of vectors

over CoefficientRing(L). If Rep is set to “Sparse” it will be returned as a sequence
of 4-tuples. If Rep is set to “Auto” a choice between these representations is made
depending on dim(L). Both these representations may be used on the right hand
side of the LieAlgebra constructor.

The optional parameter Check controls whether the Jacobi identity is verified for
all triples (if true it will actually be checked for all dim(L(0))3 triples, as opposed
to the behaviour of the procedural version, MultiplicationTable(∼L), described
above).

Note that this function is impractical in terms of CPU time and memory usage
once dim(L) exceeds approximately 50. In such cases, the Lie algebra is more easily
studied using the functions described in Section 100.4.3.

Example H100E13

We construct the generic Lie algebra generated by 3 extremal elements and construct a structure
constant Lie algebra using the multiplication table.

> L := ExtremalLieAlgebra(Rationals(), 3);

> L:Maximal;

Lie algebra generated by 3 extremal elements, defined over Rational

Field

> MultiplicationTable(~L);

> L:Maximal;

Lie algebra generated by 3 extremal elements, originally defined over

Rational Field

Now living over Polynomial ring of rank 4 over Rational Field

Dimension: 8

Picked 4 f-values:

f(2, [1]) = f21

f(3, [1]) = f31
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f(3, [2]) = f32

f(1, [32]) = f132

> Dimension(L);

8

> MT := MultiplicationTable(L);

> MT[4][8];

(0 -1/2*f31*f32 0 -1/2*f132 0 0 0 1/2*f32)

> M := LieAlgebra<CoefficientRing(L), 8 | MT>;

> M;

Lie Algebra of dimension 8 with base ring Polynomial ring of rank 4

over Rational Field

> M.4*M.8;

(0 -1/2*f31*f32 0 -1/2*f132 0 0 0 1/2*f32)

> M.1*(M.1*M.2);

(f21 0 0 0 0 0 0 0)

100.4.3 Instances of Lie Algebras Generated by Extremal Elements

Instance(L)

Rep MonStgElt Default : “Auto”
Check BoolElt Default : true

The Lie algebra L(f) for general f . The Lie algebra returned will in general be
defined over a multivariate polynomial ring.

This function is identical to MultiplicationTable, except that it returns a Lie
algebra rather than a multiplication table. Please refer to that function for infor-
mation on the optional arguments Rep and Check. Note that this function also is
impractical in terms of CPU time and memory usage once dim(L) exceeds approx-
imately 50. In such cases, the Lie algebra is more easily studied by constructing
particular instances of L(f) individually, as described below.

Instance(L, Q)

Rep MonStgElt Default : “Auto”
Check BoolElt Default : true

Construct L(f) where the i-th free parameter of X is set to Q[i]. Consult L:Maximal
or FreefValues to obtain information about the free parameters. The coefficient
ring of the Lie algebra M returned will be equal to Universe(Q). As a second
return value, an invertible map from M to the free Lie algebra of rank Ngens(L) is
returned.

The optional argument Rep may be “Auto”, “Dense” or “Sparse” (refer to the
documentation at MultiplicationTable for more information). Check may be set
to true or false and determines whether the Jacobi identity is checked on the Lie
algebra returned.
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Example H100E14

We construct the generic Lie algebra generated by 3 extremal elements and study one of its
instances.

> L := ExtremalLieAlgebra(Rationals(), 3);

> MultiplicationTable(~L);

> L:Maximal;

Lie algebra generated by 3 extremal elements, originally defined over

Rational Field

Now living over Polynomial ring of rank 4 over Rational Field

Dimension: 8

Picked 4 f-values:

f(2, [1]) = f21

f(3, [1]) = f31

f(3, [2]) = f32

f(1, [32]) = f132

> M := Instance(L); M;

Lie Algebra of dimension 8 with base ring Polynomial ring of rank 4

over Rational Field

> M.1*(M.1*M.2);

(f21 0 0 0 0 0 0 0)

So in the most general case, [x1, [x1, x2]] = fx2(x1)x1. Next, we consider an instance where we
set fx2(x1) = 1/7, fx3(x1) = 1/5, fx3(x2) = 1/3 and fx1([x3, x2]) = 1.

> N, phi := Instance(L, [Rationals()|1/7,1/5,1/3,1]);

> N;

Lie Algebra of dimension 8 with base ring Rational Field

> SemisimpleType(N);

A2

> N.1*(N.1*N.2);

(1/7 0 0 0 0 0 0 0)

> y := phi(N.2); z := phi(N.3);

> Parent(y):Minimal;

Free Lie algebra of rank 3 over Rational Field

> (y,(y,z));

-($.2, ($.3, $.2))

> (y,(y,z)) @@ phi;

( 0 1/3 0 0 0 0 0 0)

> (y,(y,z)) @@ phi @ phi;

1/3*$.2
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100.4.4 Studying the Parameter Space

FreefValues(L)

The values fx(b) generating the parameter space X (see the introduction to this
section 100.4 for details). This function returns two sequences: the first of the fx(b)
as elements of CoefficientRing(L) and the second of the pairs (x, b) as two-tuples
of integers.

fValue(L, x, b)

The value fx(b) as an element of CoefficientRing(L).

fValueProof(L, x, b)

Print a proof of correctness for the value fx(b).

Example H100E15

We consider the generic Lie algebra generated by 4 extremal elements.

> L := ExtremalLieAlgebra(Rationals(), 4);

> vals, pairs := FreefValues(L);

> vals;

[

f21,

f31,

f41,

f32,

f42,

f43,

f143,

f243,

f142,

f132,

f1432,

f2431

]

> #vals;

12

> pairs;

[ <2, 1>, <3, 1>, <4, 1>, <3, 2>, <4, 2>, <4, 3>, <1, 5>, <2, 5>, <1,

6>, <1, 8>, <1, 11>, <2, 12> ]

This shows that dim(X) = 12. We compute some values fx(b).

> fValue(L, 1, 5);

f143

> fValue(L, 4, 17);

-f41*f42

> fValueProof(L, 4, 17);

f(4, [241]) -> -f(4,[2])*f(4,[1]) {f(x,[y,[x,N]]) = -f(x,y)f(x,N) by
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assoc. of f and anti-comm. of L}

f(4, [2]) = f42 {Free}

f(4, [1]) = f41 {Free}

= -f41*f42

DimensionsEstimate(L, g)

NumSamples RngIntElt Default : ∞
Check BoolElt Default : true

Rep MonStgElt Default : “Auto”

Verbose AlgLieExtr Maximum : 10

Estimate the dimensions of the subvarieties of the parameter space X of L giving
rise to irreducible Lie algebra modules of different dimensions.

This procedure repeatedly (exactly NumSamples times) invokes Instance(L,
g()) to produce a Lie algebra M . The composition series of M are computed,
and the dimension e of its simple factor is stored. Then, for each of these e encoun-
tered, the dimension of the subvariety (inside the algebraic variety X) that contains
Lie algebras whose top factor has dimension e is estimated using the dimension d of
the full f-variety. (Here d is taken to be the number of free f-values computed; see
FreefValues).

If the verbose flag "AlgLieExtr" is set 3 or more, then after each step the esti-
mate is printed as a sequence of triples (e, n, s): n is the number of times dimension
e was encountered, and s the estimate for the dimension of the subvariety.

Upon finishing (which will only happen if NumSamples is set to some finite num-
ber) that sequence of triples is returned. The second return value is a multiset
containing the dimensions encountered in the search.

Note that this procedure assumes that X itself is an affine variety (which has
been proved if CommutatorGraph(L) is a connected simply laced Dynkin diagram of
finite or affine type) and that g produces uniformly random elements of X. If either
of these two is not the case, the estimates produced are likely wrong. Moreover, g
must produce sequences of elements of a finite field.

The optional argument Rep may be “Auto”, “Dense” or “Sparse” (refer to the
documentation at MultiplicationTable for more information). Check may be set
to true or false and determines whether the Jacobi identity is checked on the Lie
algebras constructed.
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InstancesForDimensions(L, g, D)

Check BoolElt Default : true

For each d ∈ D attempt to find an instance of L whose simple factor has dimension
d, by repeatedly invoking Instance(L, g()). The result is returned in the form of
an associative array A such that, for all d ∈ D, A[d] is a triple (v, M, φ) where v is
such that Instance(L, v) is M , and φ is an invertible map from M to the free Lie
algebra.

See DimensionsEstimate for the required properties of g. The optional param-
eter Check may be set to true or false and determines whether the Jacobi identity
is checked on the Lie algebras constructed.

Example H100E16

We consider the generic Lie algebra generated by 3 extremal elements.

> L := ExtremalLieAlgebra(Rationals(), 3);

> FreefValues(L);

[

f21,

f31,

f32,

f132

]

[ <2, 1>, <3, 1>, <3, 2>, <1, 4> ]

So dim(X) = 4. We create a function g used to construct random instances of L over GF(5).

> g := func< | [ Random(GF(5)) : i in [1..4] ]>;

> M := Instance(L, g()); M;

Lie Algebra of dimension 8 with base ring GF(5)

> SemisimpleType(M);

A2

So in this case g() yielded a Lie algebra of type A2. We use g to obtain information about X,
using 500 random instances.

> DimensionsEstimate(L, g : NumSamples := 500);

[ <3, 121, "3.12">, <8, 379, "3.83"> ]

{* 3^^121, 8^^379 *}

This shows that 379 instances were found where M was simple of dimension 8, and 121 cases
where M had a simple factor of dimension 3. Using this result one might conjecture that there is
a codimension 1 subspace of X with Lie algebras whose simple factor has dimension 3.

> A := InstancesForDimensions(L, g, {3,8} : Check := false);

> A[3];

<[ 2, 1, 4, 4 ], Lie Algebra of dimension 8 with base ring GF(5),

Mapping from: Lie Algebra of dimension 8 with base ring GF(5) to Free

Lie algebra of rank 3 over GF(5) given by a rule>

> M := A[3][2]; MM := M/SolvableRadical(M); MM;
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Lie Algebra of dimension 3 with base ring GF(5)

> SemisimpleType(MM);

A1

> M := A[8][2]; IsSimple(M);

true

> SemisimpleType(M);

A2

100.5 Families of Lie Algebras

The radical of a Lie algebra is the maximal soluble ideal. A Lie algebra is called reductive
if its radical is equal to its centre, and semisimple if its radical is trivial. A Lie algebra
is almost reductive (resp. simple, semisimple) if the corresponding group of Lie type is
reductive (resp. simple, semisimple). Note that these concepts are equivalent if the field
has characteristic zero.

The commands in this section construct almost reductive Lie algebras over an arbi-
trary field. Such Lie algebras have a corresponding root datum. The matrix versions of
these commands give the standard matrix representation, which is the smallest degree
representation (with a few exceptions for small characteristic fields).

100.5.1 Almost Reductive Lie Algebras
The intrinsics LieAlgebra and MatrixLieAlgebra described below take as first argument
an object which describes the type of the reductive Lie algebra to be constructed. Specif-
ically, it may be one of the five following types:

(a)A string describing the Cartan type;

(b)A root datum (see Chapter 97);

(c) A crystallographic root system (see Chapter 96);

(d)A Dynkin diagraph (see Section 95.5);

(e) A crystallographic Cartan matrix C (see Section 95.4).
In the cases (a), (d), and (e) these intrinsics take an optional argument Isogeny. See

Section 103.2 for the possible values of this flag.

LieAlgebra(T, k)

Isogeny . Default : “Ad”

Construct the reductive Lie algebra of type T over the ring k.

MatrixLieAlgebra(T, k)

Isogeny . Default : “Ad”

Construct the reductive matrix Lie algebra of type T over the ring k.
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Example H100E17

We construct some (semi)simple Lie algebras.

> LieAlgebra("D7", RationalField());

Lie Algebra of dimension 91 with base ring Rational Field

> LieAlgebra("G2", GF(5));

Lie Algebra of dimension 14 with base ring GF(5)

> L := LieAlgebra( "G2 B3", Rationals() );

> L;

Lie Algebra of dimension 35 with base ring Rational Field

> DirectSumDecomposition(L);

[

Lie Algebra of dimension 14 with base ring Rational Field,

Lie Algebra of dimension 21 with base ring Rational Field

]

> LieAlgebra( "E8", GF(2) );

Lie Algebra of dimension 248 with base ring GF(2)

Example H100E18

This example demonstrates the use of the Isogeny option. Over a field of characteristic zero, this
option only effects the basis used. In characteristic p, it sometimes effects the isomorphism type
of the algebra. For type An with p|(n + 1), the default Isogeny is ”Ad” (adjoint), which gives an
algebra with nontrivial derived subalgebra but no centre:

> L := LieAlgebra("A4", GF(5));

> Dimension(L);

24

> Dimension(L*L);

23

> Dimension(Centre(L));

0

If you take Isogeny to be “SC” (simply connected), you get a perfect algebra with a nontrivial
centre.

> L := LieAlgebra("A4", GF(5) : Isogeny:="SC");

> Dimension(L);

24

> Dimension(L*L);

24

> Dimension(Centre(L));

1

If p2|(n+1) there is an intermediate isogeny type which has both a centre and a nontrivial derived
algebra:

> L := LieAlgebra("A24", GF(5) : Isogeny:=5);

> Dimension(L);

624
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> Dimension(L*L);

623

> Dimension(Centre(L));

1

Similar results can be obtained by constructing the Lie algebra from a root datum. This kind of
phenomenon happens whenever the characteristic divides the order of the fundamental group of
your root datum. See [Hog82] for more details.

> R := RootDatum("E6");

> #FundamentalGroup(R);

3

> L := LieAlgebra(R,GF(3));

> L;

Lie Algebra of dimension 78 with base ring GF(3)

> L*L;

Lie Algebra of dimension 77 with base ring GF(3)

LieAlgebra(N, k, p)

LieAlgebra(R, k, p)

The twisted (almost) semisimple Lie algebra over the finite field k with Cartan type
N given as a string or root datum R, with twist given by the permutation p. The
twist should either be a permutation of the indices of the simple roots, or of the
indices of all roots.

TwistedLieAlgebra(R, k)

Given a twisted root datum R and a finite field k, construct the twisted Lie algebra
L = R(k).

This variant has 5 return values. First, the twisted Lie algebra L. Second, a
homomorphism φ from L into the split Lie algebra L′ (over a suitable field extension
of k); Third, L′; Fourth, a split toral subalgebra H of L, and, fifth, a split toral
subalgebra H ′ of L′, such that φ(H) ⊆ H ′.

See also TwistedBasis.

Example H100E19

We construct two twisted Lie algebras.

> DynkinDiagram("E6");

E6 1 - 3 - 4 - 5 - 6

|

2

> LieAlgebra( "E6", GF(5), Sym(6)!(1,6)(3,5) );

Lie Algebra of dimension 78 with base ring GF(5)

> Rt := TwistedRootDatum(RootDatum("D4") : Twist := 3);

> k := GF(7);
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> L, phi, Lp, H, Hp := TwistedLieAlgebra(Rt, k);

> L;

Lie Algebra of dimension 28 with base ring GF(7)

> Lp;

Lie Algebra of dimension 28 with base ring GF(7^3)

> phi(L.3);

(0 0 ksi^49 ksi^7 ksi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

> IsSplitToralSubalgebra(L, H);

true

> IsSplitToralSubalgebra(Lp, Hp);

true

> forall{b : b in Basis(H) | phi(b) in Hp};

true

100.5.2 Cartan-Type Lie Algebras
Simple Lie algebras over fields of characteristic 0 have been classified and are precisely the
twisted forms of Lie algebras of types Al, Bl, Cl, Dl, E6, E7, E8, F4 and G2 (see previous
Subsection). Over fields of finite characteristic p, the analogues of these algebras are called
classical-type (including the exceptional algebras). Over such fields there are other simple
Lie algebras, the first of them found by Witt sometimes before 1937. For p ≥ 7, the only
non-classical simple Lie algebras are the Lie algebras of Cartan-type, which we discuss in
this section. For p = 5, one further class of simple Lie algebras occurs: Melikian algebras,
which are discussed in the next section. In characteristic 2 and 3, the classification of
simple Lie algebras is not yet complete.

Cartan-type Lie algebras are non-classical Lie algebras which arise from infinite dimen-
sional algebras of differential operators over C:
• (generalised) Witt algebras,
• special and conformal special Lie algebras,
• Hamiltonian and conformal Hamiltonian Lie algebras,
• and contact Lie algebras.
The notation and the description of these Lie algebras closely follow Strade and Farnsteiner
[Str04] and [SF88]. Where the notation of the two books differs, we follow [Str04].

Let F be a finite field of characteristic p > 0 and m a positive integer. We refer for the
definition of O(m) and x(a) to [Str04, 2.1]. The basis of O(m) is {x(a)|0 ≤ a, a ∈ Nm}.

Let n be a sequence of positive integers of length m and set N :=
∑m

i=1 ni. Define

O(m,n) := 〈x(a)|0 ≤ ai < pni〉

For i = 1, . . . ,m denote by ∂i the derivation of O(m) defined by

∂i(x
(r)
j ) = δi,jx

(r−1)
j .
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Now define

W (m,n) :=
m∑

i=1

O(m)∂i.

The algebra W (m,n) is the Witt algebra and has dimension mpN over F . In particular,
W (1, [1]) is the standard p-dimensional Witt algebra.

The Witt algebra W (m,n) is simple unless p = 2 and m = 1 ([SF88, 4.2.4(1)]) and is
restrictable if and only if n = [1, . . . , 1] ([SF88, 4.2.4(2)]).

Further define
Ω0(m,n) := O(m,n),

Ω1(m,n) := Hom O(m,n)(W (m,n), O(m, n)),

Ωr(m, n) :=
r∧

Ω1(m, n),

Ω(m,n) :=
⊕

Ωr(m,n).

Let m ≥ 2 and ωS = dx1 ∧ . . . ∧ dxm. Define the following subalgebras of W (m,n):

S(m,n) := {D ∈ W (m,n)|D(ωS) = 0},
CS(m,n) := {D ∈ W (m,n)|D(ωS) ∈ FωS}.

The algebra S(m, n) is the special and CS(m,n) is the conformal special Lie algebra.
The dimension of S(m,n) over F is (m − 1)pN + 1 and the dimension of CS(m,n) is
dim S(m, n) + 1.

Suppose m ≥ 3. Then the algebra S(m,n)(1) is simple ([SF88, 4.3.5(1)]) and is re-
strictable if and only if n = [1, . . . , 1] ([SF88, 4.3.5(2)]).

Let p > 2, m = 2r ≥ 2 and let ωH =
r∑

i=1

dxi ∧ dxi+r. Define the following subalgebras

of W (m,n):
H(m,n) := {D ∈ W (m,n)|D(ωH) = 0},

CH(m,n) := {D ∈ W (m,n)|D(ωH) ∈ FωH}.
The algebra H(m,n) is the Hamiltonian and CH(m,n) is the conformal Hamiltonian Lie
algebra. The dimension of H(m,n) over F is pN − 1 and the dimension of CH(m, n) is
dim H(m,n) + 1.

The algebra H(m,n)(2) is simple ([SF88, 4.4.5(1)]) and is restrictable if and only if
n = [1, . . . , 1] ([SF88, 4.4.5(2)]). And, if m > 2, then H(m,n)(2) = H(m,n)(1).

Let p > 2, m = 2r + 1 ≥ 3 and let ωK = dxm +
r∑

i=1

(xidxi+r − xi+rdxi). Define the

following subalgebra of W (m,n):

K(m,n) := {D ∈ W (m,n)|D(ωK) ∈ O(m,n)ωK},
The algebra K(m,n) is the contact Lie algebra. The dimension of K(m,n) over F is pN .

The algebra K(m,n)(1) is simple ([SF88, 4.5.5(1)]) and is restrictable if and only if
n = [1, . . . , 1] ([SF88, 4.5.6]). If m + 3 6≡ 0 mod p, then K(m,n)(1) = K(m,n).
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WittLieAlgebra(F, m, n)

Check BoolElt Default : false

The Witt algebra W (m,n) is constructed over the finite field F , where m must be
a positive integer and n a sequence of positive integers of length m. If the optional
argument Check is true, the algebra is checked to be Lie upon construction.

An invertible map from the polynomial ring P over F of degree 2m to W (m,n)
is returned as second value, to assist in identifying the elements of W (m,n). For
1 ≤ i ≤ m the i-th generator of P maps to xi in W (m,n), and for m + 1 ≤ i ≤ 2m
the i-th generator of P maps to δi−m in W (m,n).

Example H100E20

We compute the Witt algebra W (2, [2, 1]) over GF (9) and verify the multiplication of x
(1)
1 δ1 and

x
(2)
1 x

(1)
2 δ2.

> W, phi := WittLieAlgebra(GF(9), 2, [2,1]);

> W;

Lie Algebra of dimension 54 with base ring GF(3^2)

> IsSimple(W);

true

> P<x1, x2, d1, d2> := Domain(phi);

> phi(x1*d1);

(0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

> (phi(x1*d1)*phi(x1^2*x2*d2)) @@ phi;

2*x1^2*x2*d2

and the standard Witt algebra W (1, [1]) over GF (2):

> W := WittLieAlgebra(GF(2), 1, [1]);

> W;

Lie Algebra of dimension 2 with base ring GF(2)

> IsSimple(W);

false

> IsRestrictedLieAlgebra(W);

true [ (0 0), (0 1) ]

SpecialLieAlgebra(F, m, n)

ConformalSpecialLieAlgebra(F, m, n)

Check BoolElt Default : false

The (conformal) special Lie algebra (C)S(m,n) is constructed over the finite field F ,
where m ≥ 2 must be an integer and n a sequence of positive integers of length m. If
the optional argument Check is true, Magma checks that the algebra constructed
is a Lie algebra.
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The intrinsic SpecialLieAlgebra returns the Witt algebra W (m,n) in which it
is embedded as the second return value. In addition, similarly to WittLieAlgebra,
a map from the polynomial ring P of degree 2m over F to S(m,n) is returned as
the third return value, and a map from P to W (m,n) as the fourth return value.

Similarly, ConformalSpecialLieAlgebra returns the special Lie algebra S(m,n)
which it contains and the Witt Lie algebra W (m,n) in which it is embedded in as
second and third return values. Maps from P to CS(m,n), S(m,n), and W (m,n)
are returned as fourth, fifth, and sixth return values, respectively.

Example H100E21

We compute both S(3, [1, 2, 1]) and CS(3, [1, 2, 1]) over GF (9):

> CS,S,W := ConformalSpecialLieAlgebra( GF(9), 3, [1,2,1] );

> CS;S;W;

Lie Algebra of dimension 164 with base ring GF(3^2)

Lie Algebra of dimension 163 with base ring GF(3^2)

Lie Algebra of dimension 243 with base ring GF(3^2)

> IsSimple(S);

false

> IsSimple(S*S);

true

> IsRestrictedLieAlgebra(S*S);

false []

HamiltonianLieAlgebra(F, m, n)

ConformalHamiltonianLieAlgebra(F, m, n)

Check BoolElt Default : false

The (conformal) Hamiltonian Lie algebra (C)H(m,n) is constructed over the finite
field F of characteristic at least 3, where m ≥ 2 must be even and n a sequence of
positive integers of length m. If the optional argument Check is true, the algebra
is checked to be Lie upon construction.

The intrinsic HamiltonianlLieAlgebra returns the Witt Lie algebra W (m,n)
in which it is embedded as the second return value. Additionally, similarly to
WittLieAlgebra, a map from the polynomial ring P of degree 2m over F to H(m,n)
is returned as the third return value, and a map from P to W (m,n) as the fourth
return value.

Similarly, ConformalHamiltonianLieAlgebra returns the Hamiltonian Lie alge-
bra H(m, n) it contains and the Witt Lie algebra W (m,n) in which it is embedded
as the second and third return values. Maps from P to CH(m, n), H(m,n), and
W (m,n) are returned as the fourth, fifth, and sixth return values, respectively.
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Example H100E22

We compute both H(2, [2, 2]) and CH(2, [2, 2]) over GF (9):

> CH,H,W := ConformalHamiltonianLieAlgebra( GF(9), 2, [2,2] );

> CH;H;W;

Lie Algebra of dimension 81 with base ring GF(3^2)

Lie Algebra of dimension 80 with base ring GF(3^2)

Lie Algebra of dimension 162 with base ring GF(3^2)

> IsSimple(H);

false

> IsSimple(H*H);

true

> IsSimple(H*H*H);

true

> IsRestrictedLieAlgebra(H*H*H);

false []

ContactLieAlgebra(F, m, n)

Check BoolElt Default : false

The contact Lie algebra K(m,n) is constructed over the finite field F of character-
istic at least 3, where m ≥ 3 must be odd and n a sequence of positive integers of
length m. If the optional argument Check is true, the algebra is checked to be Lie
upon construction.

The intrinsic ContactLieAlgebra returns the Witt Lie algebra W (m,n) in
which it is embedded as the second return value. Additionally, similarly to
WittLieAlgebra, a map from the polynomial ring P of degree 2m over F to K(m,n)
is returned as the third return value, and a map from P to W (m,n) as the fourth
return value.

Example H100E23

We compute the contact Lie algebra K(3, [1, 1, 1]) over GF (5):

> K,W := ContactLieAlgebra( GF(5), 3, [1,1,1] );

> K;W;

Lie Algebra of dimension 125 with base ring GF(5)

Lie Algebra of dimension 375 with base ring GF(5)

> K*K eq K;

true

> IsSimple(K);

true
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100.5.3 Melikian Lie Algebras
The Melikian Lie Algebras are a class of simple Lie algebras over finite fields of character-
istic 5, parameterized by two positive integers n1, n2. We follow the explicit construction
by Strade [Str04, Section 4.3].

Let F be a field of characteristic p = 5 and recall the definition of O(m,n) and W (m,n)
from Section 100.5.2. Define W = W (2, [n1, n2]), O = O(2, [n1, n2]), and take W ′ to be a
copy of W . We equip the vector space W ⊕ O ⊕W ′ with a bilinear product [·, ·] that is
defined by the following equations, where D, E ∈ W and f, f1, f2, g, g1, g2 ∈ O.
• On W ×W , the usual multiplication in W .
• On W ×O: [D, f ] = D(f)− 2div(D)f .
• On W ×W ′: [D, E′] = ([D,E])′ + 2div(D)E′.
• On O ×O: [f, g] = 2(gδ2(f)− fδ2(g))δ′1 + 2(fδ1(g)− gδ1(f))δ′2.
• On O ×W ′: [f,E′] = fE.
• On W ′ ×W ′: [f1δ

′
1 + f2δ

′
2, g1δ

′
1 + g2δ

′
2] = f1g2 − f2g1.

Here div is the linear map defined by div(fδi) = δif . It follows that M(n1, n2), of dimension
5n1+n2+1, is a simple Lie algebra [Str04, Lemma 4.3.1, Theorem 4.3.3].

MelikianLieAlgebra(F, n1, n2)

Check BoolElt Default : false

The Melikian Lie algebra M = M(n1, n2) over F . An invertible map from the
polynomial ring P of degree 6 over F to M is returned as second value, to assist in
identifying the elements of M . Here the six generators of P represent x1, x2, δ1, δ2,
δ′1, δ′2, respectively.

Example H100E24

We construct M(2, 1) over F5 and inspect some of its properties.

> M, phi := MelikianLieAlgebra(GF(5), 2, 1);

> M;

Lie Algebra of dimension 625 with base ring GF(5)

> IsSimple(M);

true

Next, we construct subspaces (not subalgebras) W , O, W ′ of M .

> P<x1, x2, d1, d2, dp1, dp2> := Domain(phi);

> V := VectorSpace(GF(5), Dimension(M));

> W := sub<V | [ V | phi(x1^i*x2^j*d) : i in [0..24], j in [0..4],

> d in [d1,d2] ]>;

> O := sub<V | [ V | phi(x1^i*x2^j) : i in [0..24], j in [0..4] ]>;

> Wp := sub<V | [ V | phi(x1^i*x2^j*d) : i in [0..24], j in [0..4],

> d in [dp1,dp2] ]>;

> Dimension(W), Dimension(O), Dimension(Wp);
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250 125 250

> Dimension(W meet O), Dimension(W meet Wp), Dimension(O meet Wp);

0 0 0

Finally, we verify that these subspaces multiply as required by the definition.

> m := func< A, B | sub<V | [ V | M!a*M!b : a in Basis(A), b in Basis(B) ]> >;

> WxWp := m(W, Wp); [ WxWp subset VV : VV in [W, O, Wp] ];

[ false, false, true ]

So indeed [W, W ′] ⊆ W ′.

> VV := [W, O, Wp]; VVnm := ["W", "O", "W’" ];

> mm := function(A, B)

> AB := m(A, B);

> for i in [1..#VV] do

> if AB eq VV[i] then return VVnm[i]; end if;

> end for;

> return "??";

> end function;

> mm(W, Wp);

W’

> for i,j in [1..#VV] do

> printf "[ %2o, %2o ] = %2o%o", VVnm[i], VVnm[j], mm(VV[i], VV[j]),

> (j eq 3) select "\n" else ", ";

> end for;

[ W, W ] = W, [ W, O ] = O, [ W, W’ ] = W’

[ O, W ] = O, [ O, O ] = W’, [ O, W’ ] = W

[ W’, W ] = W’, [ W’, O ] = W, [ W’, W’ ] = O

100.6 Construction of Elements

Zero(L)

L ! 0

The zero element of the Lie algebra L.

Random(L)

Given a Lie algebra L defined over a finite ring, a random element is returned.
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100.6.1 Construction of Elements of Structure Constant Algebras

elt< L | r1, r2, . . . , rn >

Given a Lie algebra L of dimension n over a ring R, and ring elements r1, r2, . . . , rn ∈
R construct the element r1 ∗ e1 + r2 ∗ e2 + . . . + rn ∗ en of L.

L ! Q

Given a Lie algebra L of dimension n and a sequence Q = [r1, r2, . . . , rn] of elements
of the base ring R of L, the element r1 ∗e1 +r2 ∗e2 + . . .+rn ∗en of L is constructed.

BasisProduct(L, i, j)

Returns the product of the i-th and j-th basis element of the Lie algebra L.

BasisProducts(L)

Rep MonStgElt Default : “Dense”

Returns the products of all basis elements of the Lie algebra L.
The optional parameter Rep may be used to specify the format of the result. If

Rep is set to “Dense”, the products are returned as a sequence Q of n sequences of
n elements of L, where n is the dimension of L. The element Q[i][j] is the product
of the i-th and j-th basis elements.

If Rep is set to “Sparse”, the products are returned as a sequence Q contain-
ing quadruples (i, j, k, aijk) signifying that the product of the i-th and j-th basis
elements is

∑n
k=1 aijkbk, where bk is the k-th basis element and n = dim(L).

100.6.2 Construction of Matrix Elements
Matrix Lie elements can be constructed using the functions below. For more information
on constructing matrices see Section 83.2.2.

elt< R | L >

R ! L

Create the element of the matrix Lie algebra R of degree n whose entries are the n2

elements of the sequence L.

DiagonalMatrix(L, Q)

Diagonal matrix in the matrix Lie algebra L, given by the sequence Q of ring
elements.

ScalarMatrix(L, r)

Scalar matrix in the matrix Lie algebra L, defined by the ring element r.
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100.7 Construction of Subalgebras, Ideals and Quotients

If the coefficient ring R of a Lie algebra L is a Euclidean domain, then submodules and
ideals can be constructed in Magma; if R is a field then quotients can be constructed in
Magma. Note that left, right, and two-sided ideals are identical in a Lie algebra.

sub< L | A >

Creates the subalgebra S of the Lie algebra L that is generated by the elements
defined by A, where A is a list of one or more items of the following types:

(a)An element of L;

(b)A set or sequence of elements of L;

(c) A subalgebra or ideal of L;

(d)A set or sequence of subalgebras or ideals of L.

As well as the subalgebra S itself, the constructor returns the inclusion homomor-
phism f : S → L.

ideal< L | A >

Creates the ideal I of the Lie algebra L generated by the elements defined by A,
where A is a list of one or more items of the following types:

(a)An element of L;

(b)A set or sequence of elements of L;

(c) A subalgebra or ideal of L;

(d)A set or sequence of subalgebras or ideals of L.

As well as the ideal I itself, the constructor returns the inclusion homomorphism
f : I → L.

quo< L | A >

Forms the quotient algebra L/I, where I is the two-sided ideal of L generated by
the elements defined by A, where A is a list of one or more items of the following
types:

(a)An element of L;

(b)A set or sequence of elements of L;

(c) A subalgebra or ideal of L;

(d)A set or sequence of subalgebras or ideals of L.

As well as the quotient L/I itself, the constructor returns the natural homomor-
phism f : L → L/I.

L / S

The quotient of the Lie algebra L by the ideal closure of the subalgebra S.



3012 LIE THEORY Part XIV

Example H100E25

We construct the quotient of the matrix Lie algebra of 2 × 2 matrices, by the ideal spanned by
the identity matrix.

> L := MatrixLieAlgebra( Rationals(), 2 );

> Dimension(L);

4

> I := ideal< L | L!Matrix([[1,0],[0,1]]) >;

> Dimension(I);

1

> K := L/I;

> Dimension(K);

3

> SemisimpleType( K );

A1

QuotientWithPullback(L, I)

Given a Lie algebra L and an ideal I of L, the quotient L/I is constructed. As
second return value, the natural homomorphism f : L → L/I is returned.

As third return value, a function g is returned. This g takes an element y ∈ I
and returns an x ∈ L and a vector space V such that f(x + v) = y for all v ∈ V .
As fourth return value, a function h is returned. This h takes an element y ∈ I and
returns the subalgebra of L generated by x and V , with x and V as above.

Example H100E26

We consider an ideal of the Lie algebra of type G2 over the field with 3 elements.

> R := RootDatum("G2");

> L := LieAlgebra(R, GF(3));

> pos,neg,cart := StandardBasis(L);

> shrt := [ i : i in [1..NumPosRoots(R)] | IsShortRoot(R, i) ];

> shrt;

[ 1, 3, 4 ]

> I := ideal<L | pos[shrt]>;

> _, str1 := ReductiveType(I); str1;

The 7-dim simple constituent of a Lie algebra of type A2

So apparently I is isomorphic to the 7-dimensional simple constituent of a Lie algebra of type A2.
We will now use QuotientWithPullback to construct L/I.

> LI, proj, pb, pbsub := QuotientWithPullback(L, I);

> _, str2 := ReductiveType(LI); str2;

The 7-dim simple constituent of a Lie algebra of type A2

So apparently I ' L/I! Finally, we will demonstrate the use of the additional return values. First,
we verify that an element of I maps to 0 in L/I:

> proj(pos[1]);
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(0 0 0 0 0 0 0)

And then we consider the preimage in L of a randomly chosen element of L/I.

> y := LI![0,1,1,1,1,0,1];

> y;

(0 1 1 1 1 0 1)

> x, V := pb(y);

> x;

(0 1 0 0 1 0 0 1 0 1 0 0 0 1)

> #V;

2187

> assert #V eq #I;

> {* proj(x + v) eq y : v in V *};

{* true^^2187 *}

So indeed x + v is a preimage of y for all v ∈ V .

> M := pbsub(y);

> M, M meet I;

Lie Algebra of dimension 8 with base ring GF(3)

Lie Algebra of dimension 7 with base ring GF(3)

> _,str3 := ReductiveType(M);

> str3;

Twisted Lie algebra of type 2A2 [Ad]

100.8 Operations on Lie Algebras

L eq K

Returns true if, and only if, the Lie algebras L and K are equal.

L ne K

Returns true if, and only if, the Lie algebras L and K are not equal.

L subset K

Returns true if, and only if, the Lie algebra L is contained in the Lie algebra K.

L notsubset K

Returns true if, and only if, the Lie algebra L is not contained in the Lie algebra
K.

L meet M

The intersection of the Lie algebras L and M is returned. Note that L and M have
a common superalgebra.
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L * M

The Lie algebra product [L,M ] of the algebras L and M is returned. Note that L
and M must have a common superalgebra.

L ^ n

The (left-normed) n-th power of the (structure constant) Lie algebra L, i.e., ((. . . (L∗
L) ∗ . . .) ∗ L) is constructed.

Morphism(L, M)

The map giving the morphism from the (structure constant) Lie algebra L to M
is constructed. Either L is a subalgebra of M , in which case the embedding of
L into M is returned, or M is a quotient algebra of L, in which case the natural
epimorphism from L onto M is returned.

IsIsomorphic(L, M)

HL AlgLie Default : false

HM AlgLie Default : false

Returns true if the Lie algebras L and M are isomorphic. It is currently imple-
mented for trivial cases (such as when the dimensions differ), reductive Lie algebras,
solvable Lie algebras up to dimension 4, nilpotent Lie algebras up to dimension 6
(some special cases excluded). The solvable and nilpotent cases are handled using
the databases for such algebras described in Section 100.18).

In the case of reductive Lie algebras, split maximal toral subalgebras for L and
M may be provided in the optional arguments HL and HM , respectively. If these
are not provided an attempt is made to compute them, a process which may fail,
particularly in characteristic 0.

This intrinsic has two return values: the first a boolean describing whether L
and M are isomorphic. If so, the second is an isomorphism from L to M , otherwise
the second is a string describing the reason for non-isomorphism.

An error is thrown if isomorphism cannot be determined.

IsKnownIsomorphic(L, M)

HL AlgLie Default : false

HM AlgLie Default : false

Returns true if Magma can determine isomorphism between Lie algebras L and
M . If so, the second return value is whether L and M are isomorphic, and the third
is an isomorphism or a string (describing the reason for non-isomorphism). Refer to
IsIsomorphic for more details on applicability and the meanings of the return values.

IsIsomorphism(m)

Returns true if the mapping m between two Lie algebras is an isomorphism of Lie
algebras.
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Example H100E27

We demonstrate that B2 and C2 are isomorphic over Q.

> k := Rationals();

> L := LieAlgebra("B2", k); M := LieAlgebra("C2", k);

> b, c := IsIsomorphic(L, M);

> b;

true

> IsIsomorphism(c);

true

> c(L.1);

(0 0 1 0 0 0 0 0 0 0)

We demonstrate that B3 and C3 are non-isomorphic over Q.

> L := LieAlgebra("B3", k); M := LieAlgebra("C3", k);

> b, c := IsIsomorphic(L, M);

> b;

false

> c;

21-dim component of L1 of type R1: Adjoint root datum of dimension 3 of type B3

didn’t match R2:

Adjoint root datum of dimension 3 of type C3

We demonstrate that two distinct isogenies of B2 are isomorphic over Q.

> L := LieAlgebra("B2", k : Isogeny := "Ad");

> M := LieAlgebra("B2", k : Isogeny := "SC");

> b, c := IsIsomorphic(L, M);

> b;

true

For larger nilpotent algebras Magma cannot decide on the isomorphism question.

> L := LieAlgebra("B4", k);

> pL, _, _ := StandardBasis(L);

> subL := sub<L | pL>;

> subL;

Lie Algebra of dimension 16 with base ring Rational Field

> M := LieAlgebra("C4", k);

> pM, _, _ := StandardBasis(M);

> subM := sub<M | pM>;

> subL;

Lie Algebra of dimension 16 with base ring Rational Field

> IsNilpotent(subL), IsNilpotent(subM);

true true

> a,b,c := IsKnownIsomorphic(subL, subM);

> a;

false
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Example H100E28

We demonstrate that in characteristic 3 the Lie algebras of type G2 and A2 have isomorphic
nontrivial ideals.

> k := GF(3);

> CSL := CompositionSeries(LieAlgebra("G2", k));

> CSL;

[

Lie Algebra of dimension 7 with base ring GF(3),

Lie Algebra of dimension 14 with base ring GF(3)

]

> L := CSL[1];

> CSM := CompositionSeries(LieAlgebra("A2", k));

> CSM;

[

Lie Algebra of dimension 7 with base ring GF(3),

Lie Algebra of dimension 8 with base ring GF(3)

]

> M := CSM[1];

> a,b,c := IsKnownIsomorphic(L, M);

> a;

true

> b, c;

true Mapping from: AlgLie: L to AlgLie: M given by a rule

> IsIsomorphism(c);

true

100.8.1 Basic Invariants

CoefficientRing(L)

BaseRing(L)

The coefficient ring (or base ring) over which the Lie algebra L is defined.

Dimension(L)

The dimension of the Lie algebra L.

#L

The cardinality of the Lie algebra L, if the coefficient ring is finite.

Moduli(L)

This returns a sequence of integers, of length equal to the dimension of L. If the
i-th element of this sequence is ai then ai is the minimal non-negative integer such
that aiei = 0. So if L is defined over a field, then the sequence consists of zeros.
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Example H100E29

> T:= [ <1,2,2,2>, <2,1,2,2> ];

> t:= [0,4];

> L:= LieAlgebra< t | T : Rep:= "Dense" >;

> Moduli(L);

[ 0, 4 ]

100.8.2 Changing Base Rings

ChangeRing(L, S)

Given a Lie algebra L with base ring R, together with a ring S, this function
constructs the Lie algebra M with base ring S obtained by coercing the coefficients
of elements of L into S. The homomorphism from L to M is produced as second
return value.

ChangeRing(L, S, f)

Given a Lie algebra L with base ring R, together with a ring S and a map f : R → S,
this function constructs the Lie algebra M with base ring S obtained by mapping
the coefficients of elements of L into S via f . The homomorphism from L to M is
produced as the second return value.

100.8.3 Bases

BasisElement(A, i)

A . i

The i-th basis element of the algebra L.

Basis(A)

The basis of the algebra L, as a sequence of elements of L.

IsIndependent(Q)

Given a set or sequence Q of elements of the R-algebra L, this functions returns
true if these elements are linearly independent over R; otherwise false.

ExtendBasis(S, L)

ExtendBasis(Q, L)

Given an algebra L and either a subalgebra S of dimension m of L or a sequence Q
of m linearly independent elements of L, this function returns a sequence containing
a basis of L such that the first m elements are the basis of S resp. the elements in
Q.
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100.8.4 Operations for Semisimple and Reductive Lie Algebras

SemisimpleType(L)

CartanName(L)

Let L be a Lie algebra. If L has a nondegenerate Killing form, then (over some
algebraic extension of the ground field) L is the direct sum of absolutely simple Lie
algebras. These Lie algebras have been classified and the classes are named An, Bn,
Cn, Dn, E6, E7, E8, F4 and G2. This function returns a single string containing
the types of the direct summands of L.

For a description of the algorithm used in the general case we refer to [dG00],
§5.17.1. For Lie algebras over fields of characteristic 2 and 3 the algorithm used is
described in [Roo10], Chapter 5.

Example H100E30

We compute the semisimple type of the Levi subalgebra of a subalgebra of the simple Lie algebra
of type D7.

> L := LieAlgebra("D7", RationalField());

> L;

Lie Algebra of dimension 91 with base ring Rational Field

> K := Centralizer(L, sub<L | [L.1,L.2,L.3,L.4]>);

> K;

Lie Algebra of dimension 41 with base ring Rational Field

> _,S := HasLeviSubalgebra(K);

> S;

Lie Algebra of dimension 6 with base ring Rational Field

> SemisimpleType(S);

A1 A1

ReductiveType(L)

ReductiveType(L, H)

AssumeAlmostSimple BoolElt Default : false

Let L be a Lie algebra of a reductive algebraic group, and H a split maximal toral
subalgebra of L. This function identifies the isomorphism type of L.

This function has four return values. The first is the appropriate root datum
and the second return value a textual description of L. The third return value is
a sequence Q, containing a decomposition of L into direct summands. Finally, the
fourth return value is a sequence P of records, such that P [i] contains additional
information (often a proof of correctness) of the identification of Q[i].

If a split maximal toral subalgebra H is not given, an attempt is made to compute
one by calling SplitMaximalToralSubalgebra if the characteristic of the base field
k is at least 5, or SplitToralSubalgebra if char(k) is 2 or 3. Note that, if k is
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infinite, such a subalgebra cannot in general be computed so the second parameter
H must be supplied for this function to work.

If the optional parameter AssumeAlmostSimple is set to true, the (possibly time
consuming) step of computing a direct sum decomposition of L is skipped.

Moreover, note that if L is the Lie algebra of a simple algebraic group but itself
non-simple (such as for example An of intermediate type in characteristic n + 1),
the third return value Q may not be the direct sum decomposition of L but simply
[L].

Example H100E31

We consider a particular Lie algebra of type A3 over k =GF(2).

> RA3 := RootDatum("A3" : Isogeny := 2);

> L := LieAlgebra(RA3, GF(2));

> D := DirectSumDecomposition(L);

> D;

[

Lie Algebra of dimension 14 with base ring GF(2),

Lie Algebra of dimension 1 with base ring GF(2)

]

> R, str, Q, _ := ReductiveType(L);

> R;

RA3: Root datum of dimension 3 of type A3

> str;

Lie algebra of type A3[ 2]

> Q;

[

Lie Algebra of dimension 15 with base ring GF(2)

]

Note that this is an example where Q is not the direct sum decomposition of L. Instead, L in
its whole is recognised as the Lie algebra of a simple algebraic group. In the remainder of the
example, we investigate the 14-dimensional ideal of L.

> M := D[1]; M;

Lie Algebra of dimension 14 with base ring GF(2)

> R, _, _, P := ReductiveType(M);

> R;

R: Adjoint root datum of dimension 2 of type G2

So this computation claims that L ' M ⊕ k, where M is of type G2. Let us use the additional
return values to verify that fact.

> pos := P[1]‘ChevBasData‘BasisPos;

> neg := P[1]‘ChevBasData‘BasisNeg;

> cart := P[1]‘ChevBasData‘BasisCart;

> IsChevalleyBasis(M, RootDatum("G2"), pos, neg, cart);
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true [ <1, 2, 0>, <1, 3, 0>, <1, 4, 0>, <2, 5, 0> ]

This demonstrates the fact that the Lie algebra of type G2 is a constituent of the Lie algebra of
type A3 over fields of characteristic 2.

RootSystem(L)

Given a semisimple Lie algebra L with a split Cartan subalgebra, this function
computes the root system of L. This function returns four values:
(a)The roots of L with respect to the Cartan subalgebra which is output by

CartanSubalgebra(L). This is a sequence of vectors where the positive roots
come first, followed by the negative roots.

(b)A sequence of elements of L which are the root vectors corresponding to the
roots of L (so the first element corresponds to the first root and so on).

(c) A sequence of simple roots.
(d)The Cartan matrix of the root system with respect to the sequence of simple

roots.

Example H100E32

We compute the root system of the simple Lie algebra of type G2 over the rational field.

> L := LieAlgebra("G2", RationalField());

> R, Rv, fund, C:=RootSystem(L);

> R;

[

(1 0),

(0 1),

(1 1),

(2 1),

(3 1),

(3 2),

(-1 0),

( 0 -1),

(-1 -1),

(-2 -1),

(-3 -1),

(-3 -2)

]

> Rv;

[ (0 0 0 0 0 0 0 0 1 0 0 0 0 0), (0 0 0 0 0 0 0 0 0 1 0 0 0 0),

(0 0 0 0 0 0 0 0 0 0 1 0 0 0), (0 0 0 0 0 0 0 0 0 0 0 1 0 0),

(0 0 0 0 0 0 0 0 0 0 0 0 1 0), (0 0 0 0 0 0 0 0 0 0 0 0 0 1),

(0 0 0 0 0 1 0 0 0 0 0 0 0 0), (0 0 0 0 1 0 0 0 0 0 0 0 0 0),

(0 0 0 1 0 0 0 0 0 0 0 0 0 0), (0 0 1 0 0 0 0 0 0 0 0 0 0 0),

(0 1 0 0 0 0 0 0 0 0 0 0 0 0), (1 0 0 0 0 0 0 0 0 0 0 0 0 0) ]
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RootDatum(L)

Here L is a semisimple Lie algebra. This function returns the root datum D of L
with respect to the Cartan subalgebra which is output by CartanSubalgebra(L).
We note that the order of the positive roots in D is not necessarily the same as the
order in which they appear in the root system of L.

Example H100E33

We set up the root datum of a Lie algebra, and extract the Cartan matrix.

> L:= LieAlgebra("F4", Rationals());

> rd := RootDatum(L);

> rd;

Root datum of type F4

> CartanMatrix(rd);

[ 2 0 -1 0]

[ 0 2 0 -1]

[-1 0 2 -1]

[ 0 -1 -2 2]

ChevalleyBasis(L)

ChevalleyBasis(L, H)

AssumeAlmostSimple BoolElt Default : false

Given a semisimple Lie algebra L with a split maximal toral subalgebra H, this
function returns three sequences, x, y and h of elements of L. They form a Cheval-
ley basis of L. The first sequence gives basis elements corresponding to positive
roots, the second to the negative roots and the third to basis elements in a Cartan
subalgebra. If a split maximal toral subalgebra H is not given, an attempt is made
to compute one.

For Lie algebras over fields of characteristic 2 and 3 the algorithm used is de-
scribed in [CR09]. In particular, this involves computing a direct sum decomposition
of L, which can be quite time consuming. If there is reason to believe that L is (al-
most) simple, the optional parameter AssumeAlmostSimple should be set to true.

Example H100E34

We construct a Chevalley basis for two Lie algebras.

> L := LieAlgebra("A2", RationalField());

> x, y, h:= ChevalleyBasis(L);

> x; y; h;

[ (0 0 0 0 0 1 0 0), (0 0 0 0 0 0 1 0), (0 0 0 0 0 0 0 1) ]

[ (0 0 1 0 0 0 0 0), (0 1 0 0 0 0 0 0), (1 0 0 0 0 0 0 0) ]

[ (0 0 0 1 0 0 0 0), (0 0 0 0 1 0 0 0) ]

> L := LieAlgebra("A3", Rationals());
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> print RootDatum(L) : Maximal;

Root datum of type A3 with simple roots

[ 1 0 1]

[ 1 -2 1]

[ 0 1 -2]

and simple coroots

[ 1 1 1]

[ 0 -1 0]

[ 0 0 -1]

ChevalleyBasis(L, H, R)

Given a semisimple Lie algebra L with a split maximal toral subalgebra H, and
an irreducible root datum R, this function computes a Chevalley basis of L with
respect to H and R. This basis is returned in the form of three sequences, x, y and
h of elements of L, where the first sequence gives basis elements corresponding to
positive roots, the second to the negative roots and the third to basis elements in
the toral subalgebra H.

IsChevalleyBasis(L, R, x, y, h)

Returns true if x, y and h form a Chevalley basis of the Lie algebra L with respect
to the root datum R. If so, return a sequence describing the extraspecial signs as
second return value.

Example H100E35

We compute a Chevalley basis for a Lie algebra of type E6 inside one of type E7.

> R := RootDatum("E7");

> L1 := LieAlgebra(R, GF(2));

> p1,n1,c1 := StandardBasis(L1);

> L1;

Lie Algebra of dimension 133 with base ring GF(2)

> DynkinDiagram(R);

E7 1 - 3 - 4 - 5 - 6 - 7

|

2

> S, proj := sub<R | [1..6]>;

> S;

S: Root datum of dimension 7 of type E6

> #proj;

72

> projpos := [i : i in proj | i le NumPosRoots(R)];

> #projpos;

36

> L2 := sub<L1 | p1[projpos], n1[projpos]>;

> L2;



Ch. 100 LIE ALGEBRAS 3023

Lie Algebra of dimension 78 with base ring GF(2)

> H2 := L2 meet SplitMaximalToralSubalgebra(L1);

> H2;

Lie Algebra of dimension 6 with base ring GF(2)

> p2,n2,c2 := ChevalleyBasis(L2, H2, RootDatum("E6"));

> ok := IsChevalleyBasis(L2, RootDatum("E6"), p2, n2, c2);

> ok;

true

TwistedBasis(L, H, R)

For a Lie algebra L, a split toral subalgebra H of L, and a twisted root datum R,
the function constructs a “twisted basis” of L.

Let k be the coefficient ring of L and K an extension field of k of degree equal
to the twisting degree of R. This function has 4 return values. First, L′ = L ⊗K;
second, a homomorphism φ from L to L′, third, a record containing a Chevalley basis
of L′ with respect to the untwisted root datum of R; fourth, a matrix describing the
action of the Frobenius automorphism of K on the positive roots of the Chevalley
basis of L′.

Such a basis constitutes a proof that L′ is of type R. Consult [Roo10], Chapter
5.3, for more details on such twisted bases.

Example H100E36

We investigate a twisted basis of the Lie algebra of type 2A2 over the field with 5 elements. Let
δ be the automorphism of the root system of type A2, let k =GF(5), and let K =GF(52).

> R := TwistedRootDatum(RootDatum("A2") : Twist := 2);

> L := TwistedLieAlgebra(R, GF(5));

> H := SplitToralSubalgebra(L);

> LK, phi, ChevBas, m := TwistedBasis(L, H, R);

> m;

[ 0 1]

[ 1 0]

This matrix m shows that δ acts as expected on the Chevalley basis elements of LK = L⊗K. We
verify the correctness of m.

> K := CoefficientRing(LK);

> simp := ChevBas‘BasisPos[[1..Rank(R)]];

> simp;

[ ( 0 0 0 0 0 1 ksi^8 0),

( 0 0 0 0 0 1 ksi^16 0) ]

> fr := FrobeniusMap(K);

> frv := func<x | Vector([ fr(i) : i in Eltseq(x)])>;

> [ Position(simp, frv(x)) : x in simp ];
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[ 2, 1 ]

So indeed the Frobenius map (acting on the coordinates of LK) acts as δ. This is equivalent [Roo10,
Lemma 5.3] to the basis elements of L being stable under the composition of the Frobenius map
(this time acting on the Chevalley basis of L ⊗ K) and the root system automorphism δ. We
verify this assertion explicitly for this example.

> p := ChevBas‘BasisPos;

> n := ChevBas‘BasisNeg;

> c := ChevBas‘BasisCart;

> pi := Sym(6)!(1, 2)(4, 5);

> ChevBasLK := VectorSpaceWithBasis([ Vector(x) : x in p cat n cat c]);

> piL := DiagramAutomorphism(LK, pi);

Now δ acts on L⊗K as T, and fr is still the Frobenius automorphism of the field K. The images
of the basis elements of L under delta composed with fr are as follows:

> for i in [1..Dimension(L)] do

> b := phi(L.i);

> printf "i = %o, b = %o\n", i, Coordinates(ChevBasLK, Vector(b));

> printf " pi(b)^fr = %o\n", [ fr(i) : i in

> Coordinates(ChevBasLK, Vector(piL(b))) ];

> end for;

i = 1, b = [ 0, 0, 0, 0, 0, ksi^9, 0, 0 ]

(b*T)^fr = [ 0, 0, 0, 0, 0, ksi^9, 0, 0 ]

i = 2, b = [ 0, 0, 0, ksi^5, ksi, 0, 0, 0 ]

(b*T)^fr = [ 0, 0, 0, ksi^5, ksi, 0, 0, 0 ]

i = 3, b = [ 0, 0, 0, ksi^9, ksi^21, 0, 0, 0 ]

(b*T)^fr = [ 0, 0, 0, ksi^9, ksi^21, 0, 0, 0 ]

i = 4, b = [ 0, 0, 0, 0, 0, 0, ksi^5, ksi ]

(b*T)^fr = [ 0, 0, 0, 0, 0, 0, ksi^5, ksi ]

i = 5, b = [ 0, 0, 0, 0, 0, 0, ksi, ksi^5 ]

(b*T)^fr = [ 0, 0, 0, 0, 0, 0, ksi, ksi^5 ]

i = 6, b = [ ksi, ksi^5, 0, 0, 0, 0, 0, 0 ]

(b*T)^fr = [ ksi, ksi^5, 0, 0, 0, 0, 0, 0 ]

i = 7, b = [ ksi^21, ksi^9, 0, 0, 0, 0, 0, 0 ]

(b*T)^fr = [ ksi^21, ksi^9, 0, 0, 0, 0, 0, 0 ]

i = 8, b = [ 0, 0, ksi^9, 0, 0, 0, 0, 0 ]

(b*T)^fr = [ 0, 0, ksi^9, 0, 0, 0, 0, 0 ]

Thus, all the basis elements of L are stable under the composition of the diagram automorphism
δ and the Frobenius automorphism.

The WeylGroup functions are only available for structure constant Lie algebras.

WeylGroup(L)

WeylGroup(GrpPermCox, L)

The Weyl group of the reductive Lie algebra L, as a permutation Coxeter group (see
Chapter 98).
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WeylGroup(GrpFPCox, L)

The Weyl group of the reductive Lie algebra L, as a Coxeter group (see Chapter 98).

WeylGroup(GrpMat, L)

The Weyl group of the reductive Lie algebra L, as a reflection group (see Chapter 98).

100.9 Operations on Subalgebras and Ideals

DirectSum(L, M)

Given Lie algebras L and M , this intrinsic constructs a Lie algebra of dimension
n + m, where n and m are the dimensions of L and M , respectively. The basis of
the new algebra is the concatenation of the bases of L and M and the products a∗ b
where a ∈ L and b ∈ M are defined to be zero.

IndecomposableSummands(L)

DirectSumDecomposition(L)

Given a Lie algebra L, the function returns the direct sum decomposition of L as
a sequence of ideals of L whose sum is L and each of which cannot be further
decomposed into a direct sum of ideals.

The algorithms used for this function are described in [dG00], §4.12 (semisimple
case), §1.15 (general case).

Example H100E37

We compute the direct sum decomposition of the simple Lie algebra of type D2 over the rational
field.

> L := LieAlgebra("D2", RationalField());

> L;

Lie Algebra of dimension 6 with base ring Rational Field

> D := DirectSumDecomposition(L);

> D;

[

Lie Algebra of dimension 3 with base ring Rational Field,

Lie Algebra of dimension 3 with base ring Rational Field

]

> Morphism(D[1], L);

[ 0 1 0 0 0 0]

[ 0 0 1 -1 0 0]

[ 0 0 0 0 1 0]

> Morphism(D[2], L);

[1 0 0 0 0 0]

[0 0 1 1 0 0]

[0 0 0 0 0 1]
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100.9.1 Standard Ideals and Subalgebras

Centre(L)

Center(L)

Given a Lie algebra L, returns the centre of L.

Centraliser(L, K)

Centralizer(L, K)

Given a Lie algebra L and a subalgebra K of L, returns the centraliser of K in L,
and its injection into L.

Centraliser(L, x)

Centralizer(L, x)

Given a Lie algebra L and an element x of L, returns the centraliser of x in L, and
its injection into L.

Normaliser(L, K)

Normalizer(L, K)

Given a Lie algebra L and a subalgebra K of L, returns the normaliser of K in L,
and its injection into L.

SolubleRadical(L)

SolvableRadical(L)

Given a Lie algebra L, returns the soluble radical of L.
We refer to [dG00], §2.6 for the algorithm used to implement this function.

Nilradical(L)

Given a Lie algebra L, returns the nilradical of L.
The algorithm makes use of Cartan subalgebras. We refer to [dG00], pp. 84, 85

for its description.

Example H100E38

We demonstrate the functions for performing basic operations with Lie algebras such as centre,
normalizer etc.

> L := LieAlgebra("D4", RationalField());

> L;

Lie Algebra of dimension 28 with base ring Rational Field

> Centre(L);

Lie Algebra of dimension 0 with base ring Rational Field

> K := sub< L | [L.1, L.2, L.3] >;

> Centralizer(L, K);

Lie Algebra of dimension 10 with base ring Rational Field

> Normalizer(L, K);
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Lie Algebra of dimension 19 with base ring Rational Field

> M := Centralizer(L, K);

> S := SolvableRadical(M);

> S;

Lie Algebra of dimension 10 with base ring Rational Field

> Morphism(S, L);

[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 -1 0 0 -1 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

> Nilradical(M);

Lie Algebra of dimension 9 with base ring Rational Field

100.9.2 Cartan and Toral Subalgebras

CartanSubalgebra(L)

Given a Lie algebra L, this function returns a Cartan subalgebra of L. The algorithm
works for Lie algebras L defined over a field F such that |F | > dim L and for
restricted Lie algebras of characteristic p. If the Lie algebra does not fit into one of
these classes then the correctness of the output is not guaranteed.

The algorithm used is described in [dG00], §3.2.

IsCartanSubalgebra(L, H)

The intrinsic returns true if H is a Cartan subalgebra of L, i.e., whether H is
nilpotent and NL(H) = 0.

Example H100E39

We compute a Cartan subalgebra of the simple Lie algebra of type A4 over the rational field.

> L := LieAlgebra("F4", RationalField());

> L;

Lie Algebra of dimension 52 with base ring Rational Field

> H := CartanSubalgebra(L);

Lie Algebra of dimension 4 with base ring Rational Field

> H*H;

Lie Algebra of dimension 0 with base ring Rational Field

> Normalizer(L, H);

Lie Algebra of dimension 4 with base ring Rational Field
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SplittingCartanSubalgebra(L)

SplitMaximalToralSubalgebra(L)

Given a Lie algebra L over a field k of characteristic at least 5, a split Cartan
subalgebra (equivalently, a split maximal toral subalgebra) is computed for L.

The algorithm used is discussed in [CM09], Sections 5 and 6. This algorithm is
proved to work ([CM09, Theorem 6.7]) if L is the Lie algebra of a k-split connected
reductive group. In other cases, should the algorithm terminate, the output is
guaranteed to be correct.

IsSplittingCartanSubalgebra(L, H)

Determine whether H is a splitting Cartan subalgebra of L, i.e., whether H is a
Cartan subalgebra and the adjoint action of H on L splits completely over the
coefficient ring of L.

SplitToralSubalgebra(L)

TryMaximal . Default : true

The intrinsic attempts to compute a split toral subalgebra of a Lie algebra L de-
fined over a finite field k. This procedure uses a heuristic algorithm, described in
[Roo10, Chapter 3], that works in many cases even if the characteristic of k is small.
Moreover, it attempts to compute a split toral subalgebra of maximal size.

If the function returns without error, the resulting subalgebra H is a split toral
subalgebra that does not lie inside a split toral subalgebra H ′ of larger dimension.
It is, however, not guaranteed that H is of maximal dimension among all split toral
subalgebras.

The optional parameter TryMaximal may be used as follows. If set to true (the
default) the reductive rank r of L is computed first, and the algorithm attempts to
compute a split toral subalgebra of dimension r. If set to false, the first split toral
subalgebra found is returned. Finally, if TryMaximal is set to an integer n ≥ 1, the
algorithm attempts to find a split toral subalgebra of dimension n. In the latter
case, if no split toral subalgebra of dimension n can be found, the biggest that has
been found is returned; if on the other hand a split toral subalgebra of dimension
larger than n is encountered, that is returned.

IsSplitToralSubalgebra(L, H)

Given a restrictable Lie algebra L over a finite field, the function returns true is
H is a split toral subalgebra of L, i.e., whether [H, H] = 0, all elements of H are
semisimple, and the basis elements are invariant under the q-map associated to L.

Example H100E40

We construct a twisted Lie algebra L of type 3D4 over the field k =GF(33) and verify that the
subalgebra H returned by SplitToralSubalgebra is indeed a split toral subalgebra. Then, we
test whether C = CL(H) is a (split) toral subalgebra of L.

> k := GF(3, 3);
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> L, phi := TwistedLieAlgebra(TwistedRootDatum("D4" : Twist := 3), k);

> H := SplitToralSubalgebra(L);

> H;

Lie Algebra of dimension 2 with base ring GF(3^3)

> IsSplitToralSubalgebra(L, H);

true

> C := Centraliser(L,H); C;

Lie Algebra of dimension 4 with base ring GF(3^3)

> IsToralSubalgebra(L,C), IsSplitToralSubalgebra(L, C);

true false

Now we let K be the big field, GF(39), and test if C ⊗K is a split toral subalgebra of L⊗K.

> LK := Codomain(phi);

> LK;

Lie Algebra of dimension 28 with base ring GF(3^9)

> CK := sub<LK | [ phi(b) : b in Basis(C) ]>;

> IsSplitToralSubalgebra(LK, CK);

true

100.9.3 Standard Series

CompositionSeries(L)

A composition series is computed for the (structure constant) Lie algebra L. The
function returns three values:
(a) a sequence containing the composition series as an ascending chain of subalgebras

such that the successive quotients are irreducible L-modules;
(b)a sequence containing the composition factors as structure constant algebras;
(c) a transformation matrix to a basis compatible with the composition series, that

is, the first basis elements form a basis of the first term of the composition series,
the next extend these to a basis for the second term etc.

CompositionFactors(L)

Compute the composition factors of a composition series for the Lie algebra L. This
function returns the same as the second return value of CompositionSeries above,
but will often be very much quicker.

MinimalIdeals(L : parameters)

Limit RngIntElt Default : ∞
Returns the minimal left/right/two-sided ideals of the (structure constant) Lie alge-
bra L (in non-decreasing size). If Limit is set to n, at most n ideals are calculated
and the second return value indicates whether all of the ideals were computed.
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MaximalIdeals(L : parameters)

Limit RngIntElt Default : ∞
Returns the maximal left/right/two-sided ideals of the (structure constant) Lie al-
gebra L (in non-decreasing size). If Limit is set to n, at most n ideals are calculated
and the second return value indicates whether all of the ideals were computed.

DerivedSeries(L)

Given a Lie algebra L, this function returns a sequence of ideals of L that form its
derived series.

LowerCentralSeries(L)

Given a Lie algebra L, this function returns a sequence of ideals of L that form its
lower central series.

UpperCentralSeries(L)

Given a Lie algebra L, this function returns a sequence of ideals of L that form the
upper central series of L. The function repeatedly uses the algorithm for computing
centres while keeping track of the pre-images of the ideals factored out.

Example H100E41

We compute each of the type of series of a particular subalgebra of the simple Lie algebra of type
F4 over the rational field.

> L:=LieAlgebra("F4", RationalField());

> L;

Lie Algebra of dimension 52 with base ring Rational Field

> K:=sub< L | [L.1, L.12, L.23, L.34, L.45] >;

> DerivedSeries(K);

[

Lie Algebra of dimension 20 with base ring Rational Field,

Lie Algebra of dimension 16 with base ring Rational Field,

Lie Algebra of dimension 7 with base ring Rational Field,

Lie Algebra of dimension 0 with base ring Rational Field

]

> LowerCentralSeries(K);

[

Lie Algebra of dimension 20 with base ring Rational Field,

Lie Algebra of dimension 16 with base ring Rational Field,

Lie Algebra of dimension 12 with base ring Rational Field,

Lie Algebra of dimension 8 with base ring Rational Field,

Lie Algebra of dimension 5 with base ring Rational Field,

Lie Algebra of dimension 2 with base ring Rational Field,

Lie Algebra of dimension 1 with base ring Rational Field,

Lie Algebra of dimension 0 with base ring Rational Field

]

> UpperCentralSeries(K);



Ch. 100 LIE ALGEBRAS 3031

[

Lie Algebra of dimension 2 with base ring Rational Field,

Lie Algebra of dimension 3 with base ring Rational Field,

Lie Algebra of dimension 5 with base ring Rational Field,

Lie Algebra of dimension 8 with base ring Rational Field,

Lie Algebra of dimension 12 with base ring Rational Field,

Lie Algebra of dimension 16 with base ring Rational Field,

Lie Algebra of dimension 20 with base ring Rational Field

]

100.9.4 The Lie Algebra of Derivations

LieAlgebraOfDerivations(L)

Given a Lie algebra L, this function constructs its Lie algebra of derivations Der(L).
As second return value, a record containing maps from L to Der(L) and vice versa,
and from Der(L) to the matrix Lie algebra acting on L is returned.

Example H100E42

We consider the Lie algebra of derivations of D4 in characteristic 2 or, more precisely, the 26-
dimensional simple constituent L that exists in all varieties of D4 in characteristic 2.

> SetSeed(1);

> R := RootDatum("D4");

> D4 := LieAlgebra(R, GF(2));

> pos,neg,cart := StandardBasis(D4);

> L := D4*D4; L;

Lie Algebra of dimension 26 with base ring GF(2)

> IsSimple(L);

true

> DerL, maps := LieAlgebraOfDerivations(L);

> DerL;

Lie Algebra of dimension 52 with base ring GF(2)

> SemisimpleType(DerL);

F4

So the Lie algebra of derivations is of type F4. Let us consider one of the maps that was returned
as second value.

> maps;

rec<recformat<mp_DerL_to_L: Map, mp_L_to_DerL: Map, mp_DerL_to_mats:

Map, mp_mats_to_DerL: Map> |

mp_DerL_to_L := Mapping from: AlgLie: DerL to AlgLie: L given by a

rule [no inverse],

mp_L_to_DerL := Mapping from: AlgLie: L to AlgLie: DerL given by a

rule [no inverse],

mp_DerL_to_mats := Mapping from: AlgLie: DerL to Matrix Lie
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Algebra given by a rule [no inverse],

mp_mats_to_DerL := Mapping from: Matrix Lie Algebra to AlgLie:

DerL given by a rule [no inverse]>

> adL := AdjointRepresentation(L);

> f := maps‘mp_DerL_to_mats;

> [ f(b) in Image(adL) : b in Basis(DerL) ];

[ false, true, true, true, true, true, true, true, false, false, true,

false, true, false, false, false, true, false, true, true, true,

false, false, false, true, true, false, false, false, true, true,

false, false, false, true, true, false, false, true, false, true,

false, true, false, false, false, true, false, true, false, false,

false ]

So, unsurprisingly, some of the basis elements of Der(L) are actually elements from L, but others
are not. We consider one more of these maps and investigate how L lies in Der(L).

> g := maps‘mp_L_to_DerL;

> I := ideal<DerL | [ g(b) : b in Basis(L) ]>; I;

Lie Algebra of dimension 26 with base ring GF(2)

> pos2, neg2, cart2 := ChevalleyBasis(DerL, SplitToralSubalgebra(DerL));

> [i : i in [1..#pos2] | pos2[i] in I ];

[ 3, 4, 6, 7, 8, 10, 12, 13, 15, 17, 19, 21 ]

> RF4 := RootDatum("F4");

> [ i : i in [1..NumPosRoots(RF4)] | IsShortRoot(RF4, i) ];

[ 3, 4, 6, 7, 8, 10, 12, 13, 15, 17, 19, 21 ]

So we conclude that the original Lie algebra L of type D4 exists as the short roots of the Lie
algebra of derivations Der(L) of type F4.

100.10 Properties of Lie Algebras and Ideals

KillingMatrix(L)

Given a Lie algebra L such that {x1, . . . , xn} is a basis of L, return the Killing
matrix of L, which is defined to be the matrix (Tr(adxi · adxj)).

Example H100E43

> L:=LieAlgebra("B2",RationalField());

> KillingMatrix(L);

[ 0 0 0 -6 0 0 0 0 0 0]

[ 0 0 -6 0 0 0 0 0 0 0]

[ 0 -6 0 0 0 0 0 0 0 0]

[-6 0 0 0 0 0 0 0 0 0]

[ 0 0 0 0 0 0 0 0 0 6]

[ 0 0 0 0 0 0 0 0 6 0]

[ 0 0 0 0 0 0 6 0 0 0]
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[ 0 0 0 0 0 0 0 6 0 0]

[ 0 0 0 0 0 6 0 0 0 0]

[ 0 0 0 0 6 0 0 0 0 0]

IsAbelian(L)

Given a Lie algebra L, return true if L is abelian.

IsSoluble(L)

IsSolvable(L)

Given a Lie algebra L, return true if L is soluble.

IsNilpotent(L)

Given a Lie algebra L, return true if L is nilpotent.

IsCentral(L, M)

Given a subalgebra M of the Lie algebra L, return true if M is central in L.

IsSimple(L)

Given a Lie algebra L, return true if L is simple.

IsSemisimple(L)

Given a Lie algebra L, return true if L is semisimple.

IsReductive(L)

Given a Lie algebra L, return true if L is reductive.

HasLeviSubalgebra(L)

Given a Lie algebra L, this function determines whether L has a Levi subalgebra.
If the result is true, then the function also returns a semisimple subalgebra (com-
plement to the solvable radical) of L. If L is defined over a field of characteristic 0,
then it always has a Levi subalgebra. However, if L is a Lie algebra of characteristic
p > 0 then L need not have a Levi subalgebra but the function will always find one
if it exists.

A description of the algorithm used is contained in [dG00], §4.13.

IsClassicalType(L)

Determines if the reductive Lie algebra L is of classical-type. Note that all reductive
Lie algebras over fields of characteristic 0 are considered to be classical-type.



3034 LIE THEORY Part XIV

Example H100E44

We test various predicates in the context of the simple Lie algebra of type D3 over the rational
field.

> L:=LieAlgebra("D3",RationalField());

> L;

Lie Algebra of dimension 15 with base ring Rational Field

> K:=sub< L | [L.1,L.2,L.3] >;

> M:=Centralizer(L, K);

> M;

Lie Algebra of dimension 4 with base ring Rational Field

> R:=SolvableRadical(M);

> R;

Lie Algebra of dimension 4 with base ring Rational Field

> HasLeviSubalgebra(M);

true Lie Algebra of dimension 0 with base ring Rational Field

> K:=Centralizer(L, sub< L | [L.1,L.2,L.3] >);

> K;

Lie Algebra of dimension 4 with base ring Rational Field

> IsSolvable(K);

true

> IsNilpotent(K);

false

> R:= SolvableRadical(K);

> IsSolvable(R);

true

> IsNilpotent(R);

true

> N:= Nilradical(K);

> IsNilpotent(N);

true

100.11 Operations on Elements

x + y x - y x * y

IsCentral(L, M)

Given an element x of the Lie algebra L, return true if x is central in L.

NonNilpotentElement(L)

Given a (structure constant) Lie algebra L, this function returns an element of L
that is not nilpotent, or the zero element of L if no such element exists.

The algorithm follows [dG00], §2.7.
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Example H100E45

We construct a non-nilpotent element of a Lie algebra.

> L:=LieAlgebra("G2",RationalField());

> NonNilpotentElement(L);

(0 0 0 0 0 1 0 0 0 0 0 0 0 0)

AdjointMatrix(L, x)

RightAdjointMatrix(L, x)

Given a (structure constant) Lie algebra L and an element x of a subalgebra or ideal
of L, return the matrix of adx as an element of a matrix Lie algebra.

Example H100E46

> L:=LieAlgebra("B2",RationalField());

> AdjointMatrix(L, L.1);

[ 0 0 0 0 0 0 0 0 0 0]

[ 0 0 0 0 0 0 0 0 0 0]

[ 0 0 0 0 0 0 0 0 0 0]

[ 0 0 0 0 0 0 0 0 0 0]

[ 1 0 0 0 0 0 0 0 0 0]

[ 2 0 0 0 0 0 0 0 0 0]

[ 0 0 0 0 0 0 0 0 0 0]

[ 0 -1 0 0 0 0 0 0 0 0]

[ 0 0 1 0 0 0 0 0 0 0]

[ 0 0 0 0 0 -1 0 0 0 0]

100.11.1 Indexing

a[i]

If a is an element of a structure constant Lie algebra L of dimension n and 1 ≤ i ≤ n
is a positive integer, then the i-th component of the element a is returned (as an
element of the base ring R of L).

If a is an element of a matrix Lie algebra L of degree n and 1 ≤ i ≤ n then the
ith row of the matrix a is returned.

a[i] := r

Given an element a belonging to a structure constant Lie algebra of dimension n
over R, a positive integer 1 ≤ i ≤ n and an element r ∈ R, the i-th component of
the element a is redefined to be r.

If a is an element of a matrix Lie algebra L of degree n over R and 1 ≤ i ≤ n,
the ith row of the matrix a is redefined to be the vector r over R.
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a[i, j]

a[i, j] := r

For an element a of a matrix Lie algebra L of degree n and integers 1 ≤ i, j ≤ n
return the element in the ith row and jth column of a or set this element to be r
where r is an element of the coefficient ring of L.

100.12 The Natural Module

Module(L)

The module Rn underlying the Lie algebra L.

RModule(L)

The module Rn acted on by the matrix Lie algebra L.

BaseModule(L)

The space Rn acted on by the matrix Lie algebra L.

Degree(L)

The degree of the Lie algebra L. If L is a structure constant algebra, this is just the
dimension of L. If L is a matrix Lie algebra, this is the degree of the matrices in L.

Degree(a)

Given an element a belonging to the Lie algebra L, the dimension of L is returned.

ElementToSequence(a)

Eltseq(a)

The sequence of coefficients of the Lie element a.

Coordinates(M, a)

Let a be an element of a Lie algebra L and let M be a subalgebra of L containing
a. This function returns the coefficients of a with respect to the basis of L.

InnerProduct(a, b)

The (Euclidean) inner product of the coefficient vectors of a and b, where a and b
are elements of some Lie algebra.

Support(a)

The support of the Lie algebra element a; i.e. the set of indices of the non-zero
components of a.
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100.13 Operations for Matrix Lie Algebras

This section describes the functionality provided for matrix Lie algebras which is addi-
tional to that provided for structure constant Lie algebras. For further information see
Chapter 83.

BaseModule(M)

The natural module on which the matrix Lie algebra M acts.

Generic(M)

The full matrix algebra in which the matrix Lie algebra M is naturally embedded.

Kernel(X)

Nullspace(X)

The kernel of the homomorphism represented by the Lie matrix algebra element X.

NullspaceOfTranspose(X)

RowNullSpace(X)

The row nullspace of the homomorphism represented by the Lie matrix algebra
element X.

100.14 Homomorphisms

hom< L -> M | Q >

Given a (structure constant) Lie algebra L of dimension n over R and either a
Lie algebra M over R or a module M over R, the homomorphism from L to M
specified by Q is constructed. The sequence Q may be of the form [b1, . . . , bn],
bi ∈ B, indicating that the i-th basis element of L is mapped to b1 or of the form
[< a1, b1 >, . . . , < an, bn >] indicating that ai maps to bi, where the ai(1 ≤ i ≤ n)
must form a basis of L.

Note that this is in general only a module homomorphism, and no check is made
for it being an algebra homomorphism.
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100.15 Automorphisms of Classical-type Reductive Algebras

IdentityAutomorphism(L)

The trivial automorphism of the Lie algebra L.

InnerAutomorphism(L, x)

The inner automorphism of the Lie algebra L induced by x, where x is an element
of the corresponding group of Lie type.

InnerAutomorphismGroup(L)

The group of Lie type G corresponding to the Lie algebra L. The map G → Aut(L)
is returned as second value.

DiagonalAutomorphism(L, v)

The diagonal automorphism of the Lie algebra L induced by the vector v.

GraphAutomorphism(L, p)

DiagramAutomorphism(L, p)

SimpleSigns Any Default : 1
The graph automorphism of the Lie algebra L induced by the permutation p. This
must be either a permutation of the indices of the simple roots, or a permutation of
the indices of all roots.

The optional parameter SimpleSigns can be used to specify the signs corre-
sponding to each simple root. This should either be a sequence of integers ±1, or a
single integer ±1.

Example H100E47

We construct an automorphism of order three for the simple Lie algebra of type D4.

> DynkinDiagram( "D4" );

D4 3

/

1 - 2

\

4

> p:= Sym(4)!(1,3,4);

> L:= LieAlgebra( "D4", Rationals() );

> f:= GraphAutomorphism( L, p );

> f(L.3);

(0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

> f(L.4);

(0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

> f(L.5);

(0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
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100.16 Restrictable Lie Algebras

A restricted Lie algebra is a Lie algebra over a field of characteristic p > 0, equipped with a
restriction map x → xp, satisfying the axioms given in [Jac62]. A restrictable Lie algebra
is a Lie algebra which can be equipped with a restriction map. A Lie algebra is restrictable
if and only if adL is closed under the pth power map. Hence restrictable Lie algebras have
a standard restriction map induced by the adjoint representation. For many purposes, it
suffices to know that a Lie algebra is restrictable, without needing to know a restriction.

By convention, a Lie algebra over a field of characteristic zero is always considered
restrictable, and the restriction map is the identity map.

In Magma, we do not make a distinction between the concepts of restricted and re-
strictable. Note however that a Lie algebra can have a nonstandard restriction map.

IsRestrictable(L)

IsRestricted(L)

IspLieAlgebra(L)

Returns true if, and only if, the Lie algebra L is restrictable. If L is restrictable,
the restriction map is returned as a second value.

RestrictionMap(L)

pMap(L)

The restriction map of the Lie algebra L. If L is not restrictable, an error is signalled.

Example H100E48

> L:= LieAlgebra( "A2", GF(5) );

> IsRestrictable( L );

true Mapping from: AlgLie: L to AlgLie: L given by a rule [no inverse]

> pmap:= pMap( L );

> pmap( 2*L.3 + L.4);

(0 0 0 1 0 0 0 0)

RestrictedSubalgebra(Q)

pSubalgebra(Q)

Given a sequence Q of elements from the Lie algebra L, the function returns the
restricted subalgebra generated by the elements of Q, i.e., the smallest subalgebra
containing Q which is also closed under the restriction map. If the parent of Q is
not restrictable, an error is signalled.
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pClosure(L, M)

Given Lie algebras L and M such that L ≤ M , this function returns the closure
of L under the restriction map of M . If L is not a subalgebra of M or M is not
restrictable, an error is signalled.

IsRestrictedSubalgebra(L, M)

IspSubalgebra(L, M)

Return true if and only if the Lie algebra L is a restricted Lie subalgebra of M
with the same restriction map. Note that if L is constructed using the pClosure
intrinsic, this will always be true. However if L is constructed as a subalgebra, this
may be false even if L is restrictable, since the restriction map of L will be the
standard map rather than the restriction map of M .

pQuotient(L, M)

Given Lie algebras L and M such that L ≤ M , this function returns the quotient
of L by the p-closure of the Lie algebra M , with respect to the inherited restriction
map.

JenningsLieAlgebra(G)

Let G be a p-group. Then the quotients of the successive terms of the Jennings
series of G can be viewed as vector spaces over the field of p elements. The direct
sum of these vector spaces carries the structure of a Lie algebra (coming from the
commutator of G). This function returns two values. Firstly, the Lie algebra con-
structed from G by this process. This Lie algebra is graded. The second returned
value is a sequence of sequences of two elements. The first element is the degree
of a homogeneous component while the second element is its dimension. The basis
elements of the Lie algebra are ordered according to increasing degree. This means
that from the dimensions of the homogeneous components it is possible to derive
the degree of each basis element.

Lie algebras constructed in this way are naturally restricted. Moreover, if x is a
homogeneous element of degree d, then the p-th power image of x is homogeneous
of degree pd.

Example H100E49

> G:= SmallGroup( 3^6, 196 );

> L, gr:= JenningsLieAlgebra( G );

> L;

Lie Algebra of dimension 6 with base ring GF(3)

> gr;

[

[ 1, 3 ],

[ 2, 1 ],

[ 3, 2 ]
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]

// So the first three basis elements are of degree 1,

// the fourth basis element is of degree 2, and so on.

> pmap:= pMap( L );

> pmap( L.1 );

(0 0 0 0 1 1)

100.17 Universal Enveloping Algebras

This section describes the functionality for universal enveloping algebras of Lie algebras. If
a Lie algebra is semisimple and defined over a field of characteristic 0, then it is possible to
write down an integral basis of the universal enveloping algebra that has nice properties.
To accommodate this possibility, two constructions of a universal enveloping algebra are
provided: a general construction, and one in which this integral basis is used. First we
briefly describe the theoretical background behind universal enveloping algebras.

In Magma, universal enveloping algebras have type AlgUE and their elements have type
AlgUEElt. Integral universal enveloping algebras have type AlgIUE and their elements
have type AlgIUEElt. General algebras having a PBW basis (see below) have type AlgPBW
(elements type AlgPBWElt) which inherit from types Alg and Rng. Consequently, the type
AlgIUE inherits from AlgPBW.

100.17.1 Background

100.17.1.1 Universal Enveloping Algebras
Let L be a Lie algebra over the field F having basis x1, . . . , xn. The universal enveloping

algebra U(L) of L is the associative algebra with identity, generated by n symbols which
are also denoted by x1, . . . , xn. These generators satisfy the relations

xjxi − xixj = [xj , xi], 1 ≤ i, j ≤ n > .

Here [xj , xi] is the product in the Lie algebra L, so it is a certain linear combination of the
xk.

The theorem of Poincaré-Birkhoff-Witt states that a basis of U(L) is formed by the set
of all elements

xk1
1 · · ·xkn

n ,

where the ki are non-negative integers. Furthermore, the product of two such basis el-
ements may be rewritten as a linear combination of basis elements using the defining
relations xjxi − xixj = [xj , xi] for j > i.
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100.17.1.2 The Integral Form of a Universal Enveloping Algebra
If the Lie algebra L happens to be (split) semisimple and of characteristic 0, then

the universal enveloping algebra has a nice basis described by [Kos66]. The first step in
constructing this basis involves taking a Chevalley basis of L, consisting of the elements
y1, . . . , ys, h1, . . . , hr and x1, . . . , xs. Here the yi and xi are root vectors belonging to
negative roots and positive roots, respectively. The hi are basis elements of a Cartan
subalgebra. In the universal enveloping algebra we use the divided powers

y
(n)
i =

yn
i

n!
, x

(n)
i =

xn
i

n!
,

and the binomials (
hi

k

)
=

hi(hi − 1) · · · (hi − k + 1)
k!

.

A basis of U(L) is formed by the elements

y
(m1)
1 · · · y(ms)

s

(
h1

k1

)
· · ·

(
hr

kr

)
x

(n1)
1 · · ·x(ns)

s .

This basis has the useful property that if we multiply two basis elements, the structure
constants will be integers (usually of quite moderate size). So this is a basis of an integral
form of the universal enveloping algebra.

100.17.2 Construction of Universal Enveloping Algebras

UniversalEnvelopingAlgebra(L)

This creates the universal enveloping algebra U of the Lie algebra L. Here the i-th
basis element of L (i.e., L.i) corresponds to the i-th generator of U (i.e., U.i). Every
product of generators is rewritten as a linear combination of Poincaré-Birkhoff-Witt
monomials (cf. Section 100.17.1.1).

IntegralUEA(L)

IntegralUEAlgebra(L)

IntegralUniversalEnvelopingAlgebra(L)

Given a semisimple Lie algebra L of characteristic 0, create the integral universal
enveloping algebra U of L. The basis described in Section 100.17.1.2 is used.

Let x, y and h denote the output of ChevalleyBasis(L). Let s be the length of
x, and r the length of h. Then every generator of U corresponds to an element of
x, y or h. If 1 ≤ i ≤ s then the i-th generator of U (i.e., U.i) corresponds to the
i-th element of y. It is printed as y i. If s + 1 ≤ i ≤ s + r, then the i-th generator
of U corresponds to the k-th element of h, where k = i − s. It is printed as [ h k
; 1 ] (i.e., h k choose 1). Finally, if s + r + 1 ≤ i ≤ 2s + r, then the i-th generator
corresponds to the k-th element of x, where k = i− s− r. It is printed as x k.

Using this form of the universal enveloping algebra has two advantages. Firstly,
the structure constants are integers which usually remain relatively small. Secondly,
multiplication of elements is, in general, much faster than is the case with universal
enveloping algebras that employ PBW bases.
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Example H100E50

> T:= [ <4,1,1,1>, <1,4,1,-1>, <4,1,3,1>, <1,4,3,-1>, <4,2,2,1>, <2,4,2,-1>,

> <4,3,1,1>, <3,4,1,-1>, <3,1,2,1>, <1,3,2,-1> ];

> L:= LieAlgebra< Rationals(), 4 | T >;

> U:= UniversalEnvelopingAlgebra(L);

> U.4*U.1;

x_1*x_4 + x_1 + x_3

> L:= LieAlgebra("F4", Rationals());

> U:= IntegralUEA(L);

> U.29*U.1;

y_1*x_1 + [ h_1 ; 1 ]

> (1/4)*U.29^2*U.1^2;

y_1^(2)*x_1^(2) + y_1*[ h_1 ; 1 ]*x_1 - 2*y_1*x_1 + [ h_1 ; 2 ]

In the last example we divided by 4 because U.29^2 = 2 U.29^(2), and likewise for U.1^2.

AssignNames(∼U, Q)

Assign the names in the sequence Q to the generators of the algebra U .

ChangeRing(U, S)

Given a universal enveloping algebra U with base ring R, together with a ring S,
construct the algebra U ′ with base ring S obtained by coercing the coefficients of
elements of U into S.

100.17.3 Related Structures

CoefficientRing(U)

BaseRing(U)

The ring of coefficients of the universal enveloping algebra U .

Algebra(U)

The Lie algebra corresponding to the universal enveloping algebra U .

100.17.4 Elements of Universal Enveloping Algebras
Most functions in this section are applicable both to universal enveloping algebras and to
integral universal enveloping algebras. Therefore, they are only documented once. An ex-
ception is the function HBinomial, which is only applicable to integral universal enveloping
algebras.
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100.17.4.1 Creation of Elements

U ! 0

Zero(U)

The zero element of the universal enveloping algebra U .

U ! 1

One(U)

The identity element of the universal enveloping algebra U .

U . i

The i-th generator of the universal enveloping algebra U .

U ! r

Returns r as an element of the enveloping algebra U where r may be anything
coercible into the coefficient ring of U or an element of another enveloping algebra
of the same type as U whose coefficients can be coerced into the coefficient ring of
U .

HBinomial(U, i, n)

HBinomial(h, n)

This function is applicable only in the case of integral universal enveloping algebras.
It is used for constructing the “binomial” elements hi choose n. In the first form U
is an integral universal enveloping algebra, and i is an index between 1 and the rank
of the root datum. In the second form, the element h is simply U.(s+i), where s is
the number of positive roots.

Example H100E51

> L:= LieAlgebra("E6",Rationals());

> U:= IntegralUEA(L);

> HBinomial(U, 4, 10);

[ h_4 ; 10 ]
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100.17.4.2 Operations on Elements

x + y x - y x * y c * x x * c x ^ n

Monomials(u)

The sequence of the monomials that occur in the element u of a universal enveloping
algebra.

Coefficients(u)

The sequence of coefficients of the monomials in the element u of a universal en-
veloping algebra. The k-th element of this sequence corresponds exactly to the k-th
monomial in the sequence returned by Monomials(u).

Degree(u, i)

Given an element u of a universal enveloping algebra U and an integer i, this function
returns the degree of u in the i-th generator of U .

Example H100E52

> L:= LieAlgebra("G2",Rationals());

> U:= IntegralUEA(L);

> c:= U.7*U.2;c;

y_2*[ h_1 ; 1 ] + 3*y_2

> Monomials(c);

[

y_2*[ h_1 ; 1 ],

y_2

]

> Coefficients(c);

[ 1, 3 ]

> c:= U.10*U.7*U.2; c;

y_2*[ h_1 ; 1 ]*x_2 + 6*y_2*x_2 + [ h_1 ; 1 ]*[ h_2 ; 1 ] + 3*[ h_2 ; 1 ]

> Degree(c, 2);

1

> Degree(c, 7);

1

> Degree(c, 8);

1
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100.18 Solvable and Nilpotent Lie Algebras Classification

This section describes functions for working with the classification of solvable Lie algebras
of dimension 2, 3, and 4, and the classification of nilpotent Lie algebras having dimensions
3,4,5, and 6. The classification of solvable Lie algebras is taken from [dG05], and applies
to algebras over any base field. The classification of nilpotent Lie algebras is taken from
[dG07]. It lists the nilpotent Lie algebras over any base field, with the exception of fields
of characteristic 2, when the dimension is 6.

The functions described here fall into two categories: functions for creating the Lie
algebras of the classification, and a function for identifying a given solvable Lie algebra of
dimension 2,3,4 or a given nilpotent Lie algebra of dimension 3,4,5,6 as a member of the
list.

First we describe the classifications, in order to define names for the Lie algebras that
occur. We then describe the functions for working with them in Magma.

100.18.1 The List of Solvable Lie Algebras

We denote a solvable Lie algebra of dimension n by Lk
n, where k ranges between 1 and

the number of classes of solvable Lie algebras of dimension n. If the class depends on a
parameter, say a, then we denote the Lie algebra by Lk

n(a). In such cases we also state
conditions under which Lk

n(a) is isomorphic to Lk
n(b) (if there are any). We list the nonzero

commutators only. The field over which the Lie algebra is defined is denoted by F . Here
is the list of classes of solvable Lie algebras having dimension not greater than 4:

L1
2 Abelian.

L2
2 [x2, x1] = x1.

L1
3 Abelian.

L2
3 [x3, x1] = x1, [x3, x2] = x2.

L3
3(a) [x3, x1] = x2, [x3, x2] = ax1 + x2.

L4
3(a) [x3, x1] = x2, [x3, x2] = ax1. Condition of isomorphism: L4

3(a) ∼= L4
3(b) if and only

if there is an α ∈ F ∗ with a = α2b.

L1
4 Abelian.

L2
4 [x4, x1] = x1, [x4, x2] = x2, [x4, x3] = x3.

L3
4(a) [x4, x1] = x1, [x4, x2] = x3, [x4, x3] = −ax2 + (a + 1)x3.

L4
4 [x4, x2] = x3, [x4, x3] = x3.

L5
4 [x4, x2] = x3.

L6
4(a, b) [x4, x1] = x2, [x4, x2] = x3, [x4, x3] = ax1 + bx2 + x3.

L7
4(a, b) [x4, x1] = x2, [x4, x2] = x3, [x4, x3] = ax1 + bx2. Isomorphism condition:

L7
4(a, b) ∼= L7

4(c, d) if and only if there is an α ∈ F ∗ with a = α3c and b = α2d.
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L8
4 [x1, x2] = x2, [x3, x4] = x4.

L9
4(a) [x4, x1] = x1 + ax2, [x4, x2] = x1, [x3, x1] = x1, [x3, x2] = x2. Condition on the

parameter a: T 2 − T − a has no roots in F . Isomorphism condition: L9
4(a) ∼= L9

4(b) if
and only if the characteristic of F is not 2 and there is an α ∈ F ∗ with a+ 1

4 = α2(b+ 1
4 ),

or the characteristic of F is 2 and X2 + X + a + b has roots in F .

L10
4 (a) [x4, x1] = x2, [x4, x2] = ax1, [x3, x1] = x1, [x3, x2] = x2. Condition on F :

the characteristic of F is 2. Condition on the parameter a: a 6∈ F 2. Isomorphism
condition: L10

4 (a) ∼= L10
4 (b) if and only if Y 2 +X2b+ a has a solution (X, Y ) ∈ F ×F

with X 6= 0.

L11
4 (a, b) [x4, x1] = x1, [x4, x2] = bx2, [x4, x3] = (1 + b)x3, [x3, x1] = x2, [x3, x2] = ax1.

Condition on F : the characteristic of F is 2. Condition on the parameters a, b:
a 6= 0, b 6= 1. Isomorphism condition: L11

4 (a, b) ∼= L11
4 (c, d) if and only if a

c and
(δ2 + (b + 1)δ + b)/c are squares in F , where δ = (b + 1)/(d + 1).

L12
4 [x4, x1] = x1, [x4, x2] = 2x2, [x4, x3] = x3, [x3, x1] = x2.

L13
4 (a) [x4, x1] = x1 + ax3, [x4, x2] = x2, [x4, x3] = x1, [x3, x1] = x2.

L14
4 (a) [x4, x1] = ax3, [x4, x3] = x1, [x3, x1] = x2. Condition on parameter a: a 6= 0.

Isomorphism condition: L14
4 (a) ∼= L14

4 (b) if and only if there is an α ∈ F ∗ with
a = α2b.

100.18.2 Comments on the Classification over Finite Fields

Over general fields the lists are not “precise” in the sense that some classes that de-
pend up on a parameter have an associated isomorphism condition, but not a precise
parametrization of the Lie algebras in that class. However, for algebras over finite fields
we are able to give a precise list, by restricting the parameter values in some cases. In this
section we describe how this is done. Here F will be a finite field of size q with primitive
root γ.
* If the characteristic of F is 2, then there are two algebras of type L4

3(a), namely L4
3(0)

and L4
3(1). If the characteristic is not 2, then there are three algebras of this type,

L4
3(0), L4

3(1), L4
3(γ).

* The class L7
4(a, b) splits into three classes: L7

4(a, a) (a ∈ F ), L7
4(a, 0) (a 6= 0), L7

4(0, b)
(b 6= 0). Among the algebras of the first class there are no isomorphisms. However,
for the other two classes we have the following:-

(i) L7
4(a, 0) ∼= L7

4(b, 0) if and only if there is an α ∈ F ∗ such that a = α3b. If q ≡
1 mod 3, then exactly a third of the elements of F ∗ are cubes, namely the γi with i
divisible by 3. So in this case we get three algebras, L7

4(1, 0), L7
4(γ, 0), L7

4(γ
2, 0). If

q 6≡ 1 mod 3 then F 3 = F , and hence there is only one algebra, namely L7
4(1, 0).

(ii) L7
4(0, a) ∼= L7

4(0, b) if and only if there is an α ∈ F ∗ such that a = α2b. So if q is
even then we get one algebra, L7

4(0, 1). If q is odd we get two algebras, L7
4(0, 1),

L7
4(0, γ).
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* In [dG05] it is shown that there is only one Lie algebra in the class L9
4(a). We let e

be the smallest positive integer such that T 2 − T − γe has no roots in F . Then we
take the Lie algebra L9

4(γ
e) as representative of the class.

* Over a finite field of characteristic 2 there are no Lie algebras of type L10
4 (a), as

F 2 = F in that case.
* There is only one Lie algebra of type L11

4 (a, b) over a field of characteristic 2, namely
L11

4 (1, 0).
* If q is even then there is only one algebra of type L14

4 (a), namely L14
4 (1). If q is odd,

then there are two algebras, L14
4 (1) and L14

4 (γ).

100.18.3 The List of Nilpotent Lie Algebras

We denote a nilpotent Lie algebra of dimension r by Nk
r , where k ranges between 1

and the number of classes of nilpotent Lie algebras of dimension r. If the class depends
on a parameter, say a, then we denote the Lie algebra by Nk

r (a). The complete list of
isomorphism classes of nilpotent Lie algebras having dimensions 3, 4, 5 and 6, where in
dimension 6 we exclude base fields of characteristic 2 are as follows:
N1

3 Abelian.
N2

3 [x1, x2] = x3.
N1

4 Abelian.
N2

4 [x1, x2] = x3.
N3

4 [x1, x2] = x3, [x1, x3] = x4.
N1

5 Abelian.
N2

5 [x1, x2] = x3.
N3

5 [x1, x2] = x3, [x1, x3] = x4.
N4

5 [x1, x2] = x5, [x3, x4] = x5.
N5

5 [x1, x2] = x3, [x1, x3] = x5, [x2, x4] = x5.
N6

5 [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x2, x3] = x5.
N7

5 [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5.
N8

5 [x1, x2] = x4, [x1, x3] = x5.
N9

5 [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5.

There are nine 6-dimensional nilpotent Lie algebras denoted Nk
6 for k = 1, . . . , 9 which

are the direct sum of Nk
5 and a 1-dimensional abelian ideal. Consequently, we get the

following Lie algebras:-

N10
6 [x1, x2] = x3, [x1, x3] = x6, [x4, x5] = x6.

N11
6 [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x6, [x2, x3] = x6, [x2, x5] = x6.

N12
6 [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x6, [x2, x5] = x6.

N13
6 [x1, x2] = x3, [x1, x3] = x5, [x2, x4] = x5, [x1, x5] = x6, [x3, x4] = x6.
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N14
6 [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x2, x3] = x5, [x2, x5] = x6, [x3, x4] = −x6.

N15
6 [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x2, x3] = x5, [x1, x5] = x6, [x2, x4] = x6.

N16
6 [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x2, x5] = x6, [x3, x4] = −x6.

N17
6 [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x1, x5] = x6, [x2, x3] = x6.

N18
6 [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x1, x5] = x6.

N19
6 (a) [x1, x2] = x4, [x1, x3] = x5, [x2, x4] = x6, [x3, x5] = ax6.

N20
6 [x1, x2] = x4, [x1, x3] = x5, [x1, x5] = x6, [x2, x4] = x6.

N21
6 (a) [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5, [x1, x4] = x6, [x2, x5] = ax6 .

N22
6 (a) [x1, x2] = x5, [x1, x3] = x6, [x2, x4] = ax6, [x3, x4] = x5.

N23
6 [x1, x2] = x3, [x1, x3] = x5, [x1, x4] = x6, [x2, x4] = x5 .

N24
6 (a) [x1, x2] = x3, [x1, x3] = x5, [x1, x4] = ax6, [x2, x3] = x6,[x2, x4] = x5.

N25
6 [x1, x2] = x3, [x1, x3] = x5, [x1, x4] = x6.

N26
6 [x1, x2] = x4, [x1, x3] = x5, [x2, x3] = x6.

Note that for all classes that depend on a parameter a, the Lie algebra with parameter
a is isomorphic to the Lie algebra (from the same class) with parameter b if and only if
there is an α ∈ F ∗ with a = α2b.

100.18.4 Intrinsics for Working with the Classifications

SolvableLieAlgebra( F, n, k : parameters)

This function returns the solvable Lie algebra Lk
n over the field F . The multiplication

table is exactly the same as that given in the classification of solvable algebras above,
where the basis element xi corresponds to the i-th basis element of the Lie algebra
returned.

pars SeqEnum Default : []

If the Lie algebra Lk
n depends on one or more parameters, then the parameter pars

specifies the parameter values corresponding to the Lie algebra which is required.

Example H100E53

> F<a>:= RationalFunctionField( Rationals() );

> K:= SolvableLieAlgebra( F, 3, 3 : pars:= [a] );

> K.3*K.1;

(0 1 0)

> K.3*K.2;

(a 1 0)
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NilpotentLieAlgebra( F, r, k : parameters)

This function returns the nilpotent Lie algebra Nk
r over the field F . The multiplica-

tion table is exactly the same as that given in the classification of nilpotent algebras
above, where the basis element xi corresponds to the i-th basis element of the Lie
algebra returned.

pars SeqEnum Default : []

If the Lie algebra Nk
r depends upon one or more parameters, then the parame-

ter pars specifies the parameter values corresponding to the Lie algebra which is
required.

Example H100E54

> F<a>:= RationalFunctionField( Rationals() );

> K:= NilpotentLieAlgebra( F, 6, 19 : pars:= [a^3] );

> K.3*K.5;

( 0 0 0 0 0 a^3)

AllSolvableLieAlgebras(F, d)

Given a finite field F and d an integer equal to 2, 3 or 4, this function returns a
sequence containing all solvable Lie algebras of dimension d over the field F .

AllNilpotentLieAlgebras(F, d)

Given a finite field F and d an integer equal to 3, 4, 5 or 6, this function returns
a sequence containing all nilpotent Lie algebras of dimension d over the field F . If
the dimension is 6 then the characteristic of F may not be 2.

IdDataSLAC(L)

Given a solvable Lie algebra L of dimension 2, 3, or 4, this function returns data
that identifies L with the isomorphic algebra in the classification of solvable Lie
algebras. (SLAC stands for Solvable Lie Algebras Classification.) Three objects are
returned: a string, a sequence and a map.

The string gives the name of the Lie algebra as it occurs in the classification,
with information about the field and the parameters.

The sequence contains the parameters of the Lie algebra in the classification to
which L is isomorphic.

The map is an isomorphism from L to the corresponding Lie algebra contained
in the classification.
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IdDataNLAC(L)

Given a nilpotent Lie algebra L of dimension 3, 4, 5 or 6 this function returns data
that identifies L with the isomorphic algebra in the classification of nilpotent Lie
algebras. (NLAC stands for Nilpotent Lie Algebras Classification.) Three objects
are returned: a string giving the name of the algebra N in the classification, a
sequence giving the parameters for N , and the isomorphism mapping L to N .

MatrixOfIsomorphism(f)

Given an isomorphism f as returned by either IdDataSLAC or IdDataNLAC, this
function returns the matrix of that isomorphism. The row convention is used, i.e.,
the i-th row contains the coordinates of the image of the i-th basis element of the
domain of f .

Example H100E55

We define a solvable Lie algebra of dimension 4 that depends on a parameter a. We identify this
Lie algebra as a member of the classification.

> F<a>:= RationalFunctionField( Rationals() );

> T:= [ <1,2,2,1>, <1,2,3,a>, <1,4,4,a>, <2,1,2,-1>, <2,1,3,-a>, <4,1,4,-a> ];

> L:= LieAlgebra< F, 4 | T >;

> s,p,f:= IdDataSLAC( L );

> s;

L4_6( Univariate rational function field over Rational Field

Variables: a, 0, -a/(a^2 + 2*a + 1) )

> p;

[

0,

-a/(a^2 + 2*a + 1)

]

> MatrixOfIsomorphism( f );

[0 (-a - 1)/(a - 1) (-a - 1)/(a - 1) (a^2 + 2*a + 1)/(a^2 - a)]

[0 -1/(a - 1) -a/(a - 1) (a + 1)/(a - 1)]

[0 -1/(a^2 - 1) -a/(a^2 - 1) a/(a - 1)]

[1/(a + 1) 0 0 0]

So generically, the Lie algebra is isomorphic to L6
4(0,−a/(a2+2a+1)). We see that the parameters

are not defined if a = −1. Furthermore, the isomorphism is not defined if a = ±1, or a = 0. We
investigate those cases.

> a:= 1;

> T:= [ <1,2,2,1>, <1,2,3,a>, <1,4,4,a>, <2,1,2,-1>, <2,1,3,-a>, <4,1,4,-a> ];

> L:= LieAlgebra< Rationals(), 4 | T >;

> s,p,f:= IdDataSLAC( L );

> s;

L4_3( Rational Field, 0 )

> MatrixOfIsomorphism( f );

[ 0 1 1 0]
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[ 0 0 -1 1]

[ 0 0 0 1]

[ 1 0 0 0]

> a:= -1;

> T:= [ <1,2,2,1>, <1,2,3,a>, <1,4,4,a>, <2,1,2,-1>, <2,1,3,-a>, <4,1,4,-a> ];

> L:= LieAlgebra< Rationals(), 4 | T >;

> s,p,f:= IdDataSLAC( L );

> s;

L4_7( Rational Field, 0, 1 )

> MatrixOfIsomorphism( f );

[ 0 1/2 1/2 1/2]

[ 0 1/2 -1/2 -1/2]

[ 0 1/2 -1/2 1/2]

[ 1 0 0 0]

> a:= 0;

> T:= [ <1,2,2,1>, <1,2,3,a>, <1,4,4,a>, <2,1,2,-1>, <2,1,3,-a>, <4,1,4,-a> ];

> L:= LieAlgebra< Rationals(), 4 | T >;

> s,p,f:= IdDataSLAC( L );

> s;

L4_4( Rational Field )

> MatrixOfIsomorphism( f );

[ 0 0 1 0]

[ 0 1 0 -1]

[ 0 1 0 0]

[ 1 0 0 0]

We see that for a = 1 the Lie algebra is isomorphic to L3
4(0), and the isomorphism is defined over

any field. If a = −1, then the Lie algebra is isomorphic to L7
4(0, 1). However, the isomorphism is

not defined if the characteristic of the field is 2. But then we are back in the case a = 1. Finally,
for a = 0 the Lie algebra is isomorphic to L4

4.

Example H100E56

The positive part of the simple Lie algebra of type G2 is a nilpotent Lie algebra of dimension
six. We identify it in the classification of nilpotent algebras, both in characteristic 0, and in
characteristic 3.

> L:= LieAlgebra( "G2", Rationals() );

> x,y,h:= ChevalleyBasis( L );

> x;

[ (0 0 0 0 0 0 0 0 1 0 0 0 0 0), (0 0 0 0 0 0 0 0 0 1 0 0 0 0), (0 0 0

0 0 0 0 0 0 0 1 0 0 0), (0 0 0 0 0 0 0 0 0 0 0 1 0 0), (0 0 0 0 0 0 0

0 0 0 0 0 1 0), (0 0 0 0 0 0 0 0 0 0 0 0 0 1) ]

So we see that the positive part is spanned by basis vectors L.i with i=9, 10, 11, 12, 13 and 14.
So

> K:= sub< L | [ L.i : i in [9,10,11,12,13,14] ] >;

> name,pp,f:= IdDataNLAC( K );

> name;
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N6_16( Rational Field )

> MatrixOfIsomorphism( f );

[ 1 0 0 0 0 0]

[ 0 1 0 0 0 0]

[ 0 0 1 0 0 0]

[ 0 0 0 1/2 0 0]

[ 0 0 0 0 1/6 0]

[ 0 0 0 0 0 1/6]

> L:= LieAlgebra( "G2", GF(3) );

> K:= sub< L | [ L.i : i in [9,10,11,12,13,14] ] >;

> name,pp,f:= IdDataNLAC( K );

> name;

N6_19( Finite field of size 3, 0 )

We see that in characteristic 3 L is isomorphic to a Lie algebra from a different class.

100.19 Semisimple Subalgebras of Simple Lie Algebras
Here we describe the functions for working with the classification of the semisimple

subalgebras of the simple Lie algebras. These subalgebras have been classified for the
simple Lie algebras over the complex numbers, of ranks up to 8. They have been classified
up to linear equivalence. Two subalgebras K1, K2 of a Lie algebra L are linearly equivalent
if for every representation of L the induced representations of K1, K2 are equivalent. The
basic function for dealing with them returns a directed graph, describing the inclusions
among the subalgebras, and having the subalgebras as labels of the vertices. (We refer to
[dG11] for the background details of this classification.)

SubalgebrasInclusionGraph( t )

Here t has to be a simple type of rank not exceeding 8. This function returns a
directed graph G. The vertices of this graph are numbered from 1 to the number
of semisimple subalgebras. Furthermore, the last vertex is numbered 0. A vertex
has a label that is the semisimple subalgebra corresponding to it. The label of the
last vertex (numbered 0), has the Lie algebra L of type t as its label. All other
semisimple Lie algebras are subalgebras of this one.

The Lie algebra L (and its subalgebras) is defined over the rational numbers, or
over a cyclotomic field. It is sometimes necessary to take an extension, because for
some types not all subalgebras are defined over the rationals.

Moreover, in G there is an edge from the vertex with label K1 to the vertex with
label K2 if and only if K1 has a subalgebra that is linearly equivalent (as subalgebra
of L) to K2. We remark that it does not mean that K2 is a subalgebra of K1 (rather
that it is linearly equivalent to a subalgebra of K1).
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Example H100E57

We consider the subalgebras of the Lie algebra of type C3. We compute the types of its maximal
subalgebras.

> G:= SubalgebrasInclusionGraph( "C3" );

> G;

Digraph

Vertex Neighbours

1 ;

2 ;

3 ;

4 ;

5 ;

6 ;

7 ;

8 2 4 ;

9 5 10 ;

10 1 2 ;

11 1 2 3 ;

12 1 5 6 ;

13 3 4 6 ;

14 10 11 ;

15 9 12 14 ;

0 7 8 13 15 ;

> v:= Vertices(G);

> Label( v[10] );

Lie Algebra of dimension 6 with base ring Rational Field

> SemisimpleType( Label( v[7] ) );

A1

> SemisimpleType( Label( v[8] ) );

A2

> SemisimpleType( Label( v[13] ) );

A1 A1

> SemisimpleType( Label( v[15] ) );

A1 C2

RestrictionMatrix( G, k )

Here G is a subalgebras inclusion graph of the simple Lie algebra L, as output by
the previous function, and k is a nonzero integer, corresponding to a vertex. This
function returns the restriction matrix corresponding to L and the Lie algebra that
is the label of the k-th vertex of G. This restriction matrix maps weights in a
representation of L to weights of the subalgebra, and can be used to decompose a
representation of L, as a representation of the subalgebra.
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Example H100E58

We decompose the adjoint representation of the Lie algebra of type D4, when viewed as a repre-
sentation of its subalgebra of type G2.

> G:= SubalgebrasInclusionGraph( "D4" );

> v:= Vertices(G);

> tt:= [ SemisimpleType( Label(a) ) : a in v ];

> Index( tt, "G2" );

17

> M:= RestrictionMatrix( G, 17 );

> R:= RootDatum( "D4" : Isogeny:= "SC" );

> S:= RootDatum( "G2" : Isogeny:= "SC" );

> D:= AdjointRepresentationDecomposition(R);

> E:= Branch( S, D, M );

> WeightsAndMultiplicities(E);

[

(0 1),

(1 0)

]

[ 1, 2 ]

100.20 Nilpotent Orbits in Simple Lie Algebras

Take a simple Lie algebra over the complex numbers, and consider the connected com-
ponent of its automorphism group that contains the identity. This group acts on the Lie
algebra, and there is interest in understanding the nature of its orbits. The nilpotent
orbits for simple Lie algebras have been classified. We refer to the book by Collingwood
and McGovern [CM93] for the details of this classification.

The main technical tools used for the classification are the weighted Dynkin diagram
and the sl2-triple. The weighted Dynkin diagram is the Dynkin diagram of the root system
of the Lie algebra, with labels that can be 0, 1, 2. A nilpotent orbit is uniquely determined
by its weighted Dynkin diagram. By the Jacobson-Morozov theorem a nilpotent element
of a semisimple Lie algebra can be embedded (as nilpositive element) in an sl2-triple. Now
two nilpotent elements are conjugate (under the group) if and only if the corresponding
sl2-triples are conjugate. This yields a bijection between nilpotent orbits and conjugacy
classes of simple subalgebras isomorphic to sl2.

This section describes functions for working with the classification of nilpotent orbits in
simple Lie algebras. One of the main invariants of a nilpotent orbit is its weighted Dynkin
diagram. We represent such a diagram by a sequence of its labels; they are mapped to the
nodes of the Dynkin diagram in the order determined by the Cartan matrix of the root
datum. Also, an sl2-triple is represented by a sequence [f, h, e] of three elements of a Lie
algebra; these satisfy the commutation relations [h, e] = 2e, [h, f ] = −2f , [e, f ] = h.

Throughout this section we consider orbits that are not the zero orbit.
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IsGenuineWeightedDynkinDiagram( L, wd )

Given a simple Lie algebra L, and a sequence wd consisting of integers that are
0, 1, or 2, this function returns true if wd corresponds to a nilpotent orbit (in
other words, if it is the weighted Dynkin diagram of a nilpotent orbit). If wd does
corresponds to a nilpotent orbit, an sl2-triple in L, such that the third element lies
in the nilpotent orbit corresponding to the weighted Dynkin diagram is returned. If
wd does not correspond to a nilpotent orbit. the second return value is a sequence
consisting of three zeros of L.

Example H100E59

We can use this function to find the classification of the nilpotent orbits of a given Lie algebra.
First we construct all possible weighted Dynkin diagrams, and then we remove those that do not
correspond to an orbit.

> L:= LieAlgebra( RootDatum("D4"), Rationals() );

> [ w : i,j,k,l in [0,1,2] | IsGenuineWeightedDynkinDiagram(L, w)

> where w := [i,j,k,l] ];

[

[ 0, 0, 0, 2 ],

[ 0, 0, 2, 0 ],

[ 0, 1, 0, 0 ],

[ 0, 2, 0, 0 ],

[ 0, 2, 0, 2 ],

[ 0, 2, 2, 0 ],

[ 1, 0, 1, 1 ],

[ 2, 0, 0, 0 ],

[ 2, 0, 2, 2 ],

[ 2, 2, 0, 0 ],

[ 2, 2, 2, 2 ]

]

NilpotentOrbit( L, wd )

This returns the nilpotent orbit in the simple Lie algebra L with weighted Dynkin
diagram given by the sequence wd. It is not checked whether the weighted Dynkin
diagram really corresponds to a nilpotent orbit.

NilpotentOrbit( L, e )

This returns the nilpotent orbit in the simple Lie algebra L having representative
e. Here e has to be a nilpotent element of the Lie algebra. This condition is not
checked by the function.
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Example H100E60

> L:= LieAlgebra( RootDatum("A2"), Rationals() );

> NilpotentOrbit( L, [2,2] );

Nilpotent orbit in Lie algebra of type A2

> NilpotentOrbit( L, L.1 );

Nilpotent orbit in Lie algebra of type A2

NilpotentOrbits( L )

Given a simple Lie algebra L, this function returns the sequence of all nilpotent
orbits in the simple Lie algebra L.

Example H100E61

We compute the nilpotent orbits of the Lie algebra of type D4, and observe that they are the
same as those found in Example H100E59.

> L:= LieAlgebra( RootDatum("D4"), Rationals() );

> o:= NilpotentOrbits(L);

> [ WeightedDynkinDiagram(orb) : orb in o ];

[

[ 2, 2, 2, 2 ],

[ 2, 0, 2, 2 ],

[ 2, 2, 0, 0 ],

[ 0, 2, 0, 2 ],

[ 0, 2, 2, 0 ],

[ 0, 2, 0, 0 ],

[ 1, 0, 1, 1 ],

[ 2, 0, 0, 0 ],

[ 0, 0, 0, 2 ],

[ 0, 0, 2, 0 ],

[ 0, 1, 0, 0 ]

]

Partition( o )

Here o is a nilpotent orbit in a simple Lie algebra of classical type (i.e., of type An,
Bn, Cn or Dn). The nilpotent orbits for the Lie algebras of these types have been
classified in terms of partitions. This function returns the partition corresponding
to the orbit.
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Example H100E62

> L:= LieAlgebra( RootDatum("D4"), Rationals() );

> orbs:= NilpotentOrbits( L );

> Partition( orbs[5] );

[ 4, 4 ]

> Partition( orbs[6] );

[ 3, 3, 1, 1 ]

SL2Triple( o )

Given a nilpotent orbit o in a simple Lie algebra L, this function returns an sl2-triple,
[f, h, e] of elements of L, such that e lies in the nilpotent orbit.

SL2Triple( L, e )

Given a semisimple Lie algebra L of characteristic 0, and a nilpotent element e of
L, this function returns an sl2-triple [f, h, e] of elements of L. It may also work for
other Lie algebras, and in other characteristics, but this is not guaranteed.

Representative( o )

Given a nilpotent orbit o for a simple Lie algebra L, this function returns an e ∈ L
lying in the orbit.

WeightedDynkinDiagram( o )

Given a nilpotent orbit o for a simple Lie algebra L, this function returns its weighted
Dynkin diagram.

Example H100E63

We take some nilpotent element in the Lie algebra of type E8 and we find the weighted Dynkin
diagram of the orbit it lies in.

> L:= LieAlgebra( RootDatum("E8"), Rationals() );

> x,_,_:= ChevalleyBasis(L);

> orb:= NilpotentOrbit( L, x[1]+x[10]-x[30]+3*x[50]-2*x[100] );

> WeightedDynkinDiagram( orb );

[ 1, 0, 0, 0, 0, 0, 0, 1 ]
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Chapter 101

KAC-MOODY LIE ALGEBRAS

101.1 Introduction

Lie algebras of finite dimension are well understood, and numerous procedures for
performing calculations with them are described in Chapter 100. An important class of
infinite dimensional Lie algebras is that of Kac-Moody Lie algebras. The principal text on
this subject is a book by Kac [Kac90]. Let us briefly introduce these Lie algebras.

A generalized Cartan matrix is an integral matrix A = (aij)n
i,j=1 such that aii = 2,

aij < 0 for i 6= j, and aij = 0 implies aji = 0. (Note that in particular, a Cartan matrix
in the usual sense is a generalized Cartan matrix.)

To a generalized Cartan matrix we associate a Kac-Moody Lie algebra g(A). This Lie
algebra is generated by 3n elements ei, fi, hi (i = 1, . . . , n) satisfying the following defining
relations:

[hi, hj ] = 0, [ei, fi] = hi, [ei, fj ] = 0 if i 6= j,

[hi, ej ] = aijej , [hi, fj ] = −aijfj ,

(adei)1−aij ej = 0, (adfi)1−aij fj = 0 if i 6= j.

The class of Kac-Moody Lie algebras breaks up into three subclasses:

(a)There is a vector θ of positive integers such Aθ is a positive vector. In this case the Lie
algebra g(A) is finite-dimensional and reductive.

(b)There is a vector δ of positive integers such that Aδ = 0. In this case g(A) is infinite-
dimensional, but is of polynomial growth. These Lie algebras are called affine Lie
algebras.

(c) There is a vector α of positive integers such that Aα is negative. In this case g(A) is
infinite-dimensional and of exponential growth.

The procedures for finite-dimensional Lie algebras are described in Chapter 100. The
affine Lie algebras are described in Section 101.3. The Kac-Moody Lie algebras of type (c)
are not yet available.
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101.2 Generalized Cartan Matrices

IsGeneralizedCartanMatrix(C)

Whether the square matrix C is a generalized Cartan matrix.

KacMoodyClass(C)

The class of the indecomposable generalized Cartan matrix C. The first return
value is a string, “a”, “b” or “c”, corresponding to the three cases described in the
introduction 101.1. The second is a positive integral column vector v such that Cv is
positive, 0 or negative, respectively (so this return value corresponds to the vectors
θ, δ and α in the introduction).

KacMoodyClasses(C)

The class of the possibly decomposable generalized Cartan matrix C. Three se-
quences are returned: the first is a sequence of strings “a”, “b” or “c”, describing
the class of each component; the second is a positive integral vector v such that Cv
is positive, 0 or negative, respectively (see KacMoodyClass).

The third sequence Q contains integral sequences Qi such that the i-th compo-
nent is formed by taking the rows and columns with index j, for j ∈ Qi.

Example H101E1

First, we consider an indecomposable Cartan matrix.

> C := Matrix(Integers(), 3, 3, [2,-1,0, -5,2,-1, 0,-1,2]);

> s, v := KacMoodyClass(C);

> s;

c

> v;

[2]

[5]

[1]

> C*v;

[-1]

[-1]

[-3]

As a second example, we consider a decomposable Cartan matrix.

> C := CartanMatrix("B2 A~3");

> S, V, Q := KacMoodyClasses(C);

> S;

[ a, b ]

> Q;

[

[ 1, 2 ],

[ 3, 4, 5, 6 ]

]
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> C1 := Submatrix(C, Q[1], Q[1]);

> KacMoodyClass(C1);

a

> C2 := Submatrix(C, Q[2], Q[2]);

> KacMoodyClass(C2);

b

101.3 Affine Kac-Moody Lie Algebras

For affine Lie algebras there exists a well-known explicit construction of these in terms of
an underlying finite-dimensional Lie algebra and a central extension (see [Kac90, Chapters
7,8]). We briefly reiterate the construction here. Suppose A is an affine Cartan matrix, so
that g(A) is an affine Lie algebra; then A is of affine Cartan type X̃n for X=A,B,C,D,E,F,
or G, and some n. If we let g0 be the finite variant (i.e., a Lie algebra of Cartan type Xn)
then

g(A) ∼= g0 ⊗C[t, t−1]⊕Cc⊕Cd

for some formal basis elements c and d, where C[t, t−1] is the ring of Laurent polynomials
over C. In Magma we represent affine Lie algebras and their elements using the form on
the right hand side.

Multiplication is given by

[tk ⊗ x⊕ λc⊕ µd, tk1 ⊗ y ⊕ λ1c⊕ µ1d] =

(tk+k1 ⊗ [x, y] + µk1t
k1 ⊗ y − µ1ktk ⊗ x)⊕ kδk,−k1(x|y)c,

where (x|y) denotes a fixed non-degenerate invariant symmetric bilinear C-valued form on
g0.

If we fix Ei, Fi to be canonical generators of g0, then the canonical generators of g(A),
as described in the introduction (101.1) are given by e0 = t ⊗ E0, f0 = t−1 ⊗ F0, and
ei = 1⊗ Ei, fi = 1⊗ Fi, for i = 1, . . . , l, where l is the rank of the Cartan matrix.

Affine Lie algebras and their elements are of type AlgKac and AlgKacElt respectively.

101.3.1 Constructing Affine Kac-Moody Lie Algebras

AffineLieAlgebra(N, F)

Construct the affine Kac-Moody Lie algebra of type N over the field F . N should
be a string describing an affine Cartan type (e.g. A∼3). See Section 95.6 for more
information on the conventions, syntax, and functions for creating and working with
affine Cartan matrices.

AffineLieAlgebra(C, F)

Construct the affine Kac-Moody Lie algebra with affine Cartan matrix C over the
field F .
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Example H101E2

We demonstrate the construction functions.

> L := AffineLieAlgebra("G~2", Rationals());

> L;

Affine Kac-Moody Lie algebra over Rational Field

> C := Matrix(Integers(),3,3,[2,-1,-1,-1,2,-1,-1,-1,2]);

> CartanName(C);

A~2

> L := AffineLieAlgebra(C, Rationals());

> L;

Affine Kac-Moody Lie algebra over Rational Field

101.3.2 Properties of Affine Kac-Moody Lie Algebras

CartanMatrix(L)

The Cartan matrix of L.

CartanName(L)

The Cartan type of L.

Dimension(L)

Infinity.

CoefficientRing(L)

The coefficient ring of L.

FiniteLieAlgebra(L)

The Lie algebra g0 underlying L (see the Introduction, Section 101.1).

LaurentSeriesRing(L)

The Laurent series ring C[t, t−1] underlying L (see the Introduction, Section 101.1).

StandardGenerators(L)

The standard generators of L. These are returned as three sequences, the first
containing the ei, the second containing the fi, and the last containing the hi.
Note that the root usually labeled “0” occurs as the last element of each of these
sequences.
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Example H101E3

We demonstrate some properties of affine Lie algebras.

> L := AffineLieAlgebra("A~2", Rationals());

> L;

Affine Kac-Moody Lie algebra over Rational Field

> Lf := FiniteLieAlgebra(L);

> Lf;

Lie Algebra of dimension 8 with base ring Rational Field

> SemisimpleType(Lf);

A2

> e,f,h := StandardGenerators(L);

> e;

[ (0 0 0 0 0 1 0 0), (0 0 0 0 0 0 1 0), (t)*(1 0 0 0 0 0 0 0) ]

> F<e1,e2,e0,f1,f2,f0> := FreeLieAlgebra(Rationals(), 6);

> phi := hom<F -> L | e cat f>;

> phi(e1);

(0 0 0 0 0 1 0 0)

> phi(e1*e0) eq phi(e1)*phi(e0);

true

101.3.3 Constructing Elements of Affine Kac-Moody Lie Algebras

L . i

The i-th basis element of the finite dimensional Lie algebra underlying L, as an
element of L.

HasAttribute(L, "c")

HasAttribute(L, "d")

Return true and the basis element c or d of L, according to the second argument
of HasAttribute.

elt< L | <[<p1, y1>, . . .], λ, µ> >

For a 3-tuple t such that t1 is a sequence of elements of C[t, t−1] × g0, and t2 and
t3 are elements of the coefficient ring of L, construct

∑

(p,y)∈t1

p⊗ y ⊕ t2c⊕ t3d ∈ L.

See EltTup below for the converse function.
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101.3.4 Properties of Elements of Affine Kac-Moody Lie Algebras

EltTup(x)

The element x of the affine Lie algebra L as a three-tuple t such that

x =
∑

(p,y)∈t1

p⊗ y ⊕ t2c⊕ t3d.

The first entry, t1, is a sequence of pairs (p, y) ∈ C[t, t−1]× g0, t2 is the coefficient
of c and t3 is the coefficient of d.

IsZero(x)

Whether x is zero.

x eq y

Whether x and y are equal.

x + y

x - y

x * y

Respectively the sum, difference, and multiplication of x and y.

-x

The negation of x.

Example H101E4

We perform various computations with elements of an affine Lie algebra.

> L<t> := AffineLieAlgebra("B~3", Rationals());

> Lf := FiniteLieAlgebra(L);

> e,f,h := StandardGenerators(L);

> E,F,H := StandardBasis(Lf);

> e[1] eq L!E[1];

true

> x := e[4];

> x;

(t)*(1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

> EltTup(x);

<[

<t, (1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)>

], 0, 0>

> elt<L | EltTup(x) > eq x;

true

> y := elt<L | <[<t^2-t^-2, F[1]>,<-2,Lf.3>], -1/3, 1> >;

> y;



Ch. 101 KAC-MOODY LIE ALGEBRAS 3069

(-2)*(0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) + (-t^-2 + t^2)*(0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0) -1/3*c + d

> z := t^3*L.2 - 1/5*h[1] + 1/7*L‘c-L‘d;

> z;

(t^3)*(0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) + (2/5)*(0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0) (-1/5)*(0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0) + 1/7*c -1*d

> x*(y*z) + y*(z*x) + z*(x*y);

0

101.4 Bibliography
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Chapter 102

QUANTUM GROUPS

102.1 Introduction

This chapter describes the functionality for quantum groups in Magma. First there are a
few sections that briefly describe the theoretical background behind quantum groups (or,
more precisely, quantized enveloping algebras). This fixes the notation and the terminology
that we use (these vary somewhat in the literature). For this we mainly follow [Jan96]. In
the remainder we describe the functions that exist in Magma for constructing and working
with quantum groups and their representations.

In Magma, quantized enveloping algebras have type AlgQUE and their elements have
type AlgQUEElt. These types inherit from AlgPBW and AlgPBWElt respectively, which are
general types for algebras with a PBW basis and their elements and inherit from GenMPolB,
Alg and Rng and their element types.

102.2 Background

102.2.1 Gaussian Binomials
Let v be an indeterminate over Q. For a positive integer n we set

[n]v = vn−1 + vn−3 + · · ·+ v−n+3 + v−n+1.

We say that [n]v is the Gaussian integer corresponding to n. The Gaussian factorial [n]v!
is defined by

[0]v! = 1, [n]v! = [n]v[n− 1]v · · · [1]v for n > 0.

Finally, the Gaussian binomial is

(
n

k

)

v

=
[n]!

[k]![n− k]!
.
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102.2.2 Quantized Enveloping Algebras
Let L be a semisimple Lie algebra with root system Φ. By ∆ = {α1, . . . , αl} we denote

a fixed set of simple roots of Φ. Let C = (Cij) be the Cartan matrix of Φ (with respect
to ∆, i.e., Cij = 〈αi, α

∨
j 〉). Let d1, . . . , dl be the unique sequence of positive integers with

greatest common divisor 1, such that diCji = djCij , and set (αi, αj) = djCij . (We note
that this implies that (αi, αi) is divisible by 2.) By P we denote the weight lattice, and
we extend the form ( , ) to P by bilinearity.

By W (Φ) we denote the Weyl group of Φ. It is generated by the simple reflections
si = sαi

for 1 ≤ i ≤ l (where sα is defined by sα(β) = β − 〈β, α∨〉α).
We work over the field Q(q). For α ∈ Φ we set

qα = q
(α,α)

2 ,

and for a non-negative integer n, [n]α = [n]v=qα ; [n]α! and
(
n
k

)
α

are defined analogously.
The quantized enveloping algebra Uq(L) is the associative algebra (with one) over Q(q)

generated by Fα, Kα, K−1
α , Eα for α ∈ ∆, subject to the following relations

KαK−1
α = K−1

α Kα = 1, KαKβ = KβKα

EβKα = q−(α,β)KαEβ

KαFβ = q−(α,β)FβKα

EαFβ = FβEα + δα,β
Kα −K−1

α

qα − q−1
α

together with, for α 6= β ∈ ∆,

1−〈β,α∨〉∑

k=0

(−1)k

(
1− 〈β, α∨〉

k

)

α

E1−〈β,α∨〉−k
α EβEk

α = 0

1−〈β,α∨〉∑

k=0

(−1)k

(
1− 〈β, α∨〉

k

)

α

F 1−〈β,α∨〉−k
α FβF k

α = 0.

The quantized enveloping algebra has an automorphism ω defined by ω(Fα) = Eα,
ω(Eα) = Fα and ω(Kα) = K−1

α . Also there is an anti-automorphism τ defined by τ(Fα) =
Fα, τ(Eα) = Eα and τ(Kα) = K−1

α . We have ω2 = 1 and τ2 = 1.
If the Dynkin diagram of Φ admits a diagram automorphism π, then π induces an

automorphism of Uq(L) in the obvious way (π is a permutation of the simple roots; we
permute the Fα, Eα, K±1

α accordingly).
Now we view Uq(L) as an algebra over Q, and we let : Uq(L) → Uq(L) be the

automorphism defined by Fα = Fα, Kα = K−1
α , Eα = Eα, q = q−1. This map is called

the bar-automorphism.
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102.2.3 Representations of Uq(L)
Let λ ∈ P be a dominant weight. Then there is a unique irreducible highest-weight

module over Uq(L) with highest weight λ. We denote it by V (λ). It has the same character
as the irreducible highest-weight module over L with highest weight λ. Furthermore, every
finite-dimensional Uq(L)-module is a direct sum of irreducible highest-weight modules. In
[Gra04] a few algorithms for constructing V (λ) are given. In the Magma implementation
the algorithm based on Gröbner bases is used.

It is well-known that Uq(L) is a Hopf algebra. The comultiplication ∆ : Uq(L) →
Uq(L)⊗ Uq(L) is defined by

∆(Eα) = Eα ⊗ 1 + Kα ⊗ Eα

∆(Fα) = Fα ⊗K−1
α + 1⊗ Fα

∆(Kα) = Kα ⊗Kα.

(Note that we use the same symbol (∆) to denote a set of simple roots of Φ; of course
this does not cause confusion.) The counit ε : Uq(L) → Q(q) is a homomorphism defined
by ε(Eα) = ε(Fα) = 0, ε(Kα) = 1. Finally, the antipode S : Uq(L) → Uq(L) is an
anti-automorphism given by S(Eα) = −K−1

α Eα, S(Fα) = −FαKα, S(Kα) = K−1
α .

Using ∆ we can make the tensor product V ⊗ W of two Uq(L)-modules V,W into a
Uq(L)-module. The counit ε yields a trivial 1-dimensional Uq(L)-module. And with S we
can define a Uq(L)-module structure on the dual V ∗ of a Uq(L)-module V , by (u · f)(v) =
f(S(u) · v).

The Hopf algebra structure given above is not the only one possible. For example, we
can twist ∆, ε, S by an automorphism, or an anti-automorphism f . The twisted comulti-
plication is given by

∆f = f ⊗ f ◦∆ ◦ f−1,

the twisted antipode by
Sf = f ◦ S ◦ f−1,

if f is an automorphism, and
Sf = f ◦ S−1 ◦ f−1,

if f is an anti-automorphism. The twisted counit is given by εf = ε ◦ f−1.

102.2.4 PBW-type Bases
The first problem one has to deal with when working with Uq(L) is finding a basis of

it, along with an algorithm for expressing the product of two basis elements as a linear
combination of basis elements. First of all we have that Uq(L) ∼= U−⊗U0⊗U+ (as vector
spaces), where U− is the subalgebra generated by the Fα, U0 is the subalgebra generated
by the Kα, and U+ is generated by the Eα. So a basis of Uq(L) is formed by all elements
FKE, where F , K, E run through bases of U−, U0, U+ respectively.

Finding a basis of U0 is easy: it is spanned by all Kr1
α1
· · ·Krl

αl
, where ri ∈ Z. For U−

and U+ we use the so-called PBW-type bases. They are defined as follows. For α, β ∈ ∆
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we set rβ,α = −〈β, α∨〉. Then for α ∈ ∆ we have the automorphism Tα : Uq(L) → Uq(L)
defined by

Tα(Eα) = −FαKα

Tα(Eβ) =
rβ,α∑

i=0

(−1)iq−i
α E

(rβ,α−i)
α EβE(i)

α , (α 6= β)

Tα(Kβ) = KβK
rβ,α
α

Tα(Fα) = −K−1
α Eα

Tα(Fβ) =
rβ,α∑

i=0

(−1)iqi
αF (i)

α FβF
(rβ,α−i)
α , (α 6= β)

(where E
(k)
α = Ek

α/[k]α!, and likewise for F
(k)
α ).

Let w0 = si1 · · · sit be a reduced expression for the longest element in the Weyl group
W (Φ). For 1 ≤ k ≤ t set Fk = Tαi1

· · ·Tαik−1
(Fαik

), and Ek = Tαi1
· · ·Tαik−1

(Eαik
). Then

Fk ∈ U−, and Ek ∈ U+. Furthermore, the elements Fm1
1 · · ·Fmt

t , En1
1 · · ·Ent

t (where the
mi, ni are non-negative integers) form bases of U− and U+ respectively.

The elements Fα and Eα are said to have weight −α and α respectively, where α is a
simple root. Furthermore, the weight of a product ab is the sum of the weights of a and b.
Now elements of U−, U+ that are linear combinations of elements of the same weight are
said to be homogeneous. It can be shown that the elements Fk, and Ek are homogeneous
of weight −β and β respectively, where β = si1 · · · sik−1(αik

).
In the following we use the notation F

(m)
k = Fm

k /[m]αik
!, and E

(n)
k = En

k /[n]αik
!.

We refer to [Gra01] for an account of algorithms for expressing the product of two
elements of a PBW-type basis as a linear combination of such elements. These algorithms
are implemented in Magma.

102.2.5 The Z-form of Uq(L)
For α ∈ ∆ set (

Kα

n

)
=

n∏

i=1

q−i+1
α Kα − qi−1

α K−1
α

qi
α − q−i

α

.

Then according to [Lus90], Theorem 6.7 the elements

F
(k1)
1 · · ·F (kt)

t Kδ1
α1

(
Kα1

m1

)
· · ·Kδl

αl

(
Kαl

ml

)
E

(n1)
1 · · ·E(nt)

t ,

(where ki,mi, ni ≥ 0, δi = 0, 1) form a basis of Uq(L), such that the product of any
two basis elements is a linear combination of basis elements with coefficients in Z[q, q−1].
The quantized enveloping algebra over Z[q, q−1] with this basis is called the Z-form of
Uq(L), and denoted by UZ. Since UZ is defined over Z[q, q−1] we can specialize q to any
nonzero element ε of a field F , and obtain an algebra Uε over F . In particular, if we
take ε = 1, then we obtain an algebra U1 over Q. Let I be the ideal of U1 generated by
Kα1 − 1, . . . ,Kαl

− 1. Then U1/I is isomorphic to the universal enveloping algebra U(L)
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of L. Also, the homomorphism Uq(L) → U(L) maps the basis above onto an integral basis
of U(L) ([Lus90]).

We call q ∈ Q(q), and ε ∈ F the quantum parameter of Uq(L) and Uε respectively.

102.2.6 The Canonical Basis
As in Section 102.2.4 we let U− be the subalgebra of Uq(L) generated by the Fα for

α ∈ ∆. Kashiwara and Lusztig have (independently) given constructions of a basis of U−

with very nice properties, called the canonical basis.
Let w0 = si1 · · · sit

, and the elements Fk be as in Section 102.2.4. Then, in order to
stress the dependency of the monomial

F
(n1)
1 · · ·F (nt)

t

on the choice of reduced expression for the longest element in W (Φ) we say that it is a
w0-monomial. The integer n1 is called its first exponent.

Now we let be the automorphism of U− defined in Section 102.2.2. Elements that
are invariant under are said to be bar-invariant.

By results of Lusztig ([Lus93], Theorem 42.1.10, [Lus96], Proposition 8.2), there is a
unique basis B of U− with the following properties. Firstly, all elements of B are bar-
invariant. Secondly, for any choice of reduced expression w0 for the longest element in
the Weyl group, and any element X ∈ B we have that X = x +

∑
i ζixi, where x, xi are

w0-monomials, x 6= xi for all i, and ζi ∈ qZ[q]. The basis B is called the canonical basis.
If we work with a fixed reduced expression for the longest element in W (Φ), and write
X ∈ B as above, then we say that x is the principal monomial of X.

Let L be the Z[q]-lattice in U− spanned by B. Then L is also spanned by all w0-
monomials (where w0 is a fixed reduced expression for the longest element in W (Φ)).

Now let w̃0 be a second reduced expression for the longest element in W (Φ). Let x
be a w0-monomial, and let X be the element of B with principal monomial x. Write X
as a linear combination of w̃0-monomials, and let x̃ be the principal monomial of that
expression. Then we write x̃ = Rw̃0

w0
(x). Note that x = x̃ mod qL.

Now let B be the set of all x mod qL, where x runs through the set of w0-monomials.
Then B is a basis of the Z-module L/qL. Moreover, B is independent of the choice of w0.
Let α ∈ ∆, and let w̃0 be a reduced expression for the longest element in W (Φ), starting
with sα. The Kashiwara operators F̃α : B → B and Ẽα : B → B ∪ {0} are defined as
follows. Let b ∈ B and let x be the w0-monomial such that b = x mod qL. Set x̃ = Rw̃0

w0
(x).

Let x̃′ be the w̃0-monomial constructed from x̃ by increasing its first exponent by 1. Then
F̃α(b) = Rw0

w̃0
(x̃′) mod qL. For Ẽα we let x̃′ be the w̃0-monomial constructed from x̃ by

decreasing its first exponent by 1, if this exponent is ≥ 1. Then Ẽα(b) = Rw0
w̃0

(x̃′) mod qL.
Furthermore, Ẽα(b) = 0 if the first exponent of x̃ is 0. It can be shown that this definition
does not depend on the choice of w0, w̃0. Furthermore we have F̃αẼα(b) = b, if Ẽα(b) 6= 0,
and ẼαF̃α(b) = b for all b ∈ B.

Now let V (λ) be a highest-weight module over Uq(L), with highest weight λ. Let vλ

be a fixed highest weight vector. Then Bλ = {X · vλ | X ∈ B} \ {0} is a basis of V (λ),
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called the canonical basis of V (λ). Let L(λ) be the Z[q]-lattice in V (λ) spanned by Bλ.
We let B(λ) be the set of all x · vλ mod qL(λ), where x runs through all w0-monomials,
such that X · vλ 6= 0, where X ∈ B is the element with principal monomial x. Then
the Kashiwara operators are also viewed as maps B(λ) → B(λ) ∪ {0}, in the following
way. Let b = x · vλ mod qL(λ) be an element of B(λ), and let b′ = x mod qL be the
corresponding element of B. Let y be the w0-monomial such that F̃α(b′) = y mod qL.
Then F̃α(b) = y · vλ mod qL(λ). The description of Ẽα is analogous. (In [Jan96], Chapter
9 a different definition is given; however, by [Jan96], Proposition 10.9, Lemma 10.13, the
two definitions agree).

The set B(λ) has dim V (λ) elements. We let Γ be the coloured directed graph defined
as follows. The points of Γ are the elements of B(λ), and there is an arrow with colour
α ∈ ∆ connecting b, b′ ∈ B, if F̃α(b) = b′. The graph Γ is called the crystal graph of V (λ).

In [Gra02] algorithms are given for computing the action of the Kashiwara operators
on B (without computing B first), and for computing elements of B.

102.2.7 The Path Model
In this section we recall some basic facts on Littelmann’s path model.
From Section 102.2.2 we recall that P denotes the weight lattice. Let PR be the vector

space over R spanned by P . Let Π be the set of all piecewise linear paths ξ : [0, 1] → PR,
such that ξ(0) = 0. For α ∈ ∆ Littelmann defined path operators fα, eα : Π → Π ∪ {0}.
Let λ be a dominant weight and let ξλ be the path joining λ and the origin by a straight
line. Let Πλ be the set of all nonzero fαi1

· · · fαim
(ξλ) for m ≥ 0. Then ξ(1) ∈ P for all

ξ ∈ Πλ. Let µ ∈ P be a weight, and let V (λ) be the highest-weight module over Uq(L) of
highest weight λ. A theorem of Littelmann states that the number of paths ξ ∈ Πλ such
that ξ(1) = µ is equal to the dimension of the weight space of weight µ in V (λ) ([Lit95],
Theorem 9.1).

All paths appearing in Πλ are so-called Lakshmibai–Seshadri paths (LS-paths for short).
They are defined as follows. Let ≤ denote the Bruhat order on W (Φ). For µ, ν ∈ W (Φ) ·λ
(the orbit of λ under the action of W (Φ)), write µ ≤ ν if τ ≤ σ, where τ, σ ∈ W (Φ) are the
unique elements of minimal length such that τ(λ) = µ, σ(λ) = ν. Now a rational path of
shape λ is a pair π = (ν, a), where ν = (ν1, . . . , νs) is a sequence of elements of W (Φ) · λ,
such that νi > νi+1 and a = (a0 = 0, a1, · · · , as = 1) is a sequence of rationals such that
ai < ai+1. The path π corresponding to these sequences is given by

π(t) =
r−1∑

j=1

(aj − aj−1)νj + νr(t− ar−1)

for ar−1 ≤ t ≤ ar. Now an LS-path of shape λ is a rational path satisfying a certain
integrality condition (see [Lit94], [Lit95]). We note that the path ξλ = ((λ), (0, 1)) joining
the origin and λ by a straight line is an LS-path of shape λ. Furthermore, all paths
obtained from ξλ by applying the path operators are LS-paths of shape λ.

From [Lit94], [Lit95]) we transcribe the following:
(a)Let π be an LS-path. Then fαπ is an LS-path or 0; and the same holds for eαπ.
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(b)The action of fα, eα can easily be described combinatorially (see [Lit94]).

(c) The endpoint of an LS-path is an integral weight.

(d)Let π = (ν, a) be an LS-path. Then by φ(π) we denote the unique element σ of W (Φ)
of shortest length such that σ(λ) = ν1.
Let λ be a dominant weight. Then we define a labeled directed graph Γ as follows.

The points of Γ are the paths in Πλ. There is an edge with label α ∈ ∆ from π1 to
π2 if fαπ1 = π2. Now by [Kas96] this graph Γ is isomorphic to the crystal graph of the
highest-weight module with highest weight λ. So the path model provides an efficient
way of computing the crystal graph of a highest-weight module, without constructing the
module first. Also we see that fαi1

· · · fαir
ξλ = 0 is equivalent to F̃αi1

· · · F̃αir
vλ = 0,

where vλ ∈ V (λ) is a highest weight vector (or rather the image of it in L(λ)/qL(λ)), and
the F̃αk

are the Kashiwara operators on B(λ) (see Section 102.2.6).

102.3 Gauss Numbers

GaussNumber(n, v)

Given an integer n and a ring element v, this function returns the Gauss number
corresponding to n with parameter v, i.e., the element [n]v = vn−1 + vn−3 + · · · +
v−n+3 + v−n+1.

GaussianFactorial(n, v)

Given an integer n and a ring element v, this function returns the Gaussian factorial
corresponding to n with parameter v, i.e., the element [n]v! = [n]v[n− 1]v · · · [1]v.

GaussianBinomial(n, k, v)

Given an integer n, an integer k and a ring element v, this function returns the
Gaussian binomial n choose k with parameter v, i.e., the element [n]v!/([k]v![n−k]v!).

Example H102E1

> F<q>:= RationalFunctionField(Rationals());

> GaussianBinomial(5, 3, q^2);

(q^24 + q^20 + 2*q^16 + 2*q^12 + 2*q^8 + q^4 + 1)/q^12
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102.4 Construction

QuantizedUEA(R)

QuantizedUEAlgebra(R)

QuantizedUniversalEnvelopingAlgebra(R)

This creates the quantized enveloping algebra U corresponding to the root datum
R. The algebra U will be defined over the rational function field in one variable, q,
over the rational numbers.

Let n and r respectively be the number of positive roots, and the rank of R.
Then U has 2n+ r generators, accessible as U.1, U.2 and so on. The first n of these
are printed as F 1, . . . , F n. They generate a PBW-type basis of the subalgebra U−

(cf. Section 102.2.4). The next r generators are printed as K 1, . . . , K r; together
with their inverses they generate the algebra U0. The final n generators are printed
as E 1, . . . , E n. They generate a PBW-type basis of U+.

In U we use a basis of the integral form of U (Section 102.2.5). This means that
instead of F s

k and Es
k we use the divided powers F

(s)
k and E

(s)
k . Furthermore, a

general basis element of U0 is a product of elements which are of the form [Ki; t], or
Ki[Ki; t]. Here [Ki; t] represents the “binomial” Ki choose t as described in Section
102.2.5.

w0 SeqEnum Default :

It is also possible to give a reduced expression for the longest element in the Weyl
group, by setting the optional parameter w0 equal to a sequence of indices lying
between 1 and the rank of R. If we replace each index by the corresponding simple
reflection, then a reduced expression for the longest element in the Weyl group has to
be obtained. In that case the PBW-basis relative to that sequence will be created
(and used in subsequent computations). If this parameter is not given, then the
lexicographically smallest reduced expression will be used.

Example H102E2

We construct the quantum group corresponding to the root datum of type C3.

> R:= RootDatum("C3");

> U:= QuantizedUEA(R);

> U.9; U.10; U.15;

F_9

K_1

E_3

> U.21*U.14*U.10*U.9*U.1;

1/q*F_1*F_9*K_1*E_2*E_9 - 1/q*F_1*F_9*K_1*E_6 + 1/q^3*F_1*K_1*[ K_3 ; 1 ]*E_2 -

F_9*E_3*E_9 + F_9*E_8 - 1/q^2*[ K_3 ; 1 ]*E_3

Now we construct the same algebra, but use the PBW-basis relative to a different reduced expres-
sion of the longest element in the Weyl group.

> U:= QuantizedUEA(R : w0:= [2,3,1,2,3,1,2,3,1]);
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> U.21*U.14*U.10*U.9*U.1;

q^2*F_1*F_9*K_1*E_2*E_9 + (q^2 - 1)/q^3*F_9*K_1*[ K_2 ; 1 ]*E_6*E_9 -

1/q^2*F_9*K_1*K_2*E_6*E_9 - q^2*F_1*F_9*K_1*E_4 + q^2*F_1*K_1[ K_1 ; 1 ]*E_2 +

q*F_3*K_1*E_2*E_9 + (-q^2 + 1)/q^3*F_9*K_1*[ K_2 ; 1 ]*E_7 +

1/q^2*F_9*K_1*K_2*E_7 + (q^2 - 1)/q*K_1[ K_1 ; 1 ]*[ K_2 ; 1 ]*E_6

- K_1[ K_1 ; 1 ]*K_2*E_6 - q*F_3*K_1*E_4 + q*F_1*E_2

AssignNames(U, S)

Assign the names in the sequence S to the generators of the algebra U .

ChangeRing(U, R)

Return the algebra identical to the algebra U but having coefficient ring R.

102.5 Related Structures

CoefficientRing(U)

This returns the ring of coefficients of the quantized enveloping algebra U .

RootDatum(U)

This returns the root datum corresponding to the quantized enveloping algebra U .

PositiveRootsPerm(U)

Given a quantized universal enveloping algebra U with root datum R returns a
sequence consisting of the integers between 1 and the number of positive roots of R.
If the k-th element of this sequence is m, then the generator Fk of U is of weight
−βm, where βm is the m-th positive root of R (as returned by PositiveRoots(R)).
(For the definition of weight of an element of U see Section 102.2.4.) Furthermore,
the generator Ek is of weight βm.

Example H102E3

> R:= RootDatum("D4");

> U:= QuantizedUEA(R);

> CoefficientRing(U);

Univariate rational function field over Rational Field

Variables: q

> RootDatum(U);

Adjoint root datum of type D4

> PositiveRootsPerm(U);

[ 1, 5, 2, 8, 6, 3, 12, 11, 9, 10, 7, 4 ]

So for instance this means that F6 is of weight −β3.
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102.6 Operations on Elements

The generators of a quantized enveloping algebra U can be constructed by using the dot
operator, e.g., U.5. More general elements can then be constructed using the operations
of scalar multiplication, addition, and multiplication.

Note that for the generators denoted Fk and Ek we use divided powers instead of
normal powers. This means for instance that F s

k = [s]!F (s)
k , i.e., exponentiation causes

multiplication by a scalar factor.

x + y x - y x * y c * x x * c x ^ n

U ! 0

Zero(U)

The zero element of the quantized enveloping algebra U .

U ! 1

One(U)

The identity element of the quantized enveloping algebra U .

U . i

The i-th generator of the quantized enveloping algebra U . Let the root datum have
s positive roots and rank r. If 1 ≤ i ≤ s then U.i is Fi. If s+1 ≤ i ≤ s+r, then U.i
is Kj where j = i− s. If s + r + 1 ≤ i ≤ 2s + r then U.i is Ej , where j = i− s− r.

U ! r

Returns r as an element of the quantized universal enveloping algebra U where r
may be anything coercible into the coefficient ring of U or an element of another
quantized enveloping algebra whose coefficients may be coerced into the coefficient
ring of U .

KBinomial(U, i, s)

KBinomial(K, s)

Given a quantized enveloping algebra U corresponding to a root datum of rank r,
an integer i between 1 and r, and a positive integer s, return the element [Ki; s].
This can be used to construct general elements in the subalgebra U0 (cf. Section
102.2.4).

Or given an element K = Ki, i.e., equal to U.(n+i), where n is the number of
positive roots of the root datum, return [K; s].

Monomials(u)

Given an element u of a quantized enveloping algebra, returns the sequence consist-
ing of the monomials of u. This sequence corresponds exactly to the one returned
by Coefficients(u).
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Coefficients(u)

Given an element u of a quantized enveloping algebra, returns the sequence consist-
ing of the coefficients of the monomials that occur in u. This sequence corresponds
exactly to the one returned by Monomials(u).

K ^ -1

Given a generator K of a quantized enveloping algebra U of the form Ki, i.e., it is
equal to U.k, for some n + 1 ≤ k ≤ n + r where U corresponds to a root datum of
rank r with n positive roots, return the inverse of K.

Degree(u, i)

Given an element u of a quantized enveloping algebra U and an integer 1 ≤ i ≤ n
or n + r + 1 ≤ i ≤ 2n + r, where the root datum corresponding to U has n positive
roots and rank r (i.e., U.i is equal to Fi or to Ek, where k = i− n− r), return the
degree of u in the generator Fi if 1 ≤ i ≤ n, otherwise return the degree of u in the
generator Ek, where k = i− n− r.

KDegree(m, i)

Given a single monomial m in a quantized enveloping algebra and an integer 1 ≤ i ≤
r, where r is the rank of the corresponding root datum return a tuple of 2 integers,
where the first is 0 or 1, and the second is non-negative. Denote this tuple by 〈d, k〉.
If d = 0 then the factor [Ki; k] occurs in the monomial m. If d = 1, then the factor
Ki[Ki; k] occurs in the monomial m.

Example H102E4

> R:= RootDatum("G2");

> U:= QuantizedUEA(R);

> u:= U.10*U.7^3*U.1;

> m:= Monomials(u); m;

[

F_1*K_1[ K_1 ; 2 ]*E_2,

F_1*[ K_1 ; 1 ]*E_2,

F_1*K_1*E_2,

K_1[ K_1 ; 1 ]*E_3,

E_3

]

> Coefficients(u);

[

(q^6 - q^4 - q^2 + 1)/q^17,

(q^2 - 1)/q^14,

1/q^15,

(-q^2 + 1)/q^9,

-1/q^8

]

> Degree(m[1], 1);
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1

> Degree(m[1], 9);

0

> Degree(m[1], 10);

1

> KDegree(m[1], 1);

<1, 2>

> U.7^-1;

(-q^2 + 1)/q*[ K_1 ; 1 ] + K_1

> U.7*U.7^-1;

1

102.7 Representations
In this section we describe some functions for working with left-modules over quantized
enveloping algebras. For a general introduction into algebra modules in Magma we refer
to Chapter 89.

HighestWeightRepresentation(U, w)

Given a quantized enveloping algebra U corresponding to a root datum of rank
r and a sequence w of non-negative integers of length r, returns the irreducible
representation of U with highest weight w. The object returned is a function which
given an element of U computes its matrix.

HighestWeightModule(U, w)

Given a quantized enveloping algebra U corresponding to a root datum of rank r and
a sequence w of non-negative integers of length r, returns the irreducible U -module
with highest weight w. The object returned is a left module over U .

Example H102E5

> R:= RootDatum("G2");

> U:= QuantizedUEA(R);

> f:= HighestWeightRepresentation(U, [1,1]);

> f(U.6);

[ 0 0 0 0 0 0 0]

[ 0 0 0 0 0 0 0]

[ 0 1 0 0 0 0 0]

[ 0 0 0 0 0 0 0]

[ 0 0 0 0 0 0 0]

[ 0 0 0 0 -q 0 0]

[ 0 0 0 0 0 0 0]

> M:= HighestWeightModule(U, [1,0]);

> U.6^M.5;

(0 0 0 0 0 -q 0)
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WeightsAndVectors(V)

For a module V over a quantized universal enveloping algebra this returns two
sequences. The first sequence consists of the weights that occur in V . The second
sequence is a sequence of sequences of elements of V , in bijection with the first
sequence. The i-th element of the second sequence consists of a basis of the weight
space of weight equal to the i-th weight of the first sequence.

HighestWeightsAndVectors(V)

This function is analogous to the previous one. Except in this case the first sequence
consists of highest weights, i.e., those weights which occur as highest weights of
an irreducible constituent of V . The second sequence consists of sequences that
contain the corresponding highest weight vectors. So the submodules generated by
the vectors in the second sequence form a direct sum decomposition of V .

CanonicalBasis(V)

Given a (left-) module V over a quantized universal enveloping algebra, returns the
canonical basis of V . If V is not irreducible, then the union of the canonical bases
of the irreducible components of V is returned.

Example H102E6

> U:= QuantizedUEA(RootDatum("B2"));

> V:= HighestWeightModule(U, [1,0]);

> C:= CanonicalBasis(V); C;

[

V: (1 0 0 0 0),

V: (0 1 0 0 0),

V: (0 0 1 0 0),

V: (0 0 0 1 0),

V: ( 0 0 0 0 -1/q^2)

]

We can compute the action of elements of U with respect to the canonical basis by using
ModuleWithBasis:

> M:= ModuleWithBasis(C);

> ActionMatrix(M, U.1);

[0 0 0 0 0]

[1 0 0 0 0]

[0 0 0 0 0]

[0 0 0 0 0]

[0 0 0 1 0]
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TensorProduct(Q)

Given a sequence Q of left-modules over a quantized universal enveloping algebra,
returns the module M that is the tensor product of the elements of Q. It also returns
a map from the Cartesian product of the elements of Q to M . This maps a tuple t
to the element of M that is formed by tensoring the elements of t.

Example H102E7

> U:= QuantizedUEA(RootDatum("B2"));

> v1:= HighestWeightModule(U, [1,0]);

> V1:= HighestWeightModule(U, [1,0]);

> V2:= HighestWeightModule(U, [0,1]);

> W, f:= TensorProduct([V1,V2]);

> Dimension(W);

20

> HighestWeightsAndVectors(W);

[

(1 1),

(0 1)

]

[

[

W: (1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

],

[

W: (0 0 1 0 0 q^4 0 0 -q^7/(q^2 + 1) 0 0 0 0 0

0 0 0 0 0 0)

]

]

> f(<V1.2,V2.4>);

W: (0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0)

So in particular we see that V 1⊗V 2 is the direct sum of two irreducible modules, one with highest
weight (1, 1), the other with highest weight (0, 1). The corresponding highest-weight vectors are
also given.
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102.8 Hopf Algebra Structure

In this section we describe the functions for working with the Hopf algebra structure of a
quantized universal enveloping algebra (cf. Section 102.2.3).

UseTwistedHopfStructure(U, f, g)

The Hopf algebra structure that is used by default is the one described in Sec-
tion 102.2.3. As explained in that same section, it is possible to twist this by an
automorphism, or an antiautomorphism.

Given a quantized universal enveloping algebra U and (anti-) automorphisms f
and g of U where g is the inverse of f (this is not checked by Magma) set U to use
the corresponding twisted Hopf algebra structure.

This command has to be given before using the Hopf algebra structure, otherwise
the default structure will be used. This includes creating a tensor product.

For some (anti-) automorphisms we refer to Section 102.9.

HasTwistedHopfStructure(U)

This function checks whether the quantized enveloping algebra U has been set to
use a twisted Hopf structure. If the first value returned by this function is true,
then the (anti-) automorphism and its inverse are also returned.

Counit(U)

Returns the counit of the quantized enveloping algebra U . It is a map from U into
the ground field of U .

Antipode(U)

Returns the antipode of the quantized enveloping algebra U . It is an antiautomor-
phism of U .

Comultiplication(U, d)

Returns the comultiplication of degree d of the quantized enveloping algebra U . This
is a map from U into the d-fold tensor power of U . The comultiplication given in
Section 102.2.3 is of degree 2. The comultiplications of higher degree are obtained
by repeating this map. So in particular, d has to be at least 2.

An element of the d-fold tensor power of U is represented (rather primitively)
by a list of d-tuples, each followed by a coefficient. The d-tuples are d-tuples of
basis elements of U . The element represented by this list is the sum of the elements
obtained by multiplying the i-th coefficient and the tensor product of the elements
in the i-th d-tuple.
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Example H102E8

> U:= QuantizedUEA(RootDatum("A3"));

> d:= Comultiplication(U, 2);

> d(U.1);

[*

<1, F_1>,

1,

<F_1, K_1>,

1,

<F_1, [ K_1 ; 1 ]>,

(-q^2 + 1)/q

*]

102.9 Automorphisms

BarAutomorphism(U)

For a quantized enveloping algebra U this returns the bar-automorphism of U (Sec-
tion 102.2.2). The map returned by this function has its inverse stored, which can
be retrieved using Inverse.

AutomorphismOmega(U)

For a quantized enveloping algebra U this returns the automorphism of U that is
denoted by ω (Section 102.2.2). The map returned by this function has its inverse
stored, which can be retrieved using Inverse.

AntiAutomorphismTau(U)

For a quantized enveloping algebra U this returns the anti-automorphism of U that
is denoted by τ (Section 102.2.2). The map returned by this function has its inverse
stored, which can be retrieved using Inverse.

AutomorphismTalpha(U, k)

Let U be a quantized enveloping algebra, and let k be an integer between 1 and the
rank of the root datum. Then this function returns the automorphism Tαk

of U ,
corresponding to the k-th simple root (Section 102.2.4). The map returned by this
function has its inverse stored, which can be retrieved using Inverse.
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DiagramAutomorphism(U, p)

GraphAutomorphism(U, p)

Let U be a quantized enveloping algebra, and let p be a permutation of {1, . . . , r},
where r is the rank of the root datum. Here p must represent a diagram automor-
phism of the root datum (i.e., it leaves the Dynkin diagram invariant). Then this
function returns the corresponding automorphism of U (see Section 102.2.2). The
map returned by this function has its inverse stored, which can be retrieved using
Inverse.

Example H102E9

> R:= RootDatum("G2");

> U:= QuantizedUEA(R);

> b:= BarAutomorphism(U);

> b(U.3);

(q^10 - q^6 - q^4 + 1)/q^4*F_1^(2)*F_6 + (q^4 - 1)/q^2*F_1*F_5 + F_3

A known result states that T−1
αr

= τ ◦ Tαr ◦ τ . We check that for the quantum group of type C3,
and the third simple root.

> U:= QuantizedUEA(RootDatum("C3"));

> t:= AntiAutomorphismTau(U);

> T:= AutomorphismTalpha(U, 3);

> Ti:= Inverse(T);

> f:= t*T*t;

> &and[ Ti(U.i) eq f(U.i) : i in [1..21] ];

true

A diagram automorphism maps the canonical basis into itself. We check that for the set of
elements of the canonical basis of the quantized enveloping algebra of type D4 of weight α1 +
3α2 + 2α3 + 2α4. (Here αi is the i-th simple root.) The chosen diagram automorphism maps this
weight to 2α1 + 3α2 + α3 + 2α4. Therefore we also compute the elements of the canonical basis
of that weight.

> U:= QuantizedUEA(RootDatum("D4"));

> p:= SymmetricGroup(4)!(1,3,4);

> d:= DiagramAutomorphism(U, p);

> e1:= CanonicalElements(U, [1,3,2,2]);

> e2:= CanonicalElements(U, [2,3,1,2]);

> &and[ d(x) in e2 : x in e1 ];

true
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102.10 Kashiwara Operators

Falpha(m, i)

Given a monomial m in U− for some quantized enveloping algebra U , i.e., m must
be a monomial in the first n generators of U , where n is the number of positive roots
of the corresponding root datum, returns another monomial in the negative part of
U that is obtained by applying the i-th Kashiwara operator F̃i to m (see Section
102.2.6). Here i must lie between 1 and the rank of the root datum.

Ealpha(m, i)

Given a monomial m in U− for some quantized enveloping algebra U , i.e., m must
be a monomial in the first n generators of U , where n is the number of positive
roots of the corresponding root datum, return Ẽi(m) (see Section 102.2.6) if the
i-th Kashiwara operator Ẽi is applicable to m. Otherwise the zero element of U is
returned. Here i must lie between 1 and the rank of the root datum.

Example H102E10

> R:= RootDatum("F4");

> U:= QuantizedUEA(R);

> m:= U.1*U.5*U.10*U.18*U.24;

> m;

F_1*F_5*F_10*F_18*F_24

> Falpha(m, 3);

F_1*F_6*F_7*F_10*F_18*F_24

> Ealpha(m, 4);

F_1*F_4*F_5*F_7*F_9*F_18*F_24

> Ealpha(m, 2);

0

102.11 The Path Model

In this section we describe functions for working with Littelmann’s path model (cf. Section
102.2.7). A special role is played by the zero path. The path operators cannot be applied
to the zero path. However, on some occasions they do produce the zero path.

DominantLSPath(R, hw)

Given a root datum R and a sequence hw of non-negative integers returns the path
that is the straight line from the origin to hw.
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Falpha(p, i)

Given a (non-zero) path p and an integer i between 1 and the rank of the root datum
returns the result of applying the path operator fαi

to p (where αi is the i-th simple
root).

Ealpha(p, i)

Given a (non-zero) path p and an integer i between 1 and the rank of the root datum
returns the result of applying the path operator eαi

to p (where αi is the i-th simple
root).

WeightSequence(p)

For a path p this returns the sequence of weights that, along with the sequence of
rational numbers, defines the path (cf. Section 102.2.7).

RationalSequence(p)

For a path p this returns the sequence of rational numbers that, along with the
sequence of weights, defines the path (cf. Section 102.2.7).

EndpointWeight(p)

Returns the weight which is the end point of the path p.

Shape(p)

Returns the weight which is the shape of the path p.

WeylWord(p)

Returns a reduced expression for the element σ of the Weyl group, of shortest length
such that σ(λ) = ν1, where λ is the shape of the path p, and ν1 is the first weight
in the sequence WeightSequence(p). The reduced expression is represented as a
sequence of integers between 1 and the rank of the root datum. In this sequence
the index i represents the i-th simple reflection.

IsZero(p)

Returns true if the path p is the zero path, false otherwise.

p1 eq p2

Returns true if the paths p1 and p2 are equal, false otherwise.
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Example H102E11

> R:= RootDatum("B2");

> p:= DominantLSPath(R, [ 2, 3 ]);

> p;

LS-path of shape (2 3) ending in (2 3)

> Falpha(p, 1);

LS-path of shape (2 3) ending in (0 5)

> Ealpha(Falpha(p, 1), 1);

LS-path of shape (2 3) ending in (2 3)

> p1:= Falpha(Falpha(Falpha(p, 1), 2), 1);

> p1;

LS-path of shape (2 3) ending in (-1 5)

> WeightSequence(p1);

[

(5 -7),

(-2 7)

]

> RationalSequence(p1);

[ 0, 1/7, 1 ]

> WeylWord(p1);

[ 2, 1 ]

So s2s1(2, 3) = (5,−7).

CrystalGraph(R, hw)

For a root datum R and a sequence of non-negative integers hw (of length equal to
the rank of the root datum), this function returns the corresponding crystal graph
G, along with a sequence of paths. The graph G is a directed labelled graph. The
labels on the edges are integers between 1 and the rank of the root system. If there
is an edge from i to j with label s, then fαs(pi) = pj , where pi, pj are the i-th and
j-th elements of the sequence of paths returned by this function (and fαs is the root
operator corresponding to the s-th simple root). In other words, the i-th path is the
i-th point of the graph G.

Example H102E12

> R:= RootDatum("G2");

> G, pp:= CrystalGraph(R, [0,1]);

> G;

Digraph

Vertex Neighbours

1 2 ;

2 3 ;

3 4 ;

4 5 6 ;
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5 7 ;

6 8 ;

7 9 ;

8 10 ;

9 11 ;

10 11 ;

11 12 ;

12 13 ;

13 14 ;

14 ;

> e:= Edges(G);

> e[10];

[9, 11]

> Label(e[10]);

1

> Falpha(pp[9], 1) eq pp[11];

true

102.12 Elements of the Canonical Basis

CanonicalElements(U, w)

Given a quantized enveloping algebra U , corresponding to a root datum R of rank r
and a sequence w of non-negative integers of length r returns the sequence consisting
of the elements of the canonical basis of the negative part of U that are of weight ν,
where ν denotes the linear combination of the simple roots of R defined by w (i.e.,
ν = w[1]α1 + · · ·+ w[r]αr and α1, . . . , αr denote the simple roots of R).

Example H102E13

> R:= RootDatum("F4");

> U:= QuantizedUEA(R);

> c:= CanonicalElements(U, [1,2,1,1]); c;

[

F_1*F_3^(2)*F_9*F_24,

q*F_1*F_3^(2)*F_9*F_24 + F_1*F_3^(2)*F_23,

q^4*F_1*F_3^(2)*F_9*F_24 + F_1*F_3*F_7*F_24,

q^5*F_1*F_3^(2)*F_9*F_24 + q^4*F_1*F_3^(2)*F_23 + q*F_1*F_3*F_7*F_24 +

F_1*F_3*F_21,

q^4*F_1*F_3^(2)*F_9*F_24 + F_2*F_3*F_9*F_24,

q^5*F_1*F_3^(2)*F_9*F_24 + q^4*F_1*F_3^(2)*F_23 + q*F_2*F_3*F_9*F_24 +

F_2*F_3*F_23,

(q^6 + q^2)*F_1*F_3^(2)*F_9*F_24 + q^2*F_1*F_3*F_7*F_24 +

q^2*F_2*F_3*F_9*F_24 + F_2*F_7*F_24,

(q^7 + q^3)*F_1*F_3^(2)*F_9*F_24 + (q^6 + q^2)*F_1*F_3^(2)*F_23 +

q^3*F_1*F_3*F_7*F_24 + q^3*F_2*F_3*F_9*F_24 + q^2*F_1*F_3*F_21 +



3094 LIE THEORY Part XIV

q^2*F_2*F_3*F_23 + q*F_2*F_7*F_24 + F_2*F_21,

q^8*F_1*F_3^(2)*F_9*F_24 + q^4*F_1*F_3*F_7*F_24 + q^4*F_2*F_3*F_9*F_24 +

q^2*F_2*F_7*F_24 + F_3*F_4*F_24,

q^9*F_1*F_3^(2)*F_9*F_24 + q^8*F_1*F_3^(2)*F_23 + q^5*F_1*F_3*F_7*F_24 +

q^5*F_2*F_3*F_9*F_24 + q^4*F_1*F_3*F_21 + q^4*F_2*F_3*F_23 +

q^3*F_2*F_7*F_24 + q*F_3*F_4*F_24 + q^2*F_2*F_21 + F_3*F_18

]

> b:= BarAutomorphism(U);

> [ b(u) eq u : u in c ];

[ true, true, true, true, true, true, true, true, true, true ]

All elements of the canonical basis are invariant under the bar-automorphism.

Example H102E14

In the next example we show how to use the crystal graph to determine whether an element of
the canonical basis acting on the highest weight vector of an irreducible module gives zero or not.

> U:= QuantizedUEA(RootDatum("A2"));

> G, p:= CrystalGraph(RootDatum(U), [1,1]);

> e:= Edges(G);

> for edge in e do

> print edge, Label(edge);

> end for;

[1, 2] 1

[1, 3] 2

[2, 4] 2

[3, 5] 1

[4, 6] 2

[5, 7] 1

[6, 8] 1

[7, 8] 2

We see that fα1fα2fα2fα1(p1) = p8 (where pi is the i-th path in p). We apply the same sequence
of Kashiwara operators to the identity element of U .

> Falpha(Falpha(Falpha(Falpha(One(U), 1), 2), 2), 1);

F_1*F_2*F_3

Now the element of the canonical basis with this principal monomial (see Section 102.2.6) acting
on the highest weight vector of the irreducible module with highest weight [1,1] gives a non-zero
result. The weight of this monomial is 2α1 + 2α2. All other elements of the canonical basis of
this weight give zero, as there is only one point of the crystal graph that gives a monomial of this
weight.

> V:= HighestWeightModule(U, [1,1]);

> ce:= CanonicalElements(U, [2,2]);

> ce;

[

F_1^(2)*F_3^(2),

(q^3 + q)*F_1^(2)*F_3^(2) + F_1*F_2*F_3,

q^4*F_1^(2)*F_3^(2) + q*F_1*F_2*F_3 + F_2^(2)
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]

> v0:= V.1;

> ce[2]^v0;

V: ( 0 0 0 0 0 0 0 -1/q)

> ce[1]^v0;

V: (0 0 0 0 0 0 0 0)

> ce[3]^v0;

V: (0 0 0 0 0 0 0 0)

102.13 Homomorphisms to the Universal Enveloping Algebra

QUAToIntegralUEAMap(U)

Given a quantized enveloping algebra U returns the map from U onto the integral
form of the universal enveloping algebra of the corresponding Lie algebra (cf. Section
102.2.5). We refer to Section 100.17 for an account of universal enveloping algebras
in Magma.

Example H102E15

> U:= QuantizedUEA(RootDatum("C3"));

> f:= QUAToIntegralUEAMap(U);

> p:= CanonicalElements(U, [1,2,1]);

> [ f(u) : u in p ];

[

y_1*y_2^(2)*y_3,

2*y_1*y_2^(2)*y_3 + y_1*y_2*y_5,

y_1*y_2^(2)*y_3 + y_1*y_2*y_5 + y_1*y_7,

y_1*y_2^(2)*y_3 + y_2*y_3*y_4 - y_2*y_6,

2*y_1*y_2^(2)*y_3 + y_1*y_2*y_5 + y_2*y_3*y_4 - y_2*y_6 + y_4*y_5,

2*y_1*y_2^(2)*y_3 + y_1*y_2*y_5 + 2*y_2*y_3*y_4 - y_2*y_6 + y_4*y_5,

y_1*y_2^(2)*y_3 + y_1*y_2*y_5 + y_2*y_3*y_4 + y_1*y_7 + y_4*y_5 + y_8

]

So this allows one to construct elements of the canonical basis of a universal enveloping algebra
(of a semisimple Lie algebra).
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Chapter 103

GROUPS OF LIE TYPE

103.1 Introduction
This chapter describes Magma functions for computing with groups of Lie type. These
functions are based on [CMT04] for split types, and [Hal05] for twisted types.

Given an extended root datum and ring with a Γ-action, a group of Lie type can be
constructed in Magma. Such groups include reductive Lie groups (when the ring is R or
C), reductive algebraic groups (when the ring is an algebraically closed field), and finite
groups of Lie type (when the ring is a finite field).

103.1.1 The Steinberg Presentation
The approach to computation in split groups of Lie type described here is based on the
Steinberg presentation[Ste62] Let G be a split group of Lie type with root datum R over
the ring k. Suppose the roots of R are α1, . . . , α2N ordered as in Section 97.5 and n is the
rank of R. Then G contains root elements xr(t) = xαr (t) for t in k. If R is semisimple,
the root elements generate G. In the general case, it is necessary to introduce extra torus
elements. Let Y = Zd be the coroot space of the root datum. The torus is taken to be
the abelian group Y ⊗ k×, represented as the set of vectors in kd with each component
invertible, and multiplication is performed componentwise. The Weyl group of G is just
the Coxeter group of the root datum RD. Redundant generators nr are also included,
corresponding to the generators sr of the Weyl group.

Since the generating set is parametrised by field elements it is generally not possible
to define G within the category of finitely presented groups GrpFP, so groups of Lie type
form their own category, GrpLie.

Note that groups of Lie type in Magma are designed primarily for fields whose ele-
ments are exact. While it is possible to define these groups over real and complex fields
(Chapter 25), no attempt has been made to control rounding error in this case.

103.1.2 Bruhat Normalisation
The Bruhat decomposition [Car93, Chapter 2] gives us a useful normal form for elements
of a split group of Lie type defined over a field k. Every g ∈ G can be written in the form
uhẇu′ where
1. u is a unipotent element written in the form

∏N
r=1 xr(tr);

2. h is a torus element represented as an element of Rd with each entry invertible;
3. ẇ = ṡr1 · · · ṡrk

where sr1 · · · srk
is a reduced word for w in the Weyl group.

4. u′ =
∏

r∈Φ+
w

xr(t′r) where Φ+
w = {r | αr and αrw are positive} and the terms are in the

usual order.
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103.1.3 Twisted Groups of Lie type

Let G be a connected reductive linear algebraic group defined over the field k. We say that
H is a form of G if it there is a k̄-isomorphism between then, for k̄ the algebraic closure
of k. If some maximal torus of G(k̄) is a k-split torus, we say that G is split, otherwise
G is twisted. If some maximal torus of G(k̄) is defined over k, we say that G is quasisplit.
There is a unique split form of every reductive linear algebraic group.

The group Γ := Gal(k̄ : k) acts on G in the usual way and G is a Γ-group in the
sense of the Section 68.10. The group Aut(G) of algebraic automorphisms of G is also a
Γ-group. The twisted forms of G are in one-to-one correspondence with the 1-cocycles of
Γ on Aut(G) and the forms are conjugate if and only if the cocycles are cohomologous.
For practical purposes it is sufficient to compute the cohomology of Γ = Gal(K : k) on
AutK(G) for some finite Galois extension K of k, where AutK(G) is the group of K-
algebraic automorphisms of G.

The action of Γ on G induces an action on the root datum of G, and so we get an
extended root datum. If G is quasisplit, then it is determined by the extended root datum
and the action of Γ on K. In general, a cocycle is required to fully determine G.

103.2 Constructing Groups of Lie Type

103.2.1 Split Groups
The following optional parameters are common to most of the intrinsics described in this
section:

Normalising BoolElt Default : true

The flag Normalising determines whether elements will be automatically converted to
Bruhat form. This flag is automatically set to falseif the group is defined over a nonfield.

Isogeny BoolElt Default : “Ad”
Signs Any Default : 1
The optional parameters Isogeny and Signs can take the values described in Sec-

tion 97.2.
Method MonStgElt Default : “Default”
The method to be used for operations with unipotent elements. See [CHM08] for more

details on the algorithms. Possible values are
- "CollectionFromLeft" uses collection from left.
- "CollectionFromOutside" uses collection from outside.
- "Classical" uses formulas for classical types [CHM08]. This is only available for

groups defined over a sparse (classical) root datum.
- "Collection" will choose the best of the above methods automatically.
- "SymbolicFromLeft" uses Hall polynomials, which are computed using collection from

left.
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- "SymbolicFromOutside" uses Hall polynomials, which are computed using collection
from outside.

- "SymbolicClassical" uses Hall polynomials, which are computed by formulas. This
is only available for groups defined over a sparse (classical) root datum.

- "Symbolic" will choose the best symbolic method automatically.

- "Default" will choose the best of all above methods automatically.

GroupOfLieType(N, k)

Isogeny BoolElt Default : “Ad”

Signs Any Default : 1

Normalising BoolElt Default : true

Method MonStgElt Default : “Default”

Construct the group of Lie type with Cartan name given by the string N (see
Section 95.6) over the ring k.

GroupOfLieType(N, q)

Isogeny BoolElt Default : “Ad”

Signs Any Default : 1

Normalising BoolElt Default : true

Method MonStgElt Default : “Default”

Construct the group of Lie type with Cartan name given by the string N (see
Section 95.6) over the finite field of order q.

GroupOfLieType(W, k)

Normalising BoolElt Default : true

Method MonStgElt Default : “Default”

Construct the group of Lie type with Weyl group W over the ring k. The group W
must be a finite Coxeter group, given either as a permutation group or as a reflection
group.

GroupOfLieType(W, q)

Normalising BoolElt Default : true

Method MonStgElt Default : “Default”

Construct the group of Lie type with Weyl group W over the finite field of order q.
The group W must be a finite Coxeter group, given either as a permutation group
or as a reflection group.
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GroupOfLieType(R, k)

Normalising BoolElt Default : true

Method MonStgElt Default : “Default”

Construct the group of Lie type with root datum R over the ring k.

GroupOfLieType(R, q)

Normalising BoolElt Default : true

Method MonStgElt Default : “Default”

Construct the group of Lie type with root datum R over the finite field of order q.

GroupOfLieType(C, k)

GroupOfLieType(D, k)

Isogeny BoolElt Default : “Ad”

Signs Any Default : 1

Normalising BoolElt Default : true

Method MonStgElt Default : “Default”

Construct the group of Lie type with Cartan matrix C or Dynkin digraph D, over
the ring k.

GroupOfLieType(C, q)

GroupOfLieType(D, q)

Isogeny BoolElt Default : “Ad”

Signs Any Default : 1

Normalising BoolElt Default : true

Method MonStgElt Default : “Default”

Construct the group of Lie type with Cartan matrix C or Dynkin digraph D, over
the finite field of order q.

SimpleGroupOfLieType(X, n, k)

Isogeny BoolElt Default : “Ad”

Signs Any Default : 1

Normalising BoolElt Default : true

Method MonStgElt Default : “Default”

Construct the simple group of Lie type with Cartan name Xn over the ring k, where
the Cartan name is given by the string X and integer n (see also Section 95.6).
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SimpleGroupOfLieType(X, n, q)

Isogeny BoolElt Default : “Ad”

Signs Any Default : 1

Normalising BoolElt Default : true

Method MonStgElt Default : “Default”

Construct the simple group of Lie type with name Xn over the finite field of order q,
where the Cartan name is given by the string X and integer n (see also Section 95.6).

GroupOfLieType(L)

The group of Lie type corresponding to the Lie algebra L. The Lie algebra must be
the algebraic (i.e., it must correspond to some group), and Magma must be able to
determine that it is algebraic.

IsNormalising(G)

Returns the value of the flag Normalising of the group of Lie type G.

Example H103E1

> G := GroupOfLieType("E8", 2);

> G;

G: Group of Lie type E8 over Finite field of size 2

103.2.2 Galois Cohomology
If G is a linear algebraic group defined over the field k and L is the algebraic closure of
k, then the group Γ := Gal(L : k) acts on G in the usual way and G becomes a Γ-group
in the sense of the Section 68.10 and Aut(G), the group of algebraic automorphisms of G
also becomes a Γ-group.

Now the twisted forms of G are in one-to-one correspondence to the 1-cocycles of Γ on
Aut(G) and the forms are conjugate if and only if the cocycles are cohomologous.

For practical purposes it is sufficient to compute the cohomology of Gal(K : k) on
AutK(G) for some finite Galois field extension of k, where AutK(G) is the group of K-
algebraic automorphisms of G.

These functions are based on [Hal05].

GammaGroup(k, G)

Returns the group of Lie type G as a Γ-group with Γ = Gal(K : k), where K is the
base field of G. The field k must be a subfield of K.
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GammaGroup(k, A)

Returns the group A = AutK(G) of automorphisms of the group of Lie type G as a
Γ-group with Γ = Gal(K : k), where K is the base field of G. The field k must be
a subfield of K.

ActingGroup(G)

ActingGroup(A)

Given the group of Lie type G or the group A of its automorphisms as a Γ-group,
return Γ = Gal(K : k) together with the map m from the abstract Galois group Γ
into the set of field automorphisms, such that m(γ) is the actual field automorphism
for every γ ∈ Γ.

ExtendGaloisCocycle(c)

GBAl MonStgElt Default : “Walk”

Printeqs BoolElt Default : false

The analogue to ExtendCocycle. Given a cocycle c in H1(Γ, A/A0), where A =
AutK(G) and Γ = Gal(K : k), extend the cocycle to a cocycle in H1(Γ, A). The
optional parameter GBAl can be used to set the algorithm used for computing the
Gröbner bases. The parameter Printeqs may be used to print out the polynomials
whose Gröbner bases are computed. The current implementation only works for
finite fields.

GaloisCohomology(A)

GBAl MonStgElt Default : “Walk”

Printeqs BoolElt Default : false

Recompute BoolElt Default : false

Computes the Galois cohomology H1(Γ, AutK(G)), where A is the automorphism
group of G as a Γ-group returned by GammaGroup and Γ = Gal(K : k). The optional
parameter GBAl can be used to set the algorithm used for computing the Gröbner
bases. The parameter Printeqs may be used to print out the polynomials whose
Gröbner bases are computed. And Recompute may be used to recompute the Galois
cohomology. The current implementation only works for finite fields.

IsInTwistedForm(x, c)

Returns true if and only if the element x of a group of Lie type is contained in the
twisted form of its parent defined by the cocycle c.
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Example H103E2

Compute the Galois cohomology of A3(5
2):

> q := 5;

> k := GF(q);

> K := GF(q^2);

>

> G := GroupOfLieType( "A3", K : Isogeny:="SC" );

> A := AutomorphismGroup(G);

>

> AGRP := GammaGroup( k, A );

> Gamma,m := ActingGroup(AGRP);

> Gamma;

Symmetric group Gamma acting on a set of cardinality 2

Order = 2

(1, 2)

> m;

Mapping from: GrpPerm: Gamma to Set of all maps from GF(5^2) to GF(5^2)

given by a rule [no inverse]

> action := GammaAction(AGRP);

>

> time GaloisCohomology(AGRP);

[

[

One-Cocycle

defined by [

Automorphism of $: Group of Lie type A3 over Finite field of size 5^2

given by: Mapping from: $: Group of Lie type to $: Group of Lie type

Composition of Mapping from: $: Group of Lie type to $: Group of

Lie type given by a rule and

Mapping from: $: Group of Lie type to $: Group of Lie type

given by a rule

Decomposition:

Mapping from: GF(5^2) to GF(5^2)

Composition of Mapping from: GF(5^2) to GF(5^2) given by a rule and

Mapping from: GF(5^2) to GF(5^2) given by a rule,

Id($),

1

]

],

[

One-Cocycle

defined by [

Automorphism of $: Group of Lie type A3 over Finite field of size 5^2

given by: Mapping from: $: Group of Lie type to $: Group of Lie type

Composition of Mapping from: $: Group of Lie type to $: Group of

Lie type given by a rule and

Mapping from: $: Group of Lie type to $: Group of Lie type
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given by a rule

Decomposition:

Mapping from: GF(5^2) to GF(5^2)

Composition of Mapping from: GF(5^2) to GF(5^2) given by a rule and

Mapping from: GF(5^2) to GF(5^2) given by a rule,

(1, 3),

1

]

]

]

Time: 0.470

Now create the trivial cocycle:

> TrivialOneCocycle( AGRP );

One-Cocycle

defined by [

Automorphism of $: Group of Lie type A3 over Finite field of size 5^2

given by: Mapping from: $: Group of Lie type to $: Group of Lie type

given by a rule

Decomposition:

Mapping from: GF(5^2) to GF(5^2) given by a rule,

Id($),

1

]

>

And now the cocycle defining the group 2A3(5) and check for two elements if they are contained
in 2A3(5):

> c := OneCocycle( AGRP, [GraphAutomorphism(G, Sym(3)!(1,3))] );

>

> x := Random(G);

> IsInTwistedForm( x, c );

false

>

> x := elt< G | <1,y>, <3,y @ m(Gamma.1)> > where y is Random(K);

> IsInTwistedForm( x, c );

true

>
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103.2.3 Twisted Groups
The description of the twisted groups of Lie type is based on the extended root data, as
described in the Section 97.1.7. These functions are mainly based on [Hal05].

TwistedGroupOfLieType(c)

Given the cocycle c on the group of automorphisms of a split group of Lie type G,
return the twisted form of G, defined by that cocycle.

TwistedGroupOfLieType(R, k, K)

Normalising BoolElt Default : true

Method MonStgElt Default : “Default”
The twisted group of Lie type defined over the field k with coefficients in the field
K corresponding to the twisted root datum R.

BaseRing(G)

CoefficientRing(G)

The coefficient ring of the (twisted) group of Lie type G, that is the base ring of the
untwisted overgroup of G.

DefRing(G)

The ring over which the (twisted) group of Lie type G is defined. If G is split, this
is the same as the base ring of G.

UntwistedOvergroup(G)

The untwisted overgroup, inside which the twisted group of Lie type G was con-
structed.

Example H103E3

The twisted group 2A3(5) as a subgroup of A3(5
2).

> R := RootDatum("A3" : Twist := 2);

> G := TwistedGroupOfLieType(R,5,25);

> G;

G: Twisted group of Lie type 2A3,2 over GF(5) with entries over GF(5^2)

> BaseRing(G);

Finite field of size 5^2

> DefRing(G);

Finite field of size 5

> UntwistedOvergroup(G);

Group of Lie type A3 over GF(5^2)
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RelativeRootElement(G,delta,t)

The relative root element corresponding to the relative root δ of the twisted group
of Lie type G and the field elements given by the sequence t. This is the element
uδ(t) in [Hal05, (4.5)].

Example H103E4

Here we create the same group as in the previous example, but using a cocycle.

> q := 5; k := GF(q); K := GF(q^2);

>

> G := GroupOfLieType( "A3", K );

> A := AutomorphismGroup(G);

>

> AGRP := GammaGroup( k, A );

> c := OneCocycle( AGRP, [GraphAutomorphism(G, Sym(3)!(1,3))] );

>

> T := TwistedGroupOfLieType(c);

> T eq TwistedGroupOfLieType(RootDatum("A3":Twist:=2),k,K);

true

> G eq UntwistedOvergroup(T);

true

>

> x := Random(G); x in T;

false

>

> x := RelativeRootElement(T,2,[Random(K)]); x;

x1($.1^22) x3($.1^14)

> x in T;

true

103.3 Operations on Groups of Lie Type

Many of the basic operations for Coxeter groups are shortcuts for obtaining information
about the underlying root datum (Chapter 97). Such functions are listed here; see Sec-
tions 97.3, 97.4, 97.5, and 98.4 for more details and examples of their use.

G eq H

Returns true iff the groups of Lie type G and H are equal.

G subset H

Returns true iff the group of Lie type G is a subset of H.
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IsAlgebraicallyIsomorphic(G, H)

Returns true if the semisimple groups G and H are isomorphic as algebraic groups
(i.e. they have the same base rings and isomorphic root data). If true, then the
second value returned is an isomorphism.

IsIsogenous(G, H)

Returns true if G and H are isogenous. The groups must be semisimple and defined
over the same field. If true, the subsequent values returned are: the corresponding
adjoint group Gad, the homomorphisms Gad → G and Gad → H, the corresponding
simply connected root datum Gsc, and the homomorphisms G → Gsc and H → Gsc.

IsCartanEquivalent(G, H)

Returns true if, and only if, the groups of Lie type G and H are Cartan equivalent,
i.e. they have isomorphic Dynkin diagrams and defined over the same ring.

BaseRing(G)

CoefficientRing(G)

The base ring k of the group of Lie type G.

BaseExtend(G, K)

Given a group of Lie type G with base ring k and a larger ring K, return the group
G(K) gotten by extending the base ring and the injection G → G(K).

ChangeRing(G, K)

Given a group of Lie type G and a ring K, return the group with the same root
datum, but defined over a different ring.

Generators(G)

Generators for the group of Lie type G as an abstract group. This is currently only
implemented when the base ring is a finite field.

NumberOfGenerators(G)

Ngens(G)

The number of generators for the group of Lie type G as an abstract group. This is
currently only implemented when the base ring is a finite field.

AlgebraicGenerators(G)

A set of generators for the group of Lie type G as an algebraic group.

NumberOfAlgebraicGenerators(G)

Nalggens(G)

The number of generators for the group of Lie type G as an algebraic group.
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Example H103E5

> k<z> := GF(4);

> G := GroupOfLieType("A2", k : Normalising:=false);

> Generators(G);

[ x1(1) , x4(1) , x1(z) , x4(z) , x2(1) , x5(1) , x2(z) , x5(z) , ( z 1) ,

(1 z) ]

> AlgebraicGenerators(G);

[ x1(1) , x2(1) , x4(1) , x5(1) , ( z 1) , ( 1 z) ]

Order(G)

#G

The order of the group of Lie type G.

FactoredOrder(G)

The factored order of the group of Lie type G.

Dimension(G)

The dimension of the group of Lie type G, considered as an algebraic variety.

Example H103E6

> G := GroupOfLieType("G2", 3);

> Order(G);

4245696

> FactoredOrder(G);

[ <2, 8>, <13, 1>, <3, 6>, <7, 1> ]

> G := GroupOfLieType("G2", Rationals());

> Order(G);

Infinity

> Dimension(G);

14

CartanName(G)

The Cartan name of the group of Lie type G.

RootDatum(G)

The root datum of the group of Lie type G.

DynkinDiagram(G)

Print the Dynkin diagram of the group of Lie type G.



Ch. 103 GROUPS OF LIE TYPE 3113

CoxeterDiagram(G)

Print the Coxeter diagram of the group of Lie type G.

CoxeterMatrix(G)

The Coxeter matrix of the group of Lie type G.

CoxeterGraph(G)

The Coxeter graph of the group of Lie type G.

CartanMatrix(G)

The Cartan matrix of the group of Lie type G.

DynkinDigraph(G)

The Dynkin digraph of the group of Lie type G.

Rank(G)

ReductiveRank(G)

The reductive rank of the group of Lie type G, i.e. the dimension of the underlying
root datum.

SemisimpleRank(G)

The semisimple rank of the group of Lie type G, i.e. the rank of the underlying root
datum.

CoxeterNumber(G)

The Coxeter number of the group of Lie type G, i.e. the order of the Coxeter element
in the Weyl group of G.

WeylGroup(G)

WeylGroup(GrpPermCox, G)

The Weyl group of the group of Lie type G as a permutation Coxeter group. This
is a crystallographic Coxeter group, see Chapter 98.

WeylGroup(GrpFPCox, G)

The Weyl group of the group of Lie type G as a finitely presented Coxeter group.
This is a crystallographic Coxeter group, see Chapter 98.

WeylGroup(GrpMat, G)

The Weyl group of the group of Lie type G as a reflection group. This is a crystal-
lographic Coxeter group, see Chapter 99.
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FundamentalGroup(G)

The fundamental group of the group of Lie type G, together with the projection of
the weight lattice onto the fundamental group.

IsogenyGroup(G)

The isogeny group of the group of Lie type G, together with its injection into the
fundamental group.

CoisogenyGroup(G)

The coisogeny group of the group of Lie type G, together with its projection onto
the fundamental group.

103.4 Properties of Groups of Lie Type

IsFinite(G)

Return true if and only if the group of Lie type G is finite.

IsAbelian(G)

Returns true if the group of Lie type G is abelian.

IsSimple(G)

Returns true if the group of Lie type G is a simple group as an algebraic group,
ie, G has no proper connected normal subgroups. This is true if, and only if, the
underlying root datum is irreducible. Note that this does not usually mean that
G is simple as an abstract group. In previous releases of Magma this function was
incorrectly called IsIrreducible.

IsSimplyLaced(G)

Returns true if the group of Lie type G is simply laced, i.e. its Dynkin diagram
contains no multiple bonds.

IsSemisimple(G)

Returns true if the group of Lie type G is semisimple.

IsAdjoint(G)

Returns true if, and only if, the group of Lie type G is adjoint (i.e. the isogeny
group is trivial).

IsWeaklyAdjoint(G)

Returns true if, and only if, the group of Lie type G is weakly adjoint, i.e. its
isogeny group is isomorphic to Zn, where n is the difference between the rank and
the semisimple rank of G. Note that if G is semisimple then this function is identical
to IsAdjoint.
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IsSimplyConnected(G)

Returns true if, and only if, the group of Lie type G is simply connected (i.e. the
isogeny group is equal to the fundamental group, i.e. the coisogeny group is trivial).

IsWeaklySimplyConnected(G)

Returns true if, and only if, the group of Lie type G is weakly simply connected,
i.e. its coisogeny group is isomorphic to Zn, where n is the difference between the
rank and the semisimple rank of G. Note that if G is semisimple then this function
is identical to IsSimplyConnected.

IsSplit(G)

Returns true if and only if the group of Lie type G is split.

IsTwisted(G)

Returns true if and only if the group of Lie type G is twisted.

103.5 Constructing Elements

elt< G | L >

Given a group of Lie type G over the ring R and a list L of appropriate objects,
construct an element of G. Suppose the underlying root datum has dimension d,
rank n, and roots α1, . . . , α2N . Each entry in the list can be one of the following:
1. A tuple < r, t > where r = 1, . . . , 2N and t ∈ R. This corresponds to the

unipotent term xr(t).
2. A sequence of tuples as in item (1).
3. A sequence [t1, . . . , tN ] of elements of R. This corresponds to the unipotent

element x1(t1) · · ·xN (tN ).
4. An integer r = 1, . . . , 2N . This corresponds to the Weyl group representative

nr.
5. A Weyl group element w, either as a word or as a permutation. This corresponds

to the Weyl group representative ẇ.
5. A vector v ∈ Rd with each entry invertible. This corresponds to an element of

the torus.
6. An element of G.

Identity(G)

Id(G)

G ! 1

elt< G | >

The identity element of the group of Lie type G.
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Example H103E7

> G := GroupOfLieType("A5", Rationals() : Normalising := false);

> V := VectorSpace(Rationals(), 5);

> NumPosRoots(G);

15

> elt< G | <5,1/2>, 1,3,2, [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15],

> V![6,1/3,-1,3,2/3] >;

x5(1/2) n1 n3 n2 x1(1) x2(2) x3(3) x4(4) x5(5) x6(6) x7(7) x8(8) x9(9)

x10(10) x11(11) x12(12) x13(13) x14(14) x15(15) ( 6 1/3 -1 3 2/3)

TorusTerm(G, r, t)

The torus term hr(t) = α?
r ⊗ t in the group of Lie type G, where r is the index of

the coroot α?
r and t an element of the base ring of G.

CoxeterElement(G)

The Coxeter element of the group of Lie type G, i.e. the representative of the Coxeter
element in the Weyl group of G.

Random(G)

Uniform BoolElt Default : true

An element of the finite group of Lie type G chosen at random. The base ring of
G must be finite. If the optional parameter Uniform is set to true, the random
elements to be distributed uniformly. If the optional parameter Uniform is set to
false, this function is much faster but the random elements are not distributed uni-
formly. Instead each double coset of the Borel subgroup occurs with equal frequency,
and the elements are uniformly distributed within each double coset.

Eltlist(g)

The list corresponding to the element g of a group of Lie type.

CentrePolynomials(G)

CenterPolynomials(G)

A set of polynomials which are satisfied by the coordinates of a torus element h of
the group of Lie type G if, and only if, h is in the centre of G.
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Example H103E8

The centre of a semisimple group is finite, so the centre polynomials can be used to find all central
elements.

> G := GroupOfLieType("B3", Rationals() : Isogeny:="SC");

> pols := CentrePolynomials(G);

> pols;

{

-h[2] + h[3]^2,

h[1]^2 - h[2],

-h[1]*h[3]^2 + h[2]^2

}

> S := Scheme(AffineSpace(Rationals(), 3), Setseq(pols));

> pnts := RationalPoints(S);

> pnts;

{@ (0, 0, 0), (1, 1, -1), (1, 1, 1) @}

The rational points of S can be converted into elements of G, taking care to eliminate any point
which has a coordinate equal to zero:

> V := VectorSpace(Rationals(), 3);

> [ elt< G | V!Eltseq(pnt) > : pnt in pnts | &*Eltseq(pnt) ne 0 ];

[ (1 1 -1) , 1 ]

103.6 Operations on Elements

103.6.1 Basic Operations

g * h

The product of two elements of a group of Lie type. If the Normalising flag is set for
the group, then the product is normalised using the algorithms of [CMT04, CHM08].
Otherwise, the words are just concatenated.

Example H103E9

If the Normalising flag is set, the product is normalised, otherwise multiplication is just concate-
nation.

> G := GroupOfLieType("G2", GF(3) : Normalising:=false );

> V := VectorSpace(GF(3),2);

> g := elt< G | 1,2,1,2, V![2,2], <1,2>,<5,1> >;

> h := elt< G | <3,2>, V![1,2], 1 >;

> g*h;

n1 n2 n1 n2 (2 2) x1(2) x5(1) x3(2) (1 2) n1

> H := GroupOfLieType("G2", GF(3) : Normalising:=true );

> g := elt< H | 1,2,1,2, V![2,2], <1,2>,<5,1> >;

> h := elt< H | <3,2>, V![1,2], 1 >;
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> g*h;

x2(1) x3(1) (1 2) n1 n2 n1 n2 n1 x4(1)

g ^ -1

Inverse(G)

The inverse of the element g of a group of Lie type.

g ^ n

The nth power of the element g of a group of Lie type.

g ^ h

The conjugate h−1gh, where g and h are elements of a group of Lie type.

(g, h)

Commutator(g, h)

The commutator g−1h−1gh of g and h, where g and h are elements of a group of
Lie type.

Normalise(~g)

Normalize(~g)

Normalise(g)

Normalize(g)

Normalise the element g of a group of Lie type G. The procedural form is slightly
more efficient than the functional form. If the Normalise flag is set for G, this
operation has no effect. This uses the algorithms of [CMT04, CHM08].

Example H103E10

Arithmetic in groups of Lie type.

> k<z> := GF(4);

> G := GroupOfLieType("C3", k);

> V := VectorSpace(k, 3);

> g := elt< G | 1,2,3, <3,z>,<4,z^2>, V![1,z^2,1] >;

> g;

n1 n2 n3 x3(z) x4(z^2) ( 1 z^2 1)

> h := elt< G | [0,1,z,1,0,z^2,1,1,z] >;

> h;

x2(1) x3(z) x4(1) x6(z^2) x7(1) x8(1) x9(z)

> g * h^-1;

x3(1) x5(z) x6(z^2) x8(1) (z^2 z^2 z) n1 n2 n3 x3(z^2) x5(z^2)

> g^3;

x3(z) x5(1) x7(z^2) x8(z^2) ( 1 1 z) n1 n2 n3 n1 n2 n3 n1 n2 n3 x1(1)
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x2(z^2) x3(1) x4(z) x7(z) x9(z)

103.6.2 Decompositions

Bruhat(g)

Given an element g of a group of Lie type the Bruhat decomposition of g is re-
turned. The function returns elements u, h, ẇ, u′ with the properties described in
Subsection 103.1.3 and so that g = uhẇu′.

Example H103E11

> k<z> := GF(4);

> G := GroupOfLieType("C3", k);

> V := VectorSpace(k, 3);

> g := elt< G | 1,2,3, <3,z>,<4,z^2>, V![1,z^2,1] >;

> Normalise(g);

x7(z^2) x8(z^2) (z^2 z^2 z) n1 n2 n3 x3(1) x6(z)

> u, h, w, up := Bruhat(g);

> u; h; w; up;

x7(z^2) x8(z^2)

(z^2 z^2 z)

n1 n2 n3

x3(1) x6(z)

MultiplicativeJordanDecomposition(x)

The multiplicative Jordan decomposition of the element x of the group of Lie type.

103.6.3 Conjugacy and Cohomology

ConjugateIntoTorus(g)

Given an semisimple element g in a finite group of Lie type, return a torus element
t and conjugator x such that t = xgx−1. The elements returned may be defined
over a larger field that the input element.

ConjugateIntoBorel(g)

Given a semisimple element g in a finite group of Lie type, return a Borel element b
and conjugator x such that b = xgx−1. The elements returned may be defined over a
larger field that the input element. Although any element of a group of Lie type can
be conjugated into the Borel subgroup, this function is currently only implemented
for semisimple elements.
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Lang(c, q)

Given an element c in a finite group of Lie type and q a power of the characteristic,
return a solution a of the Lang equation c = a−Fa. Here F is the Frobenius
automorphism gotten by q powers in the field.

103.7 Properties of Elements

IsSemisimple(x)

Return true if, and only if, the element x of the group of Lie type is semisimple.

IsUnipotent(x)

Return true if, and only if, the element x of the group of Lie type is unipotent.

IsCentral(x)

Return true if, and only if, the element x of the group of Lie type is in the centre
of its parent group.

103.8 Roots, Coroots and Weights

The roots are stored as an indexed set

{@ α1, . . . , αN , αN+1, . . . , α2N @},

where α1, . . . , αN are the positive roots in an order compatible with height; and
αN+1, . . . , α2N are the corresponding negative roots (i.e. αi+N = −αi). The simple roots
are α1, . . . , αn where n is the rank.

Many of these functions have an optional argument Basis which may take one of the
following values

1. "Standard": the standard basis for the (co)root space. This is the default.

2. "Root": the basis of simple (co)roots.

3. "Weight": the basis of fundamental (co)weights (see Subsection 99.8.3 below).
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103.8.1 Accessing Roots and Coroots

RootSpace(G)

CorootSpace(G)

The lattice containing the (co)roots of the group of Lie type G.

SimpleRoots(G)

SimpleCoroots(G)

The simple (co)roots of the group of Lie type G as the rows of a matrix.

NumberOfPositiveRoots(G)

NumPosRoots(G)

The number of positive roots of the group of Lie type G.

Roots(G)

Coroots(G)

Basis MonStgElt Default : “Standard”

An indexed set containing the (co)roots of the group of Lie type G.

PositiveRoots(G)

PositiveCoroots(G)

Basis MonStgElt Default : “Standard”

An indexed set containing the positive (co)roots of the group of Lie type G.

Root(G, r)

Coroot(G, r)

Basis MonStgElt Default : “Standard”

The rth (co)root of the group of Lie type G.

RootPosition(G, v)

CorootPosition(G, v)

Basis MonStgElt Default : “Standard”

If v is a (co)root of the group of Lie type G, this returns its position; otherwise it
returns 0.
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Example H103E12

> G := GroupOfLieType("A3", 25 : Isogeny := 2);

> Roots(G);

{@

(1 0 0),

(0 1 0),

(1 0 2),

(1 1 0),

(1 1 2),

(2 1 2),

(-1 0 0),

(0 -1 0),

(-1 0 -2),

(-1 -1 0),

(-1 -1 -2),

(-2 -1 -2)

@}

> PositiveCoroots(G);

{@

(2 -1 -1),

(-1 2 0),

(0 -1 1),

(1 1 -1),

(-1 1 1),

(1 0 0)

@}

> #Roots(G) eq 2*NumPosRoots(G);

true

> Coroot(G, 4);

(1 1 -1)

> Coroot(G, 4 : Basis := "Root");

(1 1 0)

> CorootPosition(G, [1,1,-1]);

4

> CorootPosition(G, [1,1,0] : Basis := "Root");

4

HighestRoot(G)

HighestLongRoot(G)

Basis MonStgElt Default : “Standard”
The unique (long) root of greatest height in the root datum of the group of Lie
type G.
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HighestShortRoot(G)

Basis MonStgElt Default : “Standard”

The unique short root of greatest height in the root datum of the group of Lie
type G.

Example H103E13

> G := GroupOfLieType("G2", RealField());

> HighestRoot(G);

(3 2)

> HighestLongRoot(G);

(3 2)

> HighestShortRoot(G);

(2 1)

103.8.2 Reflections

The reflections in the Weyl group have representatives in the group of Lie type.

Reflections(G)

The sequence of representatives of reflections in the group of Lie type G.

Reflection(G, r)

The representative of the reflections in the rth root in the group of Lie type G.

Example H103E14

> G := GroupOfLieType("A2", Rationals());

> Reflections(G);

[ n1 , n2 , n1 n2 n1 ]
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103.8.3 Operations and Properties for Root and Coroot Indices

RootHeight(G, r)

CorootHeight(G, r)

The height of the rth (co)root of the group of Lie type G, i.e. the sum of the
coefficients of αr (resp. α?

r) with respect to the simple (co)roots.

RootNorms(G)

CorootNorms(G)

The sequence of squares of the lengths of the (co)roots of the group of Lie type G.

RootNorm(G, r)

CorootNorm(G, r)

The square of the length of the rth (co)root of the group of Lie type G.

IsLongRoot(G, r)

Returns true if, and only if, the rth root of the group of Lie type G is long, i.e. the
rth coroot is short.

IsShortRoot(G, r)

Returns true if, and only if, the rth root of the group of Lie type G is short, i.e.
the rth coroot is long.

AdditiveOrder(G)

An additive order on the positive roots of the group of Lie type G, i.e. a sequence
containing the numbers 1, . . . , N in some order so that αr + αs = αt implies t is
between r and s. This is computed using the techniques of [Pap94]

Example H103E15

> G := GroupOfLieType("A5", GF(3));

> a := AdditiveOrder(G);

> Position(a, 2);

6

> Position(a, 3);

10
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103.8.4 Weights

WeightLattice(G)

CoweightLattice(G)

The (co)weight lattice of the group of Lie type G.

FundamentalWeights(G)

FundamentalCoweights(G)

Basis MonStgElt Default : “Standard”

The fundamental (co)weights of the group of Lie type G as the rows of a matrix.

DominantWeight(G, v)

Basis MonStgElt Default : “Standard”

The unique dominant weight in the same W -orbit as v, where W is the Weyl group
of G and v is a weight given as a vector or a sequence representing a vector. The
second value returned is a Weyl group element taking v to the dominant weight.

103.9 Building Groups of Lie Type

Currently the only subgroups of a group of Lie type that can be constructed are subsystem
subgroups.

SubsystemSubgroup(G, a)

The subsystem subgroup of the group of Lie type G generated by the standard max-
imal torus and the root subgroups with roots αa1 , . . . , αak

where a = {a1, . . . , ak}
is a set of integers.

SubsystemSubgroup(G, s)

The subsystem subgroup of the group of Lie type G generated by the standard
maximal torus and the root subgroups with roots αs1 , . . . , αsk

where s = [s1, . . . , sk]
is a sequence of integers. In this version the roots must be simple in the root
subdatum (i.e. none of them may be a summand of another) otherwise an error is
signalled. The simple roots will appear in the subdatum in the given order.
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Example H103E16

> G := GroupOfLieType("A4",Rationals());

> PositiveRoots(G);

{@

(1 0 0 0),

(0 1 0 0),

(0 0 1 0),

(0 0 0 1),

(1 1 0 0),

(0 1 1 0),

(0 0 1 1),

(1 1 1 0),

(0 1 1 1),

(1 1 1 1)

@}

> H := SubsystemSubgroup(G, [6,1,4]);

> H;

H: Group of Lie type A3 over Rational Field

> PositiveRoots(H);

{@

(0 1 1 0),

(1 0 0 0),

(0 0 0 1),

(1 1 1 0),

(0 1 1 1),

(1 1 1 1)

@}

> h := elt<H|<2,2>,1>;

> h; G!h;

x2(2) n1

x1(2) ( 1 -1 1 -1) n2 n3 n2

DirectProduct(G1, G2)

The direct product of the groups G1 and G2. The two groups must have the same
base ring.

Dual(G)

The dual of the group of Lie type G, obtained by swapping the roots and coroots.

SolubleRadical(G)

The soluble radical of the group of Lie type G.

StandardMaximalTorus(G)

The standard maximal torus of the group of Lie type G.
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Example H103E17

> G1 := GroupOfLieType( "A5", GF(7) );

> G2 := GroupOfLieType( "B4", GF(7) );

> DirectProduct(G1, Dual(G2));

$: Group of Lie type A5 C4 over Finite field of size 7

>

> G := GroupOfLieType(StandardRootDatum("A",3), GF(17));

> SolubleRadical(G);

$: Torus group of Dimension 1 over Finite field of size 17

103.10 Automorphisms

The following functions construct the standard automorphisms of a group of Lie type, as
described in [Car72] (except for the graph automorphism of G2). In many cases, including
the finite groups, every automorphism is a product of these standard automorphisms.

103.10.1 Basic Functionality

AutomorphismGroup(G)

Automorphism group of a group of Lie type G.

IdentityAutomorphism(G)

One(A)

Id(A)

The identity automorphism of the group of Lie type G.

Mapping(a)

The map object associated with the automorphism a.

Automorphism(m)

Given a map object m from G to G, which is an isomorphism, returns the associated
automorphism as an automorphism of a group of Lie type.

h * g

The composition of the group of Lie type automorphisms h and g.

h ^ n

The nth power of the group of Lie type automorphism h.

g ^ h

The conjugate h−1gh, where g and h are group of Lie type automorphisms g and h
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Domain(A)

Codomain(A)

Domain(h)

Codomain(h)

Domain or codomain of an automorphism of a group of Lie type or of the group of
automorphisms.

103.10.2 Constructing Special Automorphisms

InnerAutomorphism(G, x)

The inner automorphism taking g ∈ G to gx, where x is an element of the group of
Lie type G.

DiagonalAutomorphism(G, v)

The diagonal automorphism of the semisimple group of Lie type G given by the
vector v. Let n be the semisimple rank of G and let k be its base field. Then v
must be a vector in kn with every component nonzero. The function returns the
automorphism given by the character χ defined by χ(αi) = vi, where αi is the
ith simple root. Since our groups are algebraic, a diagonal automorphism is just a
special case of an inner automorphism.

GraphAutomorphism(G, p)

DiagramAutomorphism(G, p)

SimpleSigns Any Default : 1

The graph automorphism of the group of Lie type G given by the permutation p.
The permutation must act on the indices of simple roots of G or the indices of
all roots of G. The graph automorphism of the group of type G2 has not been
implemented yet.

The optional parameter SimpleSigns can be used to specify the signs correspond-
ing to each simple root. This should either be a sequence of integers ±1, or a single
integer ±1.

FieldAutomorphism(G, sigma)

The field automorphism of the group of Lie type G induced by σ, an element of the
automorphism group of the base field of G

RandomAutomorphism(G)

Random(A)

A random element in A, the automorphism group of the group of Lie type G.
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DualityAutomorphism(G)

The duality automorphism of G. This is an automorphism that takes every unipo-
tent term xr(t) to xs(±t), where s =Negative(RootDatum(G),r)).

FrobeniusMap(G,q)

The Frobenius automorphism of the finite group of Lie type G gotten by qth powers
in the base field. The integer q must be a power of the characteristic of the base
field of G.

103.10.3 Operations and Properties of Automorphisms

DecomposeAutomorphism(h)

Given a group of Lie type automorphism h, this returns a field automorphism f , a
graph automorphism g and an inner automorphism i such that h = fgi. This only
works for groups defined over finite fields. The algorithm is due to Scott Murray
and Sergei Haller.

IsAlgebraic(h)

Returns true if and only if the automorphism h is algebraic.

Example H103E18

Some automorphisms of B2(4)

> G := GroupOfLieType("B2", GF(4));

> A := AutomorphismGroup(G);

> A!1 eq IdentityAutomorphism(G);

true

> g := GraphAutomorphism(G, Sym(2)!(1,2));

> g;

Automorphism of Group of Lie type B2 over Finite field of size 2^2

given by: Mapping from: Group of Lie type to Group of Lie type

given by a rule

Decomposition:

Mapping from: GF(2^2) to GF(2^2) given by a rule,

(1, 2),

1

The automorphism of B2(4) whose stabiliser is 2B2(4) is constructed by the following code.

> sigma := iso< GF(4) -> GF(4) | x :-> x^2, x :-> x^2 >;

> h := FieldAutomorphism(G, sigma) * g;

> h in A;

true

> f,g,i := DecomposeAutomorphism(h);

> assert f*g*i eq h;
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103.11 Algebraic Homomorphisms

GroupOfLieTypeHomomorphism(phi, k)

The algebraic homomorphism of groups of Lie type over the ring k corresponding
to the root datum morphism φ. See Chapter 103.

Example H103E19

This example constructs the algebraic projection GL4(Q) → PGL4(Q).

> RGL := StandardRootDatum( "A", 3 );

> RPGL := RootDatum( "A3" );

> A := VerticalJoin( SimpleRoots(RGL), Vector([Rationals()|1,1,1,1]) )^-1 *

> VerticalJoin( SimpleRoots(RPGL), Vector([Rationals()|0,0,0]) );

> B := VerticalJoin( SimpleCoroots(RGL), Vector([Rationals()|1,1,1,1]) )^-1 *

> VerticalJoin( SimpleCoroots(RPGL), Vector([Rationals()|0,0,0]) );

> phi := GroupOfLieTypeHomomorphism( hom< RGL -> RPGL | A, B >, Rationals() );

> GL := Domain( phi );

> phi( elt<GL|<1,2>, Vector([Rationals()| 7,1,11,1])> );

x1(2) ( 7 1/11 11)

103.12 Twisted Tori
The functionality presented here deals with the computation of the twisted tori of a finite
group of Lie type.

Note that for a given group G(k), the twisted tori are returned as subgroups of the
standard torus of G(K) for the smallest field extension K of k, where this is possible.

For finite fields and an untwisted group of Lie type G(k), a twisted torus Tw(k) of G(k)
has the form

Tw(k) = {t ∈ T (K)|tσw = t},
where T (K) is the standard K-split torus of G(K), σ is the generator of the Galois group
Gal(K : k) and w is an element of the Weyl group of G(k).

TwistedTorusOrder(R, w)

Given the root datum R and a Weyl group element w, computes the orders of the
cyclic components of the twisted torus Tw(k) ⊂ G(R, k) as sequence of polynomials
in q, the order of the field k.

TwistedToriOrders(G)

TwistedToriOrders(R)

Given a group of Lie type G or a root datum R, takes for every concjugacy class
of the Weyl group of G a representative w, and computes TwistedTorusOrder(R,
w). Returns the sequence of the lists consisting of TwistedTorusOrder(R, w) and
w for every concjugacy class.
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TwistedTorus(G, w)

Computes the twisted torus Tw(k) of the group of Lie type G for the given element
w of the Weyl group of G. Returned is the list consisting of three elements, first of
them being the sequence of orders of cyclic parts of the torus, the second being the
sequence of generators of the respective orders and the third being w. See [Hal05]
for the algorithm used.

TwistedTori(G)

Computes one twisted torus Tw(k) of the group of Lie type G for each conjugacy
class wW of the Weyl group W of G. A sequence of them is returned. See [Hal05]
for the algorithm used.

Example H103E20

We compute all twisted tori of A1(5):

> G := GroupOfLieType("A1", 5);

> TwistedToriOrders(G);

[ [*

[

q - 1

],

Id($)

*], [*

[

q + 1

],

(1, 2)

*] ]

> TwistedTori(G);

[ [*

[ 4 ],

[ (2) ],

Id($)

*], [*

[ 6 ],

[ ( k.1^4) ],

(1, 2)

*] ]

As we may notice, the second one is contained in the group over the quadratic field extension:

> Universe($1[2][2]);

$: Group of Lie type A1 over Finite field of size 5^2



3132 LIE THEORY Part XIV

Example H103E21

These are the orders of the decompositions of all (up to conjugacy) maximal tori of the group
G2(q) as polynomials in q:

> R := RootDatum("G2");

> [ t[1] : t in TwistedToriOrders(R) ];

[

[ q - 1, q - 1 ],

[ q + 1, q + 1 ],

[ q^2 - 1 ],

[ q^2 - 1 ],

[ q^2 + q + 1 ],

[ q^2 - q + 1 ]

]

103.13 Sylow Subgroups

We present here the functionality which allows to compute the Sylow subgroups of finite
groups of Lie type.

PrintSylowSubgroupStructure(G)

This procedure prints out a list of all primes p dividing the order of the group of
Lie type G along with the “goodness” of p, the exponent of p in the factorisation
of |G| and a sequence of integers. The positive integers give the orders of the
decomposition of a torus Tw into cyclic groups such that the Sylow subgroup is
contained in 〈Tw, CW (w)〉. The negative number indicates the p-part coming from
CW (w). If more than one such torus exists, then one line is printed for each of them.

A prime is said to be “GOOD” if it is equal to the characteristic of the base
field k of G, “good” if the Sylow subgroup is abelian, thus contained in a torus,
and “bad” if it is not abelian and thus not contained in a torus. See [Hal05] for the
algorithm used.

SylowSubgroup(G, p)

Compute a p-Sylow subgroup S of the group of Lie type G. Returned is a list of
a two sequences. The second sequence contains generators of S. The first one is a
sequence of integers giving the orders of the respective generator if the generator is
a torus element and the negative of the order of 〈g〉/(〈g〉∩Tw) in case the generator
g is not a torus element. See [Hal05] for the algorithm used.
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Example H103E22

Compute

> G := GroupOfLieType("G2", 5);

> PrintSylowSubgroupStructure(G);

G: Group of Lie type G2 over Finite field of size 5

Order(G) is 2^6 * 3^3 * 5^6 * 7^1 * 31^1

Order(W) is 2^2 * 3^1

...compute tori...

...compute sylows...

2 (bad) : 6 [ 4, 4, -4 ]

3 (bad) : 3 [ 6, 6, -3 ]

5 (GOOD) : The unipotent subgroup of G

7 (good) : 1 [ 21 ]

31 (good) : 1 [ 31 ]

> SylowSubgroup(G,2);

[*

[ 4, 4, -2, -2 ],

[ (2 1) , (1 2) , n2 , n1 n2 n1 n2 n1 n2 ]

*]

note that the orders of the non-toral elements is not necessarily the corresponding integer in the
first sequence:

> gens := $1[2];

> [ Order(g) : g in gens ];

[ 4, 4, 4, 4 ]

but, in this example, their squares are contained in the torus:

> gens[3]^2 eq gens[2]^2, gens[4]^2 eq gens[2]^2;

true true

103.14 Representations

This section describes basic functionality for Lie algebra representations: see Chapter 104
for more functions for highest weight representations and decompositions.

StandardRepresentation(G)

The standard (projective) representation of the semisimple group of Lie type G over
an extension its base ring. In other words, the smallest dimension highest-weight
representation. For the classical groups, this is the natural representation. If this is
a projective representation rather than a linear representation, a warning is given.
This is constructed from the corresponding Lie algebra representation, using the
algorithm in [CMT04].
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AdjointRepresentation(G)

The adjoint (projective) representation of the group of Lie type G over an extension
of its base ring, i.e. the representation given by the action of G on its Lie algebra.
The Lie algebra itself is the second returned value. This is constructed from the
corresponding Lie algebra representation, using the algorithm in [CMT04].

LieAlgebra(G)

The Lie algebra of the group of Lie type G, together with the adjoint representation.
If this is a projective representation rather than a linear representation, a warning
is given.

HighestWeightRepresentation(G, v)

The highest weight (projective) representation with highest weight v of the group of
Lie type G over an extension of its base ring. If this is a projective representation
rather than a linear representation, a warning is given. This is constructed from the
corresponding Lie algebra representation, using the algorithm in [CMT04].

Example H103E23

> G := GroupOfLieType("A2", Rationals() : Isogeny := "SC");

> rho := StandardRepresentation(G);

> rho(elt< G | 1 >);

[ 0 -1 0]

[ 1 0 0]

[ 0 0 1]

> rho(elt<G | <2,1/2> >);

[ 1 0 0]

[ 0 1 0]

[ 0 1/2 1]

> rho(elt< G | VectorSpace(Rationals(),2)![3,5] >);

[ 3 0 0]

[ 0 5/3 0]

[ 0 0 1/5]

>

> G := GroupOfLieType("A2", Rationals());

> Invariants(CoisogenyGroup(G));

[ 3 ]

> rho := StandardRepresentation(G);

Warning: Projective representation

> BaseRing(Codomain(rho));

Algebraically closed field with no variables

> rho(elt< G | VectorSpace(Rationals(),2)![3,1] >);

[r1 0 0]

[ 0 r2 0]

[ 0 0 r2]

> rho(elt< G | VectorSpace(Rationals(),2)![3,1] >)^3;
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[ 9 0 0]

[ 0 1/3 0]

[ 0 0 1/3]

GeneralisedRowReduction(ρ)

RowReductionHomomorphism(ρ)

Inverse(ρ)

Given a projective matrix representation ρ : G → GLm(k), return its inverse.
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Chapter 104

REPRESENTATIONS OF LIE GROUPS
AND ALGEBRAS

104.1 Introduction

This chapter gives functionality for direct sums of highest weight representations (or
modules). This is an important class of representations of (almost) semisimple Lie algebras
(Chapter 100) and connected reductive algebraic groups (Chapter 103). This class includes
all finite dimensional representations if the base field is the complex field.

The representations we are considering are in bijection with sets of dominant weights
with multiplicities. Such sets are called decomposition multisets. Many interesting com-
putations in representation theory can be done combinatorially with weight multisets,
without the need to construct the module itself. Examples of the things we can compute
include: module dimension, the multiset of all the weights, and decomposition multisets
for symmetric powers, alternating powers, and tensor products. We can also restrict a
decomposition multiset to a subgroup or induce it to a supergroup.

The code for such combinatorial computations is based on the LiE software package
[vLCL92]. The algorithms for computing the actual representations are from [dG01] in the
Lie algebra case, and from [CMT04] in the group case.

104.1.1 Highest Weight Modules
This introduction is inspired by the LiE manual [vLCL92].

First consider connected reductive Lie groups over the complex field. If G is a connected
reductive complex Lie group, then it is a homomorphic image G = ξ(G′), where ξ is a Lie-
group homomorphism with finite kernel and G′ is the direct product of a simply connected
group and a torus. Recall that a simply connected group is a direct product of simple
simply connected groups. In particular, such groups are determined by their Cartan name
and the dimension of the torus. For example, we denote the direct product of the group of
type A4C3B2 with a two dimensional torus by A4C3B2T2. Most of the code ported from
LiE works only for groups of this form. Similar terminology is used for the root datum
corresponding to a group.

Connected reductive complex Lie groups have a very pleasing representation theory:
– Every module decomposes as a direct sum of irreducible representations.
– The (finite dimensional) irreducible representations correspond to dominant weights.
It follows that representations correspond to finite sets of dominant weights with multi-
plicity. These multisets are called decomposition multisets. We can use this classification
to do useful computations about representations, without having to explicitly construct
them.
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Multisets of weights can be used for other purposes as well: The multiset of all weights
occurring in a module M is called the character multiset. Since the Weyl group permutes
the weights occurring in the character of M , it suffices to consider only the dominant
weights with their multiplicities. This is called the dominant character multiset. In the
LiE system, multisets of weights are represented by polynomials: for example, the decom-
position multiset is called a decomposition character.

When using the functions in this section, it is important to keep track of which kind of
multiset you are using. For example, if you input a decomposition multiset to a function
that expects a dominant character multiset, the output is meaningless.

We often abbreviate decomposition multiset to decomposition, and similarly for charac-
ter multisets. Write RD for the root datum of the group of the decomposition D. Denote
the irreducible module for the group with root datum R with highest weight v by V R

v , or
to Vv if R is clear from the context.

It is often useful to define consider virtual multisets, which allow weights to have neg-
ative multiplicities. We call a virtual multiset proper if its weights all have nonnegative
multiplicities. A decomposition corresponds to an actual module if and only if it is proper.

104.1.2 Toral Elements
Many functions use a special syntax for finite-order elements of the torus of a Lie

group G (we are rarely interested in infinite-order elements). Recall that a weight is
in fact a mapping from the torus T to C?, and thus a weight λ can be evaluated at
an element t ∈ T . The resulting element is written tλ. A set of fundamental weights
ω1, . . . , ωr has the property that any element t ∈ T is uniquely determined by the values
tω1 , . . . , tωr . Therefore, we may represent t as a vector (a1, . . . , ar, n), with the property
that tωi = e2πiai/n = ζai

n , where ζn = e2πi/n is the canonical n-th root of unity. An
example of a function which uses this syntax for toral elements is Spectrum. This function
also provides a means to convert toral elements into a more natural form: see Example
H104E10.

104.1.3 Other Highest Weight Representations
Magma can also construct highest weight representations for:
– (Almost) reductive Lie algebras (Chapter 100); and
– Split groups of Lie type (Chapter 103).

If the base field ha positive characteristic, highest weight representations are indecom-
posable, but not necessarily irreducible. In some cases there are irreducible representations
which are not highest weight representations.

For groups of Lie type, we consider projective representations (i.e., homomorphisms to
a projective general linear group). Suppose G is a split group of Lie type defined over the
field k and r is the least common multiple of the nonzero abelian-group invariants of the
coisogeny group of G (see Section 97.1.6). Let K be an extension of k containing at least
one rth root of each element of k (i.e., K contains a Kummer extension). Then highest
weight representations are projective representations defined over K, and are constructed
using polynomial functions and rth roots.
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If k already contains all rth roots, then no extension is needed and the representation
will be linear rather than projective. This happens when r = 1, i.e., the coisogeny group is
torsion free. This includes direct products of a simply connected group and a torus. The
general linear group also has this property. It also happens when k is the complex field or
field of algebraic numbers, when k is the real field and r is odd, and when k is finite and
|k| − 1 is coprime to r.

The functions give a warning when the representation is not linear, but this can be
avoided using the optional parameter NoWarning. Note that an appropriate extension K
can be constructed for all fields other than rational function fields, fields of Laurent series,
and local fields. In these cases, as well as for nonfields, the representations can only be
computed when r = 1.

104.2 Constructing Weight Multisets

In this section, we describe how to construct weight multisets.

TrivialLieRepresentationDecomposition(R)

LieRepresentationDecomposition(R)

The decomposition multiset of the trivial representation. The root datum R must
be weakly simply connected.

LieRepresentationDecomposition(R, v)

The decomposition multiset of the highest weight representation with weight v, i.e.,
the singleton multiset. The root datum R must be weakly simply connected. The
weight v must be a sequence of length d or an element of Zd, where d is the dimension
of the root datum R.

LieRepresentationDecomposition(R, Wt, Mp)

The decomposition multiset with weights given by the sequence Wt and multiplic-
ities given by of the sequence Mp. The root datum R must be weakly simply
connected. The weights must be a sequences of length d or elements of Zd, where d
is the dimension of the root datum R.

AdjointRepresentationDecomposition(R)

The decomposition multiset of the adjoint representation. This has the highest root
of R as its highest weight with multiplicity one. The root datum R must be weakly
simply connected.
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Example H104E1

The adjoint representation:

> R := RootDatum("D4" : Isogeny := "SC");

> D := AdjointRepresentationDecomposition(R);

> D:Maximal;

Highest weight decomposition of representation of:

R: Simply connected root datum of dimension 4 of type D4

Dimension of weight space:4

Weights:

[

(0 1 0 0)

]

Multiplicities:

[ 1 ]

> HighestRoot(R : Basis := "Weight");

(0 1 0 0)

104.3 Constructing Representations

104.3.1 Lie Algebras
The functions described in this section are applicable only to almost reductive structure
constant Lie algebras.

If L has of large dimension, the step that calculates the information needed to com-
pute preimages for these representations can be quite time consuming. So if there is no
requirement for preimages, this step may be skipped by setting the optional argument
ComputePreImage to false.

TrivialRepresentation(L)

The one-dimensional trivial representation of the Lie algebra L over its base ring.

AdjointRepresentation(L)

ComputePreImage BoolElt Default : true

The adjoint representation of the Lie algebra L acting on itself.

StandardRepresentation(L)

ComputePreImage BoolElt Default : true

The standard representation of the semisimple Lie algebra L over its base ring. This
is the smallest dimensional faithful representation of G (with a few small exceptions).
The Killing form of L must be nondegenerate.
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Example H104E2

> R := RootDatum("A2");

> #CoisogenyGroup(R);

3

> L := LieAlgebra(R, GF(2));

> h := StandardRepresentation(L);

> h(L.1);

[0 0 1]

[0 0 0]

[0 0 0]

> L := LieAlgebra(R, GF(3));

> h := StandardRepresentation(L);

>> h := StandardRepresentation(L);

^

Runtime error in ’StandardRepresentation’: Cannot compute the standard

representation in characteristic 3

The coisogeny group of a simply connected root datum always has order one, so we can compute
the standard representation in this case.

> R := RootDatum("A2" : Isogeny:="SC");

> L := LieAlgebra(R, GF(3));

> h := StandardRepresentation(L);

HighestWeightRepresentation(L, w)

The representation of the Lie algebra L with highest weight w (given either as a
vector or as a sequence representing a vector). The result is a function, which for
an element of L gives the corresponding matrix. The algorithm used is described in
[dG01].

Example H104E3

> L:= LieAlgebra("G2", RationalField());

> DimensionOfHighestWeightModule(RootDatum(L), [1,0]);

7

> rho:= HighestWeightRepresentation(L, [1,0]);

> e, f, h := ChevalleyBasis(L);

> rho(e[1]+f[1]);

[ 0 1 0 0 0 0 0]

[ 1 0 0 0 0 0 0]

[ 0 0 0 -2 0 0 0]

[ 0 0 -1 0 -1 0 0]

[ 0 0 0 -2 0 0 0]

[ 0 0 0 0 0 0 1]

[ 0 0 0 0 0 1 0]
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> Codomain(rho);

Full Matrix Lie Algebra of degree 7 over Rational Field

> N := sub<Codomain(rho) | [ rho(x) : x in e ]>;

> Dimension(N);

6

> IsSolvable(N);

true

HighestWeightModule(L, w)

Given a semisimple Lie algebra L corresponding to a root datum of rank r and
a sequence w of non-negative integers of length r, this returns the irreducible L-
module with highest weight w. The object returned is a left module over L. The
algorithm used is described in [dG01].

TensorProduct(Q)

Given a sequence Q of left-modules over a Lie algebra, this function returns the
module M that is the tensor product of the elements of Q. It also returns a map
φ from the Cartesian product P of the modules in Q to M as the second return
value. If t is an tuple whose i-th component is an element from the i-th module in
Q then φ maps t to the element of M that corresponds to the tensor product of the
elements of t.

SymmetricPower(V, n)

Given a left-module V over a Lie algebra, and an integer n ≥ 2, this function
returns the module M that is the n-th symmetric power of V . It also returns a
map f from the n-fold Cartesian product of V to M . This map is multilinear and
symmetric, i.e., if two of its arguments are interchanged then the image remains the
same. Furthermore, f has the universal property, i.e., any multilinear symmetric
map from the n-fold Cartesian product into a vector space W can be written as the
composition of f with a map from M into W .

ExteriorPower(V, n)

Given a left-module V over a Lie algebra, and an integer 2 ≤ n ≤ dim(V ), this
function returns the module M that is the n-th exterior power of V . It also returns
a map f from the n-fold Cartesian product of V to M . This map is multilinear
and antisymmetric, i.e., if two of its arguments are interchanged then the image is
multiplied by −1. Furthermore, f has the universal property, i.e., any multilinear
antisymmetric map from the n-fold Cartesian product into a vector space W can be
written as the composition of f with a map from M into W .
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Example H104E4

> L:= LieAlgebra("G2", Rationals());

> V1:= HighestWeightModule(L, [1,0]);

> V2:= HighestWeightModule(L, [0,1]);

> T,f:= TensorProduct([V1,V2]);

> HighestWeightsAndVectors(T);

[

(1 1),

(2 0),

(1 0)

]

[

[

T: (1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

],

[

T: (0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 -3 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

],

[

T: (0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -3 0 0 0 0 0 0 0 0 0 0

0 0 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

]

]

> DecomposeTensorProduct(RootDatum(L), [1,0], [0,1]);

[

(1 1),

(2 0),

(1 0)

]

[ 1, 1, 1 ]

> f(<V1.2,V2.3>);

T: (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

So we see that the tensor product T decomposes as a direct sum of three submodules. This
information can also be computed by using DecomposeTensorProduct. However, in the former
case, the corresponding highest-weight vectors are also given.

> E,h:= ExteriorPower(V1, 3);

> h(<V1.1,V1.3,V1.4>);

E: (0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

> h(<V1.1,V1.4,V1.3>);
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E: (0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

> DecomposeExteriorPower( RootDatum(L), 3, [1,0] );

[

(2 0),

(1 0),

(0 0)

]

[ 1, 1, 1 ]

> HighestWeightsAndVectors(E);

[

(2 0),

(1 0),

(0 0)

]

[

[

E: (1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0)

],

[

E: (0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0)

],

[

E: (0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 2 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

0)

]

]

104.3.2 Groups of Lie Type

TrivialRepresentation(G)

The one-dimensional trivial representation of the group of Lie type G over its base
ring.

StandardRepresentation(G)

The standard (projective) representation of the semisimple group of Lie type G over
an extension its base ring. In other words, the smallest dimension highest-weight
representation. For the classical groups, this is the natural representation. If this is
a projective representation rather than a linear representation, a warning is given.
This is constructed from the corresponding Lie algebra representation, using the
algorithm in [CMT04].
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AdjointRepresentation(G)

The adjoint (projective) representation of the group of Lie type G over an extension
of its base ring, ie. the representation given by the action of G on its Lie algebra.
The Lie algebra itself is the second returned value. This is constructed from the
corresponding Lie algebra representation, using the algorithm in [CMT04].

LieAlgebra(G)

The Lie algebra of the group of Lie type G, together with the adjoint representation.
If this is a projective representation rather than a linear representation, a warning
is given.

HighestWeightRepresentation(G, v)

The highest weight (projective) representation with highest weight v of the group of
Lie type G over an extension of its base ring. If this is a projective representation
rather than a linear representation, a warning is given. This is constructed from the
corresponding Lie algebra representation, using the algorithm in [CMT04].

Example H104E5

> G := GroupOfLieType("A2", Rationals() : Isogeny := "SC");

> rho := StandardRepresentation(G);

> rho(elt< G | 1 >);

[ 0 -1 0]

[ 1 0 0]

[ 0 0 1]

> rho(elt<G | <2,1/2> >);

[ 1 0 0]

[ 0 1 0]

[ 0 1/2 1]

> rho(elt< G | VectorSpace(Rationals(),2)![3,5] >);

[ 3 0 0]

[ 0 5/3 0]

[ 0 0 1/5]

>

> G := GroupOfLieType("A2", Rationals());

> Invariants(CoisogenyGroup(G));

[ 3 ]

> rho := StandardRepresentation(G);

Warning: Projective representation

> BaseRing(Codomain(rho));

Algebraically closed field with no variables

> rho(elt< G | VectorSpace(Rationals(),2)![3,1] >);

[r1 0 0]

[ 0 r2 0]

[ 0 0 r2]

> rho(elt< G | VectorSpace(Rationals(),2)![3,1] >)^3;
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[ 9 0 0]

[ 0 1/3 0]

[ 0 0 1/3]

104.4 Operations on Weight Multisets

104.4.1 Basic Operations
In this section, basic access and arithmetic operations for weight multisets are described.
Addition generally corresponds to direct sum of representations. The other arithmetic
operations do not necessarily correspond to meaningful operations on the corresponding
representation.

RootDatum(D)

The Root datum over which the weight multiset D is defined.

Weights(D)

WeightsAndMultiplicities(D)

The sequences of weights and multiplicities in the weight multiset D.

Multiset(D)

The weights and multiplicities of the weight multiset D as a normal multiset con-
sisting of vectors.

Multiplicity(D, v)

The multiplicity of the weight v in the weight multiset D.

D eq E

Returns true if, and only if, the weight multisets D and E are identical, i.e. they
are defined over identical root data, with equal weights and multiplicities.

D + E

The sum (union) of weight multisets D and E, i.e. this corresponds to the direct
sum of the two decomposition multisets. The underlying root data must be the
same.
Add Vv to D. The length of v must be equal to dim(RD).

D +:= E

Add the weight multiset E to D. RD must be equal to RE .
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AddRepresentation(∼D, E, c)

AddRepresentation(∼D, E)

Add c times the weight multiset E to D. The integer c may be omitted, in which
case it is assumed to be equal to 1. The root data of D and E must be identical.

D + v

Add the weight v to the multiset D. The weight v must be a sequence of length d
or an element of Zd, where d is the dimension of the root datum R.

AddRepresentation(∼D, v, c)

AddRepresentation(∼D, v)

Add c times the weight v to the multiset D. The integer c may be omitted, in which
case it is assumed to be equal to 1. The length of v must be equal to the dimension
of the root datum of D.

D +:= v

Add the weight v to the multiset D. The length of v must be equal to the dimension
of the root datum of D.

D * c

The multiset whose weights are equal to those of D, and whose multiplicities are c
times the multiplicities of D.

D / c

The multiset whose weights are equal to those of D, and whose multiplicities are
the multiplicities of D divided by c. An error is flagged if any of the multiplicities
of D is not divisible by c.

D *:= c

Multiply all multiplicities of the weight multiset D by c.

D /:= c

Divide all multiplicities of the weight multiset D by c. An error is flagged if a
multiplicity of D is not divisible by c.

D * E

ProductRepresentation(D, E)

The product of the two weight multisets D and E, viewed as polynomials as in the
LiE package [vLCL92]. The root datum of the resulting decomposition is the direct
sum of the root data of D and E. Note that this is does not correspond to the direct
sum or tensor product of representations.
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ProductRepresentation(D, E, R)

The product of the two weight multisets D and E, viewed as polynomials as in the
LiE package [vLCL92]. The product is interpreted as a weight multiset over the root
datum R. An error is flagged if the dimension of R is not the sum of the dimensions
of the root data of D and E.

SubWeights(D, Q, S)

Let k be the length of the sequence Q. The resulting decomposition E has Root
datum S, and to each highest weight of D corresponds a highest weight w′ of E, with
w′i = wQ[i], where i = 1, . . . , k. The multiplicities of E are equal to the multiplicities
of D, but one should note that E might in fact have fewer unique highest weights
than D, especially if k < dim(RD). The dimension of the root datum S must be
equal to k.

PermuteWeights(D, pi, S)

Permute the components of the weights in the multiset D by the permutation π and
interpret the result as a weight multiset over the root datum S. If the underlying
root datum of D has dimension d, then S must also have dimension d and π must
be an element of Sym(d).

Example H104E6

Arithmetic with decompositions:

> R := RootDatum("A2" : Isogeny := "SC");

> D := LieRepresentationDecomposition(R, [[2,3],[4,3]], [1,3]);

> D:Maximal;

Highest weight decomposition of representation of:

R: Simply connected root datum of dimension 2 of type A2

Dimension of weight space:2

Weights:

[

(2 3),

(4 3)

]

Multiplicities:

[ 1, 3 ]

> E := D + [5,2];

> E:Maximal;

Highest weight decomposition of representation of:

R: Simply connected root datum of dimension 2 of type A2

Dimension of weight space:2

Weights:

[

(2 3),

(4 3),

(5 2)
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]

Multiplicities:

[ 1, 3, 1 ]

> PermuteWeights(E, Sym(2)!(1,2), R):Maximal;

Highest weight decomposition of representation of:

R: Simply connected root datum of dimension 2 of type A2

Dimension of weight space:2

Weights:

[

(3 2),

(3 4),

(2 5)

]

Multiplicities:

[ 1, 3, 1 ]

> S := RootDatum("A1" : Isogeny := "SC");

> SubWeights(E, [2], S):Maximal;

Highest weight decomposition of representation of:

S: Simply connected root datum of dimension 1 of type A1

Dimension of weight space:1

Weights:

[

(3),

(2)

]

Multiplicities:

[ 4, 1 ]

104.4.2 Conversion Functions
Functions for converting between different kinds of weight multiset (decomposition, char-
acter, and dominant character multisets). Note that it is the users responsibility to keep
track of what kind of multiset they are using. If a function that expects one kind of set
receives another, the output is likely to be meaningless.

VirtualDecomposition(C)

VirtualDecomposition(R, v)

The virtual decomposition multiset of the virtual module with dominant charac-
ter multiset C. The second version is provided for convenience, and equivalent to
VirtualDecomposition(LieRepresentationDecomposition(R,v)).

DecomposeCharacter(C)

The decomposition multiset of the module with dominant character multiset C.
An error is flagged if D is virtual, i.e. if dominant weights occur with negative
multiplicities.
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DominantCharacter(D)

Returns the dominant character multiset with decomposition D.

104.4.3 Calculating with Representations
As described earlier, many operations on representations carry over naturally to operations
on their decompositions. This section describes the various functions for this purpose that
were ported from LiE.

Note that many functions in this sections have two variants: one that takes decompo-
sitions as an argument and one that takes a root datum and a highest weight.

RepresentationDimension(D)

The dimension of the module with decomposition polynomial D. The algorithm
used is described in [vLCL92].

RepresentationDimension(R, v)

The dimension of the module with highest weight v over the root datum R. The
algorithm used is described in [vLCL92].

CasimirValue(R, w)

The value of the quadratic Casimir on representation with highest weight w, nor-
malised to take the value 2 on the highest weight of the adjoint representation. This
function is due to Dr. Bruce Westbury, University of Warwick

QuantumDimension(R, w)

Two Multisets of positive integers, Num and Den, which should be read as follows.
Take the product of the integers in Num and divide by the product of the integers in
Den to get the ordinary dimension. Replacing each integer by the quantum integer
will give the quantum dimension. This function is due to Dr. Bruce Westbury,
University of Warwick

Example H104E7

Dimensions:

> R := RootDatum("D4" : Isogeny := "SC");

> D := AdjointRepresentationDecomposition(R);

> RepresentationDimension(D);

28

> wts, mps := WeightsAndMultiplicities(D); wts,mps;

[

(0 1 0 0)

]

[ 1 ]

> num,den := QuantumDimension(R, wts[1]); num,den;

{* 4^^2, 7 *}

{* 1, 2^^2 *}
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> &*num/&*den;

28

Branch(FromGrp, ToGrp, v, M)

Virtual BoolElt Default : false

The decomposition polynomial of the restriction to ToGrp of the irreducible mod-
ule Vv with respect to the restriction matrix M . M must be a matrix with
dim(FromGrp) rows and Dim(ToGrp) columns.

The matrix M is used in such a way that any weight v′ (expressed on the basis
of fundamental weights for g), when restricted to a torus of ToGrp, becomes the
weight v′M (expressed on the basis of fundamental weights for ToGrp). A suit-
able restriction matrix can often be obtained by use of RestrictionMatrix. The
algorithm used is described in [vLCL92].

The optional argument Virtual may be set to true to allow occurrence of virtual
weights.

Branch(ToGrp, D, M)

Virtual BoolElt Default : false

As Branch(FromGrp, ToGrp, v, M) but with the irreducible module v replaced by
the module with decomposition D.

Collect(R, D, M)

This function attempts to perform the inverse operation of Branch, namely to re-
construct an R-module from its restriction to RD.

Please note that in LiE one must supply the inverse of the matrix used in Branch.
Magma, however, is able to compute inverses itself, so one needs to provide the
matrix used in Branch, and not its inverse.

M must be a square matrix whose dimension is equal to the dimension of RD.
The dimension of R must be equal to the dimension of RD as well. The algorithm
used is described in [vLCL92].

Example H104E8

Branch and Collect:

> R := RootDatum("D4" : Isogeny := "SC");

> S := RootDatum("A3T1" : Isogeny := "SC");

> M := RestrictionMatrix(R, S);

> br := Branch(R, S, [1,0,0,0], M);

> br;

Highest weight decomposition of representation of:

S: Simply connected root datum of dimension 4 of type A3

Number of terms: 2

> cl := Collect(R, br, M);
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> cl:Maximal;

Highest weight decomposition of representation of:

R: Simply connected root datum of dimension 4 of type D4

Dimension of weight space:4

Weights:

[

(1 0 0 0)

]

Multiplicities:

[ 1 ]

TensorProduct(R, v, w)

Goal Any Default :

The decomposition multiset of the tensor product of the representations with highest
weights v and w over the root datum R.

If the optional parameter Goal is set, only the multiplicity of the irreducible
module with highest weight Goal is returned. This does not greatly speed up the
process, as the same computational steps need to be made, but it will significantly
reduce memory consumption. The algorithm used is described in [vLCL92].

TensorProduct(D, E)

Goal Any Default :

The decomposition multiset of the tensor product of the representations with de-
composition multisets D and E.

If the optional parameter Goal is set, only the multiplicity of the irreducible
module with highest weight Goal is returned. This does not greatly speed up the
process, as the same computational steps need to be made, but it will significantly
reduce memory consumption. The algorithm used is described in [vLCL92].

TensorProduct(Q)

Goal Any Default :

The decomposition multiset of the tensor product of the representations with de-
composition multisets in the sequence Q.

If the optional parameter Goal is set, only the multiplicity of the irreducible
module with highest weight Goal is returned. This does not greatly speed up the
process, as the same computational steps need to be made, but it will significantly
reduce memory consumption. The algorithm used is described in [vLCL92].

TensorPower(R, n, v)

TensorPower(D, n)

The decomposition of the n-th tensor power of V R
v or D.
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Example H104E9

Taking tensor powers nicely shows how rapidly the complexity of representations increases, espe-
cially if we have a reasonably high weight as highest weight:

> R := RootDatum("D4" : Isogeny := "SC");

> DAd := AdjointRepresentationDecomposition(R);

> pwrs := function(D, n)

> Q := [D];

> for i in [2..n] do

> Q[i] := Tensor(Q[1], Q[i-1]);

> end for;

> return Q;

> end function;

> time Q := pwrs(DAd, 7);

Time: 4.900

> [ #q : q in Q ];

[ 1, 7, 15, 30, 54, 91, 143 ]

> DH := LieRepresentationDecomposition(R, [2,2,0,0]);

> time Q := pwrs(DH, 4); [ #q : q in Q ];

Time: 99.070

[ 1, 105, 390, 1017 ]

AdamsOperator(R, n, v)

AdamsOperator(D, n)

The decomposition polynomial of the virtual module obtained by applying the n-th
Adams operator to V R

v or D. The algorithm used is described in [vLCL92].

SymmetricPower(R, n, v)

SymmetricPower(D, n)

The decomposition polynomial of Sn(V R
v ), the n-th symmetric tensor power of V R

v .
In the second form the irreducible module V R

v is replaced by the module with
decomposition D. The algorithm used is described in [vLCL92].

AlternatingPower(R, n, v)

AlternatingPower(D, n)

The decomposition polynomial of Altn(V R
v ), the n-th alternating tensor power of

V R
v .

In the second form the irreducible module V R
v is replaced by the module with

decomposition D. The algorithm used is described in [vLCL92].
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Plethysm(R, lambda, v)

Plethysm(D, lambda)

The decomposition multiset of the RD-module of the plethysm of V R
v corresponding

to the partition λ. Here λ should be a partition of d = dim V R
v , i.e., a non-increasing

sequence consisting of positive integers with sum d. The value returned is the de-
composition multiset of the representation of RD that is obtained by composing
the representation of RD afforded by V R

v , with the representation of GL(V R
v ) cor-

responding to the partition λ. The classical Frobenius formula is used (see [And77]
and [JK81]).

In the second form the irreducible module V R
v is replaced by the module with

decomposition D.

Spectrum(R, v, t)

Spectrum(D, t)

Let n be the last entry of the sequence t; the toral element t ∈ T will act in any
representation of R as a diagonalisable transformation, all of whose eigenvalues are
n-th roots of unity. This function returns a sequence in which the i-th entry is the
multiplicity of the eigenvalue ζi in the action of the toral element t on the irreducible
module V R

v (or the module with decomposition D, in the second case). Here ζ is
the complex number e2πi/n.

See Section 104.1.2 for a description of the format of t.

Example H104E10

Spectrum provides a means to recognise toral elements in a more natural form. [vLCL92, Section
5.7.3].

> R := RootDatum("A4" : Isogeny := "SC");

> stdrep := [1,0,0,0];

> t := [1,0,0,0,2];

> stdrep := [1,0,0,0];

> Spectrum(R, stdrep, t);

[ 3, 2 ]

/* Showing that t has 3 eigenvalues 1 (1st root of unity),

and 2 eigenvalues -1 (2nd root of unity) */

/* We may use the following function for constructing

toral elements of A_n in the LiE format: */

> mktoral := function(b, d)

> r := [ (i eq 1)

> select b[i]

> else b[i-1]+b[i] mod d

> : i in [1..(#b-1)]

> ];

> r[#b] := d;

> return r;
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> end function;

> t2 := mktoral([0,0,0,1,1], 2); t2;

[ 0, 0, 0, 1, 2 ]

/* We restrict to a one parameter subgroup */

> RM := Transpose(Matrix([[0,0,0,1]]));

> T1 := RootDatum("T1" : Isogeny := "SC");

> Branch(R, T1, stdrep, RM):Maximal;

Highest weight decomposition of representation of:

T1: Toral root datum of dimension 1

Dimension of weight space:1

Weights:

[

(1),

(0),

(-1)

]

Multiplicities:

[ 1, 3, 1 ]

/* Indicating that the element of that one parameter

subgroup parametrised by some complex number z has

one eigenvalue z^-1, three eigenvalues 1, and one

eigenvalue z in the standard representation. */

Demazure(R, v, w)

Demazure(D, w)

Starting with the highest weight v of R, or the decomposition D, repeatedly apply
the Demazure operator Mαi , taking for i the successive entries of the Weyl word w
(viewed as product of simple reflections).

Demazure(R, v)

Demazure(D)

Equivalent to Demazure(R, v, w) or Demazure(D, w) where w is the longest word
of the Coxeter group of R or RD.

If D is a decomposition polynomial, then the result E is the character polynomial
of this decomposition. This is not the most efficient way to compute characters, but
it can be very useful in checking other algorithms, since only the most elementary
manipulations are involved.
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Example H104E11

The Demazure operator:

> R := RootDatum("D4" : Isogeny := "SC");

> DAd := AdjointRepresentationDecomposition(R);

> DAdCp := Demazure(DAd); DAdCp;

Highest weight decomposition of representation of:

R: Simply connected root datum of dimension 4 of type D4

Number of terms: 25

> DAd2 := AlternatingDominant(DAdCp); DAd2;

Highest weight decomposition of representation of:

R: Simply connected root datum of dimension 4 of type D4

Number of terms: 1

> DAd2 eq DAd;

true

LittlewoodRichardsonTensor(p, q)

LittlewoodRichardsonTensor(P, M, Q, N)

In the first form, p and q are interpreted as dominant weights for the group SLn (of
type An−1) expressed in partition coordinates. Here n is the number of elements of
p (which must be equal to the number of elements of q).

The tensor product of the corresponding highest weight modules is computed
using the Littlewood-Richardson rule, and the result is expressed again in partition
coordinates. To be precise, two sequences P, M, are returned, meaning that the
highest weight module with partition coordinates P[i] occurs in the tensor product
with multiplicity M[i].

In the second form, instead of two irreducible modules, the tensor product of
the module having partition coordinates P[i] with multiplicity M[i] and the module
having partition coordinates Q[j] with multiplicity N[j] is computed.

LittlewoodRichardsonTensor(R, v, w)

LittlewoodRichardsonTensor(D, E)

In the first form, compute the tensor product of the irreducible An representations
with highest weights v and w using the Littlewood-Richardson rule. In the second
form, compute the tensor product of the representations with decompositions D and
E.

This procedure converts the weights to partitions, computes the tensor product
using the Littlewood-Richardson rule (as described above, see LittlewoodRichard-
sonTensor), and converts the result back to a weight multiset.
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Example H104E12

We compare the Littlewood-Richardson tensor and the normal tensor:

> R := RootDatum("A2" : Isogeny := "SC");

> v := [1,2];

> w := [1,1];

> D1 := Tensor(R, v, w);

> D1;

Highest weight decomposition of representation of:

R: Simply connected root datum of dimension 2 of type A2

Weights:

[

(0 1),

(2 0),

(0 4),

(3 1),

(2 3),

(1 2)

]

Multiplicities:

[ 1, 1, 1, 1, 1, 2 ]

> D2 := LittlewoodRichardsonTensor(R, v, w);

> D2;

Highest weight decomposition of representation of:

R: Simply connected root datum of dimension 2 of type A2

Weights:

[

(1 2),

(2 3),

(2 0),

(0 4),

(0 1),

(3 1)

]

Multiplicities:

[ 2, 1, 1, 1, 1, 1 ]

> D1 eq D2;

true

So the results are identical, as they should be. We could also convert the weights to partitions
by hand, directly compute the Littlewood- Richardson tensor, and compare that to the previous
result:

> vp := WeightToPartition(v); wp := WeightToPartition(w);

> vp, wp;

[ 3, 2, 0 ]

[ 2, 1, 0 ]

> parts, mps := LittlewoodRichardsonTensor(vp, wp);

> parts, mps;
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[

(4 4 0),

(4 3 1),

(3 3 2),

(5 3 0),

(5 2 1),

(4 2 2)

]

[ 1, 2, 1, 1, 1, 1 ]

> [ PartitionToWeight(p) : p in parts ];

[

(0 4),

(1 2),

(0 1),

(2 3),

(3 1),

(2 0)

]

So that again gives the same representation. Finally, note that in some cases computing tensor
products using the Littlewood-Richardson rule may be faster than computing them in the normal
way:

> R := RootDatum("A8" : Isogeny := "SC");

> v := [0,0,2,0,1,0,1,2];

> w := [0,2,1,2,0,0,1,0];

> time _ := Tensor(R, v, w);

Time: 2.630

> time _ := LittlewoodRichardsonTensor(R, v, w);

Time: 0.210

AlternatingDominant(D, w)

AlternatingDominant(R, wt, w)

Alternating Dominant of the representation with decomposition D or the irreducible
representation Vwt, with respect to Weyl group element w. Starting with D, the
following operation is repeatedly applied, taking for i the successive entries of w
(viewed as reflection). For any (weight, multiplicity) pair (v, c) of D let vi = 〈v, αi〉
be its coefficient of wi; the term is
– unaltered if vi ≥ 0,
– removed if vi = −1, and
– replaced by ((v + wi)ri − wi,−c) if vi = −2. As a result of the operation for

i, the coefficient vi is made non-negative without affecting the image Mαi(D)
under the Demazure operator, and hence also without changing the value of its
alternating Weyl sum AlternatingWeylSum.
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AlternatingDominant(D)

AlternatingDominant(R, wt)

Equivalent to (but somewhat faster than) the previous AlternatingDominant(D,
w) and AlternatingDominant(R, wt, w), with w the longest element of the corre-
sponding Weyl group. If D is interpreted as dominant weights with multiplicities,
then the result E contains highest weights and multiplicities.

Example H104E13

Example of the alternating dominant:

> R := RootDatum("D4" : Isogeny := "SC");

> v := [1,5,2,1];

> Dec1 := LieRepresentationDecomposition(R, v);

> // First, we construct the character polynomial for the

> // module with highest weight lambda

> Dom := DominantCharacter(Dec1 : InBasis := "Weight"); Dom;

Highest weight decomposition of representation of:

R: Simply connected root datum of dimension 4 of type D4

Number of terms: 176

> W := CoxeterGroup(R); #W; act := RootAction(W);

192

> domwts, dommps := WeightsAndMultiplicities(Dom);

> CP := LieRepresentationDecomposition(R);

> for i in [1..#domwts] do

> wt := domwts[i]; mp := dommps[i];

> wtor := WeightOrbit(W, wt : Basis := "Weight");

> for wti in wtor do

> AddRepresentation(~CP, wti, mp);

> end for;

> end for;

> CP;

Highest weight decomposition of representation of:

R: Simply connected root datum of dimension 4 of type D4

Number of terms: 17712

> time ad := AlternatingDominant(CP); ad:Maximal;

Time: 54.200

Highest weight decomposition of representation of:

R: Simply connected root datum of dimension 4 of type D4

Dimension of weight space:4

Weights:

[

(1 5 2 1)

]

Multiplicities:

[ 1 ]

> time adalt := AlternatingDominant(CP, LongestElement(W));
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Time: 8.330

> ad eq adalt;

true

AlternatingWeylSum(R, v)

AlternatingWeylSum(D)

The alternating Weyl sum of V R
v or D. Useful for demonstration purposes, but

the fact that the number of terms in the result is a multiple of the order of the
CoxeterGroup of R makes it impractical for most groups.

104.5 Operations on Representations

104.5.1 Lie Algebras
The functions described in this section are applicable only to modules of almost reductive
structure constant Lie algebras.

CharacterMultiset(V)

CharacterMultiset(ρ)

The character multiset of the Lie-algebra module V or representation ρ.

Weights(V)

WeightsAndVectors(V)

For a module V over a semisimple Lie algebra this returns two sequences. The first
sequence consists of the weights that occur in V . The second sequence is a sequence
of sequences of elements of V , in bijection with the first sequence. The i-th element
of the second sequence consists of a basis of the weight space of weight equal to the
i-th weight of the first sequence.

Weights(ρ)

WeightsAndVectors(ρ)

For a representation ρ of a semisimple Lie algebra this returns two sequences. The
first sequence consists of the weights of ρ. The second sequence is a sequence of
sequences of elements of the underlying vector space, in bijection with the first
sequence. The i-th element of the second sequence consists of a basis of the weight
space of weight equal to the i-th weight of the first sequence.

DecompositionMultiset(V)

DecompositionMultiset(ρ)

The decomposition multiset of the Lie-algebra module V or representation ρ.
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HighestWeightsAndVectors(V)

This function is analogous to the previous one. Except in this case the first sequence
consists of highest weights, i.e., those weights which occur as highest weights of
an irreducible constituent of V . The second sequence consists of sequences that
contain the corresponding highest weight vectors. So the submodules generated by
the vectors in the second sequence form a direct sum decomposition of V .

DirectSum(U, V)

The direct sum of the Lie algebra modules U and V .

DirectSumDecomposition(V)

IndecomposableSummands(V)

Given a Lie algebra module V , return the direct sum decomposition of V as a se-
quence of submodules whose sum is V and each of which cannot be further decom-
posed into a direct sum. If the Lie algebra is semisimple over a field of characteristic
zero, the summands are known to be irreducible highest weight modules.

DirectSum(ρ, τ)

The direct sum of the Lie algebra representations ρ and τ .

DirectSumDecomposition(ρ)

IndecomposableSummands(ρ)

Given a Lie algebra representation ρ, return the direct sum decomposition of ρ as
a sequence of indecomposable subrepresentation. If the Lie algebra is semisimple
over a field of characteristic zero, the summands are known to be irreducible highest
weight representations.

TensorProduct(Q)

Given a sequence Q of left-modules over a Lie algebra, this function returns the
module M that is the tensor product of the elements of Q. Secondly it returns a
map from the Cartesian product of the elements of Q to M . This maps a tuple t to
the element of M that is formed by tensoring the elements of t.

SymmetricPower(V, n)

Given a left-module V over a Lie algebra, and an integer n ≥ 2, this function
returns the module M that is the n-th symmetric power of V . It also returns a
map f from the n-fold Cartesian product of V to M . This map is multilinear and
symmetric, i.e., if two of its arguments are interchanged then the image remains the
same. Furthermore, f has the universal property, i.e., any multilinear symmetric
map from the n-fold Cartesian product into a vector space W can be written as the
composition of f with a map from M into W .
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ExteriorPower(V, n)

Given a left-module V over a Lie algebra, and an integer 2 ≤ n ≤ dim(V ), this
function returns the module M that is the n-th exterior power of V . It also returns
a map f from the n-fold Cartesian product of V to M . This map is multilinear
and antisymmetric, i.e., if two of its arguments are interchanged then the image is
multiplied by −1. Furthermore, f has the universal property, i.e., any multilinear
antisymmetric map from the n-fold Cartesian product into a vector space W can be
written as the composition of f with a map from M into W .

Example H104E14

> L:= LieAlgebra("G2", Rationals());

> V1:= HighestWeightModule(L, [1,0]);

> V2:= HighestWeightModule(L, [0,1]);

> T,f:= TensorProduct([V1,V2]);

> HighestWeightsAndVectors(T);

[

(1 1),

(2 0),

(1 0)

]

[

[

T: (1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

],

[

T: (0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 -3 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

],

[

T: (0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -3 0 0 0 0 0 0 0 0 0 0

0 0 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

]

]

> DecomposeTensorProduct(RootDatum(L), [1,0], [0,1]);

[

(1 1),

(2 0),

(1 0)

]

[ 1, 1, 1 ]

> f(<V1.2,V2.3>);

T: (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

So we see that the tensor product T decomposes as a direct sum of three submodules. This
information can also be computed by using DecomposeTensorProduct. However, in the former
case, the corresponding highest-weight vectors are also given.

> E,h:= ExteriorPower(V1, 3);

> h(<V1.1,V1.3,V1.4>);

E: (0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

> h(<V1.1,V1.4,V1.3>);

E: (0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

> DecomposeExteriorPower( RootDatum(L), 3, [1,0] );

[

(2 0),

(1 0),

(0 0)

]

[ 1, 1, 1 ]

> HighestWeightsAndVectors(E);

[

(2 0),

(1 0),

(0 0)

]

[

[

E: (1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0)

],

[

E: (0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0)

],

[

E: (0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 2 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

0)

]

]



3166 LIE THEORY Part XIV

104.5.2 Groups of Lie Type
These functions apply to projective representations of groups of Lie type. Note that
modules have not yet been implemented for these groups.

DirectSum(ρ, τ)

The direct sum of the group of Lie type representations ρ and τ .

DirectSumDecomposition(ρ)

IndecomposableSummands(ρ)

Given a group of Lie type representation ρ, return the direct sum decomposition of ρ
as a sequence of indecomposable subrepresentation. If the base field has characteris-
tic zero, the summands are known to be irreducible highest weight representations.

CharacterMultiset(V)

CharacterMultiset(ρ)

The character weight multiset of the group of Lie type representation ρ.

Weights(ρ)

WeightsAndVectors(ρ)

The weights of the representation ρ, together with the corresponding weight vectors.

WeightVectors(ρ)

A basis of weight vectors of the representation ρ.

Weight(ρ, v)

The weight corresponding to the weight vector v of the representation ρ.

DecompositionMultiset(V)

DecompositionMultiset(ρ)

The decomposition multiset of the group of Lie type representation ρ.

HighestWeights(ρ)

The highest weights of the representation ρ, together with the corresponding highest
weight vectors. This function may fail for small finite fields.

HighestWeightVectors(ρ)

The highest weight vectors of the representation ρ.

GeneralisedRowReduction(ρ)

Given a projective matrix representation ρ : G → GLm(k), return its inverse. This
algorithm is based on [CMT04].
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104.6 Other Functions for Representation Decompositions
In this section, we describe more complicated functions for dealing with representation

decompositions.

FundamentalClosure(R, S)

A set of fundamental roots in the minimal subsystem (not necessarily closed!) of
the root system R that contains all the roots in S. This function is equivalent to
the fundam function in LiE.

The set S should contain either roots or root indices; the returned set will then
contain objects of the same type.

Closure(R, S)

A set of fundamental roots in the minimal subsystem (not necessarily closed!) of
the root system R that contains all the roots in S. This function is equivalent to
the closure function in LiE.

The set S should contain either roots or root indices; the returned set will then
contain objects of the same type.

RestrictionMatrix(R, Q)

For a simply connected root datum R and a sequence of roots Q forming a fun-
damental basis for a closed subdatum S of R, this function computes a restriction
matrix for the fundamental Lie subgroup of type S of the Lie group corresponding
to R.

The sequence Q may contain either integers (where i corresponds to the i-th root
of R) or vectors (interpreted as root vectors written in the root basis of R).

Note that the result is not unique. Moreover, if the result is to be used by Branch
or Collect the roots in Q must be positive roots, and their mutual inner products
must be non-positive.

RestrictionMatrix(R, S)

Let S be a sub root datum of R, constructed for example (but not necessarily)
using a call to sub<...>. Then the matrix M returned by this function maps the
fundamental weights of R to those of S. Note that, if the rank of S is smaller than
the rank of R, there will be more than one such matrix.

Example H104E15

Constructing a restriction matrix

> R := RootDatum("D4": Isogeny := "SC");

> sub<R | [1,3,4]>;

Root datum of dimension 4 of type A1 A1 A1

[ 1, 3, 4, 13, 15, 16 ]

> S := RootDatum("A1A1A1T1" : Isogeny := "SC");

> M := RestrictionMatrix(R, S); M;

[ 1 0 0 -1]
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[ 0 1 0 -2]

[ 0 0 1 -1]

[ 0 0 0 4]

> imgR := FundamentalWeights(R)*M; imgR;

[ 1 0 0 -1]

[ 0 1 0 -2]

[ 0 0 1 -1]

[ 0 0 0 4]

> FundamentalWeights(S);

[1 0 0 0]

[0 1 0 0]

[0 0 1 0]

/* M is of the required form, since: */

> [ BasisChange(S, BasisChange(S, imgR[i]

> : InBasis := "Standard", OutBasis := "Weight")

> : InBasis := "Weight", OutBasis := "Standard")

> : i in [1..4]

> ];

[

(1 0 0 0),

(0 1 0 0),

(0 0 1 0),

(0 0 0 0)

]

KLPolynomial(x, y)

Ring RngUPol Default : Z[X]
The Kazhdan-Lusztig polynomial Px,y. We use the recursion given originally by
Kazhdan and Lusztig [KL79].

RPolynomial(x, y)

Ring RngUPol Default : Z[X]
The R-polynomial Rx,y.

Example H104E16

There is a relation between Kazhdan-Lusztig polynomials and R-polynomials. We should have,
for any x, w ∈ W :

Xl(w)−l(x)Px,w − Px,w =
∑

x<y≤w

Rx,wPy,w,

where the bar indicates a sign change of all the exponents. We need some fiddling around in order
to implement this sign change, since Magma doesn’t support negative exponents at the moment,
but we can make it work:

> signchange := function(pol, pwr)
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> //returns X^pwr * bar(pol)

> deg := Degree(pol);

> P := Parent(pol);

> if (deg gt pwr) then return "Failed: Can’t do sign change"; end if;

> return (P.1)^(pwr-deg)*P!Reverse(Eltseq(pol));

> end function;

> testKL := function(x, w)

> W := Parent(x);

> rng<X> := PolynomialRing(Integers());

> lenw := CoxeterLength(W, w);

> lenx := CoxeterLength(W, x);

>

> if (lenx gt lenw) then

> return "Failed: l(x) > l(w) gives zero R and KL polynomials.";

> end if;

>

> /* Left hand side */

> Pxw := KLPolynomial(x, w : Ring := rng);

> lhs := signchange(Pxw, lenw - lenx);

> if (Type(lhs) eq MonStgElt) then return lhs; end if;

> lhs -:= Pxw;

>

> /* Right hand side */

> rhs := rng!0;

> lvl := {w};

> lvllen := lenw;

> while (lvllen gt lenx and #lvl gt 0) do

> for y in lvl do

> rhs +:= RPolynomial(x,y : Ring := rng)*

> KLPolynomial(y, w : Ring := rng);

> end for;

> lvl := BruhatDescendants(lvl : z := x);

> lvllen -:= 1;

> end while;

>

> /* Done */

> printf "LHS: %o\n", lhs;

> printf "RHS: %o\n", rhs;

> return lhs eq rhs;

> end function;

> W := CoxeterGroup("D4");

> x := W.1*W.2*W.1;

> w := W.1*W.2*W.3*W.4*W.1*W.2;

> testKL(x,w);

LHS: X^3 + X^2 - X - 1

RHS: X^3 + X^2 - X - 1
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true

Exponents(R)

The exponents of a Root datum R form a sequence of numbers e1, . . . , er, where r
is the rank of R, such that the polynomial

∑
w∈W X l(w) decomposes as a product∏r

i=1

∑ei

j=0 Xj . They are given in weakly increasing order.

Example H104E17

Exponents of A3:

> W := CoxeterGroup("A3"); #W;

24

> P<X> := PolynomialRing(Integers());

> f := &+[ X^(CoxeterLength(W, w)) : w in W ]; f;

X^6 + 3*X^5 + 5*X^4 + 6*X^3 + 5*X^2 + 3*X + 1

> R := RootDatum("A3" : Isogeny := "SC");

> exp := Exponents(R); exp;

[ 1, 2, 3 ]

> g := [ &+[ X^j : j in [0..e] ] : e in exp ]; g;

[

X + 1,

X^2 + X + 1,

X^3 + X^2 + X + 1

]

> f eq &*g;

true

ToLiE(D)

The LiE equivalent of the decomposition D.

FromLiE(R, p)

The decomposition of the representation over R that is equivalent to p, where p is
a polynomial in LiE-syntax.
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Example H104E18

Conversion to and from LiE-syntax

> R := RootDatum("B3" : Isogeny := "SC");

> D := LieRepresentationDecomposition(R, [1,2,3]);

> s := ToLiE(D); s;

1X[1,2,3]

> FromLiE(R, s):Maximal;

Highest weight decomposition of representation of:

R: Simply connected root datum of dimension 3 of type B3

Dimension of weight space:3

Weights:

[

(1 2 3)

]

Multiplicities:

[ 1 ]

104.6.1 Operations Related to the Symmetric Group
In this section, we describe some functions taken from LiE for dealing with the Sym-

metric group.

ConjugationClassLength(l)

The order of the conjugation class of Sn of permutations of cycle type l (for n the
sum of the elements of l).

PartitionToWeight(l)

Let n be the number of parts of l, then the function returns the weight for a group
of type An−1 corresponding to λ, expressed on the basis of fundamental weights.

WeightToPartition(v)

Let n be the length of v, then v is interpreted as a weight for a group of type An,
and the expression of that weight in n + 1 partition coordinates is returned. When
v is dominant, this is a partition with n + 1 parts.

TransposePartition(l)

The transpose partition of l.
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104.6.2 FusionRules
In this section, we describe a function for computing fusion rules using the Kac-Walton

formular, as described in Section 16.2 of [FMS97].

WZWFusion(R, v, w, k)

ReturnForm MonStgElt Default : “Auto”

Compute the fusion rules for weights v × w of R at level k using the Kac-Walton
formula. The weights v and w may be given either as finite weights (i.e. vectors or
sequences with rank(R) entries) or as affine weights (i.e. vectors or sequences with
rank(R)+1 entries).

The optional argument ReturnForm should be “Auto” (in which case the weights
returned will be finite weights or affine weights depending on what v and w are; the
default), “Finite” (in which case the weights returned are finite weights), or “Affine”
(in which case the weights returned are affine weights).

Note that R should be a weakly simply connected root datum.

WZWFusion(D, E, k)

Compute the fusion rules for representations D and E at level k.

Example H104E19

Fusion rules at level 3 for B3 (using finite weights first, affine weights second)

> R := RootDatum("B3" : Isogeny := "SC");

> WZWFusion(R, [0,0,1],[1,0,1], 3);

{*

(2 0 0),

(1 1 0),

(0 0 2),

(1 0 2),

(1 0 0),

(0 1 0)

*}

> WZWFusion(R, [0,0,1],[1,0,1], 3 : ReturnForm := "Affine");

{*

(2 0 0 1),

(1 0 2 0),

(0 1 0 1),

(1 0 0 2),

(0 0 2 1),

(1 1 0 0)

*}



Ch. 104 REPRESENTATIONS OF LIE GROUPS AND ALGEBRAS 3173

104.7 Subgroups of Small Rank

LiE contains a small database with the types of the maximal proper subgroups of complex
reductive simply connected Lie groups g, where g is simple and of rank at most 8. We
copied this list into Magma, and it can be accessed using the following functions.

LiEMaximalSubgroups()

All maximal subgroups as described above, as a sequence of pairs. Each pair consists
of a string denoting the simple group at hand, and a sequence of strings denoting
its maximal subgroups.

MaximalSubgroups(G)

The maximal subgroups of the complex reductive simply connected simple Lie group
whose Cartan type is the string G, represented as a sequence of strings.

RestrictionMatrix(G, H)

Index RngIntElt Default : −1
The restriction matrix for the maximal proper subgroup of type H of G. If more
than one maximal subgroup of G is of type H, the parameter Index must be set to
indicate which one is required.

Example H104E20

Using the subgroup database:

> MaximalSubgroups("E7");

[ A2, A1, A1, A1F4, G2C3, A1G2, A1A1, D6A1, A7, A5A2 ]

> M := RestrictionMatrix("E7", "A1" : Index := 2); M;

[26]

[37]

[50]

[72]

[57]

[40]

[21]

> R := RootDatum("E7" : Isogeny := "SC");

> S := RootDatum("A1" : Isogeny := "SC");

> D := AdjointRepresentationDecomposition(R);

> RepresentationDimension(D);

133

> E := Branch(S, D, M); #E;

8

> RepresentationDimension(E);

133
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104.8 Subalgebras of su(d)

This section describes functions for studying irreducible simple subalgebras of the Lie
algebra su(d) (cf. [Dyn57]). The verbose flag "SubSU" may be set to show details and
progress of the various computations.

The algorithms and the implementation in this package are due to Robert Zeier. For
more information about some of the algorithms used and the results obtained using this
package we refer to [ZSH11].

IrreducibleSimpleSubalgebrasOfSU(N)

A list of all irreducible simple subalgebras occurring in the Lie algebra su(d), for
2 ≤ d ≤ N .

IrreducibleSimpleSubalgebraTreeSU(Q, d)

The subalgebra tree for degree d as a directed graph whose vertex labels describe
subalgebras, derived from the list Q of irreducible subalgebras. The vertex labels
are records with three fields: algebra, a string containing the Cartan type of this
subalgebra; weights, a sequence of highest weights (as sparse vectors) corresponding
to irreducible representations (they are related by an outer automorphism if there
is more than one highest weight); and type, an integer with values -1, 1, or 0
corresponding to irreducible representations of quaternionic, real, or complex type,
respectively (the Frobenius-Schur indicator).

PrintTreesSU(Q, F)

FromDegree RngIntElt Default : 2

ToDegree RngIntElt Default : |Q|
IncludeTrivial BoolElt Default : true

Print the tree of subalgebras in the sequence Q (as obtained by a call to
IrreducibleSimpleSubalgebrasOfSU) to the file with filename F. The file F will
be overwritten.

The resulting file will be a LaTeX document that may be typeset using latex
followed by dvipdf, for instance. If the resulting file is large, the main memory allo-
cated to TEX may have to be increased (the main memory directive in texmf.cnf).
Contact your system administrator in case of difficulty.

The optional arguments FromDegree and ToDegree limit which degrees are out-
put; IncludeTrivial may be set to false to remove “trivial” cases (i.e. trivial
trees) from the output. For d ≥ 5 and d even, su(d) is considered trivial if it
contains only the (proper) irreducible simple subalgebras Cd/2 (i.e. sp(d/2)), Dd/2

(i.e. so(d)), and A1 (i.e. su(2)); for d ≥ 5 and d is odd, su(d) is considered trivial if
it contains only B(d−1)/2 (i.e. so(d)) and A1.

The Lie algebras in the output are coloured according to type: red for -1, blue
for 1, and black for 0 (see IrreducibleSimpleSubalgebraTreeSU).
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Example H104E21

We investigate subalgebras of su(d) for d up to 210.

> Q := IrreducibleSimpleSubalgebrasOfSU(2^10);

> t := IrreducibleSimpleSubalgebraTreeSU(Q, 12);

> t;

Digraph

Vertex Neighbours

1 2 4 ;

2 3 ;

3 ;

4 ;

> r := VertexLabel(t, 1); r‘algebra;

rec<recformat<algebra: MonStgElt, weights, type: IntegerRing()> |

algebra := A11,

weights := [

Sparse matrix with 1 row and 11 columns over Integer Ring,

Sparse matrix with 1 row and 11 columns over Integer Ring

],

type := 0>

> r := VertexLabel(t, 2); r;

rec<recformat<algebra: MonStgElt, weights, type: IntegerRing()> |

algebra := C6,

weights := [

Sparse matrix with 1 row and 6 columns over Integer Ring

],

type := -1>

> [ Matrix(w) : w in r‘weights ];

[

[1 0 0 0 0 0]

]

> RepresentationDimension(RootDatum("C6"),[1,0,0,0,0,0]);

12

> r := VertexLabel(t, 3); r‘algebra;

A1

> [ Matrix(w) : w in r‘weights ];

[

[11]

]

> RepresentationDimension(RootDatum("A1"),[11]);

12

> r := VertexLabel(t, 4); r‘algebra;

D6

In this manner we have used IrreducibleSimpleSubalgebraTreeSU to obtain information about
irreducible simple subalgebras of su(12): A11 (su(12)) is the root of the tree, C6 corresponds
to a proper subalgebra of A11, and A1 is a proper subalgebra of C6. In addition, we have
used RepresentationDimension to verify the dimensions of the representations. Let us use
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RepresentationDimension to see what other su(d) the Lie algebra of type C6 should at the
very least occur in:

> V := RSpace(Integers(), 6);

> [ RepresentationDimension(RootDatum("C6"), v) : v in Basis(V) ];

[ 12, 65, 208, 429, 572, 429 ]

We compare that to the list of su(d) it does occur in using IrreducibleSimpleSubalgebraTreeSU

and obtain the weights for the case su(78).

> [ i : i in [2..2^10] | exists{r : r in VertexLabels(

> IrreducibleSimpleSubalgebraTreeSU(Q, i)) | r‘algebra eq "C6"} ];

[ 12, 65, 78, 208, 364, 429, 560, 572 ]

> t := IrreducibleSimpleSubalgebraTreeSU(Q, 78);

> l := VertexLabels(t);

> [ r‘algebra : r in l ];

[ A77, C39, A1, D39, B6, C6, E6, A2, A11, A12 ]

> r := l[6];

> [ Matrix(x) : x in r‘weights ];

[

[2 0 0 0 0 0]

]
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