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Chapter 105

GRÖBNER BASES

105.1 Introduction

This chapter describes the basics for configuring Magma’s powerful Gröbner basis ma-
chinery, which lies at the heart of computations with ideals and modules over multivariate
polynomial rings. Later chapters will describe the many functions and operations available
to the user for working with ideal and modules.

Gröbner bases were introduced by Bruno Buchberger [Buc65] and at the heart of the
theory is the Buchberger algorithm which computes a Gröbner basis of an ideal starting
from an arbitrary basis (generating set) of the ideal. The two books Ideals, Varieties and
Algorithms [CLO96] and Gröbner Bases [BW93] have also inspired much of the design and
presentation of ideals of multivariate polynomial rings in Magma.

Since V2.11 (May 2004), Magma also contains a highly optimized implementation of
the Faugère F4 algorithm [Fau99], based on sparse linear algebra techniques, which usually
performs dramatically better than the Buchberger algorithm (see [Ste04]).

Chapter 24 deals with the basics of multivariate polynomial rings and their elements
(for which there are very many functions), so it is recommended that that chapter be
perused before reading this one.

Permutation and matrix groups have a natural action on multivariate polynomial rings.
This leads to the subject of invariant rings of finite groups, which is covered in Chapter 110.
See also the chapters on affine algebras (Chapter 108) and on modules over affine algebras
(Chapter 109), and the chapter on algebraically closed fields (Chapter 40), which allows
one to compute the variety of an ideal over the algebraic closure of the base field.

105.2 Representation and Monomial Orders

Let P be the polynomial ring R[x1, . . . , xn] of rank n over a ring R. A monomial (or power
product) of P is a product of powers of the variables (or indeterminates) of P , that is,
an expression of the form xe1

1 · · ·xen
n with ei ≥ 0 for 1 ≤ i ≤ n. Multivariate polynomials

in Magma are stored efficiently in distributive form, using arrays of coefficient-monomial
pairs, where the coefficient is in the base ring R. The word ‘term’ will always refer to a
coefficient multiplied by a monomial.

Monomial orders are of critical importance when dealing with Gröbner bases. Let M
be the set of all monomials of P . A monomial ordering on M is a total order < on M
such that 1 ≤ s for all s ∈ M , s ≤ t implies su ≤ tu for all s, t, u ∈ M , and M is a well-
ordering (every non-empty subset of M possesses a minimal element w.r.t. <). Monomial
orders can be naturally specified in terms of weight vectors: a vector W from Qn with
non-negative entries is called a weight vector since it weights a monomial s by the product
s.W (defined to be the dot product of the exponent vector of s with W ); any sequence of
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n linearly-independent weight vectors determines a monomial order on M (see the weight
order below [subsection 105.2.9]). All monomial orderings can in fact be represented in
terms of weight vectors.

Multivariate polynomial rings are constructed in Magma such that the monomials of
any polynomial are sorted with respect to a specified monomial order, with the great-
est monomial first. Gröbner basis computations are dramatically affected by the choice
of monomial order. Magma provides an extensive choice of monomial orders. Cur-
rently, the intrinsic functions PolynomialRing (or PolynomialAlgebra), ChangeOrder
and VariableExtension expect a monomial order; it is specified by a string giving the
name, optionally followed by extra arguments for that order.

We now describe each of the monomial orders available in Magma. We suppose that
s and t are monomials from P which has rank n. Any order on the monomials is then
fully defined by just specifying exactly when s < t with respect to that order. In the
following, the argument(s) are described for an order as a list of expressions; that means
that the expressions (without the parentheses) should be appended to any base arguments
when any particular intrinsic function is called which expects a monomial order. See also
[CLO96, Chap. 2, §2] for more details about the first three orders.

105.2.1 Lexicographical: lex

Definition: s < t iff there exists 1 ≤ i ≤ n such that the first i− 1 exponents of s and t are
equal but the i-th exponent of s is less than the i-th exponent of t. The order is specified
by the argument ("lex").

The order is called “lexicographical” since it orders the monomials as if they were words
in a dictionary. The i-th variable is greater than the (i + 1)-th variable for 1 ≤ i < n so
the first variable is the greatest variable. A Gröbner basis of an ideal with respect to the
lexicographical order usually represents the most information about the ideal but can be
hard to compute.

105.2.2 Graded Lexicographical: glex

Definition: s < t iff the total degree of s is less than the total degree of t or the total
degree of s is equal to the total degree of t and s < t with respect to the lexicographical
order. The order is specified by the argument ("glex").

The order is called “graded lexicographical” since it first grades the monomials by total
degree, and then decides ties by the lexicographical order. The i-th variable is greater
than the (i + 1)-th variable for 1 ≤ i < n so the first variable is the greatest variable. This
order is rarely used because the grevlex order below is usually a better degree order (i.e.,
yields smaller Gröbner bases).

105.2.3 Graded Reverse Lexicographical: grevlex
Definition: s < t iff the total degree of s is less than the total degree of t or the total
degree of s is equal to the total degree of t and s > t with respect to the lexicographical
order applied to the exponents of s and t in reverse order. The order is specified by the
argument ("grevlex").
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The order is called “graded reverse lexicographical” since it first grades the monomials
by total degree, and then decides ties by the negation of the lexicographical order applied
to the variables in reverse order. Again, the i-th variable is greater than the (i + 1)-th
variable for 1 ≤ i < n so the first variable is the greatest variable. A Gröbner basis of
an ideal with respect to the graded reverse lexicographical order is usually the easiest to
compute so it is recommended that this order be used when just any Gröbner basis for an
ideal is desired.

105.2.4 Graded Reverse Lexicographical (Weighted): grevlexw

Definition (given a sequence W of n positive integer weights): s < t iff the total weighted
degree ds of s w.r.t. W is less than the total degree dt of t w.r.t. W or ds = dt and s > t
with respect to the lexicographical order applied to the exponents of s and t in reverse
order. The order is specified by the arguments ("grevlexw", W).

The order is called “graded reverse lexicographical (weighted)” since it first grades the
monomials by weighted degree w.r.t. W , and then decides ties by the negation of the
lexicographical order applied to the variables in reverse order. If W = [1, 1, . . . , 1], then
this order is equal to the grevlex order. Again, the i-th variable is greater than the
(i + 1)-th variable for 1 ≤ i < n so the first variable is the greatest variable.

This order is similar to the grevlex order, but is useful if an ideal is homogeneous with
respect to the grading given by W , since the Gröbner basis of the ideal will tend to be
smaller with this order.

105.2.5 Elimination (k): elim

Definition (given k with 1 ≤ k ≤ n − 1): s < t iff sk < tk with respect to the grevlex
order or sk = tk and sk′ < tk′ with respect to the grevlex order where mk denotes the
monomial consisting of the first k exponents of m and mk′ denotes the monomial consisting
of the last n−k exponents of m (this order is thus the concatenation of two block grevlex
orders). The order is specified by the arguments ("elim", k).

The order is called “elimination” since the first k variables are “eliminated”: if G is a
Gröbner basis of an ideal I of the polynomial ring K[x1, . . . , xn] with respect to this order,
then G∩K[xk+1, . . . , xn] is a Gröbner basis of the k-th elimination ideal I∩K[xk+1, . . . , xn].
(It is usually easier to compute a Gröbner basis with respect to this order for any k than
with respect to the full lexicographical order.) Again, the i-th variable is greater than the
(i + 1)-th variable for 1 ≤ i < n so the first variable is the greatest variable.

105.2.6 Elimination List: elim

Definition (given sequences U and V such that U and V contain distinct integers in the
range 1 to n and the sum of the lengths of U and V is n and U and V are disjoint):
s < t iff sU < tU with respect to the grevlex order or sU = tU and sV < tV with
respect to the grevlex order where mL denotes the monomial consisting of the exponents
of m corresponding to the entries of L in order. The order is specified by the arguments
("elim", U, V). V may be omitted if desired so the arguments are just ("elim", U); in
this case V is chosen to be an appropriate sequence to complement U .
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The order is called “elimination” since the variables in U are “eliminated”. The order
of the elements in U and V are significant since the ordering on the variables makes U [1]
greatest, then U [2], etc., then V [1], V [2], etc.

105.2.7 Inverse Block: invblock

Definition (given sequences U and V such that U and V contain distinct integers in the
range 1 to n and the sum of the lengths of U and V is n and U and V are disjoint): s < t
iff sV < tV with respect to the grevlex order or sV = tV and sU < tU with respect to the
grevlex order. The order is specified by the arguments ("invblock", U, V). V may be
omitted if desired so the arguments are just ("invblock", U); in this case V is chosen to
be an appropriate sequence to complement U .

The order is called “inverse block” since it applies a block ordering on the exponents
on V then U which inverts the lists supplied to the elimination list order. Thus this is
the same as the elimination order except that the lists U and V are swapped. See [BW93,
p. 390] for the motivation for this order.

105.2.8 Univariate: univ

Definition (given i with 1 ≤ i ≤ n): s < t iff sL < tL with respect to the grevlex order
or sL = tL and the i-th exponent of s is less than the i-th exponent of t, where L is the
sequence [1 .. n] with i deleted. The order is specified by the arguments ("univ", i).

The order is called “univariate” since when monomials are compared, any monomial not
containing the i-th variable is greater than any monomial containing the i-th variable. Thus
all variables but the i-th are “eliminated” so that a Gröbner basis of a zero-dimensional
ideal I with this ordering will contain the unique monic generator of the elimination ideal
consisting of all the polynomials in I containing the i-th variable alone. The j-th variable
is greater than the (j + 1)-th variable for 1 ≤ j < i and i < j ≤ n and the j-th variable is
greater than the i-th variable for any j 6= i.

105.2.9 Weight: weight

Definition (given n weight vectors W1, . . .Wn from Qn): s < t iff there exists 1 ≤ i ≤ n
such that s.Wj = t.Wj for 1 ≤ j < i and s.Wi < t.Wi. The order is specified by the
arguments ("weight", Q) where Q is a sequence of n2 non-negative integers or rationals
describing the n weight vectors of length n (in row major order).

The n weight vectors must describe a vector space basis of Qn (i.e., be linearly-
independent), since otherwise this would not yield a total ordering on the monomials.
The weight order allows one to specify any possible monomial order; any of the mono-
mial orders mentioned above can be specified by an appropriate choice of weight vectors.
However, using the in-built versions of the specialized orders above is much faster than con-
structing versions of them based on weight vectors. The next section contains an example
in which a polynomial ring is constructed with a weight order for the monomials.
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105.3 Polynomial Rings and Ideals

105.3.1 Creation of Polynomial Rings and Accessing their Monomial
Orders
Multivariate polynomial rings are created from a coefficient ring, the number of variables,
and a monomial order. If no order is specified, the monomial order is taken to be the
lexicographical order. This section is briefly repeated from the section 24.2.1 in the mul-
tivariate polynomial rings chapter, so as to show how one can set up the polynomial ring
in which to create an ideal.

Please note that the Gröbner basis of an ideal with respect to the lexicographical order
is often much more complicated and difficult to compute than the Gröbner basis of the
same ideal with respect to other monomial orders (e.g. the grevlex order), so it may be
preferable to use another order if the Gröbner basis with respect to any order is desired
(see also the function EasyIdeal below). Yet the lexicographical order is the most natural
order and is often the desired order so that is why it is used by default if no specific order
is given.

PolynomialRing(R, n)

PolynomialAlgebra(R, n)

Global BoolElt Default : false

Create a multivariate polynomial ring in n > 0 variables over the ring R. The ring
is regarded as an R-algebra via the usual identification of elements of R and the
constant polynomials. The lexicographical ordering on the monomials is used for
this default construction (see next function).

By default, a non-global polynomial ring will be returned; if the parameter
Global is set to true, then the unique global polynomial ring over R with n variables
will be returned. This may be useful in some contexts, but a non-global result is
returned by default since one often wishes to have several rings with the same num-
bers of variables but with different variable names (and create mappings between
them, for example). Explicit coercion is always allowed between polynomial rings
having the same number of variables (and suitable base rings), whether they are
global or not, and the coercion maps the i-variable of one ring to the i-th variable
of the other ring.

PolynomialRing(R, n, order)

PolynomialAlgebra(R, n, order)

Create a multivariate polynomial ring in n > 0 variables over the ring R with the
given order order on the monomials. See the section on monomial orders for the
valid values for the argument order.
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PolynomialRing(R, n, T)

PolynomialAlgebra(R, n, T)

Create a multivariate polynomial ring in n > 0 variables over the ring R with the
order given by the tuple T on the monomials. T must be a tuple whose components
match the valid arguments for the monomial orders in Section 105.2 (or a tuple
returned by the following function MonomialOrder).

MonomialOrder(P)

Given a polynomial ring P (or an ideal thereof), return a description of the monomial
order of P . This is returned as a tuple which matches the relevant arguments listed
for each possible order in Section 105.2, so may be passed as the third argument to
the function PolynomialRing above.

MonomialOrderWeightVectors(P)

Given a polynomial ring P of rank n (or an ideal thereof), return the weight vectors
of the underlying monomial order as a sequence of n sequences of n rationals. See,
for example, [CLO98, p. 153] for more information.

Example H105E1

We show how one can construct different polynomial rings with different orders.

> Z := IntegerRing();

> // Construct polynomial ring with DEFAULT lex order

> P<a,b,c,d> := PolynomialRing(Z, 4);

> MonomialOrder(P);

<"lex">

> MonomialOrderWeightVectors(P);

[

[ 1, 0, 0, 0 ],

[ 0, 1, 0, 0 ],

[ 0, 0, 1, 0 ],

[ 0, 0, 0, 1 ]

]

> // Construct polynomial ring with grevlex order

> P<a,b,c,d> := PolynomialRing(Z, 4, "grevlex");

> MonomialOrder(P);

<"grevlex">

> MonomialOrderWeightVectors(P);

[

[ 1, 1, 1, 1 ],

[ 1, 1, 1, 0 ],

[ 1, 1, 0, 0 ],

[ 1, 0, 0, 0 ]

]

> // Construct polynomial ring with block elimination and a > d > b > c
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> P<a,b,c,d> := PolynomialRing(Z, 4, "elim", [1, 4], [2, 3]);

> MonomialOrder(P);

<"elim", [ 1, 4 ], [ 2, 3 ]>

> MonomialOrderWeightVectors(P);

[

[ 1, 0, 0, 1 ],

[ 1, 0, 0, 0 ],

[ 0, 1, 1, 0 ],

[ 0, 1, 0, 0 ]

]

> a + b + c + d;

a + d + b + c

> a + d^10 + b + c^10;

d^10 + a + c^10 + b

> a + d^10 + b + c;

d^10 + a + b + c

> // Construct polynomial ring with weight order and x > y > z

> P<x, y, z> := PolynomialRing(Z, 3, "weight", [100,10,1, 1,10,100, 1,1,1]);

> MonomialOrder(P);

<"weight", [ 100, 10, 1, 1, 10, 100, 1, 1, 1 ]>

> MonomialOrderWeightVectors(P);

[

[ 100, 10, 1 ],

[ 1, 10, 100 ],

[ 1, 1, 1 ]

]

> x + y + z;

x + y + z

> (x+y^2+z^3)^4;

x^4 + 4*x^3*y^2 + 4*x^3*z^3 + 6*x^2*y^4 + 12*x^2*y^2*z^3 +

6*x^2*z^6 + 4*x*y^6 + 12*x*y^4*z^3 + 12*x*y^2*z^6 +

4*x*z^9 + y^8 + 4*y^6*z^3 + 6*y^4*z^6 +

4*y^2*z^9 + z^12

105.3.2 Creation of Graded Polynomial Rings
It is possible within Magma to assign weights to the variables of a multivariate polynomial
ring. This means that monomials of the ring then have a weighted degree with respect
to the weights of the variables. Such a multivariate polynomial ring is called graded or
weighted. A polynomial of the ring whose monomials all have the same weighted degree is
called homogeneous. The polynomial ring can be decomposed as the direct sum of graded
homogeneous components.

Suppose a polynomial ring P has n variables x1, . . . , xn and the weights for the variables
are d1, . . . , dn respectively. Then for a monomial m = xe1

1 · · ·xen
n of P (with ei ≥ 0 for

1 ≤ i ≤ n), the weighted degree of m is defined to be
∑n

i=1 eidi.
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A polynomial ring created without a specific weighting (using the default version of the
PolynomialRing function or similar) has weight 1 for each variable so the weighted degree
coincides with the total degree.

The following functions allow one to create and operate on elements of polynomial rings
with specific weights for the variables.

PolynomialRing(R, Q)

PolynomialAlgebra(R, Q)

Given a ring R and a non-empty sequence Q of positive integers, create a multivariate
polynomial ring in n = #Q variables over the ring R with the weighted degree of the
i-th variable set to be Q[i] for each i. The rank n of the polynomial is determined
by the length of the sequence Q. (The angle bracket notation can be used to assign
names to the variables, just like in the usual invocation of the PolynomialRing
function.)

As of V2.15, the default monomial order chosen is the grevlexw order with
weights given by Q, since the Gröbner basis of an ideal w.r.t. this order tends to be
smaller if the ideal is homogeneous w.r.t. the grading.

Grading(P)

VariableWeights(P)

Given a graded polynomial ring P (or an ideal thereof), return the variable weights
of P as a sequence of n integers where n is the rank of P . If P was constructed
without specific weights, the sequence containing n copies of the integer 1 is returned.

105.3.3 Element Operations Using the Grading

Degree(f)

WeightedDegree(f)

Given a polynomial f of the graded polynomial ring P , this function returns the
weighted degree of f , which is the maximum of the weighted degrees of all monomials
that occur in f . The weighted degree of a monomial m depends on the weights
assigned to the variables of the polynomial ring P — see the introduction of this
section for details. Note that this is different from the natural total degree of f
which ignores any weights.

LeadingWeightedDegree(f)

Given a polynomial f of the graded polynomial ring P , this function returns the
leading weighted degree of f , which is the weighted degree of the leading monomial
of f . The weighted degree of a monomial m depends on the weights assigned to the
variables of the polynomial ring P — see the introduction of this section for details.
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IsHomogeneous(f)

Given a polynomial f of the graded polynomial ring P , this function returns whether
f is homogeneous with respect to the weights on the variables of P (i.e., whether
the weighted degrees of the monomials of f are all equal).

HomogeneousComponent(f, d)

Given a polynomial f of the graded polynomial ring P , this function returns the
weighted degree-d homogeneous component of f which is the sum of all the terms of
f whose monomials have weighted degree d. d must be greater than or equal to 0.
If f has no terms of weighted degree d, then the result is 0.

HomogeneousComponents(f)

Given a polynomial f of the graded polynomial ring P , this function returns the
weighted degree-d homogeneous component of f which is the sum of all the terms of
f whose monomials have weighted degree d. d must be greater than or equal to 0.
If f has no terms of weighted degree d, then the result is 0.

MonomialsOfDegree(P, d)

Given a polynomial ring P and a non-negative integer d, return an indexed set
consisting of all monomials in P with total degree d. If P is graded, the grading is
ignored.

MonomialsOfWeightedDegree(P, d)

Given a graded polynomial ring P and a non-negative integer d, return an indexed
set consisting of all monomials in P with weighted degree d. If P has the trivial
grading, then this function is equivalent to the function MonomialsOfDegree.

Example H105E2

We create a simple graded polynomial ring and perform various simple operations on it.

> P<x, y, z> := PolynomialRing(RationalField(), [1, 2, 4]);

> P;

Graded Polynomial ring of rank 3 over Rational Field

Order: Grevlex with weights [1, 2, 4]

Variables: x, y, z

Variable weights: [1, 2, 4]

> VariableWeights(P);

[ 1, 2, 4 ]

> Degree(x);

1

> Degree(y);

2

> Degree(z);

4

> Degree(x^2*y*z^3); // Weighted total degree
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16

> TotalDegree(x^2*y*z^3); // Natural total degree

6

> IsHomogeneous(x);

true

> IsHomogeneous(x + y);

false

> IsHomogeneous(x^2 + y);

true

> I := ideal<P | x^2*y + z, (x^4 + z)^2, y^2 + z>;

> IsHomogeneous(I);

true

> MonomialsOfDegree(P, 4);

{@

x^4,

x^3*y,

x^3*z,

x^2*y^2,

x^2*y*z,

x^2*z^2,

x*y^3,

x*y^2*z,

x*y*z^2,

x*z^3,

y^4,

y^3*z,

y^2*z^2,

y*z^3,

z^4

@}

> MonomialsOfWeightedDegree(P, 4);

{@

x^4,

x^2*y,

y^2,

z

@}
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105.3.4 Creation of Ideals and Accessing their Bases
Within the general context of ideals of polynomial rings, the term “basis” will refer to

an ordered sequence of polynomials which generate an ideal. (Thus a basis can contain
duplicates and zero elements so is not like a basis of a vector space.)

One normally creates an ideal by the ideal constructor or Ideal function, de-
scribed below. But it is also possible to create an ideal with a specific basis U and
then find the coordinates of polynomials from the polynomial ring with respect to U
(see the function Coordinates below). This is done by specifying a fixed basis with
the IdealWithFixedBasis intrinsic function. In this case, when Magma computes the
Gröbner basis of the ideal (see below), extra information is stored so that polynomials of
the ideal can be rewritten in terms of the original fixed basis. However, the use of this
feature makes the Gröbner basis computation much more expensive so an ideal should
usually not be created with a fixed basis.

ideal< P | L >

Given a multivariate polynomial ring P , return the ideal of P generated by the
elements of P specified by the list L. Each term of the list L must be an expression
defining an object of one of the following types:

(a)An element of P ;

(b)A set or sequence of elements of P ;

(c) An ideal of P ;

(d)A set or sequence of ideals of P .

Ideal(B)

Given a set or sequence B of polynomials from a polynomial ring P , return the ideal
of P generated by the elements of B with the given basis B. This is equivalent to
the above ideal constructor, but is more convenient when one simply has a set or
sequence of polynomials.

Ideal(f)

Given a polynomial f from a polynomial ring P , return the principal ideal of P
generated by f .

IdealWithFixedBasis(B)

Given a sequence B of polynomials from a polynomial ring P , return the ideal of
P generated by the elements of B with the given fixed basis B. When the function
Coordinates is called, its result will be with respect to the entries of B instead
of the Gröbner basis of I. WARNING: this function should only be used when
it is desired to express polynomials of the ideal in terms of the elements of B, as
the computation of the Gröbner basis in this case is very expensive, so it should be
avoided if these expressions are not wanted.



3192 COMMUTATIVE ALGEBRA Part XV

Basis(I)

Given an ideal I, return the current basis of I. If I has a fixed basis, that is returned;
otherwise the current basis of I (whether it has been converted to a Gröbner basis
or not – see below) is returned.

BasisElement(I, i)

Given an ideal I together with an integer i, return the i-th element of the current
basis of I. This the same as Basis(I)[i].

105.4 Gröbner Bases

Computation in ideals of multivariate polynomial rings is possible because of the construc-
tion of Gröbner bases of such ideals. In Magma, it is possible to create ideals and compute
their Gröbner bases for polynomial rings defined not only over fields but also over general
Euclidean rings.

Different monomial orderings give different Gröbner bases for a fixed ideal. When an
ideal I is created from a polynomial ring P or another ideal J , then the monomial order
of I is taken to be the monomial order of P or J . Ideals can only be compatible if they
have the same monomial order.

105.4.1 Gröbner Bases over Fields
Gröbner bases of ideals defined over fields have been studied for some time now, and there
is a large literature concerning them.

For ideals defined over fields, a basis is called minimal if each polynomial in it is monic
and not contained in the ideal generated by all the other polynomials [CLO96, Chap. 2, §7,
Def. 4]. A basis is called reduced if each polynomial in it is monic and, for every monomial
of each polynomial in the basis, that monomial is not divisible by the leading monomial
of any other polynomial in the basis (equivalently, each leading monomial does not divide
any monomial in any of the other polynomials) [CLO96, Chap. 2, §7, Def. 5].

For a given fixed monomial ordering, every ideal of a polynomial ring over a field
possesses a unique sorted minimal reduced Gröbner basis (GB) [CLO96, Chap. 2, §7,
Prop. 7]. This unique Gröbner basis (with respect to the order defined by the user) will
be computed automatically when needed by Magma. Before this happens, an ideal will
usually possess a basis which is not a Gröbner basis, but that will be changed into the
unique Gröbner basis when needed. Thus the original basis will be discarded. See the
procedure Groebner below for details on the algorithms available.

105.4.2 Gröbner Bases over Euclidean Rings
Since V2.8 (July 2001), Magma provides facilities for computing with Gröbner bases of
ideals of polynomial rings over Euclidean rings (including the important case of the integer
ring Z). Such Gröbner bases are computed in Magma by an extension, due to Allan Steel
(unpublished), of Jean-Charles Faugère’s F4 algorithm [Fau99], which uses sparse linear
algebra.
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The current Euclidean rings in Magma supported are: the integer ring Z, the integer
residue class rings Zm, the univariate polynomial rings K[x] over any field K, Galois rings,
p-adic quotient rings, and valuation rings.

We first outline some of the things which are peculiar to Gröbner bases defined over
a Euclidean ring. Let I be an ideal of a polynomial ring defined over a Euclidean ring
R. A subset G of I is called a Gröbner basis for I in Magma if, for every f ∈ I, there
exists a g ∈ G such that the leading term of g divides the leading term of f . Recall
that “leading term” here means the leading coefficient times the leading monomial, so the
leading coefficient of g must divide the leading coefficient of f in the base ring R. If R
were a field, then obviously the leading coefficients would be insignificant and the Gröbner
basis elements could be normalized (made monic) to yield an equivalent Gröbner basis.
But if R is not a field, the leading coefficients are quite significant. For example, over the
ring Z, the set {x2, 2x} is a Gröbner basis and the polynomial x2 is not redundant since 2
does not divide 1, but over Q, the polynomial x2 would be redundant.

Note that the definition here for a Gröbner basis in Magma is actually what some
authors (e.g., [AL94, Def. 4.5.6]) call a strong Gröbner basis. Weak Gröbner bases have
also been defined, but strong Gröbner bases satisfy stronger conditions, yield a simple
effective normal form algorithm, provide more information about the ideal, are easier to get
into a unique form, and are no more difficult to compute using the algorithm implemented
in Magma. Thus Magma always computes a strong Gröbner basis, so the distinction
between weak and strong is ignored. Magma also effectively computes a D-Gröbner basis
as defined in [BW93, Def. 10.4, Table 10.1], although Magma also allows Euclidean rings
which are not integral domains (i.e., which have zero divisors).

Over Euclidean rings, the definition of a minimal basis is practically the same as for
fields (there must be no polynomial in the ideal generated by the others and each polyno-
mial must be normalized), but the definition of a reduced basis is more subtle. A basis is
called reduced if each polynomial in it is normalized and if, for every term c · s of every
polynomial in the basis (where c is the coefficient and s is the monomial), then if some
other polynomial in the basis has leading term d · t, with t dividing s, then the Euclidean
quotient of c by d must be zero (the remainder will be non-zero of course). Informally, this
means that each polynomial is reduced modulo all the other polynomials, where each coef-
ficient must be reduced modulo all other appropriate leading coefficients. As an example,
suppose f1 = x2 + 14xy and f2 = 5y + 9 are in Z[x, y]. Then {f1, f2} is not reduced, since
the second term of f1 can be reduced by f2 (y divides xy and the Euclidean quotient of 14
by 5 is 2, with remainder 4). But if we were to replace f1 by f1 − 2xf2 = x2 + 4xy − 18x,
then {f1, f2} would now be reduced.

Magma’s extension of Faugère’s algorithm depends on sparse linear algebra over Eu-
clidean rings. (Note also that the advanced criteria for eliminating useless pairs in [Möl88])
are also implemented in this extension to work for general Euclidean rings as well.) Magma
now contains an algorithm for computing a unique echelon form of a sparse matrix over
such a ring; uniqueness is ensured because there is a unique Euclidean quotient-remainder
algorithm for each Euclidean ring (and zero divisors are also handled properly). Conse-
quently, based on this unique echelon form algorithm and some other techniques, Magma
ensures that a Gröbner basis over a Euclidean ring is not only minimal (contains no re-
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dundant polynomials), but it is also reduced, and unique.
Thus every ideal of a polynomial ring over a Euclidean ring possesses a unique sorted

minimal reduced Gröbner basis (with respect to some fixed monomial ordering), just as
for ideals defined over fields. Also, as for ideals defined over fields, this unique Gröbner
basis will be computed automatically when needed by Magma, and before this happens,
an ideal will usually possess a basis which is not a Gröbner basis, but that will be changed
into the unique Gröbner basis when needed.

The uniqueness of the Gröbner basis also ensures that the normal form of an element
with respect to an ideal for a fixed monomial order is always unique. All of this holds even
for Euclidean rings which have zero divisors.

See the examples below for illustrations of the points made above, and also how one
can effectively compute with Gröbner bases of ideals defined over rings which are not even
Euclidean.

105.4.3 Construction of Gröbner Bases
The following functions and procedures allow one to construct Gröbner bases. Note that a
Gröbner basis for an ideal will be automatically generated when necessary; the Groebner
procedure below simply allows control of the algorithms used to compute the Gröbner
basis.

NOTE: Magma applies a special monomial representation and a special variant of the
F4 algorithm if the ideal I is defined over F2 and the polynomials xi

2 + xi for all i are
present in the input basis of the ideal I. So if one wishes to solve a system of equations
over F2, then one should include these polynomials in the input basis (they can be at any
place and in any order; as long as there is at least one copy of xi

2 + xi present for each
i). Alternatively (since V2.15), one can create a boolean polynomial ring (via the function
BooleanPolynomialRing below) and construct the ideal within this. See also Example
H105E5 below.

Groebner(I: parameters)

(Procedure.) Explicitly force a Gröbner basis (GB) for the ideal I to be constructed.
This procedure is normally not necessary, as Magma will automatically compute
the GB when needed, but it does allow one to control how the GB is constructed
by various parameters.

By default, the parameters are set to default values which tend to work best for
the particular kinds of inputs which are given, but there exist many inputs for which
setting at least one of the parameters to a non-default value will lead to a dramatic
improvement. (A general strategy for the computation of GBs is very difficult to
design.)

If I is defined over a Euclidean ring, then Magma always uses the extension of
the Faugère algorithm directly, and of the parameters given below, only Homogenize
is applicable. So the rest of this description assumes that I is defined over a field.

We call a GB algorithm direct if it takes the initial basis of the ideal I (with
no structure) and computes the unique minimal reduced GB of I with respect to
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some monomial order. Since V2.11 (May 2004), Magma has two direct algorithms
for computing GBs over fields:

(1)The Faugère F4 algorithm [Fau99], which works by specialized sparse linear al-
gebra and is applicable to ideals defined over a finite field or the rational field;

(2)The Buchberger algorithm [CLO96, Chap. 2, §7] for ideals defined over any field.

Both direct algorithms use the advanced criteria for eliminating useless pairs in
[Möl88]. Magma also uses two order change algorithms which both change the
GB of an ideal with respect to one monomial order to the GB with respect to another
monomial order:

(1)The FGLM algorithm [FGLM93], which works by efficient linear algebra and is
only applicable if I is zero-dimensional;

(2)The Gröbner Walk algorithm [CKM97].

This parameter affects the main strategy:

Al MonStgElt Default : “Default”

The parameter Al may be set to one of: "Default", "Direct", "FGLM" or "Walk".
The value "Direct" specifies that Magma should compute the GB of I (with respect
to the order of I) by a direct algorithm alone, so that an order-conversion algorithm
is not used (the parameter Faugere below controls which direct algorithm is used).

The alternative strategy is to compute the GB first with respect to an “easy”
order, and then to convert this to the GB with respect to the order of I. Setting
Al to the values "FGLM" or "Walk" will cause this strategy to be used, where the
order change algorithm will be the FGLM algorithm or Gröbner Walk algorithm,
respectively.

If no algorithm is specified, or if "Default" is specified, an appropriate strat-
egy is chosen by Magma, which is usually the FGLM method if the ideal is zero-
dimensional and over a finite field or the rational field, and the Walk method oth-
erwise.

The following parameters affect the direct algorithms:

Faugere BoolElt Default : true

HomogeneousWeights BoolElt Default : true

Homogenize BoolElt Default : true

DegreeStart RngIntElt Default : true

If the parameter Faugere is set to true, then the Faugère F4 algorithm will be
used (if the field is a finite field or the rational field); otherwise the Buchberger
algorithm is used.

The current implementation of the Faugère algorithm is usually very much faster
than the Buchberger algorithm and usually does not take much more memory, so
that it is why it is now selected by default. However, there may be examples for
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which it may be more desirable to use the Buchberger algorithm (particularly to
save some memory).†

Since V2.12, if the input basis is not homogeneous, then Magma first attempts
to find a weight vector W with respect to which the ideal is homogeneous; if such
a W is found, then the “easy” order used internally for the direct algorithm (ac-
cessed by EasyIdeal) is taken to be the grevlexw order with respect to W (see
subsection 105.2.4), since the GB is likely to be smaller with respect to this or-
der. The selection of such an order may be suppressed by setting the parameter
HomogeneousWeights to false.

If no appropriate grevlexw order is used, then setting Homogenization to true
specifies that the ideal should first be homogenized: a GB of the homogenization
of the ideal is computed and then the homogenization variable is removed and the
final basis reduced. This parameter has the default value of true over the rational
field and false over all other fields, since most computations are improved by these
defaults.

If the parameter DegreeStart is set to an integer d, then any S-polynomial pairs
of degree less than d will be ignored.

The following parameters affect the Faugère F4 algorithm:

AllPairs BoolElt Default : false

PairsLimit BoolElt Default : 0

ReversePairs BoolElt Default : false

HFE BoolElt Default : false

Boolean BoolElt Default : false

Nthreads RngIntElt Default : 1

By default, the Faugère F4 algorithm includes all pairs of the next degree at
each step (see [Fau99, Sec.2.5]), since this usually produces the best performance.
However, setting the parameter AllPairs to true will cause the algorithm to include
all pairs currently in the queue at each new step; this generally makes the matrix
larger and is usually less efficient, but for some inputs (e.g., inhomogeneous ideals
where there are only a small number of pairs for each degree at each step) this option
may yield a significant improvement.

Alternatively, setting the parameter PairsLimit to a positive integer n will cause
the algorithm to include at most n pairs from the queue at each step; this will usually
make the matrix smaller, thus saving memory, but will often also make the running
time longer. Setting also the parameter ReversePairs to true will reverse the list
of pairs of the current degree from which the restricted set of pairs is taken: this
may help a lot for certain types of input, since this may lead to new polynomials
of lower degree being found more quickly. (If there is no pairs limit, then the value

† If you encounter an example where the Faugère algorithm is significantly slower than
the Buchberger algorithm, then please mail it to us (magma@maths.usyd.edu.au)!
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of ReversePairs is irrelevant since all pairs of the current degree are taken at each
step.)

If the input basis is an HFE system over F2 such that the secret degree d is less
than or equal to 127, then one should set the HFE parameter to true. In this case,
Magma can apply various optimizations which save memory and time (only pairs of
degree of most 4 are considered, as this is sufficient for systems for which d ≤ 127).

Since V2.18, if the base ring is the finite field Fp, where p is a prime with 2 < p <
223.5, then a multi-threaded version of the algorithm is available if POSIX threads are
enabled in the current Magma version. In this case, setting the parameter Nthreads
to a positive integer n will cause the F4 algorithm to use n threads within the linear
algebra phase of each step. One can alternatively use the procedure SetNthreads
to set the global number of threads to a value n so that n threads are always used
by default in this algorithm (unless overridden by the Nthreads parameter).

The following parameters affect the Buchberger algorithm:

ReduceInitial BoolElt Default : true

RemoveRedundant BoolElt Default : true

ReduceByNew BoolElt Default : true

Setting ReduceInitial to true specifies that the basis of the ideal should be
first reduced (see the function Reduce) before any S-polynomial pairs are considered.
Setting RemoveRedundant to true specifies that redundant polynomials in the input
(which reduce to zero with respect to the other polynomials) should first be removed.
Setting ReduceByNew to true specifies that when a new polynomial f is inserted
into the current GB being constructed, the current basis should be reduced by f
(thus the basis stays close to being fully reduced throughout the algorithm).

Each of these control parameters usually have the default values of true (it
depends on the coefficient ring).

The following parameters affect the Walk algorithm:

SigmaEpsilon FldRatElt Default : 1/2

TauEpsilon FldRatElt Default : 1/n

SigmaVectors RngIntElt Default : n

TauVectors RngIntElt Default : dn/2e
The parameters SigmaEpsilon and TauEpsilon control the factor ε which is used in
the Walk algorithm to perturb the initial weight vector σ and the final weight vector
τ respectively. The parameters SigmaVectors and TauVectors determine how many
weight vectors of the initial and final orders are used to perturb the initial weight
vector σ and the final weight vector τ respectively. By default, the ε factor and
number of weight vectors for σ are determined dynamically to be “optimal”, while
the ε factor for τ is taken to be 1/n and the number of weight vectors for τ is taken
to be dn/2e, where n is the rank of I.
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GroebnerBasis(I: parameters)

Given an ideal I, force the Gröbner basis of I to be computed, and then return that.
The parameters are the same as those for the procedure Groebner.

See also the function GroebnerBasis(S,d) below, which creates a truncated
degree-d Gröbner basis.

GroebnerBasis(S: parameters)

Given a set or sequence S of polynomials, return the unique Gröbner basis of the
ideal generated by S as a sorted sequence. This function is useful for computing
Gröbner bases without the need to construct ideals. The parameters are the same
as those for the procedure Groebner.

See also the function GroebnerBasis(S,d) below, which creates a truncated
degree-d Gröbner basis.

GroebnerBasisUnreduced(S: parameters)

Homogenize BoolElt Default : true

ReduceInitial BoolElt Default : true

ReduceByNew BoolElt Default : true

Given a set or sequence S of polynomials, return an unreduced Gröbner basis of
the ideal generated by S as a sorted sequence. This function is useful for comput-
ing Gröbner bases without the need to construct ideals and when the reduction of
the Gröbner basis is very expensive. The parameters behave the same as for the
procedure Groebner.

GroebnerBasis(S, d: parameters)

Given a set or sequence S of polynomials, return the degree-d Gröbner basis of the
ideal generated by S, which is the truncated Gröbner basis obtained by ignoring
S-polynomial pairs whose total degree is greater than d.

If the ideal is homogeneous, then it is guaranteed that the result Gd is equal to
the set of all polynomials in the full Gröbner basis of the ideal whose total degree
is less than or equal to d, and thus a polynomial whose total degree is less than or
equal to d is in the ideal iff its normal form with respect to the degree-d Gröbner
basis Gd is zero. But if the ideal is not homogeneous, these last properties may not
hold, but it may be still useful to construct the truncated basis.

The parameters are the same as those for the procedure Groebner. See the
section on graded polynomial rings below for an example. See also [BW93, section
10.2], for further discussion.
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105.4.4 Related Functions
The following functions and procedures perform operations related to Gröbner bases.

HasGroebnerBasis(I)

Given an ideal I, return whether the Gröbner basis of I can be computed. This
depends on the type of base ring of I: the base ring must currently be a field or a
Euclidean ring.

EasyIdeal(I)

Given an ideal I, return the ideal E which is mathematically equal to I but whose
basis is the Gröbner basis of I with respect to an “easy” order, together with an
isomorphism f from I onto E. The easy order is usually the grevlex order or
grevlexw order with suitable weights, and the easy basis (the Gröbner basis of the
easy ideal) of I is used extensively by Magma in many of its internal algorithms;
this function allows one to access this “easy” Gröbner basis directly.

EasyBasis(I)

Given an ideal I, return the Gröebner basis of the easy ideal of I.

SmallBasis(I)

Given an ideal I, return the basis of I with shortest length which is currently known.
This may be the original basis with which I was constructed, or a Gröbner basis,
but the result is always has the the same monomial order as the main monomial
order of I.

MarkGroebner(I)

(Procedure.) Given an ideal I, mark the current basis of I to be the Gröbner basis
of the ideal w.r.t. the monomial order of the ideal. Note that the current basis must
exactly equal the unique (reverse) sorted minimal reduced Gröbner basis for the
ideal, as returned by the function GroebnerBasis. This procedure is useful when
one creates an ideal with a basis known to be the Gröbner basis of the ideal from
a previous computation or for other reasons. If the basis is not the unique Gröbner
basis, the results are unpredictable.

IsGroebner(S)

IsGroebner(S)

Given a set or sequence S of polynomials describing a basis of an ideal, return
whether the basis is itself a (not necessarily minimal or reduced) Gröbner basis of
the ideal.
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Coordinates(I, f)

Given an ideal I of a polynomial ring P , together with a polynomial f in I, and
supposing that I has basis b1, . . . , bk, return a sequence [g1, . . . , gk] of elements of P
so that f = g1 ∗ b1 + . . . + gk ∗ bk. If I was created by IdealWithFixedBasis(B),
then the fixed basis B is used as the basis b1, . . . , bk; otherwise the (unique) Gröbner
basis of I is used as the basis b1, . . . , bk. The resulting sequence is not necessarily
unique.

CoordinateMatrix(I)

Given an ideal I such that I has a fixed basis (i.e., such that I was created via the
function IdealWithFixedBasis), return the coordinate matrix C of I. The i-th row
of C gives the coordinates of the i-th element of the Gröebner basis of I w.r.t. the
fixed basis of I. The Gröebner basis of I is first computed if it has not been already.

NormalForm(f, I)

Given a polynomial f from a polynomial ring P , together with an ideal I of P ,
return the unique normal form of f with respect to (the Gröbner basis of) I. The
normal form of f is zero if and only if f is in I.

NormalForm(f, S)

Given a polynomial f from a polynomial ring P , together with a set or sequence S
of polynomials from P , return a normal form g of f with respect to S. (This is not
unique in general. If the normal form of f is zero then f is in the ideal generated
by S, but the converse is false in general. In fact, the normal form is unique if and
only if S forms a Gröbner basis.) If S is a sequence, one may also assign a second
return value C which gives the coordinates of the reduction, so that C[i] · S[i] is
subtracted from f for each i to yield g.

SPolynomial(f, g)

Given elements f and g from a polynomial ring P , return the S-polynomial of f and
g.

Reduce(S)

Given a set or sequence S of polynomials, return the sequence consisting of the
reduction of S. The reduction is obtained by reducing to normal form each element
of S with respect to the other elements and sorting the resulting non-zero elements
left. Note that all Gröbner bases returned by Magma are automatically reduced so
that this function would usually only be used just to simplify a set or sequence of
polynomials which is not a Gröbner basis.
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ReduceGroebnerBasis(S)

Given a set or sequence S of polynomials which is assumed to be a (not necessarily
minimal or reduced) Gröbner basis for an ideal, return the sequence consisting of
the reduction of S. The reduction is obtained by first removing each redundant
polynomial whose leading term is a multiple of another leading term and then re-
ducing the remaining polynomials as in the function Reduce. This function would
usually only be used to reduce a set or sequence of polynomials which is known to be
a non-reduced Gröbner basis (created in some way other than by one of Magma’s
internal Gröbner basis construction algorithms).

105.4.5 Gröbner Bases of Boolean Polynomial Rings
Since V2.15, a special type of polynomial ring is available: the boolean polynomial
ring in n variables. Such a ring is a multivariate polynomial ring defined over F2 but
such that all monomials are reduced modulo the field relations x2

i = xi for each i (so a
bit vector representation can be used for monomials). Technically, the ring is thus the
quotient algebra

F2[x1, . . . , xn]/〈x2
1 + x1, . . . , x

2
n + xn〉.

Besides the basic creation and access functions for elements and ideals of such a ring,
the main interest is to compute and examine a Gröbner basis of an ideal. Since the field
relations are always present, an ideal represents a zero-dimensional system of multivariate
polynomial equations over F2 with the solution components always lying in F2; these are
particularly of interest for algebraic attacks on cryptosystems. Otherwise, there are not
many other operations applicable to such rings and their elements.

Note that if one creates an ideal I of F2[x1, . . . , xn] such that the basis of I includes
the field polynomials (x2

i + xi for each i), then Magma automatically uses the boolean
polynomial ring representation internally, so this is basically equivalent to using the boolean
polynomial ring type, except that Magma will have to move back to the original ring
F2[x1, . . . , xn] at the end, and this may take much more time and memory. So it is
preferable to use the boolean polynomial ring from the outset if one wishes to create the
Gröbner basis of such an ideal and examine it (particularly if it does not collapse down to
a sequence of linear polynomials).

See example H105E5 below for simple uses of boolean polynomial rings.

BooleanPolynomialRing(n)

Create the boolean polynomial ring with n variables (whose coefficients lie in F2).
The default monomial order chosen is the lexicographical (lex) order.

BooleanPolynomialRing(n, order)

Create the boolean polynomial ring with n variables (whose coefficients lie in F2)
and with the given order order on the monomials. Currently, order must be one of
the following strings: "lex", "grevlex", "glex".
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BooleanPolynomialRing(B, Q)

Given a boolean polynomial ring B of rank n and a sequence Q of integers, create
the boolean polynomial in B whose monomials are given by the entries of Q: each
integer must be in the range [0 . . . 2n−1] and its binary expansion gives the exponents
of the monomial in order (the resulting monomials are sorted w.r.t. the monomial
order of B, so may be given in any order and duplicate monomials are added).

This function is simply provided so that boolean polynomials may be stored and
read back in a compact form; otherwise, one can create a boolean polynomial in the
usual way from the generators of B after B is created. Note also that if one prints
B, an ideal of B, or an element of B with the Magma print level, then this function
will be used to print the elements in a compact form.

105.4.6 Verbosity
This subsection describes the verbose flags available for the Gröbner basis algorithms.
There are separate verbose flags for each algorithm (Buchberger, etc.), but the all-
encompassing verbose flag Groebner includes all these flags implicitly.

For each procedure provided for setting one of these flags, the value false is equivalent
to level 0 (nothing), and true is equivalent to level 1 (minimal verbosity). For each
Set- procedure, there is also a corresponding Get- function to return the value of the
corresponding flag.

SetVerbose("Groebner", v)

(Procedure.) Change the verbose printing level for all Gröbner basis algorithms
to be v. This includes all of the algorithms whose verbosity is controlled by flags
subsequently listed, as well as some other minor related algorithms. Currently the
legal levels are 0, 1, 2, 3, or 4. One would normally set this flag to 1 for minimal
verbosity for Gröbner basis-type computations, and possibly also set one or more of
the following flags to levels higher than 1 for more verbosity.

SetVerbose("Buchberger", v)

(Procedure.) Change the verbose printing level for the Buchberger algorithm to be
v. Currently the legal levels are 0, 1, 2, 3, or 4. If the value w of the Groebner
verbose flag is greater than v, then w is taken to be the current value of this flag.

SetVerbose("Faugere", v)

(Procedure.) Change the verbose printing level for the Faugère algorithm to be v.
Currently the legal levels are 0, 1, 2, or 3. If the value w of the Groebner verbose
flag is greater than v, then w is taken to be the current value of this flag.

SetVerbose("FGLM", v)

(Procedure.) Change the verbose printing level for the FGLM order change algo-
rithm to be v. Currently the legal levels are 0, 1, 2, or 3. If the value w of the
Groebner verbose flag is greater than v, then w is taken to be the current value of
this flag.
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SetVerbose("GroebnerWalk", v)

(Procedure.) Change verbose printing for the Gröbner Walk order change algorithm
to be v. Currently the legal levels are 0, 1, 2, or 3. If the value w of the Groebner
verbose flag is greater than v, then w is taken to be the current value of this flag.

Example H105E3

We compute the Gröbner basis of the “Cyclic-6” ideal with respect to the lexicographical order.
The ideal is an ideal of the polynomial ring Q(x, y, z, t, u, v). We also note that the last poly-
nomial in the Gröbner basis is univariate (since, in fact, the ideal is zero-dimensional and the
monomial order is lexicographical) and observe that it has a nice factorization. Note especially
that in this example, homogenizing at first and keeping the Gröbner basis reduced makes this
computation very fast; without using these features (i.e., if the parameters Homogenize := false

or ReduceByNew := false are given), the computation is much more expensive (takes hundreds
of seconds on the same computer).

> Q := RationalField();

> P<x, y, z, t, u, v> := PolynomialRing(Q, 6);

> I := ideal<P |

> x + y + z + t + u + v,

> x*y + y*z + z*t + t*u + u*v + v*x,

> x*y*z + y*z*t + z*t*u + t*u*v + u*v*x + v*x*y,

> x*y*z*t + y*z*t*u + z*t*u*v + t*u*v*x + u*v*x*y + v*x*y*z,

> x*y*z*t*u + y*z*t*u*v + z*t*u*v*x + t*u*v*x*y + u*v*x*y*z + v*x*y*z*t,

> x*y*z*t*u*v - 1>;

> time B := GroebnerBasis(I);

Time: 1.140

> #B;

17

> B[17];

v^48 - 2554*v^42 - 399710*v^36 - 499722*v^30 + 499722*v^18 + 399710*v^12 +

2554*v^6 - 1

> time Factorization(B[17]);

[

<v - 1, 1>,

<v + 1, 1>,

<v^2 + 1, 1>,

<v^2 - 4*v + 1, 1>,

<v^2 - v + 1, 1>,

<v^2 + v + 1, 1>,

<v^2 + 4*v + 1, 1>,

<v^4 - v^2 + 1, 1>,

<v^4 - 4*v^3 + 15*v^2 - 4*v + 1, 1>,

<v^4 + 4*v^3 + 15*v^2 + 4*v + 1, 1>,

<v^8 + 4*v^6 - 6*v^4 + 4*v^2 + 1, 1>,

<v^8 - 6*v^7 + 16*v^6 - 24*v^5 + 27*v^4 - 24*v^3 +

16*v^2 - 6*v + 1, 1>,

<v^8 + 6*v^7 + 16*v^6 + 24*v^5 + 27*v^4 + 24*v^3 +
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16*v^2 + 6*v + 1, 1>

]

Time: 0.060

Example H105E4

We solve the system of equations Runge-Kutta 2 from the paper “Some Examples for Solving
Systems of Algebraic Equations by Calculating Groebner Bases” by Boege, Gebauer, and Kredel
(J. Symbolic Computation (1986) 1, 83–98). The coefficient field K is the rational function field
Q(c2, c3), and the polynomial ring K[c4, b4, b3, b2, b1, a21, a31, a32, a41, a42, a43] has 11 variables
with the lexicographical ordering on monomials. The resulting Gröbner basis contains a linear
polynomial for each variable so there is exactly one solution to the system.

> K<c2, c3> := FunctionField(IntegerRing(), 2);

> P<c4, b4, b3, b2, b1, a21, a31, a32, a41, a42, a43> := PolynomialRing(K, 11);

> I := ideal<P |

> b1 + b2 + b3 + b4 - 1,

> b2*c2 + b3*c3 + b4*c4 - 1/2,

> b2*c2^2 + b3*c3^2 + b4*c4^2 - 1/3,

> b3*a32*c2 + b4*a42*c2 + b4*a43*c3 - 1/6,

> b2*c2^3 + b3*c3^3 + b4*c4^3 - 1/4,

> b3*c3*a32*c2 + b4*c4*a42*c2 + b4*c4*a43*c3 - 1/8,

> b3*a32*c2^2 + b4*a42*c2^2 + b4*a43*c3^2 - 1/12,

> b4*a43*a32*c2 - 1/24,

> c2 - a21,

> c3 - a31 - a32,

> c4 - a41 - a42 - a43>;

> time Groebner(I);

Time: 0.110

> I;

Ideal of Polynomial ring of rank 11 over Multivariate rational function field

of rank 2 over Integer Ring

Order: Lexicographical

Variables: c4, b4, b3, b2, b1, a21, a31, a32, a41, a42, a43

Inhomogeneous, Dimension 0

Groebner basis:

[

c4 - 1,

b4 + (-6*c2*c3 + 4*c2 + 4*c3 - 3)/(12*c2*c3 - 12*c2 - 12*c3 + 12),

b3 + (2*c2 - 1)/(12*c2*c3^2 - 12*c2*c3 - 12*c3^3 + 12*c3^2),

b2 + (-2*c3 + 1)/(12*c2^3 - 12*c2^2*c3 - 12*c2^2 + 12*c2*c3),

b1 + (-6*c2*c3 + 2*c2 + 2*c3 - 1)/(12*c2*c3),

a21 - c2,

a31 + (-4*c2^2*c3 + 3*c2*c3 - c3^2)/(4*c2^2 - 2*c2),

a32 + (-c2*c3 + c3^2)/(4*c2^2 - 2*c2),

a41 + (-12*c2^2*c3^2 + 12*c2^2*c3 - 4*c2^2 + 12*c2*c3^2 - 15*c2*c3 + 6*c2 -

4*c3^2 + 5*c3 - 2)/(12*c2^2*c3^2 - 8*c2^2*c3 - 8*c2*c3^2 + 6*c2*c3),

a42 + (-c2^2 + 4*c2*c3^2 - 5*c2*c3 + 3*c2 - 4*c3^2 + 5*c3 - 2)/(12*c2^3*c3 -
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8*c2^3 - 12*c2^2*c3^2 + 6*c2^2 + 8*c2*c3^2 - 6*c2*c3),

a43 + (-2*c2^2*c3 + 2*c2^2 + 3*c2*c3 - 3*c2 - c3 + 1)/(6*c2^2*c3^2 -

4*c2^2*c3 - 6*c2*c3^3 + 3*c2*c3 + 4*c3^3 - 3*c3^2)

]

Example H105E5

We demonstrate how one can solve a system of multivariate equations over F2. We construct
a sequence B of 4 polynomials in 5 variables, and note that the Gröbner basis of B contains
monomials having degrees greater than 1.

> P<a,b,c,d,e> := PolynomialRing(GF(2), 5);

> B := [a*b + c*d + 1, a*c*e + d*e, a*b*e + c*e, b*c + c*d*e + 1];

> GroebnerBasis(B);

[

a + c^2*d + c + d^2*e,

b*c + d^3*e^2 + d^3*e + d^2*e^2 + d*e + e + 1,

b*e + d*e^2 + d*e + e,

c*e + d^3*e^2 + d^3*e + d^2*e^2 + d*e,

d^4*e^2 + d^4*e + d^3*e + d^2*e^2 + d^2*e + d*e + e

]

If one wanted to consider solutions over an algebraic closure of F2, then one would have to work
with this ideal. But to solve over F2 itself, one can add the field polynomials a2 + a, b2 + b, etc.
Magma recognizes these extra polynomials and uses an optimized representation; this makes the
computation much faster for larger examples. The resulting polynomials (besides any remaining
field polynomials) will always have degree at most 1 in each variable. In this example, we see that
there are 2 solutions over F2 for the system.

> L := [P.i^2 + P.i: i in [1 .. Rank(P)]];

> BB := B cat L;

> BB;

[

a*b + c*d + 1,

a*c*e + d*e,

a*b*e + c*e,

b*c + c*d*e + 1,

a^2 + a,

b^2 + b,

c^2 + c,

d^2 + d,

e^2 + e

]

> GroebnerBasis(BB);

[

a + d + 1,

b + 1,

c + 1,

d^2 + d,
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e

]

> I := ideal<P|BB>;

> Variety(I);

[ <0, 1, 1, 1, 0>, <1, 1, 1, 0, 0> ]

Since V2.15, an alternative way to solve the system over F2 is to use the boolean polynomial ring
type as follows.

> P<a,b,c,d,e> := BooleanPolynomialRing(5, "grevlex");

> B := [a*b + c*d + 1, a*c*e + d*e, a*b*e + c*e, b*c + c*d*e + 1];

> I := Ideal(B);

> I;

Ideal of Boolean polynomial ring of rank 5 over GF(2)

Order: Graded Reverse Lexicographical (bit vector word)

Variables: a, b, c, d, e

Basis:

[

a*b + c*d + 1,

a*c*e + d*e,

a*b*e + c*e,

c*d*e + b*c + 1

]

> GroebnerBasis(I);

[

a + d + 1,

b + 1,

c + 1,

e

]

> Variety(I);

[ <0, 1, 1, 1, 0>, <1, 1, 1, 0, 0> ]

In general, if one wishes to solve a system over F2 from the outset, it is best to use the boolean
polynomial ring type so as to save memory (and to avoid internal conversion to and from the bit
vector representation for monomials). Note also that because of the implicit field relations, the
Gröbner basis of an ideal generated by only one polynomial may have several polynomials. In
the following example, the Gröbner basis of an ideal generated by just one polynomial has linear
polynomials alone.

> R<[x]> := BooleanPolynomialRing(10, "grevlex");

> R;

Boolean polynomial ring of rank 10 over GF(2)

Order: Graded Reverse Lexicographical (bit vector word)

Variables: x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10]

> f := x[2]*x[3]*x[5]*x[7] + x[2]*x[4]*x[5]*x[8] + x[3]*x[4]*x[5]*x[9] +

> x[3]*x[6]*x[7]*x[9] + x[2]*x[3]*x[5] + x[2]*x[4]*x[5] + x[2]*x[3]*x[7] +

> x[2]*x[5]*x[7] + x[3]*x[5]*x[7] + x[3]*x[6]*x[7] + x[2]*x[4]*x[8] +

> x[2]*x[5]*x[8] + x[4]*x[5]*x[8] + x[3]*x[6]*x[9] + x[3]*x[7]*x[9] +

> x[6]*x[7]*x[9] + x[2]*x[3] + x[2]*x[4] + x[3]*x[5] + x[4]*x[5] +
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> x[3]*x[6] + x[2]*x[7] + x[5]*x[7] + x[6]*x[7] + x[2]*x[8] + x[4]*x[8] +

> x[5]*x[8] + x[3]*x[9] + x[6]*x[9] + x[7]*x[9] + x[1]*x[10] + x[1] + x[4]

> + x[6] + x[8] + x[9] + x[10];

> I := Ideal([f]);

> G := GroebnerBasis(I);

> #G;

38

> [Length(f): f in G];

[ 188, 50, 80, 82, 26, 22, 20, 26, 20, 20, 26, 32, 8, 8, 8, 8, 32, 32, 8, 8, 8,

8, 8, 8, 8, 8, 8, 32, 8, 8, 8, 8, 40, 5, 8, 8, 8, 8 ]

> G[38];

x[1]*x[4]*x[7]*x[10] + x[1]*x[5]*x[7]*x[10] + x[1]*x[4]*x[7] + x[1]*x[5]*x[7] +

x[4]*x[7]*x[10] + x[5]*x[7]*x[10] + x[4]*x[7] + x[5]*x[7]

Example H105E6

This simple example illustrates some of the peculiarities of Gröbner bases over Euclidean rings.
We first create a simple ideal I in Z[x, y, z] and compute its Gröbner basis.

> P<x, y, z> := PolynomialRing(IntegerRing(), 3);

> I := ideal<P| x^2 - 1, y^2 - 1, 2*x*y - z>;

> GroebnerBasis(I);

[

x^2 - 1,

x*z - 2*y,

2*x - y*z,

y^2 - 1,

z^2 - 4

]

Notice that the Gröbner basis contains polynomials whose leading terms are x2, xz and 2x, but
the third cannot eliminate the first two since the leading coefficient 2 does not divide the other
leading coefficients 1 and 1.

When we compute normal forms modulo I, x is clearly not reducible by any polynomial, while 2x
can be reduced by the 2x− yz polynomial.

> NormalForm(x, I);

x

> NormalForm(2*x, I);

y*z

If we compute the normal form of (−x) modulo I, then even though the x monomial cannot be
reduced, the result is NOT the negative of the normal form of x, since one can use the 2x − yz
polynomial and the fact that ((−1) mod 2) is 1 to reduce the polynomial to a unique normal form.
This behaviour differs from that for ideals defined over fields, where the normal form of −f will
always be the negative of the normal form of f .

> NormalForm(-x, I);
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x - y*z

If we reduce the Gröbner basis modulo various primes, we obtain familiar Gröbner bases over
fields:

> GroebnerBasis(ChangeRing(I, GF(2)));

[

x^2 + 1,

y^2 + 1,

z

]

> GroebnerBasis(ChangeRing(I, GF(3)));

[

x + y*z,

y^2 + 2,

z^2 + 2

]

But if we reduce modulo 4, using the ring of integers modulo 4, then the Gröbner basis still has
a structure not encountered when working over fields:

> GroebnerBasis(ChangeRing(I, IntegerRing(4)));

[

x^2 + 3,

x*z + 2*y,

2*x + y*z,

y^2 + 3,

z^2,

2*z

]

In fact, the new polynomial 2z has been included in this Gröbner basis.

Example H105E7

This example shows how one can use Gröbner bases over the integers to find the primes modulo
which a system of equations has a solution, when the system has no solutions over the rationals.

We first form a certain ideal I in Z[x, y, z], and note that the Gröbner basis of I over Q contains
1, so there are no solutions over Q or an algebraic closure of it (this is not surprising as there are
4 equations in 3 unknowns).

> P<x, y, z> := PolynomialRing(IntegerRing(), 3);

> I := ideal<P | x^2 - 3*y, y^3 - x*y, z^3 - x, x^4 - y*z + 1>;

> GroebnerBasis(ChangeRing(I, RationalField()));

[

1

]

However, when we compute the Gröbner basis of I (defined over Z), we note that there is a certain
integer in the ideal which is not 1.

> GroebnerBasis(I);
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[

x + 170269749119,

y + 2149906854,

z + 170335012540,

282687803443

]

Now for each prime p dividing this integer 282687803443, the Gröbner basis of I modulo p will
be non-trivial and will thus give a solution of the original system modulo p.

> Factorization(282687803443);

[ <101, 1>, <103, 1>, <27173681, 1> ]

> GroebnerBasis(ChangeRing(I, GF(101)));

[

x + 19,

y + 48,

z + 68

]

> GroebnerBasis(ChangeRing(I, GF(103)));

[

x + 39,

y + 8,

z + 85

]

> GroebnerBasis(ChangeRing(I, GF(27173681)));

[

x + 26637654,

y + 3186055,

z + 10380032

]

Of course, modulo any other prime the Gröbner basis is trivial so there are no other solutions.
For example:

> GroebnerBasis(ChangeRing(I, GF(3)));

[

1

]

Note that the problem can also be solved by using resultants, but this may yield many extraneous
potential primes, while the Gröbner basis technique yields the exact list of primes for which there
are modular solutions.

Example H105E8

This example shows how one can effectively compute in Magma with Gröbner bases over a ring
which is not Euclidean (and may not even be a principal ideal ring), by starting with Z and adding
appropriate defining relations. The input for this example is based on [AL94, Ex. 4.2.13].

Let R = Z[
√−5]. R is the maximal order of Q(

√−5) and is NOT a PIR. We consider the ideal
I of R[x, y] generated by f1 = 2xy +

√−5y and f2 = (1 +
√−5)x2 − xy. To work over R, we
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simply compute over Z, introduce a new variable S to represent
√−5, make sure that S is less

than both x and y in the monomial order, and include the polynomial (S2 +5) in the ideal I. We
then print out the Gröbner basis of I.

> P<x, y, S> := PolynomialRing(IntegerRing(), 3);

> f1 := 2*x*y + S*y;

> f2 := (1 + S)*x^2 - x*y;

> I := ideal<P | f1, f2, S^2 + 5>;

> GroebnerBasis(I);

[

x^2*S + x^2 + 5*y^3 + 13*y*S - 25*y,

6*x^2 + 5*y^2 + 3*y*S - 10*y,

x*y + 5*y^3 + 13*y*S - 25*y,

y^2*S + 5*y^2 - 15*y,

10*y^2 + 5*y*S - 25*y,

S^2 + 5

]

In [AL94, p. 224], a (weak) Gröbner basis for the ideal is given as {f2, f5, f7, f9}, where f5 =
(5 +

√−5)y2 − 15y, f7 = −2
√−5y2 + 5(1 +

√−5)y, and f9 = xy +
√−5y3 − 5

√−5y2 + 8
√−5y.

We can easily verify that the ideal J generated by these 4 polynomials describes the same ideal
as I (and so has the same Gröbner basis in Magma).

> f5 := (5 + S)*y^2 - 15*y;

> f7 := -2*S*y^2 + (5 + 5*S)*y;

> f9 := x*y + S*y^3 - 5*S*y^2 + 8*S*y;

> J := ideal<P | f2, f5, f7, f9, S^2 + 5>;

> I eq J;

true

> GroebnerBasis(I) eq GroebnerBasis(J);

true

We can even write f5, f7 and f9 as combinations of the Gröbner basis elements of I, as follows.

> Coordinates(I, f5);

[

0, 0, 0, 1, 0, 0

]

> Coordinates(I, f7);

[

0, 0, 0, -2, 1, 0

]

> Coordinates(I, f9);

[

0, 0, 1, y, -y - 1, 0

]

We can see that these elements are fairly trivially derived from the Gröbner basis which Magma

computes for I. But if we now create J again using the IdealWithFixedBasis function and the
sequence Q = [f2, f5, f7, f9, S

2 + 5], then we can see the coordinates of any element of I = J as a
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linear combination of the elements of Q. We find the coordinates of the second element of Magma’s
original Gröbner basis of I with respect to Q. The resulting coordinates are rather non-trivial.

> Q := [f2, f5, f7, f9, S^2 + 5];

> J := IdealWithFixedBasis(Q);

> J eq I;

true

> g := GroebnerBasis(I)[2];

> g;

6*x^2 + 5*y^2 + 3*y*S - 10*y

> C := Coordinates(J, g);

> C;

[

-S + 1,

-5*y + 1,

-x - y^2*S + 7*y*S - 2*y - 7*S - 2,

-2*y*S + 4*S + 6,

x^2 + 5*y^3 - 13*y^2 + 3*y

]

We check that multiplying out the expression recovers g.

> &+[C[i]*Q[i]: i in [1 .. #C]] eq g;

true

Note that in the terminology of Adams and Loustaunau, Magma is here computing a “strong”
Gröbner basis (for this representation which uses an extra variable for

√−5), while these authors
show that {f2, f5, f7, f9} constitutes a “weak” Gröbner basis for I over the ring Z[

√−5]. The
fact that the coordinates of g with respect to Q are rather non-trivial shows that Magma’s strong
Gröbner basis computation has computed a lot more information than the weak Gröbner basis
(i.e., g, which must be included in the strong Gröbner basis, is not trivially derived from Q).

Most importantly of all, the fact that we have done all this by defining things over Z with the
extra variable S has been no less powerful: we can still do full membership testing, normal
forms, coordinate computations, etc. with this representation. Also, see below for an elimination
computation which continues this example.

Gröbner bases over very many other general rings can be effectively handled in just the same way
as that presented in this example! For example, if we need α = (1 +

√
5)/2, we can introduce a

variable new A and the polynomial (2A− 1)2 − 5.

Example H105E9

We construct an ideal I of the polynomial ring P = Q[x, y] with a specific fixed basis S, determine
that I is the full polynomial ring P , and then find coordinates of the polynomial 1 of P with respect
to S. Note that we use the function IdealWithFixedBasis to construct the ideal so that the fixed
basis will be remembered.

> P<x, y> := PolynomialRing(RationalField(), 2);

> S := [x^2 - y, x^3 + y^2, x*y^3 - 1];

> I := IdealWithFixedBasis(S);
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> 1 in I;

true

> C := Coordinates(I, P!1);

> C;

[

-1/2*x^2*y^3 - 1/2*x^2*y^2 + 1/2*x^2*y + 1/2*x^2 + 1/2*x*y^3 +

1/2*x*y^2 - 1/2*x*y - 1/2*y^4 - 1/2*y^3 + 1/2*y^2 + 1/2*y,

1/2*x*y^3 + 1/2*x*y^2 - 1/2*x*y - 1/2*x - 1/2*y^3 - 1/2*y^2 + 1/2*y,

-1/2*y^2 + 1

]

Now we check that multiplying out by the coordinates gives 1.

> C[1]*S[1] + C[2]*S[2] + C[3]*S[3];

1

Now we move the problem to being over the integer ring Z.

> P<x, y> := PolynomialRing(IntegerRing(), 2);

> S := [x^2 - y, x^3 + y^2, x*y^3 - 1];

> I := IdealWithFixedBasis(S);

> 1 in I;

false

> GroebnerBasis(I);

[

x + 1,

y + 1,

2

]

We note that 1 is not in the ideal this time, but 2 is! So we compute the coordinates of 2 with
respect to I this time.

> C := Coordinates(I, P!2);

> C;

[

x^2*y^2 - x^2*y - x^2 - x*y^2 + x*y + x + y^4 + y^3 - y^2 - y - 1,

-x*y^2 + x*y + x + y^3 + y^2 - y - 1,

-x^2 - x*y + y - 2

]

Note that C is the same as above, except that each polynomial has been scaled by 2 to make it
integral. Finally we check again that multiplying out by the coordinates gives 2.

> C[1]*S[1] + C[2]*S[2] + C[3]*S[3];

2

Incidentally, we can see from the Gröbner basis of I over Z that the only solution to the system
of equations described by S is the local solution x = y = 1 over F2.
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Example H105E10

Gröbner bases can be constructed over any exact Euclidean ring in Magma, not just the ring of
integers and its residue class rings.
We construct an ideal I of the polynomial ring P = Q[x, y] with a specific fixed basis S, determine
that I is the full polynomial ring P , and then find coordinates of the polynomial 1 of P with respect
to S. Note that we use the function IdealWithFixedBasis to construct the ideal so that the fixed
basis will be remembered.

> P<x, y> := PolynomialRing(RationalField(), 2);

> S := [x^2 - y, x^3 + y^2, x*y^3 - 1];

> I := IdealWithFixedBasis(S);

> 1 in I;

true

> C := Coordinates(I, P!1);

> C;

[

-1/2*x^2*y^3 - 1/2*x^2*y^2 + 1/2*x^2*y + 1/2*x^2 + 1/2*x*y^3 +

1/2*x*y^2 - 1/2*x*y - 1/2*y^4 - 1/2*y^3 + 1/2*y^2 + 1/2*y,

1/2*x*y^3 + 1/2*x*y^2 - 1/2*x*y - 1/2*x - 1/2*y^3 - 1/2*y^2 + 1/2*y,

-1/2*y^2 + 1

]

Now we check that multiplying out by the coordinates gives 1.

> C[1]*S[1] + C[2]*S[2] + C[3]*S[3];

1

Now we move the problem to being over the integer ring Z.

> P<x, y> := PolynomialRing(IntegerRing(), 2);

> S := [x^2 - y, x^3 + y^2, x*y^3 - 1];

> I := IdealWithFixedBasis(S);

> 1 in I;

false

> GroebnerBasis(I);

[

x + 1,

y + 1,

2

]

We note that 1 is not in the ideal this time, but 2 is! So we compute the coordinates of 2 with
respect to I this time.

> C := Coordinates(I, P!2);

> C;

[

x^2*y^2 - x^2*y - x^2 - x*y^2 + x*y + x + y^4 + y^3 - y^2 - y - 1,

-x*y^2 + x*y + x + y^3 + y^2 - y - 1,

-x^2 - x*y + y - 2
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]

Note that C is the same as above, except that each polynomial has been scaled by 2 to make it
integral. Finally we check again that multiplying out by the coordinates gives 2.

> C[1]*S[1] + C[2]*S[2] + C[3]*S[3];

2

Incidentally, we can see from the Gröbner basis of I over Z that the only solution to the system
of equations described by S is the local solution x = y = 1 over F2.

105.4.7 Degree-d Gröbner Bases

GroebnerBasis(S, d : parameters)

Given a set or sequence S of polynomials from a graded polynomial ring P , return the
weighted degree-d Gröbner basis of the ideal generated by S, which is the truncated
Gröbner basis obtained by ignoring S-polynomial pairs whose weighted degree (with
respect to the grading on P ) is greater than d.

If the ideal is homogeneous, then it is guaranteed that the result is equal to the
set of all polynomials in the full Gröbner basis of the ideal whose weighted degree
is less than or equal to d, and a polynomial whose weighted degree is less than or
equal to d is in the ideal iff its normal form with respect to this truncated basis is
zero. But if the ideal is not homogeneous, these last properties may not hold, but
it may be still useful to construct the truncated basis.

The parameters are the same as those for the procedure Groebner. See also
[BW93, section 10.2] for further discussion. Note that the base ring may be a field
or Euclidean ring.

Example H105E11

We create a graded polynomial ring and compute the degree-d Gröbner basis of a sequence L of
homogeneous polynomials for various d. Since the polynomials are homogeneous (with respect to
the grading), we check that the result for each d contains the set of all polynomials in the full
Gröbner basis of L having weighted degree less than or equal to d.

> P<a,b,c,d> := PolynomialRing(RationalField(), [4,3,2,1]);

> L := [a*b - c^2*d^3, b*c*d + c^3, c^2*d - d^5, a*d - b*c];

> [IsHomogeneous(f): f in L];

[ true, true, true, true ]

> [Degree(f): f in L];

[ 7, 6, 5, 5 ]

> G:=GroebnerBasis(L);

> G;

[

a*b - d^7,

a*c^3 + d^10,

a*d - b*c,
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b^2*c - d^8,

b*c^3 + d^9,

b*c*d + c^3,

b*d^5 + c^4,

c^5 - d^10,

c^2*d - d^5,

c*d^7 - d^9

]

> #G;

10

> [Degree(f): f in G];

[ 7, 10, 5, 8, 9, 6, 8, 10, 5, 9 ]

> for D := 1 to 10 do

> T := GroebnerBasis(L, D);

> printf "D = %o, #GB = %o, contains all degree-D polynomials: %o\n",

> D, #T, {f: f in G | Degree(f) le D} subset T;

> end for;

D = 1, #GB = 4, contains all degree-D polynomials: true

D = 2, #GB = 4, contains all degree-D polynomials: true

D = 3, #GB = 4, contains all degree-D polynomials: true

D = 4, #GB = 4, contains all degree-D polynomials: true

D = 5, #GB = 4, contains all degree-D polynomials: true

D = 6, #GB = 4, contains all degree-D polynomials: true

D = 7, #GB = 4, contains all degree-D polynomials: true

D = 8, #GB = 6, contains all degree-D polynomials: true

D = 9, #GB = 8, contains all degree-D polynomials: true

D = 10, #GB = 10, contains all degree-D polynomials: true

> GroebnerBasis(L, 5);

[

a*b - d^7,

a*d - b*c,

b*c*d + c^3,

c^2*d - d^5

]

> GroebnerBasis(L, 8);

[

a*b - d^7,

a*d - b*c,

b^2*c - d^8,

b*c*d + c^3,

b*d^5 + c^4,

c^2*d - d^5

]
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105.5 Changing Coefficient Ring
The ChangeRing function enables the changing of the coefficient ring of a polynomial ring
or ideal.

ChangeRing(I, S)

Given an ideal I of a polynomial ring P = R[x1, . . . , xn] of rank n with coefficient
ring R, together with a ring S, construct the ideal J of the polynomial ring Q =
S[x1, . . . , xn] obtained by coercing the coefficients of the elements of the basis of
I into S. It is necessary that all elements of the old coefficient ring R can be
automatically coerced into the new coefficient ring S. If R and S are fields and R
is known to be a subfield of S and the current basis of I is a Gröbner basis, then
the basis of J is marked automatically to be a Gröbner basis of J .

Example H105E12

It is better to find the Gröbner basis of an ideal over the smallest subfield possible (e.g. Q), then
use ChangeRing to create the equivalent ideal over a splitting field to find the variety.

> P<x, y, z, t, u> := PolynomialRing(RationalField(), 5);

> I := ideal<P |

> x + y + z + t + u,

> x*y + y*z + z*t + t*u + u*x,

> x*y*z + y*z*t + z*t*u + t*u*x + u*x*y,

> x*y*z*t + y*z*t*u + z*t*u*x + t*u*x*y + u*x*y*z,

> x*y*z*t*u - 1>;

> Groebner(I);

> K<W> := CyclotomicField(5);

> J := ChangeRing(I, K);

> V := Variety(J);

> #V;

70

105.6 Changing Monomial Order
Often one wishes to change the monomial order of an ideal. Magma allows one to do this
by use of the ChangeOrder function.

ChangeOrder(I, Q)

Given an ideal I of the polynomial ring P = R[x1, . . . , xn], together with a polyno-
mial ring Q of rank n (with possibly a different order to that of P ), return the ideal
J of Q corresponding to I and the isomorphism f from P to Q. The map f simply
maps P.i to Q.i for each i.

The point of the function is that one can change the order on monomials of I to
be that of Q. When a Gröbner basis of J is needed to be calculated, Magma uses
a conversion algorithm starting from a Gröbner basis of I if possible—this usually
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makes order conversion much more efficient than by computing a Gröbner basis of
J from scratch.

ChangeOrder(I, order)

Given an ideal I of the polynomial ring P = R[x1, . . . , xn], together with a monomial
order order (see Section 105.2), construct the polynomial ring Q = R[x1, . . . , xn]
with order order, and then return the ideal J of Q corresponding to I and the
isomorphism f from P to Q. See the section on monomial orders for the valid
values for the argument order. The map f simply maps P.i to Q.i for each i.

ChangeOrder(I, T)

Given an ideal I of the polynomial ring P = R[x1, . . . , xn], together with a tuple T ,
construct the polynomial ring Q = R[x1, . . . , xn] with the monomial order given by
the tuple T on the monomials, and then return the ideal J of Q corresponding to I
and the isomorphism f from P to Q. T must be a tuple whose components match
the valid arguments for the monomial orders in Section 105.2 (or a tuple returned
by the function MonomialOrder).

Example H105E13

We write a function univgen which, given a zero-dimensional ideal defined over a field, computes
the univariate elimination ideal generator for a particular variable by changing order to the ap-
propriate univariate order. Note that this function is the same as (and is in fact implemented
in exactly the same way as) the intrinsic function UnivariateEliminationIdealGenerator. We
then find the appropriate univariate polynomials for a particular ideal.

> function univgen(I, i)

> // Make sure I has a Groebner basis so that

> // the conversion algorithm will be used when

> // constructing a Groebner basis of J

> Groebner(I);

> J := ChangeOrder(I, "univ", i);

> Groebner(J);

> return rep{f: f in Basis(J) | IsUnivariate(f, i)};

> end function;

>

> P<x, y, z> := PolynomialRing(RationalField(), 3, "grevlex");

> I := ideal<P |

> 1 - x + x*y^2 - x*z^2,

> 1 - y + y*x^2 + y*z^2,

> 1 - z - z*x^2 + z*y^2 >;

>

> univgen(I, 1);

x^21 - x^20 - 2*x^19 + 4*x^18 - 5/2*x^17 - 5/2*x^16 + 4*x^15 -

15/2*x^14 + 129/16*x^13 + 11/16*x^12 - 103/8*x^11 +

131/8*x^10 - 49/16*x^9 - 171/16*x^8 + 12*x^7 - 3*x^6 -

29/8*x^5 + 15/4*x^4 - 17/16*x^3 - 5/16*x^2 + 5/16*x - 1/16
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> univgen(I, 2);

y^14 - y^13 - 13/2*y^12 + 8*y^11 + 53/4*y^10 - 97/4*y^9 -

45/8*y^8 + 33*y^7 - 25/2*y^6 - 18*y^5 + 107/8*y^4 + 5/8*y^3 -

27/8*y^2 + 9/8*y - 1/8

> univgen(I, 3);

z^21 - z^20 - 2*z^19 + 4*z^18 - 5/2*z^17 - 5/2*z^16 + 4*z^15 -

15/2*z^14 + 129/16*z^13 + 11/16*z^12 - 103/8*z^11 +

131/8*z^10 - 49/16*z^9 - 171/16*z^8 + 12*z^7 - 3*z^6 -

29/8*z^5 + 15/4*z^4 - 17/16*z^3 - 5/16*z^2 + 5/16*z - 1/16

105.7 Hilbert-driven Gröbner Basis Construction
Magma incorporates an implementation of the Hilbert-driven Buchberger Algorithm
[Tra96]. This algorithm constructs the Gröbner basis of an homogeneous ideal I whose
Hilbert series is known. The algorithm is often much more efficient than the conventional
Buchberger algorithm since knowledge of the Hilbert series eliminates many unnecessary
reductions of S-polynomials. The algorithm can also be used as an alternative to the
Gröbner Walk algorithm for changing order since one can compute the Hilbert series of
the ideal with respect to an easy monomial order, and then start again with the Hilbert-
driven algorithm to compute the Gröbner basis with respect to the desired final order.
Furthermore, the algorithm can sometimes be used to test whether an ideal has a partic-
ular Hilbert series and abort early if this is proven to be false. The algorithm is also used
extensively internally in the Invariant Theory algorithms of Magma.

HilbertGroebnerBasis(S, H)

HilbertGroebnerBasis(S, N)

Let S be a set or sequence of homogeneous polynomials from the multivariate poly-
nomial ring P = K[x1, . . . , xn], where K is a field, and let I be the ideal of P
generated by S. Let either H be the Hilbert series HP/I(t) of I (as a rational
function in Z(t)) or let N ∈ Z[t] be a univariate integer polynomial such that the
weighted numerator of the Hilbert series of I is N . This function attempts to con-
struct the (reduced) Gröbner basis of I using the given Hilbert series. The weighted
numerator of the Hilbert series of I is the Hilbert series HP/I(t) of I, multiplied by
the denominator

∏n
i=1 1 − tdi , where di is the weighted degree of the i-th variable

xi (this denominator is thus (1− t)n if P has the default grading).
If the function returns false, then H (or N) cannot be the correct Hilbert series

(or weighted numerator of the Hilbert series) of I. Otherwise, the function returns
true and a sequence B of polynomials which generates the same ideal as S; if H or
N is correct, B will be the (reduced) Gröbner basis of I.

In more detail, let fH be the power series corresponding to the true Hilbert
series of I and let fN be the power series corresponding to N/(

∏n
i=1 1 − tdi). If

fH = fN , then the function returns true and the correct (reduced) Gröbner basis
of I. Otherwise, consider the first term at which fN and fH differ: if the coefficient
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of fN is greater than that of fH , then the function returns false (since it will not
be able to construct the extra Gröbner basis polynomials needed), otherwise the
function will return true with a partial Gröbner basis (since it concludes that it has
enough Gröbner basis polynomials when it hasn’t). Consequently, the algorithm is
usually used when the correct Hilbert series or weighted numerator of the Hilbert
series is known, or when there is a weighted numerator which is known to be greater
than or equal to the correct weighted numerator of the Hilbert series.

SetVerbose("HilbertGroebner", v)

Change verbose printing for the Hilbert-driven Buchberger algorithm to be v. Cur-
rently the legal values for v are true, false, 0, or 1.

Example H105E14

We illustrate a subalgorithm of the Invariant Theory module of Magma which uses the Hilbert-
driven Buchberger Algorithm.
Let R be the invariant ring of the (permutation) cyclic group G of order 4 over the field K = F2.
Suppose we have a sequence L of 4 homogeneous invariants of degrees 1, 2, 2, and 4 respectively.
We wish to determine efficiently whether the polynomials of L constitute primary invariants for
R. To check this, the ideal generated by L must be zero-dimensional and the elements of L must
be algebraically independent. This is equivalent to the condition that the weighted numerator of
the Hilbert series of the ideal is the product (1 − t)(1 − t2)2(1 − t4). If that is not the correct
weighted numerator, it will be less than the correct weighted numerator so the algorithm will
return whether the polynomials L do constitute primary invariants for R.

> K := GF(2);

> P<a,b,c,d> := PolynomialRing(K, 4);

> L := [

> a + b + c + d,

> a*b + a*d + b*c + c*d,

> a*c + b*d,

> a*b*c*d

> ];

> // Form potential Hilbert series weighted numerator

> T<t> := PolynomialRing(IntegerRing());

> N := &*[1 - t^Degree(f): f in L];

> N;

t^9 - t^8 - 2*t^7 + 2*t^6 + 2*t^3 - 2*t^2 - t + 1

> time l, B := HilbertGroebnerBasis(L, N);

Time: 0.000

> l;

true

> // Examine Groebner basis B of L:

> B;

[

a + b + c + d,

b^2 + d^2,

b*c + b*d + c^2 + c*d,
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c^3 + c^2*d + c*d^2 + d^3,

d^4

]

105.8 SAT solver

Magma V2.16 contains an interface to the MiniSat satisfiability (SAT) solver. Such a
solver is given a system of boolean expressions in conjunctive normal form and determines
whether there is an assignment in the variables such that all the expressions are satisfied.
Magma supplies a function by which one may transform a system of boolean polynomial
equations into an equivalent boolean system, and solve this via the SAT solver.

To use the interface function, the MiniSat program must currently be installed as a
command external to Magma. At the time of writing (November 2009), the latest version
of MiniSat can be installed as follows on most Unix/Linux systems:

(1)Download http://minisat.se/downloads/minisat2-070721.zip from the MiniSat
website (minisat.se).

(2)Use the command unzip minisat2-070721.zip or equivalent to unzip the files.

(3)Change directory into minisat/core and run make there.

(4)Copy the produced executable minisat into a place which is in the current path when
Magma is run.

SAT(B)

Exclude [ RngMPolElt ] Default : []

Verbose BoolElt Default : true

Given a sequence B of boolean polynomials in a rank-n boolean polynomial ring (or
a rank-n polynomial ring over F2), call MiniSat on the associated boolean system
and return whether the system is satisfiable, and if so, return also a solution S as a
length-n sequence of elements of F2. (This assumes that MiniSat is in the executable
path of external commands; see above for instructions for installing MiniSat).

The parameter Exclude may be set to a sequence [e1, . . . ek], where each ei is
a sequence of n elements of F2, specifying that the potential solutions in ei are to
be excluded (this is done by adding new relations to the system to exclude the ei).
The verbose information printed by MiniSat may be controlled by the parameter
Verbose.
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Example H105E15

In Example H105E5, we solved a boolean polynomial system via the standard Gröbner basis
method (which the function Variety uses). Here we solve the same system via the SAT solver.
Each time we obtain a solution, we can call the function again, but excluding the solution(s)
already found. We can thus find all the solutions to the system. Of course, this is not worth doing
when there are large numbers of solutions, but it may be of interest to find all solutions when it
is expected there is a small number of solutions.

> P<a,b,c,d,e> := BooleanPolynomialRing(5, "grevlex");

> B := [a*b + c*d + 1, a*c*e + d*e, a*b*e + c*e, b*c + c*d*e + 1];

> l, S := SAT(B);

> l;

true

> S;

[ 1, 1, 1, 0, 0 ]

> Universe(S);

Finite field of size 2

> [Evaluate(f, S): f in B];

[ 0, 0, 0, 0 ]

> l, S2 := SAT(B: Exclude := [S]);

> l;

true

> S2;

[ 0, 1, 1, 1, 0 ]

> [Evaluate(f, S2): f in B];

[ 0, 0, 0, 0 ]

> l, S3 := SAT(B: Exclude := [S, S2]);

> l;

false
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Chapter 106

POLYNOMIAL RING IDEAL OPERATIONS

106.1 Introduction
This chapter describes the Magma functionality for ideals over polynomial rings. For
the basics on multivariate polynomial rings and their elements, see Chapter 24. Most of
the significant operations with ideals construct or utilise a previously-constructed Gröbner
basis. The monomial ordering used for this basis can greatly affect the speed and memory
usage of these operations. This ordering is attached to the polynomial ring in which the
ideals are created. For information on Gröbner bases and the creation of polynomial rings
with specified orders, see Chapter 105. That chapter also tells the user how to compute
and return a Gröbner basis, or just to compute it internally for later use in the operations
described below, with many additional configuration parameters to optimise the computa-
tion. Users may ignore the issue when creating the ambient polynomial rings by allowing
Magma to make default choices. It is, however, highly recommended that users who wish
to work with complicated ideals thoroughly acquaint themselves with the options available.
Magma has an extremely powerful Gröbner basis engine and often makes sophisticated
choices internally of alternative monomial orders for particular computations. Ultimately,
however, the user may significantly speed up his work by a judicious choice of order. We
note here that the default order is the lexicographical one, a total elimination order well
suited to finding solutions of zero-dimensional systems of polynomial equations but tend-
ing to produce very large bases that can take much time and memory to compute. For
homogeneous ideals of rings with the standard weighting (all variables have weight one),
the grevlex order is usually the best in practise and there is theoretical justification for
this. In the case that the ring has a different weighting and the ideal is homogeneous with
respect to that, the weighted grevlex order is the best choice. In any case, the EasyIdeal
and EasyBasis intrinsics of the Gröbner basis chapter return to the user a basis for an
internally chosen good order and these “easy” bases are used in many internal functions
if a basis with respect to the polynomial ring order has not already been computed and
stored.

The functions and operations described here cover a wide range of commutative algebra
functionality. This includes sums and intersections, colon ideals and saturations, elimina-
tion, radicals and primary decompositions, Noether normalisations and computation of
Hilbert polynomials and Hilbert series.

Related chapters including other polynomial ring functionality relying on Gröbner bases
are the chapter on invariant rings of finite group actions, Chapter 110, and the chapters
on affine algebras (Chapter 108) and on modules over affine algebras (Chapter 109). The
chapter on algebraically closed fields (Chapter 40) describes functions that allows one to
compute the variety of an ideal over the algebraic closure of the base field. And, of course,
the Algebraic Geometry component of Magma and parts of the Arithmetic Geometry are
built upon the commutative algebra here.
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106.2 Creation of Polynomial Rings and their Ideals
As noted in the introduction, for the basics on multivariate polynomial rings and their

elements, including their creation, the user should refer to Chapter 24. For creation of
polynomial rings with non-default (currently lexicographic) monomial ordering, the user
should refer to Chapter 105. Similarly, the basic creation functions for ideals and additional
basis options are described in Chapter 105. The commonest creation methods are the ideal
constructor and the Ideal function.

106.3 First Operations on Ideals

In the following, note that since ideals of a full polynomial ring P are regarded as subrings
of P , the ring P itself is a valid ideal as well (the ideal containing 1).

106.3.1 Simple Ideal Constructions
The following basic constructions involve no Gröbner basis computation.

I + J

Given ideals I and J of the same polynomial ring P , return the sum of I and J ,
which is the ideal generated by the generators of I and those of J .

I * J

Given ideals I and J of the same polynomial ring P , return the product of I and J ,
which is the ideal generated by the products of the generators of I and those of J .

I ^ k

Given an ideal I of the polynomial ring P , and an integer k, return the k-th power
of I.

I / J

Given an ideal I of a polynomial ring P over a field and an ideal J of P , such that
J ⊂ I, return the affine algebra I/J .

106.3.2 Basic Commutative Algebra Operations
The following important basic operations on ideals involve Gröbner basis computation

and use the standard algorithms as described in Chapter 1.8 of [GP02], for example, unless
otherwise stated.

QuotientDimension(I)

Given an ideal I of a polynomial ring P over a field K, return the dimension of P/I
as a K-vector space. Note that this is quite different from the function Dimension
below (which returns the Krull dimension of an ideal). If I is not of Krull dimension
0 then the vector space is infinite and Infinity is returned.
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ColonIdeal(I, J)

IdealQuotient(I, J)

Given ideals I and J of the same polynomial ring P , return the colon ideal I : J (or
ideal quotient of I by J), consisting of the polynomials f of P such that f ∗ g is in
I for all g in J .

ColonIdeal(I, f)

IdealQuotient(I, f)

Given an ideal I and an element f of a polynomial ring P , return the saturation
(colon) ideal I : f∞, consisting of the polynomials g of P such that there exists
an i ≥ 1 with f i ∗ g ∈ I. An integer s with s ≥ 1 is also returned such that
I : f∞ = I : fs. Note that if s is not needed, only one return value of the function
should be expected which increases the efficiency enormously. Note also that this
function is not equivalent to taking the ideal quotient of I by the ideal of P generated
by f . It is in some ways a more natural operation mathematically, corresponding
to taking the full inverse image of the localised ideal If under the localisation map
P → Pf , and can be faster than the I : f computation, if s is not required. In
this case, the computation goes by the elimination of extra variable t from the ideal
< I, 1− f ∗ t >.

ColonIdealEquivalent(I, f)

Saturation(I, f)

Given an ideal I and an element f of a polynomial ring P , return the saturation
(colon) ideal C = I : f∞, and a polynomial g ∈ P such that C = I : 〈g〉 and g is
of minimal degree. The irreducible factors of g will be a subset of the irreducible
factors of f (and the corresponding multiplicities may be greater or lesser, depending
on how often an irreducible factor divides the ideal I).

Saturation(I, J)

Given ideals I and J of some polynomial ring P , return the saturation (I : J∞):
that is, the ideal {f ∈ P : ∃n > 0, fnJ ⊆ I}.

Saturation(I)

Given an ideal I of a polynomial ring P , return the saturation of I with respect
to the irrelevant ideal of P – that is, the ideal of all elements of P having positive
degree.

Generic(I)

Given an ideal I of a generic polynomial ring P , return P .

LeadingMonomialIdeal(I)

Given an ideal I, return the leading monomial ideal of I; that is, the ideal generated
by all the leading monomials of I.
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I meet J

Given ideals I and J of the same polynomial ring P , return the intersection of I
and J .

&meet S

Given a set or sequence S of ideals of the same polynomial ring P , return the
intersection of all the ideals of S.

RegularSequence(I)

Homogeneous BoolElt Default : true

Given an ideal I of a polynomial ring P over a field, computes and returns a max-
imal regular sequence in I. The algorithm used is that of Eisenbud and Sturmfels
([ES94]) that tries to construct a regular sequence of fairly sparse polynomials. If
parameter Homogeneous is true (the default), and I is a homogeneous ideal with re-
spect to the variable weights, then the regular sequence constructed will also consist
of homogeneous polynomials.

ReesIdeal(P, I)

ReesIdeal(P, J, I)

a RngMPolElt Default : 1
ReesIdeal(R, I)

a RngMPolElt Default : 1
In each case P is a multivariate polynomial ring and I is an ideal of P . In the third
case R is an affine quotient algebra of the form P/J . In the second case J is another
ideal of P and we write R for the affine algebra P/J . In the first case, let R = P .

The Rees algebra R(I) is the finitely-generated, graded polynomial algebra iso-
morphic to the algebra

R⊕ I ⊕ I2 ⊕ I3 ⊕ . . .

where I gives the first graded part, I2 the second etc. and the multiplication
is the obvious one. Here I is thought of as an ideal of R, rather than P for the
second and third signatures. Proj of this algebra represents the blow-up of the
affine scheme Spec(R) along the closed subscheme defined by I (see Chapter 2,
Section 7 of [Har77]).

The function returns the Rees ideal, K, such that, if R1 is the generic polynomial
ring of K, then R1/K is an affine algebra isomorphic to R(I)/ < a − torsion >,
where a is an element of P (or R in the third case) that gives a non-zero divisor in R
and is 1 by default. In the first case, any such a remains a non-zero divisor in R(I),
so is redundant. However, in the second and third cases, a can be specified to be
not equal to 1 by use of the a parameter. Geometrically, dividing out by a-torsion
gives the coordinate ring of the maximal closed subscheme of the blow-up that is
flat over the generic point and the codimension one points defined by the vanishing
of a, if these points are regular.
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106.3.3 Ideal Predicates

I eq J

Given two ideals I and J of the same polynomial ring P , return whether I and J
are equal. Involves the use of a Gröbner basis for each ideal.

I ne J

Given two ideals I and J of the same polynomial ring P , return whether I and J
are not equal. Involves the use of a Gröbner basis for each ideal.

I notsubset J

Given two ideals I and J in the same polynomial ring P return whether I is not
contained in J . Involves the use of a Gröbner basis for J .

I subset J

Given two ideals I and J in the same polynomial ring P return whether I is contained
in J . Involves the use of a Gröbner basis for J .

IsZero(I)

Given an ideal I of the polynomial ring P , return whether I is the zero ideal (contains
zero alone).

IsProper(I)

Given an ideal I of the polynomial ring P , return whether I is proper; that is,
whether I is strictly contained in P , or whether the Gröbner basis of I does not
contain 1 alone.

IsHomogeneous(I)

Given an ideal I of the polynomial ring P , this function returns whether I is homo-
geneous with respect to the weights on the variables of P (i.e., whether I possesses
a basis consisting of homogeneous polynomials alone). Checks whether the current
basis of I consists of homogeneous polynomials and, if not and the current basis isn’t
Gröbner, then whether an easy Gröbner basis consists of homogeneous elements.

IsPrincipal(I)

Given an ideal I of the polynomial ring P , return whether I is principal, and if so,
return also a generator of I. This will be true if and only if an arbitrary Gröbner
basis consists of a single (generating) element.

IsPrimary(I)

Given an ideal I of the polynomial ring P , return whether I is primary. An ideal
I is primary if and only if for all ab ∈ I, either a ∈ I or bn ∈ I for some n ≥ 1.
The restrictions on I are the same as for the function PrimaryDecomposition—see
the description of that function. In general, this function computes or retrieves the
primary decomposition and checks whether it has a unique element.
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IsPrime(I)

Given an ideal I of the polynomial ring P , return whether I is prime. An ideal I
is prime if and only if for all ab ∈ I, either a ∈ I or b ∈ I. The restrictions on
I are the same as for the function PrimaryDecomposition—see the description of
that function. Again, this function computes the primary decomposition or uses the
already stored one.

IsMaximal(I)

Given an ideal I of the polynomial ring P , return whether I is maximal. The
restrictions on I are the same as for the function PrimaryDecomposition—see the
description of that function. Checks first whether I is zero-dimensional (see below)
and, if so, then checks whether it is prime. NB: given that I is of dimension 0, the
prime/primary decomposition computation is relatively fast.

IsRadical(I)

Given an ideal I of the polynomial ring P , return whether I is radical; that is,
whether the radical of I is I itself. The restrictions on I are the same as for the
function Radical—see the description of that function. The function computes the
radical or uses the already stored one.

IsZeroDimensional(I)

Given an ideal I of the polynomial ring P , defined over a field, return whether I is
zero-dimensional (so the quotient of P by I has non-zero finite dimension as a vector
space over the coefficient field – see the section on dimension for further details).
Note that the full polynomial ring P as an ideal of itself has dimension −1, so it is
not zero-dimensional.

HasGrevlexOrder(I)

Given an ideal I of the polynomial ring P , return whether the monomial order of I
is the grevlex order.

Example H106E1

We construct some ideals in Q[x, y, z] and perform basic arithmetic on them.

> P<x,y,z> := PolynomialRing(RationalField(), 3);

> I := ideal<P | x*y - 1, x^3*z^2 - y^2, x*z^3 - x - 1>;

> J := ideal<P | x*y - 1, x^2*z - y, x*z^3 - x - 1>;

> A := I * J;

> A;

Ideal of Polynomial ring of rank 3 over Rational Field

Order: Lexicographical

Variables: x, y, z

Basis:

[

x^2*y^2 - 2*x*y + 1,
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x^3*y*z - x^2*z - x*y^2 + y,

x^2*y*z^3 - x^2*y - x*y - x*z^3 + x + 1,

x^4*y*z^2 - x^3*z^2 - x*y^3 + y^2,

x^5*z^3 - x^3*y*z^2 - x^2*y^2*z + y^3,

x^4*z^5 - x^4*z^2 - x^3*z^2 - x*y^2*z^3 + x*y^2 + y^2,

x^2*y*z^3 - x^2*y - x*y - x*z^3 + x + 1,

x^3*z^4 - x^3*z - x^2*z - x*y*z^3 + x*y + y,

x^2*z^6 - 2*x^2*z^3 + x^2 - 2*x*z^3 + 2*x + 1

]

> M := I meet J;

> M;

Ideal of Polynomial ring of rank 3 over Rational Field

Order: Lexicographical

Variables: x, y, z

Basis:

[

x^4 + x^3 - x*z^2 + z^12 - 4*z^9 + 6*z^6 - z^4 - 4*z^3 + z + 1,

x^5 + x^4 - x^2*z^2 + z^9 - 3*z^6 + 3*z^3 - z - 1,

x*z^3 - x - 1,

y - z^3 + 1

]

> A eq M;

true

> QuotientDimension(A);

24

> ColonIdeal(I, J);

Ideal of Polynomial ring of rank 3 over Rational Field

Order: Lexicographical

Variables: x, y, z

Inhomogeneous, Dimension 0

Basis:

[

x*y - 1,

x^3*z^2 - y^2,

x*z^3 - x - 1

]

106.3.4 Element Operations with Ideals

f in I

Given a polynomial f from a polynomial ring P , together with an ideal I of P ,
return whether f is in I. The function computes the normal form of f relative to
some Gröbner basis of I and checks if this is zero.
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f notin I

Given a polynomial f from a polynomial ring P , together with an ideal I of P ,
return whether f is not in I. As with in, this performs a normal form computation.

IsInRadical(f, I)

Given a polynomial f from a polynomial ring P , together with an ideal I of P , return
whether f is in the radical of I. Note that using this function is much quicker in
general than actually computing the radical of I. It uses the algorithm described in
section 1.8.6 of [GP02].

JacobianIdeal(f)

Return the ideal generated by all first partial derivatives of the polynomial f .

Example H106E2

We demonstrate the element operations with respect to an ideal of Q[x, y, z].

> P<x, y, z> := PolynomialRing(RationalField(), 3);

> I := ideal<P | (x + y)^3, (y - z)^2, y^2*z + z>;

> NormalForm(y^2*z + z, I);

0

> NormalForm(x^3, I);

-3*x^2*y - 3*x*z^4 - 6*x*z^2 + 1/2*z^3 + 3/2*z

> NormalForm(z^4 + y^2, I);

2*z^4 + 2*z^2

> x + y in I;

false

> IsInRadical(x + y, I);

true

> IsInRadical((x + y)^2, I);

true

> IsInRadical(z, I);

false

> SPolynomial(x^4 + y - z, x^2 + y - z);

-x^2*y + x^2*z + y - z
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106.4 Computation of Varieties
The slightly non-standard term variety in this section refers to the (finite) solution set of
the system of polynomials that make up a zero-dimensional ideal. It can also be thought
of as the set of points of a zero-dimensional affine scheme over a specified field extension
of the polynomial ring base field. For more general functionality for schemes of arbitrary
dimension, see the chapters on Algebraic and Arithmetic Geometry. The functions here
also work for higher-dimensional ideals if the base field is finite, when the solution set is
again finite (over the base or a finite extension of the base).

The functions compute solutions over the base field of the polynomial ring or over an
extension field L. Magma’s algebraically closed fields (see Chapter 40) may be used to
get all solutions if so desired when an explicit splitting field is not known for the system.
L should be an exact field over which Magma has a root-finding algorithm for univariate
polynomials or a real or complex field.

For the corresponding functions with argument a zero-dimensional scheme which may
not be affine, see the Section 112.7 in the Schemes chapter.

Variety(I)

Variety(I, L)

Digits RngIntElt Default : 38
Given a zero-dimensional ideal I of a polynomial ring P , return the variety of I over
its coefficient field K as a sequence of tuples. Each tuple is of length n, where n is
the rank of P , and corresponds to an assignment of the n variables of P (in order)
such that all polynomials in I vanish with this assignment.

If K is not a finite field then the ideal must be the full polynomial ring or be
zero-dimensional so that the variety is known to be finite. If a superfield L of K is
also given, the variety is computed over L instead, so the entries of the tuples lie in
L.

If the field over which the variety is computed is the free complex field, Magma
uses a special root finding algorithm to ensure the precision of the results; in this
case, the parameter Digits may be given (see the Roots function in the Real and
Complex Fields chapter (Chapter 25)).

The function works in the zero-dimensional case by first computing a triangular
or radical decomposition of I (see Section 106.11). This reduces the problem to
successively computing roots of univariate polynomials.

VarietySequence(I)

VarietySequence(I, L)

Digits RngIntElt Default : 38
Given a zero-dimensional ideal I of a polynomial ring P whose order is of lexico-
graphic type, return the variety of I over its coefficient field K as a sequence of
sequences of elements of K. Each inner sequence is of length n, where n is the rank
of P , and corresponds to an assignment of the n variables of P (in order) such that
all polynomials in I vanish with this assignment.
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If K is not a finite field then the ideal must be the full polynomial ring or be
zero-dimensional so that the variety is known to be finite. If a superfield L of K is
also given, the variety is computed over L instead, so the entries of the sequences
lie in L.

If the field over which the variety is computed is the free complex field, Magma
uses a special root finding algorithm to ensure the precision of the results; in this
case, the parameter Digits may be given (see the Roots intrinsic function in the
Real and Complex Fields chapter (Chapter 25)).

The function works in the zero-dimensional case by first computing a triangular
or radical decomposition of I (see Section 106.11). This reduces the problem to
successively computing roots of univariate polynomials.

VarietySizeOverAlgebraicClosure(I)

Given a zero-dimensional ideal I of a polynomial ring P over a field K, return the
size of the variety of I over the algebraic closure K ′ of K. The size is determined
by finding the (prime) radical decomposition of I and placing each component of
the decomposition into normal position so the size of the variety of the component
over K ′ can be read off. Note that this function will usually be much faster than
actually computing the variety of I over a suitable extension field of K.

Example H106E3

We construct an ideal I of the polynomial ring F27[x, y], and then find the variety V = V (I). We
then check that I vanishes on V .

> K<w> := GF(27);

> P<x, y> := PolynomialRing(K, 2);

> I := ideal<P | x^8 + y + 2, y^6 + x*y^5 + x^2>;

> Groebner(I);

> I;

Ideal of Polynomial ring of rank 2 over GF(3^3)

Order: Lexicographical

Variables: x, y

Inhomogeneous, Dimension 0

Groebner basis:

[

x + 2*y^47 + 2*y^45 + y^44 + 2*y^43 + y^41 + 2*y^39 + 2*y^38 + 2*y^37 +

2*y^36 + y^35 + 2*y^34 + 2*y^33 + y^32 + 2*y^31 + y^30 + y^28 + y^27 +

y^26 + y^25 + 2*y^23 + y^22 + y^21 + 2*y^19 + 2*y^18 + 2*y^16 + y^15 +

y^13 + y^12 + 2*y^10 + y^9 + y^8 + y^7 + 2*y^6 + y^4 + y^3 + y^2 + y +

2,

y^48 + y^41 + 2*y^40 + y^37 + 2*y^36 + 2*y^33 + y^32 + 2*y^29 + y^28 +

2*y^25 + y^24 + y^2 + y + 1

]

> V := Variety(I);

> V;

[ <w^14, w^12>, <w^16, w^10>, <w^22, w^4> ]
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> // Check that the original polynomials vanish:

> [

> <x^8 + y + 2, y^6 + x*y^5 + x^2> where x is v[1] where y is v[2]: v in V

> ];

[ <0, 0>, <0, 0>, <0, 0> ]

> // Note that the variety of I would be larger over an extension field of K:

> VarietySizeOverAlgebraicClosure(I);

48

106.5 Multiplicities
This section contains some useful invariants for an isolated singularity at the origin of a
hypersurface given by a multivariate polynomial f .

MilnorNumber(f)

Given a polynomial f ∈ K[x1, . . . , xn], where K is a field, return the Milnor number
of f at the origin. This is the dimension of the quotient by the ideal generated
by the partials of f in the localization of K[x1, . . . , xn] at the origin. See [CLO98,
p. 147] or [DL06, Remark 9.37].

TjurinaNumber(f)

Given a polynomial f ∈ K[x1, . . . , xn], where K is a field, return the Tjurina number
of f at the origin. This is the dimension of the quotient by the ideal generated by f
and the partials of f in the localization of K[x1, . . . , xn] at the origin. See [CLO98,
p. 148] or [DL06, Def. 9.35].

Example H106E4

We compute some Milnor and Tjurina numbers, based on Exercise 12 of [CLO98, p. 177].

> P<x,y> := PolynomialRing(RationalField(), 2);

> MilnorNumber((x^2 + y^2)^3 - 4*x^2*y^2); // 4-leaved rose

13

> [MilnorNumber(y^2 - x^n): n in [1 .. 5]];

[ 0, 1, 2, 3, 4 ]

> P<x,y,z> := PolynomialRing(RationalField(), 3);

> [MilnorNumber(x*y*z + x^n + y^n + z^n): n in [1 .. 10]];

[ 0, 1, 8, 11, 14, 17, 20, 23, 26, 29 ]

> [TjurinaNumber(x*y*z + x^n + y^n + z^n): n in [1 .. 10]];

[ 0, 1, 8, 10, 13, 16, 19, 22, 25, 28 ]

A much larger example is given in [DL06, p. 254].

> f := y^2 - 2*x^28*y - 4*x^21*y^17 + 4*x^14*y^33 - 8*x^7*y^49 +

> x^56 + 20*y^65 + 4*x^49*y^16;

> time TjurinaNumber(f);

2260
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Time: 0.010

106.6 Elimination
Elimination theory plays an important role when working with ideals of multivariate poly-
nomial rings. Magma provides an assortment of functions to perform various kinds of
elimination easily. Elimination of variables is accomplished by computing a Gröbner ba-
sis with respect to a suitable elimination order (for more information about elimination
orders, see Section 105.2 as well as comments in the function descriptions below).

All of the functions in this section may be applied to ideals over general Euclidean
rings, not just over fields.

106.6.1 Construction of Elimination Ideals

EliminationIdeal(I, k: parameters)

Given an ideal I of a polynomial ring P of rank n with P = R[x1, . . . , xn], together
with an integer k with 0 ≤ k ≤ n, return the k-th elimination ideal Ik of I, which
is defined to be I ∩R[xk+1, . . . , xn]. Thus Ik consists of all polynomials of I which
have the first k variables eliminated. If the elimination ideals Ik are to be computed
for several different k, it is recommended first that a Gröbner basis with respect
to lexicographical order for I first be computed as then the elimination ideals can
be determined trivially. If I does not have a Gröbner basis stored with respect to
lexicographical order, then a Gröbner basis computation will be necessary each time
an elimination ideal is desired.

If k = n, then I ∩R is returned, which, if R is a field, is always the full ring P or
the empty ideal, according to whether I is the full polynomial ring or not. But if R
is not a field, then this intersection will yield the ideal generated by the normalized
smallest element of R which is in I (according to the Euclidean norm), which could
be neither 0 nor 1.

The parameters are as for the Groebner procedure. Note that setting Al :=
"Direct" occasionally produces much better performance since the relevant elimi-
nation order may yield a better Gröbner basis than the default method of going via
the grevlex order.

EliminationIdeal(I, S)

EliminationIdeal(I, S)

Given an ideal I of a polynomial ring P of rank n with P = R[x1, . . . , xn], together
with a set S describing a subset U of the variables {x1, . . . xn}, return the elimination
ideal IU of I, which is defined to be I ∩R[U ]. Thus IU consists of all polynomials of
I which contain variables only found in U . U can be specified in two ways: either
as a set S of integers in the range 1 . . . n such the integer i corresponds to the i-th
variable xi, or as a set S of variables lying in P . S may be the empty set, in which
case this is equivalent to EliminationIdeal(I, n); see above.
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Example H106E5

This example continues the example above which computed a Gröbner basis over a ring which
was not even a PIR.

As before, R = Z[
√−5] and I is the ideal of R[x, y] generated by f1 = 2xy +

√−5y and f2 =
(1+

√−5)x2−xy. As before, we compute over Z, introduce a new variable S and include (S2 +5)
in I, so we can effectively work over R.

> P<x, y, S> := PolynomialRing(IntegerRing(), 3);

> f1 := 2*x*y + S*y;

> f2 := (1 + S)*x^2 - x*y;

> I := ideal<P | f1, f2, S^2 + 5>;

> GroebnerBasis(I);

[

x^2*S + x^2 + 5*y^3 + 13*y*S - 25*y,

6*x^2 + 5*y^2 + 3*y*S - 10*y,

x*y + 5*y^3 + 13*y*S - 25*y,

y^2*S + 5*y^2 - 15*y,

10*y^2 + 5*y*S - 25*y,

S^2 + 5

]

In [AL94, Ex. 4.3.8], the elimination ideal Ey = I ∩ (Z[
√−5)[y] is shown to be generated by

f5 = (5 +
√−5)y2 − 15y and f7 = −2

√−5y2 + 5(1 +
√−5)y. We can compute Ey in Magma

easily using EliminationIdeal. We must be careful to include S in the second argument (the
set of variables which we want), since S should be considered a ‘constant’ (member of R) in this
context.

> Ey := EliminationIdeal(I, {y, S});

> GroebnerBasis(Ey);

[

y^2*S + 5*y^2 - 15*y,

10*y^2 + 5*y*S - 25*y,

S^2 + 5

]

Obviously, the polynomials yielded are simply the last 3 polynomials of the full Gröbner basis
given above. We check also that the ideal generated by f5 and f7 over R is the same as that given
by Magma.

> f_5 := y^2*S + 5*y^2 - 15*y;

> f_7 := -2*y^2*S + 5*y*S + 5*y;

> E := ideal<P | f_5, f_7, S^2 + 5>;

> E eq Ey;

true

Finally, we also compute Ex = I ∩ (Z[
√−5)[x], which requires more effort this time, since it

cannot be read off the Gröbner basis.

> Ex := EliminationIdeal(I, {x, S});

> GroebnerBasis(Ex);
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[

2*x^3*S + 2*x^3 + x^2*S - 5*x^2,

12*x^3 + 6*x^2*S,

S^2 + 5

]

From this, we see that Ex is generated by (2 + 2
√−5)x3 + (−5 +

√−5)x2 and 12x3 + 6
√−5x2.

106.6.2 Univariate Elimination Ideal Generators

UnivariateEliminationIdealGenerator(I, i)

Given a zero-dimensional ideal I of a polynomial ring P of rank n with P =
K[x1, . . . , xn], together with an integer i with 1 ≤ i ≤ n, return the unique monic
generator of the univariate elimination ideal I ∩K[xi].

UnivariateEliminationIdealGenerators(I)

Given a zero-dimensional ideal I of a polynomial ring P of rank n with P =
K[x1, . . . , xn], return the sequence of length n whose i-th element is the unique
monic generator of the univariate elimination ideal I ∩K[xi].

Example H106E6

We construct an ideal I (derived from Neural networks theory) of the polynomial ring Q[x, y, z],
and then find various elimination ideals of I.

> P<x, y, z> := PolynomialRing(RationalField(), 3);

> I := ideal<P |

> 1 - x + x*y^2 - x*z^2,

> 1 - y + y*x^2 + y*z^2,

> 1 - z - z*x^2 + z*y^2 >;

> UnivariateEliminationIdealGenerator(I, 1);

x^21 - x^20 - 2*x^19 + 4*x^18 - 5/2*x^17 - 5/2*x^16 + 4*x^15 - 15/2*x^14 +

129/16*x^13 + 11/16*x^12 - 103/8*x^11 + 131/8*x^10 - 49/16*x^9 -

171/16*x^8 + 12*x^7 - 3*x^6 - 29/8*x^5 + 15/4*x^4 - 17/16*x^3 - 5/16*x^2

+ 5/16*x - 1/16

> UnivariateEliminationIdealGenerator(I, 2);

y^14 - y^13 - 13/2*y^12 + 8*y^11 + 53/4*y^10 - 97/4*y^9 - 45/8*y^8 + 33*y^7 -

25/2*y^6 - 18*y^5 + 107/8*y^4 + 5/8*y^3 - 27/8*y^2 + 9/8*y - 1/8

> E := EliminationIdeal(I, {y, z});

> E;

Ideal of Polynomial ring of rank 3 over Rational Field

Order: Lexicographical

Variables: x, y, z

Basis:

[

z^21 - z^20 - 2*z^19 + 4*z^18 - 5/2*z^17 - 5/2*z^16 + 4*z^15 - 15/2*z^14 +

129/16*z^13 + 11/16*z^12 - 103/8*z^11 + 131/8*z^10 - 49/16*z^9 -
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171/16*z^8 + 12*z^7 - 3*z^6 - 29/8*z^5 + 15/4*z^4 - 17/16*z^3 - 5/16*z^2

+ 5/16*z - 1/16,

y + 141944208/7806653*z^20 - 42803108/7806653*z^19 - 290535348/7806653*z^18

+ 309392460/7806653*z^17 - 164881460/7806653*z^16 -

331099258/7806653*z^15 + 203830442/7806653*z^14 - 894960798/7806653*z^13

+ 622205873/7806653*z^12 + 1352184655/31226612*z^11 -

4746138097/31226612*z^10 + 5122044359/31226612*z^9 +

991547639/31226612*z^8 - 830598655/7806653*z^7 + 1472712995/15613306*z^6

- 59983627/15613306*z^5 - 486698319/15613306*z^4 + 174173263/7806653*z^3

- 30672252/7806653*z^2 - 735083/664396*z + 30093391/31226612

]

Example H106E7

We write a simple function ZRadical to compute the radical of a zero dimensional ideal defined
over a field using the univariate elimination ideal generators. See [BW93, p. 345].

> function ZRadical(I)

> // Find radical of zero dimensional ideal I

> P := Generic(I);

> n := Rank(P);

> G := UnivariateEliminationIdealGenerators(I);

> N := {};

>

> for i := 1 to n do

> // Set FF to square-free part of the i-th univariate

> // elimination ideal generator

> F := G[i];

> FF := F;

> while true do

> D := GCD(FF, Derivative(FF, 1, i));

> if D eq 1 then

> break;

> end if;

> FF := FF div D;

> end while;

> // Include FF in N if FF is a proper divisor of F

> if FF ne F then

> Include(~N, FF);

> end if;

> end for;

>

> // Return the sum of I and N

> if #N eq 0 then

> return I;

> else

> return ideal<P | I, N>;

> end if;
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> end function;

We now apply ZRadical to an ideal of Q[x, y, z].

> P<x, y, z> := PolynomialRing(RationalField(), 3);

> I := ideal<P | (x+1)^3*y^4, x*(y-z)^2+1, z^3-z^2>;

> R := ZRadical(I);

> Groebner(I);

> Groebner(R);

> I;

Ideal of Polynomial ring of rank 3 over Rational Field

Order: Lexicographical

Variables: x, y, z

Inhomogeneous, Dimension 0, Non-radical

Groebner basis:

[

x - 4*y^9 + 21*y^8 - 32*y^7 + 7*y^6 + 432*y^5*z^2 - 546*y^5*z + 120*y^5 -

137*y^4*z^2 + 288*y^4*z - 146*y^4 - 956*y^3*z^2 + 1088*y^3*z - 128*y^3 +

393*y^2*z^2 - 576*y^2*z + 186*y^2 + 498*y*z^2 - 540*y*z + 44*y - 220*z^2

+ 288*z - 67,

y^10 - 6*y^9 + 12*y^8 - 8*y^7 + 288*y^5*z^2 - 348*y^5*z + 60*y^5 -

110*y^4*z^2 + 192*y^4*z - 82*y^4 - 624*y^3*z^2 + 696*y^3*z - 72*y^3 +

273*y^2*z^2 - 384*y^2*z + 111*y^2 + 322*y*z^2 - 348*y*z + 26*y - 150*z^2

+ 192*z - 42,

y^6*z - y^6 - 6*y^5*z^2 + 6*y^5*z - 3*y^4*z + 3*y^4 + 12*y^3*z^2 - 12*y^3*z

+ 3*y^2*z - 3*y^2 - 6*y*z^2 + 6*y*z - z + 1,

z^3 - z^2

> R;

Ideal of Polynomial ring of rank 3 over Rational Field

Order: Lexicographical

Variables: x, y, z

Inhomogeneous, Dimension 0, Radical

Groebner basis:

[

x + 1,

y^2 - 2*y*z + z - 1,

z^2 - z

]

> I subset R;

true

> R subset I;

false

> IsInRadical(x + 1, I);

true
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106.6.3 Relation Ideals

RelationIdeal(Q)

RelationIdeal(Q, T)

Given a sequence Q of k polynomials of a polynomial ring P over a ring S (not neces-
sarily a field), return the relation ideal U of Q which is an ideal of the polynomial ring
of rank k over S containing all algebraic relations between the elements of Q. That
is, U consists of all polynomials r ∈ S[y1, . . . , yk] such that r(Q[1], . . . , Q[k]) = 0. If
U is desired to be an ideal of a particular polynomial ring T of rank k (to obtain
predetermined names of variables, for example), then T may be passed as a second
argument.

The computation is the same as that for the image of an affine polynomial map,
which this basically is, thinking of the polynomials in Q as giving a map from n-
dimensional affine space (n = rank of P ) to k-dimensional affine space. k new
variables yi and relations yi − Q[i] are added and then the original variables xi of
P are eliminated in the usual way.

Example H106E8

We construct an ideal I of the polynomial ring F2[x, y, z], and discover that the ideal is the full
polynomial ring. Suppose we then wish to write 1 ∈ I as an (algebraic) expression in terms of the
original generators. We use RelationIdeal to find that expression.

> P<x, y, z> := PolynomialRing(GF(2), 3, "grevlex");

> S := [(x + y + z)^2, (x^2 + y^2 + z^2)^3 + x + y + z + 1];

> I := ideal<P | S>;

> Groebner(I);

> I;

Ideal of Polynomial ring of rank 3 over GF(2)

Graded Reverse Lexicographical Order

Variables: x, y, z

Groebner basis:

[

1

]

> Q<a, b> := PolynomialRing(GF(2), 2);

> U := RelationIdeal(S, Q);

> U;

Ideal of Polynomial ring of rank 2 over GF(2)

Order: Lexicographical

Variables: a, b

Inhomogeneous, Dimension >0

Basis:

[

a^6 + a + b^2 + 1
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]

Finally, we check the algebraic expression, evaluating it at the original polynomials:

> S[1]^6 + S[1] + S[2]^2;

1

106.7 Variable Extension of Ideals

Often one wishes to introduce new variables temporarily to a polynomial ring. Magma
allows one to do this by use of the VariableExtension function, and also to restrict again
to the original ring with elimination performed automatically.

VariableExtension(I, k, b)

VariableExtension(I, k, b, order)

Given an ideal I of the polynomial ring P = R[x1, . . . , xn], create a polynomial
ring Q as a k-variable extension of P , the ideal J of Q corresponding to I, and the
embedding map f : P → Q, and return J and f .

If the argument b (standing for “before”) is true, the k variables are inserted
before the current variables of P , so Q is defined to be R[y1, . . . , yk, x1, . . . , xn] and
f maps P.i to Q.(k + i) (so the xi variables of P are mapped to the xi variables of
Q).

If the argument b is false, the k variables are inserted after the current variables
of P , so Q is defined to be R[x1, . . . , xn, y1, . . . , yk] and f maps P.i to Q.i (so the xi

variables of P are mapped to the xi variables of Q).
If the argument order is given, then Q is constructed with the specified order;

otherwise, the grevlex order is used for Q by default. See the section on monomial
orders (Section 105.2) for the valid values for the argument order.

The image under f of a polynomial of P is the corresponding polynomial of Q,
while the image under f of an ideal of P is the corresponding ideal of Q. The inverse
image under f of a polynomial of Q is only defined if none of the extension variables
of Q occur in that polynomial, in which case the inverse image is just the restriction
back to P , while the inverse image under f of an ideal H of Q is always defined and
is the restriction back to P of the elimination ideal H ∩R[x1, . . . , xn].
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106.8 Homogenization of Ideals

Magma allows one to homogenize a polynomial ring or ideal by use of the Homogenization
function, and also to restrict again to the original ring with elimination performed auto-
matically.

Homogenization(I, b)

Homogenization(I, b, order)

Homogenization(I)

Homogenization(I, order)

Given an ideal I of the polynomial ring P = R[x1, . . . , xn], create a polynomial ring
H as a single variable extension of P , the homogenized ideal J of H corresponding
to I, and the homogenization map f : P → H, and return J and f .

If the argument b (standing for “before”) is true, the homogenization variable
is inserted before the current variables of P , so H is defined to be R[h, x1, . . . , xn]
and f maps P.i to H.(k + i) (so the xi variables of P are mapped to the xi variables
of H).

If the argument b is false, the homogenization variable is inserted after the
current variables of P , so H is defined to be R[x1, . . . , xn, h] and f maps P.i to H.i
(so the xi variables of P are mapped to the xi variables of H).

If the argument b is omitted, it is taken to be false, so the homogenization
variable is introduced after the current variables of P .

If the argument order is given, then H is constructed with the specified order;
otherwise, the grevlex order is used for H by default. See the section on monomial
orders (Section 105.2) for the valid values for the argument order.

The image under f of a polynomial of P is the homogenization of f in H, while
the image under f of an ideal of P is the homogenization ideal Ih in H. The inverse
image under f of a polynomial of H is the restriction back to P (obtained by setting
the homogenization variable to 1), while the inverse image under f of an ideal J of
H is the restriction back to P of the ideal obtained by setting the homogenization
variable to 1.

106.9 Extension and Contraction of Ideals

Magma allows the extension to and contraction from the ring of quotients of an ideal,
defined over a field, with respect to certain variables. See [BW93, pp. 54–58 and 388–397]
for the relevant definitions and theory.

Extension(I, U)

Given an ideal I of the polynomial ring P = K[x1, . . . , xn], where K is a field,
together with a sequence U of integers each between 1 and n, create the (ring of
quotients) extension Q of P , and return the ideal J of Q, together with the map
f : P → Q.
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If U has length k and the values (in order) of U are u1, . . . , uk, then first
the rational function field F = K(xu1 , . . . , xuk

) is constructed, then the list
v1, . . . , vn−k is constructed as the list 1, . . . , n with the ui removed, and finally
the extension Q of P is defined to be the polynomial ring F [xv1 , . . . , xvn−k

] =
K(xu1 , . . . , xuk

)[xv1 , . . . , xvn−k
].

The map f is constructed in the obvious way so that xi is mapped to the ap-
propriate variable in F if i is in U , or the appropriate variable in Q otherwise. The
image under f of an ideal of P is just the appropriate ideal of Q whose basis is
obtained by taking the image under f of each of the polynomials in the basis of I.

The inverse image under f of a polynomial of Q is obtained by first making the
polynomial monic, then multiplying by the LCM of the denominators (“clearing the
denominators”), then mapping each variable back to the appropriate one in P—this
is possible since there are no proper denominators. The inverse image under f of
an ideal H of Q is defined to be the ideal of P generated by the inverse images
under f of the polynomials in the basis of H (note that this is not always equal to
the contraction of H—see [BW93, p. 389], for a simple algorithm to compute the
contraction of an ideal of Q).

106.10 Dimension of Ideals

Let I be an ideal of the polynomial ring P = K[x1, . . . , xn], where K is a field. Let X be
the set {x1, . . . , xn} of variables of P . A subset U of X is called independent modulo I if
I∩K[U ] = ∅. A subset U of X is called maximally independent modulo I if U is independent
modulo I, and no proper superset of U is independent modulo I. The dimension of I is
defined to be the maximum of the cardinalities of all the independent sets modulo I. It
is not too hard to see in this case that this coincides with the more abstract commutative
algebra definition of the Krull dimension of the quotient algebra P/I as the maximal length
of a chain of prime ideals.

Note that the definition given above of zero-dimensionality (as the case when the quo-
tient of P by I has finite dimension as a vector space over the coefficient field) coincides
with the definition of zero-dimensionality as dimension 0.

Dimension(I)

Given an ideal I of a polynomial ring P defined over a field, return the dimension d of
I, together with a (sorted) sequence U of integers of length d such that the variables
of P corresponding to the integers of U constitute a maximally independent set
modulo I. If I is the full polynomial ring P , the dimension is defined to be −1,
and the second return value is not set. The algorithm implemented is that given in
[BW93, p. 449].
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106.11 Radical and Decomposition of Ideals

Magma has algorithms for computing the full radical and the primary decomposition of
ideals. See [BW93, chapter 8], for the relevant definitions and theory. The implementation
of the algorithms presented here in Magma was based on the algorithms presented in that
chapter. Currently these algorithms work only for ideals of polynomial rings over fields
(Euclidean rings will be supported in the future).

There are also functions for some easier decompositions than the full primary decom-
position: radical decompositions, equidimensional decompositions and triangular decom-
positions for zero-dimensional ideals. The theory behind these is discussed in the relevant
function description.

106.11.1 Radical

Radical(I)

Given an ideal I of a polynomial ring P over a field, return the radical of I. The
radical R of I is defined to be the set of all polynomials f ∈ P such that fn ∈ I for
some n ≥ 1. The radical R is also an ideal of P , containing I. The function works
for an ideal defined over any field over which polynomial factorization is available.

Example H106E9

We compute the radical of an ideal of Q[x, y, z, t, u] (which is not zero-dimensional).

> P<x, y, z, t, u> := PolynomialRing(RationalField(), 5);

> I := ideal<P |

> x + y + z + t + u,

> x*y + y*z + z*t + t*u + u*x,

> x*y*z + y*z*t + z*t*u + t*u*x + u*x*y,

> x*y*z*t + y*z*t*u + z*t*u*x + t*u*x*y + u*x*y*z,

> x*y*z*t*u>;

> R := Radical(I);

> Groebner(R);

> R;

Ideal of Polynomial ring of rank 5 over Rational Field

Order: Lexicographical

Variables: x, y, z, t, u

Homogeneous, Dimension >0, Radical

Groebner basis:

[

x + y + z + t + u,

y^2 + y*t - z*u - u^2,

y*z,

y*u + z*u + u^2,

z^2*u + z*u^2,

z*t,

t*u

]
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> // Check that t*u is in the radical of I by another method:

> IsInRadical(t*u, I);

true

106.11.2 Primary Decomposition

PrimaryDecomposition(I)

Given an ideal I of a polynomial ring over a field, return the primary decomposition
of I, and also the sequence of associated prime ideals. See IsPrimary for the defini-
tion of a primary ideal. The primary decomposition of I is returned as two parallel
sequences Q and P of ideals, both of length k, having the following properties:
(a)The ideals of Q are primary.
(b)The intersection of the ideals of Q is I.
(c) The ideals of P are the associated primes of Q; i.e., P [i] is the radical of Q[i] (so

P [i] is prime) for 1 ≤ i ≤ k.
(d)Q is minimal: no ideal of Q contains the intersection of the rest of the ideals of

Q and the associated prime ideals in P are distinct.
(e) Q and P are sorted so that P is always unique and Q is unique if I is zero-

dimensional. If I is not zero-dimensional, then an embedded component of Q
(one whose associated prime contains another associated prime from P ) will not
be unique in general. Yet Magma will always return the same values for Q and
P , given the same I.
The function works for an ideal defined over any field over which polynomial

factorization is available (inseparable field extensions are handled by an algorithm
due to Allan Steel [Ste05]).

NB: if one only wishes to compute the prime components P , then the next
function RadicalDecomposition should be used, since this may be much more
efficient.

RadicalDecomposition(I)

Given an ideal I of a polynomial ring over a field, return the prime decomposition of
the radical of I. This is equivalent to applying the function PrimaryDecomposition
to the radical of I, but may be a much more efficient than using that method. The
(prime) radical decomposition of I is returned as a sequence P of ideals of length k
having the following properties:
(a)The ideals of P are prime.
(b)The intersection of the ideals of P is the radical of I.
(c) P is minimal: no ideal of P contains the intersection of the rest of the ideals of

P .
(e) P is sorted so that P is always unique. Thus Magma will always return the

same values for P , given the same I.
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The function works for an ideal defined over any field over which polynomial factor-
ization is available.

ProbableRadicalDecomposition(I)

Given an ideal I of a polynomial ring P over a field, return a probabilistic prime
decomposition of the radical of I as a sequence of ideals of P . This function is like
the function RadicalDecomposition except that the ideals returned may not be
prime, but the time taken may be much less.

MinimalDecomposition(S)

Given a set or sequence S of ideals of a polynomial ring over a field, with I = ∩J∈SJ
(so that S describes a decomposition of I), return a minimal decomposition M of I as
a subset of S such that I = ∩J∈MJ also (so none of the ideals in the decomposition
M are redundant).

SetVerbose("Decomposition", v)

Change verbose printing for the (Primary/Radical) Decomposition algorithm to be
v. Currently the legal values for v are true, false, 0, 1, or 2.

Example H106E10

We compute the primary decomposition of the same ideal of Q[x, y, z, t, u] (which is not zero-
dimensional).

> P<x, y, z, t, u> := PolynomialRing(RationalField(), 5);

> I := ideal<P |

> x + y + z + t + u,

> x*y + y*z + z*t + t*u + u*x,

> x*y*z + y*z*t + z*t*u + t*u*x + u*x*y,

> x*y*z*t + y*z*t*u + z*t*u*x + t*u*x*y + u*x*y*z,

> x*y*z*t*u>;

> IsZeroDimensional(I);

false

> Q, P := PrimaryDecomposition(I);

We next print out the primary components Q and associated primes P .

> Q;

[

Ideal of Polynomial ring of rank 5 over Rational Field

Order: Lexicographical

Variables: x, y, z, t, u

Homogeneous, Dimension 1, Non-radical, Primary, Non-prime

Groebner basis:

[

x + 1/2*z + 1/2*u,

y + 1/2*z + 1/2*u,

z^2 + 2*z*u + u^2,
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t

],

Ideal of Polynomial ring of rank 5 over Rational Field

Order: Lexicographical

Variables: x, y, z, t, u

Homogeneous, Dimension 1, Non-radical, Primary, Non-prime

Groebner basis:

[

x + 2*z + t,

y - z,

z^2,

u

],

Ideal of Polynomial ring of rank 5 over Rational Field

Order: Lexicographical

Variables: x, y, z, t, u

Homogeneous, Dimension 1, Non-radical, Primary, Non-prime

Groebner basis:

[

x + z + 2*u,

y,

t - u,

u^2

],

Ideal of Polynomial ring of rank 5 over Rational Field

Order: Lexicographical

Variables: x, y, z, t, u

Homogeneous, Dimension 1, Non-radical, Primary, Non-prime

Groebner basis:

[

x - u,

y + t + 2*u,

z,

u^2

],

Ideal of Polynomial ring of rank 5 over Rational Field

Order: Lexicographical

Variables: x, y, z, t, u

Homogeneous, Dimension 1, Non-radical, Primary, Non-prime

Groebner basis:

[

x,

y + 2*t + u,

z - t,

t^2

],

Ideal of Polynomial ring of rank 5 over Rational Field

Order: Lexicographical
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Variables: x, y, z, t, u

Homogeneous, Dimension 0, Non-radical, Primary, Non-prime

Size of variety over algebraically closed field: 1

Groebner basis:

[

x + y + z + t + u,

y^2 + y*t + 2*y*u - z*t + z*u + u^2,

y*z^2 - y*z*t + y*t*u - y*u^2 + z^2*t - z^2*u + z*t*u - 2*z*u^2 + t^2*u

+ t*u^2 - u^3,

y*z*t^2 - 2*y*z*u^2 + 3*y*t*u^2 - 2*y*u^3 + z^3*t - z^3*u - z^2*t^2 +

4*z^2*t*u - 4*z^2*u^2 + z*t^2*u + 2*z*t*u^2 - 5*z*u^3 + 3*t^2*u^2 +

2*t*u^3 - 2*u^4,

y*z*t*u + y*z*u^2 - y*t^2*u - 4*y*t*u^2 + 3*y*u^3 - z^3*t + z^3*u +

z^2*t^2 - 3*z^2*t*u + 4*z^2*u^2 - 2*z*t*u^2 + 6*z*u^3 - t^3*u -

5*t^2*u^2 - 3*t*u^3 + 3*u^4,

y*z*u^3 - 5/2*y*t*u^3 + 3/2*y*u^4 + 1/4*z^3*t^2 + 1/2*z^3*u^2 -

3/4*z^2*t^3 + 5/4*z^2*t^2*u - 1/4*z^2*t*u^2 + 9/4*z^2*u^3 -

9/4*z*t^3*u + 1/4*z*t^2*u^2 - 3/4*z*t*u^3 + 13/4*z*u^4 - t^3*u^2 -

5/2*t^2*u^3 - 7/4*t*u^4 + 3/2*u^5,

y*t^3*u - 17/4*y*t*u^3 + 13/4*y*u^4 + 1/8*z^3*t^2 + 5/4*z^3*u^2 -

19/8*z^2*t^3 + 13/8*z^2*t^2*u - 5/8*z^2*t*u^2 + 33/8*z^2*u^3 -

33/8*z*t^3*u - 7/8*z*t^2*u^2 - 31/8*z*t*u^3 + 49/8*z*u^4 + t^4*u +

1/2*t^3*u^2 - 15/4*t^2*u^3 - 31/8*t*u^4 + 13/4*u^5,

y*t^2*u^2 - 3/4*y*t*u^3 - 1/4*y*u^4 + 3/8*z^3*t^2 - 1/4*z^3*u^2 -

1/8*z^2*t^3 + 7/8*z^2*t^2*u + 1/8*z^2*t*u^2 - 5/8*z^2*u^3 -

3/8*z*t^3*u + 11/8*z*t^2*u^2 - 5/8*z*t*u^3 - 5/8*z*u^4 + 1/2*t^3*u^2

+ 3/4*t^2*u^3 - 5/8*t*u^4 - 1/4*u^5,

y*t*u^4 - 2/3*z^2*t^4 + 13/15*z^2*t^2*u^2 - 1/5*z^2*t*u^3 -

31/15*z*t^4*u + 3/5*z*t^3*u^2 - 2/5*z*t^2*u^3 + 23/15*z*t*u^4 -

3/5*t^4*u^2 + 2/15*t^3*u^3 - 1/3*t^2*u^4 + t*u^5,

y*u^5 - 1/2*z^2*t^4 - 1/2*z^2*t^2*u^2 + 1/2*z^2*t*u^3 + 1/2*z^2*u^4 -

3/2*z*t^4*u - 3*z*t^3*u^2 + 5/2*z*t*u^4 + 3/2*z*u^5 - 1/2*t^4*u^2 -

2*t^3*u^3 - 2*t^2*u^4 + 1/2*t*u^5,

z^7,

z^4*t - z^4*u - z^3*t^2 - 3*z^3*u^2 + 2*z^2*t^3 + 2*z^2*t^2*u -

9*z^2*t*u^2 - 3*z^2*u^3 + 7*z*t^3*u + 2*z*t^2*u^2 - z*u^4 +

2*t^3*u^2 - t^2*u^3 + t*u^4,

z^4*u^2 + 7/3*z^2*t^4 - 40/3*z^2*t^2*u^2 + 8*z^2*t*u^3 - 3*z^2*u^4 +

22/3*z*t^4*u - 20*z*t^3*u^2 + 2*z*t^2*u^3 + 31/3*z*t*u^4 - 2*z*u^5 +

t^4*u^2 - 41/3*t^3*u^3 - 10/3*t^2*u^4 + 2*t*u^5,

z^3*t^3 + 1/3*z^2*t^4 + 2/3*z^2*t^2*u^2 + z^2*t*u^3 + 1/3*z*t^4*u -

2*z*t^3*u^2 - z*t^2*u^3 + 1/3*z*t*u^4 - 2/3*t^3*u^3 - 1/3*t^2*u^4,

z^3*t*u - z^2*t^3 + 3*z^2*t*u^2 - 3*z*t^3*u + z*t*u^3 - t^3*u^2,

z^3*u^3 - 1/3*z^2*t^4 + 7/3*z^2*t^2*u^2 - 2*z^2*t*u^3 + 2*z^2*u^4 -

4/3*z*t^4*u + 7*z*t^3*u^2 - 2*z*t^2*u^3 - 13/3*z*t*u^4 + z*u^5 +

14/3*t^3*u^3 + 4/3*t^2*u^4 - t*u^5,

z^2*t^5 - 3*z*t*u^5 + 17/2*t^5*u^2 + 33/2*t^4*u^3 + 9*t^3*u^4 +

15/2*t^2*u^5,
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z^2*t^3*u - z^2*t^2*u^2 + z*t^3*u^2,

z^2*t^2*u^3 - 4/5*z*t*u^5 + 16/5*t^5*u^2 + 59/10*t^4*u^3 -

11/10*t^3*u^4,

z^2*t*u^4 - 4/5*z*t*u^5 + 47/10*t^5*u^2 + 42/5*t^4*u^3 - 31/10*t^3*u^4 -

1/2*t^2*u^5,

z^2*u^5 + 6*z*t*u^5 - 2*t^5*u^2 - 4*t^4*u^3 - 4*t^3*u^4 - 7*t^2*u^5,

z*t^5*u + z*t*u^5 - 5/2*t^5*u^2 - 11/2*t^4*u^3 - 3*t^3*u^4 -

5/2*t^2*u^5,

z*t^4*u^2 + 2/5*z*t*u^5 - 11/10*t^5*u^2 - 17/10*t^4*u^3 - 1/5*t^3*u^4 -

1/2*t^2*u^5,

z*t^3*u^3 + 1/5*z*t*u^5 - 3/10*t^5*u^2 - 3/5*t^4*u^3 - 1/10*t^3*u^4 -

1/2*t^2*u^5,

z*t^2*u^4 + 2/5*z*t*u^5 - 8/5*t^5*u^2 - 16/5*t^4*u^3 - 1/5*t^3*u^4,

t^6,

t^5*u^3,

t^4*u^4,

t^3*u^5,

u^6

]

]

> P;

[

Ideal of Polynomial ring of rank 5 over Rational Field

Order: Lexicographical

Variables: x, y, z, t, u

Homogeneous, Dimension 1, Radical, Prime

Groebner basis:

[

x,

y,

z + u,

t

],

Ideal of Polynomial ring of rank 5 over Rational Field

Order: Lexicographical

Variables: x, y, z, t, u

Homogeneous, Dimension 1, Radical, Prime

Groebner basis:

[

x + t,

y,

z,

u

],

Ideal of Polynomial ring of rank 5 over Rational Field

Order: Lexicographical

Variables: x, y, z, t, u

Homogeneous, Dimension >0, Radical, Prime
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Groebner basis:

[

x + z,

y,

t,

u

],

Ideal of Polynomial ring of rank 5 over Rational Field

Order: Lexicographical

Variables: x, y, z, t, u

Homogeneous, Dimension 1, Radical, Prime

Groebner basis:

[

x,

y + t,

z,

u

],

Ideal of Polynomial ring of rank 5 over Rational Field

Order: Lexicographical

Variables: x, y, z, t, u

Homogeneous, Dimension 1, Radical, Prime

Groebner basis:

[

x,

y + u,

z,

t

],

Ideal of Polynomial ring of rank 5 over Rational Field

Order: Lexicographical

Variables: x, y, z, t, u

Homogeneous, Dimension 0, Radical, Prime

Size of variety over algebraically closed field: 1

Groebner basis:

[

x,

y,

z,

t,

u

]

]

Notice that P [6] contains other ideals of P so Q[6] is an embedded primary component of I. Thus
the first 5 ideals of Q would the same be in any primary decomposition of I, while Q[6] could be
different in another primary decomposition of I. Finally, notice that the prime decomposition of
the radical of I is the same as P except for the removal of P [6] to satisfy the uniqueness condition.



3252 COMMUTATIVE ALGEBRA Part XV

The structure of the variety of I can be easily understood by examining the prime decomposition
of the radical.

> RP := RadicalDecomposition(I);

> #RP;

5

> Set(RP) eq { P[i]: i in [1 .. 5] };

true

106.11.3 Triangular Decomposition
Let T be a zero-dimensional ideal of the polynomial ring K[x1, . . . , xn], where K is a
field. T is called triangular if its Gröbner basis G has length n and the initial term of
the i-th polynomial of G is of the form xei

i for each i. Any radical zero-dimensional ideal
has a decomposition as an intersection of triangular ideals. The algorithm in Magma for
primary decomposition now (since V2.4) first computes a triangular decomposition and
then decomposes each triangular component to primary ideals since the computation of a
triangular decomposition is usually fast. See [Laz92] for further discussion of triangular
ideals.

TriangularDecomposition(I)

Given a zero-dimensional ideal I of a polynomial ring over a field with lexicographical
order, return a triangular decomposition of I as a sequence Q of ideals such that the
intersection of the ideals of Q equals I and for each ideal J of Q which is radical,
J is triangular (see above for the definition of a triangular ideal). A second return
value indicates whether I is proven to be radical. If I is radical, all entries of Q
are triangular. Computing a triangular decomposition will often be faster than
computing the full primary decomposition and may yield sufficient information for
a specific problem. The algorithm implemented is that given in [Laz92].

Example H106E11

We compute the triangular decomposition of the (radical) Cyclic-5 roots ideal and compare it
with the full primary decomposition of the same ideal.

> R<x, y, z, t, u> := PolynomialRing(RationalField(), 5);

> I := ideal<R |

> x + y + z + t + u,

> x*y + y*z + z*t + t*u + u*x,

> x*y*z + y*z*t + z*t*u + t*u*x + u*x*y,

> x*y*z*t + y*z*t*u + z*t*u*x + t*u*x*y + u*x*y*z,

> x*y*z*t*u - 1>;

> IsRadical(I);

true

> time T := TriangularDecomposition(I);

Time: 0.000
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> time Q, P := PrimaryDecomposition(I);

Time: 0.010

> #T;

9

> #Q;

20

So we notice that although I decomposes into 9 triangular ideals, some of these ideals must
decompose further since the primary decomposition consists of 20 prime ideals. We examine the
first entry of T . Notice that it is at least triangular (it has 5 polynomials and for each variable
there is a polynomial whose leading monomial is a power of that variable).

> T[1];

Ideal of Polynomial ring of rank 5 over Rational Field

Order: Lexicographical

Variables: x, y, z, t, u

Inhomogeneous, Dimension 0

Groebner basis:

[

x - 6/5*t^5 - 4*t^4 - 3*t^3 - 3*t^2 - 3*t - 9/5,

y - 2/5*t^5 - 2*t^4 - 3*t^3 - 2*t^2 - 2*t - 8/5,

z + 8/5*t^5 + 6*t^4 + 6*t^3 + 5*t^2 + 6*t + 22/5,

t^6 + 4*t^5 + 5*t^4 + 5*t^3 + 5*t^2 + 4*t + 1,

u - 1

]

> IsPrimary(T[1]);

false

> D := PrimaryDecomposition(T[1]);

> #D;

2

> D;

[

Ideal of Polynomial ring of rank 5 over Rational Field

Order: Lexicographical

Variables: x, y, z, t, u

Inhomogeneous, Dimension 0, Radical, Prime

Size of variety over algebraically closed field: 2

Groebner basis:

[

x - 1,

y - 1,

z + t + 3,

t^2 + 3*t + 1,

u - 1

],

Ideal of Polynomial ring of rank 5 over Rational Field

Order: Lexicographical

Variables: x, y, z, t, u

Inhomogeneous, Dimension 0, Radical, Prime
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Size of variety over algebraically closed field: 4

Groebner basis:

[

x + t^3 + t^2 + t + 1,

y - t^3,

z - t^2,

t^4 + t^3 + t^2 + t + 1,

u - 1

]

]

106.11.4 Equidimensional Decomposition

EquidimensionalPart(I)

EquidimensionalDecomposition(I)

FineEquidimensionalDecomposition(I)

Let I be an ideal of a polynomial ring P over a field. Currently for the two decom-
position functions, it is assumed that I has no embedded associated primes (e.g.,
when I is radical). In this case, it can be much faster to compute an equidimen-
sional decomposition rather than a full primary or radical one. The equidimensional
decomposition is the set of ideals which are the intersections of all primary compo-
nents of I associated to primes of the same dimension. This decomposition (often
trivial) is useful for certain constructions involving the Jacobian ideal.

The first function just computes the highest-dimensional decomposition compo-
nent. The second performs the straight decomposition. The third gives a slightly
finer decomposition for the convenience of some applications. In it, each equidi-
mensional component is possibly further split so that, for each final equidimensional
factor there is a single set of variables which constitute a maximally independent set
of every primary component of the factor (cf Dimension on page 3244). A sequence
of pairs consisting of each factor and the indices of its set of variables is returned.

The algorithm from [GP02] is used in the general case. When I is homogeneous,
a faster, more module-theoretic method is employed for the first two functions. This
involves first expressing P/I as a finite module M over a linear Noether Normali-
sation (described in the next section) S of I. Then if E(I) is the equidimensional
part of I, E(I)/I as a submodule of M is equal to the kernel of the natural map of
M to its double dual over S, HomS(HomS(M,S), S). Working with modules over
S rather than over P here allows the “reduction to dimension 0”. We could directly
over P , doing a similar computation but with HomS replaced by some ExtiP (see
[EHV92]).
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Example H106E12

> P<x, y, z> := PolynomialRing(RationalField(), 3);

> P1 := ideal<P|x*y+y*z+z*x>; // dimension 2 prime

> P2 := ideal<P|x^2+y,y*z+2>; // dimension 1 prime

> P3 := ideal<P|x*y-1,y+z>; // dimension 1 prime

> I := P1 meet P2 meet P3;

> time rd := RadicalDecomposition(I);

Time: 3.720

> time ed := EquidimensionalDecomposition(I);

Time: 0.070

> #ed;

2

> ed[1] eq P1;

true

> ed[2] eq (P2 meet P3);

true

106.12 Normalisation and Noether Normalisation
Suppose I is an ideal of P = K[x1, . . . , xn] with K a field, and I has dimension d.

A Noether normalisation of I is given by a set of d polynomials f1, . . . , fd of P , alge-
braically independent over K, for which K[f1, . . . , fd] ∩ I = 0 and K[f1, . . . , fd]→ P/I is
an integral extension. These always exist and if K is an infinite field, the fi can be chosen
to be linear expressions in the xi.

If I is radical, then the normalisation of I here will refer to the integral closure of
the affine ring P/I in its total ring of fractions. If I =

⋂
Pi with Pi prime, then the

normalisation is equal to the finite direct product of the normalisations of the Pi as affine
rings. It will be specified by a list of pairs (Ii, φi) where Ii is a prime ideal with generic
ring Gi, a multivariate polynomial ring over K, and φi a homomorphism from P to Gi.
The pairs represent the normalisation of each Pi and the inclusion P/I →∏

Gi/Ii induced
by the φi makes the RHS the integral closure of P/I.

106.12.1 Noether Normalisation

NoetherNormalisation(I)

NoetherNormalization(I)

This function attempts to compute a Noether Normalisation for I, as described
above, using linear combinations of the variables. The function is guaranteed to
work if K has characteristic zero but may fail in unlucky cases in small characteristic.

The algorithm followed is basically that given in [GP02] but with a simpler test
for homogeneous ideals I, which gives a speed-up in that case. Also, subsets of the
full sets of variables are considered before more general linear combinations.

The return values are
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1) the sequence [f1, . . . , fd].
2) h, an automorphism P → P given by a linear change of variables which maps the

fi to the last d variables of P . Thus xn−d+1, . . . , xn are a corresponding Noether
normalising set of polynomials for h(I).

3) the inverse of h.

Example H106E13

> P<x,y> := PolynomialRing(RationalField(),2);

> I := ideal<P | x*y+x+2>;

> fs,h,hinv := NoetherNormalisation(I);

> fs;

[

x + y

]

> J := ideal<P | [h(b) : b in Basis(I)]>; J;

Ideal of Polynomial ring of rank 2 over Rational Field

Order: Lexicographical

Variables: x, y

Basis:

[

-x^2 + x*y + x + 2

]

> // clearly x is integral over the last variable y in P/J

106.12.2 Normalisation

Normalisation(I)

Normalization(I)

UseFF BoolElt Default : true

FFMin BoolElt Default : true

UseMax BoolElt Default : false

This function computes the normalisation of the ideal I and returns the result as a
list of pairs as described above. The ideal I must be radical - this is not checked in
the function. Also the base field K must be perfect.

There are several options. The general algorithm used is that of De Jong as
described in [GP02]. However, if the generic polynomial ring P of I has rank 2 then
Magma’s powerful function field machinery can be applied to give a generally much
faster algorithm. This is the default behaviour but can be bypassed by setting the
parameter UseFF to false.

When the function field machinery is used, a correct result can be obtained
extremely quickly, but the generic spaces of the solution ideals can be of quite high
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dimension. The default behaviour, controlled by the parameter FFMin, is to use
a filtration by Riemann-Roch spaces to try to find a roughly minimal number of
generators of the algebras Gi/Ii and return the corresponding ideal in the smaller
number of variables as a more optimal presentation of the solution. This takes more
time but is still usually faster than the general algorithm and tends to produce much
nicer results. In some cases, the minimised solution is the same as the basic one but
takes longer to generate. The minimising stage can be cut out by setting FFMin to
false.

The general algorithm can avoid doing some work if it is known that certain
conditions on I hold. One standard condition is that I ⊆ M =< x1, . . . , xn > and
that P/I is locally normal away from M . This holds, for example, if the affine
variety defined by I in Kn is non-singular except at the origin. If this is known,
then parameter UseMax can be set to true which will usually speed up the general
algorithm (it has no effect if the function field method is used). However, if P/I is
locally non-normal at other primes then this will produce an incorrect result.

Example H106E14

> P<x,y> := PolynomialRing(RationalField(),2);

> // we begin with a very simple example (prime ideal)

> I := Ideal((x - y^2)^2 - x*y^3);

> time Js := Normalisation(I); // function field method

Time: 0.010

> #Js;

1

> N := Js[1][1];

> N<[a]> := N;

> N;

Ideal of Polynomial ring of rank 2 over Rational Field

Order: Lexicographical

Variables: a[1], a[2]

Basis:

[

-a[1]*a[2] + a[2]^2 - 2*a[2] + 1

]

> // Now try the basic function field method

> time Js := Normalisation(I: FFMin:=false);

Time: 0.010

> //get the same result here either way

> N := Js[1][1];

> N<[a]> := N;

> N;

Ideal of Polynomial ring of rank 2 over Rational Field

Order: Lexicographical

Variables: a[1], a[2]

Basis:
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[

-a[1]*a[2] + a[2]^2 - 2*a[2] + 1

]

> time Js := Normalisation(I:UseFF:=false); // try the general method

Time: 0.120

> J := Js[1][1];

> Groebner(J);

> J;

Ideal of Polynomial ring of rank 4 over Rational Field

Lexicographical Order

Variables: $.1, $.2, $.3, $.4

Groebner basis:

[

$.1^2 + 2*$.1 + $.2 - 1,

$.1*$.2 - 2*$.1 + 2*$.2 - $.3 + $.4 - 4,

$.1*$.3 + $.3*$.4 + 2*$.3 - $.4^2,

$.1*$.4 - $.2 + 2,

$.2^2 - 4*$.2 - $.3*$.4 - 2*$.3 + $.4^2 + 4,

$.2*$.3 + $.3*$.4^2 + 2*$.3*$.4 - 2*$.3 - $.4^3,

$.2*$.4 + $.3 - 2*$.4,

$.3^2 - $.3*$.4^3 - 2*$.3*$.4^2 + $.4^4

]

> // try the general method with UseMax (which applies here)

> time Js := Normalisation(I:UseFF:=false,UseMax:=true);

Time: 0.040

> J := Js[1][1];

> Groebner(J);

> J;

Ideal of Polynomial ring of rank 3 over Rational Field

Lexicographical Order

Variables: $.1, $.2, $.3

Groebner basis:

[

$.1^2 - 4*$.1 - $.2*$.3 - 2*$.2 + $.3^2 + 4,

$.1*$.2 + $.2*$.3^2 + 2*$.2*$.3 - 2*$.2 - $.3^3,

$.1*$.3 + $.2 - 2*$.3,

$.2^2 - $.2*$.3^3 - 2*$.2*$.3^2 + $.3^4

]

> // now try a harder case - a singular affine form of modular curve X1(11)

> I := ideal<P | (x-y)*x*(y+x^2)^3-y^3*(x^3+x*y-y^2)>;

> time Js := Normalisation(I: FFMin := false);

Time: 0.110

> #Js;

1

> J := Js[1][1];

> Groebner(J);

> J;

Ideal of Polynomial ring of rank 5 over Rational Field
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Lexicographical Order

Variables: $.1, $.2, $.3, $.4, $.5

Groebner basis:

[

$.1*$.3 - $.1 - 6*$.3 + $.4*$.5^2 - 4*$.4*$.5 + 6*$.4 - $.5^5 + $.5^4 +

11*$.5^3 - 16*$.5^2 + 2*$.5 + 6,

$.1*$.4 + 2*$.3 - $.4*$.5^2 + 2*$.4*$.5 - 2*$.4 + $.5^4 - 4*$.5^3 + 4*$.5^2

- 2,

$.1*$.5 - 2*$.3 + $.4 + $.5^3 - 2*$.5^2 + $.5 + 1,

$.2 - $.3 + $.5^3 - $.5^2,

$.3^2 + 3*$.3 - 2*$.4*$.5^2 + 4*$.4*$.5 - 4*$.4 - $.5^6 + 2*$.5^5 + $.5^4 -

10*$.5^3 + 10*$.5^2 - 4,

$.3*$.4 - $.3 - $.4*$.5^3 + $.4*$.5^2 - $.4*$.5 + $.4 - $.5^4 + 2*$.5^3 -

2*$.5^2 + 1,

$.3*$.5 + $.3 - $.4 - $.5^4 + 2*$.5^2 - $.5 - 1,

$.4^2 - 2*$.4*$.5^2 + $.4*$.5 + $.4 - $.5^5

]

> time Js := Normalisation(I);

Time: 1.110

> J := Js[1][1];

> Groebner(J);

> J;

Ideal of Polynomial ring of rank 2 over Rational Field

Lexicographical Order

Variables: $.1, $.2

Groebner basis:

[

$.1^2*$.2 + 2*$.1*$.2 + $.1 - $.2^2 + 2*$.2 + 1

]

> // Minimised result is a cubic equation in K[x,y] - as good as we could get!

> // This example takes MUCH longer with the general method - even setting

> // UseMax := true.

106.13 Hilbert Series and Hilbert Polynomial

Let I be a homogeneous ideal of the graded polynomial ring P = K[x1, . . . , xn], where K
is a field. Then the quotient ring P/I is a graded vector space in the following way: P/I
is the direct sum of the vector spaces Vd for d = 0, 1, . . . where Vd is the K-vector space
consisting of all homogeneous polynomials in P/I (i.e., reduced residues of polynomials of
P with respect to I) of weighted degree d. The Hilbert Series of the graded vector space
P/I is the generating function

HP/I(t) =
∞∑

d=0

dim(Vd)td.
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The Hilbert series can be written as a rational function in the variable t.
If the weights on the variables of P are all 1, then there also exists the Hilbert polynomial

FP/I(d) corresponding to the Hilbert series HP/I(t) which is a univariate polynomial in
Q[d] such that FP/I(i) is equal to the coefficient of ti in the Hilbert series for all i ≥ k for
some fixed k.

HilbertSeries(I)

Given an homogeneous ideal I of a polynomial ring P over a field, return the Hilbert
series HP/I(t) of the quotient ring P/I as an element of the univariate function field
Z(t) over the ring of integers. The algorithm implemented is that given in [BS92].

Note that this is equivalent to HilbertSeries(QuotientModule(I)), while if
one wishes the Hilbert series of I considered as a P -module, one should call
HilbertSeries(Submodule(I)).

HilbertSeries(I, p)

Given an homogeneous ideal I of a polynomial ring P over a field, return the Hilbert
series HP/I(t) of the quotient ring P/I as a power series to precision p.

HilbertDenominator(I)

Given an homogeneous ideal I of a polynomial ring P over a field, return the unre-
duced Hilbert denominator D of P/I (as a univariate polynomial over the ring of
integers). The denominator D equals

n∏

i=1

(1− twi),

where n is the rank of P and wi is the weight of the i-th variable (1 by default).

HilbertNumerator(I)

Given an homogeneous ideal I of a polynomial ring P over a field, return the unre-
duced Hilbert numerator N of P/I (as a univariate polynomial over the ring of in-
tegers). The numerator N equals D××HP/I(t), where D is the unreduced Hilbert
denominator above. Computing with the unreduced numerator is often more con-
venient.

HilbertPolynomial(I)

Given an homogeneous ideal I of a polynomial ring P over a field with weight 1 for
each variable, return the Hilbert polynomial H(d) of the quotient ring P/I as an
element of the univariate polynomial ring Q[d], together with the index of regularity
of P/I (the minimal integer k ≥ 0 such that H(d) agrees with the Hilbert function
of P/I at d for all d ≥ k).
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Example H106E15

We compute the Hilbert series and Hilbert polynomial for an ideal corresponding to the square
of a matrix (see [BS92]).

> MatSquare := function(n)

> P := PolynomialRing(RationalField(), n * n, "grevlex");

> AssignNames(

> ~P,

> ["x" cat IntegerToString(i) cat IntegerToString(j): i, j in [1..n]]

> );

> M := MatrixRing(P, n);

> X := M ! [P.((i - 1) * n + j): i, j in [1 .. n]];

> Y := X^2;

> return ideal<P | [Y[i][j]: i, j in [1 .. n]]>;

> end function;

> I := MatSquare(4);

> I;

Ideal of Polynomial ring of rank 16 over Rational Field

Order: Graded Reverse Lexicographical

Variables: x11, x12, x13, x14, x21, x22, x23, x24, x31, x32,

x33, x34, x41, x42, x43, x44

Homogeneous

Basis:

[

x11^2 + x12*x21 + x13*x31 + x14*x41,

x11*x12 + x12*x22 + x13*x32 + x14*x42,

x11*x13 + x12*x23 + x13*x33 + x14*x43,

x11*x14 + x12*x24 + x13*x34 + x14*x44,

x11*x21 + x21*x22 + x23*x31 + x24*x41,

x12*x21 + x22^2 + x23*x32 + x24*x42,

x13*x21 + x22*x23 + x23*x33 + x24*x43,

x14*x21 + x22*x24 + x23*x34 + x24*x44,

x11*x31 + x21*x32 + x31*x33 + x34*x41,

x12*x31 + x22*x32 + x32*x33 + x34*x42,

x13*x31 + x23*x32 + x33^2 + x34*x43,

x14*x31 + x24*x32 + x33*x34 + x34*x44,

x11*x41 + x21*x42 + x31*x43 + x41*x44,

x12*x41 + x22*x42 + x32*x43 + x42*x44,

x13*x41 + x23*x42 + x33*x43 + x43*x44,

x14*x41 + x24*x42 + x34*x43 + x44^2

]

> S<t> := HilbertSeries(I);

> S;

(t^12 - 7*t^11 + 20*t^10 - 28*t^9 + 14*t^8 + 15*t^7 - 20*t^6 +

19*t^5 - 22*t^4 + 7*t^3 + 20*t^2 + 8*t + 1)/(t^8 - 8*t^7 +

28*t^6 - 56*t^5 + 70*t^4 - 56*t^3 + 28*t^2 - 8*t + 1)

> H<d>, k := HilbertPolynomial(I);

> H, k;
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1/180*d^7 + 7/90*d^6 + 293/360*d^5 + 61/36*d^4 + 1553/360*d^3 +

851/180*d^2 + 101/30*d + 1

5

> // Check that evaluations of H for d >= 5 match coefficients of S:

> L<u> := LaurentSeriesRing(IntegerRing());

> L;

Laurent Series Algebra over Integer Ring

> L ! S;

1 + 16*u + 120*u^2 + 575*u^3 + 2044*u^4 + 5927*u^5 + 14832*u^6 +

33209*u^7 + 68189*u^8 + 130642*u^9 + 236488*u^10 + 408288*u^11 +

677143*u^12 + 1084929*u^13 + 1686896*u^14 + 2554659*u^15 +

3779609*u^16 + 5476772*u^17 + 7789144*u^18 + 10892530*u^19 +

O(u^20)

> Evaluate(H, 5);

5927

> Evaluate(H, 6);

14832

> Evaluate(H, 19);

10892530

106.14 Syzygies

The main functions to compute syzygies work with or return modules. See Chapter 109
for these. This section contains a variant that returns a basis of syzygies of a polynomial
sequence as rows of a matrix.

SyzygyMatrix(Q)

Given a sequence Q of polynomials from a multivariate polynomial ring P , return
the module of syzygies of Q as a matrix S. This an r by k matrix, where k is
the length of Q, whose rows span the space of all vectors v such that the sum of
v[i] ∗Q[i] for i = 1, . . . k is zero. The algorithm used is the standard one, computing
a module Gröbner basis with respect to a particular elimination order (see section
2.5 of [GP02], for example). The base ring may be a field or Euclidean ring.

Example H106E16

> P<x, y, z> := PolynomialRing(RationalField(), 3);

> SyzygyMatrix([x + y, x - y, x*z + y*z]);

[ z 0 -1]

[ 1/2*x - 1/2*y -1/2*x - 1/2*y 0]
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106.15 Maps between Rings
Magma includes functions for working with maps between multivariate polynomial rings.
Let R = K1[x1, . . . , xn] and S = K2[y1, . . . , ym] be a polynomial rings over the fields K1,
K2, and f : R→ S a ring homomorphism.

PolyMapKernel(f)

Return the kernel of the map f as an ideal in the domain R, i.e., the set
{a ∈ R|f(a) = 0}. This is basically the computation of the relation ideal for the
polynomials defining the map and is as described in RelationIdeal.

IsInImage(f, p)

Given an polynomial p in S, return whether p is in the image of the map f . The
algorithm is the one described on p. 82 of [AL94].

IsSurjective(f)

Return whether the map f is surjective. Uses the function above to check whether
each codomain variable lies in the image.

Extension(phi, I)

The extension of the ideal I by φ, where φ is a homomorphism from the generic of
I. That is, the ideal generated by the image of I under φ.

Implicitization(phi)

Suppose the polynomial map φ : Kn → Km is a parametrization of a variety V , i.e.,
V is the image of φ in Km. This function constructs the ideal of S corresponding
to V .

The map φ maps (z1, . . . , zn) 7→ (f1(z1), . . . , fm(zm)) where the zi are the co-
ordinates of Kn. Let f : S → R be the map of polynomial rings defined by
(y1, . . . , ym) 7→ (f1(y1), . . . , fm(ym)). Then Implicitization(f) is the ideal of
S corresponding to V .

If V is not a true variety, the function returns the smallest variety containing V
(the Zariski closure of V ).

The algorithm used is given on p. 97 of [CLO96]

Example H106E17

We demonstrate the use of the function Implicitization for the variety defined by φ : Q[x, y] →
Q[r, u, v, w], (x, y) 7→ (x4, x3y, xy3, y4). This example is taken from [AL94, Ex. 2.5.4].

> R<x, y> := PolynomialRing(Rationals(), 2);

> S<r, u, v, w> := PolynomialRing(Rationals(), 4);

> f := hom<S -> R |x^4, x^3*y, x*y^3, y^4>;

> Implicitization(f);

Ideal of Polynomial ring of rank 4 over Rational Field

Lexicographical Order

Variables: r, u, v, w
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Basis:

[

-r^2*v + u^3,

r*v^2 - u^2*w,

-u*w^2 + v^3,

-r*w + u*v

]

106.16 Symmetric Polynomials

Magma includes functions for working with symmetric polynomials.

ElementarySymmetricPolynomial(P, k)

Given a polynomial ring P of rank n, and an integer k with 1 ≤ k ≤ n, return the
k-th elementary symmetric polynomial of P .

IsSymmetric(f)

IsSymmetric(f, S)

Given a polynomial f from a polynomial ring P of rank n, return whether f is a
symmetric polynomial of P (i.e., is symmetric in all the n variables of P ). If the
answer is true, a polynomial g from a new polynomial ring of rank n is returned
such that f = g(e1, . . . , en), where ei is the i-th elementary symmetric polynomial
of P . If g is desired to be a member of a particular polynomial ring S of rank n (to
obtain predetermined names of variables, for example), then S may also be passed.

Example H106E18

We create a symmetric polynomial from Q[a, b, c, d] and express it in terms of the elementary
symmetric polynomials.

> P<a, b, c, d> := PolynomialRing(RationalField(), 4, "grevlex");

> f :=

> a^2*b^2*c*d + a^2*b*c^2*d + a*b^2*c^2*d + a^2*b*c*d^2 + a*b^2*c*d^2 +

> a*b*c^2*d^2 - a^2*b^2*c - a^2*b*c^2 - a*b^2*c^2 - a^2*b^2*d -

> 3*a^2*b*c*d - 3*a*b^2*c*d - a^2*c^2*d - 3*a*b*c^2*d - b^2*c^2*d -

> a^2*b*d^2 - a*b^2*d^2 - a^2*c*d^2 - 3*a*b*c*d^2 - b^2*c*d^2 -

> a*c^2*d^2 - b*c^2*d^2 + a + b + c + d;

> // Check orbit under Sym(4) has size one:

> #(f^Sym(4));

1

> Q<e1, e2, e3, e4> := PolynomialRing(RationalField(), 4);

> l, E := IsSymmetric(f, Q);

> l;

true

> E;
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e1 - e2*e3 + e2*e4

In the following example, we use a rational function field to define parameters a and b which occur
as coefficients of the symmetric polynomial f .

> F<a,b> := FunctionField(RationalField(), 2);

> P<x1,x2,x3,x4,x5> := PolynomialRing(F, 5, "grevlex");

> y1 := x1^4 + x1^2*a + x1*b;

> y2 := x2^4 + x2^2*a + x2*b;

> y3 := x3^4 + x3^2*a + x3*b;

> y4 := x4^4 + x4^2*a + x4*b;

> y5 := x5^4 + x5^2*a + x5*b;

> f := y1*y2 + y1*y3 + y1*y4 + y1*y5 + y2*y3 + y2*y4 +

> y2*y5 + y3*y4 + y3*y5 + y4*y5;

> Q<e1,e2,e3,e4,e5> := PolynomialRing(F, 5);

> l,E := IsSymmetric(f, Q);

> l, E;

true b*e1^3*e2 - 2*a*e1^3*e3 - 4*e1^3*e5 + a*e1^2*e2^2 +

4*e1^2*e2*e4 + 2*e1^2*e3^2 - b*e1^2*e3 + 2*a*e1^2*e4 -

4*e1*e2^2*e3 - 3*b*e1*e2^2 + 4*a*e1*e2*e3 + 8*e1*e2*e5 +

a*b*e1*e2 - 8*e1*e3*e4 - 2*a^2*e1*e3 + b*e1*e4 - 6*a*e1*e5 +

e2^4 - 2*a*e2^3 - 4*e2^2*e4 + a^2*e2^2 + 4*e2*e3^2 +

5*b*e2*e3 + 2*a*e2*e4 + b^2*e2 - 3*a*e3^2 - 4*e3*e5 -

3*a*b*e3 + 6*e4^2 + 2*a^2*e4 - 5*b*e5

106.17 Functions for Polynomial Algebra and Module Generators

The following functions work with collections of polynomials which are considered as gen-
erators for subalgebras or submodules of a polynomial ring. They have particular use in
invariant theory.

MinimalAlgebraGenerators(L)

Let R = K[x1, . . . , xn] be a polynomial ring of rank n over the field K. Suppose
L is a set or sequence of k polynomials f1, . . . , fk in R. Let A = K[f1, . . . , fk] be
the subalgebra (not ideal) of R generated by L. This function returns a minimal
generating set of the algebra A as a (sorted) sequence of elements taken from L.
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HomogeneousModuleTest(P, S, F)

Let R = K[x1, . . . , xn] be a polynomial ring of rank n over the field K. Suppose
P is a sequence of k homogeneous polynomials p1, . . . , pk in R and suppose S is a
sequence of r homogeneous polynomials s1, . . . , sr in R. Let A = K[p1, . . . , pk] be
the subalgebra (not ideal) of R generated by P and let M = A[s1, . . . , sr] be the
A-module generated by S over A. Finally, suppose F is an element of R. This
function returns whether F is in the module M (considered as a submodule of R).

If the result is true, the function also returns a sequence C = [c1, . . . , cr] of length
r with ci ∈ K[t1, . . . , tk] such that F =

∑r
i=1 ci(p1, . . . , pk) · si. (The polynomial

ring K[t1, . . . , tr] is constructed separately but automatically with the print names
t1, t2, etc.)

The grading of the polynomial ring R is used to determine the (weighted) degrees
of all the polynomials in P , S and the polynomial F .

The function works as follows: it first splits F into its homogeneous components,
and then, for each homogeneous component of (weighted) degree d, it constructs
a basis for the K-space of all polynomials of the module M of degree d and then
determines by linear algebra whether the component lies in that space.

The function is most often used with an invariant ring: P is the sequence of
primary invariants, S is the sequence of secondary invariants, and F is a general
invariant which one wishes to express in terms of the module generators S over the
algebra generated by P . Also, if one wishes to test only for membership in the
algebra A = K[p1, . . . , pk], then the sequence [R!1] should be passed for S.

HomogeneousModuleTest(P, S, L)

Let R = K[x1, . . . , xn] be a polynomial ring of rank n over the field K. Suppose
P is a sequence of k homogeneous polynomials p1, . . . , pk in R and suppose S is
a sequence of r homogeneous polynomials s1, . . . , sr in R. Let A = K[p1, . . . , pk]
be the subalgebra (not ideal) of R generated by P and let M = A[s1, . . . , sr] be
the A-module generated by S over A. Finally, suppose L is a sequence of length l
of elements of R which are all homogeneous of (weighted) degree d. This function
returns parallel sequences B and V with the following properties:

(a)B is sequence of length l of booleans such that for 1 ≤ i ≤ l, B[i] is true iff L[i]
is in the module M .

(b)V is a sequence of length l consisting of sequences of length r and consisting
of polynomials in the polynomial ring T = K[t1, . . . , tr]. (The polynomial ring
T = K[t1, . . . , tr] is constructed separately but automatically with the print
names t1, t2, etc.) If B[i] is false (so L[i] is not in M), V [i] is a sequence of r
zero polynomials. Otherwise V [i] is a sequence of r polynomials ci,1, . . . , ci,r in
T such that that L[i] =

∑r
j=1 ci,j(p1, . . . , pk) · sj .

The grading of the polynomial ring R is used to determine the (weighted) degrees
of all the polynomials in P , S and L.
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The function works as follows: it constructs a basis for the K-space of all polyno-
mials of the module M of degree d and then, for each i with 1 ≤ i ≤ l, determines by
linear algebra whether L[i] lies in the space. Only one echelonization of the space
is needed to determine all the values of B and V so it is much more efficient to
use this function if possible with many polynomials in L of the same homogeneous
degree instead of calling the previous function separately for each polynomial since
that will need to construct the basis for the homogeneous space and perform an
echelonization each time.

Again, this function is most often used with an invariant ring: P is the sequence
of primary invariants, S is the sequence of secondary invariants, and L is a sequence
of general invariants which one wishes to express in terms of the module generators
S over the algebra generated by P . Also, if one wishes to test only for membership
in the algebra A = K[p1, . . . , pk], then the sequence [R!1] should be passed for S.

HomogeneousModuleTestBasis(P, S, L)

Let R = K[x1, . . . , xn] be a polynomial ring of rank n over the field K. Suppose
P is a sequence of k homogeneous polynomials p1, . . . , pk in R and suppose S is
a sequence of r homogeneous polynomials s1, . . . , sr in R. Let A = K[p1, . . . , pk]
be the subalgebra (not ideal) of R generated by P and let M = A[s1, . . . , sr] be
the A-module generated by S over A. Finally, suppose L is a sequence of length
l of elements of R which are all homogeneous of (weighted) degree d. Let U be
the K-subspace of R consisting of all polynomials of the module M of (weighted)
degree d and let V be the K-subspace of R generated by the elements of L. This
function returns a sequence I of integer indices such that the sequence elements of
L corresponding to the indices in I forms a basis for a K-subspace W of R such that
U + V = U ⊕W . That is, I selects a subsequence of L which yields an extension of
any basis of U to a basis of U + V .

Using this function, one can extend a minimal module generating set in S to
include new elements of increasing degree, while ensuring that the module generators
are minimalized (i.e., there is no redundancy amongst them).

The grading of the polynomial ring R is used to determine the (weighted) degrees
of all the polynomials in P , S and L.

Example H106E19

We demonstrate simple uses of the function HomogeneousModuleTest. See also the example
HomogeneousModuleTest2 in the Invariant Rings chapter which demonstrates the use of the func-
tion HomogeneousModuleTest in invariant theory.

> R<x, y, z> := PolynomialRing(RationalField(), 3);

> P := [x^2 + y^2, z];

> S := [1, x + y + z];

> L := [x^2 + y^2, (x+y+z)^2-z^2-2*x*y, x*y];

> B, V := HomogeneousModuleTest(P, S, L);

> B;

[ true, true, false ]
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> V;

[

[

t1,

0

],

[

t1 - 2*t2^2,

2*t2

],

[

0,

0

]

]

> // Thus L[1] is P[1]*S[1] and

> // L[2] is (P[1] - 2*P[2]^2)*S[1] + 2*P[2]*S[2].

> L[1] eq P[1]*S[1];

true

> (P[1] - 2*P[2]^2)*S[1] + 2*P[2]*S[2] eq L[2];

true

> // Determine subsequence of [x^3, y^3, z^3] which forms

> // extension basis of module generated by P and S.

> L := [x^3, y^3, z^3];

> HomogeneousModuleTestBasis(P, S, L);

[ 1, 2 ]

> // Thus x^2 and y^2 could be appended to S to preserve

> // minimality.
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Chapter 107

LOCAL POLYNOMIAL RINGS

107.1 Introduction

This chapter describes local polynomial rings. Let R be the multivariate polynomial ring
K[x1, . . . , xn], where K is a field. We denote by

K[x1, . . . , xn]〈x1,...,xn〉

the collection of all rational functions f/g of x1, . . . , xn with g(p) 6= 0, where p = (0, . . . , 0).
Such a ring is local (has a unique maximal ideal) and we will call it a local polynomial
ring in Magma. Such a ring is always multivariate and is related to the corresponding
multivariate polynomial ring K[x1, . . . , xn] which will we will call global (when distin-
guishing it from the local case). We will also call K[x1, . . . , xn]〈x1,...,xn〉 the localization
of K[x1, . . . , xn] (this is always understood to be at the prime ideal generated by x1, . . . , xn,
corresponding to the origin).

Much of the theory for multivariate polynomial rings and their ideals carry over to local
polynomial rings, so the reader should first be familiar with multivariate polynomial rings
and their ideals (see Chapters 24 and 105).

Corresponding to a Gröbner basis of an ideal of a global multivariate ring is a standard
basis of an ideal of a local polynomial ring. See [CLO98, Chapter 4] or [GP02, Chapter 1]
for the basics of the theory and algorithms.

The other facilities are currently basic but will be expanded in coming versions. But
note that computations with R−modules, where R is a local polynomial ring, are fully
supported: see Chapter 109.

107.2 Elements and Local Monomial Orders

Elements of a local polynomial ring are multivariate polynomials just like the usual (global)
multivariate polynomials, except that the monomials are sorted (again with the greatest
first) with respect to a local monomial order, which is in general the negation of a
standard global monomial order. Thus the monomial 1 is less than all other monomials
and the polynomials are like multivariate formal power series (written, for example, as
1 + x + x2y + y4). But most arithmetic-like operations allowed for global polynomials also
carry over automatically for elements of a local polynomials so we will not list them in
detail in this chapter (see Chapter 24).

Note that in the strict mathematical definition of R = K[x1, . . . , xn]〈x1,...,xn〉, elements
of R may have non-trivial denominators, but this is currently not supported in Magma: the
elements in Magma must always be strict polynomials. The main purpose of supporting
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such rings is for standard bases of ideals (see below), and this restriction does not matter
there, since units are automatically removed from the elements of a standard basis.

We now describe the current local monomial orders available in Magma. First the
reader should see Section 105.2 for the fundamental points about (global) monomial orders
for multivariate polynomial rings.

The fundamental difference in the local case is that for a local polynomial ring R of
rank n, the monomial order is the negation of a global monomial order. More precisely,
let M be the monomials of R. A local monomial ordering on M is a total order < on
M such that s ≤ 1 for all s ∈ M , s ≤ t implies su ≤ tu for all s, t, u ∈ M , and M is a
well-ordering (every non-empty subset of M possesses a minimal element w.r.t. <). See
[CLO98, Sec. 4.3], [DL06, Sec. 9.1], or [GP02, Sec. 1.2] for more information.

We now list each of the monomial orders available in Magma (these will be expanded in
future versions). As in the global case, we suppose that s and t are monomials from a ring
R of rank n. Any order on the monomials is then fully defined by just specifying exactly
when s < t with respect to that order. In the following, the argument(s) are described for
an order as a list of expressions; that means that the expressions (without the parentheses)
should be appended to any base arguments when any particular intrinsic function is called
which expects a monomial order.

107.2.1 Local Lexicographical: llex

Definition: s < t iff there exists 1 ≤ i ≤ n such that all of the j-th exponents of s and t
are equal for i < j ≤ n, but the i-th exponent of s is greater than the i-th exponent of t.
The order is specified by the argument ("llex").

This order is the negation of the global lexicographical order, but with the reverse order
for the variables. Thus the i-th variable is greater than the (i+1)-th variable for 1 ≤ i < n
so the first variable is the greatest variable.

107.2.2 Local Graded Lexicographical: lglex
Definition: s < t iff the total degree of s is greater than the total degree of t or the
total degree of s is equal to the total degree of t and s > t with respect to the (glocal)
lexicographical order. The order is specified by the argument ("lglex").

This order is the negation of the global glex order.

107.2.3 Local Graded Reverse Lexicographical: lgrevlex

Definition: s < t iff the total degree of s is greater than the total degree of t or the
total degree of s is equal to the total degree of t and s < t with respect to the (global)
lexicographical order applied to the exponents of s and t in reverse order. The order is
specified by the argument ("grevlex").

This order is the negation of the global grevlex order.
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107.3 Local Polynomial Rings and Ideals

107.3.1 Creation of Local Polynomial Rings and Accessing their Mono-
mial Orders
Local polynomial rings are created from a coefficient field, the number of variables, and
a monomial order. If no order is specified, the monomial order is taken to be the local
lexicographical order.

LocalPolynomialRing(K, n)

Create a local polynomial ring in n > 0 variables over the field K. The local
lexicographical ordering on the monomials is used for this default construction.

LocalPolynomialRing(K, n, order)

LocalPolynomialAlgebra(K, n, order)

Create a local polynomial ring in n > 0 variables over the ring R with the given
order order on the monomials. See the above section on local monomial orders for
the valid values for the argument order.

LocalPolynomialRing(K, n, T)

Create a local polynomial ring in n > 0 variables over the field K with the order
given by the tuple T on the monomials. T must be a tuple whose components match
the valid arguments for the monomial orders in Section 107.2. Such a tuple is also
returned by the next function.

MonomialOrder(R)

Given a local polynomial ring R (or an ideal thereof), return a description of the
monomial order of R. This is returned as a tuple which matches the relevant argu-
ments listed for each possible order in Section 107.2, so may be passed as the third
argument to the function LocalPolynomialRing above.

MonomialOrderWeightVectors(R)

Given a polynomial ring R of rank n (or an ideal thereof), return the weight vectors
of the underlying monomial order as a sequence of n sequences of n rationals. See,
for example, [CLO98, p. 153] for more information.

Localization(R)

Given a (global) multivariate polynomial ring R = K[x1, . . . , xn] (or an ideal I of
such an R), return the localization K[x1, . . . , xn]〈x1,...,xn〉 of R (or the ideal of the
localization of R which corresponds to I). The print names for the variables of R
are carried over.
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Example H107E1

We show how one can construct local polynomial rings with different orders. Note the order on
the monomials for elements of the rings.

> K := RationalField();

> R<x,y,z> := LocalPolynomialRing(K, 3);

> R;

Localization of Polynomial Ring of rank 3 over Rational Field

Order: Local Lexicographical

Variables: x, y, z

> MonomialOrder(R);

<"llex">

> MonomialOrderWeightVectors(R);

[

[ 0, 0, -1 ],

[ 0, -1, 0 ],

[ -1, 0, 0 ]

]

> 1 + x + y + z + x^7 + x^8*y^7 + y^5 + z^10;

1 + x + x^7 + y + y^5 + x^8*y^7 + z + z^10

> R<x,y,z> := LocalPolynomialRing(K, 3, "lgrevlex");

> R;

Localization of Polynomial Ring of rank 3 over Rational Field

Order: Local Graded Reverse Lexicographical

Variables: x, y, z

> MonomialOrder(R);

<"lgrevlex">

> MonomialOrderWeightVectors(R);

[

[ -1, -1, -1 ],

[ -1, -1, 0 ],

[ -1, 0, 0 ]

]

> 1 + x + y + z + x^7 + x^8*y^7 + y^5 + z^10;

1 + z + y + x + y^5 + x^7 + z^10 + x^8*y^7

107.3.2 Creation of Ideals and Accessing their Bases
As for global polynomial rings, within the general context of ideals of local polynomial
rings, the term “basis” will refer to an ordered sequence of polynomials which generate an
ideal. (Thus a basis can contain duplicates and zero elements so is not like a basis of a
vector space.)
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ideal< R | L >

Given a local polynomial ring R, return the ideal of R generated by the elements of
R specified by the list L. Each term of the list L must be an expression defining an
object of one of the following types:

(a)An element of R;

(b)A set or sequence of elements of R;

(c) An ideal of R;

(d)A set or sequence of ideals of R.

Ideal(B)

Given a set or sequence B of polynomials from a local polynomial ring R, return the
ideal of R generated by the elements of B with the given basis B. This is equivalent
to the above ideal constructor, but is more convenient when one simply has a set
or sequence of polynomials.

Ideal(f)

Given a polynomial f from a local polynomial ring R, return the principal ideal of
R generated by f .

Basis(I)

Given an ideal I, return the current basis of I. This will be the standard basis of I
if it is computed; otherwise it will be the original basis.

BasisElement(I, i)

Given an ideal I together with an integer i, return the i-th element of the current
basis of I. This the same as Basis(I)[i].

107.4 Standard Bases

Computation in ideals of local polynomial rings is possible because of the construction of
standard bases of such ideals. These are the counterpart to Gröbner bases for ideals
of global polynomial rings. Currently, standard bases may only be computed for ideals
defined over fields.

Magma computes a standard basis of an ideal using the Mora normal form and stan-
dard basis algorithms (with the homogenization technique): see [CLO98, Sec. 4.4] for an
overview.

In contrast to the global case, for a given fixed monomial ordering a standard basis of
an ideal is not unique in general because it can be difficult to get the lower order terms of
polynomials in the standard basis into a unique form. But the leading monomials of a
standard basis are always sorted in Magma and are unique.
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107.4.1 Construction of Standard Bases
The following functions and procedures allow one to construct standard bases. Note that a
standard basis for an ideal will be automatically generated when necessary; the Groebner
procedure below simply allows control of the algorithms used to compute the standard
basis. The verbose flags are shared with those for global Gröbner basis construction (since
the standard basis algorithms reduce to those), so see Section 105.4.6 for details on these.

StandardBasis(I)

Given an ideal I, force the standard basis of I to be computed, and then return
that.

StandardBasis(S)

Given a set or sequence S of polynomials of a local polynomial ring R, return a
standard basis of the ideal generated by S as a sorted sequence.

Example H107E2

We compute the standard basis of the ideal given in [CLO98, p.167].

> Q := RationalField();

> R<x,y,z> := LocalPolynomialRing(Q, 3);

> I := Ideal([x^5 - x*y^6 + z^7, x*y + y^3 + z^3, x^2 + y^2 - z^2]);

> I;

Ideal of Localization of Polynomial Ring of rank 3 over Rational Field

Order: Local Lexicographical

Variables: x, y, z

Basis:

[

x^5 - x*y^6 + z^7,

x*y + y^3 + z^3,

x^2 + y^2 - z^2

]

> StandardBasis(I);

[

x^2 + y^2 - z^2,

x*y + y^3 + z^3,

y^3 - x*y^3 - y*z^2 - x*z^3,

x*z^4 + 3*y^2*z^4 + 4*x*y^4*z^4 + y*z^5 + 5*x*y^3*z^5 - 2*z^6 + 4*y^2*z^6 +

x*y^2*z^6 + z^7 - 2*x*z^7 + 7*y*z^7 + 4*x*y*z^7 - y^2*z^7 + 3*z^8 +

4*x*z^8,

y^2*z^4 + 3*y^5*z^5 - z^6 + 3/2*x*z^6 + 2*y^2*z^6 + y^4*z^6 - x*z^7 +

7/2*y*z^7 - x*y^2*z^7 - y^3*z^7 + 3/2*z^8 - 3/2*x*z^8 - 2*y*z^8 +

2*x*y*z^8 + 3/2*y^2*z^8,

y*z^7 + 1/2*x*z^8 + 23/4*y*z^8 - 9/4*x*y^3*z^8 + 3/2*y^4*z^8,

z^9
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]

We note that no elements of the standard basis have factors which are units in R.

> [Factorization(f): f in $1];

[

[

<x^2 + y^2 - z^2, 1>

],

[

<x*y + y^3 + z^3, 1>

],

[

<y^2 - x*y^2 - y*z + x*y*z - x*z^2, 1>,

<y + z, 1>

],

[

<z, 4>,

<x + 3*y^2 + 4*x*y^4 + y*z + 5*x*y^3*z - 2*z^2 + 4*y^2*z^2 + x*y^2*z^2 +

z^3 - 2*x*z^3 + 7*y*z^3 + 4*x*y*z^3 - y^2*z^3 + 3*z^4 + 4*x*z^4, 1>

],

[

<z, 4>,

<y^2 + 3*y^5*z - z^2 + 3/2*x*z^2 + 2*y^2*z^2 + y^4*z^2 - x*z^3 +

7/2*y*z^3 - x*y^2*z^3 - y^3*z^3 + 3/2*z^4 - 3/2*x*z^4 - 2*y*z^4 +

2*x*y*z^4 + 3/2*y^2*z^4, 1>

],

[

<z, 7>,

<y + 1/2*x*z + 23/4*y*z - 9/4*x*y^3*z + 3/2*y^4*z, 1>

],

[

<z, 9>

]

]

Example H107E3

We note that starting from an ideal I of a global polynomial ring, the standard basis of the
localization of I may be much simpler than the Gröbner basis of I.

> Q := RationalField();

> R<x,y,z> := PolynomialRing(Q, 3);

> I := Ideal([x^2 - x*y^3 + z^3, x*y + y^2 + z, x + y^2 - z^2]);

> Groebner(I); I;

Ideal of Polynomial ring of rank 3 over Rational Field

Order: Lexicographical

Variables: x, y, z

Inhomogeneous, Dimension 0
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Groebner basis:

[

x - y*z + 127/1052*z^9 + 585/1052*z^8 + 233/263*z^7 + 1273/1052*z^6 +

695/526*z^5 + 223/1052*z^4 + 569/526*z^3 + 35/1052*z^2 - z,

y^2 + y*z - 127/1052*z^9 - 585/1052*z^8 - 233/263*z^7 - 1273/1052*z^6 -

695/526*z^5 - 223/1052*z^4 - 569/526*z^3 - 1087/1052*z^2 + z,

y*z^2 + 51/263*z^9 + 208/263*z^8 + 308/263*z^7 + 476/263*z^6 + 465/263*z^5 +

278/263*z^4 + 691/263*z^3 + 217/263*z^2,

z^10 + 5*z^9 + 10*z^8 + 15*z^7 + 16*z^6 + 9*z^5 + 12*z^4 + 13*z^3 + 2*z^2

]

> QuotientDimension(I);

12

>

> IL := Localization(I);

> StandardBasis(IL);

[

x + y^2,

y^2 - y^3 + z,

z^2

]

> QuotientDimension(IL);

4

107.5 Operations on Ideals

In the following, note that since ideals of a full polynomial ring P are regarded as subrings
of P , the ring P itself is a valid ideal as well (the ideal containing 1).

107.5.1 Basic Operations

I + J

Given ideals I and J of the same polynomial ring P , return the sum of I and J ,
which is the ideal generated by the generators of I and those of J .

I * J

Given ideals I and J of the same polynomial ring P , return the product of I and J ,
which is the ideal generated by the products of the generators of I and those of J .

I ^ k

Given an ideal I of the polynomial ring P , and an integer k, return the k-th power
of I.
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QuotientDimension(I)

Given an ideal I of a local polynomial ring R over a field K, return the dimension
of P/I as a K-vector space. Note that this is quite different from the function
Dimension below (which returns the Krull dimension of an ideal).

Generic(I)

Given an ideal I of a generic local polynomial ring R, return R.

LeadingMonomialIdeal(I)

Given an ideal I, return the leading monomial ideal of I; that is, the ideal generated
by all the leading monomials of I.

I meet J

Given ideals I and J of the same polynomial ring P , return the intersection of I
and J .

&meet S

Given a set or sequence S of ideals of the same local polynomial ring R, return the
intersection of all the ideals of S.

107.5.2 Ideal Predicates

I eq J

Given two ideals I and J of the same polynomial ring P , return whether I and J
are equal.

I ne J

Given two ideals I and J of the same polynomial ring P , return whether I and J
are not equal.

I notsubset J

Given two ideals I and J in the same polynomial ring P return whether I is not
contained in J .

I subset J

Given two ideals I and J in the same polynomial ring P return whether I is contained
in J .

IsZero(I)

Given an ideal I of the local polynomial ring R, return whether I is the zero ideal
(contains zero alone).
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IsProper(I)

Given an ideal I of the local polynomial ring R, return whether I is proper; that
is, whether I is strictly contained in R (or whether the standard basis of I does not
contain 1 alone).

IsZeroDimensional(I)

Given an ideal I of the local polynomial ring R, return whether I is zero-dimensional
(so the quotient of P by I has non-zero finite dimension as a vector space over the
coefficient field – see the section on dimension for further details). Note that the
ring R has dimension −1, so it is not zero-dimensional.

Example H107E4

We construct some ideals in Q[x, y, z] and perform basic arithmetic on them.

> R<x,y,z> := LocalPolynomialRing(RationalField(), 3);

> I := ideal<R | x*y - z, x^3*z^2 - y^2, x*z^3 - x - y>;

> J := ideal<R | x*y - z, x^2*z - y, x*z^3 - x - y>;

> A := I * J;

> _ := StandardBasis(A);

> A;

Ideal of Localization of Polynomial Ring of rank 3 over Rational Field

Order: Local Lexicographical

Variables: x, y, z

Inhomogeneous, Dimension 0

Standard basis:

[

x^2 - y^2 + 2*x^3*z,

x*y + y^2 - x^3*z,

y^3,

x*z + y*z,

y*z,

z^2

]

> M := I meet J;

> M;

Ideal of Localization of Polynomial Ring of rank 3 over Rational Field

Order: Local Lexicographical

Variables: x, y, z

Homogeneous

Basis:

[

x + y,

y^2,

z

]

> A eq M;
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false

> A subset M;

true

107.5.3 Operations on Elements of Ideals

f in I

Given a polynomial f from a local polynomial ring R, together with an ideal I of
R, return whether f is in I.

NormalForm(f, I)

Given a polynomial f from a local polynomial ring R, together with an ideal I of
R, return a normal form of f with respect to (the standard basis of) I. The normal
form of f is zero if and only if f is in I.

f notin I

Given a polynomial f from a polynomial ring P , together with an ideal I of P ,
return whether f is not in I.

Example H107E5

We demonstrate the element operations with respect to an ideal of the localization of Q[x, y, z].

> R<x,y,z> := LocalPolynomialRing(RationalField(), 3);

> I := ideal<R | (x + y)^3, (y - z)^2, y^2*z + z>;

> NormalForm(y^2*z + z, I);

0

> NormalForm(x^3, I);

-3*x^2*y

> x + y in I;

false

107.6 Changing Coefficient Ring
The ChangeRing function enables the changing of the coefficient ring of a local polynomial
ring or ideal.

ChangeRing(I, L)

Given an ideal I of a local polynomial ring R = K[x1, . . . , xn] of rank n with
coefficient ring K, together with a field L, construct the ideal J of the polynomial
field S = L[x1, . . . , xn] obtained by coercing the coefficients of the elements of the
basis of I into L. It is necessary that all elements of the old coefficient field K can
be automatically coerced into the new coefficient field L. If K and L are fields and
K is known to be a subfield of L and the current basis of I is a standard basis, then
the basis of J is marked automatically to be a standard basis of J .
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107.7 Changing Monomial Order
Often one wishes to change the monomial order of an ideal. Magma allows one to do this
by use of the ChangeOrder function.

ChangeOrder(I, Q)

Given an ideal I of the local polynomial ring R = K[x1, . . . , xn], together with a
local polynomial ring S of rank n (with possibly a different order to that of R),
return the ideal J of S corresponding to J and the isomorphism f from R to S. The
map f simply maps R.i to S.i for each i.

ChangeOrder(I, order)

Given an ideal I of the polynomial ring P = R[x1, . . . , xn], together with a monomial
order order (see Section 107.2), construct the polynomial ring Q = R[x1, . . . , xn]
with order order, and then return the ideal J of Q corresponding to I and the
isomorphism f from P to Q. See the section on monomial orders for the valid
values for the argument order. The map f simply maps P.i to Q.i for each i.

107.8 Dimension of Ideals
Let I be an ideal of the local polynomial ring K[x1, . . . , xn]〈x1,...,xn〉, where K is a field.
As for polynomial rings, the dimension of the ideal I can be defined as the the maximum
of the cardinalities of all the independent sets modulo I (see Section 107.8 for details).

Dimension(I)

Given an ideal I of a local polynomial ring R defined over a field, return the dimen-
sion d of I, together with a (sorted) sequence U of integers of length d such that the
variables of P corresponding to the integers of U constitute a maximally indepen-
dent set modulo I. If I is the full local polynomial ring R, the dimension is defined
to be −1, and the second return value is not set. The algorithm implemented is
that given in [BW93, p. 449].
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Chapter 108

AFFINE ALGEBRAS

108.1 Introduction
An affine algebra in Magma is simply the quotient ring of a multivariate polynomial ring
P = R[x1, . . . , xn] by an ideal J of P . Such rings arise commonly in commutative algebra
and algebraic geometry. They can also be viewed as generalizations of number fields and
algebraic function fields, when R is a field.

The elements of affine algebras are simply multivariate polynomials which are always
kept reduced to normal form modulo the ideal J of “relations”. Practically all operations
which are applicable to multivariate polynomials are also applicable in Magma to elements
of affine algebras (when meaningful).

If the ideal J of relations defining an affine algebra A = R[x1, . . . , xn]/J is maximal
and R is a field, then A is a field and may be used with any algorithms in Magma which
work over fields. Factorization of polynomials over such affine algebras is also supported
(including fields of small characteristic, since V2.10).

If an affine algebra defined over a field has finite dimension considered as a vector space
over the coefficient field, extra special operations are available on its elements.

Currently the base ring R may be a field or a Euclidean ring. Further operations for
affine algebras over Euclidean rings will be supported in the future.

An affine algebra has type RngMPolRes and its elements type RngMPolResElt.

108.2 Creation of Affine Algebras
One can create an affine algebra simply by forming the quotient of a multivariate polyno-
mial ring by an ideal (quo constructor or / function). A special constructor AffineAlgebra
is also provided to remove the need to create the base polynomial ring.

quo< P | J >

quo< P | a1, ..., ar >

Given a multivariate polynomial ring P and an ideal J of P , return the quotient
ring P/J . The ideal J may either be specified as an ideal or by a list a1, a2, . . .,
ar, of generators which all lie in P . The angle bracket notation can be used to
assign names to the indeterminates: Q<q, r> := quo< I | I.1 + I.2, I.2^2 -
2, I.3^2 + I.4 >;.

P / J

Given a multivariate polynomial ring P and an ideal J of P , return the quotient
affine algebra P/J .
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AffineAlgebra< R, X | L >

Given a ring R, a list X of n identifiers, and a list L of polynomials (relations) in
the n variables X, create the affine algebra of rank n with base ring R with given
quotient relations; i.e., return R[X]/〈L〉. The angle bracket notation can be used to
assign names to the indeterminates.

Example H108E1

One can create a relative extension of an algebraic number field as an affine algebra. The multi-
variate representation will often be more efficient than an absolute representation because of the
sparsity of the elements in the field.

> Q := RationalField();

> A<x, y> := AffineAlgebra<Q, x, y | x^2 - y^2 + 2, y^3 - 5>;

> A;

Affine Algebra of rank 2 over Rational Field

Lexicographical Order

Variables: x, y

Quotient relations:

[

x^2 - y^2 + 2,

y^3 - 5

]

> x^2;

y^2 - 2

> x^-1;

2/17*x*y^2 + 5/17*x*y + 4/17*x

> P<z> := PolynomialRing(Q);

> MinimalPolynomial(x);

z^6 + 6*z^4 + 12*z^2 - 17

> MinimalPolynomial(x^-1);

z^6 - 12/17*z^4 - 6/17*z^2 - 1/17

> MinimalPolynomial(y);

z^3 - 5

Another important construction is to create an affine algebra over a rational function field to
obtain an algebraic function field:

> F<t> := FunctionField(IntegerRing());

> A<x, y> := AffineAlgebra<F, x, y | t*x^2 - y^2 + t + 1, y^3 - t>;

> P<z> := PolynomialRing(F);

> x^-1;

(-t^2 - t)/(t^3 + 2*t^2 + 3*t + 1)*x*y^2 - t^2/(t^3 + 2*t^2 + 3*t + 1)*x*y

+ (-t^3 - 2*t^2 - t)/(t^3 + 2*t^2 + 3*t + 1)*x

> MinimalPolynomial(x);

z^6 + (3*t + 3)/t*z^4 + (3*t^2 + 6*t + 3)/t^2*z^2 + (t^3 + 2*t^2 + 3*t +

1)/t^3

> MinimalPolynomial(x^-1);

z^6 + (3*t^3 + 6*t^2 + 3*t)/(t^3 + 2*t^2 + 3*t + 1)*z^4 + (3*t^3 +
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3*t^2)/(t^3 + 2*t^2 + 3*t + 1)*z^2 + t^3/(t^3 + 2*t^2 + 3*t + 1)

In this example we can consider y as a cube root of the transcendental indeterminate t.
Note that in general the (Krull) dimension of the ideal defining the relations may be anything; it
need not be 0 or 1 as it is in these examples.

108.3 Operations on Affine Algebras

This section describes operations on affine algebras. Most of the operations are very
similar to those for multivariate polynomial rings; such operations are done by mapping
the computation to the preimage ideal and then by mapping the result back into the affine
algebra. See the corresponding functions for the multivariate polynomial rings for details.

Q . i

Given an affine algebra Q, return the i-th indeterminate of Q as an element of Q.

CoefficientRing(Q)

Return the coefficient ring of the affine algebra Q.

Rank(Q)

Return the rank of the affine algebra Q (the number of indeterminates of Q).

DivisorIdeal(I)

Given an ideal I of an affine algebra Q which is the quotient ring P/J , where P is
a polynomial ring and J an ideal of P , return the ideal J .

PreimageIdeal(I)

Given an ideal I of an affine algebra Q which is the quotient ring P/J , where P is
a polynomial ring and J an ideal of P , return the ideal I ′ of P such that the image
of I ′ under the natural epimorphism P → Q is I.

PreimageRing(Q)

Given an affine algebra Q which is the quotient ring P/J , where P is a polynomial
ring and J an ideal of P , return the polynomial ring P .

OriginalRing(Q)

Return the generic polynomial ring P such that Q is P/J for some ideal J of P .

I eq J

Given two ideals I and J of the same affine algebra Q, return true if and only if I
and J are equal.
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I subset J

Given two ideals I and J of the same affine algebra Q, return true if and only if I
is contained in J .

I + J

Given two ideals I and J of the same affine algebra Q, return the sum I + J .

I * J

Given two ideals I and J of the same affine algebra Q, return the product I ∗ J .

I ^ n

Given an ideal I of an affine algebra Q and an integer n, return the power In.

I meet J

Given two ideals I and J of the same affine algebra Q, return the intersection I ∩J .

IsProper(I)

Given an ideal I of the affine algebra Q, return whether I is proper; that is, whether
I is strictly contained in Q.

IsZero(I)

Given an ideal I of the affine algebra Q, return whether I is the zero ideal. Note
that this is equivalent to whether the preimage ideal of I is the divisor ideal of Q.

IsPrime(I)

Given an ideal I of the affine algebra Q, return whether I is a prime ideal.

IsPrimary(I)

Given an ideal I of the affine algebra Q, return whether I is a primary ideal.

IsRadical(I)

Given an ideal I of the affine algebra Q, return whether I is a radical ideal.

PrimaryDecomposition(I)

Given an ideal I of the affine algebra Q, return the primary decomposition of I,
together with the associated primes.

RadicalDecomposition(I)

Given an ideal I of the affine algebra Q, return the (prime) decomposition of the
radical of I.
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Example H108E2

We illustrate the operations on ideals of affine algebras.

> Q := RationalField();

> A<x,y,z> := AffineAlgebra<Q,x,y,z | x^2 - y + 1, y^3 + z - 1>;

> A;

Affine Algebra of rank 3 over Rational Field

Lexicographical Order

Variables: x, y, z

Quotient relations:

[

x^2 - y + 1,

y^3 + z - 1

]

> I := ideal<A | x^3*y*z^2>;

> IsRadical(I);

false

> Radical(I);

Affine Algebra of rank 3 over Rational Field

Lexicographical Order

Variables: x, y, z

Quotient relations:

[

x^2 - y + 1,

y^3 + z - 1

]

Generating basis:

[

x*y^2 + x*y - x*z + x,

y*z,

z^2 - z

]

> PQ, PP := PrimaryDecomposition(I);

> #PQ;

3

> PQ[1];

Affine Algebra of rank 3 over Rational Field

Lexicographical Order

Variables: x, y, z

Quotient relations:

[

x^2 - y + 1,

y^3 + z - 1

]

Generating basis:

[

y + 5/81*z^3 + 1/9*z^2 + 1/3*z - 1,

x*z^3,
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y + 5/81*z^3 + 1/9*z^2 + 1/3*z - 1,

z^4

]

> PP[1];

Affine Algebra of rank 3 over Rational Field

Lexicographical Order

Variables: x, y, z

Quotient relations:

[

x^2 - y + 1,

y^3 + z - 1

]

Generating basis:

[

x,

y - 1,

z

]

108.4 Maps between Affine Algebras

Magma includes functions for working with maps between affine algebras.

AffineAlgebraMapKernel(phi)

Return the kernel of the homomorphism φ of affine algebras.

108.5 Finite Dimensional Affine Algebras

If an affine algebra is defined over a field and has finite dimension considered as a vector
space over its coefficient field, extra special operations are available on its elements.

Similar operations for affine algebras defined over general Euclidean rings will be sup-
ported in the future.

HasFiniteDimension(Q)

Given an affine algebra Q defined over a field, return whether Q has finite dimension.

Dimension(Q)

Given a finite dimensional affine algebra Q defined over a field, return the dimension
of Q.

VectorSpace(Q)

Given a finite dimensional affine algebra Q defined over a field, construct the vector
space V isomorphic to Q, and return V together with the isomorphism f from Q
onto V .



Ch. 108 AFFINE ALGEBRAS 3293

MonomialBasis(Q)

Given a finite dimensional affine algebra Q defined over a field, return the basis B
of monomials of Q. This is a sequence of monomials in Q of length d, such that
that the image f(B[i]) = V.i where V and f are the return values of VectorSpace
above.

MatrixAlgebra(Q)

Given a finite dimensional affine algebra Q defined over a field, construct the matrix
algebra A isomorphic to Q, and return A together with the isomorphism f from Q
onto A.

RepresentationMatrix(f)

Given an element f of a finite dimensional affine algebra Q defined over a field,
return the representation matrix of f , which is a d by d matrix over the coefficient
field of Q (where d is the dimension of Q) which represents f .

IsUnit(f)

Given an element f of a finite dimensional affine algebra Q defined over a field,
return whether f is a unit.

IsNilpotent(f)

Given an element f of a finite dimensional affine algebra Q defined over a field,
return whether f is nilpotent, and if so, return also the smallest q such that fq = 0.

MinimalPolynomial(f)

Given an element f of a finite dimensional affine algebra Q defined over a field,
return the minimal polynomial of f as a univariate polynomial over the coefficient
field of Q.

Example H108E3

Suppose we wish to find the minimal polynomial of θ =
√

2 + 3
√

5 over Q. To do this we can just
compute the minimal polynomial of (the coset of) x+ y over Q in the affine algebra Q[x, y]/(x2−
2, y3 − 5).

> Q := RationalField();

> A<x, y> := AffineAlgebra<Q, x, y | x^2 - 2, y^3 - 5>;

> UP<z> := PolynomialRing(Q);

> MinimalPolynomial(x + y);

z^6 - 6*z^4 - 10*z^3 + 12*z^2 - 60*z + 17
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108.6 Affine Algebras which are Fields

If the ideal J of relations defining an affine algebra A = K[x1, . . . , xn]/J , where K is a
field, is maximal, then A is a field and may be used with any algorithms in Magma which
work over fields. Factorization of polynomials over such affine algebras is also supported
(in any characteristic, since V2.10). The examples below will demonstrate some of the
applications available.

Note that an affine algebra defined over a field which itself is a field also has finite
dimension when considered as a vector space over its coefficient field, so all of the operations
in the previous section are also available.

Example H108E4

We create the function field F = Q(a, b, x) and then the affine algebra A = F [y]/ < y2 − (x3 +
ax+ b) > (which is also equivalent to an algebraic function field). This then allows us to create a
generic elliptic curve E over A and compute the coordinates of multiples of a generic point easily.

> Q := RationalField();

> F<x, a, b> := FunctionField(Q, 3);

> A<y> := AffineAlgebra<F, y | y^2 - (x^3 + a*x + b)>;

> IsField(A);

true

> y^2;

x^3 + x*a + b

> y^-1;

1/(x^3 + x*a + b)*y

> E := EllipticCurve([A | a, b]);

> E;

Elliptic Curve defined by y^2 = x^3 + a*x + b over Affine Algebra of rank 1 over

Rational function field of rank 3 over Rational Field

Variables: x, a, b

> p := E ! [x, y];

> p;

(x : y : 1)

> q := 2*p;

> q;

((1/4*x^4 - 1/2*x^2*a - 2*x*b + 1/4*a^2)/(x^3 + x*a + b) : (1/8*x^6 +

5/8*x^4*a + 5/2*x^3*b - 5/8*x^2*a^2 - 1/2*x*a*b - 1/8*a^3 - b^2)/(x^6

+ 2*x^4*a + 2*x^3*b + x^2*a^2 + 2*x*a*b + b^2)*y : 1)

> c := LeadingCoefficient(q[2]);

> Denominator(c);

x^6 + 2*x^4*a + 2*x^3*b + x^2*a^2 + 2*x*a*b + b^2

> Factorization($1);

[

<x^3 + x*a + b, 2>

]
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Example H108E5

Starting with the same affine algebra A = Q(a, b, x)F [y]/ < y2 − (x3 + ax + b) > as in the last
example, we factor some univariate polynomials over A. A is of course isomorphic to an absolute
field, but the presentation given may be much more convenient to the user.

> Q := RationalField();

> F<x, a, b> := FunctionField(Q, 3);

> A<y> := AffineAlgebra<F, y | y^2 - (x^3 + a*x + b)>;

> P<z> := PolynomialRing(A);

> f := z^2 - (x^3 + a*x + b);

> f;

z^2 + -x^3 - x*a - b

> time Factorization(f);

[

<z - y, 1>,

<z + y, 1>

]

Time: 0.019

Example H108E6

In this final example, A is isomorphic to an algebraic number field, but its presentation may be
more convenient than an absolute presentation (and may lead to sparser expressions for elements).

> Q := RationalField();

> A<a,b,c> := AffineAlgebra<Q, a,b,c | a^2 - b*c + 1, b^2 - c + 1, c^2 + 2>;

> P<x> := PolynomialRing(A);

> time Factorization(x^2 + 2);

[

<x - c, 1>,

<x + c, 1>

]

Time: 0.080

> time Factorization(x^2 - b*c + 1);

[

<x - a, 1>,

<x + a, 1>

]

Time: 0.090

> MinimalPolynomial(a);

x^8 + 4*x^6 + 2*x^4 - 4*x^2 + 9

> time Factorization(P ! $1);

[

<x - a, 1>,

<x + a, 1>,

<x - 1/3*a*b*c - 2/3*a*b + 1/3*a*c - 1/3*a, 1>,

<x + 1/3*a*b*c + 2/3*a*b - 1/3*a*c + 1/3*a, 1>,

<x^4 + 2*x^2 - 2*c - 1, 1>
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]

Time: 2.809

108.7 Rings and Fields of Fractions of Affine Algebras

Given any affine algebra Q = K[x1, . . . , xn]/J , where K is a field, one may create the ring
of fractions R of Q. This is the set of fractions a/b, where a, b ∈ Q and b is invertible, and
it forms a ring.

The defining ideal J does not need to be zero-dimensional. The ring of fractions R is
itself represented internally by an affine algebra over an appropriate rational function field,
but has the appearance to the user of the set of fractions, so one may access the numerator
and denominator of elements of R, for example.

If the ideal J is prime, then R is the field of fractions of A and may be used with any
algorithms in Magma which work over fields. For example, factorization of polynomials
over such fields of fractions is supported (in any characteristic).

Rings of fractions have type RngFunFrac and their elements RngFunFracElt.

RingOfFractions(Q)

FieldOfFractions(Q)

Given an affine algebra Q over a field K, return the ring of fractions of Q. The only
difference between the two functions is that for FieldOfFractions, the defining
ideal of Q must be prime.

Numerator(a)

Denominator(a)

Given an element a from the ring of fractions of an affine algebra Q, return the
numerator (resp. denominator) of a as an element of Q.

Example H108E7

We create the field of fractions of an affine algebra and note the basic operations.

> A<x,y> := AffineAlgebra<RationalField(), x,y | y^2 - x^3 - 1>;

> IsField(A);

false

> F<a,b> := FieldOfFractions(A);

> F;

Ring of Fractions of Affine Algebra of rank 2 over Rational Field

Lexicographical Order

Variables: x, y

Quotient relations:

[

x^3 - y^2 + 1

]
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> a;

a

> b;

b

> a^-1;

> a^-1;

1/(b^2 - 1)*a^2

> b^-1;

1/b

> c := b/a;

> c;

b/(b^2 - 1)*a^2

> Numerator(c);

x^2*y

> Denominator(c);

y^2 - 1

> P<X> := PolynomialRing(F);

> time Factorization(X^3 - b^2 + 1);

[

<X - a, 1>,

<X^2 + a*X + a^2, 1>

]

Time: 0.000

> P<X,Y> := PolynomialRing(F, 2);

> time Factorization((X + Y)^3 - b^2 + 1);

[

<X + Y - a, 1>,

<X^2 + 2*X*Y + a*X + Y^2 + a*Y + a^2, 1>

]

Time: 0.030

> time Factorization((b*X^2 - a)*(a*Y^3 - b + 1)*(X^3 - b^2 + 1));

[

<Y^3 - 1/(b + 1)*a^2, 1>,

<X - a, 1>,

<X^2 - 1/b*a, 1>,

<X^2 + a*X + a^2, 1>

]

Time: 0.010

Example H108E8

This example shows the internal operations underlying the method of constructing the field of
fractions. If the ideal of relations has dimension d, then the sequence L of dmaximally independent
variables is passed to the extension/contraction construction, which creates a rational function
field with d variables such that the ideal of relations over this field now becomes zero dimensional.
Appropriate maps are set up, too.

> Q := RationalField();
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> A<x,y> := AffineAlgebra<RationalField(), x,y | y^2 - x^3 - 1>;

> IsField(A);

false

> I := DivisorIdeal(A);

> I;

Ideal of Polynomial ring of rank 2 over Rational Field

Lexicographical Order

Variables: x, y

Groebner basis:

[

x^3 - y^2 + 1

]

> d, L := Dimension(I);

> d;

1

> L;

[ 2 ]

> E, f := Extension(I, L);

> E;

Ideal of Polynomial ring of rank 1 over Multivariate rational function

field of rank 1 over Integer Ring

Graded Reverse Lexicographical Order

Variables: x

Basis:

[

x^3 - y^2 + 1

]

> F := Generic(E)/E;

Affine Algebra of rank 1 over Multivariate rational function field of

rank 1 over Integer Ring

Graded Reverse Lexicographical Order

Variables: x

Quotient relations:

[

x^3 - y^2 + 1

]

> g := map<A -> F | x :-> F!f(x)>;

>

> g(x);

x

> g(y);

y

> g(x)^-1;

1/(y^2 - 1)*x^2

> g(y)^-1;

1/y

> g(x^2 + x*y);

x^2 + y*x
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> g(x^2 + x*y)^-1;

y^2/(y^5 + y^4 - y^3 - 2*y^2 + 1)*x^2 + 1/(y^3 + y^2 - 1)*x - y/

(y^3 + y^2 - 1)

> $1 * $2;

1
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Chapter 109

MODULES OVER MULTIVARIATE RINGS

109.1 Introduction

This chapter describes modules over multivariate polynomial rings and related rings. The
fundamental tool for computing with such modules is the construction of Gröbner bases
for modules, since these rings are not principal ideal rings in general (so standard matrix
echelonization algorithms are not applicable).

In this chapter, unless otherwise indicated, a ring R will refer to one of the following:
(a)Multivariate Polynomial Ring (Chapters 24 and 105). Currently the coefficient

ring of such a ring may be a field or Euclidean ring (even operations such as syzygy
modules or free resolutions work over modules whose coefficient rings are Euclidean but
not fields).

(b)Local Polynomial Ring (Localization of a Multivariate Polynomial Ring: Chap-
ter 107; new in V2.15). Currently the coefficient ring of such a ring must be a field.

(c) Affine Algebra (Chapter 108). Currently the coefficient ring of such a ring must be
a field.

(d)Exterior Algebra (Chapter 82; new in V2.15). Currently the coefficient ring of such
a ring must be a field. Strictly speaking, this is a skew-commutative ring, so is not a
commutative ring, and the associated modules are left R-modules, but the operations
on R-modules in this chapter are practically all applicable if R is such an algebra also,
so the term ‘a ring R’ will include such an algebra in this chapter.
In this chapter, the term “module” will always refer to an R-module, where R is one

of the above types of ring, and such a module will have type ModMPol (or may have type
ModMPolGrd if graded; see below). So we assume that the reader is generally familiar
with such base rings and their ideals in Magma; see the relevant chapters for background.
Many of the concepts and tools of Gröbner basis theory carry over from these types of
rings.

109.2 Module Basics: Embedded and Reduced Modules

All of the modules considered in this chapter are ambient modules or embedded in such
a module. We call an R-module ambient if it has the explicit presentational form
Rk/〈relations〉, where the relations are elements of Rk (and they may be zero or not even
determined, initially). Elements of an ambient R-module M are represented explicitly as
vectors in Rk, and M is always generated by the k unit vectors. The degree of M is k.

An arbitrary module S may have a representation as a submodule of such an ambient
A, which is referred to as its ambient module. Hence the most general definition of
a module is as a sub-quotient of a free module. If A has no relations then S is just a
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submodule of a free module (namely, A). However, in this case, S will often also have an
internal representation in presentational form that is essential for much of its fundamental
functionality. In any case, the primary representation of elements of such an embedded
module S is as vectors in the ambient.

As with vector spaces, there are two basic ways that modules can be defined in Magma:
as embedded or reduced modules. A general subquotient as described above is in embed-
ded form, but ambients may also be defined of either reduced or embedded type. The
type primarily affects the way submodules and quotient modules are created. Briefly, sub-
modules and quotient modules of embedded modules stay in embedded form (as generally
proper submodules of an ambient) whereas submodules or quotients of reduced modules
are always returned in presentational form as ambients, with connecting homomorphisms
to link them explicitly to the original module. The two types are described in a bit more
detail below. For illustration, see the examples at the end of Section 109.6.

Embedded modules are created in general via the function EModule, which returns
a free embedded module, and in principle mimic the embedded R-spaces (as created by
the function RSpace(R, k) in Chapter 54). Such modules are always presented with their
elements and bases lying in an ambient module Rk/〈relations〉. The modules are basically
implemented as extensions of the multivariate polynomial ideal type (or affine algebra type
if non-zero relations are present), where columns are internally added to monomials in a
polynomial to represent a vector. Many operations applicable to ideals, including various
Gröbner basis operations, naturally extend to such modules.

Starting with an ambient embedded module M = Rk/〈relations〉, when a submodule S
of M is created, the ambient module of S is still M , so the elements of S are represented
as elements of Rk (modulo the relations if present); this therefore also applies to elements
of any basis of S, including the Gröbner basis of S. Thus S itself may be not ambient
and this is the only situation in which non-ambients can occur. Similarly, when a quotient
module Q of M is constructed, the elements of Q appear as elements of Rk, while Q simply
gains more relations than M , but its generators are usually not minimally reduced.

Reduced modules are created in general via the function RModule, which returns a free
reduced module, and are more abstract and mimic the reduced modules with action over
fields and Euclidean rings (as created by the function RModule(R, k) in Chapter 54). Such
modules are always ambient, so always have the abstract form Rn/〈relations〉, and the
relationships between such modules are managed by morphisms lying in the background.
The Gröbner basis techniques and properties are also hidden from the user in general.

Starting from a reduced module M = Rk/〈relations〉, when a submodule S (having s
generators v1, . . . , vs) of M is created, S is generally created as Rs/〈relationsS〉 (where the
relations for S are initially unknown and are only computed when needed) and a morphism
is stored from S to M , which maps the i-th unit vector of S to vi in M . Similarly, a
quotient module Q of M is constructed as another ambient module, usually with minimal
generators, and a morphism from M onto Q is stored in the background. All morphisms
between modules can be accessed via the function Morphism.

For any module M , there exists an isomorphic reduced presentation module P ,
which is always ambient, since P is reduced. If M is embedded, then P is a reduced
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module equivalent to M (and morphisms in the background allow automatic coercion
between M and P ). Otherwise, M is already reduced so P is simply identical to M . Some
functions (such as FreeResolution) always move to the presentation of M , since it is more
natural to work only with ambient modules in that context.

Embedded modules are generally preferable when one wishes to work explicitly with
Gröbner bases at a very low level, while reduced modules are generally preferable for homo-
logical computations since the ambient presentation form is more convenient (particularly
for the relevant maps).

Technically, there is little difference in practice between an ambient embedded module
and a reduced module, if each module is considered in isolation. The concepts basically
refer to how submodules and quotient modules are derived from a given module (and the
fact that embedded modules allow non-ambient submodules).

Finally, there is a subclass of reduced modules with the special type ModMPolGrd: these
are graded, which means that they are always generated by homogeneous elements (with
respect to the relevant grading). The main distinctive of this type is simply that when
one creates a submodule or quotient module of a module of type ModMPolGrd, then the
generators must be homogeneous, thus ensuring that the new derived module is also graded
so will be of type ModMPolGrd also. In the future, more functions will be developed which
will take modules of type ModMPolGrd explicitly. Note also that since the type ModMPolGrd
ISA ModMPol via the type ‘ISA’ relation, any operation applicable to a module of type
ModMPol is also applicable to a module of type ModMPolGrd.

109.3 Monomial Orders
In this section we describe each of the module monomial orders available in Magma.
If the user wishes to work with reduced modules only (particularly for homology compu-
tations), then the underlying monomial orders and Gröbner bases will probably be rarely
of interest to the user, so this section may be skipped. The monomial orders are mostly
of interest if one wishes to work with embedded modules with special orders so that the
relevant Gröbner bases have special properties. In either case, elements of the module are
represented by vectors in an ambient and we refer to the vector component positions as
columns in analogy to matrix terminology: a presentational module is often just defined
by a matrix of relations, the rows giving vectors generating the relation module and the
column numbering labelling the components of the vectors. For our modules there can
be a non-trivial column weighting, which we think of as applying a shift to the degree
of a homogeneous polynomial that occurs as the corresponding vector component of the
module element. This is used to define homogeneity and degree of the overall vector.

Given an R-module M , suppose that the underlying monomial order of R is <R. A
module monomial of M is a monomial-column pair consisting of a monomial s of R and
a column number c (with c ≥ 1), written as s[c] in the following. Monomial-column pairs
give an (infinite) basis for the elements in a free module Rk and a vector representing an
element of M can be decomposed into a sum of scalar multiples of monomial-column pairs
just as elements of the polynomial ring R can be written as a sum of scalar multiples of
plain monomials.
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Now suppose that s1[c1] and s2[c2] are module monomials from M . Any order on the
pairs is then fully defined by just specifying exactly when s1[c1] < s2[c2] with respect to
that order. As for multivariate polynomial rings, in the following the argument(s) are
described for an order as a list of expressions; that means that the expressions (without
the parentheses) should be appended to any base arguments when any particular intrinsic
function is called which expects a module monomial order. See [AL94, Sec. 3.5] and
[CLO98, Def. 2.4] for motivation and further discussion.

109.3.1 Term Over Position: TOP

Definition: s1[c1] < s2[c2] iff s1 <R s2 or s1 = s2 and c2 > c1. The order is specified by
the argument ("top").

This order is called “TOP” (term over position) since it first compares the underlying
monomials (terms with the coefficients ignored†) and then compares the columns (the
positions). The column comparison is ordered so that the first column is the greatest. A
Gröbner basis of a module with respect to the TOP order is usually the easiest to compute,
and corresponds to the grevlex order for polynomial rings in a certain way (i.e., the order
favours the ‘size’ of monomials and only gives priority to the columns in a secondary way).

109.3.2 Term Over Position (Weighted): TOPW

Definition (given a sequence W of k integer weights, where k is the degree of the ambient
module): write di = DegreeW (si[ci]) = Degree(si) + W [ci]; then s1[c1] < s2[c2] iff d1 < d2

or d1 = d2 and s1 <R s2 or d1 = d2, s1 = s2 and c2 > c1. The order is specified by the
arguments ("topw", W). The weights need not be positive (but must be small integers).

This order first compares the degrees of the monomial-coefficient pairs using both the
weights of the underlying ring R and the weights on the columns given by W and then
proceeds as for the TOP order. If there is a natural grading W on the columns of the module,
then it is preferable to use this order with W , particularly if submodules of interest are
homogeneous or graded w.r.t. W , since then the GB w.r.t. this order will tend to be smaller
and easier to compute. Normally one would also make the base order <R to be one of the
grevlex or grevlexw degree orders (see Subsections 105.2.3, 105.2.3), so that the order <
extends the degree order <R to a degree order on the module.

109.3.3 Position Over Term: POT

Definition: s1[c1] < s2[c2] iff c2 > c1 or c1 = c2 and s1 <R s2. The order is specified by
the argument ("pot").

This order is called “POT” (position over term) since it first compares the columns and
then compares the underlying monomials. The column comparison is ordered so that the
first column is the greatest. A Gröbner basis of a module with respect to the POT order is
like an echelon form of a matrix, since the order gives priority to the columns but this is
in general rather harder to compute than the GB w.r.t. the TOP order.

† Some authors apply the terms ‘monomial’ and ‘term’ in opposite senses to how we do
here, so that is why there are the established names ‘TOP’ and ‘POT’; we follow this
instead of using ‘MOP’ and ‘POM’!



Ch. 109 MODULES OVER MULTIVARIATE RINGS 3307

109.3.4 Position Over Term (Permutation): POTPERM

Definition (given a sequence P of k integers describing a permutation of [1..k], where k
is the degree of the ambient module): s1[c1] < s2[c2] iff P [c2] > P [c1] or c1 = c2 and
s1 <R s2. The order is specified by the arguments ("potperm", P).

This order first compares the columns using the given permutation, and then compares
the underlying monomials.

109.3.5 Block TOP-TOP: TOPTOP
Definition (given a integer k): say that a column c is in the 1st block if c ≤ k and in the
2nd block if c > k; then s1[c1] < s2[c2] iff c2 is in the 1st block and c1 is in the 2nd block,
or if the columns are in the same block and s1[c1] < s2[c2] w.r.t. the TOP order.

This order is a block order, like an elimination order for polynomial rings: comparison
is first made on the blocks in which the columns lie, and then the TOP order is applied
within each block. A GB w.r.t. this order is easier in general to compute than the POT
order and so is useful when one wishes to ‘eliminate’ the first k columns only in a GB.

109.3.6 Block TOP-POT: TOPPOT
Definition (given a integer k): say that a column c is in the 1st block if c ≤ k and in
the 2nd block if c > k; then s1[c1] < s2[c2] iff c2 is in the 1st block and c1 is in the 2nd
block, or if the columns are in the same block and s1[c1] < s2[c2] w.r.t. the TOP/POT order
(respective to the 1st/2nd blocks).

This order is a block order, like an elimination order for polynomial rings: comparison
is first made on the blocks in which the columns lie, and then the TOP order is applied
within the 1st block and the POT order is applied within the 2nd block. This is similar to
the TOPTOP order, but it may be preferable to order the 2nd block w.r.t. the POT order.
Note: POTPOT would equal to POT, and POTTOP does not seem to be useful.

109.4 Basic Creation and Access
An ambient free module M = Rk is created by giving the base ring R (see introduction
above), the degree r or a sequence W of r integers for the column weights, and, optionally,
an argument specifying the type of module monomial order.

109.4.1 Creation of Ambient Embedded Modules
The following functions create ambient embedded modules.

EModule(R, k)

Given a ring R, create the ambient embedded module Rk with the default TOP
module monomial order.

EModule(R, k, order)

Given a ring R, create the ambient embedded module Rk with the module monomial
order described by the given order order. See Section 109.3 for the valid values for
order.
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EModule(R, W)

Given a ring R and a sequence W of k integers, create the ambient embedded module
Rk with column weights given by W and with the TOPW module monomial order with
weights W .

EModule(R, W, order)

Given a ring R and a sequence W of k integers, create the ambient embedded module
Rk with column weights given by W and with the module monomial order described
by the given order order. See Section 109.3 for the valid values for order.

109.4.2 Creation of Reduced Modules
The following functions create reduced modules, which are always ambient.

RModule(R, k)

Given a ring R, create the reduced module Rk with zero column weights.

RModule(R, W)

Given a ring R and a sequence W of k integers, create the reduced module Rk with
column weights given by W .

GradedModule(R, k)

Given a ring R, create the reduced graded module Rk with zero column weights.
The resulting module has type ModMPolGrd, so submodules and quotient modules
of it may only be generated by homogeneous elements.

Note also that in general it is preferable if possible that the base ring R has
a degree ordering (such as the grevlex or grevlexw orders) so that associated
Gröbner bases of derived modules will be easier to compute.

GradedModule(R, W)

Given a ring R and a sequence W of k integers, create the reduced graded module
Rk with column weights given by W . The resulting module has type ModMPolGrd,
so submodules and quotient modules of it may only be generated by homogeneous
elements.

109.4.3 Localization

Localization(M)

Given an R-module M , where R = K[x1, . . . , xn] for a field K, return the corre-
sponding S-module M〈x1,...,xn〉, where S = K[x1, . . . , xn]〈x1,...,xn〉 is the localization
of R. See Chapter 107 for more information.
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109.4.4 Basic Invariants
The following functions access simple defining invariants of a module M .

Ambient(M)

Generic(M)

Given a module M , return the ambient (or generic) module A in which M is em-
bedded. The only case in which A differs from M is when M is a proper submodule
of an ambient embedded module. So if M is reduced, A will always equal M .

IsAmbient(M)

Given a module M , return whether M is ambient.

IsEmbedded(M)

Given a module M , return whether M is embedded.

IsReduced(M)

Given a module M , return whether M is reduced.

IsRoot(M)

Given a module M , return whether M is a root (an independent module, not derived
via sub- or quotient constructions from another module).

CoefficientRing(M)

BaseRing(M)

Given an R-module M , return the base ring R over which M is defined. Note that
one can then call BaseRing(R) to obtain the underlying ring S in which the base
coefficients of elements R lie.

Degree(M)

Given an R-module M , return the degree of M , which is the k such that the ambient
module of M equals Rk/〈relations〉. Note that if M is free and ambient, then the
degree of M equals the rank of M , but otherwise in general the rank of M may be
less than the degree of M (see the function Rank below).

ColumnWeights(M)

Grading(M)

Given a module M of degree k, return the grading of M , which is a sequence of k
integers giving the grading on the columns of M .

RelationModule(M)

Given an R-module M of degree k, return the submodule of the embedded module
Rk which is generated by the defining relations of M .
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Relations(M)

Given an R-module M of degree k, return the defining relations of M as a sorted
sequence of elements of the embedded module Rk.

RelationMatrix(M)

Given a module M , return the relation matrix of M , which is the matrix whose
rows are the defining relations of M .

Presentation(M)

Given an R-module M , return the presentation module P of M . This is a reduced
module isomorphic to M (and such that automatic coercion between M and P is
allowed). If M is reduced, then P is identical to M .

IsGraded(M)

IsHomogeneous(M)

Given a module M , return whether M is graded (or equivalently, homogeneous),
w.r.t. the grading of M (given by the weights on the columns of M and the variables
of the base ring of M). This is true iff the Gröbner basis of M consists of homo-
geneous elements only (always true if M is reduced) and the Gröbner basis of the
relation module of M consists of homogeneous elements alone. Note that a module
of type ModMPolGrd is always graded.

109.4.5 Creation of Module Elements
Module elements (internally, multivariate polynomials with columns attached to the mono-
mials) are constructed in general by giving a sequence or vector of elements from the
coefficient ring R.

M ! Q

Suppose M is an R-module of degree r. Given a sequence Q = [a1, . . . , ar] of
ring elements such that the ai are coercible into R, construct the element of M
corresponding to Q.

M ! v

Suppose M is an R-module of degree r. Given a vector v from the R-space Rr,
construct the element of M corresponding to v.

M ! 0

Zero(M)

Create the zero element of the module M .

UnitVector(M, i)

Suppose M is an R-module of degree r. Given an integer i in the range [1..r],
construct the i-th unit vector of M (the vector with 1 in the i-th column and 0
elsewhere) whose parent is the ambient module of M (since it may not lie in M
itself). Note that this not the same as the function BasisElement (below) which
depends on the current basis of M .
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109.4.6 Element Operations
The following functions allow simple access and operations on module elements. Some of
them use the module structure and refer to the column structure of an element; others use
the polynomial structure and ignore the column structure.

109.4.6.1 Access

Eltseq(f)

Given an element f of the R-module of degree r, return the sequence [f1, . . . , fr] of
r elements from R corresponding to f .

Vector(f)

Given an element f of the module M over R and of degree r, return the element of
the R-space of degree r over R corresponding to f .

f[i]

Given an element f of the R-module of degree r, together with an integer i in the
range [1..r], return the i-th component of f as an element of R.

109.4.6.2 Arithmetic
The following functions act on elements of R-modules. The operations are similar to those
for multivariate polynomials or vectors, whenever meaningful. For the binary operations,
the elements must be compatible; that is, their parents must have the same ambient
module. Note that if quotient relations for M are present, then the result is reduced to
the unique normal form modulo the quotient relations, but if the determination of the
relations is delayed, then an element may have a non-unique representation, but all the
predicates on elements below do not depend on the representation.

f + g f - g - f r * f f * r

Basic arithmetic operations. The element r lies in the base ring R.

f div s

Given a scalar ring element s and an element f of the module M , such that s is
coercible into R s divides all components of f , return the quotient of f by s.

SPolynomial(f, g)

Given elements f and g of the module M such that the leading module monomials
of f and g have the same column, return the S-polynomial of f and g. Note that the
result is always reduced to the unique normal form modulo the quotient relations
of M .

Normalize(f)

Given an element f of the module M , return the normalized form of f (so that the
leading module monomial of f is normalized).
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NormalForm(f, S)

Given an element f of the module M , together with a compatible module S, return
the normal form of f with respect to S. This is unique if the base ring R is not
local. In general, S will be a non-ambient embedded module for this to be useful
(otherwise any f would already be in S so the result would always be zero).

Coordinates(f, M)

Given an element f of the R-module S, together with a compatible R-module M
such that f is in M , return the coordinates of f with respect to the basis of M
(whose components lie in R).

109.4.6.3 Accessing the Underlying Representation
The following functions access simple properties of module elements which are to do with
the underlying representation.

Coefficients(f) Monomials(f) Terms(f)

LeadingCoefficient(f) LeadingMonomial(f)

LeadingTerm(f)

CoefficientsAndMonomials(f)

These functions are equivalent to the access functions for multivariate polynomi-
als and access the underlying distributed polynomial representation (with columns
added to the monomials); see Section 24.4.4 for details.

Column(f)

Given a single-term element f of a module M , return the column c of the single
monomial-column pair (module monomial) s[c] which f has.

Degree(f)

WeightedDegree(f)

Given an element f of a module M , return the weighted degree (abbreviated to
‘degree’ in this chapter) of f , which is the maximum of the weighted degrees of the
monomial-column pairs of f . The weighted degree of a monomial-column s[c] is the
weighted degree of s (in the base ring R) plus the degree of column c in the grading
of M .

IsHomogeneous(f)

Given an element f of a module M , return whether f is homogeneous; that is,
whether the weighted degrees of all the monomial-columns of f are equal. (Note
that the grading of M is thus significant.)



Ch. 109 MODULES OVER MULTIVARIATE RINGS 3313

109.4.6.4 Predicates

IsZero(f)

Given an element f of the module M , return whether f is the zero element of
M . Note that if the relations of M are non-zero this operation may be non-trivial
(especially if the relations are not yet computed, but they will be automatically
computed if needed).

f eq g

Given elements f and g of the module M , return whether f and g are equal. Note
that this may be non-trivial (see the remarks above).

f lt g

Given elements f and g of the module M , return whether f < g w.r.t. the underlying
module monomial order. The operators le, gt, ge are similarly defined.

f in M

Given an element f of a module S together with a compatible module M , return
whether f is in M .

Example H109E1

We illustrate simple modules over a multivariate polynomial ring. We construct simple ambient
embedded modules over Q[x, y, z]. The first module has default weights 0 on its columns, while
the second has weights 1, 2, and 3 respectively on its columns.

> R<x,y,z> := PolynomialRing(RationalField(), 3, "grevlex");

> M := EModule(R, 3);

> M;

Free Embedded Module R^3

Order: Module TOP: Graded Reverse Lexicographical

> f := M![x, y, z^2];

> g := M![z, y^3, x + 1];

> f;

[x, y, z^2]

> g;

[z, y^3, x + 1]

> f + g;

[x + z, y^3 + y, z^2 + x + 1]

> Terms(f);

[

[0, 0, z^2],

[x, 0, 0],

[0, y, 0]

]

> Degree(f);

2

> [Degree(m): m in Monomials(f)];
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[ 2, 1, 1 ]

> LeadingMonomial(f);

[0, 0, z^2]

> M2 := EModule(R, [10, 5, 1]);

Free Embedded Module R^3 with grading [10, 5, 1]

Order: Module TOP with column weights [10, 5, 1]: Graded Reverse Lexicographical

> f := M2![x, y, z^2];

> f;

[x, y, z^2]

> Terms(f);

[

[x, 0, 0],

[0, y, 0],

[0, 0, z^2]

]

> Degree(f);

11

> [Degree(m): m in Monomials(f)];

[ 11, 6, 3 ]

Similar operations can be done with reduced modules. There is no difference for the elements.

> M := RModule(R, 3);

> M;

Free RModule R^3

> M := GradedModule(R, [10, 5, 1]);

> M;

Free Graded Module R^3 with grading [10, 5, 1]

> Grading(M);

[ 10, 5, 1 ]

> f := M![x, y^6, z^10];

> f;

[x, y^6, z^10]

> IsHomogeneous(f);

true
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109.5 The Homomorphism Type

Magma has a special type for a homomorphism between two R-modules. The type of
such a homomorphism is ModMPolHom. In general, functions such as Morphism return a
homomorphism of type ModMPolHom, while the boundary maps of complexes are also of
type ModMPolHom (see the function FreeResolution).

A homomorphism f : M → N is represented by a matrix A. There are two ways in
which A can be defined:

(a)A is an ambient matrix: in this case, A gives the explicit map on the ambient modules
of M and N . Thus A is m× n, where m =Degree(M), n =Degree(N).

(b)A is a presentation matrix: in this case, A gives the explicit map on the presenta-
tion modules of M and N . Thus A is m × n, where m =Degree(Presentation(M)),
n =Degree(Presentation(N)).

If M and N are reduced (a common case), then they equal their respective presentation
modules, so there is no difference between the above two cases (the ambient matrix and the
presentation matrix are identical). So the only difference between (a) and (b) occurs when
at least one of M and N is a non-ambient (proper) submodule of an embedded module.

When M and N are graded - that is, generated by elements homogeneous with re-
spect to the ambient column weightings and with a relation module that is also generated
by homogeneous elements - all homomorphisms as non-graded modules are still allowed.
However there are functions to test if a given homomorphism preserves the gradings on
the domain and codomain up to a constant degree shift. See IsHomogeneous and Degree
below.

Homomorphism(M, N, A)

Presentation BoolElt Default : true

Given R-modules M and N and an m × n matrix A over R, construct the homo-
morphism f : M → N (with type ModMPolHom) defined by A.

By default, A is assumed to be a presentation matrix (see the comments above),
in which case m and n must equal the degrees of the presentation modules of M
and N , respectively. Alternatively, setting the parameter Presentation to false
specifies that A is an ambient matrix; in this case, m and n must equal the degrees
of M and N , respectively.

Domain(f)

Given a module homomorphism f : M → N , return the domain M .

Codomain(f)

Given a module homomorphism f : M → N , return the codomain N .
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PresentationMatrix(f)

Matrix(f)

Given a module homomorphism f : M → N , return the presentation matrix AP

of f as an m × n matrix corresponding to the presentation modules of M and N ,
respectively. This presentation matrix is always well-defined and computed, even if
f is constructed via an ambient matrix.

AmbientMatrix(f)

Matrix(f)

Given a module homomorphism f : M → N , return the ambient matrix AA of
f as an m × n corresponding to the ambient modules of M and N , respectively.
If M and N are reduced (as commonly happens), this will be the same as the
presentation matrix above. But if M and N are not reduced and f is constructed
via a presentation matrix, then an error may result (since it may be impossible
to give a matrix over the base ring R which gives the mapping for the ambient
modules).

f(v)

v * f

Given a module homomorphism f : M → N and an element v of M , return the
image of v under f , as an element of N .

f[i]

Given a module homomorphism f : M → N and an integer i, return the element of
N corresponding to the i-th row of the ambient matrix of f .

Image(f)

Given a module homomorphism f : M → N , return the image of f as a submodule
of N (which will be reduced iff N is).

Kernel(f)

Given a module homomorphism f : M → N , return the kernel of f as a submodule
of M (which will be reduced iff M is).

Cokernel(f)

Given a module homomorphism f : M → N , return the cokernel of f as a quotient
module of N (which will be reduced iff N is).

IsZero(f)

Given a module homomorphism f : M → N , return whether f is the zero map.
Note that f may be the zero map even if the presentation or ambient matrices of f
are non-zero.
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IsInjective(f)

Given a module homomorphism f : M → N , return whether f is injective (whether
the kernel of f is the zero module).

IsSurjective(f)

Given a module homomorphism f : M → N , return whether f is surjective (whether
the image of f equals N).

IsBijective(f)

Given a module homomorphism f : M → N , return whether f is bijective (injective
and surjective).

IsGraded(f)

IsHomogeneous(f)

Given a module homomorphism f : M → N , where M and N are graded modules,
return whether f is homogeneous of some degree d; that is, whether for every pure
degree element v ∈M , f(v) = 0 or Degree(f(v)) equals Degree(v) + d.

Degree(f)

Given a module homomorphism f : M → N , return the degree of f , which is
the maximum d such that an element of M of degree e is mapped via f to zero
or an element of degree e + d. If f is homogeneous, then the ‘maximum’ concept
is unnecessary, since the degree will be consistent for all elements of M (see the
previous function).

Example H109E2

We illustrate some homomorphism functionality by looking at the explicit inclusion homomor-
phism between two submodules of a rank 3 free module over Q[x, y]. We define this in non-
presentational form by the identity matrix. Then we can retrieve the corresponding defining
matrix for the map between the internal presentations of the two submodules. The two submod-
ules being graded submodules, we check that the inclusion is indeed homogeneous of degree 0 (as
it must be, obviously preserving degrees of elements).

> R<x,y> := PolynomialRing(RationalField(), 2, "grevlex");

> F := EModule(R, 3);

> // get a submodule M1 generated by a single non-zero element of F

> M1 := sub<F|[x^2,y^2,x*y]>;

> // and a second submodule M2 containing M1

> M2 := sub<F|[x,0,y],[0,y,0]>;

> incl_hm := Homomorphism(M1,M2,IdentityMatrix(R,3) :

> Presentation := false);

> incl_hm;

Module homomorphism (3 by 3)

Ambient matrix:

[1 0 0]
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[0 1 0]

[0 0 1]

Now the corresponding presentation matrix of the inclusion map is the obvious one coming from
the expression of the natural generator of M1 in terms of the two natural generators of M2

> PresentationMatrix(incl_hm);

[y x]

> // check homogeneity of incl_hm

> IsHomogeneous(incl_hm);

true

> Degree(incl_hm);

0

109.6 Submodules and Quotient Modules

The following functions allow the construction of submodules and quotient modules and
access to essential properties.

109.6.1 Creation

sub< M | L >

Given a module M over a ring R, return the submodule of M (with the same quotient
relations as M) generated by the elements of M specified by the list L. Each term
of the list L must be an expression defining an object of one of the following types:
(a)An element of M ;
(b)A set or sequence of elements of M ;
(c) A submodule of M ;
(d)A set or sequence of submodules of M .

A morphism is stored from the resulting submodule S into M , such that S.i is
mapped to the i-th generator given in the above list.

quo< M | L >

Given a module M over a ring R, return the quotient module of M by the elements
of M specified by the list L. Each term of the list L must be an expression defining
an object of one of the following types:
(a)An element of M ;
(b)A set or sequence of elements of M ;
(c) A submodule of M ;
(d)A set or sequence of submodules of M .

A morphism is stored from M onto the resulting quotient module Q.
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Morphism(M, N)

Given modules M and N , related by a chain of stored sub and quo morphisms as
mentioned above, returns the resulting morphism matrix map from M to N . If
no known sub/quo relationship chain exists between M and N then an error is
returned.

Submodule(I)

Given an ideal I of a polynomial ring R, return the submodule of R1 generated by
I.

QuotientModule(I)

Given an ideal I of a polynomial ring R, return the quotient module R1/I.

GradedModule(I)

Given a homogeneous ideal I of a ring R, return the graded quotient module R1/I.

109.6.2 Module Bases
The following functions allow one to manipulate the bases of modules. Note that a Gröbner
basis for a module will be automatically generated when necessary; the Groebner procedure
just allows explicit immediate construction of the Gröbner basis.

Basis(M)

Given a module M , return the current basis (whether it has been converted to a
Gröbner basis or not) of M .

BasisElement(M, i)

Given a module M together with an integer i, return the i-th element of the current
basis of M . Note that this is not the same as M.i.

BasisMatrix(M)

Given a module M , return the basis matrix of M , which is a k by r matrix over R,
where k is the length of the basis of M and r is the degree of M .

Groebner(M)

(Procedure.) Explicitly force a Gröbner basis for the module M to be constructed.
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Example H109E3

We construct simple submodules and quotient modules of an embedded module and consider some
of their basic properties.

> R<x, y, z> := PolynomialRing(RationalField(), 3);

> M := EModule(R, 3);

> S := sub<M | [1, x, x^2+y], [z, y, x*y^2+1],

> [y, z, x+z]>;

> Groebner(S);

> S;

Embedded Submodule of R^3

Order: Module TOP: Lexicographical

Groebner basis:

[ -x*z + y^2 + y, x*y^2 - x*y + z, y^3 + z],

[ x*y - y*z - 1, x*z - x - z^2, -y - z^2],

[ y, z, x + z],

[ y^3 - z, y^2*z - y, y^2*z - 1]

> a := M ! [y, z, x+z];

> a;

[y, z, x + z]

> a in S;

true

> BasisElement(S, 1);

[-x*z + y^2 + y, x*y^2 - x*y + z, y^3 + z]

> Q := quo<M | [x, y, z]>;

> Q;

Embedded Module R^3/<relations>

Order: Module TOP: Lexicographical

Relations (Groebner basis):

[x, y, z]

> a := Q![x, y, 0];

> b := Q![0, 0, z];

> a;

[0, 0, -z]

> b;

[0, 0, z]

> a+b;

[0, 0, 0]

> Q ! [x,y,z];

[0, 0, 0]

> QQ := quo<Q | [x^2, 0, y+z]>;

> QQ;

Embedded Module R^3/<relations>

Order: Module TOP: Lexicographical

Relations (Groebner basis):

[ 0, x*y, x*z - y - z],

[ x, y, z]

> SL := Localization(S);
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> SL;

Embedded Submodule of R^3 (local)

Order: Module TOP: Local Lexicographical

Basis:

[ 1, x, x^2 + y],

[ z, y, 1 + x*y^2],

[ y, z, x + z]

Example H109E4

We construct simple submodules and quotient modules of a reduced module and consider some
of their basic properties.

> R<x,y,z> := PolynomialRing(RationalField(), 3);

> M := RModule(R, 3);

> S := sub<M | [1, x, x^2+y], [z, y, x*y^2+1]>;

> M;

Free Reduced Module R^3

> S;

Reduced Module R^2/<relations>

> Morphism(S, M);

Module homomorphism (2 by 3)

Ambient matrix:

[ 1 x x^2 + y]

[ z y x*y^2 + 1]

> RelationMatrix(S);

Matrix with 0 rows and 2 columns

> S;

Free Reduced Module R^2

> M.1;

[1, 0, 0]

> M!S.1;

[1, x, x^2 + y]

> M!S.2;

[z, y, x*y^2 + 1]

> M.1 in S;

false

> Q := quo<M | [1, x^2, y]>;

> Q;

Free Reduced Module R^2

> RelationMatrix(Q);

Matrix with 0 rows and 2 columns

> Morphism(M, Q);

Module homomorphism (3 by 2)

Ambient matrix:

[-x^2 -y]

[ 1 0]

[ 0 1]
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> Morphism(S, Q);

Module homomorphism (2 by 2)

Ambient matrix:

[ -x^2 + x x^2]

[ -x^2*z + y x*y^2 - y*z + 1]

> Q!M.1;

[-x^2, -y]

> M!Q.1;

[0, 1, 0]

> M!Q.2;

[0, 0, 1]

> Q!M!Q.2;

[0, 1]

109.7 Basic Module Constructions
The following functions give some fundamental basic constructions with modules.

M + N

Given compatible modules M and N (ie, embedded in the same ambient module),
return the sum of M and N ; that is, the submodule of the ambient generated by M
and N .

M meet N

Given compatible modules M and N (ie, embedded in the same ambient module),
return the intersection of M and N in the ambient. This uses the standard algorithm
for intersecting two modules of a free module (see Section 2.8.3 of [GP02]). If the
ambient is the quotient of a free module F by non-trivial relations, the intersection
performed is effectively that of the inverse images of M and N in F .

f * M

M * f

Given an R-module M and an element f ∈ R, return the submodule of M generated
by {f · v : v ∈M} or {v · f : v ∈M}, respectively.

I * M

M * I

Given an R-module M and an ideal I of R, return the submodule of M generated
by {f · v : f ∈ I, v ∈M} or {v · f : f ∈ I, v ∈M}, respectively.

M / N

Given compatible modules M and N (ie, embedded in the same ambient module),
return the quotient module M/(M ∩N). This has the same effect as using the quo
constructor.
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DirectSum(M, N)

Given R-modules M and N , return the direct sum D = M ⊕N and two sequences
of corresponding homomorphisms giving the injections into and projections from D,
respectively.

DirectSum(S)

A sequence or list L of R-modules, return their direct sum D and two sequences of
corresponding homomorphisms giving the injections into and projections from D,
respectively.

Twist(M, d)

Given a graded module M , and an integer d, return the Serre twist M(d) and an
isomorphism f : M → M(d). The twisted module is simply an isomorphic copy of
M , but with the grading twisted by d (so d is subtracted from each weight of M).
f has degree −d.

109.8 Predicates

IsZero(M)

Given a module M , return whether M is the zero module.

M subset N

Given compatible modules M and N (ie, embedded in the same ambient module),
return whether M is a submodule of N . This will generally involve module Gröbner
basis and normal form computations to check that the generators of M lie in N .

M eq N

Given compatible modules M and N (ie, embedded in the same ambient module),
return whether M equals N . The function checks that appropriate module Gröbner
bases of M and N are equal.

IsFree(M)

Given an R-module M , return whether M is free. M is free iff M is isomorphic to
the module Rk for some k. Such a k need not equal the degree of M but will equal
the rank of M (as defined in the next section) if M is free. The function checks
whether a minimised presentation of M has trivial relations or not.



3324 COMMUTATIVE ALGEBRA Part XV

109.9 Module Operations
The following functions perform some fundamental module operations.

MinimalBasis(M)

Given an R-module M , return a minimal basis B of M . If M is graded, or if R is
a local ring, then the cardinality of B (the rank) is guaranteed to be unique (so is
the absolutely minimal number of elements needed to generate M).

Otherwise the cardinality of B is not unique: B will only satisfy the rule that
the i-th element of B is not in the submodule generated by elements 1 to i−1 of B.

In the graded case or local cases, a minimal basis is computed in the usual way
starting from any basis B consisting of homogeneous elements. B gives a particular
presentation whose relation matrix R consists of homogeneous polynomials. If R
contains a non-zero constant term (or more generally a unit in the local case), an
element of B can be eliminated and R recalculated. This can be continued until all
non-zero terms of R have positive degree.

MinimalBasis(S)

Given a set or sequence S of homogeneous module elements from a module M ,
return a minimal basis of the submodule of M generated by S.

Rank(M)

Given an R-module M , return the rank of M . This is simply defined to be the
cardinality of the minimal basis of M , returned by the function MinimalBasis.
Thus if M is graded, or if R is a local ring, then the rank is guaranteed to be
unique (and is the absolutely minimal number of elements needed to generate M).
Otherwise the result is not an invariant of M , but simply reflects the minimum as
found by the MinimalBasis algorithm.

ColonModule(M, J)

Given an R-module M and an ideal J of R, return the colon module M : J which
is the submodule of the ambient module A of M consisting of all f ∈ A such that
f · g ∈M for all g ∈ J . When J is generated by a single element, this easily reduces
to a syzygy computation in A and in the general case, we intersect the colon modules
for a set of generators of J .

ColonIdeal(M, N)

Given an R-modules M and N which are both submodules of a common supermod-
ule, return the colon ideal M : N , which is the ideal of R consisting of all f ∈ R
such that f ·N ⊂M . The algorithm used is as described in section 2.8.4 of [GP02].

Annihilator(M)

Given an R-module M , return the annihilator ideal of M . This is the ideal I of R
consisting of all f ∈ R such that f ·M = 0 (which can be seen to equal the ideal
0M : M , where 0M is the zero submodule of M , so is a special case of ColonIdeal).
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FittingIdeal(M, i)

Given an R-module M of degree r and an integer i ≥ 0, return the i-th Fitting ideal
of M , which is the ideal of R generated by the (r− i)-th minors of the presentation
matrix of M , where r is the degree of M . See [CLO98, p.229] or [Eis95, Sec. 20.2].

FittingIdeals(M)

Given an R-module M of degree r, return the Fitting ideals (for from 0 to r) as a
sequence of ideals of R.

SyzygyModule(M)

Given a module M , return the syzygy module S of M . If the basis B of M has length
k, the syzygy module S has degree k and elements of S express a syzygy amongst
the k elements of the basis B. Note that the degree of the resulting module thus
depends on the current basis of M .

MinimalSyzygyModule(M)

Given a homogeneous module M , return the syzygy module S of the minimal basis
of M . If the minimal basis B of M has length k, the syzygy module S has degree k
and elements of S express a syzygy amongst the k elements of the minimal basis B.

SyzygyModule(Q)

Given a sequence Q of polynomials from a multivariate polynomial ring P , return
the module of syzygies of Q. This is a module over P of degree k, where k is the
length of Q, consisting of all vectors v such that the sum of v[i] ∗Q[i] for i = 1, . . . k
is zero.

Example H109E5

In this example we note that a certain module M has rank 3 (equal to its degree 3), since no
generator is redundant. If we move to the localization of M , then (1 + x− z) becomes a unit, so
the first generator becomes redundant.

> R<x,y,z> := PolynomialRing(RationalField(), 3, "grevlex");

> F := RModule(R, 3);

> M := quo<F | [x + 1, y, z], [z, y, 0]>;

> M;

Reduced Module R^3/<relations>

Relations:

[x + 1, y, z],

[ z, y, 0]

> Degree(M);

3

> Rank(M);

3

> ML := Localization(M);

> ML;
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Reduced Module R^3/<relations> (local)

Relations:

[1 + x - z, 0, z],

[ z, y, 0]

> Rank(ML);

2

> MinimalBasis(ML);

[

[0, 1, 0],

[0, 0, 1]

]

109.10 Changing Ring
The ChangeRing function enables the changing of the polynomial ring over which a module
is defined.

ChangeRing(M, S)

Given an R-module M , where R is a polynomial ring, and another polynomial ring
S, construct the S-module N obtained by coercing the coefficients of the elements
of the basis and relations of M into S. It is necessary that all elements of the old
coefficient ring R can be automatically coerced into the new coefficient ring S. Note
that S itself must be polynomial ring having the same rank as R, so S does not
specify the new ring for the underlying coefficients (one can use ChangeRing for
polynomial rings to do that first).

109.11 Hilbert Series
The following functions compute the Hilbert series information of graded or (homogeneous)
modules. This depends on the column weights, just as in graded polynomial rings.

HilbertSeries(M)

Given a graded R-module M , return the Hilbert series HM (t) of M (as a univariate
function field over the ring of integers. The i-th coefficient of the series gives the
vector-space dimension of the degree-i graded piece of M . The algorithm imple-
mented is that given in [BS92].

Note that if I is an ideal of the ring R, then the corresponding function for ideals
HilbertSeries applied to I gives the Hilbert series of the affine algebra (quotient)
R/I, so this is equivalent to HilbertSeries(QuotientModule(I)).

HilbertSeries(M, p)

Given a graded R-module M , return the Hilbert series HM (t) of M as a Laurent
series to precision p. (A Laurent series is required in general, since negative powers
may occur when there are negative values in the grading of M .)
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HilbertDenominator(M)

Given a graded R-module M , return the unreduced Hilbert denominator D of the
Hilbert series HM (t) of M (as a univariate polynomial over the ring of integers).
The denominator D equals HilbertDenominator(R) which is simply

n∏

i=1

(1− twi),

where n is the rank of R and wi is the weight of the i-th variable (1 by default).

HilbertNumerator(M)

Given a graded R-module M , return the unreduced Hilbert numerator N of the
Hilbert series HM (t) of M (as a univariate polynomial over the ring of integers)
and a valuation shift s. The numerator N equals D × ts ×HM (t), where D is the
unreduced Hilbert denominator above. Computing with the unreduced numerator
is often more convenient. Note that s will only be non-zero when M has negative
weights in its grading.

HilbertPolynomial(I)

Given a graded R-module M , return the Hilbert polynomial H(d) of M as an element
of the univariate polynomial ring Q[d], together with the index of regularity of M
(the minimal integer k ≥ 0 such that H(d) agrees with the Hilbert function of M
at d for all d ≥ k).

Example H109E6

We apply the Hilbert series functions to a simple quotient module.

> R<x,y,z> := PolynomialRing(RationalField(), 3);

> F := GradedModule(R, 3);

> M := quo<F | [x,0,0], [0,y^2,0]>;

> M;

Graded Module R^3/<relations>

Relations:

[ x, 0, 0],

[ 0, y^2, 0]

> HilbertSeries(M);

(t^2 + t - 3)/(t^3 - 3*t^2 + 3*t - 1)

> HilbertSeries(M, 10);

3 + 8*s + 14*s^2 + 21*s^3 + 29*s^4 + 38*s^5 + 48*s^6 + 59*s^7 + 71*s^8 + 84*s^9

+ O(s^10)

> HilbertNumerator(M);

-x^2 - x + 3

0

> HilbertDenominator(M);

-x^3 + 3*x^2 - 3*x + 1
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> HilbertPolynomial(M);

1/2*x^2 + 9/2*x + 3

0

> [Evaluate(HilbertPolynomial(F), i): i in [0..10]];

[ 3, 9, 18, 30, 45, 63, 84, 108, 135, 165, 198 ]

If the module has negative weights, then denominator may include extra powers of t, so the shift
for the numerator will be non-zero.

> F := GradedModule(R, [-1]);

> F;

Free Graded Module R^1 with grading [-1]

> HilbertSeries(F);

-1/(t^4 - 3*t^3 + 3*t^2 - t)

> HilbertSeries(F, 10);

s^-1 + 3 + 6*s + 10*s^2 + 15*s^3 + 21*s^4 + 28*s^5 + 36*s^6 + 45*s^7 + O(s^8)

> HilbertNumerator(F);

1

1

> HilbertDenominator(F);

-x^3 + 3*x^2 - 3*x + 1

> HilbertPolynomial(F);

1/2*x^2 + 5/2*x + 3

-1

> [Evaluate(HilbertPolynomial(F), i): i in [-1..10]];

[ 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78 ]

109.12 Free Resolutions

The functions in this section deal with free resolutions and associated properties. Free
resolutions are returned as chain complexes (see Chapter 56).

109.12.1 Constructing Free Resolutions

FreeResolution(M)

Minimal BoolElt Default : true

Limit RngIntElt Default : 0
Homogenize BoolElt Default : true

Al MonStgElt Default : “LaScala”
Given an R-module M , return a free resolution M as a complex C, and a comparison
homomorphism f : C0 →M (where C0 is the term of C of degree 0).

By default, the free resolution will be minimal. Setting the parameter Minimal
to false will construct a non-minimal resolution (which is constructed via a se-
quence of successive syzygy modules, with no minimization).
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Magma has two algorithms for computing resolutions:
(1)The La Scala (LS) [SS98] algorithm, which works with a homogeneous module.

The Magma implementation involves an extension of this algorithm which uses
techniques from the Faugère F4 [Fau99] algorithm to compute many normal forms
together in a block.

(2)The Iterative algorithm, which simply computes successive syzygy modules
progressively (minimizing as it goes if and only a minimal resolution is desired).
By default the LS algorithm is used if M is homogeneous and the coefficient ring

of R is a finite field or the rational field, since this tends to be faster in general. But
for some inputs the iterative algorithm may be significantly faster, particularly for
some modules over the rationals. So one may set the parameter Al to "Iterative"
to select the iterative algorithm. Uniqueness of the terms in the resolution is as
follows.
(1) If M is homogeneous or defined over a local ring R, then the resulting complex

C is guaranteed to be minimal, so the ranks of the terms in C and the associated
Betti numbers will be unique.

(2) If M is non-homogeneous and over a global ring R, then the boundary maps
of C will not have any entries which are units, but C cannot be guaranteed
to be an absolutely minimal free resolution, so the ranks of the terms and the
associated Betti numbers will not be unique in general. Also, Magma may choose
to compute C by computing the free resolution CH of a homogenization MH of
M , and then specializing CH to yield C, since this method is usually faster (since
the LS algorithm can then be used). One may set the parameter Homogenize to
true or false to force Magma to use this homogenization technique or not.
If the parameter Limit is set to a non-zero value l, then at most l terms (plus the

term corresponding to the free module) are computed. If R is an affine algebra or
exterior algebra of rank n, then by default the limit is set to n, since the resolution
is not finite in general.

SetVerbose("Resolution", v)

(Procedure.) Change the verbose printing level for the free resolution algorithm and
related functions to be v.

Example H109E7

We construct the module M = R1/I where I is the ideal of the twisted cubic and then construct
a minimal free resolution of M and note simple properties of this.

> R<x,y,z,t> := PolynomialRing(RationalField(), 4, "grevlex");

> B := [

> -x^2 + y*t, -y*z + x*t, x*z - t^2,

> x*y - t^2, -y*z + x*t, -x^2 + z*t

> ];

> M := GradedModule(Ideal(B));
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> M;

Graded Module R^1/<relations>

Relations:

[-x^2 + y*t],

[-y*z + x*t],

[ x*z - t^2],

[ x*y - t^2],

[-y*z + x*t],

[-x^2 + z*t]

> C := FreeResolution(M);

> C;

Chain complex with terms of degree 4 down to -1

Dimensions of terms: 0 1 5 5 1 0

> Terms(C);

[

Free Graded Module R^0,

Free Graded Module R^1 with grading [5],

Free Graded Module R^5 with grading [3, 3, 3, 3, 3],

Free Graded Module R^5 with grading [2, 2, 2, 2, 2],

Free Graded Module R^1,

Free Graded Module R^0

]

> B := BoundaryMaps(C);

> B;

[*

Graded module homomorphism (0 by 1),

Graded module homomorphism (1 by 5) of degree 0

Ambient matrix:

[ x*z - t^2 x^2 - z*t -y*t + z*t y*z - x*t -x*y + t^2],

Graded module homomorphism (5 by 5) of degree 0

Ambient matrix:

[-y x 0 -t 0]

[ 0 -z y 0 t]

[ t -z 0 x 0]

[ 0 -t t 0 x]

[-z 0 x -t z],

Graded module homomorphism (5 by 1) of degree 0

Ambient matrix:

[x^2 - z*t]

[x*y - t^2]

[x*z - t^2]

[y*z - x*t]

[y*t - z*t],

Graded module homomorphism (1 by 0)

*]

> B[2]*B[3];

Module homomorphism (1 by 5)

Ambient matrix:
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[0 0 0 0 0]

> B[3]*B[4];

Module homomorphism (5 by 1)

Ambient matrix:

[0]

[0]

[0]

[0]

[0]

> Image(B[3]) eq Kernel(B[4]);

true

Example H109E8

Following [CLO98, p.248], we compute the ideal I of Q[x, y] whose affine variety is a certain list
of 6 pairs.

> R<x,y> := PolynomialRing(RationalField(), 2, "grevlex");

> L := [<0, 0>, <1, 0>, <0, 1>, <2, 1>, <1, 2>, <3, 3>];

> I := Ideal(L, R);

> I;

Ideal of Polynomial ring of rank 2 over Rational Field

Graded Reverse Lexicographical Order

Variables: x, y

Inhomogeneous, Dimension 0

Groebner basis:

[

x^3 - 5*x^2 + 2*x*y - 2*y^2 + 4*x + 2*y,

x^2*y - 5*x^2 + 3*x*y - 4*y^2 + 5*x + 4*y,

x*y^2 - 4*x^2 + 3*x*y - 5*y^2 + 4*x + 5*y,

y^3 - 2*x^2 + 2*x*y - 5*y^2 + 2*x + 4*y

]

I is not homogeneous, and we compute a non-minimal free resolution of the module R/I.

> M := QuotientModule(I);

> M;

Reduced Module R^1/<relations>

Relations:

[ x^3 - 5*x^2 + 2*x*y - 2*y^2 + 4*x + 2*y],

[x^2*y - 5*x^2 + 3*x*y - 4*y^2 + 5*x + 4*y],

[x*y^2 - 4*x^2 + 3*x*y - 5*y^2 + 4*x + 5*y],

[ y^3 - 2*x^2 + 2*x*y - 5*y^2 + 2*x + 4*y]

> C := FreeResolution(M: Minimal := false);

> C;

Chain complex with terms of degree 3 down to -1

Dimensions of terms: 0 3 4 1 0

> B := BoundaryMaps(C);

> B;
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[*

Module homomorphism (0 by 3),

Module homomorphism (3 by 4)

Ambient matrix:

[-y + 5 x - 8 6 -2]

[ 4 -y - 8 x + 8 -4]

[ 2 -6 -y + 8 x - 5],

Module homomorphism (4 by 1)

Ambient matrix:

[ x^3 - 5*x^2 + 2*x*y - 2*y^2 + 4*x + 2*y]

[x^2*y - 5*x^2 + 3*x*y - 4*y^2 + 5*x + 4*y]

[x*y^2 - 4*x^2 + 3*x*y - 5*y^2 + 4*x + 5*y]

[ y^3 - 2*x^2 + 2*x*y - 5*y^2 + 2*x + 4*y],

Module homomorphism (1 by 0)

*]

> IsZero(B[2]*B[3]);

true

As noted in [CLO98], the 3 by 3 minors of the boundary map from R3 to R4 generate the ideal I
again, and this is due to the Hilbert-Burch Theorem.

> U := Minors(Matrix(B[2]), 3);

> U;

[

y^3 - 2*x^2 + 2*x*y - 5*y^2 + 2*x + 4*y,

x*y^2 - 4*x^2 + 3*x*y - 5*y^2 + 4*x + 5*y,

x^2*y - 5*x^2 + 3*x*y - 4*y^2 + 5*x + 4*y,

x^3 - 5*x^2 + 2*x*y - 2*y^2 + 4*x + 2*y

]

> Ideal(U) eq I;

true

109.12.2 Betti Numbers and Related Invariants
Each of the functions in this section compute numerical properties of a free resolution of
a module M . Each function takes the same parameters as the function FreeResolution
(not repeated here), thus allowing control of the construction of the underlying resolution.

In particular, by default the minimal free resolution of M is used (so the Betti numbers
correspond to that), so the relevant invariant is guaranteed to be unique if M is graded or
over a local ring R. Otherwise, one may set the parameter Minimal to false to give the
Betti numbers for a non-minimal resolution.

Note: If M is graded and the LS algorithm is used (which will be the case by default),
then computing any of the invariants to do with Betti numbers in this section may be
quicker than computing the full resolution (since minimization of the actual resolution
is needed for the latter). Thus it is preferable just to use one of the following functions
instead of FreeResolution if only the numerical invariants are desired.
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BettiNumbers(M)

Given a module M , return the Betti numbers of M , which is simply the sequence of
integers consisting of the degrees of the non-zero terms of the free resolution of M .
See the discussion above concerning the parameters. Since the underlying resolution
is minimal by default, if M is graded or over a local ring, then the result is unique.

BettiNumber(M, i, j)

Given a module M and integers i, j ≥ 0, return the graded Betti number βi,j of M
as an integer. This is the number of generators of degree j in the i-th term Fi of
the free resolution of M .

MaximumBettiDegree(M, i)

Given a module M and an integer i ≥ 0, return the maximum degree of the genera-
tors in the i-th term of the free resolution of M . Equivalently, this is the maximum
j such that BettiNumber(M, i, j) is non-zero.

BettiTable(M)

Given a module M , return the Betti table of M as a sequence S of sequences of
integers, and a shift s. This is designed so that if M is non-zero, then S[1, 1]
is always non-zero and S[i, j] equals BettiNumber(M, i, j - i + s). (So the
degrees are shifted by s.)

Regularity(M)

Given an R-module M which is either graded or over a local ring, return the
Castelnuovo-Mumford regularity. This is the least r such that in a minimal free
resolution of M , the maximum of the degrees of the generators of the i-th term Fi

is at most i + r. A simple consequence of this is that M is generated by elements of
degree at most r. See [Eis95, Sec. 20.5] or [DL06, p. 167].

HomologicalDimension(M)

Given a module M , return the homological dimension of M . This is just the length
of a minimal free resolution of M (the number of non-zero boundary maps).

Example H109E9

For an integer n, we can construct a Koszul complex as the free resolution of R/I, where I is the
ideal of R = K[x1, . . . , xn] generated by the n variables.

> Q := RationalField();

> n := 3;

> R<[x]> := PolynomialRing(Q, n);

> I := Ideal([R.i: i in [1 .. n]]);

> M := QuotientModule(I);

> M;

Graded Module R^1/<relations>

Relations:
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[x[1]],

[x[2]],

[x[3]]

> C := FreeResolution(M);

> C;

Chain complex with terms of degree 4 down to -1

Dimensions of terms: 0 1 3 3 1 0

> BoundaryMaps(C);

[*

Module homomorphism (0 by 1),

Module homomorphism (1 by 3)

Ambient matrix:

[ x[3] -x[2] x[1]],

Module homomorphism (3 by 3)

Ambient matrix:

[-x[2] x[1] 0]

[-x[3] 0 x[1]]

[ 0 -x[3] x[2]],

Module homomorphism (3 by 1)

Ambient matrix:

[x[1]]

[x[2]]

[x[3]],

Module homomorphism (1 by 0)

*]

In general, the i-th Betti number is
(

n
i

)
. We can see this for n = 10. Each boundary map consists

of linear relations alone, so the regularity is zero.

> n := 10;

> R<[x]> := PolynomialRing(Q, n);

> I := Ideal([R.i: i in [1 .. n]]);

> M := QuotientModule(I);

> time C := FreeResolution(M);

Time: 0.060

> C;

Chain complex with terms of degree 11 down to -1

Dimensions of terms: 0 1 10 45 120 210 252 210 120 45 10 1 0

> Terms(C);

[

Free Graded Module R^0,

Free Graded Module R^1 with grading [10],

Free Graded Module R^10 with grading [9, 9, 9, 9, 9, 9, 9, 9, 9, 9],

Free Graded Module R^45 with grading [8^^45],

Free Graded Module R^120 with grading [7^^120],

Free Graded Module R^210 with grading [6^^210],

Free Graded Module R^252 with grading [5^^252],

Free Graded Module R^210 with grading [4^^210],

Free Graded Module R^120 with grading [3^^120],
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Free Graded Module R^45 with grading [2^^45],

Free Graded Module R^10 with grading [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

Free Graded Module R^1,

Free Graded Module R^0

]

> B := BoundaryMaps(C);

> B: Minimal;

[*

Graded module homomorphism (0 by 1),

Graded module homomorphism (1 by 10) of degree 0,

Graded module homomorphism (10 by 45) of degree 0,

Graded module homomorphism (45 by 120) of degree 0,

Graded module homomorphism (120 by 210) of degree 0,

Graded module homomorphism (210 by 252) of degree 0,

Graded module homomorphism (252 by 210) of degree 0,

Graded module homomorphism (210 by 120) of degree 0,

Graded module homomorphism (120 by 45) of degree 0,

Graded module homomorphism (45 by 10) of degree 0,

Graded module homomorphism (10 by 1) of degree 0,

Graded module homomorphism (1 by 0)

*]

> [Binomial(n, i): i in [0 .. n]];

[ 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1 ]

> BettiTable(M);

[

[ 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1 ]

]

> $1 eq [[Binomial(n, i): i in [0 .. n]]];

true

> Regularity(M);

0

Example H109E10

We can construct the same type of ideal and module as in the last example for n = 3, but over an
exterior algebra. The free resolution is infinite here, but we can construct the resolution partially
(by default, a bound is set on the number of terms). In this general construction, the i-th Betti
number will be

(
i

n−1

)
.

> Q := RationalField();

> n := 3;

> R<[x]> := ExteriorAlgebra(Q, n);

> I := Ideal([R.i: i in [1 .. n]]);

> M := QuotientModule(I);

> M;

Reduced Module R^1/<relations>

Relations:

[x[1]],
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[x[2]],

[x[3]]

> BettiNumbers(M);

[ 1, 3, 6, 10, 15 ]

> [Binomial(i + n - 1, n - 1): i in [0..4]];

[ 1, 3, 6, 10, 15 ]

> C := FreeResolution(M);

> C;

Chain complex with terms of degree 5 down to -1

Dimensions of terms: 0 15 10 6 3 1 0

> BoundaryMaps(C);

[*

Graded module homomorphism (0 by 15),

Graded module homomorphism (15 by 10) of degree 0

Ambient matrix:

[x[3] 0 0 0 0 0 0 0 0 0]

[ 0 x[3] 0 x[2] 0 0 0 0 0 0]

[ 0 0 x[2] 0 0 0 0 0 0 0]

[ 0 x[2] x[3] 0 0 0 0 0 0 0]

[x[2] 0 0 x[3] 0 0 0 0 0 0]

[ 0 0 0 0 x[3] 0 0 0 0 x[1]]

[ 0 0 0 0 0 x[2] 0 0 x[1] 0]

[ 0 0 0 0 x[2] x[3] 0 x[1] 0 0]

[ 0 0 0 0 0 0 x[1] 0 0 0]

[ 0 0 0 0 0 x[1] x[2] 0 0 0]

[ 0 0 0 0 x[1] 0 x[3] 0 0 0]

[ 0 0 0 x[1] 0 0 0 x[3] 0 x[2]]

[ 0 0 x[1] 0 0 0 0 0 x[2] 0]

[ 0 x[1] 0 0 0 0 0 x[2] x[3] 0]

[x[1] 0 0 0 0 0 0 0 0 x[3]],

Graded module homomorphism (10 by 6) of degree 0

Ambient matrix:

[x[3] 0 0 0 0 0]

[ 0 x[3] x[2] 0 0 0]

[ 0 x[2] 0 0 0 0]

[x[2] 0 x[3] 0 0 0]

[ 0 0 0 x[3] 0 x[1]]

[ 0 0 0 x[2] x[1] 0]

[ 0 0 0 x[1] 0 0]

[ 0 0 x[1] 0 x[3] x[2]]

[ 0 x[1] 0 0 x[2] 0]

[x[1] 0 0 0 0 x[3]],

Graded module homomorphism (6 by 3) of degree 0

Ambient matrix:

[x[3] 0 0]

[ 0 x[2] 0]

[x[2] x[3] 0]

[ 0 0 x[1]]
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[ 0 x[1] x[2]]

[x[1] 0 x[3]],

Graded module homomorphism (3 by 1) of degree 0

Ambient matrix:

[x[3]]

[x[2]]

[x[1]],

Graded module homomorphism (1 by 0)

*]

Example H109E11

We construct a non-homogeneous quotient module M of Q3. As expected, the Betti numbers of
the localization of M are smaller than the Betti numbers of M .

> R<x,y,z> := PolynomialRing(RationalField(), 3, "grevlex");

> R3 := RModule(R, 3);

> B := [R3 | [x*y, x^2, z], [x*z^3, x^3, y], [y*z, z, x],

> [z, y*z, x], [y, z, x]];

> M := quo<R3 | B>;

> M;

Reduced Module R^3/<relations>

Relations:

[ x*y, x^2, z],

[x*z^3, x^3, y],

[ y*z, z, x],

[ z, y*z, x],

[ y, z, x]

> BettiNumbers(M);

[ 3, 5, 4, 2 ]

> BettiNumbers(Localization(M));

[ 3, 5, 3, 1 ]

Since M is non-homogeneous, the Betti numbers are not unique. If we create a second module
M2 which is equivalent to M and compute the Betti numbers this time without homogenization
(in the internal free resolution algorithm), then we obtain different Betti numbers for M2. But
since the Betti numbers over a local ring are unique, we get the same result for the localization
of M2.

> M2 := quo<R3 | B>;

> BettiNumbers(M2: Homogenize :=false);

[ 3, 6, 5, 2 ]

> BettiNumbers(Localization(M2): Homogenize:=false);

[ 3, 5, 3, 1 ]
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Example H109E12

Suppose M is a graded R-module. Given the graded Betti numbers βi,j of M , one can compute
the Hilbert series HM (t) of M via the formula ([Eis95, Thm. 1.13] or [DL06, Thm. 1.22]):

HM (t) =

∑
i,j

(−1)iβi,jt
j

D
,

where D is the Hilbert denominator of M : this depends on the underlying ring R and equals

n∏
i=1

(1− twi),

where n is the rank of R and wi is the weight of the i-th variable (1 by default). We can thus
write a simple function to compute the Hilbert series numerator via this formula.

> function HilbertNumeratorBetti(M)

> P<t> := PolynomialRing(IntegerRing());

> return &+[

> (-1)^i*BettiNumber(M, i, j)*t^j:

> j in [0 .. MaximumBettiDegree(M, i)],

> i in [0 .. #BettiNumbers(M)]

> ];

> end function;

We then check that this function agrees with the Magma internal function HilbertNumerator for
some modules. (Since the modules do not have negative gradings, we do not have to worry about
the denominator shift which is 0 for these modules.) First we try the Twisted Cubic.

> Q := RationalField();

> R<x,y,z,t> := PolynomialRing(Q, 4, "grevlex");

> B := [

> -x^2 + y*t, -y*z + x*t, x*z - t^2,

> x*y - t^2, -y*z + x*t, -x^2 + z*t

> ];

> M := GradedModule(Ideal(B));

> HilbertNumeratorBetti(M);

-t^5 + 5*t^3 - 5*t^2 + 1

> HilbertNumerator(M);

-t^5 + 5*t^3 - 5*t^2 + 1

0

Now we apply the function to the module M = R1/I where I is the ideal generated by the 2× 2
minors of a generic 4× 4 matrix. Computing the Hilbert series numerator via the Betti numbers
takes a little time since the resolution is non-trivial. Note the components of the Betti table which
contribute to the terms of the Hilbert series numerator.

> n := 4;

> R<[x]> := PolynomialRing(Q, n^2, "grevlex");

> A := Matrix(n, [R.i: i in [1 .. n^2]]);
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> A;

[ x[1] x[2] x[3] x[4]]

[ x[5] x[6] x[7] x[8]]

[ x[9] x[10] x[11] x[12]]

[x[13] x[14] x[15] x[16]]

> I := Ideal(Minors(A, 2));

> #Basis(I);

36

> M := QuotientModule(I);

> time HilbertNumeratorBetti(M);

-t^12 + 36*t^10 - 160*t^9 + 315*t^8 - 288*t^7 + 288*t^5 - 315*t^4 + 160*t^3 -

36*t^2 + 1

Time: 0.470

> time HilbertNumerator(M);

-t^12 + 36*t^10 - 160*t^9 + 315*t^8 - 288*t^7 + 288*t^5 - 315*t^4 + 160*t^3 -

36*t^2 + 1

0

Time: 0.000

> assert $1 eq $2;

> BettiNumbers(M);

[ 1, 36, 160, 315, 388, 388, 315, 160, 36, 1 ]

> BettiTable(M);

[

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[ 0, 36, 160, 315, 288, 100, 0, 0, 0, 0 ],

[ 0, 0, 0, 0, 100, 288, 315, 160, 36, 0 ],

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ]

]

0

Example H109E13

Given a graded module M = R1/I, one can obtain an upper bound on the regularity of M by
computing the regularity of ML = R1/IL, where IL is the leading monomial ideal of I. This will
be faster in general (since the associated free resolution will be easier to compute).

> wts := [ 1, 5, 9, 13, 17, 5, 1, 1, 1 ];

> K := GF(32003);

> R<x0,x1,x2,x3,x4,y0,y1,u,t> := PolynomialRing(K, wts);

> I := Ideal([

> x0*y0 - y1^3*u^3 - x1*t,

> x1*y1 - x0*u^5 - t^6,

> x1^2 - x0*x2 + y1^2*u^3*t^5,

> x2^2 - x1*x3 + y0*y1*u^8*t^4,

> x3^2 - x2*x4 + y0^2*u^13*t^3,

> x3*y0 - u^18 - x4*t,

> x4*y1 - x3*u^5 - y0^3*t^3,

> x1*x2 - x0*x3 + y0*y1^2*u^3*t^4 + y1*u^8*t^5,
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> x2^2 - x0*x4 + y0*y1*u^8*t^4 + u^13*t^5,

> x2*x3 - x1*x4 + y0^2*y1*u^8*t^3 + y0*u^13*t^4,

> x1*y0 - y1^2*u^8 - x2*t,

> x2*y0 - y1*u^13 - x3*t,

> x2*y1 - x1*u^5 - y0*t^5,

> x3*y1 - x2*u^5 - y0^2*t^4]);

> IsHomogeneous(I);

true

> M := GradedModule(I);

> time Regularity(M);

67

Time: 3.360

> IL := LeadingMonomialIdeal(I);

> ML := GradedModule(IL);

> time Regularity(ML);

92

Time: 0.530

> BettiNumbers(M);

[ 1, 14, 45, 72, 76, 58, 29, 8, 1 ]

> BettiNumbers(ML);

[ 1, 42, 210, 505, 723, 659, 388, 144, 31, 3 ]

Example H109E14

The following example shows how to explicitly use the resolution and syzygy functions to com-
pute the ideal of a random space curve (in P 3) of genus 11. The construction is described in
Section 1.2 of [ST02] and an equivalent form of the following computation is used by Magma’s
RandomCurveByGenus function to produce such curves.
We work over the field GF (101), which will be referred to as K and the polynomial ring R will be
the 4 variable polynomial ring over K. The construction begins by choosing a random 8 x 3 matrix
with entries given by random linear and quadratic polynomials of R in appropriate positions. The
minimal free resolution of the reduced module having this as the matrix of relations is computed.
The image of the second boundary map of the resolution is the module referred to as G∗ in the
above reference. Taking the submatrix of rows of a certain weighting of the matrix defining this
map, we multiply by a 6 x 8 matrix with random entries in K. The resulting matrix represents
a map from a free module F of rank 6 to G∗, whose kernel is isomorphic to R as a submodule
of F . The 6 coordinates of a generator of the kernel generate the desired ideal I. This kernel is
computed with a syzygy computation (note: we could also use Kernel for the matrix giving the
map). We also check that the quotient module of I has a minimal free resolution of the right
form.

> K := GF(101);

> R<x,y,z,t> := PolynomialRing(GF(101),4,"grevlex");

> v := [1,1,1,1,1,1,2,2];

> // generate the base random relations with appropriate linear and quadratic

> // entries using the Random function for multivariate polynomials.

> rels := [[Random(i,R,0): j in [1..3]] : i in v];

> Matrix(8,3,[TotalDegree(e) : e in &cat(rels)]);
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[1 1 1]

[1 1 1]

[1 1 1]

[1 1 1]

[1 1 1]

[1 1 1]

[2 2 2]

[2 2 2]

> // get the quotient module

> F := RModule(R,3);

> M := quo<F|rels>;

Get the minimal free resolution and check that it has the correct Betti table.

> res := MinimalFreeResolution(M);

> BettiTable(res);

[

[ 3, 6, 0, 0, 0 ],

[ 0, 2, 8, 0, 0 ],

[ 0, 0, 3, 10, 4 ]

]

0

Get the 2nd boundary map matrix and then the 8 x 8 submatrix of linear and quadratic entry
rows.

> mat := Matrix(BoundaryMap(res,2));

> Nrows(mat); Ncols(mat);

11

8

> u := [1,1,2,2,2,2,2,2];

> mat := Matrix(R,[ri : i in [1..11] |

> &and[(ri[j] eq 0) or (TotalDegree(ri[j]) eq u[j]):

> j in [1..8]] where ri is Eltseq(mat[i])]);

> Nrows(mat); Ncols(mat);

8

8

> Matrix(8,8,[TotalDegree(m) :m in Eltseq(mat)]);

[1 1 2 2 2 2 2 2]

[1 1 2 2 2 2 2 2]

[1 1 2 2 2 2 2 2]

[1 1 2 2 2 2 2 2]

[1 1 2 2 2 2 2 2]

[1 1 2 2 2 2 2 2]

[1 1 2 2 2 2 2 2]

[1 1 2 2 2 2 2 2]

Now generate the random 6 x 8 matrix over K, compute the kernel of the composition via syzygies
and generate the matrix I.

> mat1 := Matrix(R,6,8,[Random(K) : i in [1..48]]);
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> matc := mat1*mat;

> F1 := EModule(R,[2-x : x in u]);

> syz := SyzygyModule(sub<F1|RowSequence(matc)>);

> B := MinimalBasis(syz);

> #B;

1

> I := ideal<R|Eltseq(B[1])>;

Finally, check I has the right dimension (2) and degree (12) and that R/I has the correct minimal
free resolution with Betti table as given in [ST02].

> Dimension(I); Degree(I);

2 [ 3, 4 ]

12

> OC := QuotientModule(I);

> BettiTable(MinimalFreeResolution(OC));

[

[ 1, 0, 0, 0 ],

[ 0, 0, 0, 0 ],

[ 0, 0, 0, 0 ],

[ 0, 0, 0, 0 ],

[ 0, 6, 2, 0 ],

[ 0, 0, 6, 3 ]

]

0

109.13 The Hom Module and Ext

Hom(M, N)

Given R−modules M and N , return H = HomR(M,N) as an abstract reduced
module and a transfer map f : H → S, where S is the set of all homomorphisms (of
type ModMPolHom) from M to N .

Thus H is a module representing the set of all homomorphisms from M to N ,
while f maps an element h ∈ H to an actual homomorphism from M to N (and the
inverse image of an element of S under f gives a corresponding element of H).

If M and N are graded, then H is graded also, and the degree df of an element
f ∈ H is the degree of the corresponding homomorphism (so an element in M of
degree d will be mapped by f to zero or an element of degree df + d in N).

Hom(C, N)

Given a complex C of R-modules and an R-module N , return HomR(C, N). This
is a new complex whose i-th term is HomR(Ci, N) (where Ci is the i-th term of
C); the boundary maps are also derived from those of C in the natural way via the
functor HomR(−, N) (see [Eis95, p.63]). Note that the direction of arrows in this
complex is opposite to that of C.
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Ext(i, M, N)

Given an integer i ≥ 0 and R-modules M and N , return Exti(M, N). This is the
homology at the i-th term of the complex HomR(C,N) where C is a free resolution
of M .

Example H109E15

We construct a Hom module and explicit homomorphisms derived from it.

> R<x,y,z> := PolynomialRing(RationalField(), 3);

> M := quo<GradedModule(R, 3) |

> [x*y, x*z, y*z], [y, x, y],

> [0, x^3 - x^2*z, x^2*y - x*y*z], [y*z, x^2, x*y]>;

> N := quo<GradedModule(R, 2) |

> [x^2, y^2], [x^2, y*z], [x^2*z, x*y^2]>;

> M;

Graded Module R^3/<relations>

Relations:

[ x*y, x*z, y*z],

[ y, x, y],

[ 0, x^3 - x^2*z, x^2*y - x*y*z],

[ y*z, x^2, x*y]

> N;

Graded Module R^2/<relations>

Relations:

[ x^2, y^2],

[ x^2, y*z],

[x^2*z, x*y^2]

> H, f := Hom(M, N);

> H;

Graded Module R^7/<relations> with grading [1, 2, 1, 1, 1, 1, 1]

Relations:

[x, 0, 0, -z, 0, x, 0],

[y, 0, x, 0, y, 0, 0],

[y, 0, x, 0, 0, y, 0],

[0, 0, 0, 0, 0, 0, y],

[-y, 0, -x, 0, -z, 0, z],

[x, 0, 0, -y, x, 0, 0],

[x*y, y, 0, 0, 0, 0, x*y],

[-x*y + x*z, -y + z, 0, 0, 0, 0, x*z - z^2],

[x*z, x, 0, 0, 0, 0, 0],

[0, y, 0, y^2, -z^2, 0, z^2],

[0, y - z, 0, 0, 0, 0, z^2]

> h := f(H.1);

> h;

Module homomorphism (3 by 2) of degree 1

Presentation matrix:

[0 z]
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[x 0]

[0 0]

> $1 @@ f;

[1, 0, 0, 0, 0, 0, 0]

> Degree(M.1);

0

> h(M.1);

[0, z]

> Degree(h(M.1));

1

> f(Basis(H));

[

Module homomorphism (3 by 2) of degree 1

Presentation matrix:

[0 z]

[x 0]

[0 0],

Module homomorphism (3 by 2) of degree 2

Presentation matrix:

[ 0 -z^2]

[ 0 y*z]

[ 0 0],

Module homomorphism (3 by 2) of degree 1

Presentation matrix:

[ 0 0]

[-y 0]

[ x 0],

Module homomorphism (3 by 2) of degree 1

Presentation matrix:

[ 0 0]

[ 0 -y]

[ 0 x],

Module homomorphism (3 by 2) of degree 1

Presentation matrix:

[ 0 -z]

[ 0 0]

[ 0 y],

Module homomorphism (3 by 2) of degree 1

Presentation matrix:

[ 0 -z]

[ 0 0]

[ 0 z],

Module homomorphism (3 by 2) of degree 1

Presentation matrix:

[ 0 y - z]

[ 0 0]

[ 0 0]
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]

109.14 Tensor Products and Tor

TensorProduct(M, N)

Given R−modules M and N , return the tensor product M ⊗R N as an ambient
module T , together with the associated map f : M × N → T . If M and N are
graded, then T is graded also.

TensorProduct(C, N)

Given a complex C of R-modules and an R-module N , return C ⊗R N . This is
a new complex whose i-th term is Ci ⊗R N (where Ci is the i-th term of C); the
boundary maps are also derived from those of C in the natural way via the functor
−⊗R N (see [Eis95, p.64]).

Tor(i, M, N)

Given an integer i ≥ 0 and R-modules M and N , return Tori(M, N). This is the
homology at the i-th term of the complex C ⊗R N where C is a free resolution of
M .

Example H109E16

We construct a tensor product and some Tor modules for the same modules from the previous
example.

> R<x,y,z> := PolynomialRing(RationalField(), 3);

> M := quo<GradedModule(R, 3) |

> [x*y, x*z, y*z], [y, x, y],

> [0, x^3 - x^2*z, x^2*y - x*y*z], [y*z, x^2, x*y]>;

> N := quo<GradedModule(R, 2) |

> [x^2, y^2], [x^2, y*z], [x^2*z, x*y^2]>;

> T, f := TensorProduct(M, N);

> T;

Graded Module R^6/<relations>

Relations (Groebner basis):

[x^2, y*z, 0, 0, 0, 0],

[0, 0, 0, 0, x^2, y*z],

[0, 0, 0, 0, 0, x*y*z - y*z^2],

[x*y - y*z, 0, 0, 0, 0, 0],

[0, x*y - y*z, 0, 0, 0, 0],

[y*z, 0, 0, -y*z, x*y, 0],

[y, 0, x, 0, y, 0],

[0, y, 0, x, 0, y],

[0, y^2 - y*z, 0, 0, 0, 0],

[0, 0, 0, y^2 - y*z, 0, 0],
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[0, 0, 0, 0, 0, y^2 - y*z],

[y*z^2, 0, 0, -y*z^2, 0, -y*z^2],

[0, y*z^2, 0, y*z^2, 0, y*z^2]

Note that f maps the cartesian product of M and N into T .

> f(<M.1, N.1>);

[1, 0, 0, 0, 0, 0]

> [f(<m, n>): n in Basis(N), m in Basis(M)];

[

[1, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0],

[0, 0, 0, 1, 0, 0],

[0, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 0, 1]

]

Finally we construct associated Tor modules.

> Tor(0, M, N);

Graded Module R^6/<relations>

Relations:

[y, 0, x, 0, y, 0],

[0, y, 0, x, 0, y],

[0, 0, 0, 0, x*y - y*z, 0],

[0, 0, 0, 0, 0, x*y - y*z],

[y*z, x^2, 0, 0, 0, 0],

[x*y*z - y*z^2, 0, 0, 0, 0, 0],

[y^2 - y*z, 0, 0, 0, 0, 0],

[0, 0, y*z, x^2, 0, 0],

[0, 0, x*y*z - y*z^2, 0, 0, 0],

[0, 0, y^2 - y*z, 0, 0, 0],

[0, 0, 0, 0, y*z, x^2],

[0, 0, 0, 0, y^2 - y*z, 0],

[0, 0, 0, 0, x*y*z - y*z^2, 0]

> Tor(1, M, N);

Graded Module R^2/<relations> with grading [3, 3]

Relations:

[y - z, 0],

[ z, -y],

[ z^2, -x*y],

[ 0, 0]

> Tor(2, M, N);

Free Reduced Module R^0
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109.15 Cohomology Of Coherent Sheaves

We have implemented functions to compute the dimensions of cohomology groups of coher-
ent sheaves on ordinary projective space over an (exact) field. The sheaves are represented
by graded modules over the coordinate ring of the ambient projective space. The sheaf may
arise naturally as one supported on a particular closed subscheme (eg, the structure sheaf
of a projective variety) but it is a matter of indifference whether the sheaf is considered
as lying on the subscheme or the entire ambient space (equivalently, whether the repre-
senting module is considered as a module over the coordinate ring of the ambient or the
quotient coordinate ring of the subscheme) because the cohomology groups are naturally
isomorphic. We plan to add a fuller package of functionality for coherent sheaves, but it
is convenient to add the cohomology function now as the algorithm we use works equally
efficiently (roughly speaking) when applied to any two graded modules that represent the
same coherent sheaf.

The algorithm we have implemented is that of Decker, Eisenbud, Floystad and Schreyer
which uses the Beilinson-Gelfand-Gelfand (BGG) correspondence to reduce the computa-
tion of the cohomology groups of the sheaf and its Serre twists to that of various graded
free modules in the projective resolution of a module over a finite exterior (alternating)
algebra.

CohomologyDimension(M,r,n)

Verbose Cohom Maximum : 1
M is a graded module over P = k[x0, .., xm] with k an exact field. Let M̃ be
the corresponding coherent sheaf on Proj(P ) = Pm

k . The function returns the k-
dimension of the cohomology group Hr(Pm

k , M̃(n)) where M̃(n) is the nth Serre
twist of M̃ . n can be any integer and r a non-negative integer.

The algorithm used is based on the BGG correspondence. Details can be found
in [EFS03] or see [DE02] for a slightly more computational description. Let A be
the finite exterior algebra with m + 1 generators, which is of dimension 2m+1 over
k. The Tate resolution of M̃ is a doubly infinite exact sequence of graded free A-
modules. Each cohomology group of a twist of M̃ is isomorphic as a k vector space
to a particular graded piece of a particular term in the Tate resolution. In fact, we
never need to explicitly compute the terms of the resolution of index ≥ reg(M) (the
regularity of M) because they are pure graded of dimension given by the Hilbert
polynomial of M .

The algorithm computes two consecutive terms in the Tate resolution at indices
≥ reg(M), and the A-homomorphism between them, from two corresponding graded
pieces of M and the linear maps between them coming from multiplication by the
base variables. Then the resolution is extended backwards as far as necessary by
computing the A-projective resolution of the kernel of this A-homomorphism. The
projective resolution is efficiently determined by non-commutative Gröbner basis
computations. This uses the new Magma machinery for exterior algebras and their
modules. The projective resolution information is cached so that repeated calls to
the function for the same module M will require either no extra work or only an
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extension to the part of the resolution already computed.

Example H109E17

We consider a random surface X in a family of Enriques surfaces of degree 9 in P4. It is defined
by 15 degree 5 polynomials and we work over F17 to keep the input of reasonable size (it is still
fairly large!).
The surface is non-singular with arithmetic genus (pa), geometric genus (g) and irregularity q all
zero. These are related generally for a non-singular surface by g = pa + q and pa can be computed
without cohomology machinery (from Hilbert polynomials). But cohomology of the structure
sheaf of X and Serre duality is the easiest way to get g or q.

> R<x,y,z,t,u> := PolynomialRing(GF(17),5,"grevlex");

> I := ideal<R |[

> 2*x^3*z*t + 5*x^2*y*z*t + 14*x^2*z^2*t + x^3*z*u + 5*x^2*y*z*u +

> 10*x^2*z^2*u + 8*x*y*z^2*u + 15*y^2*z^2*u + 4*x*z^3*u + 2*y*z^3*u +

> 9*x^3*t*u + 14*x^2*y*t*u + 16*x^2*z*t*u + 10*x*y*z*t*u + 10*x*z^2*t*u +

> y*z^2*t*u + 13*x^3*u^2 + 14*x^2*y*u^2 + 11*x^2*z*u^2 + 15*x*y*z*u^2 +

> 10*y^2*z*u^2 + 8*x*z^2*u^2 + 8*y*z^2*u^2 + x^2*t*u^2 + 11*x*y*t*u^2 +

> 16*x*y*u^3 + 9*y^2*u^3 + 4*x*z*u^3 + 2*y*z*u^3 + 10*x*t*u^3 + y*t*u^3 +

> 8*x*u^4 + 8*y*u^4,

> 5*x^3*z*t + x^2*z^2*t + 5*x^3*z*u + 11*x^2*z^2*u + 15*x*y*z^2*u + 2*x*z^3*u

> + 14*x^3*t*u + 5*x^2*z*t*u + x*z^2*t*u + 14*x^3*u^2 + 10*x*y*z*u^2 +

> 8*x*z^2*u^2 + 15*x^2*t*u^2 + 11*x^2*u^3 + 9*x*y*u^3 + 2*x*z*u^3 +

> x*t*u^3 + 8*x*u^4,

> 14*x^3*z*t + x^2*y*z*t + 13*x^2*z^2*t + 7*x^2*z*t^2 + 3*x^3*z*u +

> 16*x^2*y*z*u + 4*x^2*z^2*u + 6*x^3*t*u + 16*x^2*y*t*u + 9*x^2*z*t*u +

> 9*x^2*t^2*u + 11*x^3*u^2 + x^2*y*u^2 + 14*x^2*z*u^2 + 2*x*z^2*u^2 +

> 11*y*z^2*u^2 + 6*z^3*u^2 + 4*x^2*t*u^2 + 4*x*z*t*u^2 + 14*y*z*t*u^2 +

> 6*z^2*t*u^2 + 15*x*t^2*u^2 + 10*z*t^2*u^2 + 3*x^2*u^3 + 11*x*z*u^3 +

> 16*y*z*u^3 + 4*z^2*u^3 + 16*x*t*u^3 + 3*y*t*u^3 + 14*z*t*u^3 + 6*t^2*u^3

> + 13*x*u^4 + 7*y*u^4 + 16*z*u^4 + 11*t*u^4 + 10*u^5,

> 15*x^3*z^2 + 12*x^2*y*z^2 + 3*x^2*z^3 + 12*x^3*z*u + 8*x^2*y*z*u +

> 11*x^2*z^2*u + x^3*u^2 + 14*x^2*y*u^2 + 3*x^2*z*u^2 + 11*x^2*u^3,

> 12*x^3*z^2 + 16*x^2*z^3 + 8*x^3*z*u + x^2*z^2*u + 14*x^3*u^2 + 16*x^2*z*u^2

> + x^2*u^3,

> 2*x^3*y*z + 5*x^2*y^2*z + 14*x^2*y*z^2 + 13*x^3*y*u + 12*x^2*y^2*u +

> 8*x^3*z*u + 4*x^2*y*z*u + 12*x^2*z^2*u + 3*x*y*z^2*u + 14*y^2*z^2*u +

> 15*x*z^3*u + 3*y*z^3*u + 15*x^2*y*t*u + 4*x^2*z*t*u + 15*x*y*z*t*u +

> 11*x*z^2*t*u + 10*y*z^2*t*u + 2*x^3*u^2 + 12*x^2*y*u^2 + 3*x^2*z*u^2 +

> 14*x*y*z*u^2 + 13*x*z^2*u^2 + 10*y*z^2*u^2 + x^2*t*u^2 + 15*x*y*t*u^2 +

> 16*y*z*t*u^2 + 12*x*y*u^3 + 3*y^2*u^3 + 15*x*z*u^3 + 4*y*z*u^3 +

> 11*x*t*u^3 + 6*y*t*u^3 + 13*x*u^4 + 14*y*u^4,

> 5*x^3*y*z + x^2*y*z^2 + 10*x^2*z^2*t + 4*x^4*u + 12*x^3*y*u + 5*x^3*z*u +

> 12*x^2*y*z*u + 14*x*y*z^2*u + 3*x*z^3*u + 15*x^3*t*u + 16*x^2*z*t*u +

> 10*x*z^2*t*u + 11*x^3*u^2 + 4*x^2*y*u^2 + 13*x^2*z*u^2 + 10*x*z^2*u^2 +

> 4*x^2*t*u^2 + 16*x*z*t*u^2 + 13*x^2*u^3 + 3*x*y*u^3 + 4*x*z*u^3 +

> 6*x*t*u^3 + 14*x*u^4,

> 10*x^2*z^3 + 8*x^2*z^2*u + 5*x^2*z*u^2 + 11*x^2*u^3,
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> 16*x^3*z^2 + 12*x^2*y*z^2 + 7*x^2*z^3 + 9*x*y*z^3 + 2*y^2*z^3 + 13*x*z^4 +

> 15*y*z^4 + 13*x^3*z*t + 12*x^2*y*z*t + 7*x^2*z^2*t + 7*x*y*z^2*t +

> 7*x*z^3*t + 16*y*z^3*t + 4*x^3*z*u + 3*x^2*y*z*u + 6*x^2*z^2*u +

> 2*x*y*z^2*u + 7*y^2*z^2*u + 9*x*z^3*u + 9*y*z^3*u + 16*x^3*t*u +

> 3*x^2*y*t*u + 13*x^2*z*t*u + 6*x*y*z*t*u + x*y*z*u^2 + 8*y^2*z*u^2 +

> 13*x*z^2*u^2 + 15*y*z^2*u^2 + 6*x^2*t*u^2 + 7*x*z*t*u^2 + 16*y*z*t*u^2 +

> 9*x*z*u^3 + 9*y*z*u^3,

> 12*x^3*z^2 + 6*x^2*z^3 + 2*x*y*z^3 + 15*x*z^4 + 12*x^3*z*t + 11*x^2*z^2*t +

> 16*x*z^3*t + 3*x^3*z*u + 7*x*y*z^2*u + 9*x*z^3*u + 3*x^3*t*u +

> 3*x^2*z*t*u + 6*x^2*z*u^2 + 8*x*y*z*u^2 + 15*x*z^2*u^2 + 16*x^2*t*u^2 +

> 16*x*z*t*u^2 + 9*x*z*u^3,

> x^3*y*z + 5*x^2*y^2*z + 10*x^2*y*z^2 + 8*x*y^2*z^2 + 15*y^3*z^2 + 4*x*y*z^3

> + 2*y^2*z^3 + 13*x^3*y*t + 2*x^2*y^2*t + 9*x^3*z*t + 12*x^2*y*z*t +

> 10*x*y^2*z*t + 5*x^2*z^2*t + 7*x*y*z^2*t + 4*y^2*z^2*t + 2*x*z^3*t +

> 14*y*z^3*t + 2*x^2*y*t^2 + 13*x^2*z*t^2 + 2*x*y*z*t^2 + 6*x*z^2*t^2 +

> 7*y*z^2*t^2 + 13*x^3*y*u + 14*x^2*y^2*u + 11*x^2*y*z*u + 15*x*y^2*z*u +

> 10*y^3*z*u + 8*x*y*z^2*u + 8*y^2*z^2*u + 15*x^3*t*u + 6*x^2*y*t*u +

> 11*x*y^2*t*u + 14*x^2*z*t*u + 3*x*y*z*t*u + 4*x*z^2*t*u + 7*y*z^2*t*u +

> 16*x^2*t^2*u + 2*x*y*t^2*u + y*z*t^2*u + 16*x*y^2*u^2 + 9*y^3*u^2 +

> 4*x*y*z*u^2 + 2*y^2*z*u^2 + 15*x*y*t*u^2 + 15*y^2*t*u^2 + 2*x*z*t*u^2 +

> 13*y*z*t*u^2 + 6*x*t^2*u^2 + 11*y*t^2*u^2 + 8*x*y*u^3 + 8*y^2*u^3 +

> 4*x*t*u^3 + 3*y*t*u^3,

> 5*x^3*y*z + 11*x^2*y*z^2 + 15*x*y^2*z^2 + 2*x*y*z^3 + 13*x^4*t + 2*x^3*y*t +

> 7*x^3*z*t + 6*x^2*y*z*t + 16*x^2*z^2*t + 4*x*y*z^2*t + 14*x*z^3*t +

> 2*x^3*t^2 + 9*x^2*z*t^2 + 7*x*z^2*t^2 + 14*x^3*y*u + 5*x^3*z*u +

> 4*x^2*y*z*u + 10*x*y^2*z*u + 12*x^2*z^2*u + 8*x*y*z^2*u + 15*x*z^3*u +

> 6*y*z^3*u + 11*z^4*u + 16*x^3*t*u + 15*x^2*y*t*u + 13*x^2*z*t*u +

> 3*x*z^2*t*u + 3*y*z^2*t*u + 11*z^3*t*u + 13*x^2*t^2*u + 3*x*z*t^2*u +

> 7*z^2*t^2*u + 7*x^3*u^2 + 7*x^2*y*u^2 + 9*x*y^2*u^2 + x^2*z*u^2 +

> 2*x*y*z*u^2 + 6*x*z^2*u^2 + y*z^2*u^2 + 13*z^3*u^2 + 12*x^2*t*u^2 +

> 15*x*y*t*u^2 + 14*x*z*t*u^2 + 14*y*z*t*u^2 + 3*z^2*t*u^2 + 11*x*t^2*u^2

> + 11*z*t^2*u^2 + 9*x^2*u^3 + 8*x*y*u^3 + 4*x*z*u^3 + 10*y*z*u^3 +

> z^2*u^3 + 3*x*t*u^3 + 6*z*t*u^3 + 7*z*u^4,

> 4*x^4*z + 3*x^3*y*z + 10*x^3*z^2 + x^2*z^3 + 14*x*y*z^3 + 3*x*z^4 +

> 15*x^3*z*t + 8*x^2*z^2*t + 10*x*z^3*t + 14*x^3*y*u + 15*x^3*z*u +

> 11*x^2*z^2*u + 10*x*z^3*u + 16*x^2*z*t*u + 16*x*z^2*t*u + 6*x^3*u^2 +

> 14*x^2*z*u^2 + 3*x*y*z*u^2 + 4*x*z^2*u^2 + 6*x^2*t*u^2 + 6*x*z*t*u^2 +

> 15*x^2*u^3 + 14*x*z*u^3,

> 5*x^3*z^2 + 4*x^2*y*z^2 + 12*x^2*z^3 + 15*x*z^4 + 6*y*z^4 + 11*z^5 +

> 14*x^3*z*t + x^2*y*z*t + 7*x^2*z^2*t + 13*x*z^3*t + 3*y*z^3*t + 11*z^4*t

> + 12*x^2*z*t^2 + 2*x*z^2*t^2 + 7*z^3*t^2 + 7*x^3*z*u + 13*x^2*y*z*u +

> x^2*z^2*u + 6*x*z^3*u + y*z^3*u + 13*z^4*u + 6*x^3*t*u + 16*x^2*y*t*u +

> 9*x^2*z*t*u + x*z^2*t*u + 14*y*z^2*t*u + 3*z^3*t*u + 6*x^2*t^2*u +

> 11*z^2*t^2*u + 9*x^2*z*u^2 + 4*x*z^2*u^2 + 10*y*z^2*u^2 + z^3*u^2 +

> 15*x^2*t*u^2 + 6*z^2*t*u^2 + 7*z^2*u^3,

> 13*x^5 + 2*x^4*y + 7*x^4*z + 6*x^3*y*z + 16*x^3*z^2 + 4*x^2*y*z^2 +

> 14*x^2*z^3 + 2*x^4*t + 9*x^3*z*t + 7*x^2*z^2*t + 16*x^4*u + 15*x^3*y*u +

> x^3*z*u + 11*x^2*z^2*u + 3*x*y*z^2*u + 14*x*z^3*u + 13*x^3*t*u +
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> 3*x^2*z*t*u + 7*x*z^2*t*u + 14*x^3*u^2 + 15*x^2*y*u^2 + 6*x^2*z*u^2 +

> 14*x*y*z*u^2 + 10*x*z^2*u^2 + 11*x^2*t*u^2 + 11*x*z*t*u^2 + 3*x*z*u^3]>;

> X := Scheme(Proj(R),I); // define the surface

> // The structure sheaf O_X of X is represented by graded module R/I

> O_X := GradedModule(I); // R/I

We first compute the dimension of H0(OX). This is fairly uninteresting (it’s just 1) but after
this computation, the cached data will allow the following cohomology calls to execute practically
instantaneously.

> CohomologyDimension(O_X,0,0); // dim H^0(O_X)

1

> // get the geometric genus and irregularity

> time CohomologyDimension(O_X,2,0); // dim H^2(O_X) = g

0

Time: 0.000

> time CohomologyDimension(O_X,1,0); // dim H^1(O_X) = q

0

Time: 0.000

> // => p_a(X)=0. Verify this.

> ArithmeticGenus(X);

0

We now compute a module representative of the canonical sheaf KX of X. We can just take
Ext2R(M,R(−5)). Then we check again that H0(KX) = g is 0. Note that here the module
representing KX is maximal so that H0(KX(n)) is just the dimension of its nth graded part for
any n. However, in other cases (where X is again not arithmetically Cohen-Macaulay) the Ext
computation for KX may not give the maximal representing module, so its 0th graded piece might
have dimension less than g.

> K_X := Ext(2,O_X,RModule(R,[5]));

> K_X;

Reduced Module R^6/<relations> with grading [1, 1, 1, 1, 1, 1]

Quotient Relations:

[12*z + 8*t + 7*u, 5*y + 7*z + 8*t + 6*u, 16*z + 4*u, 16*z + 7*u, 15*u,

7*u],

[14*u, 8*u, 13*x + 2*y + 4*t + 14*u, 4*y + 8*t + 2*u, 16*t + 6*u, 3*u],

[15*z + 9*t + 11*u, 2*y + 13*z + 8*t + 14*u, 7*t + 16*u, 8*x + 14*t + 6*

11*t + 15*u, 11*z + 14*t + 16*u],

[12*z + 15*t + 6*u, 5*y + 7*z + 4*t + 9*u, t + u, 2*t + 2*u, 7*x + 4*t +

12*z + t + 2*u],

[12*y + 10*z + 14*t + 14*u, 7*y + 15*z + 8*t, 4*u, 8*u, 16*u, 5*x + 15*z

+ 9*u],

[15*x, 15*x, 4*u, 8*u, 16*u, 0],

[14*z + 15*t + 9*u, 3*y + 11*z + 7*t + 13*u, 0, 11*z + 6*u, 2*z + 14*u,

10*t + 4*u],

[10*z + 14*t + 14*u, 4*x + 12*y + 15*z + 8*t, 0, 0, 0, 15*z + 16*t + 9*u

[5*z + 16*t + 4*u, 12*y + 10*z + 15*t + 5*u, 0, 2*z + 15*u, 6*u, 15*z +

7*u],

[13*z + t + 15*u, 4*y + 9*z + 16*t + 16*u, 0, 0, 0, 5*z + 11*t + 3*u]
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> CohomologyDimension(K_X,0,0);

0

Finally, we verify some more cases of Serre duality which gives

dim Hr(OX(n)) = dim H2−r(KX(−n)).

> [CohomologyDimension(K_X,0,i) eq CohomologyDimension(O_X,2,-i) :

> i in [-1..5]];

[ true, true, true, true, true, true, true ]
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Chapter 110

INVARIANT THEORY

110.1 Introduction
Magma contains a powerful module for computing with invariant rings and fields of fi-
nite groups and algebraic groups. The algorithms for invariant theory of finite groups
in Magma are based on those in the Invar package written in Maple, implemented by
G. Kemper [Kem96], but also include many new ideas and improvements which are de-
scribed in detail in a subsequent paper [KS97]. Since a detailed understanding of the
latter paper is useful for better understanding of many of the functions in the chapter, it
is recommended the paper be perused by anyone wishing to make serious applications of
the functions.

Since V2.14, Magma also has algorithms for invariant theory of linear algebraic groups.
In particular, Derksen’s algorithm [Der99] and the algorithm by Beth and Müller-Quade
[MQB99] have been implemented. These additions use code written by G. Kemper.

The primary goal of invariant theory in Magma is the computation of generators of the
invariant ring or field of a given group, which may be finite or algebraic. The ground field
may have arbitrary characteristic. In invariant theory of finite groups, the modular case,
i.e., the case where the characteristic of the ground field K divides the group order, is of
particular interest, since in that case there are still many theoretical questions unanswered.
Magma also contains easy algorithms to calculate properties of modular invariant rings,
such as the Hilbert series, the Cohen-Macaulay property, depth, and free resolutions.

The approach to calculating the invariant ring of a finite group is broken up into
two major steps: first a system of primary invariants is constructed, i.e., homogeneous
invariants f1, . . . , fn which are algebraically independent, such that the invariant ring is a
finitely generated module over A = K[f1, . . . , fn]. In the next step we calculate secondary
invariants, which are generators of the invariant ring as an A-module.

Throughout this chapter, K will be a field and G is a group acting linearly on the
n-dimensional vector space V ∼= Kn with basis x1, . . . , xn. G may be a linear algebraic
group, in which case K is assumed to be algebraically closed, or a finite matrix group, or
a permutation group. G also acts on the symmetric algebra K[V ] = S(V ), which is the
multivariate polynomial ring K[x1, . . . , xn] in the variables x1, . . . , xn. The invariant ring
R = {f ∈ K[V ] | fσ = f ∀σ ∈ G} is denoted by K[V ]G. The G-action extends naturally to
the rational function field K(V ) on V , leading to the analogous definition of the invariants
field K(V )G.

Sections 110.2.1 through 110.7 describe the general setup of invariant theory in
Magma. Section 110.8 is about computing invariants of specified degree. Sections 110.9
through 110.16 deal with functions for invariant rings of finite groups. The following Sec-
tions 110.17 and 110.18 present some functions whose scope is not limited to the context
of invariant theory. Sections 110.20 and 110.21.3 are about functions for invariant rings
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of algebraic groups and for invariant fields, respectively. The Section 110.19 gives infor-
mation about some low-level control of the data structures associated to invariant theory.
Finally, since V2.14, the Section 110.20 deals with invariant rings of algebraic groups and
the Section 110.21.3 deals with invariant fields.

110.2 Invariant Rings of Finite Groups

110.2.1 Creation
Let G be a finite matrix or permutation group acting on the polynomial ring P =
K[x1, . . . , xn] over the field K. Magma allows the construction of the invariant ring
R = K[V ]G. The invariant ring R is a special structure which contains references to
the group G and polynomial ring P . When the invariant ring R is created using the
InvariantRing function, no explicit calculations are done until specifically invoked (e.g.,
by the PrimaryInvariants function). The elements of R are the polynomials of P which
are invariant under the action of G. Note that the parent of such polynomials is still P
– the invariant ring R is just a special structure which contains all the information about
the invariant ring. The category of invariant rings is RngInvar.

InvariantRing(G)

InvariantRing(G, K)

Construct the invariant ring R = K[V ]G of the finite matrix or permutation group
G over the field K. For a matrix group G, G alone should be supplied, while for
a permutation group G, G should be supplied, together with the field K. The
appropriate multivariate polynomial ring P is automatically constructed. No other
explicit calculations are done (e.g. computation of primary invariants).

110.2.2 Access
The following functions allow simple access to basic properties of invariant rings.

Group(R)

Given the invariant ring R = K[V ]G of the group G over the field K, return the
group G.

CoefficientRing(R)

CoefficientField(R)

Given the invariant ring R = K[V ]G of the group G over the field K, return the
coefficient field K.
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PolynomialRing(R)

Given an invariant ring R = K[V ]G of the group G of degree n over the field K,
return the polynomial ring P = K[x1, . . . , xn] in which the invariants of R lie. P
has the print names "x1", "x2", etc. – the angle bracket notation or the . operator
should be used to assign the variables of P to actual Magma variables.

f in R

Return whether the polynomial f is in R = K[V ]G. Note that the parent of f is
always the polynomial ring P , never R, so a true result does not mean that the
parent of f is R.

110.3 Group Actions on Polynomials

This section describes in detail the actions which groups have on multivariate polynomial
rings.

110.4 Permutation Group Actions on Polynomials

If P is a polynomial ring in n indeterminates x1, . . . , xn, over any coefficient ring,
Sym(n) acts on P by permuting the indices of the indeterminates. Thus, the polyno-
mial f(x1, . . . , xn) is mapped into the polynomial f(xg(1), . . . , xg(n)).

f ^ g

Given a polynomial f belonging to a polynomial ring having n indeterminates, and
a permutation g belonging to a subgroup of Sym({1, . . . , n}), return the image of f
under g.

f ^ G

Given a polynomial f belonging to a polynomial ring having n indeterminates, and
a permutation group G contained in Sym({1, . . . , n}), return the orbit of f under
G.

IsInvariant(f, g)

Given a polynomial f belonging to a polynomial ring having n indeterminates, and
a permutation g of degree n or an element of a matrix group of degree n whose
coefficient ring is the same as that of f , return whether f is an invariant of g, i.e.,
whether fg = f .

IsInvariant(f, G)

Given a polynomial f belonging to a polynomial ring having n indeterminates, and
a permutation group G of degree n or a matrix group of degree n whose coefficient
ring is the same as that of f , return whether f is an invariant of G, i.e., whether
fg = f for all g ∈ G.
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110.5 Matrix Group Actions on Polynomials

If P is a polynomial ring in n indeterminates x1, . . . , xn, over the ring S, then GL(n, S) acts
on P as follows: Let x denote the vector (x1, . . . , xn). Then the image g of a polynomial
f of P under the action of a matrix a of GL(n, S) is defined by g(x) = f(x ∗ a).

f ^ a

Given a polynomial f belonging to a polynomial ring having n indeterminates and
coefficient ring S, and a matrix a belonging subgroup G of GL(n, S), return the
image of f under a.

f ^ G

Given a polynomial f belonging to a polynomial ring having n indeterminates and
coefficient ring S, and a to a subgroup of GL(n, S), return the orbit of f under G.

Example H110E1

We act on the polynomial ring in two indeterminates over the field K = Q(
√

2), by a cyclic
subgroup of GL(2,K).

> K := QuadraticField(2);

> Aq := [ x / K.1 : x in [1, 1, -1, 1]];

> G := MatrixGroup<2, K | Aq>;

> P<x, y> := PolynomialRing(K, 2);

> f := x^2 + x * y + y^2;

> g := f^G.1;

> g;

1/2*x^2 + 3/2*y^2

> f^G;

{

1/2*x^2 + 3/2*y^2,

x^2 - x*y + y^2,

x^2 + x*y + y^2,

3/2*x^2 + 1/2*y^2

}
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110.6 Algebraic Group Actions on Polynomials
In the invariant theory package of Magma, a linear algebraic group G is given by poly-
nomials, say in variables t1, . . . , tm, defined over some field K that is representable in
Magma, as the affine variety over the algebraic closure K̄ of K given by these polyno-
mials. A G-module is given by a matrix A ∈ K[t1, . . . , tm]n×n such that a group element
(η1, . . . , ηm) ∈ G acts on K̄n by the matrix obtained by substituting (η1, . . . , ηm) into the
polynomials occurring in the matrix A.

G then also acts on the ring of polynomials on K̄n by

σ(f) = f ◦ σ−1

for σ ∈ G and f ∈ K̄[x1, . . . , xn]. Since the algorithms in Magma do not work with
the algebraic closure, single group elements are never dealt with. In fact, all relevant
algorithms ony involve field elements of K, the field of definition.

110.7 Verbosity
The following procedure allows verbose information for the Invariant Theory algorithms
to be displayed.

SetVerbose("Invariants", v)

(Procedure.) Set the verbose printing level for the Invariant Theory algorithms of
Magma to be v. Currently the legal values for v are true, false, 0, 1, 2, 3, or 4
(false has the same effect as 0, and true has the same effect as 1). Level 1 gives a
minimal amount of useful information during the running of all the algorithms while
higher levels give more detailed information. For the primary invariants computa-
tion, the verbose output displays each possible degree list (degrees of the potential
primary invariants) before and then tries to find primary invariants corresponding to
this degree list. For the secondary invariants computation, in the non-modular case
the algorithm loops over the necessary degrees in increasing order and computes the
relevant new invariants; in the modular case the algorithm finds secondary invari-
ants with respect to a subgroup and then performs a module syzygy computation.
Full details of the algorithms are found in [KS97].

110.8 Construction of Invariants of Specified Degree
Let R = K[V ]G be the invariant ring of the group G over the field K. Let d ≥ 0 be a fixed
integer. The homogeneous invariants in R of degree d form a vector space Rd over K.

There are two ways of explicitly constructing homogeneous invariants in R of degree d:
the Reynolds operator method and the linear algebra method. Both methods are described
in detail in [KS97].

The Reynolds operator method only works fro finite groups in the non-modular case. It
takes a monomial of degree d and yields either the zero polynomial or a non-zero invariant
of degree d. By applying it to several different monomials, a complete basis of Rd can be
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constructed. If G is a permutation group, a simplified version of the Reynolds operator
can always be used which is independent of the field K (and thus whether we are in the
modular case or not).

The linear algebra method works in both the modular and non-modular cases and, with
appropriate modifications, also for linear algebraic groups. It simply finds a basis for Rd

in one step – it is not possible to find a single invariant alone by this method.
Magma provides the function InvariantsOfDegree to automatically compute a basis

of Rd by a default appropriate method – the method can also be selected by a parameter.
The function InvariantsOfDegree can also be given a positive integer k which is less than
or equal to the dimension of Rd: in such a case, only k linearly independent invariants are
computed. See also the functions MonomialsOfDegree and MonomialsOfWeightedDegree
in the Ideal Theory chapter.

ReynoldsOperator(f, G)

Given a polynomial f and a matrix group G such that G can act on f , return the
application of the Reynolds operator of G to f . (f need not be a monomial but may
be a non-homogeneous polynomial.)

InvariantsOfDegree(R, d)

InvariantsOfDegree(G, d)

InvariantsOfDegree(G, K, d)

InvariantsOfDegree(G, P, d)

Invariants MonStgElt Default : “Both”
Construct a K-basis of the space Rd of the homogeneous invariants of degree d
in the invariant ring R = K[V ]G of the group G over the field K as a sequence
of polynomials. Either the invariant ring R, the group G (if a matrix group), or
the group G (if a permutation group) together with the field K may be passed. A
specific polynomial ring P compatible with G and K may be passed so that the
returned invariants lie in P . The parameter Invariants may be supplied to select
the method of the construction of the invariants: "Reynolds" (use the Reynolds
operator), "Linear" (use the linear algebra method), or "Both" (use an appropriate
combination of both methods). The default is "Both".

InvariantsOfDegree(R, d, k)

InvariantsOfDegree(G, d, k)

InvariantsOfDegree(G, K, d, k)

InvariantsOfDegree(G, P, d, k)

Invariants MonStgElt Default : “Both”
Construct k linearly independent homogeneous invariants of degree d in the invariant
ring R = K[V ]G of the group G over the field K as a sequence of polynomials, where
k must be greater than or equal to 1 and less than or equal to the dimension of the
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space Rd. Either the invariant ring R, the group G (if a matrix group), or the
group G (if a permutation group) together with the field K may be passed. A
specific polynomial ring P compatible with G and K may be passed so that the
returned invariants lie in P . The parameter Invariants may be supplied to select
the method of the construction of the invariants – see the last function.

Example H110E2

We demonstrate elementary uses of ReynoldsOperator and InvariantsOfDegree.

> K<z> := CyclotomicField(5);

> w := -z^3 - z^2;

> G := MatrixGroup<3,K |

> [1,0,-w, 0,0,-1, 0,1,-w],

> [-1,-1,w, -w,0,w, -w,0,1]>;

> P<x1,x2,x3> := PolynomialRing(K, 3);

> time ReynoldsOperator(x1^4, G);

(-z^3 - z^2 + 1)*x1^4 + (12/5*z^3 + 12/5*z^2 -

4/5)*x1^3*x2 + (12/5*z^3 + 12/5*z^2 - 4/5)*x1^3*x3

+ (-14/5*z^3 - 14/5*z^2 + 14/5)*x1^2*x2^2 +

(4/5*z^3 + 4/5*z^2 + 4/5)*x1^2*x2*x3 + (-14/5*z^3 -

14/5*z^2 + 14/5)*x1^2*x3^2 + (12/5*z^3 + 12/5*z^2 -

4/5)*x1*x2^3 + (4/5*z^3 + 4/5*z^2 + 4/5)*x1*x2^2*x3

+ (4/5*z^3 + 4/5*z^2 + 4/5)*x1*x2*x3^2 + (12/5*z^3

+ 12/5*z^2 - 4/5)*x1*x3^3 + (-z^3 - z^2 + 1)*x2^4 +

(12/5*z^3 + 12/5*z^2 - 4/5)*x2^3*x3 + (-14/5*z^3 -

14/5*z^2 + 14/5)*x2^2*x3^2 + (12/5*z^3 + 12/5*z^2 -

4/5)*x2*x3^3 + (-z^3 - z^2 + 1)*x3^4

Time: 0.090

> time I20_1 := InvariantsOfDegree(G, 20, 1);

0.259

> time I20 := InvariantsOfDegree(G, 20);

3.589

> [LeadingMonomial(f): f in I20];

[

x1^20,

x1^18*x2^2,

x1^16*x2^4,

x1^15*x2^5,

x1^14*x2^6,

x1^13*x2^7,

x1^12*x2^8

]

> G := CyclicGroup(4);

> K := GF(2);

> InvariantsOfDegree(G, K, 4);

[

x1^4 + x2^4 + x3^4 + x4^4,
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x1^3*x2 + x1*x4^3 + x2^3*x3 + x3^3*x4,

x1^3*x3 + x1*x3^3 + x2^3*x4 + x2*x4^3,

x1^3*x4 + x1*x2^3 + x2*x3^3 + x3*x4^3,

x1^2*x2^2 + x1^2*x4^2 + x2^2*x3^2 + x3^2*x4^2,

x1^2*x2*x3 + x1*x2*x4^2 + x1*x3^2*x4 + x2^2*x3*x4,

x1^2*x2*x4 + x1*x2^2*x3 + x1*x3*x4^2 + x2*x3^2*x4,

x1^2*x3^2 + x2^2*x4^2,

x1^2*x3*x4 + x1*x2^2*x4 + x1*x2*x3^2 + x2*x3*x4^2,

x1*x2*x3*x4

]

SetAllInvariantsOfDegree(R, d, Q)

(Procedure.) Given an invariant ring R = K[V ]G, an integer d ≥ 0, and a sequence
Q consisting of k degree-d homogeneous invariants of G, set the internal list of all
linearly-independent homogeneous invariants of degree d of R to be Q. Thus the
elements of Q must describe a basis of the space of all homogeneous invariants of
degree d of R. If the Hilbert Series of R is known, it will be used to check that the
length of Q (the dimension of the basis) is correct.

Example H110E3

We demonstrate a simple use of SetAllInvariantsOfDegree.

> R := InvariantRing(CyclicGroup(4), GF(2));

> P<x1,x2,x3,x4> := PolynomialRing(R);

> L := [

> x1^2 + x2^2 + x3^2 + x4^2,

> x1*x2 + x1*x4 + x2*x3 + x3*x4,

> x1*x3 + x2*x4

> ];

> SetAllInvariantsOfDegree(R, 2, L);

> InvariantsOfDegree(R, 2);

[

x1^2 + x2^2 + x3^2 + x4^2,

x1*x2 + x1*x4 + x2*x3 + x3*x4,

x1*x3 + x2*x4

]

> PrimaryInvariants(R);

[

x1 + x2 + x3 + x4,

x1*x2 + x1*x4 + x2*x3 + x3*x4,

x1*x3 + x2*x4,

x1*x2*x3*x4

]

The following sections 110.9 through 110.16 all deal with invariant rings of finite groups.



Ch. 110 INVARIANT THEORY 3363

110.9 Construction of G-modules
This section describes how one can create a finite-dimensional G-module corresponding to
the action of a finite group G on a polynomial ring P . There are two ways one can create
a finite-dimensional action: the action on the space of homogeneous polynomials of a fixed
degree, or the action on the quotient space of polynomials by a zero-dimensional ideal (so
the quotient has finite-dimension as a vector space). The functions in this section are also
found in the chapter on general modules but are also included here since they are useful
in Invariant Theory.

GModule(G, P, d)

Given a finite permutation or matrix group G of degree n, a polynomial ring P =
K[x1, . . . , xn] over a field K, and a non-negative integer d, create the K[G]-module
M corresponding to the action of G on the space of homogeneous polynomials of
degree d of the polynomial ring P . The function also returns the isomorphism f
between the space of homogeneous polynomials of degree d of P and M , together
with an indexed set of monomials of degree d of P which correspond to the columns
of M .

GModule(G, I, J)

Given a finite permutation or matrix group G of degree n, an ideal I of a multivariate
polynomial ring P = K[x1, . . . , xn] over a field K, and a zero-dimensional subideal
J of I, create the K[G]-module M corresponding to the action of G on the finite-
dimensional quotient I/J . The function also returns the isomorphism f between
the quotient space I/J and M , together with an indexed set of monomials of P ,
forming a (vector space) basis of I/J , and which correspond to the columns of M .

GModule(G, Q)

Given a finite permutation or matrix group G of degree n, and a finite-dimensional
quotient ring Q = I/J of a multivariate polynomial ring P = K[x1, . . . , xn] over a
field K, create the K[G]-module M corresponding to the action of G on the finite-
dimensional quotient Q. The function also returns the isomorphism f between the
quotient ring Q and M , together with an indexed set of monomials of P , forming a
(vector space) basis of Q, and which correspond to the columns of M .

Example H110E4

We demonstrate simple uses of the GModule function.

> q := 5;

> K := GF(q);

> G := GL(3, K);

> P<x, y, z> := PolynomialRing(K, 3);

> I := ideal< P | x^5 - x,y^5 - y, z^5 - z >;

> Q, rho := quo< P | I >;

> f := x^3 + x^2*y + y^3;

> M, phi:= GModule(G, P, I);
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> Constituents(M);

[

GModule of dimension 1 over GF(5),

GModule of dimension 3 over GF(5),

GModule of dimension 3 over GF(5),

GModule of dimension 6 over GF(5),

GModule of dimension 6 over GF(5),

GModule of dimension 10 over GF(5),

GModule of dimension 10 over GF(5),

GModule of dimension 15 over GF(5),

GModule of dimension 15 over GF(5),

GModule of dimension 18 over GF(5),

GModule of dimension 18 over GF(5),

GModule of dimension 19 over GF(5)

]

> N := sub<M | phi(f)>;

> N;

GModule N of dimension 10 over GF(5)

> M5 := GModule(G, P, 5);

> M5;

GModule M5 of dimension 21 over GF(5)

> Constituents(M5);

[

GModule of dimension 3 over GF(5),

GModule of dimension 18 over GF(5)

]

110.10 Molien Series

Let R = K[V ]G be the invariant ring of the finite group G over the field K. If G is a finite
matrix group in the non-modular case or a permutation group (in either the modular or
non-modular case) then the Molien series of G yields the Hilbert Series of R.

MolienSeries(G)

The Molien series of G, returned as an element of the rational function field Z(t).
If G is a permutation group, the Molien series always exists and equals the Hilbert
series of the invariant ring of G for any field. If G is a matrix group, the characteristic
of the coefficient field of G must be coprime with the order of G.

MolienSeriesApproximation(G, n)

The Molien series of a permutation group G, or more precisely, an approximation to
it, as a Laurent series with n known coefficients. In contrast to the MolienSeries
function above, approximations can be computed for far larger groups.
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Example H110E5

We compute the Molien series of a matrix G and verify that the coefficients of the corresponding
power series match the number of independent invariants for each degree.

> K<z> := CyclotomicField(5);

> w := -z^3 - z^2;

> G := MatrixGroup<3,K |

> [1,0,-w, 0,0,-1, 0,1,-w],

> [-1,-1,w, -w,0,w, -w,0,1]>;

> M<t> := MolienSeries(G);

> M;

(-t^8 - t^7 + t^5 + t^4 + t^3 - t - 1)/(t^11 + t^10 -

t^9 - 2*t^8 - t^7 + t^4 + 2*t^3 + t^2 - t - 1)

> P<u> := PowerSeriesRing(IntegerRing());

> P ! M;

1 + u^2 + u^4 + 2*u^6 + 2*u^8 + 3*u^10 + 4*u^12 +

4*u^14 + u^15 + 5*u^16 + u^17 + 6*u^18 + u^19 +

O(u^20)

> Coefficients(P ! M);

[ 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 4, 0, 4, 1, 5, 1,

6, 1 ]

> time [#InvariantsOfDegree(G, i): i in [0 .. 19]];

[ 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 4, 0, 4, 1, 5, 1,

6, 1 ]

110.11 Primary Invariants

Let R = K[V ]G be the invariant ring of a finite group G over the field K and suppose the
degree of G is n. A set of primary invariants of R is a set {f1, . . . , fn} of n algebraically
independent homogeneous invariants of R such that the invariant ring R is a finitely
generated module over A = K[f1, . . . , fn]. A set of primary invariants always exists for any
invariant ring R. The invocation PrimaryInvariants(R) allows automatic construction of
primary invariants of R. The primary invariants are stored in R and recalled as necessary
in subsequent computations.

The latest algorithm in Magma to compute primary invariants, due to G. Kemper
[Kem99], now guarantees that the degrees of the primary invariants found by the algorithm
are optimal (with respect to their product and then their sum).

PrimaryInvariants(R)

Construct optimal primary invariants for the invariant ring R = K[V ]G as a sorted
sequence (with increasing degrees) of n polynomials of R where n is the degree of
G.
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Example H110E6

We compute primary invariants for the “first A5 in SL(F2)”, discussed in [AM94, p. 116]. The
resulting degrees 3, 5, 8, and 12 are necessarily optimal (see [Kem96]).

> K := GF(2);

> G := MatrixGroup<4, K |

> [0,1,0,0, 1,1,0,0, 0,0,1,1, 0,0,1,0],

> [1,0,0,0, 0,1,0,0, 1,0,1,0, 0,1,0,1],

> [1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1]>;

> R := InvariantRing(G);

> time p := PrimaryInvariants(R);

Time: 1.399

> [TotalDegree(f): f in p];

[ 3, 5, 8, 12 ]

110.12 Secondary Invariants
Let R = K[V ]G be the invariant ring of a finite group G over the field K and suppose the
degree of G is n. If {f1, . . . , fn} is a set of primary invariants for R then R can be viewed
as a finitely generated module over the algebra A = K[f1, . . . , fn]. A set of secondary
invariants for R with respect to these primary invariants is set of module generators over
A. The invocation SecondaryInvariants(R) allows automatic construction of secondary
invariants of R. The secondary invariants are stored in R and recalled as necessary in sub-
sequent computations. Different algorithms are needed for the modular and non-modular
cases – see [KS97] for details.

SecondaryInvariants(R)

Construct secondary invariants for the invariant ring R = K[V ]G (with respect to
the current primary invariants of R, constructed automatically first if necessary)
as a sorted sequence (with increasing degrees) of polynomials of R. The secondary
invariants are minimal; i.e. they are a minimal generating set for R considered as a
module over the algebra generated by the primary invariants.

SecondaryInvariants(R, H)

Construct secondary invariants for the modular invariant ring R = K[V ]G (with
respect to the current primary invariants of R), using the subgroup H. This func-
tion can only be used if R is a modular invariant ring. H must be a subgroup of
the group G; first, secondary invariants are computed for K[V ]H using the current
primary invariants for G and then these secondary invariants are used in the man-
ner described in [KS97]. The function SecondaryInvariants(R) (taking just the
invariant ring R) follows a default strategy in which it tries to use this function
with the best subgroup H appropriate. Thus usually using this function to spec-
ify a particular subgroup is not more helpful than the one-argument function but
occasionally it may be.
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IrreducibleSecondaryInvariants(R)

Return the irreducible secondary invariants of the invariant ring R = K[V ]G (with
respect to the current primary invariants of R, constructed automatically first if
necessary) as a sequence of polynomials of R. These, together with the primary
invariants of R, generate R as an algebra over K. In the modular case, these will be
the same as the secondary invariants of R (excluding the polynomial 1) but in the
non-modular case they may form a proper subsequence of the secondary invariants.
Note that the expression of the secondary invariants in terms of the irreducible
secondary invariants is given as the second return value of the function Algebra
(see the section on the algebra of an invariant ring and algebraic relations below).

Example H110E7

We construct primary and then secondary invariants for the invariant ring R of the group G over
F2, where G is the (permutation) cyclic group of order 4. Note that in this example Noether’s
degree bound (which holds for characteristic 0) is violated.

> K := GF(2);

> G := CyclicGroup(4);

> R := InvariantRing(G, K);

> time PrimaryInvariants(R);

[

x1 + x2 + x3 + x4,

x1*x2 + x1*x4 + x2*x3 + x3*x4,

x1*x3 + x2*x4,

x1*x2*x3*x4

]

Time: 0.040

> time SecondaryInvariants(R);

[

1,

x1*x2*x3 + x1*x2*x4 + x1*x3*x4 + x2*x3*x4,

x1^2*x3 + x1^2*x4 + x1*x2^2 + x1*x3^2 + x2^2*x4 +

x2*x3^2 + x2*x4^2 + x3*x4^2,

x1^2*x3^2 + x1^2*x3*x4 + x1*x2^2*x4 + x1*x2*x3^2 +

x2^2*x4^2 + x2*x3*x4^2,

x1^3*x3*x4 + x1^2*x2^2*x3 + x1^2*x2^2*x4 +

x1^2*x2*x3^2 + x1^2*x2*x3*x4 + x1^2*x2*x4^2 +

x1^2*x3^2*x4 + x1^2*x3*x4^2 + x1*x2^3*x4 +

x1*x2^2*x3^2 + x1*x2^2*x3*x4 + x1*x2^2*x4^2 +

x1*x2*x3^3 + x1*x2*x3^2*x4 + x1*x2*x3*x4^2 +

x1*x3^2*x4^2 + x2^2*x3^2*x4 + x2^2*x3*x4^2 +

x2*x3^2*x4^2 + x2*x3*x4^3

]

Time: 0.080
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110.13 Fundamental Invariants

Let R = K[V ]G be the invariant ring of the group G over the field K and suppose the
degree of G is n. A set of fundamental invariants for R is a generating set of R as an
algebra over K.

FundamentalInvariants(R)

Al MonStgElt Default : “King”
MaxDegree RngIntElt Default : 0

Construct fundamental invariants for the invariant ring R = K[V ]G as a sorted
sequence (with increasing degrees) of polynomials of R.

As of V2.15, if R is non-modular, then by default the fundamental invariants are
computed via the algorithm of S.King [Kin07]; the alternative algorithm (always
used in the modular case), which computes the fundamental invariants by minimal-
izing the union of the primary and secondary invariants of R, may be selected by
setting the parameter Al to "MinPrimSec".

If the fundamental invariants are known to be bounded by degree d, then the
parameter MaxDegree may be set to d to assist the King algorithm with an early
stopping condition in the non-modular case.

Example H110E8

We construct fundamental invariants for the invariant ring R of the group G over Q, where G is
permutation group consisting of two parallel copies of S3 in degree 6. Notice that the sequence
of fundamental invariants is shorter and simpler than the sequence consisting of the primary
invariants combined with the secondary invariants.

> K := RationalField();

> G := PermutationGroup<6 | (1,2,3)(4,5,6), (1,2)(4,5)>;

> R := InvariantRing(G, K);

> PrimaryInvariants(R);

[

x1 + x2 + x3,

x4 + x5 + x6,

x1^2 + x2^2 + x3^2,

x4^2 + x5^2 + x6^2,

x1^3 + x2^3 + x3^3,

x4^3 + x5^3 + x6^3

]

> SecondaryInvariants(R);

[

1,

x1*x4 + x2*x5 + x3*x6,

x1^2*x4 + x2^2*x5 + x3^2*x6,

x1*x4^2 + x2*x5^2 + x3*x6^2,

x1^2*x4^2 + 2*x1*x2*x4*x5 + 2*x1*x3*x4*x6 + x2^2*x5^2 + 2*x2*x3*x5*x6 +

x3^2*x6^2,
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x1^3*x4^3 + x1^2*x2*x4*x5^2 + x1^2*x3*x4*x6^2 + x1*x2^2*x4^2*x5 +

x1*x3^2*x4^2*x6 + x2^3*x5^3 + x2^2*x3*x5*x6^2 + x2*x3^2*x5^2*x6 +

x3^3*x6^3

]

> FundamentalInvariants(R);

[

x1 + x2 + x3,

x4 + x5 + x6,

x1^2 + x2^2 + x3^2,

x1*x4 + x2*x5 + x3*x6,

x4^2 + x5^2 + x6^2,

x1^3 + x2^3 + x3^3,

x1^2*x4 + x2^2*x5 + x3^2*x6,

x1*x4^2 + x2*x5^2 + x3*x6^2,

x4^3 + x5^3 + x6^3

]

Example H110E9

As in [Kin07], we compute fundamental invariants for the invariant rings for all transitive groups
of degree 7 (in characteristic zero). For each group, we print its order and a summary of the
degrees (where the i-th element of the sequence gives the number of fundamental invariants of
degree i).

> function deg_summary(B)

> degs := [TotalDegree(f): f in B];

> return [#[j: j in degs | j eq d]: d in [1 .. Max(degs)]];

> end function;

>

> d := 7;

> time for i := 1 to NumberOfTransitiveGroups(d) do

> G := TransitiveGroup(d, i);

> R := InvariantRing(G, RationalField());

> F := FundamentalInvariants(R);

> printf "%o: Order: %o, Degrees: %o\n", i, #G, deg_summary(F);

> end for;

1: Order: 7, Degrees: [ 1, 3, 8, 12, 12, 6, 6 ]

2: Order: 14, Degrees: [ 1, 3, 4, 6, 6, 3, 3 ]

3: Order: 21, Degrees: [ 1, 1, 4, 5, 8, 8, 6 ]

4: Order: 42, Degrees: [ 1, 1, 2, 3, 4, 7, 7, 5, 1 ]

5: Order: 168, Degrees: [ 1, 1, 2, 2, 2, 2, 2 ]

6: Order: 2520, Degrees: [ 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ]

7: Order: 5040, Degrees: [ 1, 1, 1, 1, 1, 1, 1 ]

Time: 1.610

Instead of computing over the rational field, for each group G we can instead compute over
Fp, where p is the smallest prime which does not divide the order of G. This is faster, and it
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is conjectured that the resulting degrees are always the same as for the computation over the
rationals.

> d := 7;

> time for i := 1 to NumberOfTransitiveGroups(d) do

> G := TransitiveGroup(d, i);

> p := rep{p: p in [2 .. #G] | IsPrime(p) and #G mod p ne 0};

> R := InvariantRing(G, GF(p));

> F := FundamentalInvariants(R);

> printf "%o: Order: %o, Degrees: %o\n", i, #G, deg_summary(F);

> end for;

1: Order: 7, Degrees: [ 1, 3, 8, 12, 12, 6, 6 ]

2: Order: 14, Degrees: [ 1, 3, 4, 6, 6, 3, 3 ]

3: Order: 21, Degrees: [ 1, 1, 4, 5, 8, 8, 6 ]

4: Order: 42, Degrees: [ 1, 1, 2, 3, 4, 7, 7, 5, 1 ]

5: Order: 168, Degrees: [ 1, 1, 2, 2, 2, 2, 2 ]

6: Order: 2520, Degrees: [ 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ]

7: Order: 5040, Degrees: [ 1, 1, 1, 1, 1, 1, 1 ]

Time: 0.790

Finally, we can do the same for all transitive groups of degree 8 in about 2 minutes.

> d := 8;

> time for i := 1 to NumberOfTransitiveGroups(d) do

> G := TransitiveGroup(d, i);

> p := rep{p: p in [2 .. #G] | IsPrime(p) and #G mod p ne 0};

> R := InvariantRing(G, GF(p));

> F := FundamentalInvariants(R);

> printf "%o: Order: %o, Degrees: %o\n", i, #G, deg_summary(F);

> end for;

1: Order: 8, Degrees: [ 1, 4, 10, 18, 16, 8, 4, 4 ]

2: Order: 8, Degrees: [ 1, 5, 9, 16, 8 ]

3: Order: 8, Degrees: [ 1, 7, 7, 7 ]

4: Order: 8, Degrees: [ 1, 6, 8, 12, 5 ]

5: Order: 8, Degrees: [ 1, 4, 10, 19, 15, 7 ]

6: Order: 16, Degrees: [ 1, 4, 5, 9, 8, 4, 2, 2 ]

7: Order: 16, Degrees: [ 1, 3, 7, 12, 13, 9, 4, 4 ]

8: Order: 16, Degrees: [ 1, 3, 6, 11, 12, 7, 2, 2 ]

9: Order: 16, Degrees: [ 1, 5, 5, 8, 4 ]

10: Order: 16, Degrees: [ 1, 4, 6, 11, 7, 2 ]

11: Order: 16, Degrees: [ 1, 4, 6, 11, 7, 3 ]

12: Order: 24, Degrees: [ 1, 2, 4, 8, 11, 12, 7 ]

13: Order: 24, Degrees: [ 1, 3, 3, 7, 8, 11, 7 ]

14: Order: 24, Degrees: [ 1, 3, 3, 8, 7, 9, 6, 1, 1 ]

15: Order: 32, Degrees: [ 1, 3, 4, 7, 6, 4, 2, 2 ]

16: Order: 32, Degrees: [ 1, 3, 5, 8, 7, 7, 4, 4 ]

17: Order: 32, Degrees: [ 1, 3, 4, 7, 6, 4, 2, 2 ]

18: Order: 32, Degrees: [ 1, 4, 4, 7, 3 ]
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19: Order: 32, Degrees: [ 1, 3, 3, 7, 6, 7, 5, 1 ]

20: Order: 32, Degrees: [ 1, 3, 5, 9, 6, 4, 2, 1 ]

21: Order: 32, Degrees: [ 1, 4, 4, 6, 4, 3, 2, 1 ]

22: Order: 32, Degrees: [ 1, 4, 4, 7, 3, 1 ]

23: Order: 48, Degrees: [ 1, 2, 3, 5, 6, 6, 5, 2 ]

24: Order: 48, Degrees: [ 1, 3, 3, 6, 4, 3, 1 ]

25: Order: 56, Degrees: [ 1, 1, 1, 4, 6, 13, 18, 23, 18, 6 ]

26: Order: 64, Degrees: [ 1, 3, 3, 5, 3, 3, 2, 3, 1 ]

27: Order: 64, Degrees: [ 1, 3, 5, 8, 6, 4, 2, 2 ]

28: Order: 64, Degrees: [ 1, 3, 3, 5, 4, 4, 2, 2 ]

29: Order: 64, Degrees: [ 1, 3, 3, 6, 3, 2, 1 ]

30: Order: 64, Degrees: [ 1, 3, 3, 5, 3, 2, 3, 4, 3, 2, 1, 1 ]

31: Order: 64, Degrees: [ 1, 4, 4, 6, 3, 1 ]

32: Order: 96, Degrees: [ 1, 2, 2, 4, 3, 5, 4, 2, 2, 1, 1, 1 ]

33: Order: 96, Degrees: [ 1, 2, 2, 4, 3, 6, 5, 5, 3 ]

34: Order: 96, Degrees: [ 1, 2, 2, 5, 2, 5, 4, 3, 3 ]

35: Order: 128, Degrees: [ 1, 3, 3, 5, 3, 2, 1, 1 ]

36: Order: 168, Degrees: [ 1, 1, 1, 2, 2, 5, 6, 8, 10, 11, 8 ]

37: Order: 168, Degrees: [ 1, 1, 1, 3, 1, 5, 5, 8, 9, 9, 7 ]

38: Order: 192, Degrees: [ 1, 2, 2, 3, 3, 5, 4, 3, 2, 1, 1, 1 ]

39: Order: 192, Degrees: [ 1, 2, 2, 4, 2, 2, 1 ]

40: Order: 192, Degrees: [ 1, 2, 2, 3, 2, 2, 1, 1, 1, 3, 3, 2, 2, 1, 1, 1 ]

41: Order: 192, Degrees: [ 1, 2, 2, 4, 2, 3, 2, 2, 1 ]

42: Order: 288, Degrees: [ 1, 2, 2, 3, 2, 3, 2, 2, 1, 1 ]

43: Order: 336, Degrees: [ 1, 1, 1, 2, 1, 3, 3, 5, 4, 6, 5, 4, 2 ]

44: Order: 384, Degrees: [ 1, 2, 2, 3, 2, 2, 1, 1 ]

45: Order: 576, Degrees: [ 1, 2, 2, 3, 2, 2, 1, 1, 0, 0, 0, 1 ]

46: Order: 576, Degrees: [ 1, 2, 2, 3, 2, 2, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1 ]

47: Order: 1152, Degrees: [ 1, 2, 2, 3, 2, 2, 1, 1 ]

48: Order: 1344, Degrees: [ 1, 1, 1, 2, 1, 2, 2, 2, 1, 1 ]

49: Order: 20160, Degrees: [ 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ]

50: Order: 40320, Degrees: [ 1, 1, 1, 1, 1, 1, 1, 1 ]

Time: 128.030

Example H110E10

We compute fundamental invariants of a degree-10 representation of S5 acting on pairs. See
[Kin07, p.11–12]. First we compute the fundamental invariants mod 7 of the permutation repre-
sentation (very difficult in practice hitherto).

> G := PermutationGroup<10 | (2,5)(3,6)(4,7),(1,5,8,10,4)(2,6,9,3,7)>;

> #G;

120

> R := InvariantRing(G, GF(7));

> time F := FundamentalInvariants(R);

Time: 29.310

> {* Degree(f): f in F *};
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{* 1, 2^^2, 3^^4, 4^^7, 5^^10, 6^^13, 7^^13, 8^^4, 9^^2 *}

Finally, we can compute a matrix representation of G as a direct sum of irreducible representations
of degrees 1, 4 and 5. We then compute the fundamental invariants of the invariant ring of this
representation mod 7.

> Q := RationalField();

> R0 := InvariantRing(G, Q);

> P0 := PolynomialRing(R0);

> M := GModule(G, Q);

> Gl := MatrixGroup(M);

> C := CharacterTable(Gl);

> Pi := [&+[Q!Integers()!c(g)*MatrixAlgebra(Q, 10)!g: g in Gl]/#G: c in C];

> Pi := [p: p in Pi | p ne 0];

> L := [sub<M | Image(p)>: p in Pi];

> G := MatrixGroup(DirectSum(DirectSum(L[1],L[2]),L[3]));

> G;

MatrixGroup(10, Rational Field)

Generators:

[ 1 0 0 0 0 0 0 0 0 0]

[ 0 1 1/3 1/3 1/3 0 0 0 0 0]

[ 0 0 1/3 -2/3 -2/3 0 0 0 0 0]

[ 0 0 -2/3 1/3 -2/3 0 0 0 0 0]

[ 0 0 -2/3 -2/3 1/3 0 0 0 0 0]

[ 0 0 0 0 0 1 0 0 0 0]

[ 0 0 0 0 0 0 0 0 1 0]

[ 0 0 0 0 0 0 0 0 0 1]

[ 0 0 0 0 0 0 1 0 0 0]

[ 0 0 0 0 0 0 0 1 0 0]

[ 1 0 0 0 0 0 0 0 0 0]

[ 0 0 1/3 -2/3 -2/3 0 0 0 0 0]

[ 0 0 -2/3 1/3 -2/3 0 0 0 0 0]

[ 0 0 -2/3 -2/3 1/3 0 0 0 0 0]

[ 0 1 1/3 1/3 1/3 0 0 0 0 0]

[ 0 0 0 0 0 -1 -1 1 1 0]

[ 0 0 0 0 0 -1 0 0 0 1]

[ 0 0 0 0 0 -1 0 1 0 0]

[ 0 0 0 0 0 0 -1 0 0 0]

[ 0 0 0 0 0 0 -1 1 0 0]

> Gp := ChangeRing(G, GF(7));

> #Gp;

120

> Rp := InvariantRing(Gp);

> time Fp := FundamentalInvariants(Rp);

Time: 35.380

> {* Degree(f): f in Fp *};

{* 1, 2^^2, 3^^4, 4^^7, 5^^10, 6^^13, 7^^13, 8^^4, 9^^2 *}

> [Degree(f): f in F] eq [Degree(f): f in Fp];
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true

110.14 The Module of an Invariant Ring
Let R = K[V ]G be the invariant ring of a finite group G over the field K and suppose the
degree of G is n. Suppose also that primary invariants {f1, . . . , fn} for R have been con-
structed, together with minimal secondary invariants S = {g1, . . . , gm} for R with respect
to these primary invariants. (These secondary invariants may possess non-trivial module
syzygies.) Then R can be considered as a module over the algebra A = K[f1, . . . , fn] with
the minimal (module) generating set S.

To compute with this module structure of R easily, Magma automatically constructs
the graded multivariate polynomial algebra A′ = K[t1, . . . , tn] (with the weighted degree
of the variable ti defined to be the degree of fi) which is isomorphic to A, and then
constructs the graded module M = A′m/Q over A′ with the quotient relations Q given by
the syzygies of the gi (and with the weighted degree of column i equal to the degree of gi).
The algebra A′ is isomorphic to A under the map ti 7→ fi, and the module M is isomorphic
to R (considered as a module) under the map M.i 7→ gi (extended by the isomorphism
from A′ onto A). (See the chapter on modules over K[x1, . . . , xn] for details on how to
compute with the module M and an explanation of quotient relations, the unit vectors
M.i, etc.) Once the module M is created, together with the isomorphism f : R → M ,
one can apply f to a general element h of R to obtain the element of M corresponding
to h. This effectively yields a representation of h as a sum

∑
i=1 kaigi with ai ∈ A in

terms of the primary and secondary invariants. This representation is also unique up to
the relations given by the syzygies of the gi.

When creating the module M , the coefficient ring A′ of M is assigned the print names
"t1", "t2", etc. – the angle bracket notation or the . operator should be used to assign
the variables of A′ to actual Magma variables.

Module(R)

The module M isomorphic to R = K[V ]G, together with the isomorphism f : R→
M .

Example H110E11

We create the module M corresponding to the invariant ring R of the group G generated by the
4 by 4 Jordan block over F3.

> K := GF(3);

> G := MatrixGroup<4,K | [1,0,0,0, 1,1,0,0, 0,1,1,0, 0,0,1,1]>;

> R := InvariantRing(G);

> P<x1,x2,x3,x4> := PolynomialRing(R);

> p := PrimaryInvariants(R);

> s := SecondaryInvariants(R);

> [TotalDegree(f): f in p];

[ 1, 2, 3, 9 ]
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> [TotalDegree(f): f in s];

[ 0, 3, 4, 5, 6, 7, 8, 9 ]

> M, f := Module(R);

> M;

Full Quotient Module of degree 8

TOP Order

Column weights: 0 3 4 5 6 7 8 9

Coefficient ring:

Graded Polynomial ring of rank 4 over GF(3)

Lexicographical Order

Variables: t1, t2, t3, t4

Variable weights: 1 2 3 9

Quotient Relations:

[

t1[7] + 2*t2[6] + t3[5],

t1[4] + 2*t2[3] + t3[2]

]

> h := x1^5*x2 + 2*x1^3*x3^3 + 2*x2^6;

> h;

x1^5*x2 + 2*x1^3*x3^3 + 2*x2^6

> m := f(h);

> m;

t1^4*t2[1] + t1^3[2] + t2^3[1]

> // Evaluate in the primaries and secondaries:

> p[1]^4*p[2]*s[1] + p[1]^3*s[2] + p[2]^3*s[1];

x1^5*x2 + 2*x1^3*x3^3 + 2*x2^6

110.15 The Algebra of an Invariant Ring and Algebraic Relations

Let R = K[V ]G be the invariant ring of a finite group G over the field K and suppose
the degree of G is n. Suppose also that primary invariants {f1, . . . , fn} for R have been
constructed, together with minimal secondary invariants S = {g1, . . . , gm} for R with
respect to these primary invariants. Suppose also that the irreducible secondary invariants
for R are S = {h1, . . . , hr} so that the gi are power products of the hi. We write gi = pi(hi)
where the pi are monomials of the indeterminates t1, . . . , tr. Then R is generated as an
algebra over K by the primary invariants f1, . . . , fn and the irreducible secondary invariants
h1, . . . , hr. Magma allows the construction of a polynomial algebra A with indeterminate
names "f1", "f2", etc. corresponding to the primary invariants and indeterminate names
"h1", "h2", etc. corresponding to the irreducible secondary invariants. Thus R can be
regarded as an homomorphic image of A and finding the algebraic relations between these
(algebra) generators of R yields a presentation of R as a quotient of a polynomial algebra.
The functions in this section construct the algebra A and the algebraic relations for R.
When creating the algebra A, the algebra A is assigned the print names "f1", "f2",
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"h1", "h2", etc. – the angle bracket notation or the . operator should be used to assign
the variables of A to actual Magma variables.

Algebra(R)

Given an invariant ring R = K[V ]G, return the polynomial algebra A =
K[f1, . . . , fn, h1, . . . , hr] of which R is an homomorphic image. This function also
returns a sequence Q giving the secondary invariants in terms of the irreducible sec-
ondary invariants as monomials in A. Thus Q[i] is the monomial pi(ti) mentioned
in the introduction to this section. Note that the secondary invariant 1 is not an
irreducible secondary invariant so no h-variable corresponds to it (the polynomial 1
in A simply corresponds to it).

Relations(R)

Given an invariant ring R = K[V ]G, return a (sorted) sequence L giving the alge-
braic relations amongst the algebra generators of R as elements of the algebra A
corresponding to R. Thus R is isomorphic as an algebra (or ring) to the quotient of
A by the ideal of A generated by the relations in L.

RelationIdeal(R)

Given an invariant ring R = K[V ]G, return the ideal of algebraic relations corre-
sponding to R. This is simply the same as taking the ideal generated by the algebra
A by the sequence L returned by the function Relations(R).

PrimaryAlgebra(R)

Given an invariant ring R = K[V ]G, return the algebra corresponding to the primary
invariants of R as a graded polynomial ring (with the weights corresponding to the
degrees of the primary invariants).

PrimaryIdeal(R)

Given an invariant ring R = K[V ]G, return the ideal generated by the primary
invariants of R (this is stored in R).

Example H110E12

We create the invariant ring R = K[V ]G where G is a degree-6 permutation representation of
the direct product C3 × C3 of two cyclic groups both of order 3 and K is the rational field.
We construct the algebra A and the sequence Q giving the secondary invariants in terms of the
irreducible secondary invariants. We then note that the degree-6 secondary invariant is obtained
as the product of two degree-3 irreducible secondary invariants. We then construct the list L
of algebraic relations in A for R. Thus R is isomorphic to the quotient ring A/ < L >. We
then construct an homomorphism h from A onto R and check that the relations in L are correct.
Finally, we check that the Hilbert series of the (quotient by the) ideal of A generated by L is the
same as the Hilbert series of R as expected.

> G := PermutationGroup<6 | (1, 2, 3), (4, 5, 6)>;

> R := InvariantRing(G, RationalField());
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> P := PrimaryInvariants(R);

> P;

[

x1 + x2 + x3,

x4 + x5 + x6,

x1^2 + x2^2 + x3^2,

x4^2 + x5^2 + x6^2,

x1^3 + x2^3 + x3^3,

x4^3 + x5^3 + x6^3

]

> S := SecondaryInvariants(R);

> S;

[

1,

x1^2*x2 + x1*x3^2 + x2^2*x3,

x4^2*x5 + x4*x6^2 + x5^2*x6,

x1^2*x2*x4^2*x5 + x1^2*x2*x4*x6^2 + x1^2*x2*x5^2*x6 +

x1*x3^2*x4^2*x5 + x1*x3^2*x4*x6^2 + x1*x3^2*x5^2*x6 +

x2^2*x3*x4^2*x5 + x2^2*x3*x4*x6^2 + x2^2*x3*x5^2*x6

]

> H := IrreducibleSecondaryInvariants(R);

> H;

[

x1^2*x2 + x1*x3^2 + x2^2*x3,

x4^2*x5 + x4*x6^2 + x5^2*x6

]

> A, Q := Algebra(R);

> A;

Graded Polynomial ring of rank 8 over Rational Field

Lexicographical Order

Variables: f1, f2, f3, f4, f5, f6, h1, h2

Variable weights: 1 1 2 2 3 3 3 3

> Q;

[

1,

h1,

h2,

h1*h2

]

> // Thus S[4] must be H[1]*H[2]:

> S[4];

x1^2*x2*x4^2*x5 + x1^2*x2*x4*x6^2 + x1^2*x2*x5^2*x6 +

x1*x3^2*x4^2*x5 + x1*x3^2*x4*x6^2 + x1*x3^2*x5^2*x6 +

x2^2*x3*x4^2*x5 + x2^2*x3*x4*x6^2 + x2^2*x3*x5^2*x6

> H[1];

x1^2*x2 + x1*x3^2 + x2^2*x3

> H[2];

x4^2*x5 + x4*x6^2 + x5^2*x6
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> H[1]*H[2] eq S[4];

true

> L := Relations(R);

> L;

[

-1/24*f1^6 + 3/8*f1^4*f3 - 1/3*f1^3*f5 - 9/8*f1^2*f3^2 +

2*f1*f3*f5 + f1*f3*h1 + 1/8*f3^3 - f5^2 - f5*h1 - h1^2,

-1/24*f2^6 + 3/8*f2^4*f4 - 1/3*f2^3*f6 - 9/8*f2^2*f4^2 +

2*f2*f4*f6 + f2*f4*h2 + 1/8*f4^3 - f6^2 - f6*h2 - h2^2

]

> // Construct homomorphism h from A onto (polynomial ring of) R:

> h := hom<A -> PolynomialRing(R) | P cat H>;

> // Check images of L under h are zero so that elements of L are relations:

> h(L);

[

0,

0

]

> // Create relation ideal and check its Hilbert series equals that of R:

> I := RelationIdeal(R);

> I;

Ideal of Graded Polynomial ring of rank 8 over Rational Field

Lexicographical Order

Variables: f1, f2, f3, f4, f5, f6, h1, h2

Variable weights: 1 1 2 2 3 3 3 3

Basis:

[

f1^6 - 9*f1^4*f3 + 8*f1^3*f5 + 27*f1^2*f3^2 - 48*f1*f3*f5 -

24*f1*f3*h1 - 3*f3^3 + 24*f5^2 + 24*f5*h1 + 24*h1^2,

f2^6 - 9*f2^4*f4 + 8*f2^3*f6 + 27*f2^2*f4^2 - 48*f2*f4*f6 -

24*f2*f4*h2 - 3*f4^3 + 24*f6^2 + 24*f6*h2 + 24*h2^2

]

> HilbertSeries(I);

(t^4 - 2*t^3 + 3*t^2 - 2*t + 1)/(t^10 - 4*t^9 + 6*t^8 - 6*t^7 +

9*t^6 - 12*t^5 + 9*t^4 - 6*t^3 + 6*t^2 - 4*t + 1)

> HilbertSeries(I) eq HilbertSeries(R);

true
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110.16 Properties of Invariant Rings

The following functions return non-trivial structural properties of invariant rings of finite
groups.

HilbertSeries(R)

The Hilbert series of the invariant ring R = K[V ]G, returned as an element of the
rational function field Z(t). The Molien series of G will be used if possible; otherwise
(the modular matrix group case) secondary invariants for R will be constructed to
determine the result.

HilbertSeriesApproximation(R, n)

The Hilbert series of the invariant ring R = K[V ]G, returned as a Laurent series
with n known terms. The conjugacy classes of G will be used to compute the
approximation.

IsCohenMacaulay(R)

Given the invariant ring R = K[V ]G of the group G over the field K, return true
iff R is Cohen-Macaulay. This is always true in the non-modular case. Otherwise,
secondary invariants for R will be constructed to determine the result.

FreeResolution(R)

Given the invariant ring R = K[V ]G of the group G over the field K, return
a free resolution of (the module of) R. This is just the same as the invocation
FreeResolution(Module(R)). The free resolution is returned as a sequence F such
that F [1] is M , F [i + 1] is the syzygy module of F [i] for i < #F , and the last
element of F is free (its basis has no syzygies).

MinimalFreeResolution(R)

Given the invariant ring R = K[V ]G of the group G over the field K, return a
minimal free resolution of (the module of) R. This is just the same as the invocation
MinimalFreeResolution(Module(R)).

HomologicalDimension(R)

Given the invariant ring R = K[V ]G of the group G over the field K, return the
homological dimension of R. This is just the length of a minimal free resolution of
R minus 1 (taking account of the fact that the module M of R is always included
in the free resolution).

Depth(R)

Given the invariant ring R = K[V ]G of the group G over the field K, return the
depth of R. This is n−d by the Auslander-Buchsbaum formula, where n is the rank
of R and d is the homological dimension of R.
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Example H110E13

We construct a minimal free resolution of the invariant ring of the group generated by the degree-5
Jordan block over F2 and verify that the depth is 3.

> K:=GF(2);

> G := MatrixGroup<5,K | [1,0,0,0,0, 1,1,0,0,0, 0,1,1,0,0,

> 0,0,1,1,0, 0,0,0,1,1]>;

> R := InvariantRing(G);

> time F := MinimalFreeResolution(R);

Time: 0.690

> F;

Chain complex with terms of degree 3 down to -1

Dimensions of terms: 0 1 7 22 0

> Depth(R);

3

> HomologicalDimension(R);

2

Sections 110.17 and 110.18 present functions whose scope is not limited to the context
of invariant theory.

110.17 Steenrod Operations

SteenrodOperation(f, i)

The i-th Steenrod operation P i(f) of f , which must be a multivariate polynomial
with coefficients in a finite field, and i must be a non-negative integer.

Example H110E14

We demonstrate an elementary use of Steenrod operations.

> K:=GF(3);

> F4:=MatrixGroup<4,K |

> [-1,0,0,0, 1,1,0,0, 0,0,1,0, 0,0,0,1],

> [1,1,0,0, 0,-1,0,0, 0,1,1,0, 0,0,0,1],

> [1,0,0,0, 0,1,-1,0, 0,0,-1,0, 0,0,1,1],

> [1,0,0,0, 0,1,0,0, 0,0,1,1, 0,0,0,-1] >;

> R := InvariantRing(F4);

> f2 := InvariantsOfDegree(R, 2)[1];

> f4 := SteenrodOperation(f2, 1);

> f10 := SteenrodOperation(f4, 3);

> f4;

2*x1^4 + x1^3*x3 + 2*x1^3*x4 + x1*x3^3 + 2*x1*x4^3 + 2*x2^3*x3 + x2^3*x4 +

2*x2*x3^3 + x2*x4^3 + x4^4

> f10;

2*x1^10 + x1^9*x3 + 2*x1^9*x4 + x1*x3^9 + 2*x1*x4^9 + 2*x2^9*x3 + x2^9*x4 +
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2*x2*x3^9 + x2*x4^9 + x4^10

> f4 in R;

true

> f10 in R;

true

110.18 Minimalization and Homogeneous Module Testing

The following functions work with collections of polynomials which are considered as gen-
erators for subalgebras or submodules of a polynomial ring. They are repeated from the
chapter on multivariate polynomials since they are used extremely often in invariant theory
to express an invariant in terms of the primary and secondary invariants of an invariant
ring. Full descriptions of the functions are not given here. See the descriptions in the
chapter on multivariate polynomials.

MinimalAlgebraGenerators(L)

Let R = K[x1, . . . , xn] be a polynomial ring of rank n over the field K. Suppose
L is a set or sequence of k polynomials p1, . . . , pk in R. Let A = K[p1, . . . , pk] be
the subalgebra (not ideal) of R generated by L. This function returns a minimal
generating set of the algebra A as a (sorted) sequence of elements taken from L.

HomogeneousModuleTest(P, S, F)

Let R = K[x1, . . . , xn] be a polynomial ring of rank n over the field K. Suppose
P is a sequence of k homogeneous polynomials p1, . . . , pk in R and suppose S is a
sequence of r homogeneous polynomials s1, . . . , sr in R. Let A = K[p1, . . . , pk] be
the subalgebra (not ideal) of R generated by P and let M = A[s1, . . . , sr] be the
A-module generated by S over A. Finally, suppose F is an element of R. This
function returns whether F is in the module M (considered as a submodule of R).
If the result is true, the function also returns a sequence C = [c1, . . . , cr] of length
r with ci ∈ K[t1, . . . , tr] such that F =

∑r
i=1 ci(p1, . . . , pk) · si.

HomogeneousModuleTest(P, S, L)

Let R = K[x1, . . . , xn] be a polynomial ring of rank n over the field K. Suppose
P is a sequence of k homogeneous polynomials p1, . . . , pk in R and suppose S is
a sequence of r homogeneous polynomials s1, . . . , sr in R. Let A = K[p1, . . . , pk]
be the subalgebra (not ideal) of R generated by P and let M = A[s1, . . . , sr] be
the A-module generated by S over A. Finally, suppose L is a sequence of length l
of elements of R which are all homogeneous of (weighted) degree d. This function
returns parallel sequences B and V with the following properties:

(a)B is sequence of length l of booleans such that for 1 ≤ i ≤ l, B[i] is true iff L[i]
is in the module M .



Ch. 110 INVARIANT THEORY 3381

(b)V is a sequence of length l consisting of sequences of length r and consisting
of polynomials in the polynomial ring T = K[t1, . . . , tr]. (The polynomial ring
T = K[t1, . . . , tr] is constructed separately but automatically with the print
names t1, t2, etc.) If B[i] is false (so L[i] is not in M), V [i] is a sequence of r
zero polynomials. Otherwise V [i] is a sequence of r polynomials ci,1, . . . , ci,r in
T such that that L[i] =

∑r
j=1 ci,j(p1, . . . , pk) · sj .

Example H110E15

We demonstrate how the function MinimalAlgebraGenerators can be used to compute funda-
mental invariants (in fact, the Magma function FundamentalInvariants does just this).

> K := RationalField();

> G := PermutationGroup<6 | (1,2,3)(4,5,6), (1,2)(4,5)>;

> R := InvariantRing(G, K);

> P := PrimaryInvariants(R);

> P;

[

x1 + x2 + x3,

x4 + x5 + x6,

x1^2 + x2^2 + x3^2,

x4^2 + x5^2 + x6^2,

x1^3 + x2^3 + x3^3,

x4^3 + x5^3 + x6^3

]

> S := SecondaryInvariants(R);

> S;

[

1,

x1*x4 + x2*x5 + x3*x6,

x1^2*x4 + x2^2*x5 + x3^2*x6,

x1*x4^2 + x2*x5^2 + x3*x6^2,

x1^2*x4^2 + 2*x1*x2*x4*x5 + 2*x1*x3*x4*x6 + x2^2*x5^2 + 2*x2*x3*x5*x6 +

x3^2*x6^2,

x1^3*x4^3 + x1^2*x2*x4*x5^2 + x1^2*x3*x4*x6^2 + x1*x2^2*x4^2*x5 +

x1*x3^2*x4^2*x6 + x2^3*x5^3 + x2^2*x3*x5*x6^2 + x2*x3^2*x5^2*x6 +

x3^3*x6^3

]

> MinimalAlgebraGenerators(P cat S);

[

1,

x1 + x2 + x3,

x4 + x5 + x6,

x1^2 + x2^2 + x3^2,

x1*x4 + x2*x5 + x3*x6,

x4^2 + x5^2 + x6^2,

x1^3 + x2^3 + x3^3 + x4*x5*x6,

x1^2*x4 + x2^2*x5 + x3^2*x6,
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x1*x4^2 + x2*x5^2 + x3*x6^2,

x4^3 + x5^3 + x6^3

]

Example H110E16

We demonstrate uses of the function HomogeneousModuleTest in invariant theory.

> // Create invariant ring R with primaries P, secondaries S

> R := InvariantRing(CyclicGroup(4), GF(2));

> P := PrimaryInvariants(R);

> S := SecondaryInvariants(R);

> #S;

5

> S[5];

x1^3*x3^2 + x1^2*x2^2*x3 + x1^2*x2*x3^2 + x1^2*x2*x4^2 +

x1^2*x3^3 + x1^2*x3^2*x4 + x1*x2^2*x4^2 + x1*x3^2*x4^2 +

x2^3*x4^2 + x2^2*x3^2*x4 + x2^2*x3*x4^2 + x2^2*x4^3

> // Write S[2] in terms of P and S

> HomogeneousModuleTest(P, S, S[2]^2);

true [

t1^2*t3^2 + t2^3,

t1*t2,

t1^3,

0,

0

]

> // Find all invariants I5 of degree 5

> I5 := InvariantsOfDegree(R, 5);

> I5;

[

x1^5 + x2^5 + x3^5 + x4^5,

x1^4*x2 + x1*x4^4 + x2^4*x3 + x3^4*x4,

x1^4*x3 + x1*x3^4 + x2^4*x4 + x2*x4^4,

x1^4*x4 + x1*x2^4 + x2*x3^4 + x3*x4^4,

x1^3*x2^2 + x1^2*x4^3 + x2^3*x3^2 + x3^3*x4^2,

x1^3*x2*x3 + x1*x2*x4^3 + x1*x3^3*x4 + x2^3*x3*x4,

x1^3*x2*x4 + x1*x2^3*x3 + x1*x3*x4^3 + x2*x3^3*x4,

x1^3*x3^2 + x1^2*x3^3 + x2^3*x4^2 + x2^2*x4^3,

x1^3*x3*x4 + x1*x2^3*x4 + x1*x2*x3^3 + x2*x3*x4^3,

x1^3*x4^2 + x1^2*x2^3 + x2^2*x3^3 + x3^2*x4^3,

x1^2*x2^2*x3 + x1^2*x2*x4^2 + x1*x3^2*x4^2 + x2^2*x3^2*x4,

x1^2*x2^2*x4 + x1^2*x3*x4^2 + x1*x2^2*x3^2 + x2*x3^2*x4^2,

x1^2*x2*x3^2 + x1^2*x3^2*x4 + x1*x2^2*x4^2 + x2^2*x3*x4^2,

x1^2*x2*x3*x4 + x1*x2^2*x3*x4 + x1*x2*x3^2*x4 + x1*x2*x3*x4^2

]

> // Write all elements of I5 in terms of P and S

> // (the t-variables correspond to elements of P and
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> // the "columns" of the inner sequences to elements of S)

> HomogeneousModuleTest(P, S, I5);

[ true, true, true, true, true, true, true, true, true, true,

true, true, true, true ]

[

[ t1^5 + t1^3*t2 + t1^3*t3 + t1*t2^2 + t1*t3^2 + t1*t4,

0, t1^2 + t2 + t3, 0, 0 ],

[ t1^3*t2 + t1^3*t3 + t1*t4, t1^2 + t2, t2 + t3, 0, 0 ],

[ t1^3*t3 + t1*t3^2 + t1*t4, 0, t1^2 + t2 + t3, 0, 0 ],

[ t1^3*t3 + t1*t2^2 + t1*t4, t1^2 + t2, t2 + t3, 0, 0 ],

[ t1*t2^2 + t1*t3^2, t2, t1^2, 0, 1 ],

[ t1*t2*t3, t3, t2 + t3, 0, 1 ],

[ t1*t2*t3 + t1*t4, 0, t1^2 + t2, 0, 0 ],

[ t1*t3^2 + t1*t4, 0, t3, 0, 0 ],

[ 0, t3, t3, 0, 1 ],

[ t1*t3^2, t2, t1^2 + t2, 0, 1 ],

[ t1*t3^2, 0, 0, 0, 1 ],

[ t1*t3^2, 0, t2, 0, 1 ],

[ t1*t4, 0, t3, 0, 0 ],

[ t1*t4, 0, 0, 0, 0 ]

]

110.19 Attributes of Invariant Rings and Fields

In this section we list various attributes of invariant rings which can be examined and
set by the user. This allows low-level control of information stored in invariant rings or
fields. Note that when the user sets an attribute, only minimal testing can be done on
the value so if an incorrect value is set, unpredictable results may occur. Note also that
if an attribute is not set, referring to it in an expression (using the ‘ operator) will not
trigger the calculation of it (while intrinsic functions do); rather an error will ensue. Use
the assigned operator to test whether an attribute is set.

R‘PrimaryInvariants

The attribute for the primary invariants of invariant ring R = K[V ]G. If the
attribute R‘PrimaryInvariants is examined, either the current primary invari-
ants of R are set so they are returned or an error results. If the attribute
R‘PrimaryInvariants is set by assignment, it must be sequence of n algebraically-
independent invariants of G, where n is the rank of R. Magma will not necessarily
check that this condition is met since that may be very time-consuming. If the
attribute is already set, the new value must be the same as the old value. Note
that this attribute is useful when it is desired to compute secondary invariants of R
with respect to some specially constructed primary invariants which would not be
constructed by the automatic algorithm in Magma.
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R‘SecondaryInvariants

The attribute for the secondary invariants of invariant ring R = K[V ]G. If the
attribute R‘SecondaryInvariants is examined, either the current primary in-
variants of R are set so they are returned or an error results. If the attribute
R‘SecondaryInvariants is set by assignment to Q, primary invariants for R must
already be defined, and Q must be sequence of secondary invariants with respect to
the primary invariants of R. Magma will not necessarily check that this condition
is met since that may be very time-consuming. If the attribute is already set, the
new value must be the same as the old value.

R‘HilbertSeries

The attribute for the Hilbert series of invariant ring R = K[V ]G. If the attribute
R‘HilbertSeries is examined, either the Hilbert series of R is computed so it is
returned or an error results. If the attribute R‘HilbertSeries is set by assignment
to H, H must be rational function in the function field Z(t) and equal to the Hilbert
series of R. Magma will not necessarily check that this condition is met since that
may be very time-consuming. If the attribute is already set, the new value must be
the same as the old value.

Example H110E17

We demonstrate elementary uses of attributes.

> // Create group G and subgroup H of G and invariant rings

> // RG and RH of G and H respectively.

> G := CyclicGroup(4);

> H := sub<G|G.1^2>;

> RG := InvariantRing(G, GF(2));

> RH := InvariantRing(H, GF(2));

>

> // Create Hilbert Series S of RG and set it in RG.

> F<t> := FunctionField(IntegerRing());

> S := (t^3 + t^2 - t + 1)/(t^8 - 2*t^7 + 2*t^5 - 2*t^4 +

> 2*t^3 - 2*t + 1);

> RG‘HilbertSeries := S;

>

> // Note RG has no primary invariants yet so let Magma compute them as PG.

> RG‘PrimaryInvariants;

>> RG‘PrimaryInvariants;

^

Runtime error in ‘: Attribute ’PrimaryInvariants’ for this structure is valid

but not assigned

> PG := PrimaryInvariants(RG);

> PG;

[

x1 + x2 + x3 + x4,

x1*x2 + x1*x4 + x2*x3 + x3*x4,
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x1*x3 + x2*x4,

x1*x2*x3*x4

]

>

> // Set primary invariants of RH to PG and compute secondary

> // invariants of RH with respect to PG.

> RH‘PrimaryInvariants := PG;

> SecondaryInvariants(RH);

[

1,

x2 + x4,

x2*x4,

x1*x2 + x1*x3 + x2^2 + x2*x4 + x3*x4 + x4^2,

x1^2*x2 + x1*x2*x3 + x1*x3*x4 + x2^3 + x3^2*x4 + x4^3,

x1^2*x2 + x1*x2^2 + x1*x2*x3 + x1*x2*x4 + x1*x3*x4 + x1*x4^2

+ x2^3 + x2^2*x3 + x2*x3*x4 + x3^2*x4 + x3*x4^2 + x4^3,

x1*x2*x4^2 + x2^2*x3*x4 + x2^2*x4^2,

x1^2*x2*x4^2 + x1*x2^2*x3*x4 + x1*x2^2*x4^2 + x1*x2*x3*x4^2 +

x2^3*x4^2 + x2^2*x3^2*x4 + x2^2*x3*x4^2 + x2^2*x4^3

]

110.20 Invariant Rings of Linear Algebraic Groups

By definition, a linear algebraic group is an affine variety G together with morphisms
giving G the structure of a group. In the invariant theory algorithms of Magma, the
group structure of G is nowhere required. Therefore an algebraic group will be defined
by simply giving polynomials defining G as an affine variety. A G-module of an algebraic
group is a finite dimensional vector space Kn together with a morphism G → GLn of
algebraic groups. In Magma, such a morphism is given by specifying an n by n matrix
whose entries are polynomials in the same variables as the polynomials specifying G (for
more details, see section 110.6). An invariant ring of a linear algebraic group is constructed
by giving a linear algebraic group together with a G-module. Magma makes no checks
that the variety defined by the user has a multiplication making it into an algebraic group,
or that the morphism G → GLn(K) really provides an action of G. If they do not,
the computations will have unpredictable results. Likewise, Magma is unable to decide
whether an algebraic group is reductive or linearly reductive. Therefore the user should
indicate whether a group has these properties at creation by the options described below.
This is important because Derksen’s algorithm only works for linearly reductive groups.
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110.20.1 Creation

InvariantRing(I, A)

Reductive BoolElt Default : false

LinearlyReductive BoolElt Default : false

PolynomialRing RngMPol Default :

Construct the invariant ring R for the algebraic group G defined by the ideal I and
representation matrix A.

If the parameter Reductive is set to true, then G is assumed to be reductive,
while if the parameter LinearlyReductive is set to true, then G is assumed to be
linearly reductive.

If the parameter PolynomialRing is set to a value P , then P is used as the
polynomial ring in which the invariants of R will lie.

BinaryForms(N, p)

BinaryForms(n, p)

Let N = [n1, . . . , nk] be a sequence of positive integers and let p be a positive prime
or zero. Let G = SL2(K) with K an algebraically closed field of characteristic p.
This function defines the action on a direct sum of spaces of binary forms with
degrees given by the ni. The function returns three items: the ideal IG defining G
as an algebraic group, the representation matrix A (as a sequence of sequences of
polynomials), and a polynomial ring on which G acts with appropriate naming of
variables.

The second version of the function is given an integer n, and takes N to be [n].

110.20.2 Access

GroupIdeal(R)

Given an invariant ring R defined over an algebraic group G, return the ideal I
defining G.

Representation(R)

Given an invariant ring R defined over an algebraic group G, return the represen-
tation matrix A for G.

110.20.3 Functions

InvariantsOfDegree(R, d)

Return a K-basis of the space Rd of the homogeneous invariants of degree d in the
invariant ring R = K[V ]G of the algebraic group G over the field K as a sequence
of polynomials.
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FundamentalInvariants(R)

Optimize BoolElt Default : true

Minimize BoolElt Default : true

MinimizeHilbert BoolElt Default : true

Force BoolElt Default : false

Given an invariant ring R defined over an algebraic group, return a sequence of
fundamental invariants of R, using Derksen’s algorithm.

By default, the computation of homogeneous invariants is optimized by extend-
ing at each the degree the basis obtained from multiplying lower-degree invariants
by appropriate monomials. This method can be suppressed by setting Optimize
to false. By default the generators will be minimal. By setting the parameter
Minimize to false, no minimization will be attempted. By setting the parameter
MinimizeHilbert to false, the basis of the Hilbert ideal will not be minimized.

By default the group must be linearly reductive. Setting the parameter Force to
true will force the application of Derksen’s algorithm even though the group may
not be linearly reductive.

DerksenIdeal(R)

Given an invariant ring R defined over an algebraic group, return a sequence of
generators of the Derksen ideal of R. The Derksen ideal is an ideal D of P [y1, . . . , yn],
where P = K[x1, . . . , xn] is the ambient polynomial ring of R, and the yi are new
indeterminates. By definition, D is the intersection of all the ideals

〈y1 − g(x1), . . . , yn − g(xn)〉

for all g ∈ G, the group of R. Geometrically, D is the vanishing ideal of the subset

{(x, g(x))|x ∈ Kn, g ∈ G}

of the cartesian product Kn ×Kn.

HilbertIdeal(R)

Minimize BoolElt Default : true

Force BoolElt Default : false

Given an invariant ring R defined over a linear algebraic group, return the Hilbert
ideal of R. This is the ideal in the polynomial ring generated by all non-constant,
homogeneous invariants. The result is a sequence of homogeneous generators (not
necessarily invariant).

By default the generators will be minimal. By setting the parameter Minimize
to false, no minimization will be attempted. Also, setting the parameter Force to
true will force the application of Derksen’s algorithm even though the group may
not be linearly reductive.
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Example H110E18

We consider invariant ring of the group G = SL2(Q), which is is characterised by the equation
det(A) = 1.

> Q := RationalField();

> P<[a]>:=PolynomialRing(Q, 4);

> A := MatrixRing(P,2)!a;

> IG := ideal<P | Determinant(A) - 1>;

> IG;

Ideal of Polynomial ring of rank 4 over Rational Field

Lexicographical Order

Variables: a[1], a[2], a[3], a[4]

Basis:

[

a[1]*a[4] - a[2]*a[3] - 1

]

The simultaneous action of G on three vectors is given by the matrix I3 ⊗A:

> T := TensorProduct(MatrixRing(P, 3) ! 1, A);

> T;

[a[1] a[2] 0 0 0 0]

[a[3] a[4] 0 0 0 0]

[ 0 0 a[1] a[2] 0 0]

[ 0 0 a[3] a[4] 0 0]

[ 0 0 0 0 a[1] a[2]]

[ 0 0 0 0 a[3] a[4]]

We create the invariant ring R of G (which is reductive) with this action and compute fundamental
invariants.

> IR := InvariantRing(IG, T: Reductive);

> FundamentalInvariants(IR);

[

x3*x6 - x4*x5,

x1*x6 - x2*x5,

x1*x4 - x2*x3

]

We see that there are three fundamental invariants. It is well known that the invariant ring of the
simultaneous action of SLn on m vectors is generated by the minors of the n×m matrix formed
by the vectors. We can see this in the present case.

> R<x1,x2,x3,x4,x5,x6> := PolynomialRing(Q, 6);

> M := Matrix([[x1,x3,x5], [x2,x4,x6]]);

> M;

[x1 x3 x5]

[x2 x4 x6]

> Minors(M, 2);

[
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x1*x4 - x2*x3,

-x1*x6 + x2*x5,

x3*x6 - x4*x5

]

Example H110E19

As a second example, we consider the representation of the group SL2(Q) × SL2(Q) × SL2(Q)
given by the tensor product of the canonical representation:

> n:=3;

> P<[x]>:=PolynomialRing(RationalField(), n*4, "grevlex");

> L_A := [MatrixRing(P,2)!x[i..i+3]:i in [1..n*4 by 4]];

> IG := ideal<P|[Determinant(A)-1:A in L_A]>;

> IG;

Ideal of Polynomial ring of rank 12 over Rational Field

Graded Reverse Lexicographical Order

Variables: x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8],

x[9], x[10], x[11], x[12]

Basis:

[

-x[2]*x[3] + x[1]*x[4] - 1,

-x[6]*x[7] + x[5]*x[8] - 1,

-x[10]*x[11] + x[9]*x[12] - 1

]

>

> M:=L_A[1];

> for i:=2 to n do

> M:=TensorProduct(M,L_A[i]);

> end for;

> M;

[x[1]*x[5]*x[9] x[1]*x[5]*x[10] x[1]*x[6]*x[9] x[1]*x[6]*x[10]

x[2]*x[5]*x[9] x[2]*x[5]*x[10] x[2]*x[6]*x[9] x[2]*x[6]*x[10]]

[x[1]*x[5]*x[11] x[1]*x[5]*x[12] x[1]*x[6]*x[11] x[1]*x[6]*x[12]

x[2]*x[5]*x[11] x[2]*x[5]*x[12] x[2]*x[6]*x[11] x[2]*x[6]*x[12]]

[x[1]*x[7]*x[9] x[1]*x[7]*x[10] x[1]*x[8]*x[9] x[1]*x[8]*x[10]

x[2]*x[7]*x[9] x[2]*x[7]*x[10] x[2]*x[8]*x[9] x[2]*x[8]*x[10]]

[x[1]*x[7]*x[11] x[1]*x[7]*x[12] x[1]*x[8]*x[11] x[1]*x[8]*x[12]

x[2]*x[7]*x[11] x[2]*x[7]*x[12] x[2]*x[8]*x[11] x[2]*x[8]*x[12]]

[x[3]*x[5]*x[9] x[3]*x[5]*x[10] x[3]*x[6]*x[9] x[3]*x[6]*x[10]

x[4]*x[5]*x[9] x[4]*x[5]*x[10] x[4]*x[6]*x[9] x[4]*x[6]*x[10]]

[x[3]*x[5]*x[11] x[3]*x[5]*x[12] x[3]*x[6]*x[11] x[3]*x[6]*x[12]

x[4]*x[5]*x[11] x[4]*x[5]*x[12] x[4]*x[6]*x[11] x[4]*x[6]*x[12]]

[x[3]*x[7]*x[9] x[3]*x[7]*x[10] x[3]*x[8]*x[9] x[3]*x[8]*x[10]

x[4]*x[7]*x[9] x[4]*x[7]*x[10] x[4]*x[8]*x[9] x[4]*x[8]*x[10]]

[x[3]*x[7]*x[11] x[3]*x[7]*x[12] x[3]*x[8]*x[11] x[3]*x[8]*x[12]

x[4]*x[7]*x[11] x[4]*x[7]*x[12] x[4]*x[8]*x[11] x[4]*x[8]*x[12]]

> IR:=InvariantRing(IG, M: Reductive);
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> time FundamentalInvariants(IR);

[

x1^2*x8^2 - 2*x1*x2*x7*x8 - 2*x1*x3*x6*x8 - 2*x1*x4*x5*x8 +

4*x1*x4*x6*x7 + x2^2*x7^2 + 4*x2*x3*x5*x8 - 2*x2*x3*x6*x7 -

2*x2*x4*x5*x7 + x3^2*x6^2 - 2*x3*x4*x5*x6 + x4^2*x5^2

]

Time: 0.610

> time DerksenIdeal(IR);

[

y1^2*y8^2 - 2*y1*y2*y7*y8 - 2*y1*y3*y6*y8 - 2*y1*y4*y5*y8 + 4*y1*y4*y6*y7 +

y2^2*y7^2 + 4*y2*y3*y5*y8 - 2*y2*y3*y6*y7 - 2*y2*y4*y5*y7 + y3^2*y6^2 -

2*y3*y4*y5*y6 + y4^2*y5^2 - x1^2*x8^2 + 2*x1*x2*x7*x8 + 2*x1*x3*x6*x8 +

2*x1*x4*x5*x8 - 4*x1*x4*x6*x7 - x2^2*x7^2 - 4*x2*x3*x5*x8 +

2*x2*x3*x6*x7 + 2*x2*x4*x5*x7 - x3^2*x6^2 + 2*x3*x4*x5*x6 - x4^2*x5^2

]

Time: 0.010

> time HilbertIdeal(IR);

[

x1^2*x8^2 - 2*x1*x2*x7*x8 - 2*x1*x3*x6*x8 - 2*x1*x4*x5*x8 + 4*x1*x4*x6*x7 +

x2^2*x7^2 + 4*x2*x3*x5*x8 - 2*x2*x3*x6*x7 - 2*x2*x4*x5*x7 + x3^2*x6^2 -

2*x3*x4*x5*x6 + x4^2*x5^2

]

Time: 0.000

So in this case, we find that the invariant ring is generated by a single polynomial.

Example H110E20

We compute fundamental invariants for the invariant ring of G = SL2(Q) acting on a space of
binary forms.

> IG, A := BinaryForms([1,1,2,2], 0);

> IG;

Ideal of Polynomial ring of rank 4 over Rational Field

Lexicographical Order

Variables: t1, t2, t3, t4

Basis:

[

t1*t4 - t2*t3 - 1

]

> A;

[t4 -t3 0 0 0 0 0 0 0 0]

[-t2 t1 0 0 0 0 0 0 0 0]

[0 0 t4 -t3 0 0 0 0 0 0]

[0 0 -t2 t1 0 0 0 0 0 0]

[0 0 0 0 t4^2 -t3*t4 t3^2 0 0 0]

[0 0 0 0 -2*t2*t4 t1*t4 + t2*t3 -2*t1*t3 0 0 0]

[0 0 0 0 t2^2 -t1*t2 t1^2 0 0 0]

[0 0 0 0 0 0 0 t4^2 -t3*t4 t3^2]
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[0 0 0 0 0 0 0 -2*t2*t4 t1*t4 + t2*t3 -2*t1*t3]

[0 0 0 0 0 0 0 t2^2 -t1*t2 t1^2]

> R:=InvariantRing(IG,A: LinearlyReductive);

> time FundamentalInvariants(R);

[

x8*x10 - 1/4*x9^2,

x5*x10 - 1/2*x6*x9 + x7*x8,

x5*x7 - 1/4*x6^2,

x1*x4 - x2*x3,

x1*x3*x7 - 1/2*x1*x4*x6 - 1/2*x2*x3*x6 + x2*x4*x5,

x1*x3*x10 - 1/2*x1*x4*x9 - 1/2*x2*x3*x9 + x2*x4*x8,

x3^2*x10 - x3*x4*x9 + x4^2*x8,

x3^2*x7 - x3*x4*x6 + x4^2*x5,

x1^2*x10 - x1*x2*x9 + x2^2*x8,

x1^2*x7 - x1*x2*x6 + x2^2*x5,

x1*x2*x5*x10 - x1*x2*x7*x8 - x2^2*x5*x9 + x2^2*x6*x8,

x1*x4*x5*x10 - 1/2*x1*x4*x6*x9 + x1*x4*x7*x8 - 1/2*x2*x3*x5*x10 +

1/2*x2*x3*x6*x9 - 3/2*x2*x3*x7*x8 - 1/2*x2*x4*x5*x9 + 1/2*x2*x4*x6*x8,

x3*x4*x5*x10 - x3*x4*x7*x8 - x4^2*x5*x9 + x4^2*x6*x8

]

Time: 0.650

Example H110E21

We do simple computations on an invariant ring of an algebraic group. The group is not reductive,
so fundamental invariants cannot be computed, but invariants of specific degrees can be.

> K := RationalField();

> Pa<a,b> := PolynomialRing(K, 2);

> IG := ideal<Pa|>;

> A := Matrix(7,

> [1, 0, 0, 0, 0, 0, 0, a, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

> 0, 0, 0, 0, a, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

> a, 1, 0, 0, 0, 0, 0, b, 0, 1 ]);

> A;

[1 0 0 0 0 0 0]

[a 1 0 0 0 0 0]

[0 0 1 0 0 0 0]

[0 0 a 1 0 0 0]

[0 0 0 0 1 0 0]

[0 0 0 0 a 1 0]

[0 0 0 0 b 0 1]

> R:=InvariantRing(IG, A);

> R;

Invariant Ring of algebraic group

Field of definition:

Rational Field

> InvariantsOfDegree(R, 1);
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[

x1,

x3,

x5

]

> InvariantsOfDegree(R, 2);

[

x1^2,

x1*x3,

x1*x4 - x2*x3,

x1*x5,

x1*x6 - x2*x5,

x3^2,

x3*x5,

x3*x6 - x4*x5,

x5^2

]

> FundamentalInvariants(R);

>> FundamentalInvariants(R);

^

Runtime error in ’FundamentalInvariants’: Computing fundamental invariants (via

Derksen’s algorithm) is only possible for linearly reductive groups

110.21 Invariant Fields
If G is a group acting on a polynomial ring K[x1, . . . , xn], it also acts on the rational func-
tion field K(x1, . . . , xn) by homomorphic extension. The invariants field K(x1, . . . , xn)G is
the field consisting of all functions which are fixed by G. Magma allows the construction
of the invariant field by the function InvariantField. All that was said above about
possible arguments of InvariantRing and access functions for invariant rings carries over
to invariant fields. The category of invariant fields is FldInvar.

110.21.1 Creation

InvariantField(G, K)

InvariantField(G)

InvariantField(I, A)

Reductive BoolElt Default : false

LinearlyReductive BoolElt Default : false

FunctionField FldFunRat Default :

Create the invariant field for the group G over the field K. The arguments and
parameters are the same as for the function InvariantRing, in the three cases of
permutation groups, matrix groups, and algebraic groups.



Ch. 110 INVARIANT THEORY 3393

110.21.2 Access

FunctionField(F)

Given an invariant field F , return the underlying function field of F .

Group(F)

Given an invariant field F , return the underlying group of F .

GroupIdeal(F)

Given an invariant field F defined over an algebraic group G, return the ideal I
defining G.

Representation(F)

Given an invariant field F defined over an algebraic group G, return the represen-
tation matrix A for G.

110.21.3 Functions for Invariant Fields
This section describes functions that apply to invariant fields.

FundamentalInvariants(F)

Al MonStgElt Default : “BethMuellerQuade”
Minimize BoolElt Default : true

Min RngIntElt Default : 0
BottomUpTo RngIntElt Default : 0

Given an invariant field F , return a sequence of fundamental invariants of F which
generate F as an algebra over the base field of the ambient rational function field
of F .

By default this function uses the algorithm of Beth and Müller-Quade [MQB99].
By setting the parameter Al to "FleischmannKemperWoodcock", an alternative al-
gorithm of Fleischmann, Kemper and Woodcock will be used.

By default the returned invariants will be minimal (in the sense of ‘non-
redundant’). By setting the parameter Minimize to false, no minimization will
be attempted. The other parameters apply to the minimization and are as in the
function MinimizeGenerators below.

DerksenIdeal(F)

Given an invariant field F , return the Derksen ideal of F . This is an ideal D in
K[y1 . . . yn], where K = k(x1 . . . xn) is the ambient rational function field of F , and
the yi are new indeterminates. By definition, D is the intersection of all the ideals

< y1 − g(x1), . . . , yn − g(xn) >

for g ∈ G, the group of R. The function returns D as an ideal with a Groebner
basis.
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MinimizeGenerators(L)

Min RngIntElt Default : 0
BottomUpTo RngIntElt Default : 0

Suppose L is a set or sequence of non-constant elements of a rational function field.
This function selects a minimal (in the sense of ‘irredundant’) subset of L which
generates the same subfield as L. The function returns a sequence of such minimal
generators.

If the parameter Min is set to m > 0, then the function stops when a generating
set with m elements is reached (m = 0 is the default and implies no limit).

If the parameter BottomUpTo is set to b > 0, then the function first tries to
eliminate generators by testing if they lie in the subfield generated by a small number
of elements from L. This small number is limited by b.

QuadeIdeal(L)

Fy BoolElt Default :

LargeIdeal BoolElt Default : false

Suppose L is a non-empty set or sequence of non-constant elements from a rational
function field F = k(x1, . . . , xn), generating a subfield K = k(L). The Quade ideal,
introduced in [MQS99], is the ideal in F [y1, . . . , yn] generated by the kernel of the
map K[y1, . . . , yn] → F given by yi 7→ xi. This function returns the Quade ideal
(with its basis being a Groebner basis).

The parameter Fy may be set to a polynomial ring P of rank n over F , so that
the result is an ideal of P . If the parameter LargeIdeal is set to true, then an
ideal in a larger polynomial ring is returned, whose intersection with F [y1, . . . , yn]
is the Quade ideal.

Example H110E22

This example works with the invariant field of the finite group C3 over the rational field.

> IF := InvariantField(CyclicGroup(3), RationalField());

> time L := FundamentalInvariants(IF);

Time: 1.780

> L;

[

x1 + x2 + x3,

(x1^2*x2 - 3*x1*x2*x3 + x1*x3^2 + x2^2*x3)/(x1^2 - x1*x2 - x1*x3 + x2^2 -

x2*x3 + x3^2),

(x1^3 - x1^2*x3 - x1*x2^2 + x2^3 - x2*x3^2 + x3^3)/(x1^2 - x1*x2 - x1*x3 +

x2^2 - x2*x3 + x3^2)

]

> time DerksenIdeal(IF);

Ideal of Polynomial ring of rank 3 over Multivariate rational function field of

rank 3 over Rational Field

Graded Reverse Lexicographical Order
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Variables: y1, y2, y3

Dimension 0

Groebner basis:

[

y2^2 + (-x1^3 + x1^2*x3 + x1*x2^2 - x2^3 + x2*x3^2 - x3^3)/(x1^2 - x1*x2 -

x1*x3 + x2^2 - x2*x3 + x3^2)*y2 + (-x1^2*x2 + x1^2*x3 + x1*x2^2 -

x1*x3^2 - x2^2*x3 + x2*x3^2)/(x1^2 - x1*x2 - x1*x3 + x2^2 - x2*x3 +

x3^2)*y3 + (x1^3*x2 - x1^2*x2^2 - x1^2*x3^2 + x1*x3^3 + x2^3*x3 -

x2^2*x3^2)/(x1^2 - x1*x2 - x1*x3 + x2^2 - x2*x3 + x3^2),

y2*y3 + (-x1^2*x2 + 3*x1*x2*x3 - x1*x3^2 - x2^2*x3)/(x1^2 - x1*x2 - x1*x3 +

x2^2 - x2*x3 + x3^2)*y2 + (-x1^2*x3 - x1*x2^2 + 3*x1*x2*x3 -

x2*x3^2)/(x1^2 - x1*x2 - x1*x3 + x2^2 - x2*x3 + x3^2)*y3 + (x1^2*x2^2 -

x1^2*x2*x3 + x1^2*x3^2 - x1*x2^2*x3 - x1*x2*x3^2 + x2^2*x3^2)/(x1^2 -

x1*x2 - x1*x3 + x2^2 - x2*x3 + x3^2),

y3^2 + (x1^2*x2 - x1^2*x3 - x1*x2^2 + x1*x3^2 + x2^2*x3 - x2*x3^2)/(x1^2 -

x1*x2 - x1*x3 + x2^2 - x2*x3 + x3^2)*y2 + (-x1^3 + x1^2*x2 + x1*x3^2 -

x2^3 + x2^2*x3 - x3^3)/(x1^2 - x1*x2 - x1*x3 + x2^2 - x2*x3 + x3^2)*y3 +

(x1^3*x3 - x1^2*x2^2 - x1^2*x3^2 + x1*x2^3 - x2^2*x3^2 + x2*x3^3)/(x1^2

- x1*x2 - x1*x3 + x2^2 - x2*x3 + x3^2),

y1 + y2 + y3 - x1 - x2 - x3

]

Example H110E23

We can compute with the invariant field of the non-reductive group presented above.

> K := RationalField();

> Pa<a,b> := PolynomialRing(K, 2);

> IG := ideal<Pa|>;

> A := Matrix(7,

> [1, 0, 0, 0, 0, 0, 0, a, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

> 0, 0, 0, 0, a, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

> a, 1, 0, 0, 0, 0, 0, b, 0, 1 ]);

> A;

[1 0 0 0 0 0 0]

[a 1 0 0 0 0 0]

[0 0 1 0 0 0 0]

[0 0 a 1 0 0 0]

[0 0 0 0 1 0 0]

[0 0 0 0 a 1 0]

[0 0 0 0 b 0 1]

> IF := InvariantField(IG, A);

> IF;

Invariant field of algebraic group

Field of definition: Rational Field

> time FundamentalInvariants(IF);

[

x5,
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x3/x5,

x1,

(x1*x6 - x2*x5)/x5,

(x3*x6 - x4*x5)/x5

]

Time: 0.010

> DerksenIdeal(IF);

Ideal of Polynomial ring of rank 7 over Multivariate rational function field of

rank 7 over Rational Field

Graded Reverse Lexicographical Order

Variables: y1, y2, y3, y4, y5, y6, y7

Groebner basis:

[

y1 - x1,

y2 - x1/x5*y6 + (x1*x6 - x2*x5)/x5,

y3 - x3,

y4 - x3/x5*y6 + (x3*x6 - x4*x5)/x5,

y5 - x5

]

110.22 Invariants of the Symmetric Group

Magma includes basic functions for working with symmetric polynomials, which are in-
variants of the symmetric group.

ElementarySymmetricPolynomial(P, k)

Given a polynomial ring P of rank n, and an integer k with 1 ≤ k ≤ n, return the
k-th elementary symmetric polynomial of P .

IsSymmetric(f)

IsSymmetric(f, S)

Given a polynomial f from a polynomial ring P of rank n, return whether f is a
symmetric polynomial of P (i.e., is symmetric in all the n variables of P ). If the
answer is true, a polynomial g from a new polynomial ring of rank n is returned
such that f = g(e1, . . . , en), where ei is the i-th elementary symmetric polynomial
of P . If g is desired to be a member of a particular polynomial ring S of rank n (to
obtain predetermined names of variables, for example), then S may also be passed.
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Example H110E24

We create a symmetric polynomial from Q[a, b, c, d] and express it in terms of the elementary
symmetric polynomials.

> P<a, b, c, d> := PolynomialRing(RationalField(), 4, "grevlex");

> f :=

> a^2*b^2*c*d + a^2*b*c^2*d + a*b^2*c^2*d + a^2*b*c*d^2 + a*b^2*c*d^2 +

> a*b*c^2*d^2 - a^2*b^2*c - a^2*b*c^2 - a*b^2*c^2 - a^2*b^2*d -

> 3*a^2*b*c*d - 3*a*b^2*c*d - a^2*c^2*d - 3*a*b*c^2*d - b^2*c^2*d -

> a^2*b*d^2 - a*b^2*d^2 - a^2*c*d^2 - 3*a*b*c*d^2 - b^2*c*d^2 -

> a*c^2*d^2 - b*c^2*d^2 + a + b + c + d;

> // Check orbit under Sym(4) has size one:

> #(f^Sym(4));

1

> Q<e1, e2, e3, e4> := PolynomialRing(RationalField(), 4);

> l, E := IsSymmetric(f, Q);

> l;

true

> E;

e1 - e2*e3 + e2*e4

In the following example, we use a rational function field to define parameters a and b which occur
as coefficients of the symmetric polynomial f .

> F<a,b> := FunctionField(RationalField(), 2);

> P<x1,x2,x3,x4,x5> := PolynomialRing(F, 5, "grevlex");

> y1 := x1^4 + x1^2*a + x1*b;

> y2 := x2^4 + x2^2*a + x2*b;

> y3 := x3^4 + x3^2*a + x3*b;

> y4 := x4^4 + x4^2*a + x4*b;

> y5 := x5^4 + x5^2*a + x5*b;

> f := y1*y2 + y1*y3 + y1*y4 + y1*y5 + y2*y3 + y2*y4 +

> y2*y5 + y3*y4 + y3*y5 + y4*y5;

> Q<e1,e2,e3,e4,e5> := PolynomialRing(F, 5);

> l,E := IsSymmetric(f, Q);

> l, E;

true b*e1^3*e2 - 2*a*e1^3*e3 - 4*e1^3*e5 + a*e1^2*e2^2 +

4*e1^2*e2*e4 + 2*e1^2*e3^2 - b*e1^2*e3 + 2*a*e1^2*e4 -

4*e1*e2^2*e3 - 3*b*e1*e2^2 + 4*a*e1*e2*e3 + 8*e1*e2*e5 +

a*b*e1*e2 - 8*e1*e3*e4 - 2*a^2*e1*e3 + b*e1*e4 - 6*a*e1*e5 +

e2^4 - 2*a*e2^3 - 4*e2^2*e4 + a^2*e2^2 + 4*e2*e3^2 +

5*b*e2*e3 + 2*a*e2*e4 + b^2*e2 - 3*a*e3^2 - 4*e3*e5 -

3*a*b*e3 + 6*e4^2 + 2*a^2*e4 - 5*b*e5
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Chapter 111

DIFFERENTIAL RINGS

111.1 Introduction

The Galois theory of linear differential equations, or differential Galois theory, is the ana-
logue of the classical Galois theory of polynomials for linear differential equations. Gener-
ally speaking one studies linear differential equations, that is differential equations of the
form

L(y) = any(n) + an−1y
(n−1) + · · ·+ a1y

(1) + a0y = 0,

in which the coefficients ai are contained in some ring. The natural analogue of a field in the
classical case is the notion of a differential field, that is a specific case of a differential ring.
A differential ring F is equipped with an additive map δF : F → F called a derivation,
satisfying the multiplicative rule

δF (a · b) = δF (a) · b + a · δF (b), a, b ∈ F.

A classical derivation is the usual derivative. All differential rings have a ring structure
and have a map defined on them. A differential ring that is also a field is called a differ-
ential field.

The differential rings have type RngDiff and their elements have type RngDiffElt. All
differential rings contain a differential ring of constants on which the derivation acts as the
zero map. The differential rings and their elements inherit all functionality of the rings
from which the differential ring is created. We call the ring from which a differential ring
F is created the underlying ring of F .

A solution of a differential equation is an element of some differential field. It can
happen that a solution is not an element of a given differential field F , but is an element of
a differential extension of F . By this we mean a differential field (ring) M with F ⊂M such
that the derivations satisfy δM |F = δF . This is completely analogous to field extensions
induced by solutions of a polynomial.

To clearly describe linear differential equations in Magma we formalize the concept of
taking the derivative. To a differential field F with derivation δF , one associates a non–
commutative ring F [D], the ring of linear differential operators. An element of F [D] is
called a differential operator. A differential operator of degree n ∈ Z≥0 in F [D] is of the
form

L = anDn + an−1D
n−1 + · · ·+ a1D + a0,

with an 6= 0 and all ai ∈ F . Addition in F [D] is term–wise and the multiplication of
elements in F [D] is determined by the rule

D ∗ a = aD + δF (a), a ∈ F.
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With these concepts L(y) = 0 is the linear differential equation

anδn
F (y) + an−1δ

n−1
F (y) + · · ·+ a1δF (y) + a0y = 0.

For an introduction to the basic concepts in differential Galois theory, one is encouraged
to consult [vdPS03]. This book is used as the basis for the implementation of differential
rings, fields and operator rings in Magma.

111.2 Differential Rings and Fields

111.2.1 Creation
There are two ways to create a differential ring. The first creation is a general creation of a
differential ring, for which the user specifies the ring and its derivation. The second creates
a differential field which has the structure of a rational function field of transcendence
degree 1 over its base field. Its derivation is specified by a differential.

Once a differential ring is created one can ask for its ring or field of fractions.

DifferentialRing(P, f, C)

Given a ring P and derivation f acting on P , return the differential ring isomorphic
to P , with induced derivation f acting on it, and ring of constants C. The ring C
should be a subring of P on which f is zero.

Example H111E1

Here we illustrate the creation and printing of a general differential ring.

> P := PolynomialRing(Rationals());

> f := map<P->P | a:->5*Derivative(a)>;

> R := DifferentialRing(P, f, Rationals());

> R;

Differential Ring of Univariate Polynomial Ring over

Rational Field with derivation given by Mapping

from: RngUPol: P to RngUPol: P given by a rule [no inverse]

RationalDifferentialField(C)

The differential field in one variable over the constant field C. If this field is called
F , say, then the derivation on F is given by d/(1)d(F.1), where F.1 is the variable
of F , and (1)d(F.1) is its differential in the differential space of F . Any exact field
with polynomial GCD is valid input for C.
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Example H111E2

Here we illustrate the creation and printing of the differential field obtained from the command
RationalDifferentialField.

> F<z> := RationalDifferentialField(Rationals());

> F;

Differential Ring of Algebraic function field defined over

Rational Field by $.2 - 4711 with

derivation given by (1) d(z)

DifferentialLaurentSeriesRing(C)

The differential Laurent series ring (in one variable) over the constant field C. If
this field is called F , say, then the derivation on F is given by F.1 · d/d(F.1), where
F.1 is the variable of F .

Example H111E3

This example illustrates the creation and printing of the differential Laurent series ring obtained
from the command DifferentialLaurentSeriesRing.

> S<t> := DifferentialLaurentSeriesRing(Rationals());

> S;

Differential Ring of Laurent series field in t over Rational Field

with derivation given by Mapping from: Laurent series field in t over Rational

Field to Laurent series field in t over Rational Field given by a rule [no

inverse]

RingOfFractions(R)

Returns the differential ring R[r−1 : r ∈ R not a zero divisor] of fractions of the
differential ring R, together with the inclusion map from R to the newly created ring.

FieldOfFractions(R)

Returns the differential field of fractions of the differential ring R, together with the
inclusion map from R to the newly created field.

AssignNames(∼R, S)

Given a differential ring R with n indeterminates and a sequence S of n strings,
assign the elements of S to the names of the variables of R.

This procedure only changes the names used in the printing of the elements of R.
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111.2.2 Creation of Differential Ring Elements
The easiest way to create an element in a given ring is to use the angle bracket construction
to attach names to the indeterminates of the ring. Others are given below.

Name(R, i)

R . i

The i-th indeterminate of the differential ring R, where i is between 1 and the
number of generators of R.

R ! s

Coerce the element s in the differential ring R. Elements that are coercible are
elements that are coercible in the underlying ring of the differential ring R.

Zero(R)

The zero element of the differential ring R.

One(R)

Identity(R)

The identity element of the differential ring R.

SeparatingElement(F)

Returns the separating element of the algebraic differential field F .

Example H111E4

We construct the differential field F = Q(z) with derivation d/dz and show some of the elements
that can be created.

> F<z> := RationalDifferentialField(Rationals());

> F.1;

z

> two := F!2;

> two;

2

> Parent(two) eq F;

true

> Zero(F); One(F);

0

1

> Parent(Zero(F)) eq F and Parent(Identity(F)) eq F;

true

> elt := SeparatingElement(F);

> elt;

z

> ISA(Type(elt),RngDiffElt);

true

> Parent(elt) eq F;



Ch. 111 DIFFERENTIAL RINGS 3407

true

> elt eq F!SeparatingElement(UnderlyingRing(F));

true

111.3 Structure Operations on Differential Rings

111.3.1 Category and Parent
Differential Rings form the Magma category RngDiff. The notional power structures
exist as parents of differential rings.

Category(R)

Type(R)

The category, or type, of the differential ring R.

Parent(R)

The power structure of the differential ring R.

111.3.2 Related Structures
The underlying ring and constant ring from which the differential ring was created can
each be retrieved as described below. There is also the concept of a base ring. If one has
created a differential extension M/F in Magma, then F is the base ring of M .

UnderlyingRing(R)

The underlying ring of the differential ring R. The type of the underlying ring
indicates what ring R inherits from.

UnderlyingField(R)

The underlying ring of the differential ring R, provided it is a field.

BaseRing(R)

The base ring of the differential ring R.

BaseField(R)

The base ring of the differential ring R, provided it is a field.

ConstantRing(R)

The constant ring of the differential ring R. The derivation of R acts trivially on
the constant ring. It is therefore contained in the differential ring of constants of R.

ConstantField(R)

The constant ring of the differential ring R, provided it is a field.
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ExactConstantField(F)

The exact constant field of F , i.e. the algebraic closure in F of the constant field
of F , together with the inclusion map to F . The field F must be a function field.
The differential field F must have been created with respect to a differential. If the
derivation of F has been constructed with respect to a differential, then the exact
constant field coincides with the differential field of constants of F .

Generators(R)

The list of generators of the differential ring R. If there is no list assigned to R, one
is constructed by default from the underlying ring of R.

Example H111E5

First we construct the differential field F = Q(z) with derivation d/dz and show what some of
the related structures are. Then we construct the field extension M = Q(z, α), where α is a root
of the polynomial X2 − 2. We do this with the usual ext< > constructor. For M we again derive
some related structures.

> F<z> := RationalDifferentialField(Rationals());

> ConstantRing(F);

Rational Field

> UnderlyingRing(F);

Algebraic function field defined over Rational Field by

$.2 - 4711

>

> _<X> := PolynomialRing(F);

> M<alpha> := ext< F | X^2-2 >;

> BaseRing(M);

Differential Ring of Algebraic function field defined over Rational Field by

$.2 - 4711

with derivation given by (1) d(z)

> BaseRing(M) eq F;

true

> ConstantRing(M);

Rational Field

> E := ExactConstantField(M);

> E;

Number Field with defining polynomial $.1^2 - 2 over the Rational Field

> Generators(M);

[ alpha ]

Example H111E6

Related structures also exist for differential Laurent series rings.

> S<t>:=DifferentialLaurentSeriesRing(Rationals());

> UnderlyingRing(S);

Laurent series field in t over Rational Field
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> ConstantRing(S);

Rational Field

> Generators(S);

[ t ]

111.3.3 Derivation and Differential

The derivation of a differential ring and its differential, whenever applicable, can be re-
trieved as indicated below.

Derivation(R)

The derivation of the differential ring R.

Differential(F)

The differential belonging to the derivation of the differential field F . The field
F must have been constructed in such a way that its derivation is defined by a
differential.

Example H111E7

> F<z> := RationalDifferentialField(Rationals());

> Derivation(F);

Mapping from: RngDiff: F to RngDiff: F given by a rule [no inverse]

> Differential(F);

(1) d(z)

111.3.4 Numerical Invariants

Ngens(R)

The number of indeterminates associated with the differential ring R.
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111.3.5 Predicates and Booleans

R eq F

Returns true if and only if the differential rings R and F are the same.

IsIdentical(R, F)

Returns true if and only if the differential rings R and F are identical.

IsDomain(R)

Returns true if and only if the differential ring R is a domain.

IsField(R)

Returns true if and only if the differential ring R is field.

IsDifferentialField(R)

Returns true if and only if the ring R is a differential field.

IsAlgebraicDifferentialField(R)

Returns true if and only if the field structure of the differential ring R is an algebraic
function field.

IsDifferentialSeriesRing(R)

Returns true if and only if the underlying ring of the differential ring R is a series
ring.

IsDifferentialLaurentSeriesRing(R)

Returns true if and only if the underlying ring of the differential ring R is a Laurent
series ring and R has been created with a known constant ring.

Example H111E8

This example shows some booleans for various differential rings.

> F<z>:=RationalDifferentialField(Rationals());

> S<t>:=DifferentialLaurentSeriesRing(Rationals());

> IsAlgebraicDifferentialField(F);

true

> IsDifferentialSeriesRing(F);

false

> IsAlgebraicDifferentialField(S);

false

> IsDifferentialSeriesRing(S);

true

> IsDifferentialLaurentSeriesRing(S);

true
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HasProjectiveDerivation(F)

Returns true if and only if F is a differential ring with derivation weakly of the
form (F.1) · d/d(F.1).

HasZeroDerivation(F)

Returns true if and only if the algebraic differential field or differential series ring F
has zero derivation. When F is a series ring we relax being zero to being weakly zero.

Example H111E9

> F<z>:=RationalDifferentialField(Rationals());

> S<t>:=DifferentialLaurentSeriesRing(Rationals());

> HasProjectiveDerivation(F);

false

> HasProjectiveDerivation(ChangeDerivation(F,z));

true

> HasZeroDerivation(F);

false

> HasProjectiveDerivation(S);

true

> HasProjectiveDerivation(ChangeDerivation(S,S!3));

false

> HasZeroDerivation(S);

false

111.3.6 Precision

RelativePrecision(F)

Returns the relative precision of the underlying series ring of F.

RelativePrecisionOfDerivation(F)

Given a differential Laurent series ring F , returns the relative precision of the ring
derivative of F.1.
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Example H111E10

This example illustrate the relative precision of differential rings.

> S<t>:=DifferentialLaurentSeriesRing(Rationals());

> Derivative(t);

t

> IsDifferentialLaurentSeriesRing(S);

true

> RelativePrecision(S);

20

> RelativePrecision(UnderlyingRing(S));

20;

> V<w>:=DifferentialLaurentSeriesRing(Rationals():Precision:=30);

> RelativePrecision(V);

30

> RelativePrecision(V) eq RelativePrecision(UnderlyingRing(V));

true

Example H111E11

> S<t> := DifferentialLaurentSeriesRing(Rationals());

> RelativePrecisionOfDerivation(S);

Infinity

> V<w> := ChangeDerivation(S,t+O(t^6));

> Derivation(V)(w);

w^2 + O(w^7)

> RelativePrecisionOfDerivation(V);

5

ChangePrecision(F, p)

Returns the differential series ring isomorphic to F with relative precision p. The
map returned is the induced map of F to the new field.

Example H111E12

> S<t>:=DifferentialLaurentSeriesRing(Rationals());

> RelativePrecision(S);

20

> V<w>,mp := ChangePrecision(S,10);

> Type(V);

RngDiff

> IsDifferentialLaurentSeriesRing(V);

true

> RelativePrecision(V);

10
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> RelativePrecision(1/(w-1)) eq 10;

true

> mp(t) eq w;

true

> w@@mp eq t;

true

> derivt := Derivation(S)(t);

> derivt;

t

> derivw := Derivation(V)(w);

> derivw;

w

> mp(derivt) eq Derivation(V)(w);

true

111.4 Element Operations on Differential Ring Elements

111.4.1 Category and Parent

Category(s)

Type(s)

The category, or type, of the differential ring element s.

Parent(s)

The parent of the differential ring element s.

111.4.2 Arithmetic
All the usual arithmetic operations are possible for differential ring elements.

s + t

The sum of the two differential ring elements s and t.

-s

The negation of the differential ring element s.

s - t

The difference between the differential ring elements s and t.

s * t

The product of the differential ring elements s and t.
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s ^ n

Given a differential ring element s and an integer n, return the n-th power of s. If
s is invertible, n may be negative.

s div t

Given the differential ring elements s and t, return the exact division of s by t, if s
is divisible by t.

s / t

Given the differential field elements s and t, return s divided by t.

111.4.3 Predicates and Booleans

s eq t

Return true iff the differential ring elements s and t are exactly the same.

IsZero(s)

Return true iff the differential ring element s is the zero element of its parent.

IsOne(s)

Return true iff the differential ring element s is the unity element of its parent.

IsWeaklyEqual(s, t)

Return true if and only if the differential ring element s is weakly equal to the
differential ring element t.

IsWeaklyZero(s)

Return true if and only if the differential ring element s is weakly equal to the zero
element of its parent.

IsOrderTerm(s)

Return true if and only if the differential ring element s is purely an order term of
a differential series ring.
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Example H111E13

This examples shows the booleans for various differential rings.

> F<z> := RationalDifferentialField(Rationals());

> S<t> := DifferentialLaurentSeriesRing(Rationals());

> IsOne(F!1);

true

> t eq t+O(t^2);

false

> IsWeaklyEqual(t, t+O(t^2));

true

> IsWeaklyZero(t^(-1));

false

> IsWeaklyZero(O(t));

true

> IsOrderTerm(t+O(t^2));

false

> IsOrderTerm(O(t));

true

111.4.4 Coefficients and Terms

O(s)

Creates the order term of the differential series s.

Truncate(s)

The known part of the differential series s.

Eltseq(s)

Returns the coefficients of the differential ring element s.

Exponents(s)

Returns the interval from the valuation of s to (including) the degree of s.

Example H111E14

> F<z> := RationalDifferentialField(Rationals());

> _<X> := PolynomialRing(F);

> K<x>, mp := ext<F|X^2+X+1>;

> seq := Eltseq(x^2);

> seq;

[ -1, -1 ]

> Universe(seq) eq F;

true
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Example H111E15

> S<t> := DifferentialLaurentSeriesRing(Rationals());

> O(t+t^2);

O(t)

> Parent(O(t)) eq S;

true

> trunc := Truncate(t^(-1)+5*t^2 +O(t^4));

> trunc;

t^-1 + 5*t^2

> Parent(trunc) eq S;

true

> seq := Eltseq(trunc);

> seq;

[ 1, 0, 0, 5 ]

> Universe(seq) eq Rationals();

true

> Exponents(trunc);

[ -1 .. 2 ]

111.4.5 Conjugates, Norm and Trace

MinimalPolynomial(s)

The minimal polynomial of the differential field element s over the base field.

Example H111E16

> F<z> := RationalDifferentialField(Rationals());

> P<X> := PolynomialRing(F);

> K<x>, mp := ext<F|X^2+X+1>;

> f := MinimalPolynomial(x^2);

> f;

X^2 + X + 1

> Parent(f) eq P;

true

> g := MinimalPolynomial(x+3/2);

> g;

X^2 + -2*X + 7/4
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111.4.6 Derivatives and Differentials

Derivative(s)

The image of s under the derivation of the parent of s. Notice that it can be different
to the “usual” derivative, as it relies on the defined derivation.

Differential(s)

Returns the differential of s in the algebraic differential field F , as a differential in
the differential space of the underlying ring of F .

Example H111E17

> F<z> := RationalDifferentialField(Rationals());

> Derivative(z^2 + 7/z);

(2*z^3 - 7)/z^2

> Differential(z);

(1) d(z)

> Differential(1/z+6+5*z);

((5*z^2 - 1)/z^2) d(z)

> S<t> := DifferentialLaurentSeriesRing(Rationals());

> Derivative(5 + 2*t + 3*t^2);

2*t + 6*t^2

111.5 Changing Related Structures

Sometimes whilst working with a differential ring R, one might wish to consider the same
ring, but with a different derivation or with a larger constant ring. It is a consequence of
the creation of a differential ring, that its constant ring may actually be smaller than its
differential ring of constants.

To alter the settings defined by the creation of a differential ring or field the following
functions are available.

ChangeDerivation(R, f)

Returns a differential ring isomorphic to R, but whose derivation is the map f ·
Derivation(R) induced by the isomorphism. The ring element f must be non–
zero. The isomorphism of R to the new differential ring is also returned. The new
differential ring has the same underlying ring as R.
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Example H111E18

> F<z> := RationalDifferentialField(Rationals());

> Derivative(z^2);

2*z

> K, toK := ChangeDerivation(F, z);

> K;

Differential Ring of Algebraic function field defined over Rational Field by

$.2 - 4711

with derivation given by (1/z) d(z)

> toK;

Mapping from: RngDiff: F to RngDiff: K given by a rule

> Derivative(toK(z^2));

2*z^2

> UnderlyingRing(F) eq UnderlyingRing(K);

true

Notice that the differential of K is (1/z)d(z), so that the derivation of K is z · d/dz, as requested.

ChangeDifferential(F, df)

Returns the algebraic differential field, whose underlying ring is the one of F , but
with derivation with respect to the differential df . The map returned is the bijective
map from F into the new algebraic differential field.

Example H111E19

> F<z> := RationalDifferentialField(Rationals());

> df := Differential(1/z);

> df in DifferentialSpace(UnderlyingRing(F));

true

> M<u>, mp := ChangeDifferential(F,df);

> IsAlgebraicDifferentialField(M);

true

> Domain(mp) eq F and Codomain(mp) eq M;

true

> Differential(M);

(-1/u^2) d(u)

> mp(z);

u

> Derivation(M)(u);

u^2

> Derivation(F)(z);

1

> dg := Differential(z^3+5);

> N<v>, mp := ChangeDifferential(F,dg);

> Differential(M);
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(3*v^2) d(v)

> mp(z);

v

> Derivation(N)(mp(z));

1/3/v^2

ConstantFieldExtension(F, C)

Returns the differential field isomorphic to the differential field F , but whose con-
stant field is the extension C, and the isomorphism from F to the new field. The
differential field F must be an algebraic function field.

Example H111E20

> F<z> := RationalDifferentialField(Rationals());

> _<X> := PolynomialRing(F);

> M := ext< F | X^2-2 >;

> ConstantField(M);

Rational Field

> _<x>:=PolynomialRing(Rationals());

> C := NumberField(x^2-2);

> Mext, toMext := ConstantFieldExtension(M, C);

> ConstantField(Mext);

Number Field with defining polynomial x^2 - 2 over the Rational Field

> toMext;

Mapping from: RngDiff: M to RngDiff: Mext given by a rule

Example H111E21

> S<t>:=DifferentialLaurentSeriesRing(Rationals());

> P<T> := PolynomialRing(Rationals());

> Cext := ext<Rationals()|T^2+1>;

> Sext<text>, mp := ConstantFieldExtension(S,Cext);

> IsDifferentialLaurentSeriesRing(Sext);

true

> ConstantRing(Sext) eq Cext;

true

> Derivative(text^(-2)+7+2*text^3+O(text^6));

-2*text^-2 + 6*text^3 + O(text^6);

> mp;

Mapping from: RngDiff: S to RngDiff: Sext given by a rule

> mp(t);

text
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Completion(F, p)

Precision RngIntElt Default : ∞
The completion of the differential field F with respect to the place p. The place p
should be an element of the set of places of F . The derivation of the completion is the
one naturally induced by the derivation of F . The map returned is the embedding of
F into the completion. Upon creation one can set the precision by using Precision.
If no precision is given, then a default value is taken.

Example H111E22

This example illustrates the creation of the differential Laurent series ring by using the com-
mand Completion.

> F<z> := RationalDifferentialField(Rationals());

> pl := Zeros(z)[1];

> S<t>, mp := Completion(F,pl: Precision := 5);

> IsDifferentialLaurentSeriesRing(S);

true

> mp;

Mapping from: RngDiff: F to RngDiff: S given by a rule

> Domain(mp) eq F, Codomain(mp) eq S;

true true

> Derivation(S)(t);

1

> 1/(1-t);

1 + t + t^2 + t^3 + t^4 + O(t^5)

Example H111E23

This example shows that one does not have to restrict to differential fields of genus 0 to
use Completion.

> F<z> := RationalDifferentialField(Rationals());

> P<Y> := PolynomialRing(F);

> K<y> := ext<F|Y^2-z^3+z+1>;

> Genus(UnderlyingRing(K));

1

> pl:=Zeros(K!z)[1];

> Degree(pl);

2

> S<t>, mp := Completion(K,pl);

> IsDifferentialLaurentSeriesRing(S);

true

> C<c> := ConstantRing(S);

> C;

Number Field with defining polynomial $.1^2 + 1 over the Rational Field

> mp(y) + O(t^4);
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c - t - 4*t^3 + O(t^4)

111.6 Ring and Field Extensions

The first differential ring and field extensions we consider are the ones induced by a differ-
ential operator. Given a differential operator

L = anDn + an−1D
n−1 + · · ·+ a1D + a0, an 6= 0

in a differential operator ring F [D] with coefficients in a differential field F , we construct
a ring or field extension of degree n over F , whose indeterminates play the role of a formal
solution of L(y) = 0 and its derivatives.

Given a differential field F , it is also possible to construct differential extensions of the
form F [X]/f(X), where f(X) is an irreducible polynomial over F .

DifferentialRingExtension(L)

Constructs a differential ring extension of the base ring of the differential operator
L, by adding a formal solution of L and its formal derivatives as indeterminates.

Let P denote the new differential ring, and F the coefficient ring of L. The ring F
is a differential field. If n is the degree of L, the underlying ring of P is a multivariate
polynomial ring of degree n over F . We thus have P = F [Y1, Y2, . . . , Yn], with
indeterminates Y1, Y2, . . . , Yn. If L is written as anDn+an−1D

n−1+· · ·+a1D+a0 ∈
F [D], then the derivation of P is induced by the differential operator L as follows:
δP (Yi) = Yi+1, for i < n and anδP (Yn) = −an−1Yn−1− · · ·− a2Y2− a1Y1. With this
construction Y1 mimics a solution of L(y) = 0, and all the others are its derivatives.

DifferentialFieldExtension(L)

Constructs a differential field extension of the base ring of the differential operator
L, by adding a formal solution of L and its formal derivatives as indeterminates.

The construction of the new differential field is completely analogous to the differ-
ential ring created by DifferentialRingExtension(L). The only difference is that
now a differential field M = F (Y1, Y2, . . . , Yn), with n indeterminates Y1, Y2, . . . , Yn

is created. The action of the derivation of M on Y1, Y2, . . . , Yn is as described
in DifferentialRingExtension(L).
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Example H111E24

> F<z> := RationalDifferentialField(Rationals());

> R<D> := DifferentialOperatorRing(F);

> L := z^2*D^2-z*D+1;

> P<Y1,Y2> := DifferentialRingExtension(L);

> P;

Differential Ring Extension over F

with derivation given by Mapping from: Polynomial ring of rank 2 over F to

Polynomial ring of rank 2 over F given by a rule [no inverse]

> Derivative(Y1);

Y2

> Derivative(Y2);

-1/z^2*Y1 + 1/z*Y2

Example H111E25

> F<z> := RationalDifferentialField(Rationals());

> R<D> := DifferentialOperatorRing(F);

> L := z^2*D^2-1;

> M<Y,DY> := DifferentialFieldExtension(L);

> IsDifferentialField(M);

true

> Derivative(Y);

DY

> Derivative(DY);

-1/z^2*Y

ext< F | f >

The differential field extension F (α) of the differential field F , where α is a root of
the irreducible polynomial f over F . The angle bracket notation may be used to
assign the root α to an identifier.

Example H111E26

> F<z> := RationalDifferentialField(Rationals());

> _<X> := PolynomialRing(F);

> M<alpha> := ext< F | X^2-z >;

> M;

Differential Ring Extension over F by $.1^2 - z

with derivation given by (1) d(z)

> alpha^2;

z

The differential of M is the differential dz of the differential space of F lifted to the space of
differentials of M .
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ExponentialFieldExtension(F, f)

Returns the differential field F (E) as an extension of F , such that the derivation of
E is f · E. The parent of f must be F .

LogarithmicFieldExtension(F, f)

Returns the differential field F (L) as an extension of F , such that the derivation of
L is F (L)!f . The parent of f must be F .

Example H111E27

> F<z> := RationalDifferentialField(Rationals());

> K<E> := ExponentialFieldExtension(F, z);

> K;

Differential Ring Extension over F

with derivation given by Mapping from: Multivariate Rational function field of

rank 1 over F to Multivariate Rational function field of rank 1 over F given by

a rule [no inverse]

> Derivative(E);

z*E

> _<L> := LogarithmicFieldExtension(F, 1/z);

> Derivative(L);

1/z

> Parent($1) eq Parent(L);

true

PurelyRamifiedExtension(f)

Creates a purely ramified field extension M of the differential field F with respect
to the purely ramified polynomial f ∈ F [X]. By definition, such a polynomial f is
of the form Xn − a · (F.1) for some constant element a in F and positive integer n.
The returned extension field M is of the same type as F . The allowed differential
fields are algebraic differential fields and differential Laurent series rings. When F is
a differential Laurent series ring, its derivation is required to be weakly of the form
c ∗ (F.1) ∗ d/d(F.1) for some constant c. The relative precision of M is then n times
the relative precision of F . The second argument returned is the embedding map
of F into M . The inverse map acts on elements for which it is defined. Otherwise
it returns 0.
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Example H111E28

A purely ramified extension of an algebraic differential field is constructed in this example.

> F<z> := RationalDifferentialField(Rationals());

> _<X> := PolynomialRing(F);

> Fext<v>, mp := PurelyRamifiedExtension(X^2-5*z);

> IsAlgebraicDifferentialField(Fext);

true

> mp(z) eq 1/5*v^2;

true

> Parent(mp(z)) eq Fext;

true

> Derivation(Fext)(mp(z));

1

> Derivation(Fext)(v);

1/2/z*v

> Derivation(Fext)(v^2) eq Fext!5;

true

> Inverse(mp)(v^2);

5*z;

Example H111E29

A differential Laurent series ring with a derivation without an order term is considered in this ex-
ample.

> S<t>:=DifferentialLaurentSeriesRing(Rationals());

> _<T>:=PolynomialRing(S);

> pol := T^4-5*t;

> Sext<r>,mp := PurelyRamifiedExtension(pol);

> IsDifferentialLaurentSeriesRing(Sext);

true

> BaseRing(Sext) eq S and ConstantField(Sext) eq ConstantField(S);

true

> RelativePrecision(Sext);

80

> RelativePrecisionOfDerivation(Sext);

Infinity

> Derivation(S)(t);

t

> mp(t);

1/5*r^4

> Derivation(Sext)(mp(t));

1/5*r^4

> mp(Derivation(S)(t));

1/5*r^4

> x := 4+6*t+O(t^6);

> mp(x);



Ch. 111 DIFFERENTIAL RINGS 3425

4 + 6/5*r^4 + O(r^24)

> Derivation(Sext)(mp(x));

6/5*r^4 + O(r^24)

> mp(Derivation(S)(x));

6/5*r^4 + O(r^24)

> Inverse(mp)(r^4-r^8);

5*t - 25*t^2

> Inverse(mp)(r^4+O(r^5));

5*t + O(t^2)

> Derivation(Sext)(r);

1/4*r

Example H111E30

The ring in this example has an order term in its derivation. Therefore, taking a derivative of an
element x is of influence on the relative precision of the image of x.

> F<z> := RationalDifferentialField(Rationals());

> FF<z>:=ChangeDerivation(RationalDifferentialField(Rationals()),z);

> RR<DD>:=DifferentialOperatorRing(FF);

> RS<DS>, mpRRtoRS :=Completion(RR,Zeros(z)[1]);

> S<t>:=BaseRing(RS);

> IsDifferentialLaurentSeriesRing(S);

true

> _<T> := PolynomialRing(S);

> E<r>, mp := PurelyRamifiedExtension(T^3-5*t);

> IsDifferentialLaurentSeriesRing(E);

true

> RelativePrecision(E);

60

> RelativePrecisionOfDerivation(E);

60

> Derivation(E)(r);

1/3*r + O(r^61);

> mp(t);

1/5*r^3

> Derivation(S)(t);

t + O(t^21)

> Derivation(E)(mp(t));

1/5*r^3 + O(r^63)

> mp(Derivation(S)(t));

1/5*r^3 + O(r^63)

> x:=t^(-2) +7+t^3 +O(t^15);

> Derivation(S)(x);

-2*t^-2 + 3*t^3 + O(t^15)

> Derivation(E)(mp(x));

-50*r^-6 + 3/125*r^9 + O(r^45)

> mp(Derivation(S)(x));
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-50*r^-6 + 3/125*r^9 + O(r^45)

> y := 2*t+O(t^25);

> Derivation(S)(y);

2*t + O(t^21)

> Derivation(E)(mp(y)) eq mp(Derivation(S)(y));

true

> Derivation(E)(mp(y));

2/5*r^3 + O(r^63)

111.7 Ideals and Quotient Rings

A differential ideal I ⊂ R of a differential ring R is an ideal of R that is closed under the
derivation of R. However, we consider a differential ideal as an ideal of the underlying
ring of R. More specifically, ideals of differential rings are restricted to those rings whose
underlying rings are multivariate polynomial rings.

111.7.1 Defining Ideals and Quotient Rings

DifferentialIdeal(L)

Given a sequence L with entries in a differential ring R, return the differential ideal
generated by the entries of L as an ideal of the underlying ring of R. The underlying
ring of R must be of type RngMPol. At first the elements of L may generate an ideal
which is not closed under the derivation of R. By adding as many derivatives of
the elements to the set of generators of the ideal as needed, one obtains a full set of
generators for the calculated differential ideal.

QuotientRing(R, I)

Given a differential ring R and a differential ideal I, return the differential quotient
ring Q = R/I. The derivation of Q is induced by the derivation of R. It maps Q.i
to Q!δR(R.i), for i = 1, 2, . . . ,m where m is the number of generators of Q (or R).
The induced quotient map from R to Q is also returned.

Example H111E31

> P := PolynomialRing(Rationals(),1);

> f := map<P->P | a:->a*Derivative(a,1)>;

> R<T> := DifferentialRing(P, f, Rationals());

> L := [T^2+T-1];

> I := DifferentialIdeal(L);

> I;

Ideal of Polynomial ring of rank 1 over Rational Field

Lexicographical Order

Variables: T

Basis:
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[

T^2 + T - 1,

]

> Q<X>, toQ := QuotientRing(R,I);

> Q;

Differential Ring of Affine Algebra of rank 1 over Rational Field

Lexicographical Order

Variables: X

Quotient relations:

[

X^2 + X - 1

]

with derivation given by Mapping from: Affine Algebra of rank 1 over Rational

Field to Affine Algebra of rank 1 over Rational Field given by a rule [no

inverse]

> toQ(T);

X

> Derivative(T^2);

2*T^3

> Derivative(X^2);

X

111.7.2 Boolean Operations on Ideals

IsDifferentialIdeal(R, I)

Returns true if and only if I is a differential ideal of the differential ring R.

111.8 Wronskian Matrix
Let R be a differential ring and let y1, y2, . . . , yn be elements of R. The wronskian matrix
of y1, y2, . . . , yn is defined as the n× n matrix

W (y1, y2, . . . , yn) =




y1 y2 . . . yn

δR(y1) δR(y2) . . . δR(yn)
...

...
. . .

...
δn−1
R (y1) δn−1

R (y2) . . . δn−1
R (yn)




The wronskian determinant, or simply the wronskian, of y1, y2, . . . , yn is the determinant
of the wronskian matrix W (y1, y2, . . . , yn).

WronskianMatrix(L)

Given a sequence of differential ring elements L, return the Wronskian matrix of L
whose entries are elements of the universe of L.

WronskianDeterminant(L)

Given a sequence of differential ring elements L, return the determinant of the
Wronskian matrix of L as well as the matrix itself.
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Example H111E32

> F<z> := RationalDifferentialField(Rationals());

> WronskianMatrix([1,z,z^2]);

[1 z z^2]

[0 1 2*z]

[0 0 2]

> WronskianDeterminant([1,z^2,1/z]);

6/z

[z z^2 1/z]

[1 2*z -1/z^2]

[0 2 2/z^3]

111.9 Differential Operator Rings

111.9.1 Creation

DifferentialOperatorRing(F)

Returns the differential operator ring over the differential field F .

Example H111E33

> F<z> := RationalDifferentialField(Rationals());

> R := DifferentialOperatorRing(F);

> R;

Differential operator ring over Differential Ring of Algebraic function field

defined over Rational Field by

$.2 - 4711

with derivation given by (1) d(z)

AssignNames(∼R, S)

Given a differential operator ring R with n indeterminates and a sequence S of n
strings, assign the elements of S to the names of the variables of R.

This procedure only changes the names used in the printing of the elements of R.
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111.9.2 Creation of Differential Operators
The easiest way to create an element in a given ring is to use the angle bracket construction
to attach a name to the indeterminate of the differential operator ring. Other constructions
are given below.

Name(R, i)

R . i

The i-th indeterminate of the differential ring R, where i must be 1.

R ! s

Coerce the element s into the differential operator ring R. Elements that are co-
ercible into R are elements coercible into its underlying ring, sequences, and differ-
ential operators defined over the base ring of the coefficient ring of R.

When the base ring of R is an algebraic differential field, elements of other
differential operator rings over algebraic differential fields can be coerced into R so
long as the underlying rings of the differential fields are the same.

Zero(R)

The zero element of the differential operator ring R.

One(R)

The identity element of the differential operator ring R.

Example H111E34

> F<z> := RationalDifferentialField(Rationals());

> R<D> := DifferentialOperatorRing(F);

> R.1;

D

> R!(1/z);

1/z;

>R![1/2,0,5,z];

z*D^3 + 5*D^2 + 1/2

> S<T> := DifferentialOperatorRing(ChangeDerivation(F,z));

> R!T;

z*D

> S!D;

1/z*T
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111.10 Structure Operations on Differential Operator Rings

111.10.1 Category and Parent
Differential Operator Rings form the Magma category RngDiffOp. The notional power
structures exist as parents of differential operator rings.

Category(R)

Type(R)

The category, or type, of the differential operator ring R.

Parent(R)

The power structure of the differential operator ring R.

111.10.2 Related Structures
As outlined in the introduction, a differential operator ring R is of the form F [D], for a
differential ring F . The ring F is called the base ring or coefficient ring of R.

BaseRing(R)

CoefficientRing(R)

The base ring, or coefficient ring, of the differential operator ring R.

ConstantRing(R)

The constant ring of the differential ring operator R.

111.10.3 Derivation and Differential
By construction the variable D of a differential operator ring F [D] is related to the deriva-
tion δF . That is why δF is also considered to be the derivation of R.

Derivation(R)

The derivation of the differential operator ring R.

Differential(R)

The differential belonging to the derivation of the differential operator ring R. The
derivation must have been constructed in such a way that it is defined by a differ-
ential.
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Example H111E35

> F<z> := RationalDifferentialField(Rationals());

> R<D> := DifferentialOperatorRing(F);

> BaseRing(R) eq F;

true

> Derivation(R);

Mapping from: RngDiff: F to RngDiff: F given by a rule [no inverse]

> Differential(R);

(1) d(z)

111.10.4 Predicates and Booleans

R eq F

Returns true if and only if the differential operator rings R and F are the same.

IsIdentical(R, F)

Returns true if and only if the differential operator rings R and F are identical.

IsDifferentialOperatorRing(R)

Returns true if and only if the given argument is a differential operator ring.

HasProjectiveDerivation(R)

Returns true iff R is defined over a ring F with derivation weakly of the form
(F.1) · d/d(F.1).

HasZeroDerivation(R)

Returns true iff the base ring of R is an algebraic differential field or a differential
series ring F such that the derivation of R acts as a (weak) zero derivation on F.1.

Example H111E36

> F<z> := RationalDifferentialField(Rationals());

> R<D> := DifferentialOperatorRing(F);

> IsDifferentialOperatorRing(F);

false

> IsDifferentialOperatorRing(R);

true

> Derivation(R)(z);

1

> HasProjectiveDerivation(R);

false

> HasProjectiveDerivation(ChangeDerivation(R,z));

true

> HasZeroDerivation(R);

false



3432 COMMUTATIVE ALGEBRA Part XV

Example H111E37

> S<t> := DifferentialLaurentSeriesRing(Rationals());

> V<W> := DifferentialOperatorRing(S);

> IsDifferentialOperatorRing(V);

true

> Derivation(V)(t);

t

> HasProjectiveDerivation(V);

true

> HasZeroDerivation(V);

false

> P<Q>, mp := ChangeDerivation(V,3/t);

> IsDifferentialOperatorRing(P);

true

> HasProjectiveDerivation(P);

false

> X<y> := BaseRing(P);

> Q*y;

y*Q + 3

111.10.5 Precision

RelativePrecisionOfDerivation(R)

The relative precision of the derivation of an operator ring over a Laurent series
ring.

Example H111E38

This example illustrates the relative precision of derivations of differential operatorrings.

> S<t>:=DifferentialLaurentSeriesRing(Rationals());

> RS<DS> := DifferentialOperatorRing(S);

> RelativePrecisionOfDerivation(RS);

Infinity

> RV<DV> := ChangeDerivation(RS, t^2+O(t^8));

> relprec := RelativePrecisionOfDerivation(RV);

> relprec;

6

> RelativePrecisionOfDerivation(BaseRing(RV)) eq relprec;

true
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111.11 Element Operations on Differential Operators

111.11.1 Category and Parent

Category(L)

Type(L)

The category, or type, of the differential operator L.

Parent(L)

The parent of the differential operator L.

111.11.2 Arithmetic
All the usual arithmetic operations are possible for differential operators. It follows from
the multiplication rule for differential operators that the multiplication of differential op-
erators is non–commutative.

s + t

The sum of the two differential operators s and t.

-s

The negation of the differential operator s.

s - t

The difference between the differential operators s and t.

s * t

The product of the differential operators s and t.

s ^ n

Given a differential operator s and an integer n ≥ 0, return the n-th power of s.

Example H111E39

> F<z> := RationalDifferentialField(Rationals());

> R<D> := DifferentialOperatorRing(F);

> (z*D-1)*(D+1);

z*D^2 + (z - 1)*D + -1

> (D+1)*(z*D-1);

z*D^2 + z*D + -1

> (D-1/z)^2;

D^2 + -2/z*D + 2/z^2
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111.11.3 Predicates and Booleans

s eq t

Return true iff the differential operators s and t are exactly the same.

IsZero(L)

Return true iff the differential operator L is the zero element of its parent.

IsOne(L)

Return true iff the differential operator L is the unity element of its parent.

IsMonic(L)

Return true iff the differential operator L is monic.

IsWeaklyEqual(L, P)

Returns true if and only if the differential operator L is weakly equal to the operator
P . This means that the i-th coefficients of L and P should be weakly equal to each
other for every i ∈ [0..max(deg(L), deg(P ))].

IsWeaklyZero(L)

Returns true if and only if the differential operator L ∈ R is weakly equal to R!0.

IsWeaklyMonic(L)

Returns true if and only if the leading coefficient of the differential operator L is
weakly equal to 1.

111.11.4 Coefficients and Terms
Differential operators look like univariate polynomials with coefficients in a differential ring.
Some of the terminology used for polynomial rings is mimicked for differential operators.

Eltseq(L)

Coefficients(L)

Given an operator L with coefficients in R, this function returns the sequence of
elements in R, that are the coefficients of L. The sequence is ordered from the
constant coefficient to the coefficient of the highest order term of L.

Coefficient(L, i)

Given an operator L with coefficients in R, this function returns the coefficient of
the monomial of degree i in L, as an element of R.

LeadingCoefficient(L)

Given an operator L with coefficients in R, this function returns the coefficient of
the highest order term of L.
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LeadingTerm(L)

The leading term of the differential operator L.

Terms(L)

Given an operator L with coefficients in R, this function returns the sequence of
non–zero coefficients of L as elements of R. The sequence is ordered from the lowest
order term to the highest order term in L.

Example H111E40

> F<z> := RationalDifferentialField(Rationals());

> R<D> := DifferentialOperatorRing(F);

> L := D^3 + (-4*z + 5)*D + (3*z - 4);

> L;

D^3 + (-4*z + 5)*D + 3*z - 4

> Eltseq(L);

[ 3*z - 4, -4*z + 5, 0, 1 ]

> LeadingTerm(L);

D^3

> Terms(L);

[

3*z - 4,

(-4*z + 5)*D,

D^3

]

111.11.5 Order and Degree

Order(L)

Degree(L)

Returns the order of the differential operator L. In the case that L is identically 0,
the order is defined to be −1.

WeakOrder(L)

WeakDegree(L)

If the differential operator L is defined over a differential series ring, then the expo-
nent of the highest coefficient of L that is not weakly 0 is returned.
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Example H111E41

> S<t> := DifferentialLaurentSeriesRing(Rationals());

> R<D> := DifferentialOperatorRing(S);

> L := D^2 + 2*t;

> P := O(t)*D^3 + (1+O(t))*D^2 + 2*t;

> Order(L);

2

> Degree(P);

3

> L eq P;

false

> IsWeaklyEqual(L,P);

true

> WeakOrder(P);

2

111.11.6 Related Differential Operators

MonicDifferentialOperator(L)

Given the differential operator L, this function returns the monic differential oper-
ator 1/c · L, where c is the leading coefficient of L.

Adjoint(L)

Returns the formal adjoint of the differential operator L. The formal adjoint of
L =

∑n
i=0 aiD

i in the differential operator ring R = F [D] over F , is the differential
operator L∗ :=

∑n
i=0(−1)iDi ∗ai ∈ R. It follows from the definition that the orders

of L and L∗ are the same and that the leading coefficient of L∗ is (−1)nan.

Translation(L, e)

If R is the parent of the differential operator L and e is a suitable ring element,
then the operator in R obtained by replacing R.1 by R.1 + e in L is returned. The
second argument returned is the translation map on R by e.

TruncateCoefficients(L)

If L is defined over a differential series ring, then returned is the operator whose
coefficients are the truncations of the coefficients of L.
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Example H111E42

> F<z> := RationalDifferentialField(Rationals());

> R<D> := DifferentialOperatorRing(F);

> L := z*D^3 + (-4*z + 5)*D + (3*z - 4);

> Order(L);

3

> MonicDifferentialOperator(L);

D^3 + (-4*z + 5)/z*D + (3*z - 4)/z

> Adjoint(L);

-z*D^3 + -3*D^2 + (4*z - 5)*D + 3*z

> trans, mp := Translation(L, 2);

> trans;

z*D^3 + 6*z*D^2 + (8*z + 5)*D + 3*z + 6

Example H111E43

> S<t> := DifferentialLaurentSeriesRing(Rationals());

> RS<DS> := DifferentialOperatorRing(S);

> L := (5-O(t))*DS^3+(2*t^-1+t^2+O(t^4))*DS - t^-2+t+O(t^3);

> L;

(5 + O(t))*DS^3 + (2*t^-1 + t^2 + O(t^4))*DS + -t^-2 + t + O(t^3)

> TruncateCoefficients(L);

5*DS^3 + (2*t^-1 + t^2)*DS + -t^-2 + t

> L -TruncateCoefficients(L);

O(t)*DS^3 + O(t^4)*DS + O(t^3)

111.11.7 Application of Operators
As pointed out in the introduction a differential operator L = anDn + an−1D

n−1 + · · ·+
a1D + a0 in F [D] leads to the differential equation L(y) = 0 given by

L(y) = anδn
F (y) + an−1δ

n−1
F (y) + · · ·+ a1δF (y) + a0y

This notation is formal, but also defines an action of L on any element y ∈ F . The function
Apply returns the ring element obtained by this action.

Apply(L, f)

L(f)

f @ L

Given a differential operator L and a ring element f , return the ring element obtained
after applying L to f , as an element of the base ring of L. The element f must be
coercible into the base ring of L.
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Example H111E44

> F<z> := RationalDifferentialField(Rationals());

> R<D> := DifferentialOperatorRing(F);

> L := D^2-2/z^2;

> Apply(L, z);

-2/z

> L(z);

-2/z

> Apply(L, z^2);

0

111.12 Related Maps
This section is devoted to maps between differential operator rings.

TranslationMap(R, e)

Returns a map on the differential operator ring R that replaces R.1 by R.1+e when
applied to a differential operator for some suitable ring element e.

LiftMap(m, R)

Let m : F →M be a differential map on differential fields and R a differential oper-
ator ring over F . Then this routine lifts the given map to a map on the differential
operator rings R→ S, where the basefield of S is M .

Example H111E45

> F<z> := RationalDifferentialField(Rationals());

> R<D> := DifferentialOperatorRing(F);

> transmap := TranslationMap(R, 2 + z);

> Codomain(transmap) eq R;

> transmap(D);

D + z + 2

> transmap(D^2);

D^2 + (2*z + 4)*D + z^2 + 4*z + 5

> P<T> := PolynomialRing(F);

> M<u>, mp := ext<F|T^2+z>;

> liftmap := LiftMap(mp, R);

> Rprime<Dprime> := Codomain(liftmap);

> IsDifferentialOperatorRing(Rprime);

true

> BaseRing(Rprime) eq M;

true

> liftmap(D);

Dprime
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> liftmap(R!z);

z

> Derivation(Rprime)(liftmap(z));

1

> Derivation(Rprime)(u);

1/2/z*u

111.13 Changing Related Structures

It may happen that certain intrinsics only work for differential operator rings whose deriva-
tions are of a specific form, or whose constant fields have to be large enough. Some of the
functions available for changing settings of the differential rings or fields can be used to
change the desired related structure on the operator ring directly. To alter some of the
settings of a differential operator ring, the following functions are available.

ChangeDerivation(R, f)

Returns a differential operator ring isomorphic to R, but whose derivation is given
by f∗ Derivation(R). The ring element f must be non–zero. The isomor-
phism of R to the new differential ring is also returned. The base ring of the
new differential operator ring is isomorphic to the one of R, but it has derivation
ChangeDerivation(BaseRing(R)).

ChangeDifferential(R, df)

Returns the differential operator ring with differential df , and whose underlying ring
of its basefield coincides with the one of R. The map returned is the bijective map
of R into the new operator ring. The base ring of the new differential operator ring
is isomorphic to the one of R. However, the returned inclusion map and taking
derivatives may not be commutative.

Example H111E46

> F<z> := RationalDifferentialField(Rationals());

> R<D> := DifferentialOperatorRing(F);

> df := Differential(z^3+5);

> RM<DM>, mp := ChangeDifferential(R,df);

> Domain(mp) eq R and Codomain(mp) eq RM;

true

> M<u> := BaseRing(RM);

> IsDifferentialOperatorRing(RM) and IsAlgebraicDifferentialField(M);

true

> mp(RM!z);

u

> mp(D);

3*u^2*DM
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> D*z, mp(D*z);

u*D + 1

3*u^3*DM + 1

> DM*u;

u*DM + 1/3/u^2

> Differential(RM);

(3*u^2) d(u)

ConstantFieldExtension(R, C)

Returns the ring of differential operators with base ring isomorphic to that of the
differential operator ring R, but whose constant field is C. The derivation is extended
over the new constant field. The second argument returned is the map from R to
the new operator ring.

PurelyRamifiedExtension(R,f)

When R is a differential operator ring over a differential ring F , this function re-
turns an operator ring over the purely ramified extension of F , as induced by the
polynomial f . The polynomial f is of the form Xn − a · (F.1) for some constant
element a in F and positive integer n.

Example H111E47

> S<t> := DifferentialLaurentSeriesRing(Rationals());

> R<D> := DifferentialOperatorRing(S);

> _<T> := PolynomialRing(S);

> Rext<Dext>, mp := PurelyRamifiedExtension(R, T^7-3*t);

> Sext<text> := BaseRing(Rext);

> Domain(mp) eq R and Codomain(mp) eq Rext;

true

> IsDifferentialLaurentSeriesRing(Sext);

true

> BaseRing(Sext) eq S;

true

> RelativePrecision(Sext) eq 7*RelativePrecision(S);

true

> D*t;

t*D + t

> mp(D);

Dext

> mp(R!t) eq Rext!(1/3*text^7);

true

> Dext*text;

text*Dext + 1/7*text
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Completion(R, p)

Precision RngIntElt Default : ∞
Returns the operator ring R̃, whose base ring is the completion of the base ring
of the operator ring R w.r.t. the place p. The second return value is the natural
embedding of R into R̃. The precision of the base ring of R̃ can be set by setting
Precision upon creation. If no precision is set, a default value for the precision
is taken.

Localization(R, p)

Returns the operator ring whose differential has valuation −1 at p, with derivation
t ·d/dt, where t is the uniformizing element at the place p. The natural map between
the operator rings, and the induced image of p are also returned.

Localization(L, p)

Given the differential operator L over an algebraic differential field, returns the
localized operator of L at the place p. The embedding map between the parents as
well as the induced image of the place are also returned.

Localization(R)

Given a differential operator ring R over the differential Laurent series ring C((t)),
returns the operator ring whose derivation is of the form t · d/dt, and the natural
map between the operator rings.

Localization(L)

Given the differential operator L over a differential series ring, returns the localized
operator of L and the embedding map between the parents.

Example H111E48

> S<t>:=DifferentialLaurentSeriesRing(Rationals());

> R<D> := DifferentialOperatorRing(S);

> D*t;

t*D + t

> Rprime<Dprime>, mp := ChangeDerivation(R,t^2);

> Fprime<tprime> := BaseRing(Rprime);

> mp;

Mapping from: RngDiffOp: R to RngDiffOp: Rprime given by a rule

> Dprime*tprime;

tprime*Dprime + tprime^3

> P<T> := PolynomialRing(Rationals());

> Cext := ext<Rationals()|T^2+1>;

> Rext<Dext>, mp := ConstantFieldExtension(R,Cext);

> Cext eq ConstantRing(BaseRing(Rext));

true

> mp(D);
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Dext

Example H111E49

This examples illustrates how to use Completion on operator rings.

> F<z> := RationalDifferentialField(Rationals());

> R<D> := DifferentialOperatorRing(F);

> pl := Zeros(z)[1];

> Rcompl<Dcompl>, mp := Completion(R,pl);

> IsDifferentialOperatorRing(Rcompl);

true

> S<t> := BaseRing(Rcompl);

> IsDifferentialLaurentSeriesRing(S);

true

> mp(D);

Dcompl

> Dcompl*t;

t*Dcompl + 1

Example H111E50

> F<z> := RationalDifferentialField(Rationals());

> R<D> := DifferentialOperatorRing(F);

> pl := Zeros(z-1)[1];

> Rloc<Dloc>, mp, place:= Localization(R,pl);

> Domain(mp) eq R, Codomain(mp) eq Rloc;

true true

> place;

(z - 1)

> Differential(BaseRing(Rloc));

(1/(z - 1)) d(z)

> mp(D);

1/(z - 1)*Dloc

> Dloc*(z-1);

(z - 1)*Dloc + z - 1

> L := D + z;

> Lloc, mp, place := Localization(L,Zeros(z)[1]);

> Lloc;

1/z*$.1 + z
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111.14 Euclidean Algorithms, GCDs and LCMs
A ring of differential operators shares many properties with a univariate polynomial ring.
Two of them are GCD and LCM algorithms. However, a consequence of the non–
commutative multiplication of a differential operator ring is that the GCD and LCM
algorithms cannot be used directly. For instance, in the euclidean algorithm multiplication
of the quotient can be done on the left or the right. Therefore one needs to specify the
direction of the multiplication in the GCD and LCM algorithms for differential opera-
tor rings.

111.14.1 Euclidean Right and Left Division

EuclideanRightDivision(N, D)

Given differential operators N and D, return two differential operators Q and R,
such that N = Q · D + R, with Degree(R) < Degree(D). An error occurs if D
is 0.

EuclideanLeftDivision(D, N)

Given differential operators D and N , return two differential operators Q and R,
such that N = D · Q + R, with Degree(R) < Degree(D). An error occurs if D
is 0.

Example H111E51

> F<z> := RationalDifferentialField(Rationals());

> R<D> := DifferentialOperatorRing(F);

> L1 := D;

> L2 := (D-3)*(D+z);

> EuclideanRightDivision(L1, L2);

0

D

> Q, R := EuclideanRightDivision(L2, L1);

> Q, R;

D + z - 3

-3*z + 1

> L2 eq Q*L1+R;

true

> EuclideanLeftDivision(L2, L1);

0

D

> S, T := EuclideanLeftDivision(L1, L2);

> S, T;

D + z - 3

-3*z

> L2 eq L1*S+T;

true
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111.14.2 Greatest Common Right and Left Divisors

GreatestCommonRightDivisor(A, B)

GCRD(A, B)

Given two differential operators A,B ∈ R, return the unique monic differential
operator G ∈ R that generates the left ideal RA + RB.

ExtendedGreatestCommonRightDivisor(A, B)

Given two differential operators A,B ∈ R, this function returns three operators
G,U, V ∈ R, that satisfy U · A + V · B = G. The differential operator G is the
unique monic right GCD of A and B.

GreatestCommonLeftDivisor(A, B)

GCLD(A, B)

Given two differential operators A,B ∈ R, return the unique monic differential
operator G ∈ R that generates the right ideal AR + BR.

ExtendedGreatestCommonLeftDivisor(A, B)

Given two differential operators A,B ∈ R, this function returns three operators
G,U, V ∈ R, that satisfy A · U + B · V = G. The differential operator G is the
unique monic left GCD of A and B.

Example H111E52

> F<z> := RationalDifferentialField(Rationals());

> R<D> := DifferentialOperatorRing(F);

> L1 := D^3+z*D^2+D-z;

> L2 := D^2+(z-3)*D-3*z+1;

> GreatestCommonRightDivisor(L1, L2);

D + z

> GreatestCommonRightDivisor(L1, L2) eq GCRD(L1, L2);

true

> G, U, V :=ExtendedGreatestCommonRightDivisor(L1, L2);

> G, U, V;

D + z

1/8

-1/8*D + -3/8

> G eq U*L1+V*L2;

true

> GreatestCommonLeftDivisor(L1, L2);

1

> GCLD(L2,L2*L1) eq L2;

true
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111.14.3 Least Common Left Multiples

LeastCommonLeftMultiple(L)

Let L = D − r be a monic operator of degree 1 in R = F [D]. Return the least
common left multiple of L and all its conjugates over the base ring of F , with
respect to the coercion of this base ring into F .

LeastCommonLeftMultiple(A, B)

LCLM(A, B)

Given two differential operators A,B ∈ R, return the unique monic differential
operator L ∈ R, that generates the left ideal RA ∩ RB. The order of the least
common multiple of A and B is at most Order(A)+ Order(B).

ExtendedLeastCommonLeftMultiple(A, B)

Given two differential operators A,B ∈ R, return three operators L,U, V ∈ R, that
satisfy L = U ·A = V ·B. The differential operator L is the unique monic left LCM
of A and B.

ExtendedLeastCommonLeftMultiple(S)

Given the non–empty sequence of differential operators S, this function returns the
unique monic left LCM L of the entries of S, as well as a sequence Q of length #S,
satisfying L = Q[i] · S[i] for i = 1, 2, . . . , #S.

Example H111E53

> F<z> := RationalDifferentialField(Rationals());

> R<D> := DifferentialOperatorRing(F);

> LCLM(D, D-z);

D^2 + (-z^2 - 1)/z*D

> L1 := D^3+z*D^2+D-z;

> L2 := D^2+(z-3)*D-3*z+1;

> LeastCommonLeftMultiple(L1, L2);

D^4 + (z - 3)*D^3 + (-3*z + 2)*D^2 + (-z - 3)*D + 3*z - 1

> L, U, V := ExtendedLeastCommonLeftMultiple(L1, L2);

> L, U, V;

D^4 + (z - 3)*D^3 + (-3*z + 2)*D^2 + (-z - 3)*D + 3*z - 1

D + -3

D^2 + -1

> L eq U*L1;

true

> L eq V*L2;

true

> L, Q := ExtendedLeastCommonLeftMultiple([D,D+1,z*D+1]);

> L;

D^3 + (z^2 - 6)/(z^2 - 2*z)*D^2 + (2*z - 6)/(z^2 - 2*z)*D

> Q[3]*(z*D+1) eq L;

true
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Example H111E54

> F<z> := RationalDifferentialField(Rationals());

> P<T> := PolynomialRing(F);

> M<u> := ext<F|T^2+T+1>;

> RM<DM> := DifferentialOperatorRing(M);

> LeastCommonLeftMultiple(DM-u^2);

DM^2 + DM + 1

> lclm := LeastCommonLeftMultiple(DM-u+1);

DM^2 + 3*DM + 3

> EuclideanRightDivision(lclm, DM-u+1);

DM + u + 2

0

> N<v>, mp := ext<F|T^2-z>;

> RN<DN> := DifferentialOperatorRing(N);

> lclm := LeastCommonLeftMultiple(DN-v);

> lclm;

DN^2 + -1/2/z*DN + -z

> LeastCommonLeftMultiple(DN-v, DN+v) eq lclm;

true

> EuclideanRightDivision(lclm,DN-v);

DN + v - 1/2/z

0

> EuclideanRightDivision(lclm,DN+v);

DN + -v - 1/2/z

0

111.15 Related Matrices

The companion matrix of a monic linear differential operator

Dn + an−1D
n−1 + · · ·+ a0 ∈ F [D]

is defined as the n× n matrix



0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1
−a0 −a1 −a2 −a3 . . . −an−1




CompanionMatrix(L)

Returns the companion matrix of the monic differential operator L.
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Example H111E55

> F<z> := RationalDifferentialField(Rationals());

> R<D> := DifferentialOperatorRing(F);

> L := D^3-z*D^2+2*D+5;

> CompanionMatrix(L);

[0 1 0]

[0 0 1]

[-5 -2 z]

111.16 Singular Places and Indicial Polynomials

All functions treated in this section concern differential operator rings defined over a func-
tion field of transcendence degree one. They all require that the derivation of such an
operator ring F [D] over F is defined with respect to a differential.

Any solution of a differential operator L ∈ F [D] is also a solution of the operator c ·L,
for any non–zero c ∈ F . For considering solutions we may therefore consider L to be monic
of the form

L = Dn + an−1D
n−1 + · · ·+ a0,

with coefficients ai ∈ F for i = 1, 2, . . . n− 1. Each of the coefficients is a rational function
in F . They play an important role in the rational solutions of L(y) = 0 in F that come to
expression in so-called regular and singular places.

111.16.1 Singular Places
Given a place (q) in the set of places of F , a putative rational solution y ∈ F of L(y) = 0
has a q-adic expansion

y = yα qα + yα+1 qα+1 + . . .

It has a pole at the place (q) if the valuation α is negative. After substituting this solution
in L(y) it becomes clear that there is only a finite number of places which can occur as poles
of an arbitrary solution of Ly = 0. Such a place is either a pole of one of the coefficients ai

or a zero or a pole of the differential ω of F [D]. There exists a classification for the poles
of solutions of L(y) = 0.

Given a place (q) and local parameter t at (q), the differential operator can be rewritten
as a differential operator L̃ ∈ F̃ [D̃], with F̃ ∼= F , the valuation of whose differential at (q)
is 0. The place (q) is defined to be a singular place of L, if one of the coefficients of L̃ has
negative valuation at (q). Places that are not singular are called regular.

There are two kinds of singular places of a differential operator; the regular singular
places and the irregular singular places. With the notation as above, a singular place (q)
of L is regular singular if the valuation of the coefficient of (D̃)i in L̃ is at most i− n for
every i ∈ {0, 1, . . . , n− 1}. Otherwise it is irregular singular.
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IsRegularPlace(L, p)

Returns true iff the place p is a regular place of the differential operator L. If p is
not a regular place of L false is returned. This function only works for operators
whose derivation is defined by a differential.

IsRegularSingularPlace(L, p)

Returns true iff the place p is a regular singular place of the differential operator
L. If p is not a regular singular place of L false is returned. This function only
works for operators whose derivation is defined by a differential.

IsIrregularSingularPlace(L, p)

Returns true iff the place p is an irregular singular place of the differential operator
L. If p is not an irregular singular place of L false is returned. This function only
works for operators whose derivation is defined by a differential.

SetsOfSingularPlaces(L)

Two sets are returned. The first set contains precisely all regular singular places of
the differential operator L. The second set consists of all irregular singular places
of L. This function only works for operators whose derivation is defined by a differ-
ential.

IsFuchsianOperator(L)

Returns true iff the differential operator L is Fuchsian (i.e. if all singular places of
L are regular singular). If L is not Fuchsian, false is returned. Secondly, the set
of all singular places of L, is returned only if L is a Fuchsian differential operator.
This function only works for operators whose derivation is defined by a differential.

IsRegularSingularOperator(L)

Returns true if and only if the differential operator L is regular singular. The
operator may be defined over a differential Laurent series ring, F say. In this case
being regular singular means that the operator must be regular singular at F.1.
Then also there is no second argument returned. In the case that the derivation is
defined with respect to a differential, then the values from IsFuchsianOperator(L)
are returned.

Example H111E56

> F<z> := RationalDifferentialField(Rationals());

> R<D> := DifferentialOperatorRing(F);

> H := (z^2-z)*D^2+(3*z-6)*D+1;

> IsRegularPlace(H, Zeros(z)[1]);

false

> IsRegularSingularPlace(H, Zeros(z)[1]);

true

> SetsOfSingularPlaces(H);
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{ (1/z), (z - 1), (z) }

{}

> IsFuchsianOperator(H);

true { (z), (1/z), (z - 1) }

> IsFuchsianOperator(D^2-1/z^3);

false

Example H111E57

> S<t> := DifferentialLaurentSeriesRing(Rationals());

> R<D> := DifferentialOperatorRing(S);

> IsRegularSingularOperator(D^2 -t*D+2);

true

> IsRegularSingularOperator(D^2 +3);

true

> IsRegularSingularOperator(D^2 +3 +O(t));

true

> IsRegularSingularOperator(D^2 +3*t^(-1));

false

111.16.2 Indicial Polynomials
For the definition of a indicial polynomial at a place, we refer to Section 4.1 in [vdPS03].

IndicialPolynomial(L, p)

Returns the monic indicial polynomial of the differential operator L at the place p.
This function only works for operators whose derivation is defined by a differential
and whose base ring has one generator.

Example H111E58

> F<z> := RationalDifferentialField(Rationals());

> _<T> := PolynomialRing(Rationals());

> R<D> := DifferentialOperatorRing(F);

> H := (z^2-z)*D^2+(3*z-6)*D+1;

> IndicialPolynomial(H, Zeros(z)[1]);

T^2 + 5*T

> IndicialPolynomial(H, Zeros(z-1)[1]);

T^2 - 4*T

> IndicialPolynomial(H, Zeros(1/z)[1]);

T^2 - 2*T + 1

> Apply(H, (z-1)^4/z^5);

0
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111.17 Rational Solutions

RationalSolutions(L)

Given a differential operator L, a basis of the nullspace of rational solutions of
L(y) = 0 in F is returned as a sequence of basis elements. This function only works
for operators whose derivation is defined by a differential. The algorithm that is
used is described in Section 4.1 of [vdPS03].

HasRationalSolutions(L, g)

Given a differential operator L with coefficients in F and an element g of F , return
true if there is an element y ∈ F satisfying L(y) = g. If such a solution exists a
particular solution in F and the basis of the nullspace of rational solutions in F are
also returned. If there is no solution, only false is returned. This function only
works for operators whose derivation is defined by a differential.

Example H111E59

> F<z> := RationalDifferentialField(Rationals());

> R<D> := DifferentialOperatorRing(F);

> H := (z^2-z)*D^2+(3*z-6)*D+1;

> RationalSolutions(H);

[ (z^4 - 4*z^3 + 6*z^2 - 4*z + 1)/z^5 ]

> L := D^2-6/z^2;

> RationalSolutions(L);

[ z^3, 1/z^2 ]

> Apply(L, z^3+1/z^2);

0

> HasRationalSolutions(L, 6/z);

true -z [ z^3, 1/z^2 ]

> L(-z);

6/z
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111.18 Newton Polygons

The Newton polygon of a differential operator L and its Newton polynomials can be used
to factorize L. A classical example of the Newton polygon uses the derivation z · d/dz,
where z is a generator of the basefield of L. This Newton polygon is known as the Newton
polygon of L. Its definition, as used in Magma, is given in §3 of [vH97b] and is applicable
to operators over a Laurent series ring with generator z, as well as to operators over fields
for which a set of places exist. For fields in the latter category it is however not necessary
to restrict to the derivation z ·d/dz based at z = 0 (in other words: at the place (z)). More
generally, the Newton polygon of L at the place (p) is the Newton polygon at t = 0 after
rewriting L as a differential operator L̃ in a local parameter t of (p), such that derivation
of L̃ is of the form t · d/dt.

NewtonPolygon(L)

Returns the Newton Polygon of the differential operator L over a differential Laurent
series ring. This means that for the computation of the Newton polygon L may have
had to be rewritten as a differential operator L̃ over a differential Laurent series ring
C((t)), say, such that L̃ has derivation t · d/dt. The second argument returned is
the operator L̃.

NewtonPolygon(L, p)

Returns the Newton polygon of the differential operator L at the place p. The
derivation of L must be defined with respect to a differential and the base ring of
L should have one generator. For the computation of the Newton polygon another
differential operator L̃, say, may have had to be calculated. The differential of the
derivation of L̃ has valuation −1 at the place p. The differential operator L̃ is
also returned.

NewtonPolynomial(F)

Returns the Newton polynomial of the face F of a Newton polygon. The Newton
polygon must have been created with respect to a differential operator. The Newton
polynomial depends on a uniformizing element, therefore, its variable is well–defined
up to scalar multiplication by a non–zero element. The definition of the Newton
polynomial of a face that is used by Magma, is given in Section 3 of [vH97b].

NewtonPolynomials(L)

Returns all Newton polynomials of L with respect to the faces of its Newton polygon.
The second argument returned is the corresponding slopes.

Example H111E60

> K := RationalDifferentialField(Rationals());

> F<z> := ChangeDerivation(K, K.1);

> Differential(F);

(1/z) d(z)
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> R<D> := DifferentialOperatorRing(F);

> L := 10*z*D^2+3*D-1;

> npgon, op := NewtonPolygon(L, Zeros(z)[1]);

> npgon;

Newton Polygon of 10*z*$.1^2 + 3*$.1 - 1 over Algebraic function field

defined over Rational Field by

$.2 - 4711 at (z)

> op;

10*z*D^2 + 3*D + -1

> faces:= Faces(npgon);

> faces;

[ <0, 1, 0>, <-1, 1, -1> ]

> _<T> := PolynomialRing(Rationals());

> NewtonPolynomial(faces[1]);

3*T - 1

> NewtonPolynomial(faces[2]);

10*T + 3

Example H111E61

> F<z> := RationalDifferentialField(Rationals());

> R<D> := DifferentialOperatorRing(F);

> L := D^2+z*D-3*z^2;

> npgon, op := NewtonPolygon(L, Zeros(1/z)[1]);

> op;

1/z^2*$.1^2 + (-z^2 + 1)/z^2*$.1 + -3*z^2

> Differential(Parent(op));

(-1/z) d(z)

> Valuation($1,Zeros(1/z)[1]);

-1

> faces:= Faces(npgon);

> faces;

[ <-2, 1, -2> ]

> _<T> := PolynomialRing(Rationals());

> NewtonPolynomial(faces[1]);

T^2 - T - 3

Example H111E62

This example corresponds to Examples 3.46 and 3.49.2 from [vdPS03].

> S<t> := DifferentialLaurentSeriesRing(Rationals());

> R<D> := DifferentialOperatorRing(S);

> L := t*D^2+D-1;

> npgon, op := NewtonPolygon(L);

> L eq op;

true
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> Faces(npgon);

[ <0, 1, 0>, <-1, 1, -1> ]

> _<T> := PolynomialRing(Rationals());

> NewtonPolynomials(L);

[

T - 1,

T + 1

]

[ 0, 1 ]

> L := D^2+(1/t^2+1/t)*D+(1/t^3-2/t^2);

> npgon, op := NewtonPolygon(L);

> L eq op;

true

> NewtonPolynomials(L);

[

T + 1,

T + 1

]

[ 1, 2 ]

111.19 Symmetric Powers

SymmetricPower(L, m)

Returns the m-th symmetric power of the differential operator L as an element of
the parent of L. The symmetric power is monic where possible. If n denotes the
order of L, then the degree of the m-th symmetric power of L is at most

(
n+m−1

n−1

)
.

The algorithm that is used is based on algorithms given in [BMW97].

Example H111E63

> F<z> := RationalDifferentialField(Rationals());

> R<D> := DifferentialOperatorRing(F);

> SymmetricPower(D^2, 3);

D^4

> SymmetricPower(D^3-1, 2);

D^6 + -7*D^3 + -8
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111.20 Differential Operators of Algebraic Functions

An algebraic function g in a differential field extension M/F satisfies a linear differential
equation L(y) = 0 with coefficients in F ⊂M . If the minimal polynomial of g over F is of
degree n, then the order of L is at most n.

DifferentialOperator(f)

Given the irreducible polynomial f(X) ∈ F [X], return the monic differential opera-
tor over F of minimal degree to which a formal root of f is a solution. The field F
must be a differential field. The base ring of the created differential operator is F .

The algorithm used in this function is straightforward. If g is a root of an
irreducible polynomial f(X) ∈ F [X], where F is a differential field, then f(g) = 0
induces a unique derivation on g. The field M = F (g) is an algebraic differential field
extension of F containing all derivatives of g. If n is the degree of the polynomial
f , then M/F is a field extension of degree n. This implies that there must be at
least one non–trivial linear relation between g, δM (g), . . . , δn

M (g). The linear relation
between these elements involving the lowest powers of δi

M gives exactly the desired
monic differential operator after a suitable normalization.

Example H111E64

> F<z> := RationalDifferentialField(Rationals());

> _<X> := PolynomialRing(F);

> f := X^3-z;

> L := DifferentialOperator(f);

> L;

$.1 + -1/3/z

> M<alpha> := ext<F|f>;

> R<D> := DifferentialOperatorRing(M);

> Apply(R!L,alpha);

0

111.21 Factorisation of Operators over Differential Laurent Series
Rings

When factoring a non-trivial linear differential operator in

P [δ] := k((t))[δ],

with constant field k, differential Laurent Series ring k((t)) in t, and derivation δ, one at
least wants to compute two operators L and R in P such that f = L ·R. It is important to
distinguish the left and right hand operators (L and R) as such as multiplication generally
is non-commutative. When considering differential operators in the operator ring P , it is
common to consider δ to be t · d/dt. This specific form has the advantage that the degree
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of δ · t in t remains one, since δ · t = t · δ + t. This specific derivation is called the projective
derivation and we consider this derivation in the rest of this section. In this sense powers
of t are eigenvectors under the application of the derivation.

A possible approach for factoring a linear operator would be to compute all non-constant
irreducible right hand factors and then use recursion on the appropriate left hand factors.
However, this causes a problem as there may be infinitely many factorisations. For instance
δ2−δ has infinitely many factorisations (parametrisations) (δ−c/(t+c))(δ−t/(t+c)) for any
c ∈ P 1(k). The approach we take to find right hand factors follows [vH97b], and chooses
a canonical representative from a class of right hand factors. The obtained representatives
can be used in the factorisation of linear differential operators over a rational function
field, see [vH97a].

A non-trivial linear differential operator f in P acts on the solution space V of all dif-
ferential operators in the differential closure of k((t)). This action is k̄-linear and surjective
on V . The kernel V (f) of this map has dimension equal to the order of the operator. The
general solution space V can be split into a direct sum of smaller k̄-vector spaces Ve. These
are minimal such that f(Ve) ⊂ Ve for every operator in P . Its kernel Ve(f) consists of all
solutions of f(y) = 0 in Ve. As a consequence the solution space of the operator then is
V (f) = ⊕eVe(f). For each of the e with non-trivial solution space of f , the idea now is to
find an irreducible right hand factor of f in k((t))[δ] that annihilates Ve(f).

111.21.1 Slope Valuation of an Operator
The Newton Polynomial of an operator f and its slopes contain useful information re-
garding its factorisation possibilities. It was proved by Malgrange that an operator over
a Laurent series ring is reducible if its Newton polygon has at least two slopes. When
on the other hand the Newton polygon has one positive slope, and the accompanying
Newton polynomial has two relatively prime factors, then the operator is irreducible as
well. It can be shown that an irreducible right hand factor has an irreducible Newton
polynomial that divides the Newton polynomial of f . When an appropriate irreducible
factor of the polynomial of f is taken, One can start building a right hand factor oper-
ator with coefficients of a certain precision that has exactly the irreducible factor as its
Newton polynomial. Subsequently one can try to lift the coefficients to a better, possibly
predescribed precision.

Various measures for the precision are possible, for instance the absolute precision of
the coefficients is common. Another valuation metric is or one related to the slope of the
Newton polynomial. It is defined as follows. Assume that P := k((t))[δ] has projective
derivation t · d/dt, Let s be a rational with numerator n and denominator d such that
gcd(n, d) = 1 and d > 0 hold. Then the slope valuation of a monomial ctiδj , c ∈ k\{0},
with respect to s is defined as Vs(ctiδj) := id − jn. The slope valuation of the operator
L ∈ P with respect to s subsequently is defined as the minimum of the slope valuation of
each non-zero monomial in L w.r.t s. Commonly s is a slope of the Newton polynomial of
L. If the operator is the zero operator, the slope valuation is defined to be infinite.

SlopeValuation(L,s)
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Returns the valuation of L, with respect to the rational slope s, when the derivation
of L is projective.

Example H111E65

> S<t>:=DifferentialLaurentSeriesRing(Rationals());

> P<D>:=DifferentialOperatorRing(S);

> L:=t^(-2)*D^3+t^7;

> SlopeValuation(L,0);

-2

> SlopeValuation(L,1/2);

-7

> SlopeValuation(L,5);

-17

> L:=(0+O(t^6))*D;

> SlopeValuation(L,0);

Infinity

> Valuation(0+O(t^6));

6

> SlopeValuation(P!0,3);

Infinity

111.21.2 Coprime Index 1 and LCLM Factorisation
Coprime index 1 factorisation and LCLM factorisation are two factorisation methods that
use similar factorisation machinery, but may result in different factorisations, see [vH97b].
Given an operator f ∈ k((t))[δ], both compute a right hand factor with respect to each
distinct irreducible factor of the Newton polynomial of f . A local lifting procedure with
respect to the slope valuation metric is performed to obtain the coefficients of the right hand
factors up to a certain accuracy. In addition, no intermediate differential field extensions
of k((t)) are used.

The coprime index 1 algorithm does not factor an operator f that has Newton poly-
nomial of the form pn, n ≥ 2, with slope s > 0. The sum of the degrees of the obtained
right hand factors of f may be less than the degree of f itself. Their least common left
divisor M divides f on the right (i.e. f = N ∗M) with a kernel of dimension less or equal
to deg(f). The LCLM algorithm, on the other hand, produces a set of right hand factors
of a monic operator f whose LCLM is exactly f up to some precision.

Factorisation(L)

Factorization(L)

Precision RngIntElt Default : −1
Algorithm MonStgElt Default : “Default”

Returns a sequence M of operator sequences [A,B] such that L = A·B holds, and B
does not have a non-trivial coprime index 1 or LCLM factorisation. As the algorithm
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sometimes cannot conclude if a right hand factor is irreducible, a second sequence
entry N [i] states True if the right hand factor M [i][2] is undisputedly irreducible.
The optional argument for the precision is the accuracy up to which the lifting
procedure would be performed. The default accuracy is the relative precision of the
basering of L. The algorithms used can be eiher “LCLM” or “CoprimeIndexOne”.
The algorithms used are based on various algorithms in [vH97b].

Example H111E66

The operator t2 · d/dt2 − t · d/dt with coefficients in Q has infinitely many factorisations, since
it can be written as (t · d/dt − c/(t + c)) · (t · d/dt − t/(t + c)) for any rational number c. The
factorisation code chooses a canonical right hand factor.

> S<t>:=DifferentialLaurentSeriesRing(Rationals());

> R<D>:=DifferentialOperatorRing(S);

> L := D^2 -D;

> factsL,blsL:=Factorisation(L:Algorithm:="LCLM");

Ring precision as default precision taken.

Performing coprime index 1 LCLM factorisation.

The number of slopes of the Newton polynomial: 1

> (#factsL eq #blsL) and (#factsL eq 1);

true

> blsL;

[ false ]

> factsL[1];

[

1,

D^2 + -1*D

]

> factsL,blsL:=Factorization(L:Algorithm:="CoprimeIndexOne");

Ring precision as default precision taken.

Performing coprime index 1 factorisation.

> (#factsL eq #blsL) and (#factsL eq 1);

true

> blsL;

[ true ]

> factsL[1];

[

D,

D + -1

]

Example H111E67

This example corresponds to Example 3.46 in [vdPS03].

> S<t>:=DifferentialLaurentSeriesRing(Rationals());

> R<D>:=DifferentialOperatorRing(S);
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> L:=D*(D+1/t);

> L;

D^2 + t^-1*D + -t^-1

> factsL,blsL:=Factorisation(L:Precision:=4);

Performing coprime index 1 LCLM factorisation.

> blsL;

[ true, true ]

> #factsL eq 2;

true

> factsL[1];

[

D + t^-1 + 1 - t + 3*t^2 + O(t^3),

D + -1 + t - 3*t^2 + 13*t^3 + O(t^4)

]

> factsL[2];

[

D,

D + t^-1

]

> factsL:=Factorisation(L:Algorithm:="CoprimeIndexOne");

Ring precision as default precision taken.

Performing coprime index 1 factorisation.

> #factsL eq 2;

true

> blsL;

[ true, true ]

> [v[1]*v[2]:v in factsL];

[

D^2 + (t^-1 + O(t^19))*D + -t^-1 + O(t^19),

D^2 + t^-1*D + -t^-1

]

Example H111E68

This example corresponds to Example 3.49 in [vdPS03].

> S<t>:=DifferentialLaurentSeriesRing(Rationals());

> R<D>:=DifferentialOperatorRing(S);

> L:=(D+1/t)*(D+1/t^2);

> L;

D^2 + (t^-2 + t^-1)*D + t^-3 - 2*t^-2

> factsL, blsL:=Factorisation(L:Algorithm:="CoprimeIndexOne",Precision:=6);

Performing coprime index 1 factorisation.

> blsL;

[ true, true ]

> #factsL;

2

> factsL[1];
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[

D + t^-2 + 2 + t - 3*t^2 - 8*t^3 + O(t^4),

D + t^-1 - 2 - t + 3*t^2 + 8*t^3 - 9*t^4 + O(t^5)

]

> factsL[2];

[

D + t^-1,

D + t^-2

]

> [v[1]*v[2] :v in factsL];

[

D^2 + (t^-2 + t^-1 + O(t^4))*D + t^-3 - 2*t^-2 + O(t^3),

D^2 + (t^-2 + t^-1)*D + t^-3 - 2*t^-2

]

Example H111E69

This example shows that not all operators may be factored by the factorisation routine. Notice
that the Newton polynomial of the operator is a square of a polynomial.

> S<t>:=DifferentialLaurentSeriesRing(Rationals());

> R<D>:=DifferentialOperatorRing(S);

> L:=(D+2/t)^2;

> np:=NewtonPolygon(L);

> faces:=Faces(np);

> #faces eq 1;

true

> NewtonPolynomial(faces[1]);

$.1^2 + 4*$.1 + 4

> factsL_lclm,blsL_lclm:=Factorisation(L);

Ring precision as default precision taken.

Performing coprime index 1 LCLM factorisation.

> factsL_lclm;

[

[

1,

D^2 + 4*t^-1*D + 4*t^-2 - 2*t^-1

]

]

> blsL_lclm;

[ false ]

> factsL_c1,blsL_c1:=Factorisation(L:Algorithm:="CoprimeIndexOne");

Ring precision as default precision taken.

Performing coprime index 1 factorisation.

> factsL_c1 eq factsL_lclm;

true

> blsL_c1 eq blsL_lclm;
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true

Example H111E70

This example shows that one may not retrieve the factorisation as expected.

> S<t>:=DifferentialLaurentSeriesRing(Rationals());

> R<D>:=DifferentialOperatorRing(S);

> L := (D+1/(t+1))*D;

> factsL_c1,blsL_c1:=Factorisation(L:Algorithm:="CoprimeIndexOne");

Ring precision as default precision taken.

Performing coprime index 1 factorisation.

> (#factsL_c1 eq 1) and (#blsL_c1 eq 1);

true

> factsL_c1[1][2];

D + O(t^20)

> factsL_lclm, blsL_lclm:=Factorisation(L:Algorithm:="LCLM");

Ring precision as default precision taken.

Performing coprime index 1 LCLM factorisation.

The number of slopes of the Newton polynomial: 1

> (#factsL_lclm eq 1) and (#blsL_lclm eq 1);

true

> factsL_c1[1][2], blsL_lclm[1];

D + O(t^20)

false

> M:=(D+1/(t-1))*D;

> factsM:=Factorisation(M:Algorithm:="CoprimeIndexOne");

Ring precision as default precision taken.

Performing coprime index 1 factorisation.

> # factsM eq 1;

> factsM[1][2]+O(t^4);

D + -1 - 1/2*t - 5/12*t^2 - 3/8*t^3 + O(t^4)

Example H111E71

One may wish to adjust the default precision to retrieve enough terms in the coefficients in the
factors. This example shows the effect on a rational slope 1/5 on the number of terms in the series
coefficients of the factors obtained.

> S<t>:=DifferentialLaurentSeriesRing(Rationals():Precision:=15);

> R<D>:=DifferentialOperatorRing(S);

> L:=(D^5+t^(-1))*D;

> np:=NewtonPolygon(L);

> Slopes(np);

[ 0 , 1/5 ]

> factsL,blsL:=Factorisation(L:Algorithm:="LCLM");

Ring precision as default precision taken.

Performing coprime index 1 LCLM factorisation.
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> blsL;

[ true, true ]

> [v[2]:v in factsL];

[

D,

D^5 + (-1 - t - 63*t^2 + O(t^3))*D^4 + (1 + 3*t + 253*t^2 +

O(t^3))*D^3 + (-1 - 7*t - 825*t^2 + O(t^3))*D^2 + (1 + 15*t + 2545*t^2

+ O(t^3))*D + t^-1 - 1 - 31*t - 7713*t^2 + O(t^3)

]

> [v[1]*v[2]:v in factsL];

[

D^6 + t^-1*D,

D^6 + O(t^3)*D^5 + O(t^3)*D^4 + O(t^3)*D^3 + O(t^3)*D^2 + (t^-1 +

O(t^3))*D + O(t^2)

]

> factsL:=Factorisation(L:Algorithm:="LCLM",Precision:=75);

Performing coprime index 1 LCLM factorisation.

> [v[1]*v[2]:v in factsL];

[

D^6 + t^-1*D,

D^6 + O(t^15)*D^5 + O(t^15)*D^4 + O(t^15)*D^3 + O(t^15)*D^2 + (t^-1 +

O(t^15))*D + O(t^14)

]

111.21.3 Right Hand Factors of Operators
While resorting to field extensions can result in more complex and time consuming com-
putations, they can be used for obtaining irreducible right hand factors over the original
base field.

An effective algorithm to obtain a monic irreducible right hand factor of degree one
L̃ of L ∈ k((t))[δ] in some field extension k̃((t̃))[δ̃] is presented in [vH97b, §5.1]. Such a
factor L̃ = δ̃ − r(t̃) of L is called a Ricatti factor of L. The operator LCLM(δ̃ − σ1(r), δ̃ −
σ2(r), . . . , δ̃ − σm(r)) where the σi are the Galois group elements of k̃((t̃))/k((t)), then is
a monic and irreducible operator invariant under the Galois action. Hence, it naturally
reduces to a monic irreducible right hand factor of L.

Other right hand factors of L, that may be defined over a finite field extensions of k((t))
are the so-called semi-regular parts of L. Such an operator Re(L) is the monic right hand
semi-regular factor of the translation Se(L) of L by e. Its degree is equal to the dimension
of a non-trivial k̄-linear vector space Ve(L), and acts as zero on it. In other words S−e(Re)
is a monic right hand factor of L, possibly defined over a field extension of k((t)). It can
be shown that L is the least common left multiple of all such right hand factors.

The routine RightHandFactors returns right hand factors of a given operator possibly
by using temporary field extensions. Each of these are canonical representatives of all right
hand factors belonging the slopes of the Newton polynomial of the operator. Currently
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one of the internal routines may fail when performing calculations for some specific right
hand factor. In this case we cannot conclude it to be irreducible.

RightHandFactors(L)

Precision RngIntElt Default : −1
The canonical list of monic right hand factors of L, one per slope of the Newton
polynomial of L. The ith entry in the second sequence returned is true if the ith

right hand factor is undisputedly irreducible. The precision attribute relates to the
absolute precision a coefficient in a right hand factor should minimally have.

Example H111E72

This example is Example 3.49 from [vdPS03]. The same right hand factors as in Example H111E68
are obtained.

> S<t>:=DifferentialLaurentSeriesRing(Rationals());

> RS<DS> := DifferentialOperatorRing(S);

> L:=DS^2+(1/t^2+1/t)*DS +(1/t^3-2/t^2);

> rhf, bl := RightHandFactors(L);

Performing coprime index 1 LCLM factorisation.

> #rhf eq 2;

true

> bl;

[ true, true ]

> (Parent(rhf[1]) eq RS) and (Parent(rhf[2]) eq RS);

true

> lhf,rem := EuclideanRightDivision(L, rhf[1]);

> rem;

O(t^20)

> lhf*rhf[1];

DS^2 + (t^-2 + t^-1 + O(t^22))*DS + t^-3 - 2*t^-2 + O(t^20)

> EuclideanRightDivision(L, rhf[2]);

DS + t^-1

0

Example H111E73

This example corresponds to Example 3.52 in [vdPS03]. The answer in the book is erroneous.

> S<t>:=DifferentialLaurentSeriesRing(Rationals());

> RS<DS> := DifferentialOperatorRing(S);

> L:=DS^2-3/2*DS+(2*t-1)/(4*t);

> rhf, bl := RightHandFactors(L);

Performing coprime index 1 LCLM factorisation.

> bl;

[ true ]

> #rhf eq 1;

true
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> rhf[1] eq L;

true

Example H111E74

The operator in this example is the same as in Example H111E69 where the routine Factorisation
was used. The operator did not factor there, but does when using RightHandFactors.

> S<t>:=DifferentialLaurentSeriesRing(Rationals());

> RS<DS> := DifferentialOperatorRing(S);

> L:=(DS+2/t)^2;

> rhf, bl := RightHandFactors(L);

Performing coprime index 1 LCLM factorisation.

Calculating semi-regular parts.

Performing coprime index 1 LCLM factorisation.

Performing coprime index 1 LCLM factorisation.

Computing a first order Ricatti factor.

Performing LCLM calculation on the Ricatti factor.

> rhf;

[

DS + 2*t^-1

]

> bl;

[ true ]

Example H111E75

This example corresponds to Example 3.53 in [vdPS03].

> S<t>:=DifferentialLaurentSeriesRing(Rationals());

> RS<DS> := DifferentialOperatorRing(S);

> L:=DS^2 +(4+2*t-t^2-3*t^3)/(t^2)*DS+ (4+4*t-5*t^2-8*t^3-3*t^4+2*t^6)/(t^4);

> np:=NewtonPolygon(L);

> faces:=Faces(np);

> #faces eq 1;

true

> _<T> := PolynomialRing(Rationals());

> NewtonPolynomial(faces[1]);

T^2 + 4*T + 4

> factsL, blsL := Factorisation(L);

Ring precision as default precision taken.

Performing coprime index 1 LCLM factorisation.

> blsL;

[ false ]

> (#factsL eq 1) and (factsL[1][2] eq L);

true

> rhf, bl := RightHandFactors(L);

Performing coprime index 1 LCLM factorisation.
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Calculating semi-regular parts.

Performing coprime index 1 LCLM factorisation.

Performing coprime index 1 LCLM factorisation.

Performing coprime index 1 LCLM factorisation.

Computing a first order Ricatti factor.

Performing LCLM calculation on the Ricatti factor.

> bl;

true

> Degree(rhf[1]);

1

> bl;

true

> Parent (rhf[1]) eq RS;

true

> L - EuclideanRightDivision(L, rhf[1])*rhf[1];

O(t^22)*DS + O(t^20)

Example H111E76

A collection of operators having the same Newton polynomial (T 2 + 1)(T − 1)(T + 1).

> S<t>:=DifferentialLaurentSeriesRing(Rationals());

> RS<DS> := DifferentialOperatorRing(S);

> L := DS^4-1/t^4;

> faces:=Faces(NewtonPolygon(L));

> faces;

[ <-1, 1, -4> ]

> _<T> := PolynomialRing(Rationals());

> NewtonPolynomial(faces[1]);

T^4 - 1

> rhf, bl := RightHandFactors(L);

Performing coprime index 1 LCLM factorisation.

> bl;

[ true, true, true ]

> [Degree(v) : v in rhf];

[ 1, 1, 2 ]

> L - EuclideanRightDivision(L, rhf[1])*rhf[1];

O(t^23)*DS^3 + O(t^22)*DS^2 + O(t^21)*DS + O(t^20)

> L - EuclideanRightDivision(L, rhf[2])*rhf[2];

O(t^23)*DS^3 + O(t^22)*DS^2 + O(t^21)*DS + O(t^20)

> L - EuclideanRightDivision(L, rhf[3])*rhf[3];

O(t^23)*DS^3 + O(t^22)*DS^2 + O(t^21)*DS + O(t^20)

> M := DS^4-1;

> faces:=Faces(NewtonPolygon(M));

> faces;

[ <0, 1, 0> ]

> NewtonPolynomial(faces[1]);

T^4 - 1
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> rhf, bl := RightHandFactors(M);

Performing coprime index 1 LCLM factorisation.

Calculating semi-regular parts.

Performing coprime index 1 LCLM factorisation.

Performing LCLM calculation on a semi-regular part.

Calculating semi-regular parts.

Performing coprime index 1 LCLM factorisation.

Computing a first order Ricatti factor.

Performing LCLM calculation on the Ricatti factor.

> rhf;

[

DS^2 + 1,

DS + -1

]

> bl;

[ true, true ]

Example H111E77

This is the main example of [vH97b]

> S<t>:=DifferentialLaurentSeriesRing(Rationals());

> RS<DS> := DifferentialOperatorRing(S);

> L:=DS^9 + 2*t^-1*DS^8 + 3*t^-2*DS^7 + 2*t^-3*DS^6 + (t^-4 + 2*t^-2)*DS^5 +

> (-3*t^-5 + 5*t^-4)*DS^3 + 3*t^-5*DS^2 + (2*t^-6 + 2*t^-5)*DS + 7*t^-5;

> facts := Factorisation(L);

Ring precision as default precision taken.

Performing coprime index 1 LCLM factorisation.

> [Degree(v[2]): v in facts];

[ 1 2 2 4 ]

> isweaklyzero := [];

> vals :=[];

> for i in [1..4] do

> _,rem := EuclideanRightDivision(L, facts[i][2]);

> isweaklyzero[i] := IsWeaklyZero(rem);

> vals[i] := [Valuation(v) : v in Eltseq(rem)];

> end for;

> isweaklyzero;

[ true, true, true, true ]

> [Minimum(v) : v in vals];

[ 14 , 4 , 4 , 11]

> rhf, bl := RightHandFactors(L:Precision:=30);

Performing coprime index 1 LCLM factorisation.

Calculating semi-regular parts.

Performing coprime index 1 LCLM factorisation.

Performing coprime index 1 LCLM factorisation.

Performing coprime index 1 LCLM factorisation.

Performing LCLM calculation on a semi-regular part.
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Computation of the LCLM failed.

> bl;

[ true, true, true, false ]

> [Degree(v): v in rhf];

[ 1 2 2 4 ]

> isweaklyzero := [];

> vals := [];

> for i in [1..4] do

> [Degree(v): v in Eltseq(rhf[i])];

> _,rem := EuclideanRightDivision(L, rhf[i]);

> isweaklyzero[i] := IsWeaklyZero(rem);

> vals[i] := [Valuation(v) : v in Eltseq(rem)];

> end for;

[ 35, 0 ]

[ 35, 35, 0 ]

[ 35, 35, 0 ]

[ 31, 32, 33, 34, 0 ]

> isweaklyzero;

[ true, true, true, true ]

> [ Minimum(v) : v in vals];

[ 30, 30, 30, 27 ]
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Chapter 112

SCHEMES

112.1 Introduction and First Examples
Schemes are rather general objects of algebraic geometry. A standard reference is
Hartshorne’s introductory text [Har77]. Included among all schemes are many familiar
geometric objects such as plane curves. In Magma, one can work with many of these
familiar objects but not with entirely general schemes. Roughly speaking, a scheme in
Magma is any geometric object defined by the vanishing of polynomial equations in affine
or projective space. In particular, there is no facility for defining a scheme a priori in
terms of a collection of affine patches. Schemes are not automatically normalized. Maps
between schemes can be defined by polynomials or quotients of polynomials.

The sections in this introduction contain examples covering the basic idioms understood
by Magma, especially those for creation of geometric objects, and are intended to be the
first place of reference for newcomers to this module.

The design of the general scheme module is not particularly subtle or difficult but the
philosophy behind it does require a small amount of understanding. There are two things in
particular. Firstly, while constructing geometric objects is easy, many of the constructors
take an ambient scheme as an argument as well as some polynomials. Thus one’s initial step
is often to create some large ambient space which is not of primary interest but in which
many schemes will lie. In doing so, one usually assigns names to the coordinate functions
of this space, and it is these names which are used when writing the polynomials which
define some scheme. Secondly, points are not considered to be elements of schemes, but
rather elements of one of a series of point sets of schemes indexed by the rings containing
the coefficients. (Mathematically speaking, these rings are really algebras over the base
ring of the scheme, but in Magma the algebra structure is usually implicitly determined
by coercion.)
The objects that can be created include
• ambient spaces: affine space, projective space, rational scrolls or weighted projective

space over a ring
• schemes as subschemes: the zero locus of polynomials defined on a particular ambient

space or on any other scheme
• points of schemes: sequences of ring elements, possibly defined over some extension of

the base ring
• maps: sequences of polynomials or rational functions defined on the domain
• linear systems: linear spaces of polynomials defined on ambient spaces
Schemes may be defined quite generally over any ring k, although of course many functions
require k to lie in some restricted class. The following restrictions hold: Gröbner basis
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calculations may only be performed over an exact field or Euclidean domain; resultant
calculations may only be carried out over a unique factorization domain; GCD calculations
work over any exact field and the integers and over polynomial rings over either of these;
the factorisation of polynomials is possible only over the integers, rationals, finite fields,
algebraically closed fields, number fields and function fields. Linear systems are based on
the linear algebra module in Magma and so are restricted to ambient spaces defined over
fields.

The functions described in this chapter are general ones that apply to all schemes. In
particular situations additional functions are provided. For example, see Chapter 114 for
many specialised functions that apply in the case of curves. In the final subsection of this
introduction we say a few words about the various different types of schemes that Magma
admits.

To some extent we try to emulate Hartshorne’s text [Har77] although we remain only
a fraction of the way through the material of that book and, of course, we have made
innumerable compromises.

In the examples below, > at the start of a line is the Magma prompt. It is followed by
input which may be typed into a Magma session. The remaining lines are output which
has been edited slightly in some circumstances, but should nonetheless match closely what
appears on screen.

112.1.1 Ambient Spaces
Most schemes are considered to live in an ambient space. These include affine and projective
spaces, rational scrolls and products. They may be defined over any base ring. The
main technical point is that they have an associated coordinate ring (or a homogeneous
coordinate ring) that is a polynomial ring, possibly with one or more gradings associated
to it.

The syntax for defining an affine space over a ring is similar to that employed when
defining a polynomial ring over another ring. The angled bracket notation is used for
assigning names to the coordinate functions. It is optional as in the case of polynomial
rings. We illustrate by creating an affine 3-space over the finite field of 23 elements with
coordinates x, y, z.

Example H112E1

> k := FiniteField(23);

> A<x,y,z> := AffineSpace(k,3);

> A;

Affine Space of dimension 3

Variables : x, y, z

Various attributes of A are cached and may be subsequently retrieved.

> BaseRing(A);

Finite field of size 23

> Dimension(A);

3
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> A.1;

x

> CoordinateRing(A);

Polynomial ring of rank 3 over GF(23)

Lexicographical Order

Variables: x, y, z

Projective spaces are normally defined in the same way, but they can also be defined with weights.

> P<u,v,w> := ProjectiveSpace(k,[1,2,3]);

> P;

Projective Space of dimension 2

Variables : u, v, w

Gradings :

1 2 3

Having defined an ambient space A, polynomials in its coordinate functions can be created.
These polynomials are elements of the coordinate ring of A. These polynomials (and
sometimes also quotients of them) can be used to define geometric objects related to A.
Elements of other polynomial rings have no meaning on A and their use will result in an
error.

112.1.2 Schemes
Subschemes of ambient spaces prescribed by the vanishing of finitely many polynomials
may be defined. Just as a polynomial ideal in Magma belongs to some polynomial ring,
so any scheme defined by polynomials is contained in some ambient space. In the case
of ideals of polynomial rings the function Generic() recovers the polynomial overring.
For schemes the analogous function is AmbientSpace() (or Ambient) which recovers the
ambient space.

At the time a scheme is created the system only checks that the defining equations make
sense — that they are defined on the nominated ambient space, and are homogeneous if
necessary — and does not check other properties such as whether or not the scheme is
empty.

In this example, the twisted cubic curve in projective 3-space is defined in terms of
equations. The constructor takes these equations in a sequence as one of its arguments.

Example H112E2

> k := Rationals();

> P<u,v,w,t> := ProjectiveSpace(k,3);

> M := Matrix(CoordinateRing(P),2,3,[u,v,w,v,w,t]);

> eqns := Minors(M,2);

> C := Scheme(P,eqns);

> C;

Scheme over Rational Field defined by

u*w - v^2



3478 ALGEBRAIC GEOMETRY Part XVI

-u*t + v*w

v*t - w^2

> AmbientSpace(C);

Projective Space of dimension 3

Variables : u, v, w, t

> Dimension(C);

1

> IsNonsingular(C);

true

In fact, it is possible to create schemes without reference to an ambient space. For
instance, the intrinsic Spec may be applied to an affine algebra. But even so, the ambient
space defined by the polynomial overring of that algebra is created in the background and
may be recovered using the intrinsic Ambient. Many constructors require a reference to
some overscheme to be clear about which scheme the new object is meant to live in.

We note here that there is an important difference between affine schemes and projective
ones.

For affine schemes, the defining ideal (generated by the defining equations) is unique.
That is, there is a 1 − 1 correspondence between subschemes of an affine ambient space
and the ideals of the coordinate ring of that ambient.

On the other hand, for projective ambients, a given subscheme is defined by multiple
homogeneous ideals of the ambient coordinate ring. In this case however, there is a largest
defining ideal for each subscheme, which we refer to as the saturated one.

The practical effect of this is that Magma may have to replace the original defining
ideal of a projective scheme with the saturated ideal to guarantee the correct result of
certain functions (see section 112.3 on page 3494 for more details).

112.1.3 Rational Points
Although closed points of schemes may be defined as schemes in terms of polynomials,
there is a far more convenient way to define them: simply coerce the coordinates of the
point into the scheme. This is to allow points to be used in a mathematically colloquial
way: one understands the statement “the point p lies on the curve C” to mean that the
coordinates of p satisfy the equation of C, rather than to mean an inclusion between the
two defining ideals. (It also avoids the ideal inclusion test which would be a much more
expensive calculation.)

The points p = (−1, 1), q = (1, 2) are created in the affine plane over the finite field
of 31 elements. Magma’s coercion operator, the ! symbol, provides a concise notation
for specifying natural reinterpretations of objects. In this case a sequence of integers is
reinterpreted as a point of the finite plane. One of the points created below lies on the
standard parabola C.
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Example H112E3

> k := GF(31);

> A<x,y> := AffineSpace(k,2);

> p := A ! [-1,1];

> q := A ! [1,2];

> p,q;

(30, 1) (1, 2)

> C := Scheme(A,y-x^2);

> p in C;

true (30,1)

> q in C;

false

> [-1,1] in C;

true (30, 1)

But this is only the beginning of the story. Objects in Magma are always considered to lie in some
set or structure called their parent. Although it would be natural to take the scheme as the parent
of points, instead points have a point set as their parent. Point sets are the Magma equivalent of
“L-valued points” of schemes. If k is the base ring of a scheme X and L is some k-algebra, then
the point set of X over L, denoted X(L), comprises points with coordinates in L. In the previous
example, the sequences of coordinates were defined over the base ring k and the coercion created
elements in the point set A(k). Predicates such as p in C were evaluated by testing whether the
coordinates of p satisfied the equations of the scheme rather than by consulting their parents. If
the point does happen to lie on C, then p is returned as a point of C as second return value. Note
the difference between the apparently identical points (30, 1): the first, (p), lies in a point set of A
while the second lies in a point set of C. The same effect was achieved using the sequence alone
in the last line.
Point sets thus allow one to define points over extensions of k without having to define a new
scheme over that extension. In the next fragment, we show how to make a point of C over an
extension.

> k1<w> := ext< k | 2 >;

> C(k1) ! [w^16,3];

(w^16, 3)

An error is signalled if a point set is not nominated.

> C ! [w^16,3];

>> C ! [w^16,3];

^

Runtime error in ’!’: Illegal coercion

LHS: Sch

RHS: [FldFinElt]

The moral is:

A point of a scheme is created by coercing a sequence of coordinates into a point set of the
scheme.
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While it is true that the “scheme ! coordinates” operation applies when the sequence is defined
over the base ring, it might best be thought of as a convenient shorthand in predictable and simple
situations. This is analogous to the situation when constructing sets or sequences.

> C(k1) ! [w,w^2];

(w, w^2)

> C(k) ! [w,w^2];

>> C ! [w,w^2];

^

Runtime error in ’!’: Illegal coercion

This coercion fails since the coordinates do not belong to a field that embeds into k.

112.1.4 Projective Closure
Affine schemes have projective closures and projective schemes have standard affine
patches. For example, the projective plane has three standard affine patches, each of
which may be recovered as illustrated in the following example. Here we compute the
third affine patch, that is the patch whose points have nonzero first coefficient (in the
projective space).

Example H112E4

> P<x,y,z> := ProjectiveSpace(Rationals(),2);

> A := AffinePatch(P,3);

> A;

Affine Space of dimension 2

Variables : $.1, $.2

> A<u,v> := A;

> A;

Affine Space of dimension 2

Variables : u, v

> P eq Codomain(ProjectiveClosureMap(A));

true

Note that variable names on the patch, and also on closures, are not created automatically. Also,
the relationship between patch and closure is cemented by a map.
The projective closures of all schemes contained in a single affine space will lie in a common
projective space. Moreover, the closures of schemes lying in distinct affine patches of a single
projective space will lie in that same space. In particular, the projective closures of different
patches of a projective scheme will be identical.

> X := Scheme(A,[u^2-v^3,u^2+v^3]);

> PX := ProjectiveClosure(X);

> PX;

Scheme over Rational Field defined by

z^3

y^2
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> AffinePatch(PX,3) eq X; // (1)

true

> aX1:=AffinePatch(PX,1);

> IsEmpty(aX1); // (2)

true

> ProjectiveClosure(aX1) eq PX; // (2)

true

> Y := Scheme(P,[x*y^2-z^3,x*y^2+z^3]);

> AffinePatch(Y,3);

Scheme over Rational Field defined by

u^2 - v^3

u^2 + v^3

> AffinePatch(Y,3) eq X; // (3)

true

> Y eq PX;

false

This example shows several things. First it shows that taking the appropriate affine patch of a
projective closure returns the same scheme again (1). Second, it shows that the projective closure
of an affine patch always returns the exactly the same scheme and not a newly created version.
This is not always mathematically correct and means that projective closure is dependent on
how a scheme was created. Finally, it shows that projective schemes are “saturated at infinity”,
thereby removing the unnecessary x factor (3).
Points are handled cleanly with respect to projective closure.

> p := A ! [0,0];

> PX ! p;

(1 : 0 : 0)

Although the coercion of points is very flexible — the affine point p can usually be used in
place of the projective point PX ! p even when working in PX — code which is explicit
about this kind of coercion is probably more clear.

112.1.5 Maps
Maps between schemes are defined in terms of either polynomials or rational polynomials.
When a function field exists for the domain, function field elements may also be used. When
the domain or codomain is projective, that is, has at least one grading, then compatibility
of the defining functions with the gradings will be checked.

Maps to projective spaces are normalised by clearing polynomial denominators.

Example H112E5

> k := Rationals();

> P1<s,t> := ProjectiveSpace(k,1);

> P2<x,y,z> := ProjectiveSpace(k,2);

> f := map< P1 -> P2 | [s/t,s^2/(s^2 - t^2),t/s] >;

> f;
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Mapping from: Prj: P1 to Prj: P2

with equations :

s^4 - s^2*t^2

s^3*t

s^2*t^2 - t^4

> IsRegular(f);

true

> Image(f);

Scheme over Rational Field defined by

-x^3*z + x^2*y^2 - 2*x*y^2*z + y^2*z^2

The images of points may be computed in the natural way:

> p := P1 ! [3,2];

> f(p);

(9/4 : 27/10 : 1)

> f(p) in Image(f);

true (9/4 : 27/10 : 1)

And schemes may be pulled back by maps.

> S := Scheme(P2,x^2 - y*z);

> Z := Pullback(f,S);

> Z;

Scheme over Rational Field defined by

s^8 - 2*s^6*t^2 - s^5*t^3 + s^4*t^4 + s^3*t^5

> RationalPoints(Z);

{@ (1 : 1), (-1 : 1), (0 : 1) @}

> P := PointsOverSplittingField(Z); P;

{@ (0 : 1), (-1 : 1), (1 : 1), (r1 : 1), (r2 : 1), (r3 : 1) @}

> Ring(Universe($1));

Algebraically closed field with 3 variables

Defining relations:

[

r3^3 - r3 - 1,

r2^3 - r2 - 1,

r1^3 - r1 - 1

]

This code computes the intersection of the scheme which is image of f with the conic
S (although note that S is defined only as a scheme here and not as a conic). Moving
to an algebraic closure one sees a Galois 3-cycle of points among the rational points.
Additional functions for analysis of the multiplicities of these intersections are described
in Chapter 114.
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112.1.6 Linear Systems
Linear systems in projective space are simply collections of hypersurfaces having a common
degree which are parametrised linearly by a vector space. The set of all conics in the plane
is an example, being parametrised by the 6-dimensional vector space of possible coefficients
of a general conic:

(a, b, c, d, e, f)←→ (ax2 + bxy + cy2 + dxz + eyz + fz2 = 0).

A linear system in Magma has associated with it a fixed basis of forms, called its sections,
of the given degree which allows vectors of coefficients to be interpreted as hypersurfaces.
In the example above, the basis is the set of monomials of degree 2 and the bijection
between vectors of coefficients and hypersurfaces is explicit. Linear systems are closely
related to maps since their sections may be used to define a map from the space on which
they are defined to some other projective space.

Let P be a projective plane over some field k with coordinates x, y, z. The linear
system of conics on P is created.

Example H112E6

> Q := RationalField();

> P<x,y,z> := ProjectiveSpace(Q,2);

> L := LinearSystem(P,2);

> L;

Linear system on Projective Space of dimension 2

Variables : x, y, z

with 6 sections: x^2 x*y x*z y^2 y*z z^2

> Sections(L);

[ x^2, x*y, x*z, y^2, y*z, z^2 ]

These sections are now used to make a map from the plane P to 5-space. Its image is the Veronese
surface.

> P5<u0,u1,u2,u3,u4,u5> := ProjectiveSpace(Q,5);

> phi := map< P -> P5 | Sections(L) >;

> Image(phi);

Scheme over Rational Field defined by

-u0*u3 + u1^2

-u0*u4 + u1*u2

-u0*u5 + u2^2

-u1*u4 + u2*u3

-u1*u5 + u2*u4

-u3*u5 + u4^2

Geometrical conditions may also be imposed on a linear system. For example, given a linear
system L and a point p lying in the projective space on which L is defined, a subsystem of L
consisting of those hypersurfaces of L which contain p may be defined implicitly. It may be
checked (choosing more convenient coordinates) that the image of this new system is a projection



3484 ALGEBRAIC GEOMETRY Part XVI

of the Veronese surface from the point f(3, 2, 1) = (9, 6, 4, 3, 2, 1) lying on it. This is an embedding
of the blowup of the plane P at the point (3, 2, 1) also known as the cubic scroll.

> p := P ! [3,2,1];

> L1 := LinearSystem(L,p);

> L1;

Linear system on Projective Space of dimension 2

Variables : x, y, z

with 5 sections:

x^2 - 9*z^2

x*y - 6*z^2

x*z - 3*z^2

y^2 - 4*z^2

y*z - 2*z^2

> P4<v0,v1,v2,v3,v4> := ProjectiveSpace(Q,4);

> phi := map< P -> P4 | Sections(L1) >;

> Image(phi);

Scheme over Rational Field defined by

-v0*v3 + v1^2 - 4*v2^2 + 12*v2*v4 - 9*v4^2

-v0*v4 + v1*v2 - 2*v2^2 + 3*v2*v4

-v1*v4 + v2*v3 - 2*v2*v4 + 3*v4^2

It may also be checked that this image can be described as the vanishing of the two by two minors
of a certain matrix.

> M := Matrix(3,[v0, v1 + (2*v2 - 3*v4), v2, v1 - (2*v2 - 3*v4), v3, v4]);

> Minors(M,2);

[

v0*v4 - v1*v2 + 2*v2^2 - 3*v2*v4,

v1*v4 - v2*v3 + 2*v2*v4 - 3*v4^2,

v0*v3 - v1^2 + 4*v2^2 - 12*v2*v4 + 9*v4^2

]

> ideal< CoordinateRing(P4) | $1 > eq Ideal(Image(phi));

true

112.1.7 Aside: Types of Schemes
This section gives a general overview of the types of scheme that Magma admits. While
it is not necessary to know this for most applications, it is a useful guide to our point of
view and gives some indication of the different data structures used.

The main type is Sch. Very general functions such as BaseRing() apply at this level.
Gröbner basis calculations also apply. One level below this there are

Aff — a type for affine spaces
Prj — a type for projective spaces
Crv — a type for curves
Clstr — a type for zero-dimensional schemes, or clusters
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These inherit all the operations which apply at the level of Sch. The affine type is straight-
forward. The projective type contains spaces with graded polynomial coordinate rings.
There are a number of subtypes of this which identify spaces with more than one grading.

Objects of the curve type Crv currently only include schemes defined by a single non-
trivial equation in a two-dimensional ambient space. Functions which apply to the curve
type are detailed in Chapter 114. The most powerful of those require certain irreducibility
and separability conditions to be satisfied by the equation.

More specialised curve types are derived from Crv. They include CrvCon for plane
conics especially those defined over the rationals where fast point-finding algorithms exist;
CrvRat for rational curves for which a parametrisation algorithm exists; CrvEll for elliptic
curves, probably the most sophisticated part of the entire geometry module; and CrvHyp
for hyperelliptic curves where there are fast algorithms for computing on the jacobian.
Each of these has a handbook chapter which presents their specialised functions.

112.2 Ambients

For the purposes of this chapter, any scheme is contained in some ambient space, either an
affine space or one of a small number of standard projective spaces: these are projective
space itself, possibly weighted, and rational scrolls. The basic property of these spaces is
that they have some kind of coordinate ring that is a polynomial ring. It happens again
and again that we lift polynomials to these polynomial rings before working with them. It
is possible to define schemes without reference to such an ambient space, but one will be
created in the background in any case.

Listed in this section are the basic creation methods for ambient spaces. Names for the
coordinates will usually be required for creating polynomials later on. Names of coordinate
functions may be defined using the diamond bracket notation in the same way as for
polynomial rings. Coordinate names defined using this will be globally defined and retained
even outside the context in which they were set. Alternatively, explicit naming functions
may be used after creation.

112.2.1 Affine and Projective Spaces
These are the basic ambient spaces. They are used in many situations and are usually
sufficient, although there are more in the next section.

AffineSpace(k,n)

Create an n-dimensional affine space over the ring k. The integer n must be pos-
itive. Names can be assigned using the angle bracket notation, e.g. A<x, y, z>
:= AffineSpace(Rationals(), 3), which will assign the names to the coordinate
ring, usually a multivariate polynomial ring, in the same way as the angle bracket
notation works for the multivariate polynomial rings.
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ProjectiveSpace(k,n)

ProjectiveSpace(k,W)

Create an n-dimensional projective space over the ring k. The integer n must be
positive. The second argument to this intrinsic can be a sequence of positive integer
weights. These weights will be assigned to the coordinate functions of the space.
The dimension of the space is one less than the length of this sequence. (At present
there are very few functions to perform analysis on weighted projective spaces, but
maps between them are treated correctly.) Names can be assigned using the angle
bracket notation, e.g. P<x, y, z> := ProjectiveSpace(Rationals(), 2), which
will assign the names to the coordinate ring, usually a multivariate polynomial ring,
in the same way as the angle bracket notation works for multivariate polynomial
rings.

AffineSpace(R)

Spec(R)

Create the affine space whose coordinate ring is the multivariate polynomial ring R.
The coordinate names for the affine space will be inherited from R.

ProjectiveSpace(R)

Proj(R)

Create the projective plane whose homogeneous coordinate ring is the multivariate
polynomial ring R. If R has been assigned a grading then that grading will be used
otherwise it will be considered to have the standard grading by degree.

AssignNames(∼A,N)

A procedure to change the print names of the coordinate functions of the ambient
space A. It leaves A unchanged except that the visible names of the first #N
coordinate functions are replaced by the strings of N and the rest return to their
default. It does not assign the coordinate functions themselves to any identifiers.
That must be done by hand, for instance by the command x := A.1;. Note that
this will change the variable names of the coordinate (polynomial) ring.

A . i

Name(A,i)

The ith coordinate function of A as an element of the coordinate ring of A.
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Example H112E7

An affine 3-space over the finite field of 112 elements is created. Initially only the first two
coordinate functions are named. The third adopts the default name $.3. The identifier which
refers to it is A.3. Then new names are assigned to all coordinate functions and new identifiers
set to refer to them. (Check what happens if the identifiers are not assigned.) Notice that the
previous identifiers, x, y, are not erased, although their print values have been updated.

> A<x,y> := AffineSpace(FiniteField(11,2),3);

> A;

Affine Space of dimension 3

Variables : x, y, $.3

> AssignNames(~A,["u","v","w"]);

> u := A.1; v := A.2; w := A.3;

> A;

Affine Space of dimension 3

Variables : u, v, w

> x;

u

> u eq x;

true

Print values are global in Magma, meaning that even if they are changed in the local environment
of a function or procedure the new names will persist.

A eq B

Returns true if and only if the ambient spaces A and B are identical. This will only
be the case if both A and B refer to the same instance of creation of the space.

112.2.2 Scrolls and Products
These spaces are created using multiple gradings. They are not as fundamental as the affine
and projective spaces of the previous section and may be passed over on first reading.

As we have said, the important thing about ambient spaces in this system is that their
coordinate rings are essentially polynomial rings. For affine spaces, this is literally true. For
projective spaces, one talks about the homogeneous coordinate ring and restricts attention
to homogeneous polynomials, that is, polynomials whose terms all have the same weight
with respect to a single grading, but nonetheless one is working inside a polynomial ring.

This trick can be pushed further by admitting more than one grading on a polynomial
ring. The standard example of this is the family of rational ruled surfaces, or rational
surface scrolls, which have a bihomogeneous coordinate ring with four variables u, v, x, y
and two gradings which are often chosen to be

[1, 1,−n, 0] and [0, 0, 1, 1]

for some nonnegative integer n. Now we restrict attention to polynomials of some ho-
mogeneous bidegree (or more generally, multidegree) of the form [a, b]. As with ordinary
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projective space, polynomials of a given bidegree form a vector space with a favourite basis
of monomials. For example, if n = 3, then monomials of bidegree [2, 1] have as their basis

u5x, u4vx, . . . , v5x, uy, vy.

As with ordinary projective space, one can ask which polynomials have negative degree.
The difference is that this time there is just a little room for manoeuvre: with the same n
the monomials of degree [−4, 2] are

u2x2, uvx2, v2x2.

We consider the geometric object having this coordinate ring to be a primitive object of
the system. It is called a ruled surface and denoted Fn. This seems to be a rather implicit
approach at first, but is very similar to the way one works with projective space itself:
at first one learns about homogeneous polynomials, degree 0 rational polynomials, affine
patches and so on, but once used to that one gets on and uses it.

There are affine patches on Fn — a standard ‘first’ patch is the affine plane where v 6= 0
and y 6= 0 — and one can study them to get an idea of what this surface looks like. In
this case it is a P1 bundle over P1, the map to P1 given by the bidegree [0, 0] ratio u/v
and the fibre coordinate being the ratio x/y, not of trivial bidegree on the whole surface,
but well-defined for any fixed value of u/v.

We think of the gradings as forming a matrix and allow more general scrolls arising
from matrices which are partially row reduced to have rows of the form




1 . . . 1 ∗ . . . ∗ . . .
0 . . . 0 1 . . . 1 ∗ . . .
...
0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1




where the ∗ entries may be any integers. To get products of projective spaces we simply
set all the entries to be 0. Thinking about which multihomogeneous polynomials arise in
this ring and comparing with functions on products of projective spaces is a first exercise.

A reference for the point of view we take on these scrolls is [Rei97] Chapter 2.

DirectProduct(A,B)

The product of the ambient spaces A and B together with a sequence containing
the two projection maps.

RuledSurface(k,a,b)

This returns the ruled surface defined over the ring k whose negative section has
selfintersection ±(a− b), where a, b are non-negative integers.



Ch. 112 SCHEMES 3489

RuledSurface(k,n)

If n is a nonnegative integer, this returns the ruled surface defined over the ring k
whose negative section has selfintersection −n. The integer n must be non-negative.
In terms of the gradings, this means using the standard gradings as described in the
introduction with the top-right-hand entries being −n, 0.

AbsoluteRationalScroll(k,N)

If N is a sequence nonnegative integers this returns the rational scroll with base
ring k and gradings with entries being −N .

ProductProjectiveSpace(k,N)

If N = [n1, . . . , nr] is a sequence of positive integers this returns the product of
ordinary projective spaces

Pn1 × . . .×Pnr

of dimensions of N over the ring k. This does not create independent copies of the
projective factors and in particular does not return projection maps to the factors.

SegreProduct(Xs)

Computes the product X of a finite sequence of schemes Xs lying in ordinary pro-
jective space. X is constructed in ordinary projective space. It is embedded there
via an iterated Segre embedding (see Ex. 2.14, Section 2, Chapter 1 of [Har77]).
This intrinsic is provided because it is often easier to work in ordinary projective
space. However, the user should be warned that the dimension of the ambient in-
creases markedly with Segre embeddings. If the r schemes Xs[i] lie in Pni , then X
will lie in PN where N is (n1 + 1) ∗ (n2 + 1) ∗ . . . (nr + 1)− 1.

A sequence containing the r projection maps from X to the Xs[i] is also returned.

SegreEmbedding(X)

X should be a scheme lying in a product projective ambient (or the ambient itself!).
Computes and returns the image Y of X in ordinary projective space under the
iterated Segre embedding (see the preceding intrinsic) along with a scheme isomor-
phism from X to Y . This is a specialised intrinsic that is generally much faster than
using the general machinery to construct the Segre map on the ambient of X and
ask for the image of X.

Example H112E8

In the following example, we Segre embed the product of an elliptic curve E with itself into
ordinary projective space using the two intrinsics.

> Q := RationalField();

> P2<x,y,z> := ProjectiveSpace(Q,2);

> E := Curve(P2,y^2*z-x^3-x^2*z-z^3);

> ExE := SegreProduct([E,E]);
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> P8<a,b,c,d,e,f,g,h,i> := Ambient(ExE);

> ExE;

Scheme over Rational Field defined by

-f*h + e*i,

-c*h + b*i,

-f*g + d*i,

-e*g + d*h,

-c*g + a*i,

-b*g + a*h,

-c*e + b*f,

-c*d + a*f,

-b*d + a*e,

-g^3 - g^2*i + h^2*i - i^3,

-d^3 - d^2*f + e^2*f - f^3,

-c^3 - c^2*i + f^2*i - i^3,

-b^3 - b^2*h + e^2*h - h^3,

-a^3 - a^2*g + d^2*g - g^3,

-a^3 - a^2*c + b^2*c - c^3

> // or we could have started with ExE in product projective space

> P22<x,y,z,s,t,u> := ProductProjectiveSpace(Q,[2,2]);

> EE := Scheme(P22,[y^2*z-x^3-x^2*z-z^3, t^2*u-s^3-s^2*u-u^3]);

> EE;

Scheme over Rational Field defined by

-x^3 - x^2*z + y^2*z - z^3,

-s^3 - s^2*u + t^2*u - u^3

> ExE_1 := SegreEmbedding(EE);

> // transfer ExE_1 to the Ambient of ExE to compare

> ExE_1 := Scheme(P8,[Evaluate(pol,[a,b,c,d,e,f,g,h,i]) : pol in

> DefiningPolynomials(ExE_1)]);

> ExE eq ExE_1;

true

112.2.3 Functions and Homogeneity on Ambient Spaces

CoordinateRing(A)

The coordinate ring of the ambient space A. This is some polynomial ring of ap-
propriate rank over the base ring. Gradings on this ring are usually independent of
those of the scheme. Note that if the coordinate ring has zero rank then it will be
the base ring.

FunctionField(A)

The function field of the ambient space A. This is a field isomorphic to the field of
fractions of the coordinate ring of A.

HasFunctionField(A)
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Gradings(X)

A sequence containing all the gradings on the projective space X. Each such grading
is a sequence of integers whose length is the same as the number of coordinate
functions of X. The same sequence is returned when this function is applied to any
scheme contained in X.

NumberOfGradings(X)

NGrad(X)

The number of independent gradings on the projective space X. The same number
is returned when this function is applied to any scheme contained in X.

NumberOfCoordinates(X)

Length(X)

The number of coordinate functions of the ambient space of the scheme X. This is
equal to the number of coordinates of any point of X.

Lengths(X)

The lengths of the groups of ones in the gradings of a scroll X.

IsHomogeneous(X,f)

Returns true if and only if the polynomial f is homogeneous with respect to all of
the gradings on the scheme X.

Multidegree(X,f)

The sequence of homogeneous degrees of the polynomial f with respect to the grad-
ings on the scheme X.

112.2.4 Prelude to Points
Points of schemes are handled in an extremely flexible way: their coordinates need not be
elements of the base ring, for instance. We don’t discuss the details here but simply show
how to create points in ambient spaces and illustrate with an example. This is already
enough for non-specialised purposes: intrinsics which take point arguments for computing,
say, the tangent space to a curve at a point, can take the underlying point of the ambient
space or the point of the curve equally well. Having said that, the later section on points,
Section 112.7, should be taken as the definitive reference.
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A ! [a,b,...]

A(L) ! [a,b,...]

For elements a, b, . . . in the base ring of the scheme A this creates the set-theoretic
point (a, b, . . .) in the affine case, or (a : b : . . .) in the projective case. Over a field,
the projective point will be normalised so that its final nonzero coordinate entry is
1 (and further analogous normalisations when there are at least two gradings as in
the case of surface scrolls). The first constructor can only be used if the sequence
contains elements of the base ring of A. The second version of the constructor is
the standard one. Using it rather than the first allows the user to specify the ring
in which the coefficients are to be considered. See the discussion of point sets in the
section below on points.

Example H112E9

We create some points with identical coordinates. They are deemed to be unequal by the equality
test, but if what you really care about is their coordinates you can check that those are equal.

> k<w> := FiniteField(3^2);

> A := AffineSpace(k,2);

> p := A ! [1,2];

> K := ext< k | 2 >;

> q := A(K) ! [1,2];

> m := hom< k -> k | w^3 >; // Frobenius

> r := A(m) ! [1,2];

> p eq q;

true

> p eq r;

>> p eq r;

^

Runtime error in ’eq’: Arguments are not compatible

Argument types given: Pt, Pt

> q eq r;

>> q eq r;

^

Runtime error in ’eq’: Arguments are not compatible

Argument types given: Pt, Pt

In the example above, the first method used for the creation of a point is sufficient if you only
want to create a point with coefficients in the base ring. The second and third point creations
are more precise: they decree exactly the k-algebra in which the coefficients will lie. One should
think of the expression A ! [1,2] as merely being a convenient shorthand, analogous to defining
a sequence without being explicit about its universe.

Origin(A)

The origin of the affine space A.
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Simplex(A)

The sequence of points of the ambient space A having coordinates (1, 0, . . . , 0),
. . . (0, . . . , 0, 1) and (1, . . . , 1) whether A is affine or projective space.

Coordinates(p)

The sequence of ring elements corresponding to the coordinates of the point p.

p[i]

Coordinate(p,i)

The ith coordinate of the point p.

p @ f

f(p)

Evaluate(f, p)

Evaluate the function f of the function field of the scheme X or its ambient at point
p which lies on X.

Example H112E10

Although there are many rings which may appear as function fields in various contexts, their
elements can all be evaluated at points. (Section 114.8 discusses the function field of a curve
which is being used here only as an example.)

> A<x,y> := AffineSpace(Rationals(),2);

> FA<X,Y> := FunctionField(A);

> C := Curve(A,x^3 - y^2 + 3*x);

> FC<u,v> := FunctionField(C);

> p := A ! [1,2];

> q := C ! [1,2];

> f := x/y;

> g := X/Y;

> h := u/v;

> Evaluate(f,p), Evaluate(f,q);

1/2 1/2

> Evaluate(g,p), Evaluate(g,q);

1/2 1/2

> Evaluate(h,q);

1/2

> Evaluate(h,p);

1/2

> Evaluate(h,C!p);

1/2
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112.3 Constructing Schemes
As shown in the examples in the introduction to this chapter, schemes are defined inside
some ambient space, either affine or projective space, by a collection of polynomials from
the coordinate ring associated with that space. Schemes may also be defined inside other
schemes using polynomials from the coordinate ring of the bigger scheme or polynomials
from the ambient space.

There is very little difference between creation methods for affine and projective
schemes. Of course, in the projective case, the defining polynomials are checked for ho-
mogeneity or if an ideal is used, a check is made that its basis contains only homogeneous
elements. Otherwise, the only check made at the time of creation is that the polynomials
used to define the scheme really do lie in, or are coerced automatically into, the coordinate
ring of the chosen ambient space.

Saturation:
As mentioned in the introduction, for schemes in projective spaces, there is a largest

ideal which defines that scheme. Technically speaking, if I is any homogeneous defining
ideal, this maximal one can be obtained from I by removing the primary components whose
radical contains a certain redundant ideal of the ambient coordinate ring. This redundant
ideal defines sets of points that are illegal projectively. For example, in ordinary projective
space, there is one illegal point with all coordinates 0 and this is defined by the redundant
ideal (x1, . . . , xn). The operation to remove these primary components is ideal saturation
of I by the redundant ideal, so we refer to the maximal defining ideal as saturated and a
scheme X as saturated if its current ideal (as returned by DefiningIdeal(X)) is known
to be the maximal one.

There are several basic functions that rely on the defining ideal of a scheme X be-
ing saturated. The most important are IsReduced, IsIrreducible, Prime/Primary
Components, eq for any projective schemes and Dimension, f(X) (map images) for multi-
graded projective schemes.

As the process of saturation may be quite expensive in higher dimensional ambient
spaces, the ideal of X is not saturated until the saturation property is required and once
saturation has been performed, this is recorded internally. Additionally, scheme construc-
tions like Union will automatically produce a result marked as saturated if that can be
deduced from the construction method and the saturation state of the argument schemes.
In particular, any ambient or scheme defined by a single equation in an ambient is marked
as saturated on construction. The ProjectiveClosure of an affine scheme is also saturated
by construction.

Furthermore, for all of the basic Scheme and Curve constructors where saturation of the
ideal generated by the defining equations is not automatic, there is a Saturated parameter
that the user can set to be true to mark the initial defining ideal as saturated without
further checking.

Scheme(X,f)

Scheme(X,F)

Scheme(X,I)
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Scheme(X,Q)

Nonsingular BoolElt Default : false

Reduced BoolElt Default : false

Irreducible BoolElt Default : false

GeometricallyIrreducible

BoolElt Default : false

Saturated BoolElt Default : false

Create the scheme inside the scheme X defined by the vanishing of the polynomial
f , or the sequence of polynomials F , or the ideal of polynomials I, or the ideal in
the denominator of the quotient ring Q = R/I. In each case, the polynomials must
be elements of the coordinate ring of A or automatically coercible into it.

If any of the optional parameters are set to true, Magma will assume without
checking that the scheme has the corresponding property. This may enable sub-
sequent calculations to be done faster; note that if the assumption is not correct,
arbitrary misbehaviour may result. The option Saturated only makes sense when
the ambient is projective, and refers to the defining ideal rather than the scheme.

Cluster(X,f)

Cluster(X,F)

Cluster(X,I)

Cluster(X,Q)

Saturated BoolElt Default : false

Create the 0-dimensional scheme inside the scheme X defined by the vanishing of the
given polynomials. These can be given as the single polynomial f , or the sequence
of polynomials F , or the ideal of polynomials I, or the ideal in the denominator of
the quotient ring Q = R/I. In each case, the polynomials must be elements of the
coordinate ring of X or automatically coercible into it.

Example H112E11

In this example we simply create three schemes. The first is an ambient space A, the affine plane,
while the others are subschemes of A.

> A<x,y,z> := AffineSpace(Rationals(),3);

> X := Scheme(A,x-y);

> X;

Scheme over Rational Field defined by

x - y

> Y := Scheme(X,[x^2 - z^3,y^3 - z^4]);

> Y;

Scheme over Rational Field defined by

x^2 - z^3

y^3 - z^4
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x - y

> Ambient(Y) eq A;

true

Note that since Y was created as a subscheme of X it inherits the equations of X. The ambient
space of Y is still considered to be A.

Spec(R)

The scheme Spec(R) associated to the affine algebra R. A new affine space
Spec(Generic(R)) will be created as the ambient space of this scheme.

Proj(R)

The scheme Proj(R) associated to the affine algebra R which will be interpreted
with its grading (which will be the standard grading by degree if no other has been
assigned). A new projective space Proj(Generic(R)) will be created as the ambient
space of this scheme.

EmptyScheme(X)

EmptySubscheme(X)

The subscheme of X defined, for an affine scheme X by the trivial polynomial 1, or
by maximal ideal (x1, . . . , xn) for a projective scheme X. The returned scheme is
marked as saturated.

X meet Y

Intersection(X,Y)

The intersection of schemes X and Y in their common ambient space. This simply
concatenates their defining equations without testing for emptiness.

X join Y

Union(X,Y)

The union of schemes X and Y in their common ambient space. This is formed
by creating the intersection of their defining ideals which is done using a Gröbner
basis computation. If both X and Y are saturated then the result is as well and is
marked as such.

&join S

The union of the schemes in the sequence S in their common ambient space.

Difference(X, Y)

Returns the scheme that is obtained by taking the closure of the result of removing
(X meet Y) from the scheme X, counting multiplicity. The ideal of the result will
be the colon ideal of the ideal of X and the ideal of the scheme Y . If X is saturated
then the result is as well and is marked as such.
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RemoveLinearRelations(X)

Convenience function that takes linear relations between variables on X and uses
them to eliminate variables. The intrinsic is currently only avaialable for X in
ordinary projective space. The result is scheme Y that lies in a lower dimensional
projective space that can be identified with the smallest linear subspace of the ambi-
ent of X that contains X. Y is returned along with the (linear) scheme isomorphism
from X to Y .

BlowUp(X,Y)

BlowUp(X,p)

Ordinary BoolElt Default : true

The first intrinsic constructs the scheme obtained from blowing up subscheme Y of
scheme X (see Section 7, Chapter II of [Har77]). The second is a user convenience
special case that blows up the subscheme consisting of a point p (and all of its
conjugates if it is not defined over the base field) in a pointset X(K).

Currently X must lie in an ambient that is affine, ordinary projective or product
projective. If parameter Ordinary is true (the default), and X is projective, then
the result of the blow-up is embedded in ordinary projective space via the Segre
embedding. Otherwise, the result will lie in an ambient that is the direct product
of the ambient of X and an ordinary projective space.

For an example, see the first part of the chapter on algebraic surfaces.
The implementation makes use of the ReesIdeal intrinsic.

Example H112E12

The behaviour of Difference is shown.

> A2<x,y>:=AffineSpace(Rationals(),2);

> C:=Scheme(A2,(x*y)); //union of the x- and y-axis

> X2:=Scheme(A2,x^2); //y-axis with double multiplicity

> Difference(X2,C); //y-axis with mult. 1.

Scheme over Rational Field defined by

x

> O:=Scheme(A2,[x,y]);

> Difference(C,O);

Scheme over Rational Field defined by

x*y

Removing “ambient” spaces is tricky: Everything is removed.

> Difference(C,A2);

Scheme over Rational Field defined by

1

> A3<x,y,z>:= AffineSpace(Rationals(),3);

> C:=Scheme(A3,Ideal([x,z])*Ideal([y,z])); //again, union of x- and y-axis

> Z:=Scheme(A3,[z]); //the x,y plane

> Difference(C,Z);
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Scheme over Rational Field defined by

x,

y,

z

As one can see, the Z-plane is removed with multiplicities: all that’s left is the origin, which has
multiplicity 2 in C and only multiplicity 1 in Z.

Saturate(∼X)
If the scheme X is projective and is not already saturated, saturate its defining
ideal.

AssignNames(∼X,N)
Assign the strings in the sequence N to the ambient coordinate functions of the
scheme X.

X . i

Name(X,i)

The ith coordinate function of the ambient space of the scheme X. The dot notation
X.i may also be used.

112.4 Different Types of Scheme

As discussed briefly in Section 112.1.7, there are a number of different increasingly spe-
cialised data types for schemes. It is often useful to check whether a given scheme can be
thought of as belonging to one of these more specialised classes, and if so and appropriate
then actually making the type change. In this section we document a number of such type-
checking and type-change intrinsics, most of which are of the form IsSpecialisedType.
These intrinsics always return a boolean value. If that value is true then they may also
return a new scheme of the given specialised type, although in some trivial cases this
does not happen. Of course, each of the different types of scheme has its own methods of
construction independently of these intrinsics.

IsAffine(X)

Returns true if and only if the scheme X is an affine space.

IsProjective(X)

Returns true if and only if the scheme X is a projective space. Projective space
here includes the case of scrolls.

IsOrdinaryProjectiveSpace(X)

Returns true if and only if the scheme X is a projective space in the usual sense:
its coordinate ring has a single grading in which all the variables have weight one.
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IsAmbient(X)

Return true if the scheme X is an ambient space.

IsCluster(X)

Returns true if and only if the scheme X is a zero-dimensional scheme (but not the
empty scheme). See Section 112.8 for intrinsics which apply to clusters.

IsCurve(X)

Returns true if and only if X is a one-dimensional scheme. See Chapter 114 for
intrinsics which apply to curves.

IsPlaneCurve(X)

Returns true if and only if X is a one-dimensional scheme defined by a single
equation in a two-dimensional ambient space.

IsConic(X)

Returns true if and only if the scheme X is a curve (in the sense of IsCurve(X))
which is nonsingular and defined by an equation of degree 2. See Chapter 119 for
intrinsics which apply to such conics.

IsRationalCurve(X)

Returns true if and only if the scheme X is a curve (in the sense of IsCurve(X))
which has genus 0. See Chapter 119 for intrinsics which apply to rational curves.

IsHyperellipticCurve(X)

Return true and a hyperelliptic curve if the scheme X is trivially a hyperelliptic
curve. This occurs if and only if X is already of CrvHyp type or is defined by a
non-singular Weierstrass equation in correctly weighted two-dimensional projective
space. For a general scheme of type Crv, the intrinsic IsHyperelliptic in Chap-
ter 114 will determine whether X is isomorphic to a hyperelliptic curve and return
an isomorphism to a CrvHyp if so. This takes a lot more work in general. See
Chapter 125 for more information on hyperelliptic curves.

IsModularCurve(X)

Return true if and only if the scheme X is a curve of type CrvMod. See Chapter 128
for more information on modular curves.
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112.5 Basic Attributes of Schemes

These intrinsics report on basic features of the ambient space of a scheme or the equations
defining a scheme. In many cases they simply call the corresponding function of the
ambient space; the intrinsic BaseRing() is an example. The first set of these functions
consists of those that only make reference to the ambient space, while the second set is
concerned with the defining equations of the scheme.

112.5.1 Functions of the Ambient Space

AmbientSpace(X)

Ambient(X)

The ambient space containing the scheme X.

SuperScheme(X)

The scheme X was created as a subscheme of.

BaseRing(X)

CoefficientRing(X)

The base ring of the scheme X.

BaseField(X)

CoefficientField(X)

The base ring of the scheme X if it is a field, otherwise an error.

IsAffine(X)

Returns true if and only if the ambient space of the scheme X is affine.

IsProjective(X)

Returns true if and only if the ambient space of the scheme X is projective.

IsOrdinaryProjective(X)

Returns true if and only if the ambient space of the scheme X is an ordinary
projective space, that is, its coordinate ring is generated in degree 1 with respect to
the grading on the space.

IsPlanar(X)

Return true if the ambient of the scheme X is 2-dimensional.

IsSaturated(X)

Returns true if and only if the current defining ideal of the scheme X, as returned
by DefiningIdeal(X) is saturated (see section 112.3 on page 3494).
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112.5.2 Functions of the Equations
There are many ways to recover the equations which define a scheme. The standard method
is to use the DefiningPolynomials function (or its singular versions) since it doesn’t
involve ideal theory overheads and certainly won’t call any Gröbner basis functions.

DefiningPolynomials(X)

The defining polynomials for the ideal of the scheme X.

DefiningPolynomial(X)

The defining polynomial of the scheme X if it is a hypersurface. If X is not a
hypersurface, an error is reported.

DefiningIdeal(X)

The ideal of a multivariate polynomial ring defining the scheme X.

CoordinateRing(X)

The quotient of the coordinate ring of the ambient space of the scheme X by the
ideal of X.

Curve(X)

The smallest scheme in the inclusion chain above the scheme X which is a curve.

GroebnerBasis(X)

Return a sequence containing the polynomials of a Gröbner basis of the defining ideal
of the scheme X. Note that the defining polynomials of X will not be changed, but
that the basis of the ideal of X will be updated with the Gröbner basis as is the
standard in the multivariate polynomial ring module.

MinimalBasis(X)

Return a minimal basis of the defining ideal of the scheme X, that is, a sequence
of polynomials, no subsequence of which forms a basis of the ideal of X. Note that
the defining polynomials of X will not be changed. This is the best human readable
basis that Magma can supply.

IsHypersurface(X)

Returns true if and only if the scheme X is definable by a single polynomial. This
function will perform a GCD calculation to simplify multiple defining polynomial if
possible. The polynomial is returned as a second value.

JacobianIdeal(X)

The ideal of partial derivatives of the polynomials which define the scheme X.
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JacobianMatrix(X)

The matrix (∂fi/∂xj) of partial derivatives of the defining polynomials of the scheme
X.

HessianMatrix(X)

The hessian matrix (∂2f/∂xi∂xj) of the hypersurface X where f is the polynomial
which defines X.

X eq Y

Returns true if the schemes X and Y have the same types, ambients and ideals.
If Gröbner basis calculations are not available this question may not be able to be
decided. If X and Y are projective then they are saturated before ideal equality is
tested for.

IsSubscheme(X, Y)

Returns true if and only if the scheme X is contained, scheme-theoretically, in
the scheme Y . A Gröbner basis calculation checks the reverse inclusion of the
corresponding ideals. If X and Y are projective, then X is saturated before the test
for inclusion.

IsLinear(X)

Return true if the scheme X is defined by linear equations, possibly after taking a
Gröbner basis.

Example H112E13

In this example we first create some schemes and then test them for inclusions and equality.

> P<u,v,w> := ProjectiveSpace(GF(11),2);

> C := Scheme(P,u^2 + u*w + 6*v^2);

> Z := Scheme(C,[u,v]);

> IsSubscheme(Z,C);

true

Now we will make another scheme which has the same polynomials as C but which is written in
disguise. While the disguise in this case is simply to multiply the polynomial by 2 — the rather-
too-obvious false nose and eyebrows among polynomials — the point is to note that the equality
test in Magma is not fooled. The equality test identifies that the underlying defining ideals are
the same and returns true.

> D := Scheme(P,2*u^2 + 2*u*w + v^2);

> D eq C;

true

> IsSubscheme(C,D) and IsSubscheme(D,C);

true

> DefiningIdeal(D) eq DefiningIdeal(C);

true

> DefiningPolynomial(D) eq DefiningPolynomial(C);
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false

As we see in the final line above, checking the equality of ideals corresponds to the natural
interpretation of equality.
There are a couple of caveats to this lesson, however. For instance, it is necessary, that the ideals
to be comparable, i.e. the schemes must be embedded in the same ambient space.

> X<r,s,t> := ProjectiveSpace(GF(11),2);

> E := Scheme(P,r^2 + r*s + 6*t^2);

> E eq C;

false

112.6 Function Fields and their Elements

Since the function field of an irreducible variety is a birational invariant, function fields
in Magma are associated with the projectively closed varieties. For an affine scheme X,
the fields returned by FunctionField(X) and FunctionField(ProjectiveClosure(X))
are identical. Currently, only function fields of projective spaces (and therefore of affine
spaces) and curves are supported.

The following functions are provided for working with function fields and their elements.
Some of these functions are concerned with converting function field elements into elements
of the field of fractions of the coordinate ring of (an affine patch of) the scheme of the
function field.

Additionally, function field elements may be used in the definition of scheme maps (see
Section 112.14) from the projective or affine schemes on which they are defined to other
schemes and may be evaluated at points as described earlier.

Function fields of schemes have type FldFunFracSch and their elements have type
FldFunFracSchElt. These types inherit from RngFunFracSch, RngFunFrac, RngMPolRes
and RngFunFracSchElt, RngFunFracElt, RngMPolResElt respectively.

Scheme(F)

Return the (projective) scheme F is the function field of.

IntegerRing(F)

Integers(F)

The integer ring of the function field F . This will be the coordinate ring of one of
the patches of the scheme of F .

AssignNames(∼F, S)

Assign the strings in S to be the names of the integer ring of F .
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F ! g

Coerce the element g into the function field F of a scheme where g is some function
on the scheme of F , for example, g may be an element of the field of fractions of
the coordinate ring of a scheme having F as its function field.

F . i

Return the ith indeterminate of the coordinate ring of the scheme of F as an element
of the function field F .

ProjectiveFunction(f)

Given an element f of a function field of a scheme, return f as an element of the
field of fractions of the coordinate ring of the scheme f is a function on.

ProjectiveRationalFunction(f)

Given an element f of a function field of a (projective) scheme X, returns an element
of the field of fractions of the coordinate ring of the ambient of X whose restriction
to X as a rational function is f .

RestrictionToPatch(f, Xi)

Given an element f of a function field of a (projective) scheme X return f as an
element of the field of fractions of the coordinate ring of the scheme Xi which must
be a patch of X.

Numerator(f)

Denominator(f)

Given an element f of a function field of a scheme, return the numerator or denom-
inator of f .

f * g f + g f - g - f f / g f ^ n

f eq g IsZero(f) IsOne(f) IsMinusOne(f) IsUnit(f)

IntegralSplit(f, X)

Given a function f on the (projective) scheme X return the numerator and the
denominator of g, where g is some rational function on the ambient P of X restricting
to f and considered as an element of the field of fractions of the coordinate ring of
P .

Numerator(f, X)

The first return value of IntegralSplit(f, X).

Denominator(f, X)

The second return value of IntegralSplit(f, X).
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Example H112E14

Some conversion of function field elements are shown.

> P2<X, Y, Z>:=ProjectiveSpace(Rationals(), 2);

> C := Curve(P2, X^2+Y^2-Z^2);

> K<xK, yK> := FunctionField(C);

> aC1<x1,y1> := AffinePatch(C, 1);

> aC2<x2,z2> := AffinePatch(C, 2);

> aC3<y3,z3> := AffinePatch(C, 3);

>

> f := (xK + yK)/(yK);

> K!f;

(xK + yK)/yK

> ProjectiveFunction($1);

(X + Y)/Y

> IntegralSplit(f, C);

X + Y

Y

> RestrictionToPatch(f, aC1);

($.1 + $.2)/$.2

> IntegralSplit(f, aC1);

x1 + y1

y1

> IntegralSplit(f, P2);

x2 + 1

1

Restriction(f, Y)

Given f in the function field of the scheme X and Y a subscheme of X with a
function field, returns g in the function field of Y obtained by restricting f to Y . If
f has a pole along Y , then Infinity is returned. An error occurs if f is not defined
along Y . Presently, the only nontrivial application of this routine is when Y is a
curve and X is the ambient of Y .

GenericPoint(X)

Returns a point in the pointset X(FunctionField(X)) of the scheme X, whose
coordinates generate FunctionField(X).
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112.7 Rational Points and Point Sets

There are two ways to think of points. If X is a scheme defined over a ring k and L is a
k-algebra, then there is a set, called a point set and denoted X(L) which is the set of points
of X having coordinates in L or, in Magma terminology, the parent of such points. Note
that in Magma a k-algebra is interpreted to mean any ring which admits coercion from
k or which is the codomain of a ring homomorphism whose domain is k. When thinking
of points as a sequence of coordinates on some scheme this type of point should be used.
It is created by coercing the sequence of coordinates into the required point set using a
statement such as

> X(L) ! [1,2,3];

Alternatively, if the universe of the sequence is equal to the base ring of the scheme, one
may simply coerce the sequence into the scheme.

> X ! [1,2,3];

When the universe of the sequence is the integers, Magma will coerce them into the base
ring of the scheme and again this shorthand will work.

The word point always refers to an object whose parent is some point set.
When a scheme is defined over a finite field, there are intrinsics which list all of its

points defined over that field or over any finite extension of it.
An alternative approach is to consider points, or sets of points, as schemes in their own

right. They can be defined by equations, after all. We call such zero-dimensional schemes
clusters. They are more general than simply collections of points since their ideals could be
nonradical. They are discussed in the Section 112.8 together with intrinsics which translate
between points and clusters.

If p is a point, there are two ways of accessing its coordinates. The intrinsic
Coordinates returns the sequence of all coordinates of p while p[i] returns the i-th
coordinate alone. For example,

> p := X ! [1,2,3];
> Coordinates(p);
[ 1, 2, 3 ]
> p[1];
1

See Section 112.2.4 for descriptions of these and some other basic functions.

X(L)

PointSet(X,L)

X(m)

PointSet(X,m)

The point set of the scheme X of points whose coordinates lie in the ring L or in the
codomain of the map m. The map m is a ring homomorphism from the base ring
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of X to some other ring. Coercion from the base ring of X to L must be possible if
m is not given.

P eq Q

Returns true if and only if the point sets P and Q where created on the same
scheme and with the same map from the base ring of that scheme.

Scheme(P)

The scheme X associated to the point set P where P is of the form X(L) for some
extension L of the base ring of X.

Curve(P)

The smallest scheme in the inclusion chain above the scheme associated to the point
set P which is a curve.

Ring(P)

The ring L associated to the point set P where P is of the form X(L) for some
scheme X.

RingMap(P)

The map from the base ring of the scheme of P to the ring of the pointset P .

X ! Q

X(L) ! Q

The point of the scheme X or the point set X(L) (where X is a scheme and L is
some extension ring of its base ring) determined by the sequence of coordinates Q.
The universe of the sequence Q must be the base ring of X, or the ring L or some
ring from which coercion into one of these is possible.

p eq q

Returns true if and only if the points p and q lie in some common scheme (possibly
after coercion) and their coordinates are equal.

p in X

Returns true if and only if the point p lies in the scheme X or is coercible into it.

Scheme(p)

The scheme on which the point p lies.

Curve(p)

The smallest scheme in the inclusion chain above the scheme on which the point p
lies which is a curve.
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Q in X

Returns true if and only if all of the points of the set or sequence Q lie in the scheme
X or are coercible into it.

S subset X

Returns true if and only if all points of the set S lie in the scheme X or are coercible
into it.

IsCoercible(X,Q)

Returns true if and only if the sequence Q is the sequence of coordinates of some
point of the scheme X. In that case, also return the point.

RationalPoints(X)

RationalPoints(X,L)

Points(X)

Points(X,L)

Bound RngIntElt Default : 1000
An indexed set containing points in the point set X(L), where L is an extension of
the base field of X. When not specified, L is taken to be the base field of X. This is
implemented in the following situations: (i) L is a finite field, (ii) X has dimension
zero, (iii) L is Rationals(). In cases (i) and (ii), all the points in X(L) are found.
In case (iii), a call to PointSearch is made, which searches for points with height
up to the specified Bound (but note that it does not guarantee finding all of them).

In most cases, the first step is to determine the dimension of X by computing the
Groebner basis of its defining ideal. This may be time-consuming; to avoid this one
may directly call the relevant search: Ratpoints over finite fields, or PointSearch
(specifying the Dimension) over the Rationals().

RationalPointsByFibration(X)

UseHypersurface BoolElt Default : false

This is one of the methods used by RationalPoints when X is an affine or ordinary
projective scheme over a finite field.

The basic idea is to work with a Noether Normalisation of the coordinate ring of
X which, in the affine or projective case, gives an everywhere defined map with finite
fibres to a linear subspace. We then run over all the points in the subspace adding
in the points of X in the finite fibre. Determining the points on a zero-dimensional
scheme is relatively fast and so we get a fairly efficient method for listing all points.

There is a variant to the basic algorithm. Rather than running over the linear
subspace, it can take fibrations over a hypersurface of dimension one bigger the
linear subspace. The points on these as fibred over the subspace may be quicker to
find than for a general finite fibration and the finite fibres over the hypersurface are
of smaller degree. For example, the general fibre contains only one point when the
extra hypersurface equation generates X generically over the subspace.
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However it is often slower to use the hypersurface because of the extra computa-
tion at the start and the two-stage processing so the default for UseHypersurface
is false. The user may set this parameter to true for the variant to be applied.

Random(S)

Returns a random point in the pointset S = X(k) where X is a scheme defined over
a finite field, and k is a finite field. An error results if the pointset is empty. (Here
‘random’ simply means all points can occur, but not with uniform distribution.)

This is implemented using the Noether normalisation of X (similarly to
RationalPointsByFibration).

HasNonsingularPoint(X)

HasNonsingularPoint(X,L)

Return true if and only if the scheme X defined over a finite field contains a non-
singular point (defined over the finite field L if it appears as a second argument).
In that case, also return such a point.

Example H112E15

In this example we define a scheme over a finite field and compute some points on it. Note that
there are two point constructors used here. The first is simply X ! Q where Q is a sequence of
integers (or base ring elements). In the second, we try to coerce a sequence Q whose elements do
not lie in the base ring. The coercion into X cannot be used here. Instead one must be explicit
about the intended point set. We have used the IsCoercible(X,Q) intrinsic which creates the
point as a side-effect. One could also use the X(L) ! Q coercion to create the same point.

> A<x,y> := AffineSpace(FiniteField(7),2);

> X := Scheme(A,x^2 + y^2 + 1);

> X ! [2,3];

(2, 3)

> L<w> := ext< BaseRing(X) | 2 >;

> IsCoercible(X,[w^4,w^4]);

false

> IsCoercible(X(L),[w^4,w^4]);

true (w^4, w^4)

Finding those points was not simply good luck. In fact, we worked backwards and computed all
points over the base field or L and chose one from each of those sets.

> RationalPoints(X);

{@ (3, 2), (4, 2), (2, 3), (5, 3), (2, 4), (5, 4), (3, 5), (4, 5) @}

> #RationalPoints(X,L);

48

We now consider an example of a curve in projective 3-space. In older versions of Magma this
ran very slowly indeed. Now however, finding points over a fibration, it only takes a few seconds
on a fast machine.

> k := GF(7823);
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> R<x,y,z,w> := PolynomialRing(k, 4);

> I := ideal<R | 4*x*z + 2*x*w + y^2 + 4*y*w + 7821*z^2 + 7820*w^2,

> 4*x^2 + 4*x*y + 7821*x*w + 7822*y^2 + 7821*y*w +

> 7821*z^2 + 7819*z*w + 7820*w^2>;

> C := Curve(Proj(R), I);

> // a genus 0 curve with 1 cusp as singularities => 7823+1 points

> pts := RationalPointsByFibration(C); // could also just use RationalPoints

> #pts;

7824

Note that Magma has very fast machinery for computations like this for elliptic and hyperelliptic
curves.

112.8 Zero-dimensional Schemes

This section describes intrinsics for creating zero dimensional schemes or clusters. It also
discusses those functions which converts a finite set of points into the reduced zero dimen-
sional having this support. Throughout this subsection, a lowercase p denotes a point of a
scheme.

The word cluster refers to schemes that are known to be zero dimensional. In general,
the intrinsic Cluster converts points to clusters while the function RationalPoints finds
the points on a cluster which are rational over its base field.

Note that there are four constructors of the form Cluster(X,data) analogous to the
four Scheme(X,data) constructors but which make an additional dimension test and type
change before returning a cluster determined as a subscheme of X by the data of the
second argument.

Cluster(p)

Cluster(X, p)

Cluster(S)

Cluster(X, S)

The reduced scheme supported at the point p, or supported at the set of points S,
as a subscheme of the scheme X if given.

RationalPoints(Z)

RationalPoints(Z,L)

The set of rational points of the cluster Z. If an extension of the base field L is given
as a second argument, the set of points of Z(L), those points whose coordinates lie
in L, is returned.
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PointsOverSplittingField(Z)

If Z is a cluster this will determine some (not necessarily optimal) point set Z(L)
in which all points of Z having coordinates in an algebraic closure of the base field
lie and will return all points of Z(L).

HasPointsOverExtension(X)

HasPointsOverExtension(X,L)

Returns false if and only if all points in the support of the scheme X over an
algebraic closure of its base field are already defined over its current base field, or
all lie in the point set X(L) if the second argument L is given. This intrinsic is most
useful when trying to decide whether or not to make an extension of the base field
of X to reveal non-rational points. The base field of X does not need to be a finite
field.

Degree(Z)

The degree of the cluster Z. If Z is reduced, this is equal to the maximum number
of points in the support over Z over some extension of its base ring.

Example H112E16

In this example we intersect a pair of plane curves. (Note that much more specialised machinery
for working with curves is available in Chapter 114.) First we define two curves and find their
points of intersection over the base field. The degree of the cluster Z is the usual numerical
intersection number of the curves C and D. Here we are more interested in finding exactly those
points that lie in the intersection.

> k := FiniteField(5);

> P<x,y,z> := ProjectiveSpace(k,2);

> C := Scheme(P,x^3 + y^3 - z^3);

> D := Scheme(P,x^2 + y^2 - z^2);

> Z := Intersection(C,D);

> IsCluster(Z);

true

> Degree(Z);

6

> RationalPoints(Z);

{ (1 : 0 : 1), (0 : 1 : 1) }

> HasPointsOverExtension(Z);

true

If C and D were rather general, that is, if Z was reduced, then we would expect 6 points in their
intersection. We can’t expect that here, but the final line above does confirm that we haven’t yet
seen all the points of intersection. We allow Magma to compute directly over a splitting field.

> PointsOverSplittingField(Z);

{ (0 : 1 : 1), ($.1^14 : $.1^22 : 1), ($.1^22 : $.1^14 : 1), (1 : 0 : 1) }

> L<w> := Ring(Universe($1));

> L;
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Finite field of size 5^2

> PointsOverSplittingField(Z);

{ (0 : 1 : 1), (w^14 : w^22 : 1), (w^22 : w^14 : 1), (1 : 0 : 1) }

In this case we see that the support is not six points but only four.

112.9 Local Geometry of Schemes

We now discuss intrinsics which apply to a scheme at a single point. At the expense of
increasing the number of intrinsics, we try to follow the convention that an intrinsic may
simply take a point as its argument or it may take both a point and a scheme as its
arguments. In the former case, the implicit scheme argument is taken to be the scheme
associated to the point set of the point. In the latter case, it is first checked that the point
can be coerced into some point set of the given scheme argument. There are reasons for
allowing both methods. Of course, if one is confident about which scheme, X say, a point
p lies on then there is no ambiguity about writing, say, IsNonsingular(p) rather than
IsNonsingular(X,p). On the other hand, the second expression is easier to read, and
also guards against the possibility of accidentally referring to the wrong scheme; that is
a particular risk here since the answer makes sense even if p lies on some other scheme—
imagine the confusion that could arise given a point of a nonsingular curve lying on a
singular surface inside a nonsingular ambient space, for instance. But also there are trivial
cases when scheme arguments are necessary, IntersectionNumber(C,D,p) for example.
In fact, that particular example exemplifies the value of points being highly coercible—it is
very convenient that the point p could lie in a point set of either C or D or indeed neither
of these as long as it could be coerced to them if necessary.

Sometimes a function will require that the point argument is rational, that is, has
coordinates in the base ring.

112.9.1 Point Conditions

IsSingular(X,p)

Returns true if and only if the point p is a singular point of the scheme X.

IsNonsingular(X,p)

Returns true if and only if the point p is a nonsingular point of the scheme X.

IsOrdinarySingularity(X,p)

Returns true if and only if the tangent cone to the scheme X at the point p is
reduced and X is singular at p. Currently, the scheme X must be a hypersurface.
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112.9.2 Point Computations

Multiplicity(p)

Multiplicity(X,p)

The multiplicity of the point p as a point of the scheme X. If X is not a hypersurface,
computed using local Groebner bases.

TangentSpace(p)

TangentSpace(X,p)

The tangent space to the scheme X at the point p. This linear space is embedded
as a scheme in the same ambient space as X. An error will be signalled if p is a
singular point of X or is not a rational point of X.

TangentCone(p)

TangentCone(X,p)

The tangent cone to X at the point p embedded as a scheme in the same ambient
space. If the scheme X is not a hypersurface, the computation uses local Groebner
bases.

112.9.3 Analytically Hypersurface Singularities
We will say that an isolated singular point p in a pointset X(k) over a field k is a hy-
persurface singularity if the completion of its local ring is isomorphic to the quotient of
a power series ring k[[x1, . . . , xd]] by a single power series F (x1, . . . , xd). That is, it is
analytically equivalent to the singularity of an analytic hypersurface defined by F at the
origin. Clearly d is equal to the dimension of the tangent space at p here. This type of
singularity occurs quite commonly (e.g., singular points on actual hypersurfaces, A-D-E
singularities on surfaces).

This section contains intrinsics to test whether such a p is a hypersurface singularity and
compute the equivalent analytic equation F to given precision, to increase the precision of
F at a later stage and to expand a rational function on X to the corresponding element
in the field of fractions of k[[x1, . . . , xd]] to any required precision.

IsHypersurfaceSingularity(p,prec)

The point p is a singular point in X(k) for a field k. It should be an isolated singu-
larity on X and should only lie on irreducible components of X whose dimension d
is maximal, i.e. the dimension of X (these conditions are not checked). The integer
prec should be positive.

The function returns whether p is a hypersurface singularity on X as defined
above. This is also equivalent to the conditions that the tangent space of p has
dimension d + 1 and that the local ring at p is a local complete intersection ring.

If this is true, the function also returns extra values. The second return value
is a multivariate polynomial F1 in a polynomial ring k[x1, . . . , xd+1] such that the
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singularity p is analytically equivalent to that of the analytic hypersurface F ∈
k[[x1, . . . , xd+1]] at the origin and F1 is equal to F for terms of degree less than or
equal to prec.

The third is a sequence of simple rational functions on X/k (i.e., quotients of
polynomials in the coordinate ring of the ambient of X that, if X is projective,
have the same degree for all gradings) such that xi corresponds to the ith rational
function of the sequence. If X is affine, these rational functions will all be k-linear
forms in the coordinate variables and if X is ordinary projective, linear forms in the
coordinate variables divided by a particular variable that is non-zero at p.

The fourth return value is a data record that is needed if the user wants to later
expand F to higher precision or to expand arbitrary rational functions on X/k at p.

The implementation makes use of Magma’s local Groebner bases, after localising
p to an affine patch and translating it to the origin.

HypersurfaceSingularityExpandFurther(dat,prec,R)

The record dat should be the data record returned for a hypersurface singularity p
in X(k) by the intrinsic above, prec a positive integer and R a polynomial ring over
k of rank d + 1 (d is the dimension of X).

Returns a polynomial that expands the equation of the analytic hypersurface F
to include all terms of degree less than or equal to prec. The result will be returned
as an element of R (with the ith variable of R corresponding to the analytic variable
denoted xi in the exposition of the previous intrinsic).

This intrinsic is very useful to expand F to higher precision after the original
call that determined that p was a hypersurface singularity.

HypersurfaceSingularityExpandFunction(dat,f,prec,R)

The record dat should be the data record returned for a hypersurface singularity
p in X(k) by the first intrinsic of this subsection, prec a positive integer and R a
polynomial ring over k of rank d+1 (d is the dimension of X). f should be a rational
function on X/k given as an element of the field of fractions of the coordinate ring
of the ambient of X or the base change of X to k, if k isn’t the base ring of X. f
can in fact be given as an element of any rational function field over k whose rank
is equal to the rank of the coordinate ring of X. In any case, when X is projective,
the numerator and denominator of f have to be homogeneous and have the same
degree with repect to all gradings of X.

Returns f pulled back to the analytic coordinate ring at p (identified with
k[[x1, . . . , xd+1]]/(F ) in the notation introduced above) and expanded to required
precision. In fact, the return value is given as two polynomials a and b in R, whose
variables are identified with the xi, such that a/b is the finite approximation to the
value of the pullback. a and b are actually just the pullbacks of the numerator and
denominator of f expanded to include all terms of degree less than or equal to prec.
The value is returned as two polynomials rather than a quotient as b may be zero if
prec is sufficiently small even when the denominator of f doesn’t vanish on X.
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Example H112E17

We consider a singular degree 4 Del Pezzo surface in P4 over Q with two conjugate singular points
defined over a quadratic extension.

> P4<x,y,z,t,u> := ProjectiveSpace(Rationals(),4);

> X := Scheme(P4,[x^2+y^2-2*z^2, x*t+t^2-y*u+2*u^2]);

> IsIrreducible(X);

true

> sngs := SingularSubscheme(X);

> Support(sngs);

> pts := PointsOverSplittingField(sngs);

> pts;

{@ (0 : 0 : 0 : r1 : 1), (0 : 0 : 0 : r2 : 1) @}

> pt := pts[1];

> k := Ring(Parent(pt));

> k;

Algebraically closed field with 2 variables over Rational Field

Defining relations:

[

r2^2 + 2,

r1^2 + 2

]

> p := X(k)!Eltseq(pt);

> boo,F,seq,dat := IsHypersurfaceSingularity(p,3);

> boo;

true

> R<a,b,c> := Parent(F);

> F;

2*r1*a*b^2 - 2*a^2*c - 3/2*r1*a*c^2 + 8*a^2 - 4*b^2 + 4*r1*a*c + c^2

> HypersurfaceSingularityExpandFurther(dat,4,R);

-a^4 - r1*a^3*c + 1/2*a^2*c^2 + 2*r1*a*b^2 - 2*a^2*c - 3/2*r1*a*c^2 +

Ψ8*a^2 - 4*b^2 + 4*r1*a*c + c^2

> Rk<p,q,r,s,w> := PolynomialRing(k,5);

> //can use Rk as base-changed coordinate ring here

> HypersurfaceSingularityExpandFunction(dat,(p^2+q*s)/w^2,3,R);

2*r1*a^3 - 3*a^2*c - 1/2*r1*a*c^2 + 4*a^2 + (2*r1 + 1)*a*c - 1/2*c^2 + r1*c

1
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112.10 Global Geometry of Schemes

Many of the names of intrinsics in this section come from the usual terminology of alge-
braic geometry. A reference for them is Hartshorne’s book [Har77], especially Chapter II,
Section 3.

Dimension(X)

The dimension of the scheme X. If X is irreducible then the meaning of this is clear,
but in general it returns only the dimension of the highest dimensional component
of X. The dimension of an empty scheme will be returned as −1. If the dimension
is not already known, a Gröbner basis calculation is employed. If X is projective
in a multi-graded ambient then it is saturated before this calculation takes place.
The computation method involves computing the Dimension of the Ideal of the
scheme, and then (for projective schemes) subtracting the number of gradings.

Codimension(X)

The codimension of the scheme X in its ambient space. In fact, this number is
calculated as the difference of Dimension(A) and Dimension(X) where A is the
ambient space, so if X is not irreducible this number is the codimension of a highest
dimensional component of X.

Degree(X)

The degree of the scheme X.

ArithmeticGenus(X)

The arithmetic genus of a scheme X. The ambient space of X must be ordinary
projective space.

IsEmpty(X)

Returns true if and only if the scheme X has no points over any algebraic closure
of its base field. This intrinsic tests if the ideal of X is trivial (in a sense to be
interpreted separately according to whether X is affine or projective) and then
applies the Nullstellensatz.

IsNonsingular(X)

Returns true if and only if the scheme X is nonsingular and equidimensional over an
algebraic closure of its base field. The test IsEmpty for the emptiness of the scheme
is applied to the scheme defined by the vanishing of appropriately sized minors of
the jacobian matrix of X.

IsSingular(X)

Returns true if and only if the scheme X either has a singular point or fails to be
equidimensional over an algebraic closure of its base field.
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SingularSubscheme(X)

The subscheme of the scheme X defined by the vanishing of the appropriately sized
minors of the jacobian matrix of X. If X is not equidimensional, its lower dimen-
sional components will be contained in this scheme whether they are singular or
not.

PrimeComponents(X)

A sequence containing the irredundant prime components of the scheme X.

PrimaryComponents(X)

A sequence containing the irredundant primary components of the scheme X.

ReducedSubscheme(X)

The subscheme of X with reduced scheme structure, followed by the map of schemes
to X. This function uses a Gröbner basis to compute the radical of the defining
ideal of X.

IsIrreducible(X)

Returns true if and only if the scheme X has a unique prime component. If X
is not a hypersurface, a Gröbner basis calculation is necessary and X is saturated
before this occurs if it is projective.

IsReduced(X)

Returns true if and only if the defining ideal of the scheme X equals its radical. If
X is a hypersurface the evaluation of this intrinsic uses only derivatives so works
more generally than the situations where a Gröbner basis calculation is necessary.
In the latter case, X is saturated before the calculation if it is projective.

IsCohenMacaulay(X)

IsGorenstein(X)

IsArithmeticallyCohenMacaulay(X)

IsArithmeticallyGorenstein(X)

CheckEqui BoolElt Default : false

These intrinsics currently only apply to schemes in ordinary projective space. The
first two intrinsics return whether X is (locally) Cohen-Macaulay/Gorenstein, mean-
ing that the local ring of every the scheme-theoretic point on X satisfies the property.
The second two intrinsics return whether the coordinate ring of X (the polynomial
coordinate ring of the projective ambient quotiented by the maximal defining ideal
of X) satisfies the corresponding property. The arithmetic version implies the local
version. The results are stored internally with X for future reference. Also, if X
is known to be non-singular, we can immediately deduce the local version of the
properties is true and this check is also performed internally.
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There is a further slight restriction in that X has to be equidimensional (each
irreducible component having the same dimension and there being no other scheme-
theoretic “associated points” beside the generic points of the irreducible components
: true if X is also reduced). This is not checked by default in order to save some com-
putation time. If the user is unsure whether X is equidimensional, the CheckEqui
parameter should be set to true which forces a check.

The implementations use the minimal free polynomial resolution of the maximal
defining ideal of X. The arithmetic versions are actually faster than the plain
versions. IsGorenstein may be particularly heavy computationally as it has to
check whether the canonical sheaf is locally free of rank 1 after the Cohen-Macaulay
property has been verified.

Example H112E18

In this example we write down a rather unpleasant scheme and analyse the basic properties of its
components.

> A<x,y,z> := AffineSpace(Rationals(),3);

> X := Scheme(A,[x*y^3,x^3*z]);

> Dimension(X);

2

> IsReduced(X);

false

> PrimaryComponents(X);

[

Scheme over Rational Field defined by

x,

Scheme over Rational Field defined by

x^3

y^3,

Scheme over Rational Field defined by

y^3

z

]

> ReducedSubscheme(X);

Scheme over Rational Field defined by

x*y

x*z

The reduced scheme of X is clearly the union of a line and a plane. The scheme X itself is more
complicated, having another line embedded in the plane component.
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112.11 Base Change for Schemes
Let A be some ambient space in Magma. For example, think of A as being the affine
plane. Let k be its base ring and RA its coordinate ring. If m : k → L is a map of rings (a
coercion map, for instance) then there is a new ambient space denoted AL and called the
base change of A to L which has coordinate ring RAL

with coefficient ring L instead of k.
(Mathematically, one simply tensors RA with L over k. In Magma the equivalent function
at the level of polynomial rings is ChangeRing.) There is a base change function described
below which takes A and L (or the map k → L) as arguments and creates this new space
AL. Note that there is a map from the coordinate ring of A to that of AL determined by
the map m.

This operation is called base extension since one often thinks of the map m as being an
extension of fields. Of course, the map m could be many other things. One key example
where the name extension is a little unusual would be when m is the map from the integers
to some finite field.

Now let X be a scheme in Magma. Thus X is defined by some polynomials f1, . . . , fr

on some ambient space A. Given a ring map k → L there is a base change operation for
X which returns the base change of X to L, denoted XL. This is done by first making
the base change of A to L and then using the map from the coordinate ring of A to that
of AL to translate the polynomials fi into polynomials defined on AL. These polynomials
can then be used to define a scheme in AL. It is this resulting scheme which is the base
change of X to L.

If one has a number of schemes in the same ambient space and wants to base change
them all at the same time, a little care is required. The function which takes a scheme and
a map of rings as argument will create a new ambient space each time so is unsuitable.
Better would be to base change the ambient space and then use the base change function
which takes the scheme and the desired new ambient space as argument. (This latter base
change function appears to be different from the other ones. In fact it is not. We described
base change above as a function of maps of rings. Of course, there is a natural extension
to maps of schemes. With that extension, this final base change intrinsic really is base
change with respect to map of ambient spaces.)

BaseChange(A,K)

BaseExtend(A,K)

If A is a scheme defined over a field k and K is an extension into which elements of
k can be automatically coerced then this returns a new scheme AK defined over K.
No cached data about A will be transferred to AK and coordinate names will have
to be defined again on AK if needed.

BaseChange(A,m)

BaseExtend(A,m)

If m is a map of rings whose domain is the base ring of the scheme A, this returns
the base change of A to the codomain of m. The equations of A, if any, are mapped
to the new ambient coordinate ring using m.
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BaseChange(F,K)

BaseExtend(F,K)

BaseChange(F,m)

BaseExtend(F,m)

If F is a sequence of schemes lying in a common ambient space whose base ring
admits automatic coercion to K or is the domain of a ring map m then this returns
the base change of the elements of F as a new sequence.

BaseChange(X,A)

BaseExtend(X,A)

BaseChange(X,A,m)

BaseExtend(X,A,m)

If X is any scheme whose ambient space B is of the same type (affine or projective)
and dimension as the ambient space A but either has a base ring which admits
coercion to that of A or the map m is a ring map from the base ring of B to that
of A then this returns a scheme with the equations of X as a subscheme of A. The
equations are transferred to A using coercion or the map m.

BaseChange(X, n)

BaseExtend(X, n)

The base change of the scheme X, where the base ring of X is a finite field to the
finite field which is a degree n extension of the base field of X.

Example H112E19

Here are two curves whose intersection points are not defined over the rationals and one of which
only splits after a field extension. The basic function to calculate intersection points only searches
for them over the current field of definition so misses them at first. But with an extra argument
it is able to search over an extension of the base without actually changing base of the schemes.
This contrasts with finding higher dimensional components of schemes which always requires the
base change.

> A<x,y> := AffineSpace(Rationals(),2);

> C := Curve(A,x^2 + y^2);

> IsIrreducible(C);

true

> D := Curve(A,x - 1);

> IntersectionPoints(C,D);

{}

> Qi<i> := QuadraticField(-1);

> IntersectionPoints(C,D,Qi);

{ (0, i), (0, -i) }

So we have found the intersection points (although we haven’t explained how we chose the right
field extension). Now we do the same calculation again but by making the base change of all



Ch. 112 SCHEMES 3521

schemes to the field Qi. Over this field the intersection points are immediately visible, but also
the curve C splits into two components.

> B<u,v> := BaseChange(A,Qi);

> C1 := BaseChange(C,B);

> D1 := BaseChange(D,B);

> IsIrreducible(C1);

false

> IntersectionPoints(C1,D1);

{ (0, i), (0, -i) }

> PrimeComponents(C1);

[

Scheme over Qi defined by u + i*v,

Scheme over Qi defined by u - i*v

]

112.12 Affine Patches and Projective Closure
In Magma, any affine ambient space A has a unique projective closure. This may be
assigned different variable names just like any projective space. The projective closure
intrinsics applied to affine schemes in A will return projective schemes in the projective
closure of A. Conversely, a projective space has a number of standard affine patches.
These will be the ambient spaces of the standard affine patches of a projective scheme.
In this way, the closures of any two schemes lying in the same space will also lie in the
same space. The same goes for standard affine patches. These relationships between affine
and projective objects are very tightly fixed: asking for the projective closure of an affine
scheme will always return the identical object, for instance.

ProjectiveClosure(X)

The projective closure of the scheme X. If the projective closure has already been
computed, this scheme will be returned. If X is an affine space for which no pro-
jective closure has been computed, the projective closure will be a projective space
with this space as its first standard patch. Otherwise, the result will lie in the
projective closure of the ambient space of X. If X has been computed as an affine
patch the projective closure will be the scheme it is an affine patch of even if this is
not mathematically correct (see Example H112E21).

AffinePatch(X,i)

The ith affine patch of the scheme X. The number of affine patches is dependent on
the type of projective ambient space in which X lies, but for instance, the standard
projective space of dimension n has n + 1 affine patches. In that case, i can be any
integer in the range 1, . . . , n+1. The order for affine patches is the natural one once
you decide that the first patch is that with final coordinate entry nonzero (in the
projective closure).
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AffinePatch(X,p)

A standard affine patch of the scheme X containing the point p. The second return
value is the point corresponding to p in that patch.

IsStandardAffinePatch(A)

Return whether the affine space A is a standard affine patch of its projective closure
and if so which patch it is. For A to be a non–standard patch means that its
projective closure must have been set using MakePCMap. Returns false if A does
not have a projective closure to be a patch of.

NumberOfAffinePatches(X)

Return the number of standard affine patches of the scheme X (O if X is an affine
scheme).

HasAffinePatch(X, i)

Return whether the ith patch of the scheme X can be created.

Example H112E20

This example shows that taking patches and closures several times really does return identical
schemes.

> A1<u,v> := AffineSpace(GF(5),2);

> X := Scheme(A1,u^2 - v^5);

> PX<U,V,W> := ProjectiveClosure(X);

> PX;

Scheme over GF(5) defined by

U^2*W^3 + 4*V^5

> AffinePatch(PX,1) eq X;

true

> X2<u2,w2> := AffinePatch(PX,2);

> X2;

Scheme over GF(5) defined by

u2^2*w2^3 + 4

> ProjectiveClosure(X2) eq ProjectiveClosure(X);

true

Example H112E21

Even if those schemes are not mathematically correct.

> P2<X,Y,Z> := ProjectiveSpace(Rationals(),2);

> L := Curve(P2,Z);

> Laff := AffinePatch(L,1);

> Dimension(Laff);

-1

> Laff;
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Scheme over Rational Field defined by

1

> ProjectiveClosure(Laff) eq L;

true

> ProjectiveClosure(EmptyScheme(Ambient(Laff)));

Scheme over Rational Field defined by

1

HyperplaneAtInfinity(X)

The hyperplane complement of the scheme X in its projective closure.

ProjectiveClosureMap(A)

PCMap(A)

The map from the affine space A to its projective closure.

AffineDecomposition(P)

Projective spaces have a standard disjoint decomposition into affine pieces—not the
same thing as the affine patches—of the form

Pn = An ∪An−1 ∪ · · · ∪A1 ∪ p

where An is the first affine patch, An−1 is the first affine patch on the hyperplane
at infinity and so on. Finally, p is the point (1 : 0 : · · · : 0). This intrinsic returns
a sequence of maps from affine spaces to the projective space P whose images are
these affine pieces of a decomposition. The point p is returned as a second value.

CentredAffinePatch(S, p)

An affine patch of S centred at the point p and the embedding into S, achieved by
translation of a standard affine patch.
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112.13 Arithmetic Properties of Schemes and Points
This section contains several functions of arithmetic interest, that apply to general schemes
defined over the rationals, number fields, or function fields.

112.13.1 Height

HeightOnAmbient(P)

Absolute BoolElt Default : false

Precision RngIntElt Default : 30
The height of the given point, as a point in the ambient projective space (or affine
space). This is the exponential height (for the logarithmic height, take Log!). By
default it is the relative height, unless the optional parameter Absolute is given.
The function works when the ambient space (of the scheme containing P ) is any
affine or projective space (possibly weighted), and the ring of definition of P is
contained in the rationals, a number field or a function field.

Note that Height is also defined for certain special schemes, such as elliptic and
hyperelliptic curves. In these cases the Height is a canonical, logarithmic, absolute
height.

112.13.2 Restriction of Scalars

RestrictionOfScalars(S, F)

WeilRestriction(S, F)

SubfieldMap Map Default :

ExtensionBasis [ FldElt ] Default : []
Given an affine scheme S whose base ring is a field K, the function returns its
restriction of scalars from K to F . The scheme S must be contained in an affine
space. The field F should be either a subfield of K, or else isomorphic to a subfield
of K; in this case the inclusion map may be specified as the optional argument
SubfieldMap, or otherwise is the same as the map returned by IsSubfield(F,K).

The restriction of scalars Sres is a scheme over F satisfying the following func-
torial property (for point sets): Sres(R) = S(R⊗F K) for all rings R ⊇ F .

Four objects are returned; the first is the scheme Sres, and the other three are
maps of various kinds:
• the natural map of schemes from the base extension (Sres)⊗K to S,
• a function which takes a point in a point set Sres(R) and computes its image

under the map Sres(R) → S(RK) (if there is no known relationship between R
and K an error results), and

• a map of point sets S(K)→ Sres(F ).
The result is obtained by direct substitution using the standard basis of K/F , or
the basis given in ExtensionBasis if this is specified.
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112.13.3 Local Solubility
Let X be a scheme over a number field K. One of the fundamental problems in arithmetic
geometry is to decide if X(K) is empty. In general, this is a very hard question. One way
to arrive at an affirmative answer is to prove that X(L) is empty for some larger field L.
An important class of such field is formed by complete local fields. These are obtained by
taking the p-adic topology on K associated to a prime ideal p of the ring of integers of K
and to consider the topological completion L of K (see Completion on page 3-891).

IsEmpty(Xm)

Smooth BoolElt Default : false

AssumeIrreducible BoolElt Default : false

AssumeNonsingular BoolElt Default : false

Verbose LocSol Maximum : 2
Let X be a scheme over a number field K and let L be a completion of K at a finite
prime. If Xm is the point set of X taking values in L, this function returns if the
point set is empty. If false is returned, then (a minimal approximation to) a point
is returned.

Setting AssumeIrreducible := true tells the system to assume that X is irre-
ducible. This leads to unpredictable results if the components of X have distinct
dimensions.

Setting AssumeNonsingular := true tells the system to assume that X has no
L-rational singular points. If there are such points and this flag is set, then an
infinite loop can result.

Setting Smooth := true tells the system to only consider nonsingular points
on X. This is only implemented for plane curves. The system will blow up any
L-rational singular points when encountered and test the desingularized model for
solubility. If a point is found, then an approximation may be returned that is
indistinguishable from a singular point.

The following classes of schemes are recognized and treated separately :
(i) Hyperelliptic curves over fields with large residue field of odd characteristic.

For these fields a generalization by Nils Bruin of an algorithm presented in
[MSS96] is used. The complexity of this algorithm is independent of the size
of the residue field.

(ii) Hyperelliptic curves over fields with small residue field or residue field of even
characteristic. For these fields a depth-first backtracking algorithm is used to
construct a solution.

(iii) Nonsingular curves represented by a possibly singular planar model. In this
case, a depth-first backtracking algorithm is used to construct a solution.
Whenever a tentative solution approximates a rational singularity, that sin-
gularity is blown up and the construction is continued on the desingularized
model with Hensel’s lemma as a stopping criterion. Use Smooth := true to
access this option.
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(iv) An intersection in P3 of a quadratic cone with a singularity at (0 : 0 : 0 : 1)
and another quadric. This case (often needed in computations concerning
elliptic curves) is handled by testing hyperelliptic curves for local solubility.

(v) General schemes. The system decomposes X into primary components over
K, which are equidimensional. For each of the components, it tests the singu-
lar subscheme for solubility. If a solution is found, this is returned. Otherwise,
it tests the scheme itself for solubility using a depth-first backtracking algo-
rithm with Hensel’s lemma as stopping criterion.

Note that to construct a point set over a completion of a number field, one
should use PointSet(X,phi) where Kp, phi := Completion(K,p). This rather
cryptic syntax is due to the fact that, although a completion strictly speaking is an
extension of K, Magma does not recognise this fact and therefore does not allow
for automatic coercion into Kp. The system has to be presented explicitly with the
map φ from K into Kp.

For a description of the algorithms used, see [Bru04].

Example H112E22

Some usage of IsEmpty is illustrated below.

> P2<X,Y,Z> := ProjectiveSpace(Rationals(),2);

> C := Curve(P2,X^2+Y^2);

> IsEmpty(C(pAdicField(2,20)));

false (O(2^2) : O(2^2) : 1 + O(2^20))

> IsEmpty(C(pAdicField(2,20)):Smooth);

true

> K<i> := NumberField(PolynomialRing(Rationals())![1,0,1]);

> CK := BaseChange(C,K);

> p := (1+i)*IntegerRing(K);

> Kp,toKp := Completion(K,p);

> CKp := PointSet(CK,toKp);

> IsEmpty(CKp:Smooth);

false (O(Kp.1^3) : O(Kp.1^3) : 1 + O(Kp.1^100))

Example H112E23

And a simpler example.

> p := 32003;

> P<x> := PolynomialRing(Rationals());

> C := HyperellipticCurve(p*(x^10+p*x^3-p^2*4710));

> Qp := pAdicField(p);

> time IsEmpty(C(Qp));

true

Time: 0.090
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IsLocallySolvable(X, p)

Smooth BoolElt Default : false

AssumeIrreducible BoolElt Default : false

AssumeNonsingular BoolElt Default : false

Given a projective scheme X defined over a number field or over the rationals, test
if the scheme is locally solvable at the prime ideal p (for number fields) or prime
number p (for rationals) indicated. If the scheme is found to have a local point, then
true is returned together with an approximation to a point. Otherwise, false is
returned.

The optional parameters have the same meaning as for IsEmpty (see above).
For a description of the algorithms used, see [Bru04].

Example H112E24

A locally solvable scheme and a non–locally solvable scheme (when considering only non–singular
points) are both shown below.

> P2<X,Y,Z> := ProjectiveSpace(Rationals(),2);

> C := Curve(P2,X^2+Y^2);

> IsLocallySolvable(C,2);

true (O(2^2) : O(2^2) : 1 + O(2^50))

> IsLocallySolvable(C,2:Smooth);

false

> K<i>:=NumberField(PolynomialRing(Rationals())![1,0,1]);

> CK:=BaseChange(C,K);

> p:=(1+i)*IntegerRing(K);

> IsLocallySolvable(BaseChange(C,K),p:Smooth);

true (O($.1^3) : O($.1^3) : 1 + O($.1^100))

LiftPoint(P, n)

Strict BoolElt Default : true

LiftPoint(F, d, P, n)

Strict BoolElt Default : false

Let P be in X(L), where X is a scheme over the rationals or over a number field
and L is a completion of the base field at a finite prime. This routine attempts to
lift P to the desired precision n using quadratic newton iteration. This routine only
works if P is distinguishable from all singular points on X. Note that if X is of
positive dimension, then the lift is inherently arbitrary.

Due to limited precision used in the computation, it may be impossible to attain
the desired precision exactly. By default this leads to an error. If the user speci-
fies Strict := false the system silently returns a lift with maximum attainable
precision if the desired precision cannot be reached.
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The second form provides the same functionality, but requires all input data to
be supplied over L. The sequence F should be the defining equations of a scheme
over L of dimension d. The sequence P should be coordinates of an approximation
of a point on that scheme. The returned sequence is a lift of the point described by
P to precision n, if possible.

In principle, a point returned by IsEmpty has sufficient precision for LiftPoint
to work. However, IsEmpty may perform nontrivial operations on the scheme. A
nonsingular point on a component of X may be singular on X itself.

Example H112E25

A lift of a point in a non empty pointset is given.

> P2<X,Y,Z>:=ProjectiveSpace(Rationals(),2);

> C:=Curve(P2,X^2+Y^2-17*Z^2);

> Qp:=pAdicField(2,20);

> bl,P:=IsEmpty(C(Qp));

> LiftPoint(P,15);

(9961 + O(2^15) : O(2^15) : 1 + O(2^20))

112.13.4 Searching for Points
The following intrinsic implements a nontrivial method to search for points on any scheme
defined over the rationals.

PointSearch(S,H : parameters)

Dimension RngIntElt Default : 0
Primes SeqEnum Default : [ ]
OnlyOne BoolElt Default : false

Searches for points on the scheme S up to roughly height H. The scheme must be
in either an affine space or a non-weighted projective space.

This uses a p-adic algorithm: first find points locally modulo a small prime
(or two small primes), then lift these p-adically, and then see if these give global
solutions. Lattice reduction is used at this stage, and this makes the method far
more efficient than a naive search, for most schemes. Note that points which reduce
to singular points modulo p are not necessarily found.

If OnlyOne is true, then the computation will terminate as soon as one point is
found. The algorithm computes the dimension of the scheme unless Dimension is
set to a nonzero value.

The algorithm chooses its own primes unless Primes is non-empty; either one
prime or two can be specified. The algorithm slows down considerably in higher
dimension — for threefolds, it can take a few hours to search for points up to height
500 or so. For special types of curves (ternary cubics, intersection of quadrics),
efficient search methods are implemented under other names (for instance Points
and PointsQI).



Ch. 112 SCHEMES 3529

Example H112E26

> P<a,b,c,d> := ProjectiveSpace(Rationals(),3);

> S := Scheme (P, a^2*c^2 - b*d^3 + 2*a^2*b*c + a*b^3 - a*b^2*c +

> 7*a*c^2*d + 4*a*b*d^2);

> Dimension(S);

2

> time PS := PointSearch(S,100);

Time: 9.050

> #PS; // not necessarily exhaustive

67571

112.14 Maps between Schemes

Given schemes X and Y one can define a map f : X → Y in a number of ways. The
basic method is to give a sequence of polynomials or quotients of polynomials defined on
X. If X has an associated function field then function field elements may also be used.
Alternative sets of defining polynomials/rational functions may also be given, as long as
these represent the same rational map as the original defining set.

Scheme maps in Magma represent rational maps between schemes. That is, a map
f : X → Y between schemes X and Y actually corresponds to a morphism from a dense
Zariski-open subset of X to Y and two maps f and g from X to Y are considered to be
equal (and will be so deemed by eq, for example) if they are equal as morphisms when
restricted to a dense open subset of X that lies in a domain of definition of f and a domain
of definition of g. The precise open domain of definition U of a map f is unspecified but in
most functional contexts, it is equal to the complement of the base scheme f as returned
by BaseScheme(f). This is the set of scheme-theoretic points at which none of the maps
given by the defining polynomials/rational functions or any set of alternative defining
polynomials are ’naively’ defined. Extend computes alternative defining equations that
reduces the base scheme so that its open complement is equal to the maximal domain of
definition of the rational map represented. However, this is a fairly generic implementation
that can be computationally very heavy in many cases. When the domain X is a curve with
function field and the codomain Y is ordinary projective, the implicit domain of definition
for computing the image of points is the maximal domain of definition of f rather than
the base scheme. The function field machinery is used here.

Similarly, isomorphisms between schemes can be defined using inverse defining poly-
nomials/rational functions and these represent birational maps rather than actual scheme
isomorphisms.

There are some natural functions associated to a map f and some other more compli-
cated functions. The most natural things are, for a point p of X, computing the image
point f(p) and, for a subscheme S ⊂ Y computing the preimage scheme Pullback(f,S).
More complicated functions include the standard Gröbner basis algorithm for comput-
ing images f(T ) ⊂ Y of subschemes T of X. This is defined when T doesn’t lie in the
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base scheme of f and the image is actually the scheme theoretic closure of the image of f
restricted to the open subset of T on which it is defined.

For some functions such as the image computation just mentioned, it is a requirement
that the schemes X and Y be defined over a common base ring and that the map f be
defined over the identity map (or coercion map) of this common base ring.

Maps respect point set structures. Indeed, given a map f as above and an extension
L of k, the base ring of X, there is a map f(L) : X(L) → Y (L). The point set of Y is
determined by the composition of the map of base rings with the extension map k → L.
This map f(L) cannot be created without creating the scheme map f first, and in any case
it is not usually explicitly required: the evaluation of f(p) will invoke it in the background,
for example. But when the main purpose of f is to transfer a large number of points from
X(L) to Y (L) then it is best to assign g := f(L) explicitly and use the map g. In this
way the small additional overheads involved in repetitively constructing f(L) are avoided.
Perhaps more importantly, it also ensures that the image points all lie in the same point
set.

Maps respect projective closures of schemes. That is, given f as above one can compute
the projective closure of f which is a map from the projective closure of X to that of Y
and which agrees with f where they are both defined.

From V2.16, there is a slight variant on the basic scheme map type (MapSch), which we
refer to as scheme graph maps and are defined by the graph of the map in the product of the
domain and codomain. These currently only have very basic constructors and somewhat
less functionality than scheme maps. They will be described in a separate subsection.

Much of the functionality only works for scheme maps f between schemes whose base
rings are fields. We usually do not explicitly mention in this documentation when this is a
requirement, but the functions will return an error if the base rings are not fields in cases
where they must be.

112.14.1 Creation of Maps
The most basic map constructors are described here. It is possible to create maps defined
over a map of the base rings of the schemes.

map< X -> Y | F >

map< X -> Y | F, G >

map< X -> Y | u, F >

Check BoolElt Default : true

CheckInverse BoolElt Default : true

Create the map X → Y of schemes determined by the sequence F of polynomials
or rational functions defined on X. The two schemes X and Y must be defined
over compatible base rings, that is, there must exist a ring map u from the base
ring of Y to that of X. The polynomials can be elements of the coordinate ring of
the ambient space containing X or elements of the coordinate ring of X itself. In
any case, the polynomials will be lifted to elements of the coordinate ring of the
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ambient space and any ring elements which admit this operation could be used. If
the function field of X exists then elements of this may also be used.

The argument u is a map from the base ring of Y to that of X. If it is omitted
then natural coercion map is assumed. In practice, the base rings are often identical
in which case coercion will simply be the identity map.

A birational inverse specified by polynomials or rational functions on Y can be
given as the sequence G.

It is also allowed for F and G to be a sequence of sequences of polynomials
or rational functions, giving alternate sets of defining equations (inverse defining
equations) that must define the same rational map on X (rational inverse on Y ).
The base scheme of the map (the inverse) is the intersection of the base schemes of
the individual sets of defining equations (inverse defining equations) as described in
BaseScheme.

There are two parameters Check and CheckInverse which control exactly what
validation checks are carried out.

If the parameter Check is set to false then no checking occurs at all.
If Check is true but CheckInverse is false, then the map is checked to be well

defined from domain to codomain and any inverse to be well defined in the opposite
direction. However if there are inverse functions specified, it is not checked that the
forward and inverse functions actually define (birational) inverse maps.

If both parameters are true then all checks mentioned above are done.

iso< X -> Y | F, G >

Create the map X → Y of schemes determined by the sequence F for which the map
Y → X determined by the sequence G is a birational inverse. The sequences F and
G should contain polynomials or rational functions defined on X and Y respectively.
The two schemes X and Y must be defined over the same base ring.

The two check parameters for the main map constructor also apply here with
the same meaning.

Example H112E27

Map creation is very similar to that for maps between polynomial rings, although here one must
put the polynomial arguments into a single sequence.

> k := Rationals();

> A<t> := AffineSpace(k,1);

> B<x,y> := AffineSpace(k,2);

> f := map< A -> B | [t^3 + t, t^2 - 3] >;

> f;

Mapping from: Aff: A to Aff: B

with equations :

t^3 + t
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t^2 - 3

Features of the map can be computed. Of course, the domain and codomain are trivial attributes
of the map while its image requires a Gröbner basis computation.

> Domain(f) eq A;

true

Variables : t

> Codomain(f);

Affine Space of dimension 2

Variables : x, y

> Image(f);

Scheme over Rational Field defined by

-x^2 + y^3 + 11*y^2 + 40*y + 48

Example H112E28

Defining maps using function field elements directly can be particularly convenient for curves. For
example, the user may have a set of such functions coming from some divisor computations. Here
is a simple (artificial!) example where a rational map from a projective curve or any of it’s affine
patchs to the projective line corresponding to a rational function is defined.

> P<x,y,z> := ProjectiveSpace(Rationals(),2);

> C := Curve(P,x^2+y^2-z^2);

> C1 := AffinePatch(C,1);

> C2 := AffinePatch(C,2);

> F := FunctionField(C);

> f := F!(x/y);

> P1 := ProjectiveSpace(Rationals(),1);

> mp1 := map<C->P1 | [f,1]>;

> mp2 := map<C1->P1 | [f,1]>;

> mp3 := map<C2->P1 | [f,1]>;

Example H112E29

Maps of the base ring can be included in scheme maps as is the case for maps of polynomial rings.
Here we make a Frobenius map.

> k<w> := FiniteField(3^2);

> u := hom< k -> k | w^3 >;

> A<t> := AffineSpace(k,1);

> f := map< A -> A | u, [t^3] >;

> f;

Mapping from: Aff: A to Aff: A

with equations :

t^3

and map between base rings
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Mapping from: FldFin: k to FldFin: k given by a rule [no inverse]

Notice next how the map f fixes points defined over the prime subfield of k but moves those points
with coordinates having nontrivial w component.

> p := A ! [w];

> f(p);

(w^3)

> f(A ! [2]);

(2)

IdentityMap(X)

Create the identity map of the scheme X.

ConstantMap(X,Y,p)

map< X -> Y | Q >

The map taking all points of the scheme X to the point p of scheme Y where Q is
the sequence of coordinates of p.

Projection(X,Y)

The linear projection from projective space X to projective space Y that omits the
first dimX − dim Y coordinates.

Projection(X, Q)

Projection(X)

Projection(X, p)

The projection of the scheme X away from the point p into the projective ambient
space Q (if given). If p is not given it is taken to be (1 : 0 : . . . : 0).

ProjectionFromNonsingularPoint(X,p)

The projection of the scheme X from the nonsingular (and rational) point p of X.
The projection map is returned as a second value. The image of the blowup of p as
a point of X is returned as a third value. If this is a point, it is returned as a point
type.

ProjectiveMap(L, Y)

ProjectiveMap(L)

Given a list L of functions in the function field of X, where X is a projective scheme,
return the projective map X → Y defined by taking those functions as projective
coordinates. The scheme Y should be a projective space of dimension one less than
the length of L. If Y is not supplied, a new projective space of appropriate dimension
is created.
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ProjectiveMap(f, Y)

ProjectiveMap(f)

A short form for ProjectiveMap([f,1],X,Y).

Example H112E30

The above function is illustrated.

> P2<X,Y,Z>:=ProjectiveSpace(Rationals(),2);

> C:=Curve(P2,

> X^4-2*X^3*Y-X^2*Y^2-2*X^2*Y*Z+2*X*Y^3+2*X*Y^2*Z+Y^4-7*Y^3*Z+Y^2*Z^2);

> omega:=CanonicalDivisor(C);

> Degree(omega); //genus 0 curve

-2

> L:=Basis(-omega);

> L;

[

($.2 - 4/25) * ($.1^3 - $.1*$.2 + 5/56*$.2^3 + 20/63*$.2^2) * ($.2 - 4) *

($.1^3*$.2 - 1/4*$.1^2*$.2^2 - 26/5*$.1^2*$.2 + 4/5*$.1^2 - 7/4*$.1*$.2^3 -

2*$.1*$.2^2 - 3/4*$.2^4 + 151/20*$.2^3 + 4*$.2^2 - 4/5*$.2)^-1,

($.2) * ($.1^2 - 3/14*$.2^2 + 1/63*$.2) * ($.2 - 4) * ($.2 - 4/25) *

($.1^3*$.2 - 1/4*$.1^2*$.2^2 - 26/5*$.1^2*$.2 + 4/5*$.1^2 - 7/4*$.1*$.2^3 -

2*$.1*$.2^2 - 3/4*$.2^4 + 151/20*$.2^3 + 4*$.2^2 - 4/5*$.2)^-1,

($.1 + 13/28*$.2 - 8/63) * ($.2 - 4) * ($.2 - 4/25) * ($.2)^2 * ($.1^3*$.2 -

1/4*$.1^2*$.2^2 - 26/5*$.1^2*$.2 + 4/5*$.1^2 - 7/4*$.1*$.2^3 -

2*$.1*$.2^2 - 3/4*$.2^4 + 151/20*$.2^3 + 4*$.2^2 - 4/5*$.2)^-1

]

> mp:=ProjectiveMap(L,P2); //anticanonical embedding

> mp;

Mapping from: Crv: C to Prj: P2

with equations :

23/16*X^3 - 113/64*X^2*Y + 5/16*X^2*Z - 71/64*X*Y^2 + 93/16*X*Y*Z + 21/64*Y^3 -

61/64*Y^2*Z - 5/16*Y*Z^2

-1/8*X^3 + 23/16*X^2*Y + X^2*Z - 19/16*X*Y^2 - 15/8*X*Y*Z - 21/16*Y^3 +

115/16*Y^2*Z - Y*Z^2

X^3 - 53/32*X^2*Y - 1/8*X^2*Z - 11/32*X*Y^2 - 3/4*X*Y*Z + 21/32*Y^3 -

13/32*Y^2*Z + 1/8*Y*Z^2

> mp(C);

Curve over Rational Field defined by

X^2 - 15/8*X*Y + 23/4*X*Z - 229/32*Y^2 - 17/16*Y*Z - Z^2

Elimination(X,V)

The affine scheme obtained by eliminating the ambient variables of the affine scheme
X whose indices appear in V from the equations of X. Thus if V = [2, 5] then the
result will be a scheme in the affine subspace u = v = 0 where u and v are the
second and fifth variables of the ambient space of X.
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Inverse(f)

The inverse of the map of schemes f if inverse defining equations have been included
in the definition of f , otherwise an error.

IsInvertible(f)

Tests whether the map f between schemes is birational. If so, returns a birational
inverse. This function works fairly generically, using Groebner basis computations
over standard affine patches of the domain and codomain to compute the closure of
the graph of f and retrieve inverse equations from that. It can be very expensive
computationally.

HasKnownInverse(f)

Returns true if the map f has an inverse stored.

Example H112E31

This example shows how IsInvertible is more powerful then Inverse.

> P2<X,Y,Z> := ProjectiveSpace(Rationals(),2);

> C := Curve(P2, X^3*Y^2 + X^3*Z^2 - Z^5);

> Genus(C);

1

> pt := C![1,0,1];

> E,toE := EllipticCurve(C,pt);

> IsInvertible(toE);

true Mapping from: CrvEll: E to Crv: C

with equations :

$.1^3

-3*$.1*$.2*$.3 - 9*$.2*$.3^2

$.1^3 + 3*$.1^2*$.3

and inverse

-3*X^2*Z + 3*X*Z^2

-3*X^2*Y

X^2*Z - 2*X*Z^2 + Z^3

> Inverse(toE);

>> Inverse(toE);

^

Runtime error in ’Inverse’: Map has no inverse
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g * f

The composition g ◦ f , but note the convention for order of composition: the order
of mapping is that g acts first and is followed by f . Strictly speaking, one might
want to see evaluation of points done on the left to make sense of this, (this can be
done using p @ f instead of f(p)). Since one would usually assign a new identifier
to this composition, this is not a large problem. Only simple error checking is done
— domain–codomain matching and that the composition doesn’t have so many zero
components that it is projectively illegal.

Where the expansion of such compositions could be expensive, the resulting map
will be stored as a composition. The equivalent expanded map can be created by

> gf := g*f;
> dp := DefiningPolynomials(gf);
> dpi := InverseDefiningPolynomials(gf);
> m := map<D -> C | dp, dpi>;

where D is the domain of g and C is the codomain of f . The composition will act
differently to the expanded map - it will be undefined at all the places each factor
is undefined.

Components(f)

The maps composed to form f .

Example H112E32

As part of its generic map machinery, Magma has a structure for the set of all maps between two
given schemes. There is also a structure for the group of all automorphisms of a scheme which is
discussed in Section 112.14.6. Using this space one can realise the effect of a map on Hom spaces.
We will make two Hom spaces having a common codomain.

> k := Rationals();

> P<x,y,z,t> := ProjectiveSpace(k,3);

> A := Scheme(P,Minors(M,2))

> where M is Matrix(CoordinateRing(P),2,3,[x,y,z,y,z,t]);

> B := Scheme(P,x*t - y*z);

> F<r,s,u,v> := RuledSurface(k,0,0);

> HomAF := Maps(A,F);

> HomBF := Maps(B,F);

> HomAF;

Set of all maps from A to F

Given a map A → B we make the map from HomBF to HomAF given by composition. Although A
lies inside B, we choose a map A→ B which isn’t this inclusion.

> i := map< A -> B | [y,x,t,z] >;

> ii := map< HomBF -> HomAF | g :-> i * g >;

The map ii of Hom spaces realises the composition of maps with i. We test this on a single map
f : B → F .

> f := map< B -> F | [x,y,z,t] >;
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> Expand(ii(f)) eq Expand(i*f);

true

Restriction(f,X,Y)

Check BoolElt Default : true

The restriction of the map of schemes f to the scheme X in its domain. The
codomain of the new map is considered to be the scheme Y which must either
contain the codomain of f , or lie in that codomain but contain the scheme f(X).

By default the program checks these subscheme relationships; this may be time-
consuming, and can be skipped by setting the optional parameter Check to false.

Expand(phi)

Given a map φ between schemes stored in factored form, return the map in ex-
panded form. Note that if φ is a composite of maps, each with many alternative
defining polynomials, then computing the expansion can be very expensive. In other
situations computing the expansion of φ can cause huge (intermediate) expressions
and therefore be very expensive as well.

Due to the automatic simplification in map creation, the base scheme of the
returned map might be smaller than the base scheme of φ.

Extend(phi)

Given a map φ between schemes, returns an expanded map with extra alternative
equations in order to reduce the base scheme as far as possible, i.e. so that the open
complement of the base scheme is the maximal domain of definition of the rational
map represented by φ. This routine is potentially very expensive because it requires
Groebner basis computations on several affine graph ideals of φ.

Prune(phi)

Given a map φ between schemes in expanded form, removes alternative equations
that do not reduce the base scheme of φ. If φ has a known inverse, this is returned
unaltered.

Normalization(phi)

Normalisation(phi)

The map created from φ by removing common factors from the defining polynomial.
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Example H112E33

It is shown below how to convert a map between schemes into a proper morphism.

> P2<x,y,z>:=ProjectiveSpace(Rationals(),2);

> C:=Curve(P2,x^3+y^3-2*z^3);

> E,phicomp:=EllipticCurve(C,Place(C![1,1,1]));

> Puvw<u,v,w>:=Ambient(E);

We get φ as phicomp in expanded form.

> phi:=Expand(phicomp);

> phi;

Mapping from: Crv: C to CrvEll: E

with equations :

3*x^2*y - 3*x^2*z - 3*x*y^2 + 9*x*y*z - 6*x*z^2 - 6*y^2*z + 15*y*z^2 - 9*z^3

-9*x^2*y + 27*x*y^2 - 54*x*y*z + 18*x*z^2 + 45*y^2*z - 81*y*z^2 + 27*z^3

y^3 - 3*y^2*z + 3*y*z^2 - z^3

But φ still has a base scheme.

> Degree(BaseScheme(phi));

6

So we extend φ to phiext defined on C entirely.

> phiext:=Extend(phi);

> phiext;

Mapping from: Crv: C to CrvEll: E

with equations :

3*x^2*y - 3*x^2*z - 3*x*y^2 + 9*x*y*z - 6*x*z^2 - 6*y^2*z + 15*y*z^2 - 9*z^3

-9*x^2*y + 27*x*y^2 - 54*x*y*z + 18*x*z^2 + 45*y^2*z - 81*y*z^2 + 27*z^3

y^3 - 3*y^2*z + 3*y*z^2 - z^3

and alternative equations :

3*x^3 + 6*x^2*z - 6*x*y*z + 9*x*z^2 + 3*y^3 - 15*y*z^2

-18*x^2*z + 54*x*y*z - 27*x*z^2 + 99*y*z^2

x*z^2 + 2*y^2*z - 3*y*z^2

And there is no base scheme anymore!

> Degree(BaseScheme(phiext));

0

This map is invertible.

> bl,phii:=IsInvertible(phiext);

> assert bl;

> phii;

Mapping from: CrvEll: E to Crv: C

with equations :

1/6*u^3 - 13/2*u^2*w - 2*u*v*w + 21/2*u*w^2 - 1/6*v^2*w + 3*v*w^2 + 27*w^3

u^2*w - 30*u*w^2 - 3*v*w^2 + 36*w^3

u^2*w - 3*u*w^2 - 18*w^3
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and inverse

3*x^2*y - 3*x^2*z - 3*x*y^2 + 9*x*y*z - 6*x*z^2 - 6*y^2*z + 15*y*z^2 - 9*z^3

-9*x^2*y + 27*x*y^2 - 54*x*y*z + 18*x*z^2 + 45*y^2*z - 81*y*z^2 + 27*z^3

y^3 - 3*y^2*z + 3*y*z^2 - z^3

and alternative inverse equations :

3*x^3 + 6*x^2*z - 6*x*y*z + 9*x*z^2 + 3*y^3 - 15*y*z^2

-18*x^2*z + 54*x*y*z - 27*x*z^2 + 99*y*z^2

x*z^2 + 2*y^2*z - 3*y*z^2

But the inverse still has a base scheme.

> Degree(BaseScheme(phii));

6

So extend phii.

> phiiext:=Extend(phii);

No base scheme left!

> Degree(BaseScheme(phiiext));

0

Note that the inverse – phiext – is still retained. So phiiext now really is a morphism.

> phiiext;

Mapping from: CrvEll: E to Crv: C

with equations :

1/6*u^3 - 13/2*u^2*w - 2*u*v*w + 21/2*u*w^2 - 1/6*v^2*w + 3*v*w^2 + 27*w^3

u^2*w - 30*u*w^2 - 3*v*w^2 + 36*w^3

u^2*w - 3*u*w^2 - 18*w^3

and inverse

3*x^2*y - 3*x^2*z - 3*x*y^2 + 9*x*y*z - 6*x*z^2 - 6*y^2*z + 15*y*z^2 - 9*z^3

-9*x^2*y + 27*x*y^2 - 54*x*y*z + 18*x*z^2 + 45*y^2*z - 81*y*z^2 + 27*z^3

y^3 - 3*y^2*z + 3*y*z^2 - z^3

and alternative equations :

-1/234*u^3 + 7/26*u^2*w + 5/117*u*v*w - 57/26*u*w^2 + 1/702*v^2*w - 6/13*v*w^2 -

27/13*w^3

-1/39*u^2*w + 1/117*u*v*w + 21/13*u*w^2 - 1/351*v^2*w + 2/39*v*w^2 - 54/13*w^3

u*w^2 - 1/351*v^2*w + 4/39*v*w^2 + 18/13*w^3

-729/26*u^3 + 3/13*u^2*v + 32805/26*u^2*w + 17/13*u*v^2 + 4293/13*u*v*w -

19683/26*u*w^2 + 4/39*v^3 + 537/26*v^2*w - 1377/13*v*w^2 + 19683/13*w^3

-27/13*u^2*v + 9/13*u*v^2 + 1233/13*u*v*w + 4/39*v^3 + 132/13*v^2*w -

1215/13*v*w^2

u*v^2 + 4/39*v^3 - 9/13*v^2*w + 756/13*v*w^2

and alternative inverse equations :

3*x^3 + 6*x^2*z - 6*x*y*z + 9*x*z^2 + 3*y^3 - 15*y*z^2

-18*x^2*z + 54*x*y*z - 27*x*z^2 + 99*y*z^2

x*z^2 + 2*y^2*z - 3*y*z^2
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112.14.2 Basic Attributes

112.14.2.1 Trivial Attributes

Domain(f)

The domain of the map of schemes f .

Codomain(f)

The codomain of the map of schemes f .

DefiningPolynomials(f)

DefiningEquations(f)

The sequence of functions used to define the map of schemes f .
If f is stored as an unexpanded composition then it will be expanded and the

defining equations of the expansion returned.

FactoredDefiningPolynomials(f)

If the map of schemes f was created by composition (and not expanded) return the
sequence of sequences of the defining equations of the maps which were composed
to form f otherwise return DefiningPolynomials of f .

InverseDefiningPolynomials(f)

The sequence of functions used to define the inverse of the map of schemes f .
If f is stored as an unexpanded composition then it will be expanded and the

inverse defining equations of the expansion returned.

FactoredInverseDefiningPolynomials(f)

If the map of schemes f was created by composition (and not expanded) and has an
inverse return the sequence of sequences of inverse defining equations of the maps
which were composed to form f otherwise return InverseDefiningPolynomials of
f .

AllDefiningPolynomials(f)

The polynomials of all definitions of the map of schemes f .

AllInverseDefiningPolynomials(f)

The polynomials of all definitions of the inverse of the map of schemes f if f has a
known inverse.

AlgebraMap(f)

The underlying map of polynomial rings determining the map of schemes f . Thus
if F is the sequence of defining equations of f and x is the first variable of the
codomain then F[1] will be the image of x under AlgebraMap(f).
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FunctionDegree(f)

The degree of the homogeneous polynomials which define the map f of projective
schemes. If there are alternative defining polynomials, returns the minimum value
over the different sets of defining polynomials.

112.14.2.2 Basic Tests

f eq g

Returns true if and only if the maps of schemes f and g have the same domain and
codomain and define the same rational map.

IsRegular(f)

IsPolynomial(f)

Returns true if and only if the map of schemes f is defined at all points of its
domain.

IsIsomorphism(f)

Returns true if and only if the map of schemes f : X → Y has inverse defining
equations or if they may be easily computed (e.g. the projective closure of the map
has inverse defining equations). If so, return a map g : X → Y which is of the
recognised isomorphism type as a second value.

IsDominant(f)

Returns true if and only if the closure of the image of the map of schemes f is the
whole of its codomain.

IsLinear(f)

Returns true if and only if the map of schemes f is a regular map defined by linear
polynomials.

IsAffineLinear(f)

Returns true if and only if the map of schemes f is a map between affine spaces
defined by polynomials of degree at most 1.
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112.14.3 Maps and Points
Given a map f : X → Y of schemes and point p of X outside of the base scheme of f ,
then the image f(p) is a point of Y . Moreover, given an extension K of the base rings of
X and Y , there is a map of point sets f(K) : X(K)→ Y (K). This isn’t often needed, but
should be used as in the example below, when very many point images are required. Note
that it will ensure that all points are returned in the same determined point set. Maps
also behave well with respect to sets and sequences of points.

f(p)

The point f(p) if the point p is in a point set of the domain of the map of schemes
f and doesn’t lie in the base scheme of f . An error results if p is in the base scheme
(except in the curve case described below). Sets and sequences of points are handled
in the same way. If the domain of the map is a curve C with a function field (see
Algebraic Curves chapter) and p is in the base scheme of f , then now (from V2.17),
Magma tries to compute the image of p by working with the function field places
over p without having to extend f via Extend. If p is non-singular then there is only
one place above it and the image will exist if the codomain is projective. If there
are several places over p, the image will be computed and returned when the image
of all of the places is the same and is defined over p’s point set base ring (that must
be a field).

Pullback(f, p)

The preimage of a point p under the map of schemes f . When f is an isomorphism
of schemes with an inverse g, the returned result is the point g(p). Otherwise
the pullback is returned as a subscheme of the domain of f . This is identical to
Pullback(f,S), where S is the one-point scheme containing p.

When a scheme is returned, it will contain the base scheme of f (which won’t map
to p under f), but this can be remedied using the (potentially expensive) function
call Difference(Pullback(f,p), BaseScheme(f)).

p @@ f

This is the same as Pullback(f,p) except when f is an isogeny between elliptic
curves. in which case one rational point in the preimage is returned (if none exist,
an error results).

f(K)

f(m)

The map induced by the map of schemes f : X → Y on point sets X(K)→ Y (K).
If m is a ring map from the base ring of X and u is the map of base rings from Y
to X then f(m) will be the map of point sets X(m)→ Y (m(u)).
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Example H112E34

Mapping a single point is easy.

> P1<s,t> := ProjectiveSpace(Rationals(),1);

> P3<w,x,y,z> := ProjectiveSpace(Rationals(),3);

> f := map< P1 -> P3 | [s^4,s^3*t,s*t^3,t^4] >;

> p := P1 ! [2,1];

> f(p);

(16 : 8 : 2 : 1)

If many points need to be mapped from a fixed point set, a small overhead can be avoided by
working with the map of point sets directly.

> K := QuadraticField(5);

> g := f(K);

> ims := [];

> for i in [1..100] do

> Append(~ims, g(P1 ! [i,1]));

> end for;

This example could also have been handled in one step using a sequence constructor.

> pts := [ P1 ! [i,1] : i in [1..100] ];

> f(pts) eq ims;

true

An example where the projection from an elliptic curve to the projective line contains the origin
in its base scheme but the image under the extension of the projection is computed by using the
place machinery without having to globally extend the map.

> P2<X,Y,Z> := ProjectiveSpace(Rationals(),2);

> E := Curve(P2,Y^2*Z-X^3-X*Z^2);

> p := E![0,0,1];

> f := map<E->P1|[X,Y]>;

> p in BaseScheme(f);

true (0 : 0 : 1)

> f(p);

(0 : 1)
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112.14.4 Maps and Schemes
The natural operation for maps on schemes is pullback, that is, compute the preimage.
This is rather trivial. On the other hand, computing the image of schemes under a map
requires a Gröbner basis calculation so is much harder. If the map has an inverse this
image calculation is automatically replaced by the more simple pullback using the inverse
map.

Note that, strictly speaking, the image algorithm computes the closure of the image
of the map. We still call it the image, though, and don’t worry that there may be some
points of the image that are not the set-theoretic image of any point of the domain.

Over a field, the equations of the image of a map in a particular degree can be computed
using linear algebra, so a distinct intrinsic is provided for this.

Other schemes related to a map are also discussed here.

Pullback(f, X)

The scheme in the domain of the map of schemes f given by the pullback of the
equations defining the subscheme X of the codomain of f . The result will contain
the base scheme of f (which won’t map onto X under f) but this can be reme-
died using the (potentially expensive) function call Difference(Pullback(f,X),
BaseScheme(f)).

Image(f)

f(X)

Let X be a subscheme of the domain of the map of schemes f such that, if U is the
open complement of the base scheme of f , X∩U is Zariski-dense in X. This intrinsic
returns the scheme-theoretic closure of f(X ∩ U) in the codomain of f , which we
refer to simple as the image f(X). For the first signature the image of the entire
domain is returned. Moreover, it is stored with the map f so can be called again
later without any recomputation. Note that if the domain of f is projective multi-
graded, then X is saturated before the computation to ensure the correct result.
For computaional efficiency, we do not check that X ∩ U is indeed Zariski-dense in
X.

Image(f,X,d)

A basis of the polynomials of degree d in the codomain of the map of schemes f
which contain the image f(X). The scheme X must be a subscheme of the domain
of f and d must be a positive integer.

For best results for projective schemes, remove the contribution of the irrele-
vant ideal corresponding to the zero point from X (normalize the equations of the
scheme).
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Example H112E35

Consider the embedding of the projective line in 3-space as a quartic. It can be defined as the
image of a map determined by a 4-dimensional subspace of the degree 4 monomials on the line,
for instance: see [Har77] Chapter II, Example 7.8.6 or the later section here on linear systems.

> P1<s,t> := ProjectiveSpace(Rationals(),1);

> P3<w,x,y,z> := ProjectiveSpace(Rationals(),3);

> f := map< P1 -> P3 | [s^4,s^3*t,s*t^3,t^4] >;

> Image(f);

Scheme over Rational Field defined by

-w^2*y + x^3

w*y^2 - x^2*z

-x*z^2 + y^3

-w*z + x*y

> IsNonsingular(Image(f));

true

> f(p) in Image(f) where p is P1 ! [2,1];

true (16 : 8 : 2 : 1)

If the Gröbner basis computation is too expensive, or if a partial solution for the image computa-
tion would be acceptable, the function Image(f,C,d) described above and illustrated in the next
example calculates those hypersurfaces of degree d containing f(C). Given a bound on d, the
equations of the image could also be calculated using this function.

Example H112E36

A situation where one is really interested in the equations of the image in a particular degree
occurs in the case of canonical curves. Usually the ideal is generated in degree 2, but for trigonal
curves the degree 2 generators only cut out a surface scroll on which the curve is cut out by a
relative equation of degree 3.
Here we simply assert that the curve C has genus 5 and that the map f is the canonical map of
the curve C. Chapter 114 describes functions that determine both invariants.

> k := Rationals();

> P2<X,Y,Z> := ProjectiveSpace(k,2);

> P4<a,b,c,d,e> := ProjectiveSpace(k,4);

> C := Curve(P2, X^5 + X*Y^3*Z + Z^5);

> f := map< P2 -> P4 | [Y*Z, X*Y, Z^2, X*Z, X^2] >;

> S := Image(f,C,2);

> S;

Scheme over Rational Field defined by

a*d - b*c

a*e - b*d

c*e - d^2

> Dimension(S);

2

> f(C);

Curve over Rational Field defined by

-d^2 + c*e,

-b*d + a*e,
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-b*c + a*d,

a*b^2 + c^2*d + e^3,

a^2*b + c^3 + d*e^2

In this case both image computations are fast so the timing difference between them is tiny. But
pushing the genus a little higher soon makes the point.
It is easy to see that S is a scroll: its equations are the rank 2 minors of the matrix

(
a c d
b d e

)
.

BaseScheme(f)

The subscheme of the domain X of the map of schemes f where the map is ‘naively’
not defined. When f is expanded, this is equal to the intersection of the base
schemes of each of the alternate sets of defining polynomials/rational functions. For
a single set of defining polynomials/rational functions, the base scheme is defined by
the union of subschemes of X where a denominator of a defining rational function
vanishes when the codomain is affine, and by the subset of points of X which are
mapped by the given defining polynomials into a null point (with coordinates on
which all polynomials in an irrelevant ideal vanish) when the codomain is projective.

BasePoints(f)

BasePoints(f,L)

If the base scheme of the map of schemes f is finite, this returns a sequence con-
taining those points defined over the base ring which lie in it. Otherwise an error is
reported. If a second argument L is included which is an extension field of the base
field then base points defined over L are returned.

Example H112E37

We find the base points of a map, although we have to extend the field before we find them all.

> k := GF(7);

> P<x,y,z> := ProjectiveSpace(k,2);

> p := x^2 + y^2;

> f := map< P -> P | [p*x,p*y,z^2*(z-x)] >;

> BasePoints(f);

{}

> Degree(BaseScheme(f));

6

> HasPointsOverExtension(BaseScheme(f));

true

Clearly we are not seeing all the points of indeterminacy of f . We clumsily extend the base field
until we do see enough points. Of course, it is clear that the problem is the polynomial p, so a
degree 2 extension will be enough.

> BasePoints(f,ext<k|2>);
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{ (1 : $.1^36 : 1), ($.1^12 : 1 : 0), ($.1^36 : 1 : 0), (1 : $.1^12 : 1) }

> HasPointsOverExtension(BaseScheme(f),ext<k|2>);

false

Example H112E38

In this example we make an elementary transformation of scrolls.

> Q := Rationals();

> F<u,v,x,y> := RuledSurface(Q,2);

> G<a,b,r,s> := RuledSurface(Q,3);

> F;

Rational Scroll of dimension 2

Variables : u, v, x, y

Gradings :

1 1 -2 0

0 0 1 1

> phi := map< F -> G | [u,v,x,y*u] >;

Next we find the base points of the map φ by hand.

> Scheme(F,[u,v]) join Scheme(F,[x,u*y]);

Scheme over Rational Field defined by

u*x

v*x

u*y

> RationalPoints($1);

{ (0 : 1 : 0 : 1) }

The map φ is the elementary transformation in the point (0 : 1 : 0 : 1) of F . That is, it is the
blowup of this point followed by the contraction of the birational transform of the fibre through
this point.

112.14.5 Maps and Closure

ProjectiveClosure(f)

The map induced by the map of schemes f between the projective closure of its
domain and codomain. If either domain or codomain is already projective, then it
remains unchanged in the new map. In particular, if both domain and codomain
are already projective, then the returned map is simply f itself.
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MakeProjectiveClosureMap(A, P, S)

MakePCMap(A, P, S)

MakeProjectiveClosureMap(m)

MakePCMap(m)

If A is an affine space and P a projective space and if S is a sequence of polynomials
on A defining a map from A to P (or if m is such a map) then this map is set as the
projective closure map of A. There is very little functionality for projective closure
maps which are not the standard ones, so this intrinsic is usually used in cases where
no relationship between A and P yet exists but the user would like A to behave as
a standard patch on P so that the closure of a scheme in A is a scheme in P .

RestrictionToPatch(f,j)

The restriction of the map f , a map of schemes from an affine scheme to a projective
scheme, to a rational map from its domain to the jth standard affine patch of its
codomain.

RestrictionToPatch(f,i,j)

The restriction of the map f , a map between two projective schemes, to a rational
map from the ith standard affine patch of its domain to the jth patch of its codomain.

Example H112E39

The application of closure and patching functions is straightforward. To compute the restriction
of a map f to the ith patch of the domain and jth patch of the codomain, essentially set the
dim+2− ith coordinate function to 1 and divide by the dim +2− jth defining equation of f .

> P<w,x,y,z> := ProjectiveSpace(Rationals(),3);

> f := map< P -> P | [1/w,1/x,1/y,1/z] >;

> f12 := RestrictionToPatch(f,1,2);

> f12;

Map of affine spaces defined by [ $.3/$.1, $.3/$.2, $.3 ]

The functions are inevitably rational so cannot be expressed in any coordinates that might already
exist on the affine patches. Instead they are expressed in terms of the generators of the function
fields.

> ProjectiveClosure(f12);

Map of projective spaces defined by [ x*y*z, w*y*z, w*x*z, w*x*y ]

> ProjectiveClosure(f12) eq f;

true

However, as seen in the final line above, the relationship between a map and its closure is main-
tained.



Ch. 112 SCHEMES 3549

112.14.6 Automorphisms
Automorphisms of schemes defined over a field may be constructed. The main cases
where there is significant functionality is for automorphisms of affine and projective spaces
and curves. Recall that for projective spaces the only regular automorphisms are the
linear maps. However there are many more rational automorphisms, often called Cremona
transformations. In the case of the projective plane, these form a group generated by linear
automorphisms together with a single quadratic transformation. In higher dimensions, the
structure of this group is unknown.

Affine spaces have much more complicated automorphism groups. Decomposition re-
sults are known in the case of the affine plane over certain fields (the complex numbers for
instance), but otherwise no general statements are known. More information and references
can be found in [vdE00], especially in the opening essay.

Although automorphisms can be computed, groups of automorphisms cannot be com-
puted except in a very few cases. For the case of curves, see the Algebraic Curves
chapter. For ambients, there is currently a function AutomorphismGroup which returns
a group together with a map matching group elements with the automorphism they rep-
resent only in the case of linear automorphisms of projective spaces defined over a finite
field.

Automorphism(X,F)

The automorphism of the scheme X determined by the sequence of polynomials
F defined on X. This function uses a Gröbner basis calculation. If the inverse
functions are already known then one can use the map< | > constructor and then a
type change or the iso< | > constructor. This is illustrated in Example H112E40.

IdentityAutomorphism(X)

IdentityMap(X)

The identity map X → X on the scheme X.

IsEndomorphism(f)

Returns true if and only if the domain and range of the maps of schemes f are
equal.

IsAutomorphism(f)

Returns true if and only if the maps of schemes f is an automorphism of its domain.
In this case f is returned as an automorphism as the second value.
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Example H112E40

In this example we show how to make an automorphism from equations, and also how to include
the equations of the inverse map if they are already known. The automorphism is the hyperelliptic
involution on a hyperelliptic curve, although we don’t use the machinery of hyperelliptic curves
here.

> A<u,v> := AffineSpace(Rationals(),2);

> f := v^5 + 2*v^3 + 5;

> C := Curve(A,u^2 - f);

> phi := Automorphism(C,[-u,v]);

> Type(phi);

MapAutSch

> phi;

Mapping from: Crv: C to Crv: C

with equations :

-u

v

and inverse

-u

v

In this case we clearly know the inverse map in advance. We can make an automorphism of C as
follows.

> psi := map< C -> C | [-u,v],[-u,v] >;

> psi eq phi;

true

> Type(psi);

MapSch

The map ψ is fine, but it is not of the same type as φ. We make the type change, if desired, as
follows.

> bool,psi1 := IsAutomorphism(psi);

> bool;

true

> Type(psi1);

MapAutSch

Example H112E41

A standard Gröbner basis exercise is to test particular examples of the Jacobian conjecture. This
states that a polynomial map of the plane is invertible if (and only if) its jacobian determinant is
everywhere nonzero. The problem here is to calculate the conjectured inverse polynomial map.

> A<u,v> := AffineSpace(Rationals(),2);

> f := u^3 + 3*u^2*v^2 + 3*u^2 + 3*u*v^4 + 6*u*v^2 + v^6 + 3*v^4 + v + 3;

> g := u + v^2 + 1;

> J := JacobianMatrix([f,g]);

> Determinant(J);
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-1

> m := map< A -> A | [f,g] >;

> m;

Mapping from: Aff: A to Aff: A

with equations :

u^3 + 3*u^2*v^2 + 3*u^2 + 3*u*v^4 + 6*u*v^2 + v^6 + 3*v^4 + v + 3

u + v^2 + 1

> IsAutomorphism(m);

true

> m;

Mapping from: Aff: A to Aff: A

with equations :

u^3 + 3*u^2*v^2 + 3*u^2 + 3*u*v^4 + 6*u*v^2 + v^6 + 3*v^4 + v + 3

u + v^2 + 1

and inverse

-u^2 + 2*u*v^3 - 6*u*v + 10*u - v^6 + 6*v^4 - 10*v^3 - 9*v^2 + 31*v - 26

u - v^3 + 3*v - 5

> Type(m);

MapSch

> Inverse(m);

Mapping from: Aff: A to Aff: A

with equations :

-u^2 + 2*u*v^3 - 6*u*v + 10*u - v^6 + 6*v^4 - 10*v^3 - 9*v^2 + 31*v - 26

u - v^3 + 3*v - 5

and inverse

u^3 + 3*u^2*v^2 + 3*u^2 + 3*u*v^4 + 6*u*v^2 + v^6 + 3*v^4 + v + 3

u + v^2 + 1

The automorphism test returns two values. The first, true, confirms that the map m is an
automorphism. In doing this test, Magma computes the inverse and stores it with m. The second
is the same map m, now with its inverse computed, but with the type of an automorphism.

> _,maut := IsAutomorphism(m);

> maut;

Mapping from: Aff: A to Aff: A

with equations :

u^3 + 3*u^2*v^2 + 3*u^2 + 3*u*v^4 + 6*u*v^2 + v^6 + 3*v^4 + v + 3

u + v^2 + 1

and inverse

-u^2 + 2*u*v^3 - 6*u*v + 10*u - v^6 + 6*v^4 - 10*v^3 - 9*v^2 + 31*v - 26

u - v^3 + 3*v - 5

> Type(maut);

MapAutSch
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112.14.6.1 Affine Automorphisms
The first constructor below checks that the proposed map is indeed an automorphism
by computing an inverse for the map determined by the arguments. It is a potentially
expensive test. The other constructors are all either clearly automorphisms or else require
only very simple tests.

Automorphism(A,F)

The automorphism of the affine space A determined by the sequence of functions F
defined on A.

Automorphism(A,M)

The linear automorphism of the affine space A determined by the entries of the
matrix of base ring elements M acting from the right on points.

Translation(A,p)

The translation map of the affine space A taking the rational point p to the origin.

PermutationAutomorphism(A, g)

Automorphism(A, g)

The automorphism of the affine space A that permutes its coordinates according to
the permutation g.

Example H112E42

Permutations are easy to create as elements of the symmetric group. The symmetric group used
must act on the set of n points, where n is the dimension of the affine space, even if it is only
intended to permute a few of the coordinates.

> A := AffineSpace(Rationals(),5);

> g := SymmetricGroup(5) ! (1,2,3);

> f := PermutationAutomorphism(A,g);

> p := A ! [1,2,3,4,5];

> f(p);

(2, 3, 1, 4, 5)

Automorphism(A,p)

The automorphism which takes the first coordinate x of the affine space A to x + p.
The polynomial p must be a function on A which does not involve x.

AffineDecomposition(f)

If f is an affine linear endomorphism, that is, an automorphism of some affine space
defined by polynomials of degree at most 1, this returns a linear endomorphism `
and a translation t such that, in Magma notation, f eq l * t.
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Example H112E43

In this example we make an affine linear map by composing a linear map and a translation. Then
we promptly decompose it into these components.

> A<x,y,z> := AffineSpace(Rationals(),3);

> f := Automorphism(A,2*y+3*z) * Translation(A,A ! [2,3,5]);

> l,t := AffineDecomposition(f);

> l,t;

Mapping from: Aff: A to Aff: A

with equations :

x + 2*y + 3*z

y

z

and inverse

x - 2*y - 3*z

y

z

Mapping from: Aff: A to Aff: A

with equations :

x - 2

y - 3

z - 5

and inverse

x + 2

y + 3

z + 5

> f eq l * t;

true

Note that the composition l * t in Magma means that the map ` is applied first followed by t.

> p := A ! [1,2,3];

> f(p);

(12, -1, -2)

> t(l(p));

(12, -1, -2)

NagataAutomorphism(A)

This intrinsic returns the Nagata automorphism in a standard form:

(u, v, w) 7→ (−u2w3 − 2uv2w2 − 2uvw + u− v4w − 2v3, uw2 + v2w + v, w).

Recall that this is an automorphism of affine 3-space A which is not known to be
tame, that is, admits no known factorisation into automorphisms of the types listed
above.
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Projectivity(A,M)

The restriction to the affine space A of the linear automorphism of its projective
closure determined by the matrix M . Note that this map is not usually regular on
A but it is an isomorphism where it is defined.

Example H112E44

Most projectivities on an affine space are not regular maps. By definition, the equations which
define them are naturally rational polynomials. That is the reason for naming the variables in the
field of fractions of the coordinate ring of A in the following code.

> k := FiniteField(23);

> A<x,y,z> := AffineSpace(k,3);

> M := Matrix(k,4,4,[1,2,3,-4,2,3,5,6,3,4,5,9,4,5,6,0]);

> phi := Projectivity(A,M);

> KA<u,v,w> := Parent(x/y);

> phi;

Mapping from: Aff: A to Aff: A

with equations :

(6*u + 12*v + 18*w + 22)/(u + 7*v + 13*w)

(12*u + 18*v + 7*w + 13)/(u + 7*v + 13*w)

(18*u + v + 7*w + 8)/(u + 7*v + 13*w)

and inverse

(11*u + 15*v + 5)/(u + 20*w + 2)

(9*u + 16*v + w + 12)/(u + 20*w + 2)

(12*u + 15*v + 3*w + 16)/(u + 20*w + 2)

Notice that the inverse of φ has also been computed. In fact, φ has been returned as an automor-
phism even though it is not regular.

> Type(phi);

MapAutSch

> IsRegular(phi);

false

112.14.6.2 Projective Automorphisms
As in the case of affine spaces, a version of the automorphism constructor is provided which
takes a sequence of polynomials as second argument. It is included mainly for completeness
whereas the other constructors are more appropriate for constructing automorphisms in
the contexts in which they often arise.

Projective automorphisms (which are regular) are always linear so they have an associ-
ated matrix with respect to the basis of monomials. A function is provided to retrieve this
matrix, and conversely automorphisms may be created using matrices. In fact, if the pro-
jective space is defined over a finite field, then the automorphism group can be computed
(as a group in Magma) and its elements can be realised as matrices.
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Also included are functions for creating a nonregular birational automorphism of pro-
jective space, the standard quadratic transformation. When working in the plane, this
together with linear automorphisms generates the group of birational automorphisms. An
example of factorising a birational automorphism in this group is given.

Automorphism(P,F)

The automorphism of the projective space P determined by the sequence of poly-
nomials F defined on P .

Matrix(f)

The matrix corresponding to the linear automorphism f of a projective space.

Automorphism(P,M)

The linear automorphism of the projective space P determined by the entries of the
matrix of base ring elements M acting on the left of coordinates.

Aut(P)

The parent of automorphisms of the projective space P .

AutomorphismGroup(P)

The automorphism group of the projective space P together with a map from this
group to the set of automorphisms of P , that is, the parent of such automorphisms.
The space P must be defined over a finite field for this intrinsic. Note that currently
the group returned is a general linear group rather than the projectivised version.
This will be changed in the future, but in any case does not create much confusion.

Example H112E45

When a projective space is defined over a finite field, then its automorphism group can be realised
as a group of matrices in a natural way. First we see how to use standard intrinsics to realise the
correspondence between matrices and linear automorphisms of projective space.

> P<x,y,z> := ProjectiveSpace(GF(5),2);

> phi := Automorphism(P,[x+y,y,z]);

> M := Matrix(phi);

> M;

[1 0 0]

[1 1 0]

[0 0 1]

> Automorphism(P,M) eq phi;

true

Since P is a projective space defined over a finite field, we can actually work with a group
which is isomorphic to its automorphism group. The map m computed below maps matrices to
automorphisms and conversely its inverse constructs a matrix from an automorphism.

> G,m := AutomorphismGroup(P);

> G;
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GL(3, GF(5))

> m;

Mapping from: GrpMat: G to Parent structure for automorphisms of P

> phi eq m(Transpose(M));

true

> Transpose(phi @@ m);

[1 0 0]

[1 1 0]

[0 0 1]

The parent of automorphisms is also an object in Magma. It can be created using Aut(P).

> Aut(P);

Set of all automorphisms of P

> Aut(P) eq Codomain(m);

true

TranslationOfSimplex(P,Q)

The unique automorphism of the n-dimensional projective space P taking the n+2
standard simplex points (1 : 0 . . . : 0), . . . and (1 : 1 . . . : 1) to the points of the
sequence Q. The sequence Q must comprise n + 2 linearly independent rational
points of P .

Translation(P,Q)

This function returns an automorphism which translates the standard coordinate
points to the points of the sequence Q. The sequence Q must comprise n+1 linearly
independent rational points of the projective space P where n is the dimension of
P . This intrinsic puts no condition on the usual final point (1 : 1 . . . : 1) of the
standard simplex. In other words, it creates the automorphism of P by the matrix
having the coordinates of the n + 1 points of Q as its columns. This automorphism
is not uniquely determined since PGL(n, k) is n + 2 transitive.

Translation(P,p,q)

A choice of linear automorphism of the projective space P which takes the rational
point p to the rational point q.

Translation(X,p)

A choice of linear automorphism of the projective space P taking the point (0 : . . . :
0 : 1) to the rational point p.
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Example H112E46

The intrinsic Translation(X,p) works in both the affine and the projective context. For an affine
scheme, it makes the translation which moves the point p to the origin.

> A<u,v> := AffineSpace(Rationals(),2);

> Translation(A,A![1,2]);

Mapping from: Aff: A to Aff: A

with equations :

u - 1

v - 2

and inverse

u + 1

v + 2

In the projective case, the resulting translation moves the point p to the image of the origin on
the first affine patch. When the point p lies on the first affine patch, then the translation is the
obvious one. But when it doesn’t a permutation of the coordinates is made first.

> P<x,y,z> := ProjectiveSpace(Integers(),2);

> p := P ! [3,2,1];

> f := Translation(P,p);

> f;

Mapping from: Prj: P to Prj: P

with equations :

-x + 3*z

-y + 2*z

z

and inverse

-x + 3*z

-y + 2*z

z

> f(p);

(0 : 0 : 1)

> p := P ! [0,1,0];

> f := Translation(P,p);

> f(p);

(0 : 0 : 1)

> f;

Mapping from: Prj: P to Prj: P

with equations :

-x

-z

y

and inverse

x

-z

y
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QuadraticTransformation(P)

QuadraticTransformation(P,Q)

The first function is the standard quadratic transformation of projective space P
taking its coordinates to their reciprocals, that is (x : y : . . .) 7→ (1/x : 1/y : . . .).
The second conjugates the standard map with a translation of the points of Q to the
standard basis vectors. The sequence Q must comprise n + 1 linearly independent
rational points of P where n is the dimension of P .

QuadraticTransformation(X)

QuadraticTransformation(X,Q)

The birational pullback of the projective scheme X by the quadratic transformation.
In the first intrinsic the transformation used is QuadraticTransformation(P) while
in the second, the transformation is QuadraticTransformation(P,Q) where P is
the ambient projective space of X. Thus Q must comprise n+1 linearly independent
rational points of P where n is the dimension of P . Exceptional components in the
total pullback of X are removed.

Example H112E47

This example shows how to factorise a simple Cremona transformation. (The reader who knows
something about this will note that in this example we take no account of the Nöther–Fano
inequalities nor do we analyse infinitely near points. In fact, we are rather lucky to be able to
complete the factorisation.)

> k := RationalField();

> P<x,y,z> := ProjectiveSpace(k, 2);

> funs := [ 2/3*x^2*y^2 + 2/3*x^2*y*z + x*y^2*z + x*y*z^2,

> 1/3*x^2*y^2 + 4/3*x^2*y*z + x^2*z^2 + 1/2*x*y^2*z + 1/2*x*y*z^2,

> 2/9*x^2*y^2 + 2/3*x^2*y*z + 2/3*x*y^2*z + x*y*z^2 + 1/2*y^2*z^2 ];

> g := map< P -> P | funs >;

> FunctionDegree(g);

4

> RationalPoints(BaseScheme(g));

{@ (3/4 : -1 : 1), (0 : 1 : 0), (0 : 0 : 1), (-3/2 : -1 : 1), (1 : 0 : 0) @}

Our aim is to precompose g with quadratic transformations which will reduce the degree of its
defining polynomials, currently 4. When the function degree is reduced to 1 the factorisation
is complete since the inverse sequence of quadratic transformations will comprise a factorisation
of g up to a translation. (Draw the diagram of maps!) That will be done at the end. First a
quadratic transformation in the three coordinate points is made since these points are the simplest
appearing in the list of base points. (The complete mathematical theory works hard to make the
choice of map here the right one: clearly no hard work has been done here in making the choice
of coordinate points.)

> std_quad := QuadraticTransformation(P);

> g1 := std_quad * g;

> // (Expand and) extend the map to its maximal domain:
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> g1:=Extend(g1);

> FunctionDegree(g1);

2

> S := BaseScheme(g1);

> RationalPoints(S);

{@ (4/3 : -1 : 1), (-2/3 : -1 : 1), (-2/3 : 0 : 1) @}

> HasPointsOverExtension(S);

false

Good! With only three non-collinear points of indeterminacy (the final line makes sure there
aren’t further points defined over some extension of the base ring) we are only one step away from
completing the factorisation. We make a quadratic transformation in these three noncollinear
points.

> tr := Translation(P,[ p : p in $2 ]);

> quad := std_quad * tr;

> g2 := quad * g1;

> g2:=Extend(g2);

> FunctionDegree(g2);

1

So g is seen to be the composition of linear translations and standard quadratic transformations:
g2 is itself a linear translation. This sequence of maps is reconstructed in reverse order to get g.
All the maps should be inverted, but note that the quadratic transformations are selfinverse so
that this is rather easy. Of course, composing the maps in the order they were discovered above
produces the birational inverse of g.

> f3 := f2 * g2

> where f2 is f1 * std_quad

> where f1 is std_quad * Inverse(tr);

> Expand(f3) eq g;

true

112.14.7 Scheme Graph Maps
In Magma V2.16, we have introduced an alternative to the usual MapSch for maps between
ordinary projective schemes: a new type MapSchGrph, which we refer to as graph maps.
These are objects whose defining data is the closure of the graph of a rational map, without
explicit defining or inverse polynomials. This is a fairly traditional way to consider maps
in algebraic geometry and the main motivation for their introduction is for divisor maps of
invertible sheaves. These are naturally constructed in graph form and the further derivation
of explicit defining polynomials can be quite time-consuming and lead to extremely high
degree, ugly results.

As well as being more naturally constructible in certain situations, graph maps have
advantages over MapSchs in a number of contexts.
1 A graph maps is automatically maximally defined, so Extend and alternative equations

are unnecessary.
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2 Computation of images of subschemes of the domain or of the inverse of a map go, in
one way or another, through the graph of the map, so it is more efficient to already
have it in graph form.

3 For an invertible graph map, separate inverse equations are not required. It is only
necessary to record that it is invertible and consider the “reverse” of the graph.

If f : X → Y is a rational map, the closure of its graph G naturally lies in X × Y . For
computational ease, we take G as lying in the product projective space of the ambients
of X and Y , Functionally, it is defined by a bihomogenous ideal in a polynomial ring
with n + m + 2 variables, where n (resp. m) is the dimension of the ambient of X (resp.
Y ). There is a primitive basic user constructor described below. Graph maps are more
naturally constructed and returned by specialised functions.

Graph maps have most of the functionality of MapSch maps including IsInvertible
and Expand. Rather than repeat the list of all of the relevant intrinsics, we note here that
the major functionality not currently available for them is
1 No defining or inverse defining polynomials.
2 No pointset map construction: it is not possible to ask for the image or preimage under

a graph map of a point in a pointset over a proper extension of the base field. Neither
are there images and preimages of rational functions.

3 Restriction to affine patchs of the domain or codomain is not possible (graph maps are
only between projective schemes). However, restriction to a closed subscheme of the
domain or codomain via Restriction is allowable as usual.

4 Any specialised MapSch functionality only available for maps between particular scheme
types, like maps between curves.

Graph maps can be composed in the usual way for maps, but can not be mixed with
MapSch maps in composition.

A further minor restriction has been built in for implementational efficiency. It is
assumed for the domain X of a graph map that there is no coordinate hyperplane that
contains some but not all of the irreducible components of X. In particular, there is no
problem if X is irreducible.

A graph map f may be converted into normal MapSch with an intrinsic given below. If
f is known invertible, this also computes inverse defining polynomials. It should be noted
that for maps between complicated schemes, this often produces a MapSch with extremely
high degree defining polynomials and a large base scheme where it is not defined. In such
cases, the original MapSchGrph can be a functionally much more efficient representation.

SchemeGraphMap(X, Y, I)

Saturated BoolElt Default : false

X and Y are ordinary projective schemes with ambients Pm and Pn respectively. I
is an ideal in an n + m + 2 variable polynomial ring R that should have the grevlex
ordering. I should define the closure of the graph of a rational map from X to Y if
R is identifed with the coordinate ring of the product projective space of Pm and
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Pn such that the first m + 1 variables correspond to the variables of the coordinate
ring of Pm in the same order and the last n +1 variables correspond to those of Pn

in the same order.
I should thus be bihomogeneous in the first m + 1 and second n + 1 variables

and be large enough to define the graph of the map, though it doesn’t have to be
the maximal defining ideal. For example, if a map is explicitly given by defining
polynomials [F0(x), . . . , Fn(x)] where we use xi and yi to denote the variables of R
corresponding to the domain and codomain variables, then the ideal generated by

yiFj(x)− yjFi(x) ∀ 0 ≤ i, j ≤ n

and the defining equations for X will define the graph if the defining polynomials
give an everywhere defined map. We give an explicit example below. If there is a
non-empty base scheme, it will be necessary to saturate the above ideal by one of
the Fi(x) that doesn’t vanish on any component of the domain. It is then “domain”
saturated.

A defining ideal like the above that hasn’t been saturated by an Fi(x) is usually
not maximal and for functional purposes has to be saturated by an appropriate
domain variable using ColonIdeal. This is performed internally. If the user already
knows that I is domain saturated, he can set the parameter Saturated (default
false) to true to avoid this.

This is a simple convenience function that performs practically no checks on the
validity of the input data.

SchemeGraphMapToSchemeMap(f)

Converts the graph map f into a usual scheme map. As noted in the introduction,
if f is a map between fairly complex schemes, this can be quite a computationally
heavy procedure and can produce very large degree, non-sparse defining polynomi-
als and the MapSch produced can have a large base scheme, even if f is defined
everywhere on its domain. If f is known invertible (see below), inverse defining-
polynomials are also added to the result.

IsInvertible(f)

As for the MapSch version, returns whether f is birationally invertible and, if so,
also returns the inverse map. This records that f is known invertible internally, as
the inverse map just has the graph reversed (also the graph ideal may need to be
saturated with respect to a codomain variable, which will be performed here if it
is determined that the map is invertible) so no inverse equations are added. The
HasKnownInverse intrinsic for MapSchs, which returns whether the map has already
been determined to be invertible, is also available.
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Example H112E48

Let X be an elliptic curve, given as an intersection of quadrics in P3. Here we start with a map
from X into P4, given by cubics, that is birational onto its image. We show how to convert this
into a graph map, take restrictions, check for invertibility and various other things.

> P3<x,y,z,t> := ProjectiveSpace(Rationals(),3);

> X := Scheme(P3,[x*t-y*z, x^2+y^2-4*z^2+7*t^2]);

> P4<a,b,c,d,e> := ProjectiveSpace(Rationals(),4);

> mp_seq := [x^3,y^3,z^3,t^3,y*z*t]; // polys defining a map to P^4

> mp := map<X->P4|mp_seq>;

> // Will now define the graph map

> R<x1,x2,x3,x4,y1,y2,y3,y4,y5> := PolynomialRing(Rationals(),9,"grevlex");

> hm := hom<CoordinateRing(P3) -> R |[R.i : i in [1..4]]>; // usual map

> grI := ideal<R|[(R.(i+4))*hm(mp_seq[j])-(R.(j+4))*hm(mp_seq[i]):

> i in [j+1..5] , j in [1..5]] cat [hm(b) : b in Basis(Ideal(X))]>;

> gr_mp := SchemeGraphMap(X,P4,grI); // the graph map

> // check that gr_mp does give mp

> mp eq SchemeGraphMapToSchemeMap(gr_mp);

true

> Y := gr_mp(X);

> Y eq mp(X);

true

> // take restrictions to the image

> gr_mp1 := Restriction(gr_mp,X,Y);

> mp1 := Restriction(mp,X,Y);

> // check that gr_mp1 still gives mp1

> mp1 eq SchemeGraphMapToSchemeMap(gr_mp1);

true

> boo := IsInvertible(gr_mp1);

> boo;

true

> // find the image and preimage of a point

> pt := X![2,0,1,0];

> ipt := gr_mp1(X![2,0,1,0]);

> iminv := ipt @@ gr_mp1;

> Dimension(iminv); Degree(iminv);

0

2

> // the preimage is just pt doubled

> Support(iminv);

{ (2 : 0 : 1 : 0) }
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112.15 Tangent and Secant Varieties and Isomorphic Projections

The functions in this section relate to the isomorphic projection of schemes in higher-
dimensional projective spaces down to lower-dimensional ones. This is achieved through
finding points in the ambient projective space which don’t lie on either the tangent or
secant varieties of the scheme. These varieties are interesting in their own right and we
provide functions to compute them as subschemes of the ambient space or to test if a given
point lies on them.

112.15.1 Tangent Varieties
For a scheme X in affine or ordinary projective space over a field, the tangent variety TX
is a subscheme of the ambient space whose set of closed points is the closure of the union
of all tangent spaces of closed points of X. We do not worry if the TX that we construct
is necessarily a reduced scheme or not. If X is non-reduced, TX probably won’t be and
will usually be of larger dimension than expected. If X is projective, the union of tangent
spaces is already closed in the ambient space.

TangentVariety(X)

PatchIndex RngIntElt Default : 0
The scheme X must be affine or ordinary projective. If X is projective, the tangent
variety can be computed projectively but it is usually quicker to compute the result
for an affine patch and then take the projective closure. If the parameter PatchIndex
is set to i > 0 then in the projective case the function will do this, using the ith
standard affine patch (see AffinePatch on page 3521). This will give the correct
result as long as no component of X lies in the hyperplane complement of the patch.

IsInTangentVariety(X,P)

The computation of the full tangent variety can be quite time consuming except in
small dimensional ambient spaces. If the dimension of the ambient space is n, it
is effectively calculated as the image of a subscheme in a 2n-dimensional ambient
under projection down to X’s ambient space. However, this call gives a much faster
way of testing if a particular point P in the ambient space lies in the tangent variety
of the scheme X when X is projective.

Example H112E49

> P<x,y,z,t> := ProjectiveSpace(RationalField(),3);

> X := Scheme(P,[x*y+z*t,x^2-y^2+2*z^2-4*t^2]);

> Dimension(X);

1

> time TangentVariety(X);

Scheme over Rational Field defined by

x^8 + 4*x^6*y^2 + 25/4*x^6*z^2 - 25/2*x^6*t^2 + 44*x^5*y*z*t + 6*x^4*y^4 +

25/4*x^4*y^2*z^2 - 25/2*x^4*y^2*t^2 + 27/2*x^4*z^4 - 193/8*x^4*z^2*t^2 +
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54*x^4*t^4 + 88*x^3*y^3*z*t + 275/2*x^3*y*z^3*t - 275*x^3*y*z*t^3 +

4*x^2*y^6 - 25/4*x^2*y^4*z^2 + 25/2*x^2*y^4*t^2 - 67/2*x^2*y^2*z^4 +

2025/4*x^2*y^2*z^2*t^2 - 134*x^2*y^2*t^4 + 11*x^2*z^6 + 22*x^2*z^4*t^2 -

44*x^2*z^2*t^4 - 88*x^2*t^6 + 44*x*y^5*z*t - 275/2*x*y^3*z^3*t +

275*x*y^3*z*t^3 + 50*x*y*z^5*t + 200*x*y*z^3*t^3 + 200*x*y*z*t^5 + y^8 -

25/4*y^6*z^2 + 25/2*y^6*t^2 + 27/2*y^4*z^4 - 193/8*y^4*z^2*t^2 + 54*y^4*t^4

- 11*y^2*z^6 - 22*y^2*z^4*t^2 + 44*y^2*z^2*t^4 + 88*y^2*t^6 + 2*z^8 +

16*z^6*t^2 + 48*z^4*t^4 + 64*z^2*t^6 + 32*t^8

Time: 0.440

> time TangentVariety(X: PatchIndex := 4);

Scheme over Rational Field defined by

x^8 + 4*x^6*y^2 + 25/4*x^6*z^2 - 25/2*x^6*t^2 + 44*x^5*y*z*t + 6*x^4*y^4 +

25/4*x^4*y^2*z^2 - 25/2*x^4*y^2*t^2 + 27/2*x^4*z^4 - 193/8*x^4*z^2*t^2 +

54*x^4*t^4 + 88*x^3*y^3*z*t + 275/2*x^3*y*z^3*t - 275*x^3*y*z*t^3 +

4*x^2*y^6 - 25/4*x^2*y^4*z^2 + 25/2*x^2*y^4*t^2 - 67/2*x^2*y^2*z^4 +

2025/4*x^2*y^2*z^2*t^2 - 134*x^2*y^2*t^4 + 11*x^2*z^6 + 22*x^2*z^4*t^2 -

44*x^2*z^2*t^4 - 88*x^2*t^6 + 44*x*y^5*z*t - 275/2*x*y^3*z^3*t +

275*x*y^3*z*t^3 + 50*x*y*z^5*t + 200*x*y*z^3*t^3 + 200*x*y*z*t^5 + y^8 -

25/4*y^6*z^2 + 25/2*y^6*t^2 + 27/2*y^4*z^4 - 193/8*y^4*z^2*t^2 + 54*y^4*t^4

- 11*y^2*z^6 - 22*y^2*z^4*t^2 + 44*y^2*z^2*t^4 + 88*y^2*t^6 + 2*z^8 +

16*z^6*t^2 + 48*z^4*t^4 + 64*z^2*t^6 + 32*t^8

Time: 0.040

> time IsInTangentVariety(X,P![1,2,3,4]);

false

Time: 0.000

112.15.2 Secant Varieties
For a scheme X in affine or ordinary projective space over a field, the secant variety SX is
a subscheme of the ambient space whose set of closed points is the closure of the union of
all lines joining distinct pairs of closed points of X (secants). Again, we do not worry if the
SX that we construct is necessarily a reduced scheme or not. Note that the union of all
secants is not necessarily a closed subset of the ambient space even when X is projective.

SecantVariety(X)

PatchIndex RngIntElt Default : 0
The scheme X must be affine or ordinary projective. In the projective case we con-
struct SX by taking the projective closure of the result for an appropriate affine
patch (intersecting every component of X). For simplicity, we currently only con-
sider standard affine patchs so the function will fail for X projective if it has compo-
nents lying in every standard hyperplane. As for TangentVariety, if the parameter
PatchIndex is set to i > 0 then the ith standard affine patch will be the one used
and this saves a little time, avoiding a search. Effectively, the computation con-
sists of finding the image of a subscheme in a projection from a 2n + 1 dimensional
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ambient space down to the (n dimensional) ambient space of X and can be quite
lengthy.

IsInSecantVariety(X,P)

Again as in the tangent variety case, if the scheme X is projective, this call gives a
much faster way of testing if a given ambient point P lies in SX than computing the
whole of SX with SecantVariety. To be precise, this call actually tells you whether
or not P lies in the union of secants rather than its closure SX. Additionally, affine
patchs are not used, so the above restriction on validity doesn’t apply.

Example H112E50

> P<a,b,c,d,e> := ProjectiveSpace(RationalField(),4);

> X := Scheme(P,[a*d + c*e, a*c + d*e,

> a^2 - e^2, c^2*e - d^2*e,

> b^2 + c*d + e^2]); // union of 3 irreducible curves

> Dimension(X);

1

> time SecantVariety(X : PatchIndex := 2);

Scheme over Rational Field defined by

a^4*b^2 + a^4*e^2 - a^3*c^2*e - a^3*d^2*e + a^2*b^4 + 2*a^2*b^2*c*d +

1/4*a^2*c^4 + 1/2*a^2*c^2*d^2 + 1/4*a^2*d^4 - a^2*e^4 + a*c^2*e^3 +

a*d^2*e^3 - b^4*e^2 - 2*b^2*c*d*e^2 - b^2*e^4 - 1/4*c^4*e^2 -

1/2*c^2*d^2*e^2 - 1/4*d^4*e^2

Time: 26.890

> Dimension($1);

3

> time IsInSecantVariety(X,P![0,1,0,-3,0]);

true

Time: 0.000

112.15.3 Isomorphic Projection to Subspaces
The aim of the functions here is to try to find embeddings of projective schemes which lie
in high-dimensional ambient spaces into lower dimensional spaces via projection.

Let X be a scheme in ordinary projective space that is assumed to be reduced but not
necessarily irreducible or non-singular, d the dimension of X and n the dimension of its
ambient space P . The conditions imply that the tangent variety and secant variety of X
are finite unions of subschemes of dimension at most 2d + 1 (cf [Har77] IV.3), so while
n > 2d + 1, we can find points in P lying in neither of these, unless possibly the base field
is a finite field. For such a point, projection down to a hyperplane gives an isomorphism
of X to its image (cf. op. cit.) and we can continue projecting down one dimension at a
time until n = 2d + 1.

In fact, the tangent and secant varieties of the image of X will be their images under
the projection also, which induces a finite map on them (it’s quasi-finite since the inverse
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image of a point in the image hyperplane is a line through the projecting point pt, which
any (closed) subscheme not containing pt must intersect finitely). Hence their images
have the same dimensions. If the maximum of these dimensions is tsd ≤ 2d + 1 we can
actually project down to a subspace of dimension tsd. Further, the fact that the tangent
and secant images correspond under projection shows that if we find a linear change of
variables for the coordinates of P , (x1, . . . , xn)→ (y1, . . . , yn), such that y1, . . . , ytsd are a
set of Noether normalising variables for the defining ideal of the union of the tangent and
secant varieties in the coordinate ring of P , then we can project X isomorphically down
to the tsd dimensional linear subspace ytsd+1 = 0, . . . , yn = 0 directly.

This would be the most elegant solution. However, in practise it involves computing
the full tangent and secant varieties which can be extremely time-consuming once we are
in dimensions above around 3 or 4. By contrast, checking if a random point of P lies in the
secant or tangent variety is reasonably fast. Therefore, we choose to follow the method of
picking random points to project down one dimension at a time and finish when we reach
dimension 2d + 1 (when the secant variety generally fills the ambient space anyway).

IsomorphicProjectionToSubspace(X)

Verbose IsoToSub Maximum : 1
As described above, this function projects the scheme X isomorphically down to
a linear subspace of its ambient space P of dimension 2d + 1, if 2d + 1 < n. In
the case of finite base fields or infinite ones of small characteristic, the process may
stop before reaching this dimension but this should be very rare (difficulties finding
random points outside the secant/tangent varieties). The return values consist of
the image scheme, with the subspace as its ambient space, and the explicit map
taking X to this image.

EmbedPlaneCurveInP3(C)

Verbose EmbCrv Maximum : 1
This function embeds a plane curve C as a non-singular projective curve in ordinary
2- or 3-dimensional projective space over the base field. This is effected by first
using the function field machinery to give a non-singular projective embedding and
then projecting down to a 3-dimensional subspace if necessary. In rare cases with
small finite base fields or in small characteristic, the final embedding may still be
into a higher-dimensional ambient space. The image scheme is returned along with
the mapping of C to it.

Example H112E51

We will embed a genus 5 plane curve into P3.

> P<x,y,z> := ProjectiveSpace(RationalField(),2);

> f := x^5+x^2*y^3+y^2*z^3+x^2*z^3-y*z^4-z^5;

> C := Curve(P,f);

> Genus(C);

5
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> SetVerbose("IsoToSub",1);

> SetVerbose("EmbCrv",1);

> C1, mp := EmbedPlaneCurveInP3(C);

Curve of genus 5.

Mapping to 4-space by canonical divisor map

Map was an embedding (non-hyperelliptic curve).

Beginning projection to 3-space.

Projection from dimension 4 to dimension 3:

Finding good projection point...

Performing projection...

Time: 0.002

> P1 := AmbientSpace(C1);

> AssignNames(~P1,["a","b","c","d"]);

> C1;

Scheme over Rational Field defined by

a^2*d^3 + a*b^2*c*d - a*b*c^2*d + a*b*d^3 + a*c^2*d^2 - a*d^4 + b^5 + b^2*c^3 -

b^2*c*d^2 - b^2*d^3 + 2*b*d^4 - c^2*d^3 - d^5,

a^2*c*d + a*b^3 + a*c^3 - a*c*d^2 + b*c*d^2 - c*d^3,

a*b^2*d - a*b*d^2 + a*c^2*d + b^3*c + c^4 - c^2*d^2,

a^3*d + a^2*c^2 - a^2*d^2 + a*b*d^2 - a*d^3 + b^2*c*d,

a^2*b - c^2*d

> Dimension(C1);

1

> ArithmeticGenus(C1);

5

> IsNonSingular(C1);

true

112.16 Linear Systems
Let f1, . . . , fr be homogeneous polynomials of some common degree d on some projective
space P defined over a field. The set of hypersurfaces

a1f1 + . . . + arfr = 0

where the ais are elements of the base field of P is an example of a linear system. This can
be thought of as being the vector space of elements (a1, . . . , ar) or even the projectivisation
of that space (since multiplying the equation above by a constant doesn’t change the
hypersurface it defines and the equation 0 = 0 doesn’t define a hypersurface at all). The
same is true if f1, . . . , fr are a finite collection of polynomials defined on some affine space.

All linear systems in Magma arise in a similar way to the above example. It doesn’t
matter whether the linear system is considered to be the collection of hypersurfaces or the
collection of homogeneous polynomials or the vector space of coefficients; Magma allows
each of these interpretations and the distinction is blurred in the text below. One should
note that linear systems in Magma are being used in a very elementary way: compare
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with the discussion on plane conics and cubics in the first two chapters of Reid’s Student
Text [Rei88].

Immediate applications of linear systems arise because of their close relationship to
maps (consider the map to an r−1-dimensional projective space defined by the polynomials
f1, . . . , fr) and their application to the extrapolation a scheme of some particular degree
from a set of points lying on it or some subscheme of it.

More ambitious interpretations, as the zero-th coherent cohomology group of an in-
vertible sheaf for instance, cannot be realised explicitly in Magma except inasmuch as
the user can understand input and output easily in these terms. There is no analysis of
linear systems on general schemes and so, in particular, no analysis of exact sequences of
cohomology groups.

We give a brief description of the way in which linear systems work in Magma, an
approach which echoes the more general definition. The complete linear system on P of
degree d is the collection of all homogeneous polynomials of degree d on P, or equivalently,
the degree d hypersurfaces they define. Magma does not consider this to be a unique
object: each time such a system is created, a completely new object will be created distinct
from any previous creation. Its major attributes include a particular basis of degree d
polynomials, which is always the standard monomial basis, and a vector space whose
vectors correspond to the coefficients of a polynomial with respect to this basis. The
vector space is called the coefficient space of the linear system. There are comparison
maps: one to produce the vector of coefficients of polynomials with respect to the given
basis and one to create a polynomial from a vector of coefficients. Most questions involving
the analysis of linear systems are translated into the linear algebra setting, solved there
and then translated back.

A general linear system corresponds to some vector subspace of the coefficient space
of a complete linear system. The correspondence between vectors of coefficients and poly-
nomials are computed at the level of the complete systems so that any two subsystems
interpret coefficient vectors with respect to the same basis of polynomials.

112.16.1 Creation of Linear Systems
In practice, linear systems are not often created explicitly by hand. Typically, the complete
linear system of all hypersurfaces of a given degree is created and then restricted by the
imposition of geometrical conditions. For example, such a condition could require that all
hypersurfaces pass through a particular point.

The creation methods below are split into three classes: (i) explicit initial creation
methods; (ii) methods of imposing geometrical conditions; and (iii) creation of subsystems
by nominating specific technical data calculated in advance by the user.

112.16.1.1 Explicit Creation
Initially, we present three methods by which a linear system can be created. The complete
linear system of degree d whose sections are all monomials of that degree has a special
creation function. Alternatively, a sequence of monomials of some common degree can be
specified to generate the sections of a linear system. The third constructor is useful for
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calculating the images of maps and has been seen before: given a scheme S and a map f
it calculates the linear system of hypersurfaces which contain f(S).

LinearSystem(P,d)

The complete linear system on the affine or projective space P of degree d. In the
projective case, this is the space of all homogeneous polynomials of degree d on P ,
whereas in the affine case it includes all polynomials of degree no bigger than d.
The integer d must be strictly positive.

LinearSystem(P, d)

The complete linear system on the affine or projective space P of multi-degree d.
The length of d must be the number of gradings of P , i.e. one degree for each
grading. In the projective case, this is the space of all homogeneous polynomials of
degree d on P , whereas in the affine case it includes all polynomials of degree no
bigger than d. The integers in d must be strictly positive.

LinearSystem(P,F)

If P is a projective space and F is a sequence of homogeneous polynomials all of the
same degree defined on P , or if P is an affine space and F is a sequence of polynomials
defined on P this returns the linear system generated by these polynomials. If the
polynomials in F are linearly independent they will be used as a basis of the sections
of the resulting linear system, otherwise a new basis will be computed.

MonomialsOfWeightedDegree(X, D)

Return the monomials in the coordinate ring of the ambient of X having degree D[i]
with respect to the ith grading of the ambient of X.

Example H112E52

In this example we construct two linear systems on a projective plane. Although they are created
in slightly different ways, Magma recognises that they are the same. It does the computation as
a subspace equality test in the corresponding ‘coefficient spaces’.

> P<x,y,z> := ProjectiveSpace(Rationals(),2);

> L := LinearSystem(P,1);

> K := LinearSystem(P,[x+y,x-y,z+2*z+3*y]);

> L eq K;

true

ImageSystem(f,S,d)

The linear system on the codomain of the map of schemes f consisting of degree d
hypersurfaces which contain f(S). An error is reported if the scheme S does not lie
in the domain of f .
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Example H112E53

This example demonstrates how one can use an intrinsic based on linear systems, ImageSystem,
to find the equations of images of maps. The point is that sometimes the usual Gröbner basis
can be very difficult, so if one is interested in the equations of low degree then the linear algebra
computation might be more convenient.
The curve C has one singularity analytically equivalent to the cusp u2 = v5 so is well-known to
have genus 4.

> Q := RationalField();

> P<x,y,z> := ProjectiveSpace(Q,2);

> C := Curve(P,x^5 + y^4*z + y^2*z^3);

The canonical embedding of C is therefore given by four conics having a common tangent with
the curve at its singularity.

> P3<a,b,c,d> := ProjectiveSpace(Q,3);

> phi := map< P -> P3 | [x^2,x*y,y^2,y*z] >;

Unless C is hyperelliptic, its canonical image will be the complete intersection of a conic and a
cubic in P3.

> IC2 := Image(phi,C,2);

> IC3 := Image(phi,C,3);

> X := Intersection(IC2,IC3);

> Dimension(X);

1

> IsNonsingular(X);

true

> MinimalBasis(X);

[ a*c - b^2, a^2*b + c^2*d + d^3 ]

In this case the Gröbner basis ofX has six elements so it is not so helpful for human comprehension.
(Compare this with [Hartshorne, IV, Example 5.2.2].)

112.16.1.2 Geometrical Restrictions
Consider the following example. Suppose that L is a linear system on the projective plane
whose sections are generated by the monomials x2, xy, yz and let p = (1 : 0 : 0). The
phrase ‘one imposes the condition on sections of L that they pass through the point p’
refers to the construction of the subsystem of L, all of whose hypersurfaces pass through
p. Explicitly, this involves solving the linear equation in a,b,c obtained by evaluating the
equation

ax2 + bxy + cyz = 0

at the point p. In this example, the equation is a = 0 and the required subsystem is the
one whose sections are generated by xy and yz.

The functions described in this section all determine a linear subsystem of a given linear
system by imposing conditions on the sections of that system.
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LinearSystem(L,p)

LinearSystem(L,S)

Given a point p or a sequence S of points, create the subsystem of the linear system
L comprising those hypersurfaces of L which pass through p or the points of S.

LinearSystem(L,p,m)

Create the subsystem of the linear system L comprising hypersurfaces which pass
through the point p with multiplicity at least m.

Example H112E54

In this example we make some subsystems of linear systems by imposing conditions at points.
In the first example, we construct the family of all curves having singularities with prescribed
multiplicities at prescribed points. See Chapter 114 for functions which apply to curves.

> P<x,y,z> := ProjectiveSpace(Rationals(),2);

> L := LinearSystem(P,6);

> p1 := P ! [1,0,0];

> p2 := P ! [0,1,0];

> p3 := P ! [0,0,1];

> p4 := P ! [1,1,1];

> L1 := LinearSystem(L,p1,3);

> L2 := LinearSystem(L1,p2,3);

> L3 := LinearSystem(L2,p3,3);

> L4 := LinearSystem(L3,p4,2);

> #Sections(L4);

7

> C := Curve(P,&+[ Random([1,2,3])*s : s in Sections(L4) ]);

> IsIrreducible(C);

true

> Genus(C);

0

In other words, L4 parametrises a six-dimensional family of rational plane curves. (At least, the
general element of L4 is the equation of a rational plane curve — there are certainly degenerate
sections which factorise so don’t define an irreducible curve at all.) It would be nice to be able
to parametrise one of these curves. The problem is that we need to choose a general one in order
that it be irreducible, but on the other hand we have very little chance of finding a rational point
of a general curve. However, since this family is nice and big, we can simply impose another point
condition on it yielding a rational point on each of the restricted elements.

> p5 := P ! [2,1,1];

> L5 := LinearSystem(L4,P![2,1,1]);

> C := Curve(P,&+[ Random([1,2,3])*s : s in Sections(L5) ]);

> IsIrreducible(C);

true

> Genus(C);

0
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> L<u,v> := ProjectiveSpace(Rationals(),1);

> phi := Parametrization(C, Place(C!p5), Curve(L));

> Ideal(Image(phi)) eq Ideal(C);

true

To illustrate another feature of imposing point conditions on linear systems, we use a point that is
not in the base field of the ambient space. Linear systems on an ambient spaces are defined over
its base field, so nonrational points impose conditions as the union of their Galois conjugates.

> A<x,y> := AffineSpace(FiniteField(2),2);

> L := LinearSystem(A,2);

> L;

Linear system on Affine Space of dimension 2 Variables : x, y

with 6 sections: 1 x y x^2 x*y y^2

> k1<w> := ext< BaseRing(A) | 2> ;

> p := A(k1) ! [1,w];

> p;

(1, w)

> LinearSystem(L,p);

Linear system on Affine Space of dimension 2

Variables : x, y

with 4 sections:

x^2 + 1

x*y + y

x + 1

y^2 + y + 1

> k2<v> := ext< BaseRing(A) | 3> ;

> q := A(k2) ! [1,v];

> LinearSystem(L,q);

Linear system on Affine Space of dimension 2

Variables : x, y

with 3 sections:

x^2 + 1

x*y + y

x + 1

Note the minimal polynomial of the y coordinate of the point (1, w) is of degree 2 so is visible in
the restricted linear system. On the other hand, v is of order 3 so it imposes more conditions on
the linear system.

LinearSystem(L,X)

The subsystem of the linear system L comprising elements of L which contain the
scheme X. The sections of this linear system is equal to the polynomials of the
defining ideal of X whose homogeneous degree is the same as that of L.
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LinearSystemTrace(L,X)

The trace of the linear system L on the scheme X which lies in the ambient space
of L. This merely simulates the restriction of the linear system L on X by taking
the sections of L modulo the equations of X. The result is still a linear system on
the common ambient space.

Example H112E55

In this example, we restrict the linear system of cubics in space to a scheme, which is in fact a
twisted cubic curve. (The intrinsic Sections is defined in Section 112.16.2.2.)

> P<x,y,z,t> := ProjectiveSpace(Rationals(),3);

> L := LinearSystem(P,3);

> X := Scheme(P,[x*z-y^2,x*t-y*z,y*t-z^2]);

> #Sections(L);

20

> L1 := LinearSystemTrace(L,X);

> #Sections(L1);

10

Taking the sections of L modulo the equations of X reduces the dimension of the space of sections
by 10. Of course, there is a choice being made about which particular trace sections to use —
in the end, the computation is that of taking a complement in a vector space of some vector
subspace.

Since we recognise this scheme X as the image of a projective line, we can confirm that the result
is correct. We make a map from the projective line to the space P which has image X. Then we
check that the pullback L and L1 are equal on the projective line. In fact, since the linear system
embedding the line is the complete system of degree 3, and L comprises degree 3 hypersurfaces
on P , both pullbacks should give the complete linear system on the line of degree 3× 3 = 9. (The
intrinsic Pullback is defined in Section 112.16.3.)

> P1<u,v> := ProjectiveSpace(BaseRing(P),1);

> phi := map< P1 -> P | [u^3,u^2*v,u*v^2,v^3] >;

> Ideal(phi(P1)) eq Ideal(X);

true

> Pullback(phi,L) eq Pullback(phi,L1);

true

> Pullback(phi,L1);

Linear system on Projective Space of dimension 1

Variables : u, v

with 10 sections:

u^9 u^8*v u^7*v^2 u^6*v^3 u^5*v^4 u^4*v^5 u^3*v^6 u^2*v^7 u*v^8 v^9



3574 ALGEBRAIC GEOMETRY Part XVI

112.16.1.3 Explicit Restrictions

LinearSystem(L,F)

The subsystem of the linear system L generated by the polynomials in the sequence
F . An error results if the polynomials of F are not already sections of L. As before,
the polynomials in F are used as a basis of the sections of the resulting linear system
provided they are linearly independent, otherwise a new basis is computed.

LinearSystem(L,V)

The subsystem of the linear system L determined by the subspace V of the complete
coefficient space of L. It is an error to call this if V is not a subspace of the coefficient
space of L.

112.16.2 Basic Algebra of Linear Systems
This section presents functions for the following tasks: (i) assessing properties of the data
type; (ii) geometrical properties of linear systems; (iii) linear algebra operations.

112.16.2.1 Tests for Linear Systems

Ambient(L)

AmbientSpace(L)

The projective space on which the linear system L is defined.

L eq K

Returns true if and only if the linear systems L and K are equal if considered as
linear subsystems of some complete linear system. An error results if L and K lie
in different complete linear systems.

IsComplete(L)

Returns true if and only if the linear system L is the complete linear system of
polynomials of some degree.

IsBasePointFree(L)

IsFree(L)

Returns true if and only if the linear system L has no base points.
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112.16.2.2 Geometrical Properties

Sections(L)

A sequence whose elements form basis of the sections of the linear system L. By def-
inition, this is a maximal set of linearly independent polynomials which are elements
of L.

Random(LS)

If the base field of LS admits random elements then this returns a random element
of the space of sections in the linear system LS. If the base field is the rational field,
then a section having small random rational coefficients is defined. Otherwise, if
there is no random element generator for the base field, the zero section is returned.

Degree(L)

The degree of the sections of the linear system L.

Dimension(L)

The projective dimension of the linear system L. This is the maximal number of
linearly independent sections of L minus 1.

BaseScheme(L)

The base scheme of the linear system L. This is simply the scheme defined by the
sections of L. This function does not perform any tests on this scheme; it might be
empty for example.

BaseComponent(L)

The hypersurface common to all the elements of the linear system L.

Reduction(L)

The linear system L with its codimension 1 base locus removed. In other words, the
linear system defined by the sections of L after common factors are removed.

Example H112E56

If one tries to impose too many point conditions on a linear system, the general elements will
no longer be irreducible. From a quick genus calculation one might think that it was possible to
impose singularities on multiplicities 2, 3, 4 on projective curves of degree 6 to reveal rational
curves — indeed g = 10− 1− 3− 6 = 0 if the resulting curves are irreducible.

> P<x,y,z> := ProjectiveSpace(Rationals(),2);

> L := LinearSystem(P,6);

> p1 := P ! [1,0,0];

> p2 := P ! [0,1,0];

> p3 := P ! [0,0,1];

> L1 := LinearSystem(L,p1,4);

> L2 := LinearSystem(L1,p2,3);
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> L3 := LinearSystem(L2,p3,2);

> Sections(L3);

[ x^2*y^3*z, x^2*y^2*z^2, x^2*y*z^3, x^2*z^4, x*y^3*z^2,

x*y^2*z^3, x*y*z^4, y^3*z^3, y^2*z^4 ]

> BaseComponent(L3);

Scheme over Rational Field defined by z

But notice that every section is divisible by z. So the curve z = 0 is in the base locus of this linear
system, that is, it is contained in every curve in the linear system L3. The intrinsic BaseComponent
identifies this component. The intrinsic Reduction creates a new linear system by removing this
codimension 1 base locus, as is seen below. First, however, we look at the complete set of prime
components of the base scheme and see that, while there is only one codimension 1 component
which we already know, there is another component in higher codimension. When we reduce to
remove the base component, this other piece of the base scheme remains, and other codimension
2 components also appear.

> MinimalPrimeComponents(BaseScheme(L3));

[

Scheme over Rational Field defined by

z,

Scheme over Rational Field defined by

x

y

]

> L4 := Reduction(L3);

> Sections(L4);

[ x^2*y^3, x^2*y^2*z, x^2*y*z^2, x^2*z^3, x*y^3*z, x*y^2*z^2,

x*y*z^3, y^3*z^2, y^2*z^3 ]

> MinimalPrimeComponents(BaseScheme(L4));

[

Scheme over Rational Field defined by

x

y,

Scheme over Rational Field defined by

x

z,

Scheme over Rational Field defined by

y

z

]

> [ RationalPoints(Z) : Z in $1 ];

[

{@ (0 : 0 : 1) @},

{@ (0 : 1 : 0) @},

{@ (1 : 0 : 0) @}

]

The linear system L4 has sections which are visibly those of L3 but with a single factor of z
removed. It still has base locus but now that base locus comprises only points. Not surprisingly,
it is exactly the three points which we imposed on curves in the first place.
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BasePoints(L)

A sequence containing the basepoints of the linear system L if the base locus of L
is finite dimensional.

Multiplicity(L,p)

The generic multiplicity of hypersurfaces of the linear system L at the point p.

112.16.2.3 Linear Algebra

CoefficientSpace(L)

The vector space corresponding to the linear system L whose vectors comprise the
coefficients of the polynomial sections of L.

CoefficientMap(L)

The map from the polynomial ring that is the parent of the sections of the linear
system L to the coefficient space of L. When evaluated at a polynomial f , this map
will return vector of coefficients of f as a section of L.

PolynomialMap(L)

The map from the coefficient space of the linear system L to the polynomial ring
that is the parent of the sections of L. When evaluated at a vector v, this map will
return the polynomial section of L whose coefficients with respect to the basis of L
are v.

Complement(L,K)

A maximal subsystem of the linear system L which does not contain any of the
hypersurfaces of the linear system K.

Complement(L,X)

A maximal subsystem of the linear system L comprising hypersurfaces not contain-
ing X.
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Example H112E57

In this example we show to define linear systems by referring to subspaces of a coefficient space.
The explicit translation intrinsics between the linear algebra language and the linear system
language let one ‘see’ what is happening in the background. We start by defining a linear system
whose chosen sections are clearly not linearly independent.

> A<x,y> := AffineSpace(FiniteField(2),2);

> L := LinearSystem(A,[x^2-y^2,x^2,y^2]);

> VL := CoefficientSpace(L);

> VL;

KModule VL of dimension 2 over GF(2)

> W := sub< VL | VL.1 >;

> LinearSystem(L,W);

Linear system on Affine Space of dimension 2

Variables : x, y

with 1 section:

x^2

> phi := PolynomialMap(L);

> [ phi(v) : v in Basis(VL) ];

[

x^2,

y^2

]

Thus we see that Magma has chosen the obvious polynomial basis for the sections of L and
disregarded the section x2 − y2.

L meet K

Intersection(L,K)

The linear system whose coefficient space is the intersection of the coefficient spaces
of the linear systems L and K. An error is reported unless L and K lie in the same
complete linear system.

X in L

Returns true if and only if the scheme X occurs among the hypersurfaces comprising
the linear system L.

f in L

Returns true if and only if the polynomial f is a section of the linear system L.
That is, true if and only if f is in the linear span of the basis of sections defining
L.

K subset L

IsSubsystem(L,K)

Returns true if and only if the coefficient space of the linear system K is contained
in that of the linear system L. An error is reported if L and K do not lie in a
common linear system.
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112.16.3 Linear Systems and Maps
The sequence of sections of a linear system may be used to construct a map from the projec-
tive space on which the sections are defined to another having the appropriate dimension.
This is done directly using the map constructor as in Section 112.14. For example, if L is
a linear system on some projective space P then the corresponding map can be created as
follows.

> map< P -> Q | S >
> where Q is ProjectiveSpace(BaseRing(P),#S-1)
> where S is Sections(L);

There is not a proper inverse to this operation: there is no reason why a map should be
determined by linearly independent polynomials. However, the system determined by the
polynomials defining a map is still important. It is sometimes called the homoloidal system
of the map.

Pullback(f,L)

The linear system f∗L on the domain of the map of schemes f where L is a linear
system on the codomain of f . This requires care when f is not a regular map:
it really produces the system of homaloids, that is, the substitution of the map
equations into the linear system’s sections.

112.17 Divisors

This section contains functionality for working with divisors on varieties (integral schemes
defined over a field) of dimension greater than one. Currently, divisors can only be created
on projective schemes X and there is also a restriction that X is ordinary projective for
many of the less formal intrinsics that rely on the coherent sheaf code. In a number of
places it is also required that a divisor D is Cartier (always true if X is non-singular),
which we currently cannot check. There are also a number of intrinsics that are specific
to surfaces.

Integral divisors are represented as differences of effective divisors, which are represented
as subschemes of the scheme they live on. Factorisation into multiples of irreducibles can
also be performed and the result is stored once calculated. It is also possible to work with
Q-divisors. These are represented internally as factorisations with rational multiplicity of
components.

The package of divisor functions is at and early stage and a number of the intrinsics
are not as general as they could be and/or could be made more efficient. However, it is
useful functionality that seems worth exporting now. There is much further work still to
be done.
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112.17.1 Divisor Groups
As for curves, there is a divisor group object associated to a variety X, which is the parent
of all divisors on X. It is of type DivSch.

DivisorGroup(X)

The divisor group of variety X.

Variety(G)

The variety of the divisor group G.

G1 eq G2

True if and only if the divisor groups G1 and G2 are for the same variety.

112.17.2 Creation Of Divisors
Divisors are of type DivSchElt. Internally, an integral, effective divisor D on variety X is
stored as an ideal which defines D as a subscheme of X. A general divisor is represented
internally in partially factored form as a list of pairs of ideals and rational multiplicities
[〈Ii, mi〉] which represents the Q-rational (integral, if all mi are integers) divisor

∑
i mi ∗

D(Ii), where D(Ii) is the effective divisor on X defined by the ideal Ii. An integral, effective
divisor may also have a factorisation stored. The internal factorisation can change over
time with the Ii being decomposed into products of larger ideals. When the Ii are all
prime ideals, we say that the factorisation is a prime factorisation of D.

This section contains the basic creation functions for divisors.

Divisor(X,f)

Divisor(X,f)

Divisor(X,f)

These create the integral divisor on X defined by a single global element f . In
the first two cases, f is an element of the function field (or the field of fractions of
the coordinate ring of) the projective ambient of X. The divisor is non-effective
(unless it is zero): the divisor of zeroes of f minus its divisor of poles. In the last
case f should be a homogeneous polynomial in the coordinate ring of the ambient
and the divisor is the effective divisor defined by the subscheme of X whose ideal is
generated by the ideal of X and f .

Divisor(X,Q)

Divisor(X,Y)

Divisor(X,I)

CheckSaturated BoolElt Default : false

CheckDimension BoolElt Default : false

UseCodimensionOnePart BoolElt Default : false
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These three intrinsics define an integral, effective divisor on projective variety X
defined by an ideal or subscheme. For the first, Q is a sequence of elements in the
coordinate ring of X and it is equivalent to passing the ideal generated by the ideal
of X and Q. For the second, Y is a subscheme of X that should define an effective
divisor on X. For the third, I is an ideal in the coordinate ring of the ambient of
X, whose saturation J should contain the ideal of X. The effective divisor is given
by the closed subscheme of X whose ideal is J .

CheckSaturated can be set to true in the third case if it is known that I is
already saturated or in the second case if it is known that the ideal of Y is already
saturated. CheckDimension can be set to true in any of the cases if it is known that
the subscheme defining the divisor is of pure codimension 1 in X. Otherwise this
condition is checked with the following exception. In the third case, if parameter
UseCodimensionOnePart is set to true the non-codimension 1 part of the ideal is
ignored in creating the divisor.

HyperplaneSectionDivisor(X)

Creates a divisor given by a hyperplane section of projective variety X.

ZeroDivisor(X)

The zero divisor on variety X.

CanonicalDivisor(X)

A canonical divisor on variety X. X must be ordinary projective and should be a
Gorenstein scheme for this to give a correct result. It uses the canonical sheaf on X
and the next intrinsic.

SheafToDivisor(S)

S is a coherent sheaf that should be invertible (locally free, rank 1) on variety
X. S is then isomorphic to L(D) for a (Cartier) divisor D (defined up to rational
equivalence) on X. Returns such a divisor D which is effective if possible.

RoundDownDivisor(D)

For an integral divisor D just returns D. For a non-integral (Q-rational) divisor
with a factorisation into sum of rational multiples of prime components, returns
the divisor of the integer multiple sum of primes given by rounding down all of the
original rational coefficients.

RoundUpDivisor(D)

For an integral divisor D just returns D. For a non-integral (Q-rational) divisor
with a factorisation into sum of rational multiples of prime components, returns the
divisor of the integer multiple sum of primes given by rounding up all of the original
rational coefficients.
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FractionalPart(D)

Returns D− RoundDownDivisor(D).

IntegralMultiple(D)

Finds a positive integer N such that E = N ∗D is an integral divisor. Returns E
and N . Doesn’t attempt to find the smallest possible N by analysing the full prime
factorisation of D.

112.17.3 Ideals and Factorisations
Divisors are stored in ideal or factored form as described in the introduction to the last
section. This section contains functions related to these representing structures.

Ideal(D)

Returns the defining ideal for an effective, integral divisor D.

Support(D)

The subscheme of the variety of effective Q-divisor D that gives its support.

IdealOfSupport(D)

The ideal in the coordinate ring of the ambient of the variety of the effective Q-
divisor D that defines it’s support.

SignDecomposition(D)

The decomposition of D into two effective divisors A and B such that D = A−B.
A and B are returned. Note that they are not guaranteed to be relatively prime for
this intrinsic.

IdealFactorisation(D)

Returns the current stored factorisation of D as a sequence of pairs of ideals and
rational multiplicities.

CombineIdealFactorisation(∼D)
Simplify the current ideal factorisation of D by combining terms with the same
ideal.

ComputeReducedFactorisation(∼D)

ReducedFactorisation(D)

Replace the ideal factorisation of D with an equivalent reduced factorisation where
all ideals occurring are primary. The first intrinsic just does the replacement inter-
nally. The second intrinsic also returns the result.
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ComputePrimeFactorisation(∼D)

PrimeFactorisation(D)

Replace the ideal factorisation of D with an equivalent prime factorisation where all
ideals occurring are prime. The first intrinsic just does the replacement internally.
The second intrinsic also returns the result.

Multiplicity(D,E)

The multiplicity of prime divisor E in divisor D.

112.17.4 Basic Divisor Predicates

IsZeroDivisor(D)

Returns whether D is the zero divisor.

IsIntegral(D)

Returns whether D is an integral divisor. If this isn’t immediately obvious from
the current factorisation, will convert to a prime factorisation and try to combine
terms.

IsEffective(D)

Returns whether D is an effective divisor. If this isn’t immediately obvious from
the current factorisation, will convert to a prime factorisation and try to combine
terms.

IsPrime(D)

Returns whether D is a prime divisor.

IsFactorisationPrime(D)

Returns whether the current factorisation of D is a prime factorisation (i.e. all ideals
occurring are prime).

IsDivisible(D)

Returns whether D is integral and divisible as an integral divisor by an integer
n > 1. If so, also returns the maximum such n.
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112.17.5 Arithmetic of Divisors

D1 + D2

D1 + D2

D1 + D2

D1 - D2

D1 - D2

D1 - D2

-D

Addition, subtraction and unitary minus on divisors. For addition and subtraction,
one argument may be a toric divisor whose toric variety is the variety of the scheme
divisor.

n * D

r * D

Multiplication of a divisor D by an integer n or rational number r. Note that the
multiplication by r is the only current primitive method for constructing non-integral
divisors.

D1 eq D2

Returns whether divisors D1 and D2 lie on the same variety and are equal.

112.17.6 Further Divisor Properties
More complicated predicates on divisors.

IsCanonical(D)

Returns whether D is a canonical divisor by testing whether its associated sheaf is
isomorphic to the canonical sheaf. The variety of D must be ordinary projective
here and should be Gorenstein.

IsAnticanonical(D)

Returns whether D is an anticanonical divisor by testing whether its associated
sheaf is isomorphic to the dual of the canonical sheaf. The variety of D must be
ordinary projective here and should be Gorenstein.

IsCanonicalWithTwist(D)

Returns whether D is the sum of a hypersurface divisor of degree d and a canonical
divisor by testing whether its associated sheaf is isomorphic to a twist of the canon-
ical sheaf. If so, also returns d. The variety of D must be ordinary projective here
and should be Gorenstein.
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IsPrincipal(D)

Returns whether D with variety X is a principal divisor and, if so, also returns an
element f of the function field of the ambient of X such that D = div(f). X should
be ordinary projective and D a Cartier divisor here. Uses the Riemann-Roch space
of D.

IsLinearlyEquivalent(D,E)

Returns whether two divisors D and E on variety X are linearly equivalent and, if
so, also returns an element f of the function field of the ambient of X such that
D = E + div(f). Uses IsPrincipal for the difference between the two divisors, so
X must be ordinary projective.

BaseLocus(D)

IsBasePointFree(D)

IsMobile(D)

The first intrinsic computes the base locus of the linear system |[D]| (i.e. the reduced
intersection of all effective divisors in the linear system) where [D] is the round down
of D . This uses the Riemann-Roch space of [D], which means that this divisor has
to be Cartier and the variety X of D has to be ordinary projective.

The second intrinsic returns whether this base locus is empty and the third
whether it is of codimension at least two in X (i.e. there are no common divisor
components to the full linear system). X and D obviously have to satisfy the same
conditions.

IntersectionNumber(D1,D2)

D1 and D2 are divisors on a variety X which must be of dimension 2. One of the
two divisors is assumed to be Cartier. Computes the intersection pairing number
D1.D2.

SelfIntersection(D)

The intersection number of D with itself. D and X must satisfy the conditions for
the last intrinsic.

Degree(D)

Degree(D,H)

D (resp. D and H) lies on a variety X of dimension 2. The first computes
the intersection number of D with respect to a hyperplane divisor. The sec-
ond computes the intersection number of D with H (so is just equivalent to
IntersectionNumber(D,H)).

IsNef(D)

D should be a Q-Cartier divisor on a projective surface X. Currently, it also has to
be effective. Returns whether D is a nef divisor: i.e. whether it has non-negative
intersection with all effective divisors on X.
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IsNefAndBig(D)

D and X are as above. D must be effective. Returns whether D is a nef divisor
AND has positive self-intersection.

NegativePrimeDivisors(D)

D and X again should satisfy the same conditions as in IsNef. Returns a sequence
of prime divisor components of D which have negative intersection with D.

ZariskiDecomposition(D)

D and X again should satisfy the same conditions as in IsNef. Returns a pair of
Q-divisors P and N such that D = P + N , P is nef and N has negative-definite
support (i.e. the intersection pairing on its prime components is negative definite).

112.17.7 Riemann-Roch Spaces
This section contains functions to compute and work with Riemann-Roch spaces for a
divisor D. It is always assumed that X, the variety of D, is an ordinary projective space
here. The Riemann-Roch space is the finite-dimensional subspace of the vector space
(over the basefield) of rational functions on X consisting of zero and all f 6= 0 such that
D + div(f) is an effective divisor. Thus, the Riemann-Roch space of D is the same as
the Riemann-Roch space of [D], RoundDownDivisor(D). Because the sheaf code is used
(or a slight variant for non-effective divisors), it is also required that [D] is Cartier for all
relevant intrinsics.

Sheaf(D)

The invertible sheaf corresponding to the divisor class of divisor D. If D is not
integral, its round down [D] is used. This divisor must be Cartier and its variety X
must be ordinary projective. Is effectively the same function as in the Sheaf package
when D is effective and uses a slight variant otherwise.

RiemannRochBasis(D)

RiemannRochSpace(D)

The first returns a basis of the Riemann-Roch space of the round down [D] of divisor
D (as a sequence of elements in the function field F of the ambient of D’s variety,
X). The second returns the Riemann-Roch space as an abstract vector space V over
the base field along with a map from V to F . X must be ordinary projective and
[D] Cartier. If D is effective, this is the same as using the coherent sheaf function
that computes the associated invertible sheaf and Riemann-Roch basis. If D is
non-effective a slight variant is used.



Ch. 112 SCHEMES 3587

RiemannRochCoordinates(f,D)

Returns whether f can be coerced into the function field of the ambient of D’s
variety X and whether f then lies in the Riemann-Roch space of D. If so also
returns the coordinates of f with respect to the basis of the Riemann-Roch space
returned by RiemannRochBasis(D). As usual, X must be ordinary projective and
[D], the round down of D, must be Cartier.

IsLinearSystemNonEmpty(D)

Returns whether there is an effective divisor linearly equivalent to D and, if so,
returns such a divisor. Uses the Riemann-Roch space of D. The conditions on D
and X, its variety, are as for the preceding intrinsics.

112.18 Isolated Points on Schemes
There is now experimental code to try to find isolated points of schemes in A(Q)n that
are defined by n or more equations. There is no restriction that the scheme itself must be
of dimension 0, and in many applications, there is an uninteresting (or degenerate) variety
of positive dimension, with the isolated points being the ones of interest.

The first technique to do this is to find points locally modulo some prime, at which
the Jacobian matrix is of maximal rank. A separate procedure then lifts such points via a
Newton method, and tries to identify them (via LLL) in a number field. If the degree is
known (or suspected), this information can be passed to the lifting function, and otherwise
it will try a generic method that applies LLL for degrees 3 · 2n and 4 · 2n as n increases,
expecting to catch other solutions via a factorization into a smaller field (for instance, a
degree 6 solution will show up in degree 8 as the expected minimal polynomial multiplied
by a more-or-less random quadratic one).

The running time of such a process is often dominating by the searching for local points,
and so various methods can be used to pre-condition the system. Firstly, variables which
appear as a linear monomial in one of the equations can be (iteratively) eliminated. Already
it is not clear what the best order is, so the user can specify it. In given examples, it is not
untypical for later steps to take 10 times as long due to a different choice of eliminations,
so some experimenting with this parameter can be useful. Secondly, resultants can be
used to try to eliminate more variables, perhaps concentrating on those which appear to
a small degree in the equations. By default, if a variable appears to degree 2 or less in
all the equations, a resultant step will be applied. The resulting equations can be quite
complicated (taking many megabytes to represent them), but it is still often faster to loop
over pV−1 possible local points compared to pV . The resultants can introduce extraneous
solutions, which are checked when undoing the modifications to the system of equations.
An error can occur if the variable elimination reduces the number of equations below the
dimension.

Another concern for running time is in the order of the above operations. For instance,
computing the resultants can be time-consuming in some examples, and perhaps doing so
modulo p for the primes of interest might be a superior method in some cases. A second
example is that recognising points over the number fields in question might be faster with
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a reduced system and then undoing the resultants and linear eliminations in the number
field, though the lifting might be slower in that case. The algorithm as implemented tries
to handle the general case well.

Note that the scheme given to the IsolatedPoints routines might also have components
of positive dimension, but the techniques here will only work to find the points that do
not lie on them.

LinearElimination(S)

EliminationOrder SeqEnum Default : [ ]
Given a scheme, iteratively eliminate variables that appear strictly linearly (that is,
as a monomial times a constant) in some equation. The EliminationOrder vararg
allows an ordering to be specified. The results can vary drastically when the order
is changed. The returned value is a map from the resulting scheme to the input
scheme, with an inverse.

IsolatedPointsFinder(S,P)

LinearElimination SeqEnum Default : [ ]
ResultantElimination SeqEnum Default : [ ]
FactorizationInResultant

BoolElt Default : true

Given a affine n-dimensional scheme defined over the rationals by at least n equa-
tions, and a sequence of primes, try to find liftable points of the scheme modulo the
primes. The variables given in the LinearElimination vararg will be eliminated
in that order. If this is non-empty, an automatic procedure will be applied. Sim-
ilarly with ResultantElimination. Finally, by default, computed resultants have
SquarefreeFactorization applied to them (and repeated factors removed), and
this can be turned off.

IsolatedPointsLifter(S,P)

LiftingBound RngIntElt Default : 10
DegreeBound RngIntElt Default : 32
OptimizeFieldRep BoolElt Default : false

DegreeList SeqEnum Default : [ ]
Given a affine n-dimensional scheme defined over the rationals by at least n equa-
tions, and a sequence of finite field elements giving a point (on the scheme) whose
Jacobian matrix is of maximal rank, attempt to lift the point via a Newton method
and recognise it over a number field. The function returns falseif a point was not
found, and else returns both trueand the point that was found.

The LiftingBound vararg determines how many lifting steps to use, with the
default being 10, so that approximately precision p210

is obtained. The DegreeBound
is a limit on how high of a degree of field extension to check for solutions. The method
used only checks for some of the degrees via LLL, as usually smaller degrees will
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show up in factors. The DegreeList vararg can also be used for this, perhaps when
the degree of the solution in question is known. The practical limit is likely around
50 in the degree. Finally, there is the OptimizeFieldRep boolean vararg, which
determines whether the number field obtained will have its optimised representation
computed.

IsolatedPointsLiftToMinimalPolynomials(S,P)

LiftingBound RngIntElt Default : 10
DegreeBound RngIntElt Default : 32
DegreeList SeqEnum Default : [ ]

This works as with IsolatedPointsLifter, but instead of trying to find a common
field containing all the coordinates, simply returns a minimal polynomial for each
one.

Example H112E58

This example follows an idea of Elkies to construct “large” integral points on elliptic curves. Let
X,Y,A,B be polynomials in t, and let Q(t) be quadratic. The idea is that

Q(t)Y (t)2 = X(t)3 +A(t)X(t) +B(t)

will have infinitely many specialisations with Q(t) square (via solving a Pell equation), and thus
yield, perhaps after scaling to clear denominators, integral points on the resulting curves. If the
degree of A,B is small enough compared to that of X, the resulting specialisation will be quite
notable. However, one must avoid the cases where the resulting discriminant 4A(t)3 − 27B(t)2

is zero, as these points do not yield an elliptic curve. It turns out that such points contribute a
positive-dimensional component to the solution space, and we simply want to ignore such solutions
in general.
The first case of interest is when the degrees of (X,Y,A,B) are (4, 5, 0, 1), solved by Elkies in 1988.
One way of parametrising this, taking into account possible rational changes of the t-variable to
simplify the system, is:

X(t) = t4 + t3 + x2t
2 + x1t+ x0, Q(t) = t2 + q1t+ q,0

Y (t) = t5 + y3t
3 + y2t

2 + y1t+ y0, A(t) = a0, B(t) = b1t+ b0.

Then we get 12 equations from requiring that the 0th to 11th degree coefficients of X3+AX+B−
QY 2 all vanish. It turns out that the desired solution is rational in this case, so that (almost) any
prime will suffice. The solution can then be lifted – as a final step (particular to this problem),
one would have to scale the resulting point so as to ensure that Q(t) represents squares.

> K := Rationals();

> R<a0,b0,b1,q0,q1,x0,x1,x2,y0,y1,y2,y3> := PolynomialRing(K,12);

> _<t> := PolynomialRing(R);

> X := t^4+t^3+x2*t^2+x1*t+x0; Y := t^5+y3*t^3+y2*t^2+y1*t+y0;

> Q := t^2+q1*t+q0; A := a0; B := b1*t+b0;

> L := X^3+A*X+B-Q*Y^2;
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> COEFF:=[Coefficient(L,i) : i in [0..11]];

> S := Scheme(AffineSpace(R),COEFF);

For this example, we simply call IsolatedPointsFinder directly. Alternatively, we could first use
LinearElimination if desired.

> PTS:=IsolatedPointsFinder(S,[13]); PTS; // 13 is a random choice

[* [ 11, 1, 7, 6, 3, 1, 6, 11, 0, 3, 4, 2 ] *]

> b, sol := IsolatedPointsLifter(S,PTS[1]); sol;

(216513/4096, -3720087/131072, 531441/8192,

11/4, 3, 311/64, 61/8, 9/2, 715/64, 165/16, 77/16, 55/8)

> _<u>:=PolynomialRing(Rationals());

> X := Polynomial([Evaluate(c,Eltseq(sol)) : c in Coefficients(X)]);

> Y := Polynomial([Evaluate(c,Eltseq(sol)) : c in Coefficients(Y)]);

> Q := Polynomial([Evaluate(c,Eltseq(sol)) : c in Coefficients(Q)]);

> A := Evaluate(A,Eltseq(sol));

> B := Polynomial([Evaluate(c,Eltseq(sol)) : c in Coefficients(B)]);

> assert X^3+A*X+B-Q*Y^2 eq 0;

> Q; // note that Q does not represent any squares, but 2*Q(1/2)=9

u^2 + 3*u + 11/4

> B; // also need to clear 2^17 from denominators

531441/8192*u - 3720087/131072

> POLYS := [2^7*X, 2^9*Y, 2^3*Q, 2^14*A, 2^21*B]; // 2^21 in each term

> [Evaluate(f,u/2) : f in POLYS];

[

8*u^4 + 16*u^3 + 144*u^2 + 488*u + 622,

16*u^5 + 440*u^3 + 616*u^2 + 2640*u + 5720,

2*u^2 + 12*u + 22,

866052,

68024448*u - 59521392

]

As noted by Elkies, one can clean up the final form of the solution if desired, via rational trans-
formations of the u-variable. Since Q(1) = 2 + 12 + 22 = 36, the theory of the Pell equation tells
us that there are infinitely many integers u such that Q(u) is integral, and these all give integral
points on a suitable elliptic curve.
There are only four choices of (X,Y,A,B) degrees that give the “largest” possible integral points
via this method. The second case, of degrees (6, 8, 1, 1) has a solution over a quartic number field,
and the third case, of degrees (8, 11, 1, 2) has a nonic solution. Both of these were found by the
methods of this section, the former taking only a couple of minutes.

Example H112E59

Another application of the isolated points rotine is to compute Belyi maps, one instance of which
is in finding solutions to a polynomial version of Hall’s conjecture, concerning how small the degree
of X(t)3 − Y (t)2 can be (if the difference is nonzero). The result is that the degree must be at
least 1 + deg(X)/2, and there are (up to equivalence) finitely many polynomials of that degree,
the count of which can be described in terms of some combinatorics, or in terms of simultaneously
conjugacy classes of cycle products of given types in a symmetric group.
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In this example, we compute the solution for the case where X has degree 12. It turns out that
there are 6 solutions in this case, lying over a sextic number field (we of course ignore “solu-
tions” with X(t)3 = Y (t)2, though similar to the previous example, they contribute a positive-
dimensional component of the solution set). The finding of a suitable local point is not particularly
easy, so we just note that

X(t) ≡ t12 + 14t10 + 14t9 + 9t8 + 6t7 + 4t6 + 7t5 + 6t4 + 15t3 + 7t2 + 3t+ 10

gives a solution modulo 17, with Y (t) being (of course) the approximate square root of X(t)3. We
shall lift this in a way that keeps the t11 as zero and the t9 and t10 coefficients as equal (these are
from preliminary transformations of the t-parameter that can be applied to the system).
As noted above, it might be easier to remove the y-variables “by hand”, and then undo the linear
eliminations in the resulting sextic number field. We chose here to work directly. A theorem of
Beckmann says that the number field we obtain can only be ramified at primes less than 36.

> SetVerbose("IsolatedPoints",1);

> XVARS := ["x"*IntegerToString(n) : n in [0..9]];

> YVARS := ["y"*IntegerToString(n) : n in [0..17]];

> P := PolynomialRing(Rationals(),28);

> AssignNames(~P,XVARS cat YVARS);

> _<t> := PolynomialRing(P);

> Y := &+[P.(i+11)*t^i : i in [0..17]]+t^18;

> X := &+[P.(i+1)*t^i : i in [0..9]]+(P.10)*t^10+t^12;

> Xpt := [GF(17)|10,3,7,15,6,7,4,6,9,14];

> pt := Xpt cat [0 : i in [11..28]];

> FF := GF(17); _<u> := PolynomialRing(FF);

> Xv := Polynomial([FF!Evaluate(c,pt) : c in Coefficients(X)]);

> Xv3 := Xv^3; Yv := u^18;

> for d:=17 to 0 by -1 do // ApproximateSquareRoot

> Yv:=Yv+Coefficient(Xv3,d+18)/2*u^d; Xv3:=Xv^3-Yv^2; end for;

> Yv^2-Xv^3; // must be degree 7 or less

8*u^7 + 11*u^5 + 10*u^4 + 3*u^3 + 3*u^2 + 11*u + 4

> pt := Xpt cat [Coefficient(Yv,d) : d in [0..17]];

> SYS := [Coefficient(X^3-Y^2,d) : d in [8..35]]; // 28 vars

> S := Scheme(AffineSpace(P),SYS);

> b, sol := IsolatedPointsLifter(S,pt : LiftingBound:=12, DegreeBound:=10);

> K := OptimisedRepresentation(Parent(sol[1]) : PartialFactorisation); K;

Number Field with defining polynomial

y^6 - y^5 - 60*y^4 - 267*y^3 - 514*y^2 - 480*y - 180 over the Rationals

> Factorization(Discriminant(Integers(K)));

[ <2, 2>, <5, 1>, <13, 1>, <29, 5> ]

An alternative of completing the computation is to first use LinearElimination before applying
IsolatedPointsLifter. In any event, the computation of the local point (which we simply
assumed to be given) would be the dominant part of the running time.

> mp := LinearElimination(S); // a few seconds to evaluate scheme maps

> rmp := // reduced map

> map<ChangeRing(Domain(mp),GF(17))->ChangeRing(Codomain(mp),GF(17))
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> | DefiningEquations(mp),DefiningEquations(Inverse(mp)) : Check:=false>;

> PT := Inverse(rmp)(Codomain(rmp)!(pt));

The IsolatedPointLifter can now be called on Domain(mp) and Eltseq(PT) (with varargs if
desired), and then the result can be mapped back to the original scheme S via mp. It is a bit hairy
to do this directly, as scheme maps do not naturally deal with finite field inputs in all cases. Due
to the way that IsolatedPointsLifter uses to choose which coordinate to try to recognise first,
it could also be slower in the end.

Example H112E60

Here is an example where finding the common field is quite difficult, but finding minimal poly-
nomials for all the coordinates is rather easy. First, a somewhat generic random scheme in P3 is
chosen, such that each variable appears no more than linearly. This has degree less than 4!, and
in the example chosen, it has degree 22. Then two local points are found modulo 5. These are
then passed to the lifting function, which returns the desired solution.

> P<w,x,y,z> := AffineSpace(Rationals(),4);

> f1 := w*x*y - 6*w*x - 7*w*y*z + w*y - 6*w*z - 3*x*y + y + 6*z;

> f2 := 10*w*x*y*z - 4*w*y*z + 2*w*y - 9*w - x*y*z - 10*x*z + y*z - 7*y;

> f3 := 10*w*x*y*z - 6*w*x*y + 8*w*x*z - 4*w*y*z - 6*w*z - x*z + 9*x + 8*y;

> f4 := 6*w*x*y*z + 3*w*x*z + 19*w*y*z - 7*w*z + 8*x*y*z - 2*x*z + 6;

> S := Scheme(P,[f1,f2,f3,f4]);

> SetVerbose("IsolatedPoints",1);

> PTS := IsolatedPointsFinder(S,[5]);

> Degree(S);

22

> b,POLYS := IsolatedPointsLiftToMinimalPolynomials

> (S,PTS[1] : DegreeBound:=22,LiftingBound:=10);

> POLYS[1];

18124035687220989600*x^22 + 62977055844929678832*x^21 +

65273363651442356128*x^20 + 81271204075826455992*x^19 +

130701369600138969680*x^18 - 285376384061267841622*x^17 -

802166956118815471654*x^16 + 253325444790327996845*x^15 -

1266591733002155213172*x^14 + 25113861844403230090*x^13 +

506530967406804631482*x^12 - 1323179973699695447463*x^11 +

1605685921502538803112*x^10 - 1318315736155520576802*x^9 +

949649129582958459958*x^8 - 527441332544171338490*x^7 +

254463684049866607512*x^6 - 100039189198577581440*x^5 +

26014411295686475856*x^4 - 3177984195514332576*x^3 -

1852946687180290752*x^2 + 971825485320437760*x - 88506566917263360

All of the four polynomials in POLYS look approximately like this, and all should determine
the same field, but it is difficult to find suitable isomorphisms between them, let alone find an
OptimisedRepresentation.
In fact, the Gröbner basis machinery is superior for this purpose. Writing one of the coordinates
in terms of the other (so as to get the field generators in terms of each other) would necessitate

quite high precision in the p-adic lifting to recognise the coefficients, likely 5214
or more (this takes
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about 5 minutes). The Gröbner basis method, which recognises one coordinate and then back-
substitutes into the resulting equations, solving them algebraically, takes only about 15 seconds.

> time V := Variety(Ideal(S),AlgebraicClosure()); // about 15s

> MinimalPolynomial(V[22][4]); // deg 22, all coeffs about 25 digits

y^22 - 70869414518205839537/14232439756116709952*y^21 -

6067542586100223488373/56929759024466839808*y^20 + [...]

[...] + 166661449939161/1779054969514588744

> MinimalPolynomial(V[22][3]); // deg 22, all coeffs about 25 digits

y^22 - 428567519465749893/68067993818308256*y^21 -

22959295396880059615/1089087901092932096*y^20 + [...]

[...] + 2469165405490441431/68067993818308256

> V[22][4]; // given simply as r22, all 22 conjugates are found

r22

> V[22][3]; // third coordinate in terms of the fourth

[output takes about 200 lines, involving 750-digit coordinates]

Another way to achieve the result is to plug the known coordinate into the system, and use
Gröbner bases (or resultants, if possible) to solve it.

> K := NumberField(POLYS[1]); // first coordinate

> _<xx,yy,zz> := PolynomialRing(K,3);

> E := [Evaluate(e,[K.1,xx,yy,zz]) : e in DefiningEquations(S)];

> Variety(Ideal(E)); // about 2 seconds

[again a rather bulky output]

Both of these uses of Gröbner bases are somewhat specific to the simplicity of the case here, and
in more difficult cases would likely be rather onerous. This example does exemplify that for a
generic variety the Gröbner basis methods should be superior. The lifting methods are largely for
cases where the problem has special structure.

Example H112E61

Here is an example from N. D. Elkies of a polynomial f(x) ∈ K(x) for which f(x) − t appears
to have Galois group M23 over K(t) (this is sometimes called the monodromy group of f). This
involves trying to find f = P3P

2
2 P

4
4 = P7P

2
8 − c for some polynomials Pd of degree d, for some

constant c. Upon suitable reductions, one gets a system of 8 variables and equations. With a few
additional considerations, the search space can be reduced a bit further. As noted by M. Zieve,
the equation should have 4 solutions, and thus likely be in a quartic field K that is an extension
of Q(

√−23). This is indeed the case.

> Q := Rationals();

> R<a2,c,b1,b2,c1,c2,c3,c4,d1,d2,d3,d4,d5,d6,d7,

> e1,e2,e3,e4,e5,e6,e7,e8> := PolynomialRing(Q,(3-1)+2+4+7+8);

> _<t> := PolynomialRing(R);

> P3 := t^3 + a2*t + a2/(26/-27); // normalisation

> P2 := t^2 + b1*t + b2;

> P4 := t^4 + c1*t^3 + c2*t^2 + c3*t + c4;

> P7 := t^7 + d1*t^6 + d2*t^5 + d3*t^4 + d4*t^3 + d5*t^2 + d6*t + d7;

> P8 := t^8 + e1*t^7 + e2*t^6 + e3*t^5 + e4*t^4 +
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> e5*t^3 + e6*t^2 + e7*t + e8;

> Q := P3 * P2^2 * P4^4 - P7 * P8^2 - c;

> S := Scheme(AffineSpace(R),Coefficients(Q));

> SetVerbose("IsolatedPoints",1);

> v:=[GF(101) | 26, 1, -26,21, -19,-27,-22,8, // known point

> -14,12,26,-3,-37,-43,-22, 44,-11,-13,-21,45,-45,32,46];

> b, pt := IsolatedPointsLifter

> (S,v : DegreeList:=[4], LiftingBound:=15, OptimizeFieldRep);

> K := Parent(pt[1]);

> DefiningPolynomial(K);

y^4 - 2*y^3 - 10*y^2 + 11*y + 36

> Factorization(Discriminant(Integers(K)));

[ <3, 1>, <23, 3> ]

The above code lifts the given point to precision 101211
, and recognises it in the field K. Next

we can compute the polynomial f(x) in question, and see that reductions (modulo 269, say) of
f(x)− i do indeed correspond to cycle structures of M23. However, to prove that this really is the
Galois group (over the function field) seems to require a more difficult monodromy calculation.
A more theoretical (topological) construction was given by P. Müller in 1995, but did not explicitly
produce f . It is also still an open question whether there is a polynomial over the rationals with
Galois group M23.

> X := P3 * P2^2 * P4^4;

> f := Polynomial([Evaluate(e,Eltseq(pt)) : e in Coefficients(X)]);

> p := 269;

> P := Factorization(p * Integers(K))[1][1]; assert Norm(P) eq p;

> _, mp := ResidueClassField(P);

> fp := Polynomial([mp(c) : c in Coefficients(f)]);

> D := [[Degree(u[1]) : u in Factorization(fp-i)] : i in [1..p]];

> Sort(SetToSequence(Set([Sort(d) : d in D | &+d eq 23])));

[

[ 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2 ],

[ 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3 ],

[ 1, 1, 1, 2, 2, 4, 4, 4, 4 ],

[ 1, 1, 1, 5, 5, 5, 5 ],

[ 1, 1, 7, 7, 7 ],

[ 1, 2, 2, 3, 3, 6, 6 ],

[ 1, 2, 4, 8, 8 ],

[ 1, 11, 11 ],

[ 2, 7, 14 ],

[ 3, 5, 15 ],

[ 23 ]

]

> load m23; // G is M23

> C := [g : g in ConjugacyClasses(G) | Order(g[3]) ne 1];

> S := Set([CycleStructure(c[3]) : c in C]);

> Sort([Sort(&cat[[s[1] : i in [1..s[2]]] : s in T]) : T in S]);

[

[ 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2 ],
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[ 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3 ],

[ 1, 1, 1, 2, 2, 4, 4, 4, 4 ],

[ 1, 1, 1, 5, 5, 5, 5 ],

[ 1, 1, 7, 7, 7 ],

[ 1, 2, 2, 3, 3, 6, 6 ],

[ 1, 2, 4, 8, 8 ],

[ 1, 11, 11 ],

[ 2, 7, 14 ],

[ 3, 5, 15 ],

[ 23 ]

]

112.19 Advanced Examples

This section contains examples of the use of the scheme machinery that are broader than
those brief illustrations of intrinsics in the main text. They show how these functions can
be used in collaboration with one another to build computer experiments which back up
mathematical intuition.

112.19.1 A Pair of Twisted Cubics
This example constructs a cluster as the intersection of two twisted cubics in space. It
uses a pair of curves whose equations are very closely related. Their union admits an
automorphism which interchanges the two curves, fixing the cluster.

Example H112E62

We start by making the two twisted cubics, C1 and C2, as the minors of a pair of 2×3 matrices. It
is clear straight away that these curves are closely related; it is a shame that we lose the “format”
of the equations, in fact. On the other hand, if one tries to make other interesting examples by
such tricks, one does not automatically come up with something so slick (and Gorenstein).

> k := Rationals();

> P<x,y,z,t> := ProjectiveSpace(k,3);

> M1 := Matrix(CoordinateRing(P),2,3,[y,t,x,t,x,z]);

> M2 := Matrix(CoordinateRing(P),2,3,[y,x,t,x,t,z]);

> C1 := Scheme(P,Minors(M1,2));

> C2 := Scheme(P,Minors(M2,2));

> Z := Intersection(C1,C2);

> MinimalBasis(Z);

[

x*t - y*z,

x*z - t^2,

x*y - t^2,

-x^2 + z*t,

-x^2 + y*t
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]

Anyone knowing about Pfaffians can have fun trying to realise these equations as the five maximal
Pfaffians of a skew-symmetric 5 × 5 matrix. Although this example is a bit degenerate, it is
reasonable to think of it as a hyperplane section of an elliptic curve of degree 5 (living in P4) so
the ideal of equations will be Gorenstein. Given the Buchsbaum–Eisenbud structure theorem for
Gorenstein codimension 3 rings, we are not surprised to see this Pfaffian format. In this example
we will settle for confirming that this scheme Z is a cluster of degree 5 and finding its support.

> IsCluster(Z);

true

> Degree(Z);

5

> IsReduced(Z);

true

> RationalPoints(Z);

{@ (1 : 1 : 1 : 1), (0 : 0 : 1 : 0), (0 : 1 : 0 : 0) @}

> HasPointsOverExtension(Z);

true

As expected, the scheme Z is zero-dimensional and has degree 5. Since it is reduced, its support
will comprise five separate points over some extension of the base field. We locate these points
by hand by considering the Gröbner basis of the ideal of Z. The last element of a lexicographical
Gröbner basis usually suggests a field extension that is relevant to the scheme. So we extend the
base field by roots of this polynomial and look for the support over that field.

> GB := GroebnerBasis(ChangeOrder(Ideal(Z),"lex"));

> GB[#GB];

z^3*t - t^4

> L<w> := ext< k | U.1^2 + U.1 + 1 > where U is PolynomialRing(k);

> RationalPoints(Z,L);

{@ (w : -w - 1 : -w - 1 : 1), (-w - 1 : w : w : 1),

(1 : 1 : 1 : 1), (0 : 1 : 0 : 0), (0 : 0 : 1 : 0) @}

> HasPointsOverExtension(Z,L);

false

The final line confirms that we have found all the points of Z. That was already clear since Z has
degree 5 and we see five points, but in other cases, especially when the cluster is not reduced, it
might not be so obvious.
Now we look at the union of the two twisted cubics.

> C := Union(C1,C2);

> C;

Scheme over Rational Field defined by

x^3 - x*y*t - x*z*t + t^3

-x*t + y*z

This curve C is a 2, 3 complete intersection, numerology that is familiar from canonical curves of
genus 4. We already know that C is not such a curve since it has two components. Indeed, we



Ch. 112 SCHEMES 3597

already know that these components are nonsingular and meet in five points. Clearly these points
must be singular points of C.

> SC := SingularPointsOverSplittingField(C);

> SC;

{ (1 : 1 : 1 : 1), (-r2 - 1 : r2 : r2 : 1), (0 : 0 : 1 : 0),

(-r1 - 1 : r1 : r1 : 1), (0 : 1 : 0 : 0) }

> Ring(Universe(SC));

Algebraically closed field with 2 variables

Defining relations:

[

r2^2 + r2 + 1,

r1^2 + r1 + 1

]

Magma has automatic Gröbner basis based machinery for working in the algebraic closure of the
rationals (the so-called D5 method). Here we see it in action. The roots that we made explicitly
when computing with Z are the new symbols r1 and r2 — they are the two conjugate roots of the
quadratic equation list as the ‘Defining relations’. Since r1 6= r2, we see that the singular points
really are the points of Z as expected.
From the definition of the matrices M1 and M2 we can see that the union and intersection of C1
and C2 should be invariant under the automorphism of P which exchanges x and t. We realise
that automorphism here and confirm what we expect by comparing various ideals.

> phi := iso< P -> P | [t,y,z,x],[t,y,z,x] >;

> IsAutomorphism(phi);

true

> Ideal(C2) eq Ideal(phi(C1));

true

> Z eq phi(Z);

true

> Ideal(Z) eq Ideal(phi(Z));

true

Note that the basic equality test ‘eq’ for schemes returns true in the penultimate line, even though
the two arguments were created independently.
The five points of Z obviously have Sym5 as their permutation group (or Sym2 × Sym3 over the
rationals). How much of that is realised by automorphisms of the union C? We try to realise
some elements of this symmetric group.

> S5 := SymmetricGroup(5);

> QL := RationalPoints(Z,L);

> rho := S5 ! [ Index(QL,phi(p)) : p in QL ];

> rho;

(1, 2)

Of course, this permutation is simply the action of the Galois group of L.

> GaloisGroup(L);

Permutation group acting on a set of cardinality 2
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(1, 2)

We make another automorphism: using C explicitly in the constructor ensures that the image of
the map is contained in C.

> psi := iso< C -> C | [x,z,y,t],[x,z,y,t] >;

> eta := S5 ! [ Index(QL,psi(p)) : p in QL ];

> eta;

(4, 5)

> G := sub< S5 | rho,eta >;

> #G;

4

Since these two permutations commute and the small collection of five points is already partitioned
by a Galois group action, this example is too simple to use Magma’s substantial group theory
machinery. But one can imagine at this stage finding complicated elements of G and realising
them by compositions of the easily recognised automorphisms ρ and η.

112.19.2 Curves in Space
In this example, we construct something that we know is an elliptic curve in space. The
point is to realise that within Magma by making a new curve of the right type and
understanding the translation between the two types, at least to some degree. Something
very similar would also works for the canonical models of curves of genus 4, although one
has to take care handling the image of the natural projection.

Example H112E63

The first thing to do is to make a curve in space and to choose a nonsingular rational point on that
curve. The question of whether or not a rational point is part of the input or part of the algorithm
is always tricky since finding good points is often the heart of a problem. That is certainly the
case here, so we do not pretend that this is a particularly powerful example.

> P<x,y,z,t> := ProjectiveSpace(Rationals(),3);

> X := Scheme(P,[x*y-z*t,x^2 + 2*z^2 - y*t]);

> Dimension(X);

1

> IsNonsingular(X);

true

> p := X ! [0,1,0,0];

Next we simply project from this given point p.

> Y,pr,q := ProjectionFromNonsingularPoint(X,p);

> bool,C := IsCurve(Y);

> bool;

true

> q := C ! q;

> q;

(0 : 1 : 0)



Ch. 112 SCHEMES 3599

> Degree(C);

3

> IsNonsingular(C);

true

> P2<a,b,c> := Ambient(C);

> C;

Curve over Rational Field defined by

a^3 + 2*a*b^2 - b*c^2

Since there was a conic (two, in fact) among the equations of the scheme X, the projection from
p is necessarily birational to a plane curve. And since p is a nonsingular point, it has a definite
rational image point on the projection which is called q above. Since we know that X has genus
1 (as an external fact) and that the projection is birational we already know that the image curve
C is the plane elliptic curve we desire. (It is interesting to try this calculation with a curve of
higher genus, like the canonical model of a curve of genus 4.)
But we have made no effort to find a good model for C. At this point we can use Magma intrinsics
to find a better model for C since we have the rational point q lying on C.

> EllipticCurve(C,q);

Elliptic Curve defined by y^2 = x^3 + 32*x over Rational Field

Mapping from: Crv: C to Elliptic Curve defined by y^2 = x^3 + 32*x over

Rational Field given by a rule

Mapping from: Elliptic Curve defined by y^2 = x^3 + 32*x over Rational Field to

Crv: C given by a rule

The result is a very nice model of an elliptic curve in Weierstraß form. The mapping types returned
by this function are not yet fully integrated Scheme maps. But this will be added to Magma in
due course, after which computations can be done on the good elliptic model and related to the
original scheme X.
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Chapter 113

COHERENT SHEAVES

113.1 Introduction
This chapter describes the Magma functionality for working with coherent sheaves on or-
dinary projective schemes. The emphasis in this initial version is on invertible sheaves and
on computing associated cohomological invariants and explicit divisor maps. Important
examples include canonical and anticanonical maps and adjunction maps on varieties of
arbitrary dimension. The tools provided in Magma enable the user to compute these in a
general and reasonably efficient way. There is also functionality for computing an invertible
sheaf corresponding to the class of an effective Cartier divisor given as a closed subscheme
as well as a basis for the Riemann-Roch space of that divisor as ambient rational func-
tions. The correspondence between divisors (or their classes) and invertible sheaves will
be expanded in later releases. A standard reference for the definition and basic properties
of coherent sheaves on Noetherian schemes is Section 5, Chapter II of [Har77].

The package is based on Magma’s functionality for graded modules over polynomial
rings and relies heavily on Gröbner basis computations. A coherent sheaf is represented
by a graded module over the coordinate ring of the ambient projective space. The key
difference between the category of sheaves and the category of modules is that a sheaf is
not represented uniquely. However, there is a unique maximal graded module representing
it, which is finitely generated (with certain provisos). For certain algorithms – computing
cohomology, for example – any module representing the sheaf may be used. However for
other calculations, such as explicit Riemann-Roch spaces or divisor maps, the full maximal
module, containing the full space of global sections of the sheaf and its small Serre twists,
is often required.

One of the basic operations, therefore, is the computation of the maximal module of
a sheaf from its initial defining module. We have tried to do this efficiently in reasonable
generality. The basic condition is that the support of the sheaf has irreducible components
all of the same non-zero dimension. This will be described in more detail in the function
descriptions that follow. The user does not have to explicitly make a call to perform the
computation, but it may be carried out in the background and the result stored by several
other functions.

A coherent sheaf S is defined by a graded module M over the polynomial ring R =
k[x0, . . . , xn] and a subscheme X of Pn = Proj(R) on which M is supported. That is,
the defining ideal I ⊆ R of X annihilates M . In some contexts, X is unimportant and it
doesn’t matter whether S is thought of as a sheaf on X or on Pn. In other cases, X plays
a role: we can test whether S is locally free as a sheaf on X or take its dual. The sheaf
S is just the coherent sheaf M̃ on X as described in Prop. 5.11, Section 5, Chapter II of
[Har77], with M considered as a graded module over the homogeneous coordinate ring of
X.
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Sheaves are of type ShfCoh. There is also a type ShfHom for homomorphisms between
sheaves supported on the same scheme X.

The algorithms used in the package are based on a number of computational commu-
tative algebra tricks well-known to the experts.

113.2 Creation Functions

The general creation function for sheaves takes a graded module representing the sheaf
and a scheme X on which it is supported. Special constructors are provided in the cases
of the structure sheaf of X and the canonical sheaf of X, when X is locally Cohen-
Macaulay and equidimensional. The user may also ask for Serre twists of a given sheaf.
Other constructions deriving new sheaves from existing sheaves will be described in later
sections.

Sheaf(M, X)

Given an ordinary projective scheme X and a module M over the coordinate ring
of the ambient of X, such that M is annihilated by the defining ideal of X, this
function returns the sheaf defined by graded module M on scheme X.

StructureSheaf(X)

StructureSheaf(X, n)

Given an ordinary projective scheme X, this function returns the structure sheaf
OX for X, which is the sheaf defined by the coordinate ring RX of X, as a module.
If the intrinsic is called with a second integer-valued argument n, the object returned
is a twisted version of the sheaf, that is, Serre’s twisting sheaf OX(n), which has
RX(n) as its associated graded module (see Section 5, Chapter II of [Har77]). These
are all invertible sheaves on X and OX(1) is the sheaf OX(H) corresponding to the
class of a hyperplane divisor H on X.

CanonicalSheaf(X)

CanonicalSheaf(X, n)

Given an ordinary projective scheme X, this function returns the canonical sheaf
KX for X. The scheme X should be an ordinary projective scheme which is equidi-
mensional and locally Cohen-Macaulay. That is, all of the primary components of
X should have the same dimension and its local rings should all be Cohen-Macaulay
rings. These conditions aren’t checked by Magma as the necessary computations
can be very expensive in general. A non-singular variety always satisfies these condi-
tions, and many singular normal varieties do also. For example, any curve or normal
surface will be equidimensional and locally Cohen-Macaulay. The stronger condition
of being arithmetically Cohen-Macaulay, can be checked by invoking the intrinsic
IsArithmeticallyCohenMacaulay with the structure sheaf of X as argument.

Under these conditions, X has a canonical sheaf KX , defined up to isomorphism,
which acts as a dualising sheaf. See Section 7, Chapter III of [Har77] and Chapter
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21 of [Eis95] for the module-theoretic background. For non-singular varieties, the
canonical sheaf is the usual one: the highest alternating power of the sheaf of Kahler
differentials. The function returns the canonical sheaf of X. It is computed from
the dual complex to the minimal free resolution of the coordinate ring of X.

If the intrinsic is invoked with an additional integer argument n, it returns the
nth Serre twist (see below) of the canonical sheaf KX(n). For a non-singular variety
of dimension d, the map into projective space corresponding to KX(d − 1) is the
important adjunction map.

Twist(S, n)

Given a sheaf S, the function returns the nth Serre twist of S, S(n) ∼= S⊗OXOX(n).
If M is a module giving S, then M(n) gives S(n).

Example H113E1

We construct some sheaves associated with the smooth cubic surface defined by x3 + y3 + z3 + t3

in P 3.

> P<x,y,z,t> := ProjectiveSpace(Rationals(),3);

> R := CoordinateRing(P);

> X := Scheme(P,x^3+y^3+z^3+t^3);

> OX := StructureSheaf(X);

We first examine the underlying graded module of the structure sheaf.

> Module(OX);

Reduced Module R^1/<relations>

Relations:

[x^3 + y^3 + z^3 + t^3]

Observe that the canonical sheaf KX of X is isomorphic to the twist OX(−1) of the structure
sheaf.

> KX := CanonicalSheaf(X);

> Module(KX);

Reduced Module R^1/<relations> with grading [1]

Relations:

[x^3 + y^3 + z^3 + t^3]

> Module(StructureSheaf(X,-1));

Reduced Module R^1/<relations> with grading [1]

Relations:

[x^3 + y^3 + z^3 + t^3]

Note that the module column weights are the negations of the Serre twist indices!

> Module(Twist(OX,-1));

Reduced Module R^1/<relations> with grading [1]

Relations (Groebner basis):
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[x^3 + y^3 + z^3 + t^3]

The equations x = z, y = t define an (exceptional) line in X. We can get its structure sheaf as
a sheaf on X using the basic Sheaf constructor. The associated invertible sheaf L(Y ) of Y as a
divisor on X can be obtained from the DivisorToSheaf intrinsic described later in the chapter.

> IY := ideal<R|[x+z,y+t]>; // ideal of line

> OY := Sheaf(QuotientModule(IY),X);

> Module(OY);

Graded Module R^1/<relations>

Relations:

[x + z],

[y + t]

> Scheme(OY);

Scheme over Rational Field defined by

x^3 + y^3 + z^3 + t^3

SheafOfDifferentials(X)

Maximize BoolElt Default : false

Given an ordinary projective scheme X, this function returns the sheaf of 1-
differentials on X, Ω1

X/k. The function computes the natural representing mod-
ule for the sheaf coming from the embedding of X in projective space (see Section
8, Chapter II of [Har77]). If the parameter Maximize is true, then the maximal
module representing this sheaf is computed and used to define it (see next section).

TangentSheaf(X)

Maximize BoolElt Default : false

For an ordinary projective scheme X, this function returns the sheaf of tangent
vectors for X. The function computes the natural representing module for these
sheaves coming from the embedding of X in projective space (see Section 8, Chap-
ter II of [Har77]). If the parameter Maximize is true, then the maximal module
representing this sheaf is computed and used to define it (see next section).

Combining either of the above intrinsics with the IsLocallyFree intrinsic, this
gives an alternative method for checking non-singularity on varieties that are known
to be (locally) Cohen-Macaulay. It is best to use the sheaf of differentials since that
is generally easier to compute. This approach can be much faster for varieties having
high codimension than the usual Jacobian method.

HorrocksMumfordBundle(P)

The projective space P should be ordinary projective 4-space P4 over a field. The
function returns the locally free rank 2 sheaf on P which represents the Horrocks-
Mumford bundle (see [HM73]). The scheme of vanishing of a general global section
of this sheaf is a two dimensional Abelian variety in P .
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113.3 Accessor Functions

The following functions provide an interface to conveniently extract the basic data from a
coherent sheaf.

Module(S)

Returns the graded module that was used to define sheaf S.

Scheme(S)

Returns the ordinary projective scheme X on which the sheaf S is defined.

FullModule(S)

Computes and returns the maximal module Mmax giving sheaf S. The nth graded
piece of Mmax is equal to the global sections of the Serre twist S(n) as a fi-
nite dimensional vector space over k, the base field of the scheme X of S. Thus
Mmax

∼= ⊕n∈ZH0(X, S(n)) as in [Har77]. Here, it is implicitly assumed that the
exact support of S on X has no irreducible components of dimension 0 and that
there are no embedded associated prime places of dimension 0. More concretely, if
M is a defining module for S with a possible non-zero finite torsion module for the
redundant maximal ideal having been divided out, then no (homogeneous) associ-
ated prime of M has dimension 1. This assumption means that the terms in the
above direct sum are 0 for n¿ 0 or equivalently that Mmax is a finitely-generated
module.

As mentioned in the introduction, a further assumption, which isn’t checked,
for the computation of Mmax is that S is equidimensional, so that M actually has
no embedded associated primes and the irreducible components of its exact support
have the same non-zero dimension. It may be possible to avoid this assumption with
more complex (and computationally heavy) code that works with an equidimensional
decomposition of the defining module, but it suffices for many cases of interest (e.g.,
sheaves with trivial annihilator on a variety or equidimensional scheme).

The method used is basically the computation of the double dual of the defining
module over an appropriate polynomial algebra A. A possible approach is to take
A as the exact “supporting” algebra k[x0, . . . , xn]/I where the polynomial ring is
the coordinate ring of the ambient of X and I is the exact annihilator of M . This
would involve stronger assumptions on the support of S and the computation of
the dualising module for this A. We choose instead to work with A as a Noether
normalisation of the above A, which means that A is a simple polynomial ring and
is its own dualising module (up to a shift in grading). Then M is re-expressed as a
module over this A, Mmax is computed as a module over A and finally is recovered
as a module over k[x0, . . . , xn] by keeping track of the multiplication maps by the
xi variables which don’t occur in A.

The module Mmax is stored so that it is only computed once.
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GlobalSectionSubmodule(S)

Given a sheaf S, this function returns the submodule of the maximal module Mmax

generated in degrees ≥ 0, that is ⊕n≥0H
0(X, S(n)).

SaturateSheaf(∼S)
Procedure to compute and store (but not return) the maximal module Mmax of the
sheaf S.

Example H113E2

The classic example of a natural module which is unsaturated (non-maximal) defining a sheaf is
the coordinate ring R of a non-projectively normal non-singular projective variety X. The ring R
defines the structure sheaf as usual, but not maximally. By definition, R isn’t integrally closed.
Its integral closure R1 is an extension ring, inheriting its natural grading and agreeing with R in
all but finitely many graded parts. In fact, R1 considered as an R-module is precisely the maximal
graded module of the structure sheaf!

Such a situation can very commonly arise when a non-singular variety is projected down isomor-
phically into a subspace of its ambient projective space. The projected down image X is then not
even linearly-normal: the degree one graded part of its coordinate ring is missing coordinates that
were eliminated in the projection. These must reoccur in the graded R-module that is computed
as the maximal module of the structure sheaf.

In the following example, X is taken as the non-singular projection into P 3 of a degree 4 rational
normal curve (which naturally lives in P 4). We can see the difference between the maximal module
of the structure sheaf and the coordinate ring using Hilbert series. In fact, they just differ by
dimension 1 in the 1-graded part, corresponding to that missing coordinate!

> P3<x,y,z,t> := ProjectiveSpace(Rationals(),3);

> X := Scheme(P3,[

> y^3 - y*z^2 - 2*y^2*t - 2*x*z*t - 3*y*z*t + z^2*t - y*t^2 + 2*z*t^2 + 2*t^3,

> x^2*z + x*z^2 + y*z^2 + 3*x*z*t + 2*y*z*t - z^2*t + y*t^2 - 2*z*t^2 - 2*t^3,

> y^2*z - y*z^2 + y^2*t - x*z*t - 4*y*z*t + z^2*t - 3*y*t^2 + 2*z*t^2 + 2*t^3,

> x*y - x*z - x*t + y*t]);

> OX := StructureSheaf(X);

> M1 := Module(OX);

> M2 := FullModule(OX);

> h1 := HilbertSeries(M1); h1;

(-t^3 + 2*t^2 + 2*t + 1)/(t^2 - 2*t + 1)

> h2 := HilbertSeries(M2); h2;

(3*t + 1)/(t^2 - 2*t + 1)

> h2-h1;

t
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113.4 Basic Constructions

The following functions give some basic constructions on sheaves.

TensorProduct(S, T)

Maximize BoolElt Default : false

TensorPower(S, n)

Maximize BoolElt Default : true

The first intrinsic gives the tensor product (over OX) of two sheaves on the same
scheme X. The second gives the nth tensor power of S if n > 0, the (−n)th tensor
power of the dual (see below) of S if n < 0 and the structure sheaf OX if n = 0.

Defining modules for these constructions are taken as the appropriate tensor
products of modules for the constituent sheaves when the parameter Maximize is
false. The user should note that this is the archetypal case where the module
constructed to define the resulting sheaf can be far from maximal, even when the
defining modules of S and T are maximal. The rank of the presentation of the
tensor power of a module rises rapidly with n. Thus, it is usually a good idea to set
Maximize to true, which means that the maximal module of the result is computed
and also used as its defining module.

Dual(S)

For the sheaf S on a scheme X, the function returns the dual sheaf HomOX (S,OX).

SheafHoms(S, T)

For S and T sheaves on the same scheme X, the function returns the sheaf H =
HomOX

(S, T ). The module defining H is Hom(Mmax, Nmax), where Mmax and Nmax

are the maximal modules of S and T . This module, MH , is the maximal module of
H.

Also returned is a map that takes a homogeneous element of MH (which can be
recovered with Module(H) or FullModule(H)) of degree d to the sheaf homomor-
phism of degree d that it represents (see the next section for information about sheaf
homomorphisms). All sheaf homomorphisms can be obtained this way.

DirectSum(S, T)

For S and T sheaves on the same scheme X, this function returns the sheaf direct
sum S ⊕ T .

Restriction(S, Y)

Check BoolElt Default : true

Given a sheaf S on a scheme X and a subscheme Y of X, the function returns the
restriction of S to Y . A check that Y is a subscheme of X will be performed only
if the parameter Check is true (the default).
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Example H113E3

We look at the well-known example of a ruling L on a (singular) projective quadric cone X in P 3.
We find the associated invertible sheaf OX(L) using the DivisorToSheaf intrinsic. The tensor
square of this sheaf is OX(2L) which is just isomorphic to the OX(1) Serre twist of the structure
sheaf, as 2L is a hyperplane section. We verify this by getting the tensor and inspection. Of
course we need to saturate the result, illustrating that the basic tensor power of maximal modules
usually does not result in a maximal module.

> P<x,y,z,t> := ProjectiveSpace(Rationals(),3);

> R := CoordinateRing(P);

> X := Scheme(P,x*y-z^2); // singular projective quadric

> IL := ideal<R|z,y>; // line y=z=0 on X

> OL := DivisorToSheaf(X,IL); // associated sheaf O(L)

We first make sure that OL is saturated.

> SaturateSheaf(~OL);

> Module(OL);

Graded Module R^2/<relations>

Relations:

[ y, -z],

[ z, -x]

> O2L := TensorProduct(OL,OL); // or TensorPower(OL,2)

> Module(O2L);

Graded Module R^4/<relations>

Relations:

[ y, 0, -z, 0],

[ 0, y, 0, -z],

[ z, 0, -x, 0],

[ 0, z, 0, -x],

[ y, -z, 0, 0],

[ z, -x, 0, 0],

[ 0, 0, y, -z],

[ 0, 0, z, -x]

Finally, we get the maximum module – just that of OX(1)!

> FullModule(O2L);

Reduced Module R^1/<relations> with grading [-1]

Relations:

[x*y - z^2]
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113.5 Sheaf Homomorphisms

This section describes some basic functionality for homomorphisms between sheaves de-
fined on the same scheme. A sheaf homomorphism is represented by a module homo-
morphism between representing modules (defining, maximal or global section modules)
for the two sheaves. Strictly, only (degree 0) homomorphisms that preserve the module
gradings should be allowed but, for flexibility, we allow “homogeneous” homomorphisms
that uniformly shift the grading by d and should be thought of as sheaf homomorphisms
from the domain sheaf to the dth Serre twist of the codomain sheaf. We then say that the
homomorphism is of degree d as for module homomorphisms.

There are some basic constructors and accessor functions, a function to “expand” a
chain of homomorphisms to a single homomorphism and image, kernel and cokernel func-
tions. The type of a sheaf homomorphism is ShfHom. Note that this is NOT a Map subtype,
so that a sheaf homomorphism doesn’t automatically inherit all of the usual map proper-
ties.

SheafHomomorphism(S, T, h)

Given sheaves S and T on the same scheme X and a module homomorphism h be-
tween M0 and N0, this function returns a sheaf homomorphism from S to T . Here
M0 is one of the defining, maximal or global section modules of S and N0 is a similar
module for T . The homomorphism h must be a homogeneous module homomor-
phism as returned by IsHomogeneous and if d is its degree then the homomorphism
returned is really one from S to T (d) in the category of OX -sheaves.

For the construction of sheaf homomorphisms see also SheafHoms.

Domain(f)

The domain of the sheaf homomorphism f .

Codomain(f)

The codomain of the sheaf homomorphism f .

Degree(f)

The degree of the sheaf homomorphism f as defined in the introduction to this
section.

ModuleHomomorphism(f)

The underlying homogeneous graded module homomorphism of the sheaf homomor-
phism f .

Kernel(f)

Given a sheaf homomorphism f , this function returns the kernel of f and its inclusion
homomorphism into the domain of f .
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Image(f)

Given a sheaf f , this function returns the image, I, of f and two sheaf homomor-
phisms g and h. If f has degree d and S, T are its domain and codomain, then I
is a subsheaf of T (d). The second return value g is the restriction of f from S to I
and the third return value h is the inclusion of I in T (d), so that g also has degree
d and h has degree 0.

Cokernel(f)

Given a sheaf homomorphism f , this function returns the cokernel of f and also the
quotient homomorphism from the codomain to it.

Strictly speaking, if f has degree d and S, T are its domain and codomain, here
we are taking f to be a homomorphism from S(d)← T rather than from S ← T (d).

Expand(hms)

If hms = [h1, . . . , hn] is a sequence of sheaf homomorphisms, then this function
returns the composition of homomorphisms h1 ∗ h2 ∗ . . . hn. The domain of h2

must be the codomain of h1 etc. and the stronger condition that the underly-
ing module homomorphisms must be composable also holds. So the domain of
ModuleHomomorphism(h2) must be the codomain of ModuleHomomorphism(h1) etc.

113.6 Divisor Maps and Riemann-Roch Spaces
As stated at the beginning of the chapter, one of our main initial aims in introducing
sheaf machinery has been to provide a way of computing the (rational) maps associated
to invertible sheaves in reasonable generality (see Section 7, Chapter 2 of [Har77]) and
similarly for effective Cartier divisors (as closed subschemes) in the form of the map or
their Riemann-Roch spaces. This section describes the main intrinsics. We hope to add
further functionality to capture the correspondence between divisors and invertible sheaves
in future releases.

DivisorMap(S)

graphmap BoolElt Default : false

Given an invertible sheaf S on the scheme X this function returns the rational map
from X into the projective space associated to S. For efficiency, the invertibility
of S is not checked, so that if the user is unsure whether a potential S actually is
invertible (ie, locally free of rank one) he should apply the IsLocallyFree intrinsic.

The rational map that is returned can be thought of as X → Proj(R) → Pr

where R is the graded k-subalgebra of the graded ring ⊕n≥0H
0(X, S⊗n) generated

by the weight 1 subspace H0(X, S) – the space of global sections of S – and the map
to Pr, where r + 1 is the dimension of the space of global sections, is that induced
by choosing a basis for the global sections. The divisor map, as usual, is only unique
up to a linear change of coordinates of the codomain. The map is defined on the
open subscheme of X where S is generated by global sections. Also returned is the
image of the map on X.
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In most cases, the map returned is a graph map of type MapSchGrph (see Sec-
tion 112.14.7). This computation naturally computes the graph of the map and,
in complicated situations, it is not particularly efficient to convert this to the more
usual MapSch which will be defined by very nasty, high degree polynomials (often
with a large base scheme) without some further specialised reduction routine. The
user can however convert to a MapSch using SchemeGraphMapToSchemeMap. In cases
when the sheaf has been constructed from a divisor using the DivisorToSheaf in-
trinsic below with the GetMax parameter true, so that a Riemann-Roch space has
been stored, a traditional MapSch is returned. If in doubt, the user can distinguish
using the Type intrinsic. Sometimes the user may still want a MapSchGrph in the
latter case (e.g. because it is maximally defined, it is good for getting the genuine
inverse image of a point/subscheme without components of the base scheme which
appear for a non-maximally defined MapSch). This can be forced by setting the
parameter graphmap to true.

The major stage of the computation is the determination of the graph of the
map. An ideal defining the graph can be written down directly from the relation
matrix of a minimal presentation of the global section submodule M0 of S, and
this ideal then only needs to be saturated with respect to an appropriate domain
variable. The submodule M0 is computed (and stored) as described earlier in the
chapter.

DivisorToSheaf(X, I)

GetMax BoolElt Default : true

RiemannRochBasis(X, I)

Given an ordinary, projective scheme X and an ideal I of the coordinate ring of the
ambient of X that defines a subscheme D of X that is an effective Cartier (locally
principal) divisor of X, this function returns the invertible sheaf corresponding to
the divisor class of D, commonly denoted L(D) (see Section 6, Chapter 2 of [Har77]).
The conditions require D to be purely of codimension 1 in X and that it is every-
where locally defined by a single equation. Again for efficiency, Magma does not
perform the computationally expensive checks to verify that D is locally principal
within X. If X is a non-singular variety, then a closed subscheme of codimension 1
is automatically Cartier.

If GetMax is true, then the maximal module of L(D) is computed and an explicit
basis for the Riemann-Roch space L(D) is computed and stored along the way.
This basis is of the form [G1/G, . . . , Gn/G], where G and the Gi are homogeneous
polynomials of some degree d on the ambient of X and the Gi/G are the usual
rational functions restricted to X.

If instead of DivisorToSheaf, the intrinsic RiemannRochBasis is called, then the
above procedure is carried out and a basis of the Riemann Roch space is returned
as the sequence of numerators [G1, . . . , Gn] and the denominator G, along with the
sheaf L(D). If L(D) has been computed from DivisorToSheaf and returned as S,
then the RiemannRoch basis can be recovered at a later stage from the attribute
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of S, rr space. This attribute, if assigned, contains a pair consisting of the above
sequence of numerators and the denominator.

The algorithm used is based on the following observation. If we choose r > 0
such that I contains a homogeneous polynomial G of degree r that doesn’t lie in the
ideal of X, IX (which is a proper subideal of I), then there is a “complementary”
divisor E of X such that rH ∼ D + E, where H is a hyperplane divisor of X.
Then L(D) ' L(−E)(r) and L(−E) is represented by the module IE/IX , where
IE is the ideal of E, a subscheme of X (see Prop 6.18 of the above reference).
Once a suitable G is found, IE is computed by invoking intrinsics ColonIdeal and
Saturation a few times. If the GetMax option is on, r is chosen large enough so
that H1(IX(m)),m ≥ r vanishes, which guarantees that we end up with a maximal
representing module and can get a full basis of Riemann-Roch numerators with G
as the denominator.

Example H113E4

As a simple example, we consider a degree 3 rational scroll in P4. This is a ruled surface that
contains a family of disjoint lines. If l is a line in the family, then the divisor map for L(l) is a
map to the projective line, the fibres of which are the lines of the family. We take such a scroll X
and line l and get the Riemann-Roch space L(l) and the divisor map down to P1.

> P4<a,b,c,d,e> := ProjectiveSpace(Rationals(),4);

> X := Scheme(P4,[a*b - c^2, a*d - c*e, c*d - b*e]);

> Il := ideal<CoordinateRing(P4)|[a,c,e]>; // ideal of l

> rr_seq,G, Sl := RiemannRochBasis(X,Il);

> rr_seq; G;

[

d,

e

]

e

Thus, 1 and d/e are a basis for the rational functions in L(l).

> fib_mp := DivisorMap(Sl);

> fib_mp;

Mapping from: Sch: X to Projective Space of dimension 1

Variables: $.1, $.2

with equations :

d

e

Here the divisor map is not a graph map and is not maximally defined. So we extend it to make
it so. Note that the fibres are lines.

> fib_mp := Extend(fib_mp);

> (Codomain(fib_mp)![1,0])@@fib_mp;

Scheme over Rational Field defined by

a,
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c,

e,

a*b - c^2,

a*d - c*e,

c*d - b*e

> (Codomain(fib_mp)![0,1])@@fib_mp;

c,

b,

d,

a*b - c^2,

a*d - c*e,

c*d - b*e

Alternatively, we could ask for fib mp as a MapSchGrph and not have to extend it.

> fib_mp := DivisorMap(Sl : graphmap := true);

> Type(fib_mp);

MapSchGrph

> (Codomain(fib_mp)![1,0])@@fib_mp;

Scheme over Rational Field defined by

a,

c,

e,

a*b - c^2,

a*d - c*e,

c*d - b*e

Example H113E5

As a second example, we consider the degree 3 Del Pezzo surface example from the Del Pezzo
chapter. There we mapped it to a degree 6 Del Pezzo surface by blowing down 3 disjoint lines in
an explicit fashion. We do the same thing here using the sheaf machinery.

First we get the surface X3 and the union of the 3 lines L123:-

> R3<x,y,z,t> := PolynomialRing(Rationals(),4,"grevlex");

> P3 := Proj(R3);

We set up the equation defining the degree 3 surface:

> F := -x^2*z + x*z^2 - y*z^2 + x^2*t - y^2*t - y*z*t + x*t^2 + y*t^2;

> X3 := Scheme(P3,F);

Get the ideal defining the union of the 3 lines:

> I1 := ideal<R3|[x,y]>; // line 1 L1

> I2 := ideal<R3|[z,t]>; // line 2 L2

> I3 := ideal<R3|[x-z,y-t]>; //line 3 L3
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> I := I1*I2*I3; // (non-saturated) ideal of L1+L2+L3 = L123

Now we blow down to get the degree 6 Del Pezzo in P6. The divisor we need for the map is
H+L123 where H is a hyperplane section. We get this simply by twisting the sheaf corresponding
to L123 once.

> S123 := DivisorToSheaf(X3,I);

> H6 := Twist(S123,1); // sheaf of H+L123

> mp, X := DivisorMap(H6);

> X;

Scheme over Rational Field defined by

y[1]*y[2] - y[2]*y[3] - y[4]*y[5] + y[1]*y[6] + 3*y[2]*y[6] - y[4]*y[6] + y[6]^2

+ y[1]*y[7] + 2*y[2]*y[7] - y[4]*y[7] - y[5]*y[7] + 3*y[6]*y[7],

y[2]^2 - y[2]*y[3] + 2*y[2]*y[6] + y[6]^2 + 2*y[2]*y[7] + 3*y[6]*y[7],

y[1]*y[3] - y[2]*y[3] + 2*y[2]*y[6] - y[5]*y[6] + y[6]^2 + y[2]*y[7] - y[4]*y[7]

+ 3*y[6]*y[7],

y[2]*y[4] - y[2]*y[6] + y[4]*y[6] + y[4]*y[7] + y[5]*y[7],

y[3]*y[4] - y[2]*y[6] - y[6]^2 - y[6]*y[7] + y[7]^2,

y[4]^2 - y[4]*y[6] + y[5]*y[6] + y[1]*y[7] - y[2]*y[7] + y[4]*y[7] + y[5]*y[7],

y[2]*y[5] - y[4]*y[6] + y[5]*y[6] - y[2]*y[7] + y[4]*y[7] + y[5]*y[7],

y[3]*y[5] - y[6]^2 - y[2]*y[7] - y[7]^2,

y[5]^2 - y[1]*y[6] + y[2]*y[6] - 2*y[4]*y[6] + y[5]*y[6] + y[1]*y[7] - y[2]*y[7]

> Dimension(X); Degree(X);

2

6

113.7 Predicates

This subsection describes tests for several important properties of coherent sheaves. It
contains an isomorphism test that, combined with DivisorToSheaf, can be used as a test
for linear equivalence of Cartier divisors.

IsLocallyFree(S)

UseFitting BoolElt Default : true

Given a sheaf S on ordinary projective scheme X, this function returns true if and
only if S is a locally free sheaf on X of constant rank and, if so, also returns its
rank.

Our original implementation was very fast but unfortunately incorrect! We have
modified it to the algorithm described below which uses an “étale stratification” of
X.

The more straightforward method uses Fitting ideals of the module M (or Mmax)
of S. If the possible rank is d (as determined from Hilbert polynomials), it is required
to check that the saturation of the dth Fitting ideal is the full ring and that the
(d−1)th lies in the saturated ideal of X. This is now the default method, but can be
extremely slow and use a large amount of memory. Our alternative method is much
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slower than it was but we still find that it can be much faster than the Fitting ideal
method for a low dimensional X in a high dimensional ambient and a sheaf S whose
(maximal) module has a presentation with a reasonably large minimal number of
both generators and relations.

To use the alternative method, the user can set the UseFitting parameter to
false. For this method, it is assumed that X is equidimensional (all of its primary
components have the same dimension), (locally) Cohen-Macaulay and connected.
Magma does not check these conditions. The alternative method is described below.

The equidimensional and locally Cohen-Macaulay assumptions imply that X is
faithfully flat over P0 = Proj(R0) for a Noether normalisation R0 of the coordinate
ring of X. Standard flatness properties mean that S being locally free over X im-
plies that it is locally free as a sheaf over P0, which is just a full projective space.
Serre’s criterion (see [Ser55]) states that the latter is true if and only if all inter-
mediate cohomology rings Hi(P0, S(q)) vanish for q ¿ 0. If Mmax is the maximal
graded module of S, this translates to all intermediate Ext(Mmax, R0) R0-modules
being finite length, which in turn translates to the dual complex to the minimal free
resolution of Mmax as an R0-module, having finite-length homology groups at all
intermediate places. Rather than actually computing homology modules, we can
further translate this condition into a number of equality tests for Hilbert polyno-
mials of cokernels of the maps between free modules in the dual complex. This
operation seems to be fairly fast and efficient in practise.

The above gives a necessary condition for local freeness over X (and gives the
rank) but it is only sufficient over the Zariski open subset of X over which X → P0

is unramified. We have adapted it to be applied inductively over a chain of closed
subschemes of X, which is what we refer to as the étale stratification of X. At each
level, we have a subscheme Y of X and a possibly empty collection of polynomials
{Fi} which are non-zero divisors on Y and such that a chosen Noether normalisation
of Y is unramified (equivalently, étale) outside of the subschemes Yi defined by Fi

adjoined to the equations of Y . These subschemes lie at the next level down. The
conditions imply that all of the Yi are equidimensional and Cohen-Macaulay. For Yi

of positive dimension, we apply the above test to the restriction of S to Yi, checking
that the rank is the same as the rank determined for X at the top level if the test is
passed and also that Fi is not a zero-divisor on the module of the restricted sheaf.
For Yi of dimension 0, we perform a more direct test.

The overall algorithm generally takes much longer than just applying the main
test to X. The étale stratification can take some time to compute when X lies in
higher dimensional ambients. However, the main problem is that the degrees of the
Yi increase as we go down the chain (the subscheme defined by Fi has the degree
of Yi multiplied by the degree of Fi as its degree) and in practice (mainly working
with surfaces X), the most time is taken in the bottom level checks on high degree
zero-dimensional subschemes. Once computed, the étale stratification is stored with
X, so does not need to be recomputed for tests on other sheaves. However, it relies
on finding Noether normalisations at each level that are generically unramified, i.e.
separable. Currently we do not check the condition and it can fail in small positive
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characteristic leading to a crash or wrong results.

IsIsomorphic(S, T)

IsIsomorphicWithTwist(S, T)

For S and T coherent sheaves on the same base scheme X, this function returns
true if and only if S is isomorphic to T or (for the second intrinsic) to a Serre
twist T (d) of T . In either case, an isomorphism is returned, if one exists and for
the second intrinsic, the twist d is also returned as the second return value (so the
isomorphism is between S and T (d)).

For the implementation, we first do a quick Hilbert polynomial check and then
a Betti number check for the maximal modules Mmax and Nmax of S and T . This
gives necessary conditions for an isomorphism and the possible d in the “with twist”
case. Then we look for an isomorphism in the finite dimensional space of homomor-
phisms between Mmax and Nmax. We could have chosen to work with the homo-
morphisms between the truncated modules with gradings greater than or equal to
N , for some N greater than or equal to the regularity of any defining modules for the
two sheaves, but these have much larger presentations in general so the computation
of homomorphisms is slower.

To look for isomorphisms, we look at the “zero degree” subblocks of the matrices
giving a basis to the space of all homomorphisms. This reduces the problem to
determining whether there is an invertible matrix in a space of n× n matrices over
the base field. This is known to be a difficult problem in general and currently
our implementation is rather weak at this point. We hope to improve it for future
releases.

IsArithmeticallyCohenMacaulay(S)

Given a sheaf S on an ordinary projective scheme X, this function returns true if
and only if the maximal graded module Mmax of S is a Cohen-Macaulay module
over the coordinate ring of X.

A scheme X is called arithmetically Cohen-Macaulay if and only if its coordinate
ring is a Cohen-Macaulay ring. This is then true if and only if its coordinate ring is
equal to the maximal module of OX and the intrinsic returns truefor OX .

This is a fairly straightforward computation once Mmax has been determined. If
we already know the structure of Mmax as a module over a Noether normalisation
of the coordinate ring of X, it is an immediate freeness check. Otherwise it is
a straightforward depth calculation from a minimal free resolution of Mmax as a
graded module over the coordinate ring of the ambient of X.
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113.8 Miscellaneous

CohomologyDimension(S, r, n)

Given a sheaf S and integers r and n, this function returns the dimension over the
base field of the r-th cohomology group of the n-th Serre twist of S, Hr(X,S(n).

This just calls the equivalent function for the maximal module of S or its defining
module, if the maximal module has not yet been computed. Note that, in practice,
it may often be much faster to use the maximal module so it may be desirable to
call SaturateSheaf before doing any cohomology computations.

DimensionOfGlobalSections(S)

This returns the same dimension as CohomologyDimension(S,0,0) – the dimension
of the space of global sections of S – but it is computed in a different way that is
usually faster. It uses some straightforward linear algebra to compute the dimension
of the zero-th graded part of the maximal module of S given as a presentation
module.

IntersectionPairing(S, T)

If S and T are invertible sheaves on a nonsingular surface X, representing divisor
classes D and E, this function returns the surface intersection number D.E.

Only minimal checks are made on the validity of the input data. The computation
is a standard one using the Hilbert polynomials of S, T and their tensor product.

ZeroSubscheme(S, s)

The sheaf S should be a locally free sheaf on a scheme X (local freeness is not
checked). The element s should be a homogeneous element of the defining, maximal
or global section modules of S. Then s represents a global section of the twisted
sheaf S(d) if s is homogeneous of degree d. The intrinsic returns the vanishing
subscheme of s: the largest subscheme of X on which s restricts to a zero section.
If S is invertible of the form L(D), for example, s represents an effective divisor
Ds in the linear system |D + dH| (if it is non-zero) and the vanishing subscheme is
Ds as a subscheme of X. Locally, for a Zariski-open set U over which there is an
isomorphism S(d)U

∼= OX
n
U , s|U corresponds to an n-tuple of functions (f1, . . . , fn)

on U and the vanishing subscheme restricted to U is the closed subscheme of U
defined by the ideal 〈f1, . . . , fn〉.
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113.9 Examples

In this section we present some extended examples illustrating various features of the sheaf
machinery.

Example H113E6

In this example, we consider a surface X from a special family of rational surfaces of degree 10 in
P4. This family is described by Decker, Ein and Schreyer in Section 2.1 of [DES93]. They have
sectional genus 9 and are isomorphic to the plane blown up in 18 points in special position which
give 18 exceptional curves in X. The embedding into P4 is such that four of these exceptional
curves are of degree 3, seven curves are of degree 2 and seven curves are of degree 1.

The adjunction map on X is the map corresponding to the divisor KX + H, where KX is a
canonical divisor and H is a hyperplane section, or, equivalently to the sheaf KX(1) where KX

is the canonical sheaf. In our example, the adjunction map maps X to a smooth surface X1 of
degree 13 in P8 blowing down the seven degree 1 exceptional curves to points and reducing the
degrees of the others by 1. The adjunction map on X1 blows down the seven exceptional curves
originally of degree 2 to points and maps X2 to an anticanonically embedded degree 5 Del Pezzo
surface in P5.

We take a randomly generated surface from this family over a small finite field (F17) and illustrate
this process by explicitly computing the adjunction maps and images X1 and X2. We show that
the intersection pairings of the canonical divisor and hyperplane sections on X, X1, X2 are as
expected and that X2 really is an anticanonically embedded Del Pezzo surface. We also expand
the composition of the two divisor maps and show that the resulting map is indeed a birational
map from X onto X2.

These surfaces X are defined by one degree 4 and ten degree 5 polynomials in P4. The embedding
is quite a complex one and it is hard to construct one with defining polynomials which are at all
sparse. This makes it fairly challenging for explicit computation and also means that an example
takes up a lot of page space! An example with relatively small coefficients over Q can also be
processed, though the total running time is a few minutes. Also, the resulting X2 tends to have
very large coefficients. Here we get no coefficient blow-up and X2 is a much simpler looking surface
than X.

> P<[x]> := ProjectiveSpace(GF(17),4);

> X := Scheme(P, [

> 10*x[1]^4 + 13*x[1]^3*x[2] + 8*x[1]*x[2]^3 + 4*x[2]^4 + 6*x[1]^3*x[3] +

> 15*x[1]^2*x[2]*x[3] + 14*x[2]^3*x[3] + x[1]^2*x[3]^2 +

> 13*x[1]*x[2]*x[3]^2 + 3*x[2]^2*x[3]^2 + 9*x[1]*x[3]^3 + 2*x[2]*x[3]^3 +

> 10*x[3]^4 + 15*x[1]^3*x[4] + 4*x[1]^2*x[2]*x[4] + 3*x[1]*x[2]^2*x[4] +

> 7*x[2]^3*x[4] + 9*x[1]^2*x[3]*x[4] + 3*x[1]*x[2]*x[3]*x[4] +

> 9*x[2]^2*x[3]*x[4] + 11*x[1]*x[3]^2*x[4] + 6*x[2]*x[3]^2*x[4] +

> 15*x[3]^3*x[4] + x[1]^2*x[4]^2 + 4*x[1]*x[2]*x[4]^2 + 2*x[2]^2*x[4]^2 +

> 12*x[1]*x[3]*x[4]^2 + 8*x[2]*x[3]*x[4]^2 + 9*x[3]^2*x[4]^2 +

> 10*x[1]*x[4]^3 + 5*x[2]*x[4]^3 + 14*x[3]*x[4]^3 + 4*x[1]^3*x[5] +

> 16*x[1]^2*x[2]*x[5] + 15*x[2]^3*x[5] + 13*x[1]^2*x[3]*x[5] +

> 13*x[1]*x[2]*x[3]*x[5] + 10*x[2]^2*x[3]*x[5] + 15*x[1]*x[3]^2*x[5] +

> 7*x[2]*x[3]^2*x[5] + 14*x[3]^3*x[5] + 11*x[1]^2*x[4]*x[5] +

> 10*x[1]*x[2]*x[4]*x[5] + 4*x[2]^2*x[4]*x[5] + x[1]*x[3]*x[4]*x[5] +



Ch. 113 COHERENT SHEAVES 3621

> 12*x[2]*x[3]*x[4]*x[5] + 8*x[3]^2*x[4]*x[5] + 5*x[1]*x[4]^2*x[5] +

> 5*x[2]*x[4]^2*x[5] + 11*x[3]*x[4]^2*x[5] + 10*x[4]^3*x[5] +

> 12*x[1]^2*x[5]^2 + 8*x[1]*x[2]*x[5]^2 + 16*x[2]^2*x[5]^2 +

> 12*x[1]*x[3]*x[5]^2 + x[2]*x[3]*x[5]^2 + 14*x[3]^2*x[5]^2 +

> 8*x[1]*x[4]*x[5]^2 + x[2]*x[4]*x[5]^2 + 3*x[3]*x[4]*x[5]^2 +

> 5*x[4]^2*x[5]^2 + 11*x[1]*x[5]^3 + 13*x[2]*x[5]^3 + 5*x[3]*x[5]^3 +

> 9*x[4]*x[5]^3 + 8*x[5]^4,

> 9*x[1]^4*x[4] + 14*x[1]^3*x[2]*x[4] + 5*x[1]^2*x[2]^2*x[4] +

> 2*x[1]*x[2]^3*x[4] + 2*x[1]^3*x[3]*x[4] + 7*x[1]^2*x[2]*x[3]*x[4] +

> 5*x[1]*x[2]^2*x[3]*x[4] + 7*x[2]^3*x[3]*x[4] + 9*x[1]^2*x[3]^2*x[4] +

> 12*x[1]*x[2]*x[3]^2*x[4] + 2*x[2]^2*x[3]^2*x[4] + 9*x[1]*x[3]^3*x[4] +

> 2*x[2]*x[3]^3*x[4] + x[3]^4*x[4] + 3*x[1]^3*x[4]^2 +

> 5*x[1]^2*x[2]*x[4]^2 + 7*x[1]*x[2]^2*x[4]^2 + 13*x[2]^3*x[4]^2 +

> 11*x[1]^2*x[3]*x[4]^2 + 4*x[1]*x[2]*x[3]*x[4]^2 + 11*x[2]^2*x[3]*x[4]^2

> + 14*x[1]*x[3]^2*x[4]^2 + 16*x[2]*x[3]^2*x[4]^2 + 15*x[1]^2*x[4]^3 +

> 11*x[1]*x[2]*x[4]^3 + 5*x[2]^2*x[4]^3 + 6*x[1]*x[3]*x[4]^3 +

> 9*x[2]*x[3]*x[4]^3 + 16*x[3]^2*x[4]^3 + 9*x[2]*x[4]^4 + 15*x[3]*x[4]^4 +

> 14*x[4]^5 + 2*x[1]^3*x[2]*x[5] + 6*x[1]^2*x[2]^2*x[5] +

> 3*x[1]*x[2]^3*x[5] + 16*x[2]^4*x[5] + 15*x[1]^3*x[3]*x[5] +

> 6*x[1]*x[2]^2*x[3]*x[5] + 10*x[2]^3*x[3]*x[5] + 14*x[1]^2*x[3]^2*x[5] +

> 13*x[1]*x[2]*x[3]^2*x[5] + 4*x[2]^2*x[3]^2*x[5] + 16*x[1]*x[3]^3*x[5] +

> 13*x[3]^4*x[5] + 14*x[1]^3*x[4]*x[5] + 9*x[1]^2*x[2]*x[4]*x[5] +

> 16*x[1]*x[2]^2*x[4]*x[5] + 14*x[2]^3*x[4]*x[5] +

> 6*x[1]*x[2]*x[3]*x[4]*x[5] + 6*x[2]^2*x[3]*x[4]*x[5] +

> 3*x[1]*x[3]^2*x[4]*x[5] + 7*x[2]*x[3]^2*x[4]*x[5] + 7*x[3]^3*x[4]*x[5] +

> 2*x[1]^2*x[4]^2*x[5] + 15*x[1]*x[2]*x[4]^2*x[5] +

> 9*x[1]*x[3]*x[4]^2*x[5] + 14*x[3]^2*x[4]^2*x[5] + 14*x[1]*x[4]^3*x[5] +

> 6*x[2]*x[4]^3*x[5] + 12*x[3]*x[4]^3*x[5] + 3*x[4]^4*x[5] +

> 9*x[1]^3*x[5]^2 + 12*x[1]^2*x[2]*x[5]^2 + 16*x[1]*x[2]^2*x[5]^2 +

> x[2]^3*x[5]^2 + 7*x[1]^2*x[3]*x[5]^2 + 5*x[1]*x[2]*x[3]*x[5]^2 +

> 8*x[2]^2*x[3]*x[5]^2 + 2*x[1]*x[3]^2*x[5]^2 + 4*x[2]*x[3]^2*x[5]^2 +

> 13*x[3]^3*x[5]^2 + 7*x[1]^2*x[4]*x[5]^2 + 6*x[2]^2*x[4]*x[5]^2 +

> 16*x[1]*x[3]*x[4]*x[5]^2 + 15*x[2]*x[3]*x[4]*x[5]^2 +

> 7*x[3]^2*x[4]*x[5]^2 + 6*x[1]*x[4]^2*x[5]^2 + 3*x[2]*x[4]^2*x[5]^2 +

> 16*x[3]*x[4]^2*x[5]^2 + 15*x[4]^3*x[5]^2 + x[1]^2*x[5]^3 +

> 13*x[1]*x[2]*x[5]^3 + 6*x[2]^2*x[5]^3 + 8*x[1]*x[3]*x[5]^3 +

> x[2]*x[3]*x[5]^3 + 9*x[3]^2*x[5]^3 + 3*x[1]*x[4]*x[5]^3 +

> 14*x[2]*x[4]*x[5]^3 + 8*x[3]*x[4]*x[5]^3 + 14*x[4]^2*x[5]^3 +

> 16*x[1]*x[5]^4 + 2*x[2]*x[5]^4 + 7*x[3]*x[5]^4 + 7*x[4]*x[5]^4 +

> 11*x[5]^5,

> 13*x[1]^4*x[4] + 8*x[1]^3*x[2]*x[4] + 14*x[1]^2*x[2]^2*x[4] +

> 3*x[1]*x[2]^3*x[4] + 11*x[2]^4*x[4] + 7*x[1]^3*x[3]*x[4] +

> 3*x[1]^2*x[2]*x[3]*x[4] + 12*x[2]^3*x[3]*x[4] + 3*x[1]^2*x[3]^2*x[4] +

> 13*x[1]*x[2]*x[3]^2*x[4] + 3*x[2]^2*x[3]^2*x[4] + 7*x[1]*x[3]^3*x[4] +

> 2*x[2]*x[3]^3*x[4] + 7*x[3]^4*x[4] + 13*x[1]^3*x[4]^2 +

> 6*x[1]^2*x[2]*x[4]^2 + 6*x[1]*x[2]^2*x[4]^2 + 6*x[2]^3*x[4]^2 +

> 2*x[1]^2*x[3]*x[4]^2 + 15*x[1]*x[2]*x[3]*x[4]^2 + 14*x[2]^2*x[3]*x[4]^2

> + 3*x[1]*x[3]^2*x[4]^2 + 16*x[2]*x[3]^2*x[4]^2 + 3*x[3]^3*x[4]^2 +
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> 6*x[1]^2*x[4]^3 + 10*x[2]^2*x[4]^3 + 7*x[2]*x[3]*x[4]^3 + 13*x[1]*x[4]^4

> + 5*x[2]*x[4]^4 + 15*x[3]*x[4]^4 + 13*x[4]^5 + 2*x[1]^4*x[5] +

> 6*x[1]^3*x[2]*x[5] + 12*x[1]^2*x[2]^2*x[5] + 12*x[1]*x[2]^3*x[5] +

> 2*x[2]^4*x[5] + 5*x[1]^3*x[3]*x[5] + 12*x[1]^2*x[2]*x[3]*x[5] +

> 7*x[1]*x[2]^2*x[3]*x[5] + 11*x[2]^3*x[3]*x[5] + 2*x[1]^2*x[3]^2*x[5] +

> 3*x[1]*x[2]*x[3]^2*x[5] + 7*x[2]^2*x[3]^2*x[5] + 16*x[1]*x[3]^3*x[5] +

> 3*x[2]*x[3]^3*x[5] + 13*x[3]^4*x[5] + 2*x[1]^2*x[2]*x[4]*x[5] +

> 12*x[1]*x[2]^2*x[4]*x[5] + 2*x[2]^3*x[4]*x[5] + 10*x[1]^2*x[3]*x[4]*x[5]

> + 9*x[1]*x[2]*x[3]*x[4]*x[5] + 6*x[2]^2*x[3]*x[4]*x[5] +

> x[1]*x[3]^2*x[4]*x[5] + 6*x[2]*x[3]^2*x[4]*x[5] + 15*x[3]^3*x[4]*x[5] +

> 2*x[1]^2*x[4]^2*x[5] + 14*x[1]*x[2]*x[4]^2*x[5] +

> 13*x[1]*x[3]*x[4]^2*x[5] + 13*x[2]*x[3]*x[4]^2*x[5] +

> 2*x[3]^2*x[4]^2*x[5] + 12*x[1]*x[4]^3*x[5] + 8*x[2]*x[4]^3*x[5] +

> 8*x[3]*x[4]^3*x[5] + x[4]^4*x[5] + 3*x[1]^3*x[5]^2 +

> 7*x[1]^2*x[2]*x[5]^2 + 4*x[1]^2*x[3]*x[5]^2 + 3*x[1]*x[2]*x[3]*x[5]^2 +

> 9*x[2]^2*x[3]*x[5]^2 + 14*x[1]*x[3]^2*x[5]^2 + 13*x[2]*x[3]^2*x[5]^2 +

> 15*x[3]^3*x[5]^2 + x[1]^2*x[4]*x[5]^2 + 14*x[1]*x[2]*x[4]*x[5]^2 +

> 5*x[2]^2*x[4]*x[5]^2 + 10*x[1]*x[3]*x[4]*x[5]^2 +

> 5*x[2]*x[3]*x[4]*x[5]^2 + 7*x[3]^2*x[4]*x[5]^2 + 13*x[1]*x[4]^2*x[5]^2 +

> 2*x[2]*x[4]^2*x[5]^2 + 9*x[3]*x[4]^2*x[5]^2 + 3*x[4]^3*x[5]^2 +

> 14*x[1]*x[2]*x[5]^3 + 12*x[2]^2*x[5]^3 + 6*x[1]*x[3]*x[5]^3 +

> 16*x[2]*x[3]*x[5]^3 + 8*x[3]^2*x[5]^3 + 3*x[1]*x[4]*x[5]^3 +

> 4*x[2]*x[4]*x[5]^3 + 11*x[3]*x[4]*x[5]^3 + 15*x[4]^2*x[5]^3 +

> 14*x[1]*x[5]^4 + 13*x[2]*x[5]^4 + 4*x[3]*x[5]^4 + 4*x[4]*x[5]^4 +

> 13*x[5]^5,

> 15*x[1]^3*x[2]*x[3] + 11*x[1]^2*x[2]^2*x[3] + 14*x[1]*x[2]^3*x[3] +

> x[2]^4*x[3] + 2*x[1]^3*x[3]^2 + 11*x[1]*x[2]^2*x[3]^2 + 7*x[2]^3*x[3]^2

> + 3*x[1]^2*x[3]^3 + 4*x[1]*x[2]*x[3]^3 + 13*x[2]^2*x[3]^3 + x[1]*x[3]^4

> + 4*x[3]^5 + 2*x[1]^4*x[4] + 11*x[1]^3*x[2]*x[4] + 13*x[1]^2*x[2]^2*x[4]

> + 4*x[1]*x[2]^3*x[4] + 16*x[2]^4*x[4] + 5*x[1]^3*x[3]*x[4] +

> 4*x[1]^2*x[2]*x[3]*x[4] + 10*x[1]*x[2]^2*x[3]*x[4] + 8*x[2]^3*x[3]*x[4]

> + 5*x[1]^2*x[3]^2*x[4] + 14*x[1]*x[2]*x[3]^2*x[4] + 2*x[2]^2*x[3]^2*x[4]

> + 15*x[1]*x[3]^3*x[4] + 13*x[3]^4*x[4] + 9*x[1]^3*x[4]^2 +

> 3*x[1]^2*x[2]*x[4]^2 + 10*x[1]*x[2]^2*x[4]^2 + 12*x[2]^3*x[4]^2 +

> 8*x[1]^2*x[3]*x[4]^2 + 14*x[1]*x[2]*x[3]*x[4]^2 + 3*x[2]^2*x[3]*x[4]^2 +

> 2*x[1]*x[3]^2*x[4]^2 + 5*x[2]*x[3]^2*x[4]^2 + 10*x[3]^3*x[4]^2 +

> 5*x[1]^2*x[4]^3 + x[1]*x[2]*x[4]^3 + 8*x[2]^2*x[4]^3 +

> 7*x[1]*x[3]*x[4]^3 + 10*x[2]*x[3]*x[4]^3 + 13*x[3]^2*x[4]^3 +

> 10*x[1]*x[4]^4 + 7*x[2]*x[4]^4 + 16*x[3]*x[4]^4 + 16*x[4]^5 +

> 8*x[1]^3*x[3]*x[5] + 5*x[1]^2*x[2]*x[3]*x[5] + x[1]*x[2]^2*x[3]*x[5] +

> 16*x[2]^3*x[3]*x[5] + 10*x[1]^2*x[3]^2*x[5] + 12*x[1]*x[2]*x[3]^2*x[5] +

> 9*x[2]^2*x[3]^2*x[5] + 15*x[1]*x[3]^3*x[5] + 13*x[2]*x[3]^3*x[5] +

> 4*x[3]^4*x[5] + 14*x[1]^3*x[4]*x[5] + x[1]^2*x[2]*x[4]*x[5] +

> 10*x[1]*x[2]^2*x[4]*x[5] + 11*x[2]^3*x[4]*x[5] + 5*x[1]^2*x[3]*x[4]*x[5]

> + 12*x[1]*x[2]*x[3]*x[4]*x[5] + 7*x[2]^2*x[3]*x[4]*x[5] +

> 5*x[1]*x[3]^2*x[4]*x[5] + 3*x[3]^3*x[4]*x[5] + 2*x[1]^2*x[4]^2*x[5] +

> 5*x[2]^2*x[4]^2*x[5] + 2*x[2]*x[3]*x[4]^2*x[5] + 8*x[3]^2*x[4]^2*x[5] +

> x[1]*x[4]^3*x[5] + 5*x[2]*x[4]^3*x[5] + 3*x[3]*x[4]^3*x[5] +
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> 14*x[4]^4*x[5] + 16*x[1]^2*x[3]*x[5]^2 + 4*x[1]*x[2]*x[3]*x[5]^2 +

> 11*x[2]^2*x[3]*x[5]^2 + 9*x[1]*x[3]^2*x[5]^2 + 16*x[2]*x[3]^2*x[5]^2 +

> 8*x[3]^3*x[5]^2 + 8*x[1]^2*x[4]*x[5]^2 + 11*x[1]*x[2]*x[4]*x[5]^2 +

> 3*x[2]^2*x[4]*x[5]^2 + 6*x[1]*x[3]*x[4]*x[5]^2 + 9*x[2]*x[3]*x[4]*x[5]^2

> + 5*x[3]^2*x[4]*x[5]^2 + 15*x[1]*x[4]^2*x[5]^2 + 2*x[2]*x[4]^2*x[5]^2 +

> 8*x[3]*x[4]^2*x[5]^2 + 14*x[4]^3*x[5]^2 + x[1]*x[3]*x[5]^3 +

> 15*x[2]*x[3]*x[5]^3 + 10*x[3]^2*x[5]^3 + 11*x[1]*x[4]*x[5]^3 +

> 8*x[2]*x[4]*x[5]^3 + 15*x[3]*x[4]*x[5]^3 + 15*x[4]^2*x[5]^3 +

> 6*x[3]*x[5]^4 + 3*x[4]*x[5]^4,

> 9*x[1]^4*x[3] + 14*x[1]^3*x[2]*x[3] + 5*x[1]^2*x[2]^2*x[3] +

> 2*x[1]*x[2]^3*x[3] + 2*x[1]^3*x[3]^2 + 7*x[1]^2*x[2]*x[3]^2 +

> 5*x[1]*x[2]^2*x[3]^2 + 7*x[2]^3*x[3]^2 + 9*x[1]^2*x[3]^3 +

> 12*x[1]*x[2]*x[3]^3 + 2*x[2]^2*x[3]^3 + 9*x[1]*x[3]^4 + 2*x[2]*x[3]^4 +

> x[3]^5 + 3*x[1]^3*x[3]*x[4] + 5*x[1]^2*x[2]*x[3]*x[4] +

> 7*x[1]*x[2]^2*x[3]*x[4] + 13*x[2]^3*x[3]*x[4] + 11*x[1]^2*x[3]^2*x[4] +

> 4*x[1]*x[2]*x[3]^2*x[4] + 11*x[2]^2*x[3]^2*x[4] + 14*x[1]*x[3]^3*x[4] +

> 16*x[2]*x[3]^3*x[4] + 15*x[1]^2*x[3]*x[4]^2 + 11*x[1]*x[2]*x[3]*x[4]^2 +

> 5*x[2]^2*x[3]*x[4]^2 + 6*x[1]*x[3]^2*x[4]^2 + 9*x[2]*x[3]^2*x[4]^2 +

> 16*x[3]^3*x[4]^2 + 9*x[2]*x[3]*x[4]^3 + 15*x[3]^2*x[4]^3 +

> 14*x[3]*x[4]^4 + 2*x[1]^4*x[5] + 11*x[1]^3*x[2]*x[5] +

> 13*x[1]^2*x[2]^2*x[5] + 4*x[1]*x[2]^3*x[5] + 16*x[2]^4*x[5] +

> 2*x[1]^3*x[3]*x[5] + 13*x[1]^2*x[2]*x[3]*x[5] + 9*x[1]*x[2]^2*x[3]*x[5]

> + 5*x[2]^3*x[3]*x[5] + 5*x[1]^2*x[3]^2*x[5] + 3*x[1]*x[2]*x[3]^2*x[5] +

> 8*x[2]^2*x[3]^2*x[5] + x[1]*x[3]^3*x[5] + 7*x[2]*x[3]^3*x[5] +

> 3*x[3]^4*x[5] + 9*x[1]^3*x[4]*x[5] + 3*x[1]^2*x[2]*x[4]*x[5] +

> 10*x[1]*x[2]^2*x[4]*x[5] + 12*x[2]^3*x[4]*x[5] +

> 10*x[1]^2*x[3]*x[4]*x[5] + 12*x[1]*x[2]*x[3]*x[4]*x[5] +

> 3*x[2]^2*x[3]*x[4]*x[5] + 11*x[1]*x[3]^2*x[4]*x[5] +

> 5*x[2]*x[3]^2*x[4]*x[5] + 7*x[3]^3*x[4]*x[5] + 5*x[1]^2*x[4]^2*x[5] +

> x[1]*x[2]*x[4]^2*x[5] + 8*x[2]^2*x[4]^2*x[5] + 4*x[1]*x[3]*x[4]^2*x[5] +

> 16*x[2]*x[3]*x[4]^2*x[5] + 8*x[3]^2*x[4]^2*x[5] + 10*x[1]*x[4]^3*x[5] +

> 7*x[2]*x[4]^3*x[5] + 2*x[3]*x[4]^3*x[5] + 16*x[4]^4*x[5] +

> 14*x[1]^3*x[5]^2 + x[1]^2*x[2]*x[5]^2 + 10*x[1]*x[2]^2*x[5]^2 +

> 11*x[2]^3*x[5]^2 + 12*x[1]^2*x[3]*x[5]^2 + 12*x[1]*x[2]*x[3]*x[5]^2 +

> 13*x[2]^2*x[3]*x[5]^2 + 4*x[1]*x[3]^2*x[5]^2 + 15*x[2]*x[3]^2*x[5]^2 +

> 10*x[3]^3*x[5]^2 + 2*x[1]^2*x[4]*x[5]^2 + 5*x[2]^2*x[4]*x[5]^2 +

> 6*x[1]*x[3]*x[4]*x[5]^2 + 5*x[2]*x[3]*x[4]*x[5]^2 + 7*x[3]^2*x[4]*x[5]^2

> + x[1]*x[4]^2*x[5]^2 + 5*x[2]*x[4]^2*x[5]^2 + x[3]*x[4]^2*x[5]^2 +

> 14*x[4]^3*x[5]^2 + 8*x[1]^2*x[5]^3 + 11*x[1]*x[2]*x[5]^3 +

> 3*x[2]^2*x[5]^3 + 9*x[1]*x[3]*x[5]^3 + 6*x[2]*x[3]*x[5]^3 +

> 13*x[3]^2*x[5]^3 + 15*x[1]*x[4]*x[5]^3 + 2*x[2]*x[4]*x[5]^3 +

> 5*x[3]*x[4]*x[5]^3 + 14*x[4]^2*x[5]^3 + 11*x[1]*x[5]^4 + 8*x[2]*x[5]^4 +

> 5*x[3]*x[5]^4 + 15*x[4]*x[5]^4 + 3*x[5]^5,

> 13*x[1]^4*x[3] + 8*x[1]^3*x[2]*x[3] + 14*x[1]^2*x[2]^2*x[3] +

> 3*x[1]*x[2]^3*x[3] + 11*x[2]^4*x[3] + 7*x[1]^3*x[3]^2 +

> 3*x[1]^2*x[2]*x[3]^2 + 12*x[2]^3*x[3]^2 + 3*x[1]^2*x[3]^3 +

> 13*x[1]*x[2]*x[3]^3 + 3*x[2]^2*x[3]^3 + 7*x[1]*x[3]^4 + 2*x[2]*x[3]^4 +

> 7*x[3]^5 + 13*x[1]^3*x[3]*x[4] + 6*x[1]^2*x[2]*x[3]*x[4] +
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> 6*x[1]*x[2]^2*x[3]*x[4] + 6*x[2]^3*x[3]*x[4] + 2*x[1]^2*x[3]^2*x[4] +

> 15*x[1]*x[2]*x[3]^2*x[4] + 14*x[2]^2*x[3]^2*x[4] + 3*x[1]*x[3]^3*x[4] +

> 16*x[2]*x[3]^3*x[4] + 3*x[3]^4*x[4] + 6*x[1]^2*x[3]*x[4]^2 +

> 10*x[2]^2*x[3]*x[4]^2 + 7*x[2]*x[3]^2*x[4]^2 + 13*x[1]*x[3]*x[4]^3 +

> 5*x[2]*x[3]*x[4]^3 + 15*x[3]^2*x[4]^3 + 13*x[3]*x[4]^4 + 15*x[1]^4*x[5]

> + 15*x[1]^3*x[2]*x[5] + 2*x[1]^2*x[2]^2*x[5] + 16*x[1]*x[2]^3*x[5] +

> 16*x[2]^4*x[5] + 14*x[1]^3*x[3]*x[5] + 4*x[1]^2*x[2]*x[3]*x[5] +

> 10*x[1]*x[2]^2*x[3]*x[5] + 4*x[2]^3*x[3]*x[5] + 8*x[1]^2*x[3]^2*x[5] +

> 5*x[1]*x[2]*x[3]^2*x[5] + 11*x[2]^2*x[3]^2*x[5] + 12*x[2]*x[3]^3*x[5] +

> 2*x[3]^4*x[5] + 15*x[1]^2*x[2]*x[4]*x[5] + 6*x[2]^3*x[4]*x[5] +

> 9*x[1]^2*x[3]*x[4]*x[5] + 9*x[1]*x[2]*x[3]*x[4]*x[5] +

> 15*x[2]^2*x[3]*x[4]*x[5] + 14*x[1]*x[3]^2*x[4]*x[5] +

> 13*x[2]*x[3]^2*x[4]*x[5] + 6*x[3]^3*x[4]*x[5] + 4*x[1]^2*x[4]^2*x[5] +

> 7*x[1]*x[2]*x[4]^2*x[5] + 3*x[2]^2*x[4]^2*x[5] + 8*x[1]*x[3]*x[4]^2*x[5]

> + 8*x[2]*x[3]*x[4]^2*x[5] + 3*x[3]^2*x[4]^2*x[5] + 15*x[1]*x[4]^3*x[5] +

> 3*x[2]*x[4]^3*x[5] + 8*x[3]*x[4]^3*x[5] + 2*x[4]^4*x[5] +

> 2*x[1]^3*x[5]^2 + 6*x[1]^2*x[2]*x[5]^2 + x[1]*x[2]^2*x[5]^2 +

> 7*x[2]^3*x[5]^2 + 3*x[1]^2*x[3]*x[5]^2 + 16*x[1]*x[2]*x[3]*x[5]^2 +

> 10*x[2]^2*x[3]*x[5]^2 + 10*x[1]*x[3]^2*x[5]^2 + 13*x[2]*x[3]^2*x[5]^2 +

> 2*x[3]^3*x[5]^2 + 4*x[1]^2*x[4]*x[5]^2 + x[1]*x[2]*x[4]*x[5]^2 +

> 9*x[2]^2*x[4]*x[5]^2 + 16*x[1]*x[3]*x[4]*x[5]^2 +

> 8*x[2]*x[3]*x[4]*x[5]^2 + 11*x[1]*x[4]^2*x[5]^2 + 11*x[2]*x[4]^2*x[5]^2

> + 4*x[3]*x[4]^2*x[5]^2 + 10*x[4]^3*x[5]^2 + 10*x[1]^2*x[5]^3 +

> 14*x[2]^2*x[5]^3 + 16*x[1]*x[3]*x[5]^3 + 13*x[2]*x[3]*x[5]^3 +

> 15*x[3]^2*x[5]^3 + 16*x[1]*x[4]*x[5]^3 + 3*x[2]*x[4]*x[5]^3 +

> 4*x[3]*x[4]*x[5]^3 + 2*x[4]^2*x[5]^3 + x[1]*x[5]^4 + 7*x[2]*x[5]^4 +

> 7*x[4]*x[5]^4 + 2*x[5]^5,

> 15*x[1]^4*x[3] + 11*x[1]^3*x[2]*x[3] + 5*x[1]^2*x[2]^2*x[3] +

> 5*x[1]*x[2]^3*x[3] + 15*x[2]^4*x[3] + 12*x[1]^3*x[3]^2 +

> 5*x[1]^2*x[2]*x[3]^2 + 10*x[1]*x[2]^2*x[3]^2 + 6*x[2]^3*x[3]^2 +

> 15*x[1]^2*x[3]^3 + 14*x[1]*x[2]*x[3]^3 + 10*x[2]^2*x[3]^3 + x[1]*x[3]^4

> + 14*x[2]*x[3]^4 + 4*x[3]^5 + 15*x[1]^4*x[4] + 15*x[1]^3*x[2]*x[4] +

> 2*x[1]^2*x[2]^2*x[4] + 16*x[1]*x[2]^3*x[4] + 16*x[2]^4*x[4] +

> 14*x[1]^3*x[3]*x[4] + 2*x[1]^2*x[2]*x[3]*x[4] + 15*x[1]*x[2]^2*x[3]*x[4]

> + 2*x[2]^3*x[3]*x[4] + 15*x[1]^2*x[3]^2*x[4] + 13*x[1]*x[2]*x[3]^2*x[4]

> + 5*x[2]^2*x[3]^2*x[4] + 16*x[1]*x[3]^3*x[4] + 6*x[2]*x[3]^3*x[4] +

> 4*x[3]^4*x[4] + 15*x[1]^2*x[2]*x[4]^2 + 6*x[2]^3*x[4]^2 +

> 7*x[1]^2*x[3]*x[4]^2 + 12*x[1]*x[2]*x[3]*x[4]^2 + 15*x[2]^2*x[3]*x[4]^2

> + x[1]*x[3]^2*x[4]^2 + 4*x[3]^3*x[4]^2 + 4*x[1]^2*x[4]^3 +

> 7*x[1]*x[2]*x[4]^3 + 3*x[2]^2*x[4]^3 + 13*x[1]*x[3]*x[4]^3 +

> 12*x[3]^2*x[4]^3 + 15*x[1]*x[4]^4 + 3*x[2]*x[4]^4 + 7*x[3]*x[4]^4 +

> 2*x[4]^5 + 14*x[1]^3*x[3]*x[5] + 10*x[1]^2*x[2]*x[3]*x[5] +

> 13*x[1]^2*x[3]^2*x[5] + 14*x[1]*x[2]*x[3]^2*x[5] + 8*x[2]^2*x[3]^2*x[5]

> + 3*x[1]*x[3]^3*x[5] + 4*x[2]*x[3]^3*x[5] + 2*x[3]^4*x[5] +

> 2*x[1]^3*x[4]*x[5] + 6*x[1]^2*x[2]*x[4]*x[5] + x[1]*x[2]^2*x[4]*x[5] +

> 7*x[2]^3*x[4]*x[5] + 2*x[1]^2*x[3]*x[4]*x[5] +

> 2*x[1]*x[2]*x[3]*x[4]*x[5] + 5*x[2]^2*x[3]*x[4]*x[5] +

> 8*x[2]*x[3]^2*x[4]*x[5] + 12*x[3]^3*x[4]*x[5] + 4*x[1]^2*x[4]^2*x[5] +
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> x[1]*x[2]*x[4]^2*x[5] + 9*x[2]^2*x[4]^2*x[5] + 3*x[1]*x[3]*x[4]^2*x[5] +

> 6*x[2]*x[3]*x[4]^2*x[5] + 8*x[3]^2*x[4]^2*x[5] + 11*x[1]*x[4]^3*x[5] +

> 11*x[2]*x[4]^3*x[5] + x[3]*x[4]^3*x[5] + 10*x[4]^4*x[5] +

> 3*x[1]*x[2]*x[3]*x[5]^2 + 5*x[2]^2*x[3]*x[5]^2 + 11*x[1]*x[3]^2*x[5]^2 +

> x[2]*x[3]^2*x[5]^2 + 9*x[3]^3*x[5]^2 + 10*x[1]^2*x[4]*x[5]^2 +

> 14*x[2]^2*x[4]*x[5]^2 + 13*x[1]*x[3]*x[4]*x[5]^2 +

> 9*x[2]*x[3]*x[4]*x[5]^2 + 4*x[3]^2*x[4]*x[5]^2 + 16*x[1]*x[4]^2*x[5]^2 +

> 3*x[2]*x[4]^2*x[5]^2 + 6*x[3]*x[4]^2*x[5]^2 + 2*x[4]^3*x[5]^2 +

> 3*x[1]*x[3]*x[5]^3 + 4*x[2]*x[3]*x[5]^3 + 13*x[3]^2*x[5]^3 +

> x[1]*x[4]*x[5]^3 + 7*x[2]*x[4]*x[5]^3 + 13*x[3]*x[4]*x[5]^3 +

> 7*x[4]^2*x[5]^3 + 4*x[3]*x[5]^4 + 2*x[4]*x[5]^4,

> 15*x[1]^3*x[2]^2 + 11*x[1]^2*x[2]^3 + 14*x[1]*x[2]^4 + x[2]^5 +

> 2*x[1]^3*x[2]*x[3] + 11*x[1]*x[2]^3*x[3] + 7*x[2]^4*x[3] +

> 3*x[1]^2*x[2]*x[3]^2 + 4*x[1]*x[2]^2*x[3]^2 + 13*x[2]^3*x[3]^2 +

> x[1]*x[2]*x[3]^3 + 4*x[2]*x[3]^4 + 16*x[1]^4*x[4] + 2*x[1]^3*x[2]*x[4] +

> 7*x[1]^2*x[2]^2*x[4] + 4*x[1]*x[2]^3*x[4] + 4*x[2]^4*x[4] +

> 9*x[1]^3*x[3]*x[4] + x[1]^2*x[2]*x[3]*x[4] + 9*x[1]*x[2]^2*x[3]*x[4] +

> 4*x[2]^3*x[3]*x[4] + 7*x[1]^2*x[3]^2*x[4] + 5*x[1]*x[2]*x[3]^2*x[4] +

> 11*x[2]^2*x[3]^2*x[4] + 15*x[1]*x[3]^3*x[4] + 15*x[2]*x[3]^3*x[4] +

> x[3]^4*x[4] + 9*x[1]^2*x[2]*x[4]^2 + 16*x[1]*x[2]^2*x[4]^2 +

> 9*x[2]^3*x[4]^2 + 3*x[1]^2*x[3]*x[4]^2 + 2*x[1]*x[2]*x[3]*x[4]^2 +

> 14*x[2]^2*x[3]*x[4]^2 + 11*x[1]*x[3]^2*x[4]^2 + 16*x[2]*x[3]^2*x[4]^2 +

> 4*x[3]^3*x[4]^2 + x[1]^2*x[4]^3 + 8*x[1]*x[2]*x[4]^3 + 14*x[2]^2*x[4]^3

> + 3*x[1]*x[3]*x[4]^3 + 16*x[2]*x[3]*x[4]^3 + 12*x[3]^2*x[4]^3 +

> 7*x[1]*x[4]^4 + 5*x[2]*x[4]^4 + 4*x[3]*x[4]^4 + 2*x[4]^5 +

> 8*x[1]^3*x[2]*x[5] + 5*x[1]^2*x[2]^2*x[5] + x[1]*x[2]^3*x[5] +

> 16*x[2]^4*x[5] + 10*x[1]^2*x[2]*x[3]*x[5] + 12*x[1]*x[2]^2*x[3]*x[5] +

> 9*x[2]^3*x[3]*x[5] + 15*x[1]*x[2]*x[3]^2*x[5] + 13*x[2]^2*x[3]^2*x[5] +

> 4*x[2]*x[3]^3*x[5] + 8*x[1]^3*x[4]*x[5] + 16*x[1]^2*x[2]*x[4]*x[5] +

> 11*x[1]*x[2]^2*x[4]*x[5] + 8*x[2]^3*x[4]*x[5] + 10*x[1]^2*x[3]*x[4]*x[5]

> + 15*x[1]*x[2]*x[3]*x[4]*x[5] + 4*x[2]^2*x[3]*x[4]*x[5] +

> 9*x[1]*x[3]^2*x[4]*x[5] + 16*x[2]*x[3]^2*x[4]*x[5] + 11*x[3]^3*x[4]*x[5]

> + 4*x[1]^2*x[4]^2*x[5] + 6*x[1]*x[2]*x[4]^2*x[5] + 10*x[2]^2*x[4]^2*x[5]

> + 11*x[1]*x[3]*x[4]^2*x[5] + 11*x[2]*x[3]*x[4]^2*x[5] +

> 14*x[3]^2*x[4]^2*x[5] + 10*x[1]*x[4]^3*x[5] + 6*x[2]*x[4]^3*x[5] +

> 5*x[3]*x[4]^3*x[5] + 4*x[4]^4*x[5] + 16*x[1]^2*x[2]*x[5]^2 +

> 4*x[1]*x[2]^2*x[5]^2 + 11*x[2]^3*x[5]^2 + 9*x[1]*x[2]*x[3]*x[5]^2 +

> 16*x[2]^2*x[3]*x[5]^2 + 8*x[2]*x[3]^2*x[5]^2 + 3*x[1]^2*x[4]*x[5]^2 +

> 10*x[1]*x[2]*x[4]*x[5]^2 + 9*x[2]^2*x[4]*x[5]^2 +

> 10*x[1]*x[3]*x[4]*x[5]^2 + 11*x[2]*x[3]*x[4]*x[5]^2 +

> 11*x[3]^2*x[4]*x[5]^2 + 3*x[1]*x[4]^2*x[5]^2 + 14*x[2]*x[4]^2*x[5]^2 +

> 7*x[3]*x[4]^2*x[5]^2 + 3*x[4]^3*x[5]^2 + x[1]*x[2]*x[5]^3 +

> 15*x[2]^2*x[5]^3 + 10*x[2]*x[3]*x[5]^3 + x[1]*x[4]*x[5]^3 +

> 2*x[2]*x[4]*x[5]^3 + 5*x[3]*x[4]*x[5]^3 + 6*x[4]^2*x[5]^3 +

> 6*x[2]*x[5]^4 + 16*x[4]*x[5]^4,

> 2*x[1]^4*x[2] + 2*x[1]^3*x[2]^2 + 15*x[1]^2*x[2]^3 + x[1]*x[2]^4 + x[2]^5 +

> 16*x[1]^4*x[3] + 8*x[1]^3*x[2]*x[3] + 7*x[1]^2*x[2]^2*x[3] +

> 10*x[1]*x[2]^3*x[3] + 10*x[2]^4*x[3] + 10*x[1]^3*x[3]^2 +
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> 11*x[1]^2*x[2]*x[3]^2 + 9*x[1]*x[2]^2*x[3]^2 + 10*x[2]^3*x[3]^2 +

> 7*x[1]^2*x[3]^3 + 10*x[1]*x[2]*x[3]^3 + 4*x[2]^2*x[3]^3 + 13*x[1]*x[3]^4

> + 3*x[3]^5 + 2*x[1]^2*x[2]^2*x[4] + 11*x[2]^4*x[4] + 5*x[1]^3*x[3]*x[4]

> + 15*x[1]^2*x[2]*x[3]*x[4] + 16*x[1]*x[2]^2*x[3]*x[4] +

> 4*x[2]^3*x[3]*x[4] + 16*x[1]^2*x[3]^2*x[4] + 12*x[1]*x[2]*x[3]^2*x[4] +

> 4*x[2]^2*x[3]^2*x[4] + 15*x[1]*x[3]^3*x[4] + 14*x[2]*x[3]^3*x[4] +

> 5*x[3]^4*x[4] + 13*x[1]^2*x[2]*x[4]^2 + 10*x[1]*x[2]^2*x[4]^2 +

> 14*x[2]^3*x[4]^2 + 10*x[1]^2*x[3]*x[4]^2 + 9*x[1]*x[2]*x[3]*x[4]^2 +

> 2*x[2]^2*x[3]*x[4]^2 + x[1]*x[3]^2*x[4]^2 + 15*x[2]*x[3]^2*x[4]^2 +

> 15*x[3]^3*x[4]^2 + 2*x[1]*x[2]*x[4]^3 + 14*x[2]^2*x[4]^3 +

> 15*x[1]*x[3]*x[4]^3 + 6*x[2]*x[3]*x[4]^3 + 3*x[3]^2*x[4]^3 +

> 15*x[2]*x[4]^4 + 13*x[3]*x[4]^4 + 15*x[1]^3*x[2]*x[5] +

> 11*x[1]^2*x[2]^2*x[5] + 16*x[1]*x[2]^3*x[5] + 10*x[2]^4*x[5] +

> 4*x[1]^3*x[3]*x[5] + 10*x[1]^2*x[2]*x[3]*x[5] + 4*x[2]^3*x[3]*x[5] +

> 3*x[1]^2*x[3]^2*x[5] + 6*x[1]*x[2]*x[3]^2*x[5] + 15*x[2]^2*x[3]^2*x[5] +

> 8*x[1]*x[3]^3*x[5] + 8*x[2]*x[3]^3*x[5] + x[3]^4*x[5] +

> 13*x[1]^2*x[2]*x[4]*x[5] + 16*x[1]*x[2]^2*x[4]*x[5] + 8*x[2]^3*x[4]*x[5]

> + 5*x[1]^2*x[3]*x[4]*x[5] + 16*x[1]*x[2]*x[3]*x[4]*x[5] +

> x[2]^2*x[3]*x[4]*x[5] + 10*x[1]*x[3]^2*x[4]*x[5] +

> 9*x[2]*x[3]^2*x[4]*x[5] + 12*x[3]^3*x[4]*x[5] + 6*x[1]*x[2]*x[4]^2*x[5]

> + 6*x[2]^2*x[4]^2*x[5] + 12*x[1]*x[3]*x[4]^2*x[5] +

> 16*x[2]*x[3]*x[4]^2*x[5] + 6*x[3]^2*x[4]^2*x[5] + 7*x[2]*x[4]^3*x[5] +

> 15*x[3]*x[4]^3*x[5] + 7*x[1]^2*x[2]*x[5]^2 + 3*x[2]^3*x[5]^2 +

> 3*x[1]^2*x[3]*x[5]^2 + 11*x[1]*x[2]*x[3]*x[5]^2 + x[2]^2*x[3]*x[5]^2 +

> 12*x[1]*x[3]^2*x[5]^2 + 8*x[2]*x[3]^2*x[5]^2 + 4*x[3]^3*x[5]^2 +

> x[1]*x[2]*x[4]*x[5]^2 + 14*x[2]^2*x[4]*x[5]^2 + 8*x[1]*x[3]*x[4]*x[5]^2

> + 13*x[2]*x[3]*x[4]*x[5]^2 + 4*x[3]^2*x[4]*x[5]^2 +

> 15*x[2]*x[4]^2*x[5]^2 + 16*x[1]*x[2]*x[5]^3 + 10*x[2]^2*x[5]^3 +

> 9*x[1]*x[3]*x[5]^3 + 14*x[2]*x[3]*x[5]^3 + 12*x[3]^2*x[5]^3 +

> 10*x[2]*x[4]*x[5]^3 + x[3]*x[4]*x[5]^3 + 15*x[2]*x[5]^4 + 9*x[3]*x[5]^4,

> 9*x[1]^4*x[2] + 14*x[1]^3*x[2]^2 + 5*x[1]^2*x[2]^3 + 2*x[1]*x[2]^4 +

> 2*x[1]^3*x[2]*x[3] + 7*x[1]^2*x[2]^2*x[3] + 5*x[1]*x[2]^3*x[3] +

> 7*x[2]^4*x[3] + 9*x[1]^2*x[2]*x[3]^2 + 12*x[1]*x[2]^2*x[3]^2 +

> 2*x[2]^3*x[3]^2 + 9*x[1]*x[2]*x[3]^3 + 2*x[2]^2*x[3]^3 + x[2]*x[3]^4 +

> 3*x[1]^3*x[2]*x[4] + 5*x[1]^2*x[2]^2*x[4] + 7*x[1]*x[2]^3*x[4] +

> 13*x[2]^4*x[4] + 11*x[1]^2*x[2]*x[3]*x[4] + 4*x[1]*x[2]^2*x[3]*x[4] +

> 11*x[2]^3*x[3]*x[4] + 14*x[1]*x[2]*x[3]^2*x[4] + 16*x[2]^2*x[3]^2*x[4] +

> 15*x[1]^2*x[2]*x[4]^2 + 11*x[1]*x[2]^2*x[4]^2 + 5*x[2]^3*x[4]^2 +

> 6*x[1]*x[2]*x[3]*x[4]^2 + 9*x[2]^2*x[3]*x[4]^2 + 16*x[2]*x[3]^2*x[4]^2 +

> 9*x[2]^2*x[4]^3 + 15*x[2]*x[3]*x[4]^3 + 14*x[2]*x[4]^4 + 16*x[1]^4*x[5]

> + 16*x[1]^3*x[2]*x[5] + 16*x[1]^2*x[2]^2*x[5] + 3*x[1]*x[2]^3*x[5] +

> x[2]^4*x[5] + 9*x[1]^3*x[3]*x[5] + x[1]^2*x[2]*x[3]*x[5] +

> 15*x[1]*x[2]^2*x[3]*x[5] + 10*x[2]^3*x[3]*x[5] + 7*x[1]^2*x[3]^2*x[5] +

> 8*x[1]*x[2]*x[3]^2*x[5] + x[2]^2*x[3]^2*x[5] + 15*x[1]*x[3]^3*x[5] +

> 5*x[2]*x[3]^3*x[5] + x[3]^4*x[5] + 11*x[1]^2*x[2]*x[4]*x[5] +

> 14*x[1]*x[2]^2*x[4]*x[5] + 9*x[2]^3*x[4]*x[5] + 3*x[1]^2*x[3]*x[4]*x[5]

> + 11*x[1]*x[2]*x[3]*x[4]*x[5] + 14*x[2]^2*x[3]*x[4]*x[5] +

> 11*x[1]*x[3]^2*x[4]*x[5] + 13*x[2]*x[3]^2*x[4]*x[5] + 4*x[3]^3*x[4]*x[5]
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> + x[1]^2*x[4]^2*x[5] + 5*x[1]*x[2]*x[4]^2*x[5] + 3*x[2]^2*x[4]^2*x[5] +

> 3*x[1]*x[3]*x[4]^2*x[5] + 11*x[2]*x[3]*x[4]^2*x[5] +

> 12*x[3]^2*x[4]^2*x[5] + 7*x[1]*x[4]^3*x[5] + 8*x[2]*x[4]^3*x[5] +

> 4*x[3]*x[4]^3*x[5] + 2*x[4]^4*x[5] + 8*x[1]^3*x[5]^2 +

> 6*x[1]^2*x[2]*x[5]^2 + 11*x[1]*x[2]^2*x[5]^2 + 14*x[2]^3*x[5]^2 +

> 10*x[1]^2*x[3]*x[5]^2 + 14*x[1]*x[2]*x[3]*x[5]^2 + 2*x[2]^2*x[3]*x[5]^2

> + 9*x[1]*x[3]^2*x[5]^2 + 6*x[2]*x[3]^2*x[5]^2 + 11*x[3]^3*x[5]^2 +

> 4*x[1]^2*x[4]*x[5]^2 + 12*x[1]*x[2]*x[4]*x[5]^2 + 13*x[2]^2*x[4]*x[5]^2

> + 11*x[1]*x[3]*x[4]*x[5]^2 + 10*x[2]*x[3]*x[4]*x[5]^2 +

> 14*x[3]^2*x[4]*x[5]^2 + 10*x[1]*x[4]^2*x[5]^2 + 4*x[2]*x[4]^2*x[5]^2 +

> 5*x[3]*x[4]^2*x[5]^2 + 4*x[4]^3*x[5]^2 + 3*x[1]^2*x[5]^3 +

> 13*x[1]*x[2]*x[5]^3 + 6*x[2]^2*x[5]^3 + 10*x[1]*x[3]*x[5]^3 +

> 2*x[2]*x[3]*x[5]^3 + 11*x[3]^2*x[5]^3 + 3*x[1]*x[4]*x[5]^3 +

> 11*x[2]*x[4]*x[5]^3 + 7*x[3]*x[4]*x[5]^3 + 3*x[4]^2*x[5]^3 + x[1]*x[5]^4

> + 9*x[2]*x[5]^4 + 5*x[3]*x[5]^4 + 6*x[4]*x[5]^4 + 16*x[5]^5,

> 13*x[1]^4*x[2] + 8*x[1]^3*x[2]^2 + 14*x[1]^2*x[2]^3 + 3*x[1]*x[2]^4 +

> 11*x[2]^5 + 7*x[1]^3*x[2]*x[3] + 3*x[1]^2*x[2]^2*x[3] + 12*x[2]^4*x[3] +

> 3*x[1]^2*x[2]*x[3]^2 + 13*x[1]*x[2]^2*x[3]^2 + 3*x[2]^3*x[3]^2 +

> 7*x[1]*x[2]*x[3]^3 + 2*x[2]^2*x[3]^3 + 7*x[2]*x[3]^4 +

> 13*x[1]^3*x[2]*x[4] + 6*x[1]^2*x[2]^2*x[4] + 6*x[1]*x[2]^3*x[4] +

> 6*x[2]^4*x[4] + 2*x[1]^2*x[2]*x[3]*x[4] + 15*x[1]*x[2]^2*x[3]*x[4] +

> 14*x[2]^3*x[3]*x[4] + 3*x[1]*x[2]*x[3]^2*x[4] + 16*x[2]^2*x[3]^2*x[4] +

> 3*x[2]*x[3]^3*x[4] + 6*x[1]^2*x[2]*x[4]^2 + 10*x[2]^3*x[4]^2 +

> 7*x[2]^2*x[3]*x[4]^2 + 13*x[1]*x[2]*x[4]^3 + 5*x[2]^2*x[4]^3 +

> 15*x[2]*x[3]*x[4]^3 + 13*x[2]*x[4]^4 + 16*x[1]^4*x[5] +

> 5*x[1]^3*x[2]*x[5] + 11*x[1]^2*x[2]^2*x[5] + 3*x[1]*x[2]^3*x[5] +

> 14*x[2]^4*x[5] + 10*x[1]^3*x[3]*x[5] + 2*x[1]^2*x[2]*x[3]*x[5] +

> 14*x[1]*x[2]^2*x[3]*x[5] + 4*x[2]^3*x[3]*x[5] + 7*x[1]^2*x[3]^2*x[5] +

> 10*x[1]*x[2]*x[3]^2*x[5] + 16*x[2]^2*x[3]^2*x[5] + 13*x[1]*x[3]^3*x[5] +

> 2*x[2]*x[3]^3*x[5] + 3*x[3]^4*x[5] + 5*x[1]^3*x[4]*x[5] +

> 7*x[1]^2*x[2]*x[4]*x[5] + 8*x[1]*x[2]^2*x[4]*x[5] + 2*x[2]^3*x[4]*x[5] +

> 16*x[1]^2*x[3]*x[4]*x[5] + 9*x[1]*x[2]*x[3]*x[4]*x[5] +

> 15*x[1]*x[3]^2*x[4]*x[5] + 3*x[2]*x[3]^2*x[4]*x[5] + 5*x[3]^3*x[4]*x[5]

> + 10*x[1]^2*x[4]^2*x[5] + 10*x[2]^2*x[4]^2*x[5] + x[1]*x[3]*x[4]^2*x[5]

> + x[2]*x[3]*x[4]^2*x[5] + 15*x[3]^2*x[4]^2*x[5] + 15*x[1]*x[4]^3*x[5] +

> 14*x[2]*x[4]^3*x[5] + 3*x[3]*x[4]^3*x[5] + 13*x[4]^4*x[5] +

> 4*x[1]^3*x[5]^2 + 13*x[1]^2*x[2]*x[5]^2 + 16*x[1]*x[2]^2*x[5]^2 +

> 14*x[2]^3*x[5]^2 + 3*x[1]^2*x[3]*x[5]^2 + 16*x[1]*x[2]*x[3]*x[5]^2 +

> 11*x[2]^2*x[3]*x[5]^2 + 8*x[1]*x[3]^2*x[5]^2 + 10*x[2]*x[3]^2*x[5]^2 +

> x[3]^3*x[5]^2 + 5*x[1]^2*x[4]*x[5]^2 + 15*x[1]*x[2]*x[4]*x[5]^2 +

> 9*x[2]^2*x[4]*x[5]^2 + 10*x[1]*x[3]*x[4]*x[5]^2 +

> 9*x[2]*x[3]*x[4]*x[5]^2 + 12*x[3]^2*x[4]*x[5]^2 + 12*x[1]*x[4]^2*x[5]^2

> + 3*x[2]*x[4]^2*x[5]^2 + 6*x[3]*x[4]^2*x[5]^2 + 15*x[4]^3*x[5]^2 +

> 3*x[1]^2*x[5]^3 + 10*x[1]*x[2]*x[5]^3 + 14*x[2]^2*x[5]^3 +

> 12*x[1]*x[3]*x[5]^3 + 6*x[2]*x[3]*x[5]^3 + 4*x[3]^2*x[5]^3 +

> 8*x[1]*x[4]*x[5]^3 + 4*x[3]*x[4]*x[5]^3 + 9*x[1]*x[5]^4 + 14*x[2]*x[5]^4
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> + 12*x[3]*x[5]^4 + x[4]*x[5]^4 + 9*x[5]^5]);

We check a few of the invariants of X.

> Dimension(X);

2

> IsNonsingular(X);

true

> ArithmeticGenus(X);

0

> // Get the sectional genus of X -- ie the genus of a hyperplane section.

> ArithmeticGenus(X meet Scheme(P,P.1));

9

Now we construct the canonical sheaf and hyperplane sheaf and check intersection numbers.

> KX := CanonicalSheaf(X);

> HX := StructureSheaf(X,1); // hyperplane sheaf

> IntersectionPairing(HX,HX); // should be 10 = Degree(X)

10

> Degree(X);

10

> IntersectionPairing(KX,HX); // should be 6

6

> IntersectionPairing(KX,KX); // should be -9 : lots of exceptional curves!

-9

We now get the adjunction map as a divisor map, compute its image X1 and check some of the
invariants of X1 as well as its corresponding intersection numbers.

> mp1,X1 := DivisorMap(Twist(KX,1));

> Dimension(Ambient(X1)); Dimension(X1);

8

2

> KX1 := CanonicalSheaf(X1);

> HX1 := StructureSheaf(X1,1); // hyperplane sheaf of X1

> IntersectionPairing(HX1,HX1); // should be 13 = degree X1

13

> IntersectionPairing(KX1,HX1); // should be -3

-3

> IntersectionPairing(KX1,KX1); // should be -2 : fewer exceptional curves!

-2

We construct a second adjunction map to get X2 and check it as above.

> mp2,X2 := DivisorMap(Twist(KX1,1));

> Dimension(Ambient(X2)); Dimension(X2);

5

2

> KX2 := CanonicalSheaf(X2);

> HX2 := StructureSheaf(X2,1); // hyperplane sheaf X2
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> IntersectionPairing(HX2,HX2); // = degree X2 = 5

5

> IntersectionPairing(KX2,HX2); // should be -5

-5

> IntersectionPairing(KX2,KX2); // should be 5

5

Now X2 should be a degree five Del Pezzo surface with KX ' OX(−1). This last isomorphism can
be verified by checking that there is a degree −2 isomorphism from KX to OX(1)! The scheme
X2 is much simpler than X: it is defined by five degree 2 polynomials.

> boo,d := IsIsomorphicWithTwist(KX2,HX2);

> boo; d;

true

-2

> MinimalBasis(Ideal(X2));

Scheme over GF(17) defined by

y[1]^2 + y[3]^2 + y[1]*y[4] + 15*y[2]*y[4] + 8*y[3]*y[4] + 6*y[4]^2 +

2*y[1]*y[5] + 12*y[2]*y[5] + y[3]*y[5] + 4*y[4]*y[5] + 4*y[5]^2 +

6*y[1]*y[6] + 10*y[2]*y[6] + 7*y[3]*y[6] + 7*y[5]*y[6] + 16*y[6]^2,

y[1]*y[2] + 13*y[3]^2 + 3*y[1]*y[4] + 14*y[2]*y[4] + 13*y[3]*y[4] + 5*y[4]^2 +

14*y[1]*y[5] + 10*y[2]*y[5] + 2*y[3]*y[5] + 9*y[4]*y[5] + 6*y[5]^2 +

4*y[1]*y[6] + 13*y[2]*y[6] + 10*y[3]*y[6] + 3*y[4]*y[6] + y[5]*y[6] +

12*y[6]^2,

y[2]^2 + 16*y[3]^2 + 15*y[1]*y[4] + 3*y[3]*y[4] + y[4]^2 + 10*y[1]*y[5] +

12*y[2]*y[5] + 10*y[3]*y[5] + 11*y[4]*y[5] + 9*y[5]^2 + 5*y[1]*y[6] +

3*y[2]*y[6] + 2*y[3]*y[6] + 15*y[4]*y[6] + 12*y[5]*y[6] + 5*y[6]^2,

y[1]*y[3] + 13*y[3]^2 + y[1]*y[4] + 11*y[3]*y[4] + y[4]^2 + 16*y[1]*y[5] +

y[2]*y[5] + 15*y[3]*y[5] + 3*y[4]*y[5] + 7*y[1]*y[6] + 3*y[2]*y[6] +

9*y[3]*y[6] + 10*y[4]*y[6] + 8*y[5]*y[6] + 6*y[6]^2,

y[2]*y[3] + 16*y[3]^2 + 14*y[1]*y[4] + 3*y[2]*y[4] + y[3]*y[4] + y[4]^2 +

12*y[1]*y[5] + 9*y[3]*y[5] + 6*y[4]*y[5] + 2*y[5]^2 + 13*y[3]*y[6] +

9*y[4]*y[6] + 13*y[5]*y[6] + 12*y[6]^2

Finally we get the composed map from X to X2 and check that it is (birationally) invertible.

> mp1r := Restriction(mp1,X,X1);

> mp2r := Restriction(mp2,X1,X2);

> mpc := Expand(mp1r*mp2r);

> boo := IsInvertible(mpc);

> boo;

true

Example H113E7

In this example, we show how the sheaf machinery can be effectively used as an alternative
method to normalise the projective coordinate ring of a normal, but not projectively normal,
projective variety. Here the coordinate ring is locally normal at all primes except at the maximal
homogeneous ideal.
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Our chosen variety is C, an elliptic curve that has been embedded as a degree 8 subvariety of P3

over Q. The curve C can be thought of as having been embedded in P7 by a complete linear system
of degree 8 and then (isomorphically) projected down into P3. Such genus one curves embedded
as degree 8 curves in P3 actually arise fairly naturally as models of homogeneous spaces arising
in eight-descents.

We wish to recover the full embedding as a projective normal curve in P7. The coordinate
ring of this is isomorphic to the normalisation of the coordinate ring of C in P3. From a sheaf-
theoretic point of view, this is straightforward. The full embedding is the image of the divisor map
corresponding to a hyperplane section of C or, equivalently, to the Serre twisting sheaf OX(1).
The maximal module of OX(1) is isomorphic to the normalisation as an R-module, where R is
the coordinate ring of C in P3, and it can be recovered as an algebra by taking the image of its
associated divisor map. The global sections of OX(1) correspond to the full Riemann-Roch space
of the divisor on the abstract curve given by a certain hyperplane divisor on C.

This example also illustrates another interesting point. In situations similar to these, the di-
mension of the full space of global sections of the Serre twisting sheaf can be computed from
cohomology of the coordinate ring R. However, it is faster in this case to explicitly compute
the full maximal module of OX(1), the zero-th graded part of this corresponding to the space of
global sections and having the dimension of the zeroth cohomology group. In fact, though we only
need to compute the dimension of this part, it is actually much quicker to compute the maximal
module and compute its cohomology than to compute the cohomology of the original defining
module, which is R twisted once. This probably reflects to some extent the fact that polynomial
ring Groebner basis computations are much more highly tuned currently in Magma than the al-
ternating algebra ones used in the cohomology computations. But the maximal module of a sheaf
is generally a nicer object than a submodule with bits missing in the lower-graded pieces and has
a smaller Castelnuevo-Mumford regularity etc. So, as we see in this example, it is often worth
making sure that the maximal module of a sheaf is available before making cohomology calls.

> P<x,y,z,t> := ProjectiveSpace(Rationals(),3);

> C := Curve(P,[ x^2*y^2 - 23/59*x*y^3 + 9/59*y^4 + 27/59*x^3*z - 23/59*x^2*y*

> z - 6/59*x*y^2*z + 6/59*y^3*z - 10/59*x^2*z^2 + 5/59*x*y*z^2 - 3/59*y^2*z^2 +

> 1/59*x*z^3 - 74/59*x^3*t + 115/59*x^2*y*t - 83/59*x*y^2*t + 3/59*y^3*t -

> 105/59*x^2*z*t + 1/59*x*y*z*t - 2/59*y^2*z*t + 36/59*x*z^2*t + 4/59*y*z^2*t -

> 3/59*z^3*t + 297/59*x^2*t^2 - 135/59*x*y*t^2 + 52/59*y^2*t^2 + 68/59*x*z*t^2 -

> 11/59*y*z*t^2 - 18/59*z^2*t^2 - 315/59*x*t^3 + 42/59*y*t^3 + 96/59*t^4,

> x^3*y - 833/354*x*y^3 - 11/236*y^4 - 1633/708*x^3*z - 4675/708*x^2*y*z -

> 2633/708*x*y^2*z - 27/236*y^3*z + 805/354*x^2*z^2 + 223/59*x*y*z^2 -

> 4/59*y^2*z^2 - 38/59*x*z^3 + 3359/708*x^3*t + 3811/354*x^2*y*t +

> 1445/708*x*y^2*t + 303/118*y^3*t - 715/177*x^2*z*t - 527/177*x*y*z*t +

> 211/118*y^2*z*t + 347/354*x*z^2*t - 195/236*y*z^2*t - 4/59*z^3*t -

> 127/236*x^2*t^2 - 8237/708*x*y*t^2 + 65/708*y^2*t^2 + 1973/708*x*z*t^2 +

> 123/59*y*z*t^2 - 24/59*z^2*t^2 - 1753/354*x*t^3 + 873/236*y*t^3 + 128/59*t^4,

> x^4 + 269/354*x*y^3 + 35/236*y^4 + 1849/708*x^3*z + 4255/708*x^2*y*z -

> 247/708*x*y^2*z + 43/236*y^3*z - 727/354*x^2*z^2 - 82/59*x*y*z^2 +

> 2/59*y^2*z^2 + 19/59*x*z^3 - 5603/708*x^3*t - 3469/354*x^2*y*t -

> 1637/708*x*y^2*t - 63/118*y^3*t + 328/177*x^2*z*t - 769/177*x*y*z*t -

> 17/118*y^2*z*t + 151/354*x*z^2*t + 127/236*y*z^2*t + 2/59*z^3*t +

> 1391/236*x^2*t^2 + 7865/708*x*y*t^2 + 823/708*y^2*t^2 - 1901/708*x*z*t^2 +
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> 86/59*y*z*t^2 + 12/59*z^2*t^2 + 493/354*x*t^3 - 761/236*y*t^3 - 64/59*t^4]);

Next the hyperplane sheaf of C is constructed and the dimension of the space of global sections
is confirmed to be 8 using DimensionOfGlobalSections (which also saturates the sheaf).

> OC1 := StructureSheaf(C,1);

> DimensionOfGlobalSections(OC1);

8

Finally, the projective normal embedding into P 7 is created and we check that the image X is
defined by 20 quadrics.

> norm_mp, X := DivisorMap(OC1);

> ArithmeticGenus(X);

1

> B := MinimalBasis(Ideal(X));

> #B;

20

> [TotalDegree(f) : f in B];

[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
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Chapter 114

ALGEBRAIC CURVES

114.1 First Examples
This chapter describes functions for constructing and studying algebraic curves. The first
section below contains elementary examples to help with getting started. The biggest
obstacle is being able to create geometric objects. After that one should be able to consult
the later sections for off-the-shelf functions to apply to the curves.

Within Magma, curves are realised as a specialised type of scheme, themselves covered
in Chapter 112. As schemes they may be defined over any ring, although most functions
will require this to be at least a domain and often a field.

In previous versions of Magma, curves were restricted to lie in some plane for the
dedicated functions below to apply to them. However, we have now generalised the curve
definition to apply to any one-dimensional scheme. The general type is Crv and the
plane curve now has sub-type CrvPln. As before, for the vast majority of the specialist
functionality to apply to a curve, it has to be integral (reduced and irreducible) and defined
over a field.

114.1.1 Ambients
One usually starts by defining an affine or projective space over some base ring in which
our curves will live, although it is not absolutely necessary. Normal affine and projective
spaces are the commonest, although product or weighted projective spaces may also be
used. This space is often referred to as the ambient space and these are more fully described
in the general chapter on schemes referred to above. A two-dimensional ambient is referred
to as a plane. Plane curves - the ones of subtype CrvPln - are those whose ambient space
is a plane (and these are defined by a single polynomial equation). If you intend later
to create several curves and would like them to be taken to lie in the same space, then
deliberately creating their common ambient space in advance is certainly the surest way.
It is important to be aware that any two ambients that have been created independently
will always be distinct. For example, if one wants to intersect two plane curves, the
curves are not allowed to lie in distinct planes, even if one might consider the planes to be
mathematically equivalent.

The basic creation function takes two arguments. The first is the intended base ring,
the second the intended dimension. In the code fragment below we make an affine plane
(of dimension 2). The x, y delineated by diamond brackets determine the names of the co-
ordinates. This syntax is just the same as that for analogous structures such as polynomial
rings.

> k := Rationals();
> A<x,y> := AffineSpace(k,2);
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> A;
Affine space of dimension 2 with coordinates x,y

One can retrieve the characteristic data related to a particular plane as in the following
examples.

> BaseRing(A);
Rational Field
> Dimension(A);
2
> CoordinateRing(A);
Polynomial ring of rank 2 over Rational Field
Lexicographical Order
Variables: x, y

The variables x and y are named on A, but are really elements of the coordinate ring
of A. Thus, A.1, the first variable of A which in this case is x, is synonymous with
CoordinateRing(A).1. Higher dimensional affine ambients are precisely analogous, the
difference being that there are more variables.

114.1.2 Curves
Algebraic curves are schemes of dimension one. That is, they are described by the vanishing
of a set of polynomials or an ideal in the coordinate ring of their ambient space A and this
set of zeros has algebraic dimension 1.

Plane curves are described by the vanishing of a single polynomial equation f = 0 in
some plane A. In other ambients of dimension d, at least d−1 polynomials are needed and
usually more (when d− 1 suffice, we refer to the curve as a global complete intersection).

The polynomials or ideal must belong to the coordinate ring of A and be homogeneous
when A is projective. In practical terms, this means that one should usually write the
polynomial using the variables of A. When using most of the creation functions below,
one must be explicit about the ambient in which the curve lies.

Given some affine plane A with coordinates u, v, define a curve C as the zero locus of
a polynomial f in u, v.

> A<u,v> := AffineSpace(FiniteField(32003),2);
> f := u^2 - v^5;
> C := Curve(A,f);
> C;
Curve over GF(32003) defined by u^2 + 32002*v^5

As we see next, the curve C remains in the ambient space A in which it was constructed.
It will always lie in that particular space.

> AmbientSpace(C);
Affine space of dimension 2 with coordinates u,v
> AmbientSpace(C) eq A;
true
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> BaseField(C);
Finite field of size 32003

Magma can solve systems of polynomial equations over a given field (or even over a domain
using resultants). In particular, it can find the singular points of C defined over the current
base field.

> SingularPoints(C);
{ (0,0) }
> HasSingularPointsOverExtension(C);
false

The function HasSingularPointsOverExtension() above returns false if and only if
there are no additional singular points defined over some extension of the base field of C.
(It calculates the radical of the Jacobian algebra to check whether the singularities over the
current base field account for the whole algebra.) So the origin really is the only singularity
of C defined over this field. There are functions which help one find the singularities of C
over an extension if they exist.

114.1.3 Projective Closure
Magma maintains a close connection between a curve and its projective closure. Here we
illustrate some of the nice results of this.

In this example we define an affine curve in coordinates x, y and take its projective
closure. For clarity, we name the homogeneous coordinates on projective space X, Y , Z.
These names are really maintained by the projective space containing D even though they
appear to have been created with D. Any other curve in this projective space will be
expressed in terms of these variables. Names are not automatically given to the projective
space. In this example the choice is made at the first opportunity, but it can be made or
changed at any time.

> A<x,y> := AffineSpace(Rationals(),2);
> C := Curve(A,(y^2 - x^3)^2 - y*x^6);
> D<X,Y,Z> := ProjectiveClosure(C);
> D;
Curve over Rational Field defined by
X^6*Y - X^6*Z + 2*X^3*Y^2*Z^2 - Y^4*Z^3

Conversely one can retrieve the affine patches of a projective curve. The standard patches
are usually the ones of interest, although others can be recovered. The first line below
checks that the first patch really is C. Again, variable names are not automatically deter-
mined for curves lying in spaces that have not already been created. As seen below, the
only result of not assigning names to variables is that the printing is a little unreadable:
the first coordinate function is referred to as $.1 and so on.

> AffinePatch(D,1) eq C;
true
> C2 := AffinePatch(D,2);



3642 ALGEBRAIC GEOMETRY Part XVI

> C2;
Curve defined by -$.1^6*$.2 + $.1^6 + 2*$.1^3*$.2^2 - $.2^3

We name the coordinate functions and check that C2 really is a patch of D.

> A2<u,v> := AmbientSpace(C2);
> C2;
Curve defined by -u^6*v + u^6 + 2*u^3*v^2 - v^3
> ProjectiveClosure(C2);
Curve defined by -X^6*Y + X^6*Z - 2*X^3*Y^2*Z^2 + Y^4*Z^3

114.1.4 Points
Points have already arisen as the singular points of a curve. In this chapter we always
think of points as being a sequence of coordinates that satisfies the equations of a curve
rather than as a zero-dimensional scheme. While the coordinates of a point often lie in
the base ring of the curve, they may lie in any extension of that base ring. Technically,
the parent of points is not considered to be the curve at all, but instead a point set. Point
sets are characterised by two pieces of information. The first piece of information is some
scheme, in this case a curve C. The second is some algebra over the base ring. (Note that
while we say algebra here to emphasise the mathematical point, in Magma one uses any
ring which admits a map from the base ring rather than an explicit Magma algebra type
as the second piece of information.) In other words, given an extension L of the base ring
k of a curve C, there is a set, C(L), of points of C with coordinates in L. You can consider
the point set C(L) literally to be the set of points of C with coordinates in L, although
this set does not actually compute or list all its elements since there are often infinitely
many.

Thus points can be thought of as being the closest thing to the notion of point that one
uses colloquially: “Is the curve C singular at the point p?”, for example, can be translated
as IsSingular(C,p).

Creating points is easy. For sequences of coordinates of the base ring of a curve, the
expression C ! [1,2], for example, creates the point (1, 2) on the scheme C (assuming
that coordinate sequences of length 2 are appropriate for C and that (1, 2) satisfies the
equations of C). If the coordinates are in some extension, or if you really want a particular
point set as parent, you must be explicit about the point set and write C(L) ! [1,2].

Points may belong to the point sets either of a curve or of the ambient plane of the
curve. When a point and a curve are both arguments to a function then this difference
isn’t visible — in the background the function will check that the point really does lie
on the curve if that is what is mathematically required — although being careful about
where points lie is good practice. Often one is allowed to omit the curve argument in such
functions, in which case one must be clear that the point really does lie exactly where one
wants it to lie: IsNonsingular(p) is an example of function that is rather susceptible to
returning confusing results if one isn’t careful about where the point lies.

The ! operator is Magma’s usual coercion operator. It can be used in a variety of
situations where one might hope to make natural reinterpretations of objects. Here it is
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used to reinterpret a sequence of numbers as the coordinates of a point in a plane or a
curve.

> A<x,y> := AffineSpace(FiniteField(23),2);
> p := A ! [1,2];
> p;
(1, 2)
> q := Origin(A);
> q;
(0, 0)

So now it is possible to analyse particular points of a curve.

> C := Curve(A,x^2 + 2*x*y^2 - y^5);
> C;
Curve over GF(23) defined by
x^2 + 2*x*y^2 + 22*y^5
> p in C;
true (1, 2)
> IsSingular(C,p);
false
> TangentLine(C,p);
Curve over GF(23) defined by
10*x + 20*y + 19

Notice that the statement p in C is evaluated in a generous way: p is really in a point set
of the plane but it happens to satisfy the equation of the curve and that is what is checked.
There are two ways to force the parent of the point to be a point set of C: either use the
coercion operator or test it with the standard IsCoercible() function. The tangent line
to C at p is interpreted as a linear curve embedded in the same plane as C and intersecting
it at p. These tangent lines are only defined for plane curves C and are themselves plane
curves. In particular, functions which can take a curve as argument can take this tangent
line as argument. The tangent line is given the name T in the discussion below and used
as an argument in a function which takes two curves and a point. Recall that the tangent
line to a curve C at a nonsingular point p is the unique line having intersection number at
least 2 with C at p.

> T := $1;
> IntersectionNumber(C,T,p);
2

114.1.5 Choosing Coordinates
One way to express a curve C after a change of coordinates is to make a map — an
automorphism of the ambient space — which realises the change of coordinates and then
compute the image of C under this map.
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Here is a hands-on analysis of a singularity on a curve which involves changes of co-
ordinates. The example is again a plane curve and involves several functions still only
available for such: TangentCone and Blowup. The singularity is first moved to the origin
where coordinates are chosen so that the tangent directions lie along the coordinate axes.

> A<x,y> := AffineSpace(GF(11,2),2);
> C := Curve(A,-x^6 + x*y^2 - 2*x*y + x + (y - 1)^3);
> SingularPoints(C);
{ (0, 1) }
> p := Representative(SingularPoints(C));
> f := Translation(A,p);
> C1 := f(C);
> q := Origin(A);
> TangentCone(C1,q);
Curve over GF(11^2) defined by x*y^2 + y^3
> g := Automorphism(A,y);
> C2 := g(C1);
> TangentCone(C2,q);
Curve over GF(11^2) defined by x*y^2

The singularity is now in a suitable form for study. The following could be the first steps
in an analysis. It can be skipped over by anyone not familiar with the language; otherwise
see Chapter 46.

> D,E := Blowup(C2);
> IsSingular(D,q),IsSingular(E,q);
true false
> TangentCone(D,q);
Curve over GF(11^2) defined by y^2
> Faces(NewtonPolygon(D));
[ <2, 3, 6> ]

So the singularity is almost resolved. One more blowup of the cusp at the origin of D will
make a resolution.

114.1.6 Function Fields and Divisors
If C is an integral curve then the field of fractions of its coordinate ring (or the homogeneous
part of degree 0 in the projective case), is known as the function field of C. The function
field allows us to conveniently perform many different computations with the curve. The
function fields of an affine curve and its projective closure are isomorphic and are identified
in Magma (with the projective version).

In fact, there are two Magma function fields associated to the curve, both abstractly
isomorphic to its field of rational functions. What we refer to as the function field here has
type FunFldFracSch and is associated with more general schemes. Additional information
may be found in Chapter 112. This provides the basic user interface for curve functions
when they are explicitly needed. For the most part, functions apply to the curve directly
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with the function field being used in the background. The second function field is an
algebraic function field (see Chapter 42). This provides much of the deeper functionality
associated to the curve but lies even further in the background and most users should
never need to access it directly.

Divisors — loosely speaking, formal sums of points of a curve — are an important part
of the technology having many substantial applications. Any nonzero rational function
determines a divisor: take the formal sum of zeros of the function on the curve (counted
with multiplicity) minus the poles of the function. Divisors of this form are called principal
divisors. Conversely, divisors arising in this way determine the function which defined them
up to a scalar multiple.

There are two important groups in which divisors are often considered: the divisor
group in which addition is simply coefficient-wise, and the divisor class group which is the
divisor group modulo the subgroup of principal divisors. In the case of elliptic curves, the
class group provides a formal setup in which to interpret the group law.

If you want to see it explicitly, the function field of a curve may be accessed.

> k := FiniteField(17);
> P<x,y,z> := ProjectiveSpace(k,2);
> E := Curve(P, y^2*z - x^3 - 4*x*z^2);
> E1<u,v> := AffinePatch(E,1);
> F<a,b> := FunctionField(E);
> F;
Function Field of Curve over GF(17) defined by
16*x^3 + 13*x*z^2 + y^2*z
> Genus(E);
1

But often you don’t need the function field in your hands since the function you want can
be called directly with the curve as argument.

Divisors are constructed by referring to the curve on which they should lie together
with some characteristic data for them.

> Div := DivisorGroup(E);
> Div;
Group of divisors of Curve over GF(17) defined by
16*x^3 + 13*x*z^2 + y^2*z
> p := E ! [0,0,1];
> L := TangentLine(E,p);
> D := Divisor(E,L);
> D;
Divisor of Curve over GF(17) defined by
16*x^3 + 13*x*z^2 + y^2*z
> Decomposition(D);
[

<Place at (0 : 0 : 1), 2>
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<Place at (0 : 1 : 0), 1>,
]

A little explanation is required. Firstly, the divisor D constructed here is really the divisor
of the rational function with zero along L and pole along the line at infinity. Secondly,
the basic printing of D is not so helpful: the point is to ensure that potentially lengthy
calculations are avoided so it is not immediately printed in ‘factorised’ form. Next, once
factorised, the divisor refers to places of the curve. Since the curve could be singular and
divisor computations are done on the nonsingular model, the language of places is used.
Note that when printing a place, a point corresponding to the place is shown. Of course,
this point does not uniquely characterise the place. If p is a singular point of a curve it is
possible to have unequal places that both display p as their support.

In this case, the curve is nonsingular so everything is above board: D is literally the
divisor 2p1 + p2 where p1 is the prime divisor at the point (0 : 0 : 1) and p2 is the prime
divisor at the point (0 : 1 : 0). Now, after defining these prime divisors, we define a new
divisor of degree 0.

> p1 := Divisor(p);
> p2 := Divisor(E![0,1,0]);
> D2 := D - 3*p1;
> Decomposition(D2);
[

<Place at (0 : 0 : 1), -1>
<Place at (0 : 1 : 0), 1>,

]
> Degree(D2);
0

The natural question to ask of a divisor of degree 0 is whether or not it is principal.

> IsPrincipal(D2);
false
> IsPrincipal(2*D2);
true 1/a

So D2 is not principal but two times D2 is principal. Moreover, the rational function 1/a
defines 2×D2. (This corresponds to the rational function z/x on P .)

Now we look at the class group of E. This function requires that E be defined over a
finite field. All the operations above apply to a curve defined over any field.

> Cl, _, phi := ClassGroup(E);
> Cl;
Abelian Group isomorphic to Z/4 + Z/4 + Z
Defined on 3 generators
Relations:

4*Cl.1 = 0
4*Cl.2 = 0
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> phi;
Mapping from: DivCrv: D to GrpAb: Cl given by a rule
> phi(D2);
2*Cl.2

114.2 Ambient Spaces

In this section we show how to create various spaces that can be used as ambient spaces
for curves. They can be specified in a number of different ways. Typically, different
constructions of such spaces will be taken to be different objects, even if they are defined
over the same ring. Names for the coordinates can be defined by using the diamond bracket
notation in the same way as for polynomial rings.

The discussion here is rather brief, giving just enough functions to create some basic
ambients, their functions and points in them. Consult Chapter 112 for more constructors
and functions.

AffineSpace(k,n)

AffinePlane(k)

Create affine n-dimensional space (resp. the 2-dimensional affine plane) over the
ring k.

ProjectiveSpace(k,n)

ProjectivePlane(k)

Create n-dimensional projective space (resp. the 2-dimensional projective plane)
over the ring k.

DirectProduct(A,B)

If A and B are both one-dimensional projective spaces (defined using the intrinsic
ProjectiveSpace(k,1) for example) this forms the product A×B and also returns
a sequence containing the two projection maps.

RuledSurface(k,n)

RuledSurface(k,a,b)

The rational ruled surface over the ring k which has a curve of self-intersection −n
or ±(a− b). The integer arguments must all be nonnegative. It has four variables,
the ratio of the first two defining the structure map to P1, the second two being
homogeneous coordinates on the P1 fibres of this map.
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CoordinateRing(A)

The coordinate ring of the ambient space A. This is a multivariate polynomial ring
over the base ring of A. The number of variables possessed by the ring will depend
upon the space. If A is an affine n-space, the function will return a ring with n
variables; an ordinary or weighted projective n-space will result in n+1 variables; a
ruled surface will result in four variables. The gradings that are implicit on various
spaces will not be reflected by the polynomial ring. Indeed, at present, there is no
way to impose two different gradings on a polynomial ring in Magma.

FunctionField(A)

Return the function field of the ambient space A. This is a field isomorphic to the
field of fractions of the coordinate ring of A. Its generators can be assigned names
in the usual way and, typically, one writes elements of this function field in terms of
those generators. Polynomials of the coordinate ring of A can be coerced into this
function field.

A ! [a,...]

A(L) ! [a,...]

For elements a, . . . in the base ring of the ambient space (or any other scheme) A
the expression A ! [a,...] creates the set-theoretic point, eg, (a, b) in the affine
plane case, (a : b : c) in the projective plane case, or (a : b : c : d) in the product or
ruled surface case. If L is an extension ring of the base ring of A then the expression
A(L) ! [a,...] creates the point with coordinates (a, . . .) where these coordinates
are elements of L (or the base ring of A).

Origin(A)

The point (0, 0, . . . , 0) of the affine space A.

Coordinates(p)

p[i]

The complete sequence of base ring elements corresponding to the coordinates of
the point p or the ith coordinate or p alone.

Example H114E1

In this example we make some points of an affine plane A. The first exhibits the constructor
which creates points in the point set of the base ring of A. The second creates a point in some
extension of the base ring of A.

> k := FiniteField(2);

> A := AffineSpace(k,3);

> p := A ! [1,2,3];

> p;

(1, 0, 1)

> L<w> := ext< k | 2 >;
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> q := A(L) ! [1,2,w];

> q[3];

w

114.3 Algebraic Curves

A general curve C (type Crv) is defined by the vanishing of a finite number of polynomials
f1, . . . , fn or a polynomial ideal I in a general ambient space. As a scheme, this must have
dimension 1.

A plane curve C (type CrvPln) is defined by the vanishing of a single polynomial f in
one of the available ambient planes:

C : (f1 = f2 = . . . = fn = 0) ⊂ A.

The polynomials or ideal must lie in the coordinate ring of A. The notation C for a curve
and f or f1, . . . , fn for its defining equation(s) will be maintained. The coefficient ring of
the parent of polynomials will be denoted k. Irrespective of type, the ambient space will
be denoted A.

114.3.1 Creation
In this section the most basic methods of creating a curve are presented. For specialised
types — conics, elliptic curves, hyperelliptic curves — there are additional functions doc-
umented in the corresponding chapters. Curves may also be created implicitly, such as
when they arise as the images of maps.

Curve(A,f)

Nonsingular BoolElt Default : false

Reduced BoolElt Default : false

Irreducible BoolElt Default : false

GeometricallyIrreducible

BoolElt Default : false

Saturated BoolElt Default : false

Create the plane curve f = 0 in the ambient plane A where f is a polynomial in the
coordinate ring of A.
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Curve(A,I)

Nonsingular BoolElt Default : false

Reduced BoolElt Default : false

Irreducible BoolElt Default : false

GeometricallyIrreducible

BoolElt Default : false

Saturated BoolElt Default : false

Create the curve in the ambient space A determined by the ideal I of the coordinate
ring of A. An error results if the result

Curve(X,S)

Nonsingular BoolElt Default : false

Reduced BoolElt Default : false

Irreducible BoolElt Default : false

GeometricallyIrreducible

BoolElt Default : false

Saturated BoolElt Default : false

Create the curve defined by the sequence S in the ambient space of X, where S is
a sequence of polynomials in the coordinate ring. Here X can be any scheme, not
necessarily an ambient space itelf. An error results if the result is not actually a
1-dimensional scheme.

Note: An important special case is when A is an affine or a projective space of
dimension 1 and S is empty. This gives the affine or projective line as a curve - as
a scheme it is just the ambient space A. Alternatively, the constructor Curve(A)
described below may be used. Note that the initial construction of A never returns
it as a Crv type, even though it is 1-dimensional. This is for internal technical
reasons – a Crv cannot be considered as an ambient space by Magma. is not a
1-dimensional scheme.

IsCurve(X)

Returns true if and only if X is a one-dimensional scheme.

Curve(X)

The smallest scheme in the inclusion chain above the scheme X which is a curve.
If X is a curve (ie 1-dimensional) then X will be returned as a Crv type. If X has
been created as a subscheme of a curve then this curve will be returned.
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Line(C,p,q)

Line(P,S)

The line through the distinct points p, q on the curve C, or the points of S as a
subscheme of the projective space P if they are collinear. If the points are points of
a curve rather than the ambient space, the line will be interpreted as the tangent
line in the case that the points are equal.

Conic(P,S)

Given a projective plane P and a set S of points in P , this function returns the conic
P through the points of the set S if such a conic exists and is unique. The traditional
setup corresponds to the case where S is a set of 5 points in general position, that is,
no three of them are collinear. If the resulting conic curve is nonsingular, then it will
be returned as a special type. See Chapter 119 for details of the special functions
that apply in that case.

Union(C,D)

Create the union of the curves C and D. The result will usually be non-irreducible,
so although it will be interpreted as a curve, most of the advanced functions below
will not apply to it.

114.3.2 Base Change
Let A be some ambient space in Magma. For example, think of A as being the affine
plane. Let k be its base ring and RA its coordinate ring. If m : k → L is a map of rings (a
coercion map, for instance) then there is a new ambient space denoted AL and called the
base change of A to L which has coordinate ring RA but with coefficients L instead of k.
(Mathematically, one simply tensors RA with L over k. In Magma the equivalent function
at the level of polynomial rings is ChangeRing.) There is a base change function described
below which takes A and L (or the map k → L) as arguments and creates this new space
AL. Note that there is a map from the coordinate ring of A to that of AL determined by
the map m.

This operation is called base extension since one often thinks of the map m as being an
extension of fields. Of course, the map m could be many other things. One key example
where the name extension is a little unusual would be when m is the map from the integers
to some finite field.

Now let X be a scheme in Magma. Thus X is defined by some polynomials f1, . . . , fr

on some ambient space A. Given a ring map k → L there is a base change operation for
X which returns the base change of X to L, denoted XL. This is done by first making
the base change of A to L and then using the map from the coordinate ring of A to that
of AL to translate the polynomials fi into polynomials defined on AL. These polynomials
can then be used to define a scheme in AL. It is this resulting scheme which is the base
change of X to L.

If one has a number of curves in the same ambient space and wants to base change
them all at the same time, a little care is required. The function which takes a curve and a
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map of rings as argument will create a new ambient space each time so should be avoided.
A better approach is to apply base change to the ambient space and then invoke the base
change function which takes the curve and the desired new ambient space as argument.
(This latter base change function appears to be different to the other. In fact it is not. We
described base change above as a function of maps of rings. Of course, there is a natural
extension to maps of schemes. With that extension, this final base change intrinsic really
is base change with respect to map of ambient spaces.)

BaseChange(C, K)

The base change of the curve C to the new base ring K. This is only possible if
elements of the current base ring of C can be coerced automatically into K. The
resulting curve will lie in a newly created plane (see the example below).

BaseChange(C, m)

The base change of the curve C by the map of base rings m. The resulting curve
will lie in a newly created plane.

BaseChange(C, A)

BaseChange(C, A, m)

The base change of the curve C to a curve in the new ambient space A. The space
A must be of the same type as the ambient of C and its base ring must either admit
coercion from the base ring of C or have the map m between the two explicitly
given.

BaseChange(C, n)

The base change of C, where the base ring of C is a finite field to the finite field
which is a degree n extension of the base field of C.

Example H114E2

We give an example of a singular curve, over the rationals, whose singular points are only defined
over the field extension given by adjoining a square root of −1.

> A<x,y> := AffineSpace(Rationals(),2);

> C := Curve(A,y^2 - (x^2+1)^3);

> SingularPoints(C);

{}

> HasSingularPointsOverExtension(C);

true

Here we assume that the user knows which extension to move to. The first method of finding the
points is to search in the particular point set as follows.

> Qi<i> := QuadraticField(-1);

> SingularPoints(C,Qi);
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{ (i, 0), (-i, 0) }

The second method is to create a new curve by base change and to search the base ring point set
for that curve. For a single calculation this method is rather clumsy, but if further computation
were to take place at these points it might be preferable.

> B<u,v> := BaseChange(A,Qi);

> Ci := BaseChange(C,B);

> SingularPoints(Ci);

{ (i, 0), (-i, 0) }

114.3.3 Basic Attributes
The first few functions below recover data from the ambient space of the curve (and could
equally well be applied to the ambient space). Any curves lying in the same ambient space
will return identical results when evaluated in these functions. The remaining functions
recover data about the equation defining the curve.

The coordinate ring of a curve is described here, but its function field is discussed much
later in Section 114.8.

AmbientSpace(C)

The ambient space containing the curve C.

BaseRing(C)

CoefficientRing(C)

BaseField(C)

The base ring of the curve C. This is recovered as the base ring of the ambient
plane. The third function will report an error if the base ring is not a field.

DefiningPolynomial(C)

The defining polynomial of the plane curve C.

DefiningIdeal(C)

The defining ideal of the curve C, as an ideal in the coordinate ring of its ambient
space.

CoordinateRing(C)

The coordinate ring of the curve C. Even creating this requires the use of Gröbner
basis techniques.

Degree(C)

The degree of the of the curve C which must be defined in an ordinary projective
ambient space.
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JacobianIdeal(C)

The ideal of partial derivatives of the defining polynomials of the curve C.

JacobianMatrix(C)

The matrix of partial derivatives of the defining polynomials of the curve C.

HessianMatrix(C)

The symmetric matrix of second partial derivatives of the defining polynomial of
the plane curve C.

Example H114E3

In this example we start by creating a plane curve C and check that its ideal really is principal.
We have chosen an example which is in Weierstrass form.

> A<x,y,z> := ProjectiveSpace(Rationals(),2);

> C := Curve(A,z*y^2 - x^3 - x*z^2 - z^3);

> IsNonsingular(C);

true

> DefiningIdeal(C);

Ideal of Polynomial ring of rank 3 over Rational Field

Lexicographical Order

Variables: x, y, z

Basis:

[

-x^3 - x*z^2 + y^2*z - z^3

]

> IsPrincipal($1);

true x^3 + x*z^2 - y^2*z + z^3

Next we compute the determinant of the Hessian matrix of C. That is a polynomial which we use
to create another curve D. The intersection of C and D are the points of inflection, or flexes, of
C. Over an algebraic closure there will be nine of these, but we only see one — the family “flex
at infinity” — over the rationals.

> M := HessianMatrix(C);

> Determinant(M);

24*x^2*z + 24*x*y^2 + 72*x*z^2 - 8*z^3

> D := Curve(A,Determinant(M));

> IntersectionPoints(C,D);

{ (0 : 1 : 0) }
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114.3.4 Basic Invariants

IsReduced(C)

Returns true if and only if the ideal defining the curve C is reduced.

IsIrreducible(C)

Returns true if and only if the curve C is irreducible (as a scheme).

IsSingular(C)

Returns true if and only if the curve C contains at least one singularity over an
algebraic closure of its base field.

IsNonsingular(C)

Returns true if and only if the curve C has no singularities over an algebraic closure
of its base field.

114.3.5 Random Curves
This section described several functions for the generation of random curves of given degree
and/or genus over finite fields and the rationals. The implementations follow [ST02].

RandomNodalCurve(d, g, P)

RandomBound RngIntElt Default : 9

Generates a random plane curve in the projective plane P of degree d and genus g
with only nodes as singularities. The genus g must satisfy g ≤ (d− 1)(d− 2)/2 and
then the number of nodes will be (d − 1)(d − 2)/2 − g. These nodes are chosen as
a random set of points in P . At the same time g must be ≥ 1 + (d(d − 6)/3) to
guarantee a non-empty linear system for a general set of nodes. For 0 ≤ g ≤ 10, a
good choice to obtain a general curve of genus g is to take d = g + 2 − [g/3] (see
[ST02]).

The base field may be a finite field or Q. Over Q, the construction uses poly-
nomials which will have integer coefficients randomly chosen in the range [−r . . . r],
where r is the value of RandomBound. Over a finite field, RandomBound is ignored.

IsNodalCurve(C)

Given a plane curve C, this function returns true if either C is non-singular or C
only has nodes as singularities.
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RandomOrdinaryPlaneCurve(d, S, P)

Adjoint BoolElt Default : true

Proof BoolElt Default : true

RandomBound RngIntElt Default : 9
Generates a random plane curve in the projective plane P of degree d and with
ordinary singularities specified by the sequence sings as follows: If S = [s2, s3, s4, . . .]
then the curve will have s2 nodes, s3 triple points, s4 ordinary singularities of
multiplicity 4, etc. For example [2, 0, 1] specifies 2 nodes and one ordinary quadruple
point.

For such a curve to exist we require
(
d−1
2

) ≥∑
i si

(
i+1
2

)
.

If Proof is false then the full check that the singularities are ordinary is skipped.
If Adjoint is true then the adjoint ideal, an ideal of the coordinate ring of P ,

is also computed and returned as a second value. The r-th graded parts of this
homogeneous ideal realises the linear system K +(r− d+3)H on the normalisation
of the curve, where K is the canonical divisor and H is the hyperplane section
divisor corresponding to the (singular) embedding into P . This can be used to
compute various adjoint maps (for example, r = d− 3 gives the canonical map) and
its computation by this function is more efficient than using the general method of
blowing-up in Adjoints (this function now also tests for ordinariness and uses the
adjoint ideal by default).

The base field can be finite or Q and RandomBound is as before.

RandomCurveByGenus(g, K)

RandomBound RngIntElt Default : 9
Given a positive integer g and a field K this function generates a random projective
curve over K of genus g, for 0 ≤ g ≤ 13. When g ≤ 10, a plane nodal curve is
returned as given by the function RandomNodalCurve with degree g + 2 − [g/3].
For 11 ≤ g ≤ 13, a curve in P3 is returned, computed by syzygy computations as
described in [ST02].

The field K must be a finite field or Q. The parameter RandomBound applies
when K is chosen to be Q. Note that, although Q is allowed in all cases, for the
higher values of g, particularly for g ≥ 11, the heights of the coefficients of the
defining polynomials for the curve produced tend to be very large, even for small
values of RandomBound.

Example H114E4

> SetSeed(1);

> C := RandomCurveByGenus(4, Rationals());

> C;

Curve over Rational Field defined by

x^5 + 34965/512*x*y*z^3 - 59355/512*x*z^4 + y^5 - 16705/48*y^3*z^2 -

1831885/1536*y^2*z^3 - 1553135/2304*y*z^4 + 655145/4608*z^5



Ch. 114 ALGEBRAIC CURVES 3657

> Genus(C);

4

> C := RandomCurveByGenus(8, GF(23));

> C;

Curve over GF(23) defined by

17*x^8 + 5*x^7*y + 5*x^7*z + 13*x^6*y^2 + 11*x^6*y*z + 8*x^6*z^2 + 16*x^5*y^3 +

17*x^5*y^2*z + 22*x^5*y*z^2 + 6*x^5*z^3 + 3*x^4*y^4 + 2*x^4*y^3*z +

18*x^4*y^2*z^2 + 3*x^4*y*z^3 + 14*x^4*z^4 + 19*x^3*y^5 + 19*x^3*y^4*z +

19*x^3*y^3*z^2 + 21*x^3*y^2*z^3 + 21*x^3*y*z^4 + 10*x^3*z^5 + 18*x^2*y^6 +

4*x^2*y^5*z + 9*x^2*y^4*z^2 + 2*x^2*y^3*z^3 + 21*x^2*y^2*z^4 + 22*x^2*y*z^5

+ 6*x^2*z^6 + 14*x*y^7 + 4*x*y^6*z + 17*x*y^5*z^2 + 20*x*y^4*z^3 +

14*x*y^2*z^5 + 15*x*y*z^6 + 3*x*z^7 + 18*y^8 + 2*y^7*z + 11*y^6*z^2 +

18*y^4*z^4 + 18*y^3*z^5 + 5*y^2*z^6 + 22*y*z^7 + 2*z^8

> Genus(C);

8

> C := RandomCurveByGenus(12, GF(23));

> Ambient(C);

Projective Space of dimension 3

Variables : x, y, z, t

> Degree(C); Genus(C);

12

12

114.3.6 Ordinary Plane Curves
The term ordinary plane curve refers to a curve in the projective plane all of whose singu-
larities are ordinary. This means that a singularity of multiplicity m ≥ 2 has m “distinct
tangent directions” – the equation of the curve expanded in local coordinates at the sin-
gularity begins with a binary form of degree m which splits into m distinct linear factors
over the algebraic closure of the ground field.

A significant property of such curves is that all of their singularities are resolved by
a single blow-up. Their adjoint linear systems/adjoint ideal can be computed in a more
direct fashion than for more general plane curves. These linear systems give important
projective maps such as the canonical map for curves of genus at least 2 and embeddings
as rational normal curves for curves of genus 0.

This section contains some functions relating to ordinary curves and, in particular, to
nodal curves, all of whose singularities are ordinary of multiplicity 2 (nodes). The list of
functions is likely to be extended in future versions of Magma.
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HasOnlyOrdinarySingularities(C)

Adjoint BoolElt Default : true

Given a plane curve C this function returns true in C has only ordinary singularities.
If that is the case it also returns the maximum of the multiplicities of the singularities
of C (1 means that C is non-singular). Further, if C is ordinary and if Adjoint is
true, then the (saturated) adjoint ideal is also computed and returned as the third
value.

HasOnlyOrdinarySingularitiesMonteCarlo(C)

Given a plane curve C defined over Q perform a Monte Carlo test for ordinariness.
This will generally be faster than the intrinsic OnlyOrdinarySingularities. The
function does not compute the adjoint ideal. Five primes are chosen for which the
mod p reduction of C is still a curve and which has Jacobian ideal of the same degree
as that of C. The five reductions are tested for ordinary singularities. If all pass,
then true is returned. Otherwise false is returned. If false is returned, then C is
definitely not ordinary. If it succeeds, then C is very likely to be ordinary but this
is not 100% guaranteed.

AdjointIdeal(C)

Returns the (saturated) adjoint ideal of an ordinary plane curve C. If C is not
ordinary then an error results.

AdjointIdealForNodalCurve(C)

AdjointLinearSystemForNodalCurve(C, d)

Given a plane curve C that is assumed to be nodal, these are slightly faster intrinsics
for computing the adjoint ideal and adjoint linear system, respectively. The first
function returns the adjoint ideal I and the second returns the degree d adjoint
linear system, which is the linear subsystem of the complete plane linear system of
degree d given by the degree d graded part of I.

AdjointLinearSystemFromIdeal(I, d)

Given an ideal I and a positive integer d, this function returns the degree d adjoint
linear system for a plane curve whose (saturated) adjoint ideal is I.

CanonicalLinearSystemFromIdeal(I, d)

Given an ideal I and a positive integer d, this function returns the canonical linear
system for a plane curve of degree d whose (saturated) adjoint ideal is I. This is the
same as intrinsic AdjointLinearSystemFromIdeal with I and d− 3 as arguments.
It will be empty if the curve has genus 0.
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CanonicalLinearSystem(C)

AdjointLinearSystem(C)

Adjoints(C,d)

Given a plane curve C the first two functions return the canonical linear system for
any plane curve C and the third gives the general degree d adjoint linear system.
If C is ordinary, then the functions compute the adjoint ideal and takes its graded
piece as above. If not, they have to work out in detail the graph of the full resolution
of singularities of C, which can take some time.

Example H114E5

In this example, we generate a random ordinary plane curve of degree 7 with 3 nodes and one
ordinary singularity of order 4. We use its adjoint ideal to get the canonical map and compute
its canonical image in P5. The computation of the canonical map this way is generally faster and
gives a much simpler map description than the computation for general curves using the function
field machinery.

> P<x,y,z> := ProjectiveSpace(Rationals(),2);

> C, I := RandomPlaneCurve(7,[3,0,1],P : RandomBound := 2);

> C;

Curve over Rational Field defined by

x^7 + x^5*y*z + x^4*y^3 + x^3*y^2*z^2 - 708*x^3*z^4 - 3401/18*x^2*y^2*z^3 +

3274/9*x^2*y*z^4 + 29054/9*x^2*z^5 - 5861/15552*x*y^6 - 5279/432*x*y^5*z -

71851/1296*x*y^4*z^2 + 173479/486*x*y^3*z^3 + 87337/108*x*y^2*z^4 -

294685/81*x*y*z^5 - 662891/243*x*z^6 + 8117/15552*y^7 + 5543/972*y^6*z +

41419/1296*y^5*z^2 - 17087/243*y^4*z^3 - 646577/972*y^3*z^4 +

77026/81*y^2*z^5 + 423635/243*y*z^6 + 156920/243*z^7

> Genus(C);

6

> //check with OnlyOrdinarySingularities function

> boo,d,I1 := HasOnlyOrdinarySingularities(C);

> boo; d;

true

4

> I eq I1;

true

> // polynomials for canonical map come from the degree d-3=4

> // graded piece of the adjoint ideal.

> can_pols := AdjointLinearSystemFromIdeal(I, 4);

> Sections(can_pols);

[

x^4 - 24*x^2*z^2 - 83/36*x*y^2*z + 83/9*x*y*z^2 + 493/9*x*z^3 - 167/432*y^4

+ 145/108*y^3*z + 35/6*y^2*z^2 - 731/27*y*z^3 - 587/27*z^4,

x^3*y - 12*x^2*z^2 - 73/18*x*y^2*z + 38/9*x*y*z^2 + 286/9*x*z^3 - 55/216*y^4

+ 65/54*y^3*z + 7*y^2*z^2 - 494/27*y*z^3 - 350/27*z^4,

x^3*z - 6*x^2*z^2 - 5/18*x*y^2*z + 10/9*x*y*z^2 + 98/9*x*z^3 - 7/108*y^4 +

5/27*y^3*z + y^2*z^2 - 112/27*y*z^3 - 112/27*z^4,
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x^2*y^2 - 4*x^2*z^2 - 11/3*x*y^2*z - 4/3*x*y*z^2 + 52/3*x*z^3 - 5/36*y^4 -

5/9*y^3*z + 10*y^2*z^2 - 116/9*y*z^3 - 68/9*z^4,

x^2*y*z - 2*x^2*z^2 - 2/3*x*y^2*z - 4/3*x*y*z^2 + 16/3*x*z^3 - 1/18*y^4 +

5/18*y^3*z + y^2*z^2 - 14/9*y*z^3 - 20/9*z^4,

x*y^3 - 12*x*y*z^2 + 16*x*z^3 - 1/2*y^4 - 2*y^3*z + 12*y^2*z^2 - 8*y*z^3 -

8*z^4

]

> X := CanonicalImage(C, Sections(can_pols));

> X;

Curve over Rational Field defined by

x[1]*x[4] - x[2]^2 + 5/36*x[2]*x[6] + 4*x[3]^2 + 11/3*x[3]*x[4] - 68/3*x[3]*x[5]

- 68/9*x[3]*x[6] - 95/216*x[4]*x[6] + 140/3*x[5]^2 + 2*x[5]*x[6] +

131/324*x[6]^2,

x[1]*x[5] - x[2]*x[3] + 1/18*x[2]*x[6] + 2*x[3]^2 + 2/3*x[3]*x[4] -

14/3*x[3]*x[5] - 5/9*x[3]*x[6] - 1/27*x[4]*x[6] + 7/6*x[5]^2 +

1/24*x[5]*x[6] + 2/81*x[6]^2,

-x[1]*x[6] + x[2]*x[4] - 1/2*x[2]*x[6] - 8*x[3]*x[5] + 5/3*x[3]*x[6] -

1/9*x[4]*x[6] + 14*x[5]^2 + 4*x[5]*x[6] + 43/216*x[6]^2,

x[2]*x[5] - x[3]*x[4] + 2*x[3]*x[5] + 2/3*x[3]*x[6] + 1/18*x[4]*x[6] - 7*x[5]^2

- 1/4*x[5]*x[6] - 1/27*x[6]^2,

-x[2]*x[6] + x[4]^2 - 1/2*x[4]*x[6] - 4*x[5]^2 + 16/3*x[5]*x[6] + 1/36*x[6]^2,

-x[3]*x[6] + x[4]*x[5] + 2*x[5]^2 + 1/6*x[5]*x[6] + 1/18*x[6]^2,

x[1]^3 - 10*x[1]^2*x[3] + x[1]*x[2]*x[3] + 52*x[1]*x[3]^2 + 95/216*x[2]^3 +

15/2*x[2]^2*x[3] + 337/432*x[2]^2*x[4] - 491/18*x[2]*x[3]^2 -

425/36*x[2]*x[3]*x[4] - 71/1296*x[2]*x[4]^2 + 676/27*x[3]^3 +

3907/108*x[3]^2*x[4] - 506/27*x[3]^2*x[5] + 341/36*x[3]*x[4]^2 -

529/36*x[3]*x[4]*x[5] + 2525/162*x[3]*x[5]^2 - 103/15552*x[4]^3 -

18385/1944*x[4]^2*x[5] + 4751/11664*x[4]^2*x[6] - 44317/1296*x[4]*x[5]^2 +

317441/46656*x[4]*x[5]*x[6] - 3677/139968*x[4]*x[6]^2 - 11905/162*x[5]^3 -

52453/11664*x[5]^2*x[6] - 1113761/279936*x[5]*x[6]^2 +

813889/1679616*x[6]^3,

x[1]^2*x[2] - 2*x[1]^2*x[3] - 8*x[1]*x[2]*x[3] + 16*x[1]*x[3]^2 - 31/36*x[2]^3 +

29/3*x[2]^2*x[3] + 113/72*x[2]^2*x[4] + 29/3*x[2]*x[3]^2 -

5/9*x[2]*x[3]*x[4] + 5/54*x[2]*x[4]^2 - 460/9*x[3]^3 - 577/18*x[3]^2*x[4] +

1688/9*x[3]^2*x[5] - 1391/108*x[3]*x[4]^2 + 2257/18*x[3]*x[4]*x[5] -

1717/9*x[3]*x[5]^2 - 437/648*x[4]^3 + 15593/648*x[4]^2*x[5] +

13321/15552*x[4]^2*x[6] - 10073/108*x[4]*x[5]^2 - 93221/7776*x[4]*x[5]*x[6]

+ 93403/93312*x[4]*x[6]^2 + 1582/9*x[5]^3 - 11059/1296*x[5]^2*x[6] -

193157/46656*x[5]*x[6]^2 + 363041/559872*x[6]^3,

x[1]*x[2]^2 - 4*x[1]*x[2]*x[3] + 4*x[1]*x[3]^2 - 7/6*x[2]^3 + x[2]^2*x[3] +

1/2*x[2]^2*x[4] + 10*x[2]*x[3]^2 + 26/3*x[2]*x[3]*x[4] + 10/9*x[2]*x[4]^2 -

44/3*x[3]^3 - 36*x[3]^2*x[4] + 200/3*x[3]^2*x[5] - 301/18*x[3]*x[4]^2 +

331/3*x[3]*x[4]*x[5] - 538/3*x[3]*x[5]^2 - 83/54*x[4]^3 +

1109/54*x[4]^2*x[5] + 13/8*x[4]^2*x[6] - 1117/12*x[4]*x[5]^2 -

4051/648*x[4]*x[5]*x[6] - 25/1296*x[4]*x[6]^2 + 2236/9*x[5]^3 +

14917/648*x[5]^2*x[6] - 1351/162*x[5]*x[6]^2 + 45109/46656*x[6]^3
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114.4 Local Geometry

Here we discuss some basic functions providing analysis of a point p lying on a curve C.
Firstly we describe how to create points on curves and their basic access functions. One
should also refer to the comments in Section 112.7 of the general schemes chapter about
the point sets of point arguments of these functions where there is a fuller discussion of
point sets.

Most functions usually have two arguments, a curve and a point on that curve. In fact,
the point need not actually be in a point set of the curve since coercion will be attempted
if it is not. Moreover, the curve argument is not strictly necessary either, since if the point
does lie in a point set of the curve, it can be recovered automatically. So these functions
also work with the curve argument omitted. However, omitting the curve argument should
be thought of merely as a convenient shorthand and should be used with care — it is very
easy to use a point from some other space for which the function still makes sense but
returns a misleading answer.

114.4.1 Creation of Points on Curves
Points of a curve C, and indeed points of any scheme in Magma, lie in point sets associated
to C rather than C itself. Each point set is the parent of points whose coordinates lie in
a particular extension ring of the base ring of the curve. Thus, if k is the base ring of
the curve C, points whose coordinates lie in k are elements of the “base ring point set”
denoted C(k). If L is an extension ring of k (in the sense of admitting coercion from k or
being the codomain of a ring homomorphism from k) then points with coordinates in L
lie in the point set C(L).

Here we give the basic point creation methods and access functions. For more infor-
mation, consult the discussion of points and point sets in Section 112.7 of Chapter 112 on
schemes.

C ! [a,...]

For a sequence of elements a, . . . of the base ring of C, this creates the point of C
with coordinates (a, . . .). The parent of the resulting point is the base point set of
the curve C rather than C itself.

C(L) ! [a,...]

For a sequence of elements a, . . . of the extension ring L of the base ring of C, this
function creates the point of C with coordinates (a, . . .). The parent of the resulting
point is the point set C(L) of the curve C rather than C itself. The phrase ‘extension
ring’ here means that either L admits automatic coercion from the base ring of C,
or that L is the codomain of a ring homomorphism from that base ring.

Curve(p)

The smallest scheme in the inclusion chain above the scheme on which the point p
lies which is a curve. If p lies on a curve then the curve will be returned.
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Curve(P)

The smallest scheme in the inclusion chain above the scheme P is a point set of
which is a curve. If P is a point set of a curve then this curve will be returned.

Coordinates(p)

The sequence of ring elements corresponding to the coordinates of the point p.

p[i]

Coordinate(p,i)

The ith coordinate of the point p.

p eq q

Returns true if and only if the two points p and q lie in schemes contained in a
common ambient space, have coordinates that can be compared (either by lying in
the same ring, or by an automatic coercion) and these coordinates are equal.

FormalPoint(P)

Given a non–singular point P in C(K), where C is a curve and K is some extension
of the field of definition of C, returns a point in C(LaurentSeriesRing(K)), such
that specializing the variable to 0 yields P .

114.4.2 Operations at a Point
Most of the functions in this section report an error if p does not lie on C. Functions
having arguments C, p allow the omission of C as long as the parent of p is a point set
of C. A few of the functions apply only to plane curves.

p in C

S in C

Returns true if and only if the point p or the sequence of coordinates S lies on the
curve C. That is, return true if and only if the coordinates of p satisfy the equation
of C.

IsNonsingular(C,p)

Returns true if and only if p is a nonsingular point of the curve C.

IsSingular(C,p)

Returns true if and only if the point p is a singular point on the curve C.

IsInflectionPoint(C,p)

IsFlex(C,p)

Returns true if and only if the point p is a flex of the plane curve C. An error is
reported if p is a singular point of C. The second return value is the order of the
flex, that is, the local intersection number at p of C with its tangent line at p.
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TangentLine(p)

TangentLine(C,p)

The tangent line to the curve C at the point p embedded as a curve in the same
space; an error if p is a singular point of C.

TangentCone(C,p)

The tangent cone to the curve C at the point p embedded in the same ambient
space.

IsTangent(C,D,p)

Returns true if and only if the plane curves C and D are nonsingular and tangent
at the point p.

114.4.3 Singularity Analysis
These functions report an error if p is not a singular point of C. Again, the arguments can
be abbreviated to just the point if care is taken about its parent.

Multiplicity(C,p)

The multiplicity of the curve C at the point p.

IsDoublePoint(C,p)

Returns true if and only if the point p is a double point of the curve C.

IsOrdinarySingularity(C,p)

Returns true if and only if the point p is a singular point of the curve C with
reduced tangent cone.

IsNode(C,p)

Returns true if and only if the point p is an ordinary double point of the curve C.

IsCusp(C,p)

Returns true if and only if the point p is a nonordinary double point of the curve
C.

IsAnalyticallyIrreducible(C,p)

Returns true if and only if the plane curve C has exactly one place at the point p,
or equivalently if the resolution of singularities is injective above p.
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Example H114E6

Each of the two curves in this example has a double point at the origin. One of these is a node
and one is a cusp.

> A<x,y> := AffineSpace(Rationals(),2);

> C := Curve(A,x^2-y^3);

> p := Origin(A);

> IsCusp(C,p);

true

> IsDoublePoint(C,p);

true

> IsReduced(TangentCone(C,p));

false

> D := Curve(A,x^2 - y^3 - y^2);

> IsAnalyticallyIrreducible(D,p);

false

> IsNode(D,p);

true

114.4.4 Resolution of Singularities
Again, all functions in this section only apply to plane curves.

Blowup(C)

Given the affine plane curve C, return the two affine plane curves lying on the
standard patches of the blowup of the affine plane at the origin. Note that the
two curves returned are the birational transforms of C on the blowup patches. The
patches are contained in the same affine space as the curve itself. If C does not
contain the origin this returns an error message.

Blowup(C,M)

This returns the weighted blowup of the plane curve C at the origin defined by the
2× 2 matrix of integers M . Again, the birational transform of C is returned inside
the ambient plane of C. An error is reported if M does not have determinant ±1.

Example H114E7

It often happens that one can replace a string of ordinary blowups used to resolve a curve singu-
larity by a single weighted blowup.

> A<x,y> := AffineSpace(Rationals(),2);

> C := Curve(A,y^2 - x^7);

> f := map< A -> A | [x^2*y,x^7*y^3] >;

> C @@ f;

Curve over Rational Field defined by

x^14*y^7 - x^14*y^6



Ch. 114 ALGEBRAIC CURVES 3665

> M := Matrix(2,[2,1,7,3]);

> Blowup(C,M);

Curve over Rational Field defined by

-y + 1

14 6

The blowup function takes the total pullback as the underlying map and then removes all copies
of the x and y axes. The pair of numbers displayed in the final line is the multiplicity of these
factors in the total pullback. The curve returned is the birational pullback of C on some patch of
a rational surface arising by a number of blowups above the origin of A. It is clearly nonsingular
— it’s linear! — so this map resolves the singularity at the origin of C.

In fact, Magma has machinery for interpreting strings of blowups in terms of a graph, the resolu-
tion graph.

> ResolutionGraph(C);

The resolution graph on the Digraph

Vertex Neighbours

1 ([ -2, 7, 4, 0 ]) 2 ;

2 ([ -1, 14, 8, 1 ]) 3 ;

3 ([ -3, 6, 3, 0 ]) 4 ;

4 ([ -2, 4, 2, 0 ]) 5 ;

5 ([ -2, 2, 1, 0 ]) ;

Consult Chapter 115 for the full interpretation of this graph. Briefly, one should see this as
representing a chain of five blowups which resolve the curve. Each vertex of the graph corresponds
to one of the exceptional curves coming from these blowups. The curve extracted by the weighted
blowup we saw above corresponds to vertex number 2. Indeed, we can see the multiplicity 14 in
the total pullback as the second entry of the labelling sequence. (The multiplicity 6 which we saw
above is the corresponding entry in exceptional curve 3.) The fourth entry of that sequence, 1,
reports that the birational transform of C to the blownup surface intersects the exceptional curve
with multiplicity 1. This is the only nonzero fourth entry of any vertex label, so we conclude
that there is exactly one place above the singularity at the origin. This can be confirmed (more
quickly!) by the divisor machinery which will be discussed in Section 114.9.

> Places(C ! Origin(A));

[

Place at (0 : 0 : 1)

]

> Degree($1[1]);

1
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114.4.5 Log Canonical Thresholds
For background on log canonical singularities, see for example [Kollár 1997, Singularities
of pairs] or [Kollár 1998, Birational geometry of algebraic varieties].

Let V be a variety with at worst log canonical singularities, P a point on V and D
an effective Q-Cartier divisor on V . Then the log canonical threshold (lct) of the log pair
(V, D) at P is the number

lctP (V, D) = sup {λ ∈ Q | (V, λD) is log canonical at P} ∈ Q ∪ {+∞}.

We can also consider the lct of D along the whole of V :

lct(V, D) = inf {lctP (V, D) | P ∈ V }
= sup {λ ∈ Q | (V, λD) is log canonical} .

LogCanonicalThreshold(C)

The log canonical threshold of the curve C computed at its singular k-points, where
k is the base field of C.

LogCanonicalThresholdAtOrigin(C)

The local log canonical threshold of the affine curve C computed at the origin.

LogCanonicalThreshold(C, P)

The local log canonical threshold of the curve C computed at the point P.

LogCanonicalThresholdOverExtension(C)

The log canonical threshold of the curve C computed at all singular points including
those defined over some base field extension.

Example H114E8

Consider a cubic curve C on the projective plane, then the singularities of C resemble one of the
following examples: a smooth curve, e.g.,

> P2<x,y,z> := ProjectiveSpace(Rationals(),2);

> A := Curve(P2,x^3-y^2*z-3*x*z^2);

> IsNonsingular(A);

true

a curve with ordinary double points (i.e. nodes), e.g.,

> B := Curve(P2,x^3-y^2*z-3*x*z^2+2*z^3);

> IsNodalCurve(B);

true

a curve with one cuspidal point, e.g.,

> C := Curve(P2,x^3-y^2*z);

> #SingularPoints(C) eq 1;



Ch. 114 ALGEBRAIC CURVES 3667

true

> IsCusp(C,SingularPoints(C)[1]);

true

a conic and a line that are tangent, e.g.,

> D := Curve(P2,(x^2+(y-z)^2-z^2)*y);

> #PrimeComponents(D) eq 2;

true

> TangentCone(PrimeComponents(D)[1],P2![0,0,1]) eq PrimeComponents(D)[2];

true

three lines intersecting at one (Eckardt) point, e.g.

> E := Curve(P2,x*y*(x-y));

> IsOrdinarySingularity(E,P2![0,0,1]);

true

> Multiplicity(E,P2![0,0,1]);

3

a curve whose support consists of two lines, e.g.,

> F := Curve(P2,x^2*y);

> IsReduced(F);

false

> #SingularPoints(ReducedSubscheme(F)) eq 1;

true

> IsNodalCurve(Curve(ReducedSubscheme(F)));

true

or a curve whose support consists of three lines, e.g.,

> G := Curve(P2,x^3);

> IsReduced(G);

false

> IsNonsingular(ReducedSubscheme(G));

true

It is known that a curve is log canonical whenever its singularities are at worst nodal, thus
lct(P 2, A) = lct(P 2, B) = 1. For the remaining reduced curves we can resolve their singularities
and calculate their discrepancies to find their log canonical thresholds.

> curves := [* A,B,C,D,E,F,G *];

> [LogCanonicalThreshold(curve) : curve in curves];

It follows that lct(P 2,−KP2) ≤ 1
3
. In fact, it is not hard to see that equality holds.
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Example H114E9

Here we exhibit a curve C over the rationals, Q, that has singularities defined over a splitting
field, k, where lct(C) (over k) < lct(C) (over Q). We take a curve C in the projective plane P2
with one ordinary double point and two triple point singularities. Such a curve can be obtained
by calling:

> P2<x,y,z> := ProjectiveSpace(Rationals(),2);

> C := RandomPlaneCurve(6,[1,2],P2);

For this example we use the fixed curve C defined below.

> f := x*y^5 + y^6 + x^5*z + x^2*y^3*z + 2095/3402*y^5*z + x^4*z^2 -

> 6244382419/8614788*x^3*y*z^2 -

> 28401292681/8614788*x^2*y^2*z^2 -

> 89017753225/25844364*x*y^3*z^2 -

> 243243649115/232599276*y^4*z^2 -

> 2798099890675/70354102*x^3*z^3 -

> 22754590185549/281416408*x^2*y*z^3 -

> 7190675316787/140708204*x*y^2*z^3 -

> 75304687887883/7598243016*y^3*z^3 +

> 17778098933653/140708204*x^2*z^4 +

> 6098447759659/35177051*x*y*z^4 +

> 24308031251845/422124612*y^2*z^4 -

> 4694415764252/35177051*x*z^5 -

> 77497995284599/844249224*y*z^5 +

> 6592790982389/140708204*z^6;

> C := Curve(P2,f);

> IsSingular(C);

true

> LogCanonicalThreshold(C);

1

> IsNodalCurve(C);

false

Thus C must have singularities defined over some field extension.

> HasSingularPointsOverExtension(C);

true

> LogCanonicalThresholdOverExtension(C);

2/3
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114.4.6 Local Intersection Theory
The main function here for a single point uses a standard Euclidean algorithm to calculate
local intersection numbers at points where two plane curves meet. It was taken from
unpublished lecture notes of Franz Winkler, “Introduction to Commutative Algebra and
Algebraic Geometry”; the same algorithm is in Fulton’s book [Ful69]. These numbers are
also called intersection multiplicities in the literature. In the following sections there are
functions for finding the intersection points of two curves.

There is now a variant that uses an algorithm of Jan Hilmar and Chris Smyth de-
scribed in [HS10]. This computes all intersection points of the two curves as a set of Galois
conjugacy classes and their intersection numbers in a single computation. The implemen-
tation, adapted into Magma from code contributed by Chris Smyth, returns the sequence
of points along with the corresponding local intersection multiplicities.

IsIntersection(C,D,p)

Returns true if and only if the point p lies on both curves C and D.

IsTransverse(C,D,p)

Returns true if and only if the point p is a nonsingular point of both plane curves
C and D and the curves have distinct tangents there.

IntersectionNumber(C,D,p)

The local intersection number Ip(C, D) of the plane curves C and D at the point p.
This reports an error if C or D have a common component at p.

IntersectionNumbers(C,D)

IntersectionNumbers(F,G)

Global BoolElt Default : false

These intrinsics use the algorithm of Hilmar and Smyth to compute in one go a list of
all intersection places along with the corresponding local intersection multiplicities
of two projective plane curves C and D defined over k: a finite field, an algebraic
field or the rationals Q. Here, intersection place means a point in P2(K), where
P2 is the ambient of C and D and K is a finite extension of k, which represents a
Galois conjugacy class of ([K : k]) points in the intersection of C and D.

The first intrinsic takes C and D as arguments (which must have no common
irreducible component) and returns the result as a list of pairs 〈p, m〉, where p is
an element of a pointset P2(K) giving a place in the intersection and m is the
corresponding local intersection multiplicity.

The second intrinsic avoids the use of pointsets. It takes two homogeneous
polynomials F and G which are relatively prime and lie in the same multivariate
polynomial ring P = k[x, y, z]. They represent two plane curves in Proj(P ) and the
result is a list of intersection places of these curves with intersection multiplicity.
The elements of the list are again pairs 〈p,m〉, but here p is represented as in Hilmar
and Smyth’s paper [HS10], p is a list of three elements of one of three types:



3670 ALGEBRAIC GEOMETRY Part XVI

i) [∗1, 0, 0∗]. Represents the plane projective point with these homogeneous coor-
dinates.

ii) [∗f(y), 1, 0∗] with f(y) an irreducible polynomial in k[y]. Represents the conju-
gate points with homogeneous coordinates [α, 1, 0] where α ranges over the roots
of f .

iii) [∗h(x, y), g(y), 1∗] with g(y) an irreducible polynomial in k[y] and h(x, y) a poly-
nomial in k[x, y] whose image in (k[y]/(g(y)))[x] is irreducible. Represents the
conjugate points with homogeneous coordinates [γ, β, 1] where β ranges over the
roots of g and, for each β, γ ranges over the roots of h(x, β).
The parameter Global applies to the polynomial version. If it takes its default

value false, both the two-variable and one-variable polynomial rings used in the
type ii) and iii) representations will be non-global versions with the y and x, y
labelling of variables as shown. This may have the disadvantage that elements
returned by different calls to the intrinsic cannot be directly compared because they
lie in different rings. If Global is true, the global one- and two-variable polynomial
rings are used but in this case the variables are not labelled by the intrinsic.

Example H114E10

The local intersection of two curves at a point where they share a common tangent is calculated.
If the curves did not share a tangent, the intersection would be the product of multiplicities which
it is not in this case.

> A<x,y> := AffineSpace(Rationals(),2);

> C := Curve(A, y^2 - x^5);

> D := Curve(A, y - x^2);

> p := Origin(A);

> IntersectionNumber(C,D,p);

4

> Multiplicity(C,p) * Multiplicity(D,p);

2

These intersection numbers are often defined to be the length of a particular affine algebra. (See
[Har77] Chapter I, Exercise 5.4.) Below it is checked that this definition produces the same result
in this case. Note that the algebra is not localised at p so the length calculated is the sum of
intersection numbers at all intersection points. At the end one sees that the discrepancy of 1 is
accounted for by a single transverse intersection away from the origin.

> RA := CoordinateRing(A);

> I := ideal< RA | DefiningPolynomial(C), DefiningPolynomial(D) >;

> Dimension(RA/I);

5

> IP := IntersectionPoints(C,D);

> IP;

{@ (0, 0), (1, 1) @}

> IsTransverse(C,D,IP[1]);

false

> IsTransverse(C,D,IP[2]);
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true

Example H114E11

This example is taken from the paper of Hilmar and Smyth. We use the polynomial version for
which the output is more explicit.

> P<x,y,z> := PolynomialRing(Rationals(),3,"grevlex");

> A := (y-z)*x^5+(y^2-y*z)*x^4+(y^3-y^2*z)*x^3+(-y^2*z^2+y*z^3)*x^2+

> (-y^3*z^2+y^2*z^3)*x-y^4*z^2+y^3*z^3;

> B := (y^2-2*z^2)*x^2+(y^3-2*y*z^2)*x+y^4-y^2*z^2-2*z^4;

> c := IntersectionNumbers(A,B);

> c;

[* <[* x + y, y^2 + 1, 1 *], 1>, <[* x - y^3, y^4 + 1, 1 *], 1>,

<[* y^2 + y + 1, 1, 0 *], 2>, <[* x^2 + x + 2, y - 1, 1 *], 1>,

<[* 1, 0, 0 *], 2>, <[* x^2 + x*y + 2, y^2 - 2, 1 *], 1>,

<[* x^3 - y, y^2 - 2, 1 *], 1> *]

114.5 Global Geometry

In this section functions which determine global properties of curves such as their genus
and whether their equation has a particular form are presented.

114.5.1 Genus and Singularities

Genus(C)

GeometricGenus(C)

The topological genus of the curve C. More precisely, this is the arithmetic genus of
the projective normalisation C̃, which is unique up to k-isomorphism, where k is the
basefield of C. C must be an integral curve (reduced and irreducible as a scheme).

Note that, if k is not a perfect field, C̃ may have singularities over an inseparable
extension field of k (in technical terms, C̃ is a non-singular scheme, but it may
not be k-smooth), in which case the genus of C may drop after some (inseparable)
basefield extensions.

ArithmeticGenus(C)

The arithmetic genus of the curve C or its projective closure if C is affine. In the
case of a plane projective curve of degree d, this number is just (d− 1)(d− 2)/2.

This is really the arithmetic genus of (projective) scheme C and not of its nor-
malisation.
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NumberOfPunctures(C)

The number of punctures of the affine plane curve C over an algebraic closure of its
ground field, that is, the number of points supporting its reduced scheme at infinity.
This is just the reduced degree of the polynomial of C at infinity.

SingularPoints(C)

The singular points of the curve C which are defined over the base field of C.

HasSingularPointsOverExtension(C)

Returns false if and only if the scheme of singularities of the curve C has support
defined over the base field of C. This function requires that C be reduced.

Flexes(C)

InflectionPoints(C)

For a plane curve C, this returns the subscheme of C defined by the vanishing of
the determinant of the Hessian matrix. This contains the “flex points” of C, which
by definition are the nonsingular points at which the tangent line intersects C with
multiplicity at least 3.

C eq D

Returns true if and only if the curves C and D are defined by identical ideals in the
same ambient space. (For plane curves, this simply compares defining polynomials
of the two curves up to a factor so Gröbner basis calculations are avoided.)

IsSubscheme(C,D)

Returns true if and only if the curve C is contained (scheme-theoretically) in the
curve D.

Example H114E12

We take a plane affine cubic C with a single cusp and non-singular at infinity. Here the projective
normalisation of C is isomorphic to the projective line with genus 0, although the arithmetic genus
of C is 1.

> A<x,y> := AffineSpace(GF(3),2);

> C := Curve(A,y^2 - x^3 - 1);

> Genus(C);

0

> ArithmeticGenus(C);

1

Now we consider a similar cubic over the non-perfect field K = k(t) with a single cuspidal singu-
larity defined over an inseparable cubic extension. Now C is a normal and non-singular scheme
(but non-smooth), which only loses its normality after an inseparable basefield extension. Here
both the genus and arithmetic genus are 1.

> K<t> := RationalFunctionField(GF(3));
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> A<x,y> := AffineSpace(K,2);

> C := Curve(A,y^2 - x^3 - t);

> Genus(C);

1

114.5.2 Projective Closure and Affine Patches
In Magma, any affine space has a unique projective closure. This may be assigned different
variable names just like any projective space. The projective closure functions applied to
affine curves will return projective curves in the projective closure of the affine ambient.
Conversely, a projective space has standard affine patches. These will also appear as the
ambient spaces of the standard affine patches of a projective curve.

ProjectiveClosure(A)

The projective space that is the projective closure of the ambient A. Unless A
is already expressed as a particular patch on some projective space, this is the
standard closure defined by the homogenisation of the coordinate ring of A with a
new coordinate and unit weights.

ProjectiveClosure(C)

The closure of the curve C in the projective closure of its ambient affine space.

Example H114E13

Since the closure of the ambient space is unique, the ambient space of the closure of curves lying
in a common affine space is independent of how it is constructed. Here is an odd example but
one that occurs in practice when curves and spaces are passed between functions: the functions
ProjectiveClosure() and AmbientSpace() commute!

> A<a,b> := AffineSpace(GF(5),2);

> C := Curve(A,a^3 - b^4);

> AmbientSpace(ProjectiveClosure(C)) eq ProjectiveClosure(AmbientSpace(C));

true

LineAtInfinity(A)

The line which is the complement of the affine plane A embedded in the projective
closure of A.

PointsAtInfinity(C)

The set of points at infinity defined over the base field of the curve C. The number
of these points can also be recovered by the NumberOfPunctures() function in the
plane case.
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AffinePatch(C,i)

The i-th affine patch of the projective curve C. For ordinary projective space, the
first patch is the one centred on the point (0 : 0 : . . . : 0 : 1), the second at the point
(0 : 0 : . . . : 1 : 0) and so on.

Example H114E14

Usually one looks at the first affine patch of a curve. If the curve is described, as below, using
homogeneous coordinates x,y,z then this is often realised by “setting z = 1”. Note that we have
to assign names to the coordinates explicitly on the affine patches if we want them.

> P<x,y,z> := ProjectiveSpace(GF(11),2);

> C := Curve(P,x^3*z^2 - y^5);

> AffinePatch(C,1);

Curve over GF(11) defined by 10*$.1^3 + $.2^5

> C1<u,v> := AffinePatch(C,1);

> C1;

Curve over GF(11) defined by 10*u^3 + v^5

> SingularPoints(C);

{ (1 : 0 : 0), (0 : 0 : 1) }

One can also look at other patches. Indeed, sometimes it is necessary. In this example, the curve
C has an interesting singularity “at infinity”, the point (1 : 0 : 0). If we want to view it on an
affine curve then we must take one of the other patches.

> C3<Y,Z> := AffinePatch(C,3);

> C3;

Curve over GF(11) defined by Y^5 + 10*Z^2

> IsSingular(C3 ! [0,0]);

true

Both affine curves C1 and C3 have the projective curve C as their projective closure.

> ProjectiveClosure(C1) eq ProjectiveClosure(C3);

true

114.5.3 Special Forms of Curves
The functions in this section check whether a curve is written in a particular normal form,
and also whether it belongs to one of the more specialised families of curve.

IsEllipticWeierstrass(C)

Returns true if the curve C is nonsingular plane curve of genus 1 in Weierstrass
form. This tests the coefficients of the polynomial of C. The conditions guarantee
a flex at the point (0 : 1 : 0) either on C or on its projective closure. These are
precisely the conditions required by the linear equivalence algorithms for divisors in
a later section.
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IsHyperellipticWeierstrass(C)

Returns true if the curve C is a hyperelliptic curve in plane Weierstrass form. The
conditions chosen are that the (a) first affine patch be nonsingular, (b) the point
(0 : 1 : 0) is the only point at infinity and has tangent cone supported at the line at
infinity and (c), the projection of C away from that point has degree 2.

EllipticCurve(C)

EllipticCurve(C,p)

EllipticCurve(C,p)

See the description of EllipticCurve in Chapter 120.

IsHyperelliptic(C)

Eqn BoolElt Default : true

IsGeometricallyHyperelliptic(C)

Map BoolElt Default : true

Verbose IsHyp Maximum : 2
The second function determines whether the curve C is a hyperelliptic curve over
the algebraic closure of its base field. If so and if Map is true, a plane conic or the
projective line and a degree 2 map from C to it (all defined over the base field) are
returned. The map is to the line if the genus of C is even and to a conic if the genus
is odd.

The first function determines whether the curve C is hyperelliptic over its base
field K (ie has a degree 2 map to the projective line defined over K). If so, and if
the Eqn parameter is true, it also returns a hyperelliptic Weierstrass model H over
K and an isomorphic scheme map from C to H.

Here, hyperelliptic entails genus ≥ 2.
The basic method in both cases is to find the image of C under the canonical

map (using functions to be described later) and to check if this is of arithmetic genus
zero. If so, this image curve (which is rational normal) is mapped down to a plane
conic or the line by repeated adjunction maps. For the second function, the final
equation is determined by differential computations in the function field of C once
the explicit map to the projective line, which gives the base x function, has been
determined.

Example H114E15

> P<a,b,c,d,e,f> := ProjectiveSpace(Rationals(),5);

> C := Curve(P,[

> a^2 + a*c - c*e + 3*d*e + 2*d*f - 2*e^2 - 2*e*f - f^2,

> a*c - b^2,

> a*d - b*c,

> a*e - c^2,
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> a*e - b*d,

> b*e - c*d,

> c*e - d^2

> ] );

> boo,hy,mp := IsHyperelliptic(C);

> boo;

true

> hy;

Hyperelliptic Curve defined by y^2 = x^8 + x^6 + x - 1 over Rational Field

> mp;

Mapping from: Sch: C to CrvHyp: hy

with equations :

c*e - d^2 + d*f

-d*f + e*f + f^2

e*f

114.6 Maps and Curves

114.6.1 Elementary Maps
The first group of functions create selfmaps of the affine plane. Such a map f can be used
to move a curve around the plane simply by applying it to the curve. See Chapter 112 on
schemes for more details about maps.

IdentityAutomorphism(A)

Translation(A,p)

FlipCoordinates(A)

Automorphism(A,q)

These are the basic automorphisms of the affine plane A taking (x, y) to (x, y),
(x− a, y − b), (y, x) and (x + q(y), y) respectively, where p is the point (a, b) and q
is a polynomial on A involving y only.

TranslationToInfinity(C,p)

The image of C under the change of coordinates which translates p to the point
(0 : 1 : 0) in the projective plane and makes the tangent line there equal to the
line at infinity. An error is reported if p is a singular point of C. The change of
coordinates map is given so that other curves can be mapped by the same change
of coordinates.
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Example H114E16

In this example we show how one could begin to work out a Weierstrass equation for a Fermat
cubic. First we define that cubic curve C in the projective plane and choose a point p on C.

> P<x,y,z> := ProjectiveSpace(Rationals(),2);

> C := Curve(P,x^3 + y^3 + z^3);

> p := C ! [1,-1,0];

> IsFlex(C,p);

true 3

The point we have chosen is a flex — the second return value of 3 is the local intersection number
of the curve C with its tangent line at p. We use the intrinsic TranslationToInfinity to make
an automorphism of P which takes the point p to the point (0 : 1 : 0) and takes the curve C to a
curve which has tangent line z = 0 at the image of p.

> C1,phi := TranslationToInfinity(C,p);

> phi(p);

(0 : 1 : 0)

> C1;

Curve over Rational Field defined by

x^3 + 3*y^2*z - 3*y*z^2 + z^3

This is almost in Weierstrass form already. It is a pleasant exercise to make coordinate changes
which “absorb” some of the coefficients. Alternatively, one can use the intrinsic EllipticCurve

to perform the entire transformation in one step.

EvaluateByPowerSeries(m, P)

Given a map m : C → D, and a nonsingular point P on C, where C is a curve,
return m(P ), evaluating m(P ) using a power series expansion if necessary. This
allows a rational map on C to be evaluated at nonsingular base points.

Example H114E17

The following example shows a map evaluated at a point using power series methods.

> P2<X,Y,Z>:=ProjectiveSpace(Rationals(),2);

> C:=Curve(P2,X^3+Y^3-2*Z^3);

> D:=Curve(P2,Y^2*Z-X^3+27*Z^3);

> phi:=map<C->D|[-6*X^2-6*X*Z+6*Y^2+6*Y*Z,

> 9*X^2+18*X*Y+18*X*Z+9*Y^2+18*Y*Z+36*Z^2,

> X^2-2*X*Z-Y^2+2*Y*Z

> ]>;

> P:=C![-1,1,0];

> P in BaseScheme(phi);

true (-1 : 1 : 0)

> Q:=EvaluateByPowerSeries(phi,P);

> Q;

(3 : 0 : 1)
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> phi(P);

>> phi(P);

^

Runtime error in map application: Image of map does not lie in the codomain

> pullbackQ:=Q@@phi;

> pullbackQ;

Scheme over Rational Field defined by

-9*X^2 + 9*Y^2,

9*X^2 + 18*X*Y + 18*X*Z + 9*Y^2 + 18*Y*Z + 36*Z^2,

X^3 + Y^3 - 2*Z^3

> IsSubscheme(BaseScheme(phi), pullbackQ);

true

> P in pullbackQ;

true (-1 : 1 : 0)

> Degree(BaseScheme(phi))+1 eq Degree(pullbackQ);

true

114.6.2 Maps Induced by Morphisms
Given a non-constant map φ : D → C between curves, there are several induced maps
between the function fields of C and D and the divisor groups Div(C) and Div(D). We refer
to the contravariant maps φ∗ as Pullback s and to the covariant maps φ∗, corresponding to
the Norm between the function fields, as Pushforward s. Divisor groups and other function
field related items are discussed in Section 114.8.

Degree(m)

Returns the degree of a non-constant dominant map m between curves.

RamificationDivisor(m)

Returns the ramification divisor of a non-constant dominant map m between irre-
ducible curves.

Pullback(phi, X)

Given a map φ : D → C between curves and a function, differential, place or divisor
X on C, this function returns the pullback of X along φ.

Pushforward(phi, X)

Given a map φ : D → C between curves and a function, place or divisor X on C,
this function returns the pushforward of X along φ. In older versions, the function
applied to a place used to only work with the image of the point (or cluster) below
the place for speed and would give an error when φ was undefined there. Now, if
this is true, the function reverts to working entirely with places and should never
fail.



Ch. 114 ALGEBRAIC CURVES 3679

Example H114E18

As an illustration of these routines, consider the following example

> Puvw<u,v,w>:=ProjectiveSpace(Rationals(),2);

> Pxyz<x,y,z>:=ProjectiveSpace(Rationals(),2);

> D:=Curve(Puvw,u^4+v^4-w^4);

> C:=Curve(Pxyz,x^4-y^4+y^2*z^2);

> phiAmb:=map<Puvw->Pxyz|[y*z,z^2,x^2]>;

> phi:=Restriction(phiAmb,D,C);

> KC:=FunctionField(C);

> KD:=FunctionField(D);

> Omega:=BasisOfHolomorphicDifferentials(C)[1];

Here we see a holomorphic differential pulls back to holomorphic.

> IsEffective(Divisor(Pullback(phi,Omega)));

true

Ramification divisors are actually quite easy to compute.

> RamificationDivisor(phi) eq

> Divisor(Pullback(phi,Omega))-Pullback(phi,Divisor(Omega));

true

Verifying Riemann-Hurwitz:

> 2*Genus(D)-2 eq Degree(phi)*(2*Genus(C)-2)+Degree(RamificationDivisor(phi));

true

Pulling back and pushing forward is taking powers on the function field.

> f:=KC.1;

> Pushforward(phi,Pullback(phi,f)) eq f^Degree(phi);

true

Divisor and Pushforward commute.

> g:=KD.1;

> Divisor(Pushforward(phi,g)) eq Pushforward(phi,Divisor(g));

true
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114.7 Automorphism Groups of Curves

Magma now (V2.13) contains functionality for computing the automorphism group of a
(reduced and irreducible) curve over a variety of base fields. New structures have been
added to aid the user in working with these groups. An automorphism group is of type
GrpAutCrv and there may be several of these associated to a given curve: the full automor-
phism group or a subgroup generated by a given set of automorphisms. The automorphism
group structure acts as a container for a permutation group representation of the group
of curve automorphisms along with the map between the representing group and a list of
the actual automorphisms stored in a compressed format.

Elements of the group are of type GrpAutCrvElt, a subtype of MapAutSch. For these, all
of the usual scheme-map operations are available. However, a number of these are specially
implemented for the new type and there are also several new operations. In particular,
composition and powering of elements makes use of the internal group representation for
speed and there are functions for the actions on points, places, divisors etc. which are more
efficient than those for a general (finite) map between curves. There is also a function to
compute the matrix representation of an automorphism group on the space of holomorphic
differentials of the curve.

The full automorphism group is computed at function field level. The algebraic function
field versions of some of the functions here are described in Section 42.7.2.

It should be stressed that these groups are groups of birational automorphisms of a
curve C, in the usual way. This means that they are correspond to actual automorphisms
(ie, everywhere defined with an everywhere defined inverse) of the unique normalisation
of C and the full automorphism group is the full automorphism group of this normalisa-
tion. However, if C is singular, then some of these automorphisms may not be defined at
particular singular points.

There are also functions for computing isomorphisms between distinct curves.
All functions require C to have a function field, whether the full group of automorphisms

is computed or not.
All of the functions computing the full set of automorphisms require the base field to

be perfect (characteristic zero or finite).

114.7.1 Group Creation Functions

AutomorphismGroup(C)

Given a reduced, irreducible projective curve C, this function returns the full au-
tomorphism group of C over its base field. If the genus of C is less than 2, an
error results unless the base field is finite. Note that the full automorphism group
is cached so is only ever computed once.

AutomorphismGroup(C,auts)

With C as above, this function returns the automorphism group of C generated
by the sequence of automorphisms auts. The sequence auts can consist of either
scheme automorphisms of C of type MapAutSch or GrpAutCrvElt elements lying in



Ch. 114 ALGEBRAIC CURVES 3681

a previously constructed automorphism group of C. The same restrictions on the
genus apply.

Automorphisms(C)

Bound RngIntElt Default : ∞
For C as above, this function computes at most Bound automorphisms of C over its
base field and returns them as a sequence of scheme maps (type MapSch). If Bound
is Infinity or at least the order of the full automorphism group, all automorphisms
will be returned.

IsIsomorphic(C, D)

Given irreducible curves C and D this function returns true is C and D are iso-
morphic over their common base field. If so, it also returns a scheme map giving an
isomorphism between them. The curves C and D must be reduced. Currently the
function requires that the curves are not both genus 0 nor both genus 1 unless the
base field is finite.

Isomorphisms(C, D)

Bound RngIntElt Default : ∞
Given reduced, irreducible curves C and D this function returns at most Bound
isomorphisms from C to D over their common base field. These are returned as a
sequence of scheme maps. The genus restrictions are as for IsIsomorphic.

114.7.2 Automorphisms

A . i

Let A be a group of automorphisms of curve C and let i be an integer such that
−n ≤ i ≤ n, where n is the number of generators of A. This operator returns the
i-th generator for A. A negative subscript indicates that the inverse of the generator
is to be created. Finally, A.0 denotes the identity of A.

Note that if A is an automorphism group that was generated from a list of
specified automorphisms, auts, then the generators of A will not necessarily be these
“user” generators, but will be those coming from the permutation representation of
A.

Identity(A)

Id(A)

A ! 1

The identity element of the automorphism group A.
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A ! f

Let A be an automorphism group of a curve C. Given a scheme map f from C to C
or an element of some (other) automorphism group of C, this function returns the
GrpAutCrvElt element of A corresponding to f . An error will result if f is not in
A.

Order(f)

The order of the curve automorphism f .

Inverse(f)

The inverse of the curve automorphism f .

f * g

The product of the curve automorphisms f and g in automorphism group A. If f
and g are regarded as maps, this function returns their composite: first apply f ,
then apply g. Note that this composition uses the permutation representation of A
and is generally performed faster than the usual scheme map composition.

f ^ n

The nth power of the curve automorphism f . The integer n may be positive or
negative. Again, this uses the permutation representation of A, the parent of f .

g eq h

Given curve automorphisms g and h belonging to automorphism groups of the same
curve C, return true if g and h represent the same automorphism, false otherwise.
Note that g and h do not have to belong to the same automorphism group.

g ne h

The logical negation of the preceding function.

SchemeMap(f)

It is sometimes useful for the user to convert a curve automorphism back to an
object of plain scheme isomorphism type. This is a convenience function that simply
returns the curve automorphism f as a MapAutSch.
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114.7.3 Automorphism Group Operations

Curve(A)

The curve of which A is a group of automorphisms.

Order(A)

The order of A.

FactoredOrder(A)

The factored order of A.

NumberOfGenerators(A)

Ngens(A)

The number of generators of A. If A was defined as the group generated by a given
sequence of automorphisms, this sequence will not necessarily coincide with the set
of generators, which is determined by the internal permutation representation.

Generators(A)

The generators of A - a small set of GrpAutCrvElt elements of A, which generate it
as a group - returned in a sequence.

PermutationGroup(A)

The permutation group of A which gives the abstract group representation of the
automorphism group.

PermutationRepresentation(A)

The permutation group representation of A consisting of the actual permutation
group G and an invertible map which takes elements of G to the corresponding
curve automorphism (as a GrpAutCrvElt element).

MatrixRepresentation(A)

For an automorphism group A on a curve C of genus at least 2, computes the matrix
representation of A acting on the space of holomorphic differentials by pullback. The
differentials are represented by row vectors with respect to a basis B and the matrix
associated to g ∈ A gives the pullback action of g by right multiplication of the row
vectors. The (finite) matrix group image G is returned along with a map from A
to G giving the representation and an enumerated sequence containing the basis of
differentials B used.

a in A

Returns whether a curve automorphism, given as a GrpAutCrvElt or MapSch, is
equal to an automorphism lying in A.

A subset B

Returns whether A is actually a subgroup of B as automorphism groups of the same
curve.
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114.7.4 Pullbacks and Pushforwards
For GrpAutCrvElt elements, pullbacks and pushforwards (images) of functions, places,
divisors and differentials of the curve C are handled more directly than for general curve
maps. The functions to perform these operations use the more direct f(x) and x @@ f
syntax and these should be used in preference to the Pushforward and Pullback functions
in Section 114.6.2.

In addition, the computation of images of points on C by a curve automorphism is
handled slightly differently. If the point doesn’t lie in the original domain of definition of
the scheme map giving the automorphism, the image is still computed without extending
the map (although for some singular points of the curve model, the image may still not
exist for the “birational” automorphism).

f(X)

X @ f

Given a curve automorphism f of curve C and a point, function, differential, place
or divisor X on C, this function returns the image (or pushforward) of X under f .

X @@ f

Given a curve automorphism f of curve C and a function, differential, place or
divisor X on C, this function returns the inverse image (or pullback) of X under f .

Example H114E19

Here are some examples of the above functions applied to the genus 3 Fermat curve in characteristic
0.

> P<x,y,z> := ProjectiveSpace(Rationals(),2);

> C := Curve(P,x^4+y^4+z^4);

> L := Automorphisms(C);

> #L;

24

> // to get all automorphisms, we base change to Q(zeta_8)

> K := CyclotomicField(8);

> C1 := BaseChange(C,K);

> L1 := Automorphisms(C1);

> #L1;

96

> // next, we get the automorphism as a group

> G := AutomorphismGroup(C1);

> g := G!iso<C1 -> C1 | [y,z,x],[z,x,y]>;

> Gp,rep := PermutationRepresentation(G);

> Gp;

Permutation group Gp acting on a set of cardinality 12

Order = 96 = 2^5 * 3

(2, 4)(3, 5)(6, 8)(7, 10)

(2, 5, 10, 8, 4, 3, 7, 6)(11, 12)

(1, 2, 3)(4, 5, 9)(6, 11, 7)(8, 12, 10)
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> rep(g);

(1, 8, 4)(2, 9, 6)(3, 10, 11)(5, 7, 12)

> Inverse(rep)(Gp.2);

Mapping from: CrvPln: C1 to CrvPln: C1

with equations :

zeta_8^2*$.1^3*$.3

$.1^3*$.2

$.2^4 + $.3^4

and inverse

zeta_8^2*$.1^3*$.3

-zeta_8^2*$.1^3*$.2

$.2^4 + $.3^4

> $1 eq G.2;

true

Example H114E20

In the next example we look at a superelliptic curve over GF (72) with isomorphism group a central
extension of PGL2(F7) by a cyclic group of order 4.

> SetSeed(1);

> k := GF(7^2);

> A<x,y> := AffineSpace(k,2);

> C := ProjectiveClosure(Curve(A,y^4-x^7+x));

> G := AutomorphismGroup(C);

> Gp,rep := PermutationRepresentation(G);

> Gp;

Permutation group G acting on a set of cardinality 192

Order = 1344 = 2^6 * 3 * 7

> [Order(G.i) : i in [1..Ngens(G)]];

[ 7, 24, 2 ]

> Z := Centre(Gp); Z;

Permutation group Z acting on a set of cardinality 192

Order = 4 = 2^2

> (Z.1)@@rep;

Mapping from: CrvPln: C to CrvPln: C

with equations :

$.1

k.1^12*$.2

$.3

and inverse

$.1

k.1^36*$.2

$.3

> Gp1 := quo<Gp|Z>;

> boo := IsIsomorphic(Gp1,PGL(2,GF(7)));

> boo;

true
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> // Find the representation on the 176 Weierstrass places.

> // Only need the action of the generators of Gp (or G)

> wpls := WeierstrassPlaces(C);

> wpls_perms := [[Index(wpls,g(w)) : w in wpls]: g in Generators(G)];

> G_wpls := SymmetricGroup(#wpls);

> weier_rep := hom<Gp->G_wpls|[G_wpls!p : p in wpls_perms]>;

> //Check that its faithful

> K := Kernel(weier_rep);

> #K;

1

Example H114E21

The next example illustrates the use of IsIsomorphic in finding an isomorphism between the
well-known plane model of genus 3 curve X(7) and a degree 6 model of it in P3. The isomorphism
between C and D is only computed in one direction, but we can then use IsInvertible.

> P2<x,y,z> := ProjectiveSpace(Rationals(),2);

> C := Curve(P2,x^3*y+y^3*z+z^3*x);

> P3<a,b,c,d> := ProjectiveSpace(Rationals(),3);

> D := Curve(P3,[b^2-a*d,a*b*c+b*d^2+c^3]);

> boo,im := IsIsomorphic(C,D);

> boo;

true

> im;

Mapping from: CrvPln: C to Crv: D

with equations :

x^2

x*z

y*z

z^2

> _,imi := IsInvertible(im);

> Inverse(imi);

Mapping from: CrvPln: C to Crv: D

with equations :

x^2

x*z

y*z

z^2

and inverse

b

c

d

We now compute the automorphism group of C over GF (113) where the full set of 168 automor-
phisms exists (the group is isomorphic to PSL2(F7)) and generate some subgroups.

> P2<x,y,z> := ProjectiveSpace(GF(11^3),2);

> C := Curve(P2,x^3*y+y^3*z+z^3*x);
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> G := AutomorphismGroup(C);

> Order(G);

168

> [Order(g) : g in Generators(G)];

[ 7, 3, 7 ]

> G1 := AutomorphismGroup(C,[G.1,G.2]);

> Order(G1);

21

> PermutationGroup(G1);

Permutation group acting on a set of cardinality 8

Order = 21 = 3 * 7

(2, 4, 3, 7, 5, 8, 6)

(3, 5, 4)(6, 8, 7)

> // can also find the normaliser of <G.3> via the

> // permutation rep

> Gp,rep := PermutationRepresentation(G);

> H := Normaliser(Gp,sub<Gp|Gp.3>);

> #H;

21

> Hgens := [g@@rep : g in Generators(H)];

> [Order(g) : g in Hgens];

[ 3, 7 ]

> h := Hgens[1];

> //check directly that h normalises <g> in G

> g := G.3;

> Index([g^i : i in [1..7]],h*g*(h^-1));

4

114.7.5 Quotients of Curves
For G an arbitrary group of automorphisms of a curve C of genus >= 2, the main intrin-
sic in this section computes a model of the quotient curve C/G along with the explicit
projection map C → C/G.

CurveQuotient(G)

G is a group of automorphisms of a curve C/k, which must be of genus g >= 2. The
function computes a projective, non-singular model of C/G, the scheme theoretic
quotient of C by G. This is returned with the G-invariant projection map from C
down to it.

If k(C) is the function field of C then C/G can be thought of as the curve
with function field k(C)G∗ where G∗ is the group of field automorphisms of k(C)/k
induced by G under function pull-back.

The implementation utilises Magma’s Function Field and Invariant Theory func-
tionality and uses a variety of methods. There is no restriction on the characteristic p



3688 ALGEBRAIC GEOMETRY Part XVI

and the function works in positive characteristic as long as the following assumption
is true:

C → C/G is tamely ramified when genus(C/G) > 1
This is equivalent to saying that, for all points P on (the non-singular, projective
model of) C, the subgroup GP of G fixing P has order prime to p. In practise, this
will only be a problem for very small p > 0 when p|#G.

The algorithm used is slightly different depending on gG, the genus of the quotient
curve.

When gG >= 2 and the quotient is non-hyperelliptic, the canonical image of C/G
is computed and this is the model returned. This uses function field functionality
only.

The case gG >= 2 and the quotient is hyperelliptic is similar, only extra work is
needed to find the “y-coordinate”. Again everything is done purely with function
fields. The model returned is a CrvHyp Weierstrass model if the quotient is hyperel-
liptic over k, or a bi-quadratic model in P 3 if it is only geometrically hyperelliptic.

When gG is 0 or 1, the canonical map methodology used in the above cases fails
and we use a combination of Invariant theory and function field methods instead.

For gG = 0, the model returned for C/G is either the projective line P 1 or a
conic in P 2. In this case, the function does not automatically search for k-rational
points so, if a conic is returned, the quotient may still be isomorphic to P 1 over k.

For gG = 1, the model returned is a projectively normal embedding by quadrics
in Pn, n >= 3, or a cubic in P 2. Again, the function does not search for k-rational
points in order to try to convert the quotient into elliptic curve form.

Example H114E22

We start with our old friend the Klein quartic again - this time over Q. The quotient by an
automorphism of order 3 is a genus 1 curve. We find this quotient and produce an isomorphism
from this to an elliptic curve using the rational point that is the projection of (0 : 0 : 1).

> P2<x,y,z> := ProjectiveSpace(Rationals(),2);

> C := Curve(P2,x^3*y+y^3*z+z^3*x);

> phi := iso<C->C|[y,z,x],[z,x,y]>;

> // we will take the quotient by phi

> G := AutomorphismGroup(C,[phi]);

> CG,prj := CurveQuotient(G);

> CG;

Curve over Rational Field defined by

x[1]^2 - 13*x[1]*x[2] + 8*x[1]*x[3] + 10*x[2]*x[3] - 6*x[3]^2 + 15*x[1]*x[4] +

3*x[2]*x[4] - 6*x[3]*x[4] - 6*x[4]^2,

x[1]^2 - 12*x[1]*x[2] + 3*x[2]^2 + 8*x[1]*x[3] + 12*x[1]*x[4]

> Genus(CG);

1

> // find an minimal elliptic Weierstrass model

> ptCG := prj(C![0,0,1]);

> E1, psi1 := EllipticCurve(CG,ptCG);
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> E, psi := MinimalModel(E1);

> prj := Expand(prj * psi1 * psi); // get the composite map C -> E

> E;

Elliptic Curve defined by y^2 + x*y = x^3 - x^2 - 2*x - 1 over Rational Field

> prj;

Mapping from: CrvPln: C to CrvEll: E

with equations :

-2*x^2*y^8 + 2*x*y^8*z - 2*y^9*z - 2*x*y^7*z^2 - 2*x^2*y^5*z^3 + 2*x*y^6*z^3 -

2*y^7*z^3 + 2*x^2*y^4*z^4 - 2*x^2*y^3*z^5 - 2*y^4*z^6 + 2*y^3*z^7 -

2*y^2*z^8

4*x^2*y^8 - 2*x*y^9 - 2*x^2*y^7*z - 2*x*y^8*z + 4*y^9*z + 2*x^2*y^6*z^2 +

4*x*y^7*z^2 - 2*y^8*z^2 + 2*x^2*y^5*z^3 - 4*x*y^6*z^3 + 4*y^7*z^3 -

4*x^2*y^4*z^4 + 2*x*y^5*z^4 - 2*y^6*z^4 + 4*x^2*y^3*z^5 + 2*y^5*z^5 -

2*x^2*y^2*z^6 + 2*y^4*z^6 - 4*y^3*z^7 + 4*y^2*z^8 - 2*y*z^9

2*x*y^8*z - 2*x^2*y^5*z^3 - 2*y^4*z^6

> Conductor(E);

49

In fact, C is the modular curve X(7) and E is X0(49). That C/G and E are isogenous elliptic
curves also follows from modular form theory.

Example H114E23

As a second example we consider the genus 4 modular curveX0(54) with the two commuting Atkin-
Lehner involutions W2,W27. We compute the quotients by < W2 >, < W27 > and < W2,W27 >
which respectively have genera 2,1,0.

> P<[x]> := ProjectiveSpace(Rationals(),3);

> X054 := Curve(P,[

> x[2]*x[3] - x[1]*x[4], 4*x[1]^2*x[2] + 2*x[1]*x[2]^2 +

> x[2]^3 - x[3]^3 + x[3]^2*x[4] - x[3]*x[4]^2]);

> W2 := iso<X054->X054|[1/2*x[4],-x[3],-x[2],2*x[1]],

> [1/2*x[4],-x[3],-x[2],2*x[1]]>;

> W27 := iso<X054->X054|

> [

> -1/3*x[1] - 1/3*x[2] - 1/3*x[3] - 1/3*x[4],

> -2/3*x[1] - 2/3*x[2] + 1/3*x[3] + 1/3*x[4],

> -2/3*x[1] + 1/3*x[2] - 2/3*x[3] + 1/3*x[4],

> -4/3*x[1] + 2/3*x[2] + 2/3*x[3] - 1/3*x[4]

> ],

> [

> -1/3*x[1] - 1/3*x[2] - 1/3*x[3] - 1/3*x[4],

> -2/3*x[1] - 2/3*x[2] + 1/3*x[3] + 1/3*x[4],

> -2/3*x[1] + 1/3*x[2] - 2/3*x[3] + 1/3*x[4],

> -4/3*x[1] + 2/3*x[2] + 2/3*x[3] - 1/3*x[4]

> ]>;

> // 1. Quotient by <W2>

> G := AutomorphismGroup(X054,[W2]);

> CG,prj := CurveQuotient(G);
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> CG;

Hyperelliptic Curve defined by y^2 + (-x^2 - 1)*y = 387*x^6 + 999*x^5 + 785*x^4

+ 294*x^3 + 58*x^2 + 6*x over Rational Field

> Genus(CG);

2

> // 2. Quotient by <W27>

> G := AutomorphismGroup(X054,[W27]);

> CG,prj := CurveQuotient(G);

> CG;

Curve over Rational Field defined by

1878243840*x[1]*x[2] - 68400*x[2]^2 - 680252400*x[1]*x[3] - 774110424*x[2]*x[3]

+ 246079248*x[3]^2 + 1252162560*x[1]*x[4] - 298086240*x[2]*x[4] -

834823168*x[3]*x[4] - 2254334400*x[1]*x[5] - 447968988*x[2]*x[5] +

18*x[3]*x[5] + 936*x[4]*x[5] + 346615560*x[1]*x[6] + 63486504*x[2]*x[6] -

1620*x[5]*x[6] + 14787*x[6]^2,

-4225630080*x[1]*x[2] + 152304*x[2]^2 + 1530412160*x[1]*x[3] +

1741572584*x[2]*x[3] - 553624072*x[3]^2 - 2817086720*x[1]*x[4] +

670624096*x[2]*x[4] + 1878164832*x[3]*x[4] + 5071740600*x[1]*x[5] +

1007828352*x[2]*x[5] - 1824*x[4]*x[5] - 779805580*x[1]*x[6] -

142830348*x[2]*x[6] + 4*x[3]*x[6] + 3870*x[5]*x[6] - 33021*x[6]^2,

-14377204800*x[1]*x[2] + 512928*x[2]^2 + 5207031920*x[1]*x[3] +

5925482424*x[2]*x[3] - 1883642044*x[3]^2 - 9584803200*x[1]*x[4] +

2281707168*x[2]*x[4] + 6390228448*x[3]*x[4] + 64*x[4]^2 +

17255963160*x[1]*x[5] + 3429009288*x[2]*x[5] - 5472*x[4]*x[5] -

2653188900*x[1]*x[6] - 485962956*x[2]*x[6] + 14040*x[5]*x[6] -

111537*x[6]^2,

762945840*x[1]*x[2] - 27648*x[2]^2 - 276319320*x[1]*x[3] - 314444676*x[2]*x[3] +

99957860*x[3]^2 + 508630560*x[1]*x[4] - 121082832*x[2]*x[4] -

339106480*x[3]*x[4] - 915713640*x[1]*x[5] - 181965582*x[2]*x[5] +

360*x[4]*x[5] + 140795640*x[1]*x[6] + 25788312*x[2]*x[6] - 675*x[5]*x[6] +

5985*x[6]^2,

559393920*x[1]*x[2] - 18864*x[2]^2 - 202594400*x[1]*x[3] - 230548712*x[2]*x[3] +

73289896*x[3]^2 + 372929280*x[1]*x[4] - 88775136*x[2]*x[4] -

248632672*x[3]*x[4] - 671395320*x[1]*x[5] - 133415856*x[2]*x[5] +

103229820*x[1]*x[6] + 18907956*x[2]*x[6] + 16*x[4]*x[6] - 702*x[5]*x[6] +

4167*x[6]^2,

488083680*x[1]*x[2] - 16272*x[2]^2 - 176767680*x[1]*x[3] - 201158520*x[2]*x[3] +

63947136*x[3]^2 + 325389120*x[1]*x[4] - 77457888*x[2]*x[4] -

216937408*x[3]*x[4] - 585806400*x[1]*x[5] - 116408124*x[2]*x[5] + 81*x[5]^2

+ 90070080*x[1]*x[6] + 16497576*x[2]*x[6] - 648*x[5]*x[6] + 3609*x[6]^2,

-103229280*x[1]*x[2] + 3456*x[2]^2 + 37386240*x[1]*x[3] + 42544872*x[2]*x[3] -

13524760*x[3]^2 - 68819520*x[1]*x[4] + 16382304*x[2]*x[4] +

45882080*x[3]*x[4] + 123897600*x[1]*x[5] + 24620220*x[2]*x[5] -

19049760*x[1]*x[6] - 3489228*x[2]*x[6] + 135*x[5]*x[6] - 765*x[6]^2,

5219280*x[1]*x[2] - 216*x[2]^2 - 1890360*x[1]*x[3] - 2151168*x[2]*x[3] +

683800*x[3]^2 + 3479520*x[1]*x[4] - 828384*x[2]*x[4] - 2319840*x[3]*x[4] -

6264540*x[1]*x[5] - 1244862*x[2]*x[5] + 963210*x[1]*x[6] + 176418*x[2]*x[6]

+ 45*x[6]^2,
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52200*x[1]*x[2] - 18900*x[1]*x[3] - 21510*x[2]*x[3] + 6840*x[3]^2 +

34800*x[1]*x[4] - 8280*x[2]*x[4] - 23200*x[3]*x[4] - 62640*x[1]*x[5] -

12447*x[2]*x[5] + 9630*x[1]*x[6] + 1764*x[2]*x[6]

> Genus(CG);

1

> // 3. Quotient by <W2,W27>

> G := AutomorphismGroup(X054,[W2,W27]);

> CG,prj := CurveQuotient(G);

> CG;

Curve over Rational Field defined by

0

> Ambient(CG);

Projective Space of dimension 1

Variables : $.1, $.2

114.8 Function Fields

An integral curve C has a coordinate ring that is an integral domain. The function field
of the curve is the corresponding field of fractions in the affine case and the homogeneous
degree 0 part of this in projective cases. The function field of an affine curve is isomorphic
to that of its projective closure. As with schemes generally, a function field is attached
to projective curves and the same object represents the function field of all of its affine
patchs.

Furthermore, in the curve case, there is a unique (up to abstract scheme isomorphism)
(ordinary) projective non-singular curve C̃ which is birationally equivalent to C (ie there
are maps from C to C̃ which are defined at all but finitely many points and whose composite
is the identity where defined) ⇔ C̃ has the same function field (up to isomorphism) as C.

When C is projective, C̃ is just the normalisation of C. The normalisation C̃ differs
from C only at singular points of the latter and C can be thought of as a singular model of
C̃ and, as is usual with curves, most of the functionality provided by the function field and
the objects attached - places, divisors etc. - can be more properly thought of as relating to
C̃. The first section below treats function fields and some basic functions related to them
and their elements.

From now on we assume that the reader is familiar with the notion of divisor, linear
equivalence and their relationship with function fields. If not, there are very brief discus-
sions of them at the beginning of each section and also in the introduction to this chapter,
but you may also consult standard texts such as [Har77] Chapter II, 6 (especially from
page 136) and Chapter IV for a more serious treatment.

For functions working with elements of a function field of a scheme and the scheme
itself see Section 112.6.
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114.8.1 Function Fields
For the purposes of this section, function fields are fields of rational functions on a curve
C. Let f be an element and p a nonsingular rational point of C. Then one can evaluate f
at p and compute the order of a zero or a pole of f at p, an integer which is positive for
zeros and negative for poles. This allows points of the curve to be considered as valuations
of the function field.

In fact, the proper language for discussing valuations and function fields is that of
places and divisors, which really correspond to points of the projective normalisation C̃
of C and formal sums of these, and they are discussed in later sections. Functions in
this section which take a point of a curve as an argument are convenient shorthands for
functions taking a place and are only allowed when there is no ambiguity about which
place is intended, which is why p is required to be non-singular. Functions which compute
the zeros and poles of rational functions properly return divisors, so will be discussed later.

Finally, function fields and divisor groups are cached so that recomputation is avoided.
Although it is transparent in practice, it is worth remembering that the function fields and
divisor groups are always attached to the projective model of a curve, rather than to any
of the affine models. Since these are all tightly related, it doesn’t make any difference. The
support points of divisors will be returned as points on the projective model since they can
quite easily lie at infinity on any particular affine model. For a completely clean treatment,
it is possible to work exclusively with the projective model, although it is certainly not
necessary. Indeed, for some time the elliptic curve machinery in Magma has happily
presented affine models of curves together with projective points.

FunctionField(C)

The function field of the curve C, a field isomorphic to the field of fractions of
the coordinate ring of C. It can be assigned generator names using the diamond
bracket notation, as in the example below. The function field will only exist when
C is integral (reduced and irreducible) and this can be checked directly or by calling
the function below if it is in doubt.

HasFunctionField(C)

Curve(F)

The curve used to create the function field F , or the projective closure of that curve
(if it was affine). The function field is stored on projective curves so that the same
field is returned whenever it is called for from any patch of the projective curve.

F ! r

Coerce the ring element r into the function field F of a scheme. For the coercion to
be successful r must be in a ring related to the scheme of F , e.g. the base ring or
coordinate ring of (or a field of fractions of) the scheme or one of its affine patches
or a subscheme or super scheme.
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ProjectiveFunction(f)

Return the function f in the function field of a scheme as a function in projective
coordinates (as an element in the field of fractions of the coordinate ring of the
projective scheme having function field the parent of f).

Example H114E24

After creating a curve in the usual way we make its function field F .

> P<x,y,z> := ProjectiveSpace(Rationals(),2);

> C := Curve(P,x^4 + 2*x*y^2*z + 5*y*z^3);

> F<a,b> := FunctionField(C);

> F;

Function Field of Curve over Rational Field defined by

x^4 + 2*x*y^2*z + 5*y*z^3

> Curve(F);

Curve over Rational Field defined by

x^4 + 2*x*y^2*z + 5*y*z^3

> b^2;

b^2;

Once constructed, the function field will be stored with the curve (or its projective closure). Thus
the same field will be returned from multiple function calls.

> FunctionField(C) eq FunctionField(AffinePatch(C,3));

true

p @ f

f(p)

Evaluate(f, p)

The ring element f(p) where f is an element of the function field of the curve on
which p is a point. If f has a pole at p the value infinity is returned.

Expand(f, p)

Given an element f on a curve C and a place p of C return a series which is the
expansion of f at p and the uniformizing element of p.

Completion(F, p)

Precision RngIntElt Default : 20

The completion of the function field F of the curve C at the place p of C and a map
from F into its completion.
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Degree(f)

Given an element f of the function field of a curve, return the degree of f . This
is the degree of the map given by f to P1 or the degree of the numerator and
denominator of the principal divisor of f . If f is constant, then 0 is returned.

Valuation(f, p)

The degree of the zero of the function f at the point p where f is a function on the
curve on which p is a point. A negative value indicates there is a pole of f at p.

Valuation(p)

The valuation of the function field of the curve on which p lies centred at the point
p. This is a map from the function field to the integers.

UniformizingParameter(p)

A rational function on the curve of the nonsingular point p which having valuation
1 at p.

Module(S)

Preimages BoolElt Default : false

IsBasis BoolElt Default : false

Given a sequence S of elements of a function field of a curve C return the module
over the base ring of C generated by the elements of S. Also return the map from
the module to the function field and a sequence of preimages of the elements of S if
Preimages is true.

If IsBasis is true then the elements of S will be assumed to be a basis of the
module.

Relations(S)

Relations(S, m)

Given a sequence S of elements of a function field of a curve C return the module
over the base ring R of C of R-linear relations between the elements of S.

Genus(C)

The genus of the curve C.

FieldOfGeometricIrreducibility(C)

Return the algebraic closure of the base ring of C in the function field of C along
with the map including the closure in the function field.

IsAbsolutelyIrreducible(C)

Returns true if the field of geometric irreducibility of the curve C is the base ring
of C.
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DimensionOfFieldOfGeometricIrreducibility(C)

The dimension of the field of geometric irreducibility of the curve C over the base
ring of C.

Example H114E25

Having made a curve and its function field we make an element of the function field using its
named generators a, b. The function is put into a convenient form which, for this F , ensures that
the denominator is a polynomial in a alone.

> P<x,y,z> := ProjectiveSpace(Rationals(),2);

> C := Curve(P,x^4 + 2*x*y^2*z + 5*y*z^3);

> F<a,b> := FunctionField(C);

> f := a/b;

> f;

(-2*a*b - 5)/a^3

Now we choose a point of the curve and find that f has a pole there of order 3.

> p := C ! [0,0,1];

> Evaluate(f,p);

Infinity

> Valuation(f,p);

-3

Computing the valuations of the generators we notice that a is a uniformising parameter at p —
indeed, it is the parameter automatically returned. Clearly the valuation of f = a/b at p should
be 1− 4 = −3 as computed in the previous line.

> vp := Valuation(p);

> vp(a), vp(b);

1 4

> UniformizingParameter(p);

a

GapNumbers(C)

The gap numbers of the curve C.

WronskianOrders(C)

The Wronskian orders of the curve C.

NumberOfPlacesOfDegreeOverExactConstantField(C, m)

NumberOfPlacesDegECF(C, m)

The number of places of degree m of the curve C defined over a finite field. Con-
trary to the Degree function the degree is here taken over the field of geometric
irreducibility.
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NumberOfPlacesOfDegreeOneOverExactConstantField(C)

NumberOfPlacesOfDegreeOneECF(C)

The number of places of degree one of the curve C defined over a finite field. Con-
trary to the Degree() function the degree is here taken over the field of geometric
irreducibility.

NumberOfPlacesOfDegreeOneOverExactConstantField(C, m)

NumberOfPlacesOfDegreeOneECF(C, m)

The number of places of degree one in the constant field extension of degree m of
the curve C. Contrary to the Degree() function the degree is here taken over the
field of geometric irreducibility.

NumberOfPlacesOfDegreeOneECFBound(C)

NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(C)

NumberOfPlacesOfDegreeOneECFBound(C, m)

NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(C, m)

An upper bound on the number of places of degree one in the constant field extension
of degree m (if given) of the curve C. Contrary to the Degree function the degree
is here taken over the respective exact constant fields.

DivisorOfDegreeOne(C)

Return a divisor of the curve C of degree 1 over its field of geometric irreducibility.

SerreBound(C)

SerreBound(C, m)

IharaBound(C)

IharaBound(C, m)

The Serre and Ihara bounds of the number of places of degree 1 over the field of
geometric irreducibility of the curve C over the extension of degree m of the base
ring of C, which must be a finite field.

LPolynomial(C)

LPolynomial(C, m)

ZetaFunction(C)

ZetaFunction(C, m)

The L-polynomial and the ζ function of the curve C over the extension of degree m
of the base ring of C, which must be a finite field.



Ch. 114 ALGEBRAIC CURVES 3697

114.8.2 Representations of the Function Field
The function field of a scheme has very little direct functionality. But when the scheme
is a curve the function field is isomorphic to an algebraic function field as described in
Chapter 42. This isomorphism is used internally in many computations for curves. Al-
though the isomorphic algebraic function field can be retrieved from the function field of
the scheme, this should not be necessary during ordinary usage of the curves.

AlgorithmicFunctionField(F)

Given the function field F of a curve C, this function returns the background al-
gebraic function field, AF . As this is the object where such calculations as those
involving places, divisors and differentials are performed, we refer to it as the algo-
rithmic or arithmetic function field. Since there are curve functions which provide
an interface to most of the functionality of this field via C, F and its elements, the
user can usually avoid accessing AF directly. However, when it is required, it is
also usually necessary to translate between elements of F and AF . A map from F
to AF is thus also returned. This map is invertible and its inverse is used to map
elements the other way.

FunctionFieldPlace(p)

CurvePlace(C, p)

FunctionFieldDivisor(d)

CurveDivisor(C, d)

FunctionFieldDifferential(d)

CurveDifferential(C, d)

Return the place, divisor or differential of the algebraic function field corresponding
to the place, divisor or differential of a curve or convert the place p, divisor or
differential d of an algebraic function field into a place, divisor or differential of the
curve C.

114.8.3 Differentials
The space of differentials in Magma is the vector space of elements df over the function
field of a curve, where f is any element of the function field and where the operator d
satisfies the usual derivation conditions. This vector space is called the differential space
and corresponds to the Kähler differentials of [Har77], II.8. Note that the differential
space is not explicitly a vector space in Magma. Rather, as so often when there are many
different structures to be considered, a vector space together with a map to the space
of differentials is given. (Of course, basic vector space arithmetic works on the space of
differentials.) In fact, this is appropriate: after all, Kähler differentials are merely a model
of an object which one might prefer to define by its universal properties.
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114.8.3.1 Creation of Differentials

DifferentialSpace(C)

The space of differentials of the curve C.

SpaceOfDifferentialsFirstKind(C)

SpaceOfHolomorphicDifferentials(C)

Given a curve C, this function returns a vector space V and a map from V to the
space of differentials of C with image the holomorphic differentials on C.

BasisOfDifferentialsFirstKind(C)

BasisOfHolomorphicDifferentials(C)

Given a curve C, this function returns a basis for the space of holomorphic differ-
entials of C.

DifferentialSpace(D)

Given a divisor D associated with curve C, this function returns a vector space V
and a map from V to the space of differentials of the curve C containing the divisor
D with image the differentials of ωC(D). Colloquially, this refers to the differentials
whose zeros are at least the positive (or effective) part of D and whose poles are no
worse than the negative part of D.

DifferentialBasis(D)

Given a divisor D on a curve, this function returns the basis of the differential space
of D.

Differential(a)

The exact differential d(a) of the function field element a.

114.8.3.2 Operations on Differentials
The space of differentials admits vector space operations over the function field of the
curve. As such, it is one-dimensional so one can even divide two non-zero differentials to
recover an element of the function field.

Identity(S)

The identity differential of the differential space S of a curve.

Curve(S)

The curve for which S is the space of differentials.
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Curve(a)

The curve to which the differential a belongs.

f * x x * f x + y - x x - y x / r x / y

The basic arithmetic in the space of differentials. Thought of as a vector space over
the function field, this space is one-dimensional. The final operation uses this fact
to return a function field element as the quotient of two differentials.

S eq T

Returns true if and only if the two spaces of differentials S and T are the same.

a eq b

Returns true if and only if the differentials a and b are equal.

a in S

Returns true if and only if a is an element of the differential space S of a curve.

IsExact(a)

Returns true if and only if a is known to be an exact differential, that is, if it is
known to be of the form df . If this is not already known, no further attempt is made
to determine that.

IsZero(a)

Returns true if and only if the differential a is the zero differential.

Valuation(d, P)

The valuation of the differential d of a curve at the place P of the same curve.

Residue(d, P)

The residue of the differential d of a curve at the place P of the same curve.

Divisor(d)

The divisor (f) + (dx) of the differential d = fdx of a curve.

Module(L)

IsBasis BoolElt Default : false

PreImages BoolElt Default : false

Given a sequence L of differentials of a curve C, return the module over the base
ring of C generated by the differentials in L as an abstract module and a map from
the module into the space of differentials of C.

If the parameter IsBasis is set to true then the elements in L are assumed to
be a basis for the module returned. If PreImages is set to true then a sequence of
the preimages of the basis elements is also returned.
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Relations(L)

Relations(L, m)

Given a sequence L of differentials of a curve C, return the module over the base
ring R of C of R-linear relations between the elements of L. If given, the argument
m is used to compute a generating system for the relation module such that the
corresponding generating system of {∑m

i=1 viai | v = (vi)i ∈ V } consists of “small”
elements where ai are the elements of L.

Cartier(a)

Cartier(a, r)

Given a differential a belonging to a curve C and a positive integer r, this function
returns the result of applying the Cartier divisor to a r times (or just once if the
argument r is omitted). More precisely, let C be a curve over the perfect field k
with function field F , x ∈ F be a separating variable and a = g dx ∈ Ω(C) with
g ∈ F be a differential. The Cartier operator is defined by

CA(a) =
(−dp−1g/dxp−1

)1/p
dx.

This function computes the r-th iterated application of CA to a.

CartierRepresentation(C)

CartierRepresentation(C, r)

Given a curve C and a positive integer r, this function determines a row representa-
tion matrix for action of the Cartier operator on a basis of the space of holomorphic
differentials of C, (applied r times). More precisely, let C be a curve over the perfect
field k, ω1, . . . , ωg ∈ Ω(C) be a basis for the holomorphic differentials and r ∈ Z≥1.
Let M = (λi,j)i,j ∈ kg×g be the matrix such that

CAr(ωi) =
g∑

m=1

λi,mωm

for all 1 ≤ i ≤ g. This function returns M and (ω1, . . . , ωg).

Example H114E26

In this example we create a curve known to have genus 3 (a nonsingular plane quartic). So it
should have a three-dimensional space of holomorphic differentials.

> P<x,y,z> := ProjectiveSpace(Rationals(),2);

> C := Curve(P,x^4+y^4+z^4);

> Omega_C,phi := SpaceOfHolomorphicDifferentials(C);

> Omega_C;

KModule of dimension 3 over Rational Field

> F<a,b> := FunctionField(C);



Ch. 114 ALGEBRAIC CURVES 3701

> phi;

Mapping from: ModFld: Omega_C to Space of differentials of F

That is good. Now we make a differential and check whether it is exact (which it obviously is
since that’s how we made it).

> f := a/b;

> df := Differential(f);

> df;

(-a/(b^6 + b^2)) d(b)

> Curve(df) eq C;

true

> IsExact(df);

true

114.9 Divisors

We work implicitly on the resolution of a particular, usually singular, model of a curve C
that has been referred to as C̃. To handle prime divisors at the singularities properly we
use the notion of places of the curve and devote the first section below to their construction.
Places include the case of prime divisors at points of degree greater than 1, that is, points
whose coordinates do not lie in the base ring. Following this are sections on constructions
of divisors and their basic arithmetic. It may seem a little strange at first to distinguish
places from other divisors, but in practice when doing arithmetic the difference is not
noticeable.

The most important invariant associated with a divisor D is its Riemann–Roch space,
often denoted by L(D) or H0(D). This is a vector subspace of the function field of a curve.
Its computation has an enormous number of applications. One we give as an illustration is
the computation of the canonical embedding of C (in the case that C is non-hyperelliptic).

This section, together with Section 114.10, is devoted to Magma’s facility to work with
divisors on curves. A divisor on a nonsingular curve C is a formal sum of points Σnipi,
where each pi ∈ C and each ni is an integer. It is clear that divisors form a group under
componentwise addition. This group, and various variants of it, is an important invariant
of the curve C. For a singular (but still irreducible) curve, one can make a similar definition
in which points are replaced by places, a notion that makes precise the vague idea that
singularities arise in different ways, both by “gluing” nonsingular points together and by
“pinching” tangent vectors at a particular point. The sections of this chapter contain very
brief discussions which will help to orient the user who already knows something about
divisors. For a more complete account one should consult an advanced textbook such as
[Har77] Chapter II 6, or [Ful69] Chapter 8.

We start with a description of prime divisors or places. Then we show how to create
divisor groups and divisors in them and go on to explain the basic arithmetic of divisors.
All of the functions here are based on equivalent functions which apply to algebraic func-
tion fields. All calculations are done in that context using the functionality of Chapter 42.
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A translation is made in the background for all functions described here. For information
about function fields, their representations and translations see Section 114.8. The trans-
lations should not be explicitly needed in the ordinary course of working with curves and
their divisors.

The main concern when working with divisors is with questions of linear equivalence. In
this respect, one should at least have in mind that the most substantial calculations really
make sense on projective curves. However, the functions below allow constructions using
an affine curve and its points which are reinterpreted in terms of the projective closure.

Section 114.10 describes those functions which are related to linear equivalence of divi-
sors. A divisor is called principal if it is linearly equivalent to the zero divisor. In the case
of a curve defined over a finite field, we can compute the class group, that is, the group of
divisors modulo principal divisors. In fact, we compute a finitely presented abelian group
isomorphic to the class group and a map which transforms elements between the divisor
group and the class group.

For any divisor on any curve, there are functions to compute Riemann-Roch spaces and
a host of related entities.

114.9.1 Places
A place is a point of the resolution of a curve or, equivalently, a valuation of the function
field of a curve. It is characterised by a point on the curve and, if that point is singular,
some data that distinguishes a single resolved point above it.

114.9.1.1 Sets of Places

Places(C)

The set of places of the curve C.

Curve(P)

The curve on which the places in the set of places P lie. This will be a projective
curve.

P eq Q

P ne Q

Returns true if and only if the sets of places P and Q are (not) equal.

114.9.1.2 Places
There are some explicit methods for constructing places. As we show later, places arise
implicitly as components of divisors and this is a common way of getting hold of them.

Places(C, m)

A sequence of all places of degree m on C, a curve defined over a finite field, where
m is a positive integer.
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HasPlace(C, m)

RandomPlace(C, m)

If a place of degree m exists on the curve C over a finite field, then this returns true
and a single such place, where m is a positive integer. Otherwise it returns false.

Place(p)

The place corresponding to the nonsingular point p of some curve.

Places(p)

A sequence containing the places corresponding to the point p of some curve.

Place(C, I)

Return the place of the curve C defined by the ideal I of the coordinate ring of C.

WeierstrassPlaces(C)

The Weierstrass places of the curve C, which are the Weierstrass places of the zero
divisor of C.

Place(Q)

The place of a curve C determined by the sequence of elements of the sequence Q,
which should all be contained in the function field of C.

Ideal(P)

Given a place P of a curve C return the prime ideal of the coordinate ring of the
ambient of C of coordinate functions which vanish at the place P .

TwoGenerators(P)

Return two elements of the function field of P which determine the place P . The
sequence containing these two elements can be used as input to Place to create a
place equal to P .

Example H114E27

In this example we show how to use rational functions to create a place on a curve. This is not
directly a very geometric operation. However, it is very useful since a pair of rational functions
which determine a place form a very concise description of that place. Thus one often uses this
method to recreate a given place on a curve in one step. We illustrate that by first finding a place
and later recreating it from rational functions.

> P2<x,y,z> := ProjectivePlane(FiniteField(17));

> C := Curve(P2,x^5 + x^2*y^3 - z^5);

> p := C ! [1,0,1];

> Places(p);

[

Place at (1 : 0 : 1)

]
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> P := $1[1];

> P:Minimal;

Place at (1 : 0 : 1)

> TwoGenerators(P);

$.1 + 16

$.1^2*$.2

So now we have a place and some rational functions. As usual, these functions are elements of
the function field of the curve C, so to be able to read them conveniently we assign names to that
function field.

> FC<a,b> := FunctionField(C);

> TwoGenerators(P);

a + 16

a^2*b

We can use this sequence to recreate the place P . The real convenience of the first line of code
below is that it could be in a different Magma session in which only the curve C has been defined
together with the names a, b of its function field. (You can confirm this by running the four
relevant lines in a separate Magma session.) The final line is simply to confirm that we really have
created the same place P as we started with.

> Place([a+16,a^2*b]);

Place at (1 : 0 : 1)

> Place([a+16,a^2*b]) eq P;

true

> Place([a+16,a*b,a^2*b^2]) eq P;

true

Notice that in the final line we create exactly the same place using more than the two elements
that TwoGenerators returned.

Zeros(f)

Poles(f)

A sequence of places of the curve C containing the zeros or poles of f where f is an
element of the function field of C.

Zeros(C, f)

Poles(C, f)

A sequence of places of the curve C containing the zeros or poles of f where f is
some function on C, i.e. f is coercible into the function field of C.

CommonZeros(L)

CommonZeros(C, L)

Given a sequence L of elements of the function field of some curve C or a curve
C and a sequence L of functions on C, return the zeros which are common to all
elements of L as places of C.
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Example H114E28

The second argument to the intrinsic Poles(C,f) can be either an element of the function field
of the curve C or an element of the function field of its ambient space.

> A<x,y> := AffineSpace(GF(2),2);

> C := Curve(A,x^8*y^3 + x^3*y^2 + y + 1);

> FA<X,Y> := FunctionField(A);

> FC<a,b> := FunctionField(C);

> Poles(C,X/Y);

[

Place at (1 : 0 : 0)

]

> Poles(C,a/b);

[

Place at (1 : 0 : 0)

]

> $1 eq $2;

true

In particular, we did not use the ambient coordinates x, y in the arguments.

p1 + p2 - p1 p1 - p2 k * p

p div k p mod k Quotrem(p1, k)

Curve(P)

The projective curve on which the place P lies.

RepresentativePoint(P)

A representative point of the projective model of the curve underlying the place.

P eq Q

P ne Q

Returns true if and only if the two places are (not) the same.

P in S P notin S

Valuation(f, P)

The order of vanishing of the function f on the curve C at the place P of C. A
negative value indicates a pole at P .

Valuation(P)

The valuation of the function field centred at the place P . This is a map from the
function field to the integers.
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Valuation(a, P)

The valuation of the differential a at the place P .

Residue(a, P)

The residue of the differential a at the degree 1 place P .

UniformizingParameter(P)

A function on the curve of the place P having valuation 1 at P .

IsWeierstrassPlace(P)

IsWeierstrassPlace(D, P)

Returns true if and only if the place P (which must have degree 1) is a Weierstrass
place (of divisor D if given).

ResidueClassField(P)

The residue class field of the place P .

Evaluate(a, P)

Evaluate the element a in the function field of the curve of the place P , returning
an element of the residue class field of P .

Lift(a, P)

Lift the element a of the residue class field of the place P (including infinity) to a
function on the curve of P .

Degree(P)

The degree of the place P of a curve over the base ring of the curve of P .

GapNumbers(C, P)

GapNumbers(P)

The gap numbers of the curve C at the degree 1 place P .

Parametrization(C, p)

Parametrization(C, p, P)

Returns a map parametrizing the rational curve C at the rational point p or place
p of degree 1. If p is a singular point on C, then it must have a unique place above
it of degree 1. If P is also given it must be the projective line of dimension 1 as a
curve (ie of type Crv) and then the domain of the map will be P .
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114.9.2 Divisor Group
A curve has an associated group of divisors which is simply the formal abelian group
generated by the places of the curve C. Divisors are elements of this group. In other
words, divisors are expressions of the form Σnipi where ni are integers, pi are places of
the curve which one usually assumes to be distinct. Each term np is called a summand of
d or the component of d corresponding to p. The integer n will be called the coefficient or
multiplicity of the summand.

Divisors are created by specifying the curve for which they will a divisor (if that is not
clear) and then giving sufficient data to identify precisely the divisor in question. This
data could be a list of points or places together with integers, but there are many other
creation methods. Divisors are printed as a linear combination of the places which support
them, if such a combination is known. However, giving this information can be extremely
expensive so often printing simply refers to the curve.

DivisorGroup(C)

The group of divisors of the curve C. This curve may be either an affine or projective
curve.

Curve(Div)

The curve that was used to create the divisor group Div, or its projective model.

Div1 eq Div2

Div1 ne Div2

Returns true if and only the divisor groups Div1 and Div2 are (not) equal.

114.9.3 Creation of Divisors

DivisorGroup(D)

The divisor group in which the divisor D lies.

Curve(D)

The (projective) curve on which the divisor D lies.

Identity(D)

Id(D)

D ! 0

The zero divisor of the divisor group D of a curve.

Div ! p

Divisor(p)

The prime divisor in the divisor group Div of the curve C corresponding to the
place or nonsingular point p of some curve C.
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Divisor(D, S)

Divisor(C, S)

Divisor(S)

The divisor of the curve C or the curve of the divisor group D described by
the factorization sequence S. The sequence should contain tuples of the form
<place,integer>.

Example H114E29

One can use the intrinsic Divisor(S) to reconstruct a divisor from concise data related to it. The
intrinsics Support and CanonicalDivisor are defined below.

> P<x,y,z> := ProjectivePlane(FiniteField(17));

> C := Curve(P,x^5 + x^2*y^3 - z^5);

> F<a,b> := FunctionField(C);

> K := CanonicalDivisor(C);

> supp, exps := Support(K);

> Q := [ < RationalFunctions(supp[i]),exps[i] > : i in [1..#supp] ];

> Q;

[

<[ a, 2*a^2*b^2 + 4*a*b ], 2>,

<[ a + 16, a^2*b ], 2>,

<[ a^4 + a^3 + a^2 + a + 1, a^2*b ], 2>,

<[ 1/a, (a + b)/a ], -2>,

<[ 1/a, (a^2 + 16*a*b + b^2)/a^2 ], -2>

]

> K;

Divisor 2*Place at (0 : 1 : 0) + 2*Place at (1 : 0 : 1) + 2*Place at

($.1 : 0 : 1) - 2*Place at (16 : 1 : 0) - 2*Place at (16*$.1 + 1 : 1 : 0)

Now we can reconstruct the divisor K using this sequence.

> Divisor([<Place(f[1]), f[2]> : f in Q]);

Divisor on Curve over GF(17) defined by

x^5 + x^2*y^3 + 16*z^5

> K eq $1;

true
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PrincipalDivisor(C, f)

PrincipalDivisor(D, f)

PrincipalDivisor(f)

Divisor(C, f)

Divisor(D, f)

Divisor(f)

The principal divisor corresponding to f , that is, the divisor of the curve C of zeros
and poles of the function field element f , where C is the curve of the divisor group
D if given.

Divisor(a)

The divisor of the curve C corresponding to the differential a of C.

Divisor(C, X)

Divisor(D, X)

The divisor described by intersection of the curve C with the scheme X, (where C
is the curve of the divisor group D if the group is given instead of the curve).

Divisor(C, p, q)

Divisor(D, p, q)

The principal divisor corresponding to the line through points p and q (the tangent
line to the curve C there if they coincide) where C is the curve of the divisor group
D if given.

Divisor(C, I)

Divisor(D, I)

The divisor of the curve C defined by the ideal I of the ambient coordinate ring
where C is the curve of the divisor group D if given.

Decomposition(D)

The decomposition sequence of D as a sequence of tuples of the form <place,
multiplicity> characterizing the divisor D.

Support(D)

The sequence of places in the support of D, followed by their sequence of multiplic-
ities in D.
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Example H114E30

A curve, its divisor group and some divisors are created.

> P<x,y,z> := ProjectiveSpace(GF(7), 2);

> C := Curve(P,y^2*z - x^3 - x*z^2 - z^3);

> Div := DivisorGroup(C);

> Div;

Group of divisors of Curve over GF(7) defined by

6*x^3 + 6*x*z^2 + y^2*z + 6*z^3

> FP<a,b> := FunctionField(P);

> D := Divisor(C,a);

> D;

Divisor of Curve over GF(7) defined by

6*x^3 + 6*x*z^2 + y^2*z + 6*z^3

> Decomposition(D);

[

<Place at (0 : 1 : 0), -2>,

<Place at (0 : 6 : 1), 1>,

<Place at (0 : 1 : 1), 1>

]

> D;

Divisor -2*Place at (0 : 1 : 0) + 1*Place at (0 : 6 : 1) + 1*Place at (0 : 1 : 1)

The support of a divisor is written in the style of the factorization of other objects in Magma;
compare with the factorization of the integer 84 below. This expression is called the factorization
of a divisor and provides a method of accessing the individual components.

> Factorization(84);

[ <2, 2>, <3, 1>, <7, 1> ]

> Support(D)[2];

Place at (0 : 6 : 1)

One can access the point underlying a given place.

> p := Support(D)[1];

> p;

Place at (0 : 1 : 0)

> RepresentativePoint(p);

(0 : 1 : 0)

CanonicalDivisor(C)

A divisor in the canonical divisor class of the curve C.

RamificationDivisor(C)

The ramification divisor of the curve C.
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114.9.4 Arithmetic of Divisors

D + E - D D - E n * D D div n D mod n

Basic formal arithmetic of divisors; D and E are divisors (or places) and n is an
integer.

Quotrem(D, n)

The quotient and remainder on dividing the divisor D by the integer n.

Degree(D)

The sum of coefficients of the divisor D multiplied by the degrees of the places of
the corresponding components.

IsEffective(D)

IsPositive(D)

Returns true if and only if all coefficients of the divisor D are nonnegative.

Numerator(D)

Denominator(D)

The numerator, respectively denominator, of the divisor D of a curve. The numera-
tor and denominator are both positive divisors such that D is the difference between
numerator and denominator.

SignDecomposition(D)

The minimal effective divisors A and B such that the equality of divisors D = A−B
holds.

Example H114E31

The sign decomposition of the previous example is calculated.

> P<x,y,z> := ProjectiveSpace(GF(7),2);

> C := Curve(P,y^2*z - x^3 - x*z^2 - z^3);

> Div := DivisorGroup(C);

> phi := hom< Parent(x/z) -> FP | [FP.1,FP.2,1] >

> where FP is FunctionField(P);

> D := Divisor(Div,phi(x/z));

> Decomposition(D);

[

<Place at (0 : 1 : 0), -2>,

<Place at (0 : 6 : 1), 1>,

<Place at (0 : 1 : 1), 1>

]

> Decomposition(D div 2);

[

<Place at (0 : 1 : 0), -1>
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]

> A, B := SignDecomposition(D);

> IsEffective(A);

true

> IsEffective(B);

true

> A - B eq D;

true

d in D d notin D

D eq E

D ne E

Returns true if and only the divisors D and E are (not) equal. Note that this means
equality in the group of divisors and is not the same as being linearly equivalent.

D lt E D le E D gt E D ge E

IsZero(D)

Returns true if and only if all coefficients of the divisor D are zero.

IsCanonical(D)

Returns true if and only if the divisor D is the divisor of a differential, in which
case also return a differential realising this.

GCD(D1, D2)

Gcd(D1, D2)

GreatestCommonDivisor(D1, D2)

The greatest common divisor of the divisors D1 and D2. This is the divisor sup-
ported on the places common to the support of both divisors with coefficients the
minimum of those occurring in D1 and D2.

LCM(D1, D2)

Lcm(D1, D2)

LeastCommonMultiple(D1, D2)

The least common multiple of the divisors D1 and D2. This is the divisor supported
on all the places in the supports of D1 and D2 with coefficients the maximum of
those occurring in the input divisors.
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Example H114E32

We find that a given divisor is actually a canonical divisor.

> P<x,y,z> := ProjectiveSpace(GF(7),2);

> C := Curve(P,y^2*z - x^3 - x*z^2 - z^3);

> Div := DivisorGroup(C);

> phi := hom< Parent(x/z) -> FP | [FP.1,FP.2,1] >

> where FP is FunctionField(P);

> D := Divisor(Div,phi(x/z));

> IsCanonical(D);

true (($.1) ^ 1 * ($.1^3 + $.1 + 1) ^ -1 * ($.1) ^ 1) d($.1)

The printing of the differential in the last line above is not very clear since names have not been
assigned, but nonetheless, it can be used as an argument to intrinsics.

> _, dd := IsCanonical(D);

> Valuation(dd,Support(D)[1]);

-2

114.9.5 Other Operations on Divisors

Ideal(D)

Given a divisor D of a curve C, return the ideal of the coordinate ring of the ambient
of C of coordinate functions which cuts out D.

Valuation(D,p)

Valuation(D,P)

The coefficient of the divisor summand of the divisor D corresponding to the point
p or place P .

ComplementaryDivisor(D,p)

ComplementaryDivisor(D,P)

The divisor after removing from the divisor D the component corresponding to the
point p or place P .
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114.10 Linear Equivalence of Divisors

114.10.1 Linear Equivalence and Class Group

IsPrincipal(D)

Returns true if and only if the divisor D is the divisor of zeros and poles of some
rational function. A rational function which performs that role will also be returned.
Recall that any two such functions differ only by a scalar factor.

IsLinearlyEquivalent(D1,D2)

Returns true if and only if the difference D1 − D2 of the two divisor arguments
is a principal divisor. In that case return also the rational function giving this
equivalence.

IsHypersurfaceDivisor(D)

For an effective hypersurface divisor D on an ordinary projective curve C, returns
true if and only if D is the scheme theoretic intersection of C with a hypersurface
H of the ambient projective space. If so, also returns an equation for H and the
degree of H.

Example H114E33

We check that an effective canonical divisor on a non-singular degree 4 plane curve is indeed a
divisor coming from the intersection of the curve with a hyperplane.

> P<x,y,z> := ProjectiveSpace(Rationals(),2);

> C := Curve(P,x^3*y+y^3*z+z^3*x);

> D0 := CanonicalDivisor(C);

> f := Basis(D0)[1];

> D := D0+PrincipalDivisor(f);

> IsEffective(D);

true

> IsHypersurfaceDivisor(D);

true -2/9*x

1

ClassGroup(C)

The divisor class group, or simply class group of a curve is the group of divisors
modulo principal divisors. If C is a curve defined over a finite field, then this
function returns an abelian group isomorphic to its divisor class group, a map of
representatives from the class group to the divisor group and the homomorphism
from the divisor group onto the class group. The second map has an inverse, so
translation between the group and the divisors can be achieved using only this map.
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ClassNumber(C)

The order of the class group of the curve C.

GlobalUnitGroup(C)

The group of global units of the function field of the curve C, that is the multiplica-
tive group of the field of geometric irreducibility of C as an abelian group together
with the map into the function field of C.

Example H114E34

We compute the class group of a curve defined over a finite field. The calculation takes a few
seconds.

> A<x,y> := AffineSpace(GF(2,5),2);

> C := Curve(A,x^7 + x^4*y^3 + x*y^2 + y);

> Genus(C);

3

> Cl, _, phi := ClassGroup(C);

> Cl;

Abelian Group isomorphic to Z/26425 + Z

Defined on 2 generators

Relations:

26425*Cl.1 = 0

We can use the map φ to pull elements of the abelian group back to the divisor group. For curves
over finite fields, this is one way of constructing interesting divisors.

> Div := DivisorGroup(C);

> Div eq Domain(phi);

true

> D := Cl.1 @@ phi;

> D;

Divisor of Curve over GF(2^5) defined by

x^7 + x^4*y^3 + x*y^2 + y

The unpleasant printing with the dollar signs is happening because no names have yet been
assigned to the projective closure of C. Notice that the printing is rather uninformative. This is
because a factorization of d is not yet known and could be an extremely expensive computation.

> Decomposition(D);

[

<Place at (0 : 0 : 1), -3>,

<Place at ($.1 : $.1^10*$.1^2 + $.1^26*$.1 + $.1^22 : 1), 1>

]

> Degree(D);

0

The degree function simply returns the sum of the integer valuations in the factorization. Those
valuations can be seen as the second entry of each tuple in the support.
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ClassGroupAbelianInvariants(C)

The abelian invariants of the curve C.

ClassGroupPRank(C)

The p-rank of the class group of C.

HasseWittInvariant(C)

The Hasse–Witt invariant of the curve C.

114.10.2 Riemann–Roch Spaces
If D is a divisor on C then colloquially speaking the Riemann–Roch space L(D) is the
finite dimensional vector subspace of the function field of C consisting of functions with
poles no worse that D (and at least as many zeros as the negative part of D if D is not
effective). To be precise, we say that

L(D) = {f ∈ k(C) | div(f) + D ≥ 0}

where div(f) is the principal divisor of zeros and poles of f and the condition ≥ 0 is simply
shorthand to mean that the left-hand side is an effective divisor.

For any divisor on a projective curve defined over a field this vector space is finite
dimensional. Its dimension `(D) appears in the Riemann–Roch formula

`(D)− `(KC −D) = deg(D) + 1− g

where KC is the canonical divisor and g is the genus of C.
The space of effective divisors linearly equivalent to D, the complete linear system of

D, is the projectivisation of the Riemann–Roch space L(D). This can be used to create a
map from the curve C to a projective space of dimension `(D)− 1.

Reduction(D)

Reduction(D, A)

Let D be a divisor. Denote the result of both functions by D̃, r, A and a (for
the second function the input A always equals the output A). A has (must have)
positive degree and the following holds:
(i) D = D̃ + rA− (a),
(ii) D̃ ≥ 0 and deg(D̃) < g + deg(A) (over the field of geometric irreducibility),
(iii) D̃ has minimal degree among all such divisors satisfying (i), (ii).

RiemannRochSpace(D)

A vector space V and an isomorphism from V to the Riemann–Roch space of D in
the function field of the curve on which the divisor D lies.
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Basis(D)

A sequence containing a basis of the Riemann-Roch space L(D) of the divisor D.

ShortBasis(D)

A sequence containing a basis of the Riemann-Roch space L(D) of the divisor D in
short form.

Dimension(D)

The dimension `(d) of the Riemann-Roch space of the divisor D.

DifferentialSpace(D)

Returns a vector space V and a map from V to the space of differentials of the curve
C containing the divisor D with image the differentials of ωC(D). Colloquially, this
means the differentials whose zeros are at least the positive (or effective) part of D
and whose poles are no worse than the negative part of D.

DifferentialBasis(D)

A basis of the space of differentials of the divisor D.

IndexOfSpeciality(D)

The index of speciality of the divisor D, that is the dimension `(KC −D) appearing
in the Riemann–Roch formula.

IsSpecial(D)

Returns true if and only if the divisor D is special.

GapNumbers(D)

GapNumbers(D,p)

The gap numbers of the divisor D, at the place p if included.

GapNumbers(p)

The gap numbers of the nonsingular point p.

WeierstrassPlaces(D)

WeierstrassPoints(D)

A sequence containing the Weierstrass places (or underlying points) of the divisor D.

WronskianOrders(D)

The Wronskian orders of the divisor D.

RamificationDivisor(D)

The ramification divisor of the divisor D.
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DivisorMap(D)

DivisorMap(D,P)

A map from the curve of the divisor D to the projective space P (which will be
created in the background if not given as an argument). The dimension of P must
be `(D)− 1.

CanonicalMap(C)

CanonicalMap(C,P)

The canonical map from the curve C to the projective space P (which will be created
in the background if not given as an argument). This is the map determined by (a
basis of the) Riemann–Roch space of the canonical divisor KC . In particular, the
dimension of P must be `(KC)− 1 = g − 1.

CanonicalImage(C, phi)

CanonicalImage(C, eqns)

These functions compute the canonical image of a projective curve C of genus at least
2 much more efficiently than the generic image machinery applied to the canonical
map. In the first function, the second argument should be the canonical map and in
the alternative it should be a sequence of polynomials defining the canonical map.

A second return value is a boolean which is true if and only if the image is a
rational curve or equivalently if and only if C is a hyperelliptic curve. Note that
these functions may also be used for computing the rational normal curve image of
a genus 0 curve C under the map given by any (non-trivial) complete linear system.

Example H114E35

We first make a curve and compute its genus.

> P2<X,Y,Z> := ProjectiveSpace(Rationals(),2);

> C := Curve(P2,X^7 + X^3*Y^2*Z^2 + Z^7);

> Genus(C);

3

If C is not hyperelliptic then its canonical map will embed it as a nonsingular quartic curve in
the projective plane. We make the canonical map. We even include the plane P2 that we have
already created as an argument so that it will be set as the codomain of the map.

> phi := CanonicalMap(C,P2);

> phi;

Mapping from: Prj: P2 to Prj: P2

with equations :

X^2 X*Z Z^2

> phi(C);
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Curve over Rational Field defined by -X*Z + Y^2

That curve is certainly not a plane quartic. Indeed, it is evidently a rational curve, so C must
have been hyperelliptic.

> D := phi(C);

> Genus(D);

0

The bicanonical map will embed C since its genus is strictly bigger than 2.

> D := 2 * CanonicalDivisor(C);

> phi2 := DivisorMap(D);

> Dimension(Codomain(phi2));

5

> P5<a,b,c,d,e,f> := Codomain(phi2);

> phi2(C);

Scheme over Rational Field defined by

a^2 + b^2 + e*f

-b*d + c^2

-b*e + c*d

-b*f + d^2

-b*f + c*e

-c*f + d*e

-d*f + e^2

> Dimension(phi2(C));

1

> IsNonsingular(phi2(C));

true

If you are familiar with the equations of rational normal curves, you will recognise this as a quadric
section of a standard scroll—the cone on the rational normal curve of degree 4—which misses the
vertex of the cone. This is exactly what gives the curve its hyperelliptic structure. One could go
on to make a ruled surface with a map to P5 with this scroll as its image and pull back the curve
to the ruled surface on which the ruling cuts out the degree 2 linear system of the hyperelliptic
curve. This is carried out for a particular trigonal curve later in Section 114.11.1.

114.10.3 Index Calculus
Magma contains functionality to compute discrete logarithms in the degree 0 divisor class
group of plane curves over finite fields. The algorithm used for this is Diem’s version of
index calculus [Die06], which looks for relations by considering lines through the points of
the factor base. In order to use this algorithm, the group order must be know and given
as input.

As is always the case with index calculus, the algorithm consists of two main stages: the
sieving stage, during which relations are obtained and stored in a matrix, and the linear
algebra stage, during which a non-trivial element of the kernel of this matrix is computed.
It is possible to only do the sieving and compute the matrix. For this it is not necessary
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to know the group order. This can be used to obtain information on how fast sieving can
be done. Generally, the linear algebra stage will be the bottle neck for larger examples.

The running time of the algorithm mainly depends on the degree of the curve. In
[Die06] it is explained how one can obtain a model of a given curve with relatively low
degree. This can greatly speed up the running time of the algorithm.

The algorithm will not work if the field is too small, as there will not be enough lines
to produce relations in that case. One requires that at least q ≥ d! for a degree d curve
over GF (q).

Elements in the degree 0 class group can be represented by divisors of degree 0. But we
also allow divisors of non-zero degree D as input, together with a fixed divisor D0 of degree
1. This will be interpreted as representing the divisor class D−deg(D)D0. Note that once
D0 is fixed, and D is effective of minimal degree, then D is uniquely determined by the
divisor class. Starting out with an arbitrary divisor E, this unique D can be computed
with the Reduction(E,D0) command.

IndexCalculus(D1, D2, D0, np)

IndexCalculus(D1, D2, D0, np, n, rr)

Compute the discrete logarithm of D2 − deg(D2)D0 with base D1 − deg(D1)D0.
The group order np must be given. Optionally, one can also give n as approximate
size of the factor base to be used, and rr as the number of required relations.

IndexCalculusMatrix(D1, D2, D0, n, rr)

Find the sparse matrix with relations found in the sieving stage. Input is the
same as for IndexCalculus, except that the group order is not given. Outputs
M,pos, fb,Da, Db, a, b, where M is the sparse relation matrix. Da and Db are
divisors that split over the factor base, and Da− deg(Da)D0 and Db− deg(Db)D0
are linearly equivalent to a(D1−deg(D1)D0) and b(D2−deg(D2)D0), respectively.
fb is a sequence of points that contains the support of Da, Db and D0. pos is
a sequence of integers that indicates the position of the points of fb in the factor
base. The last two rows of M correspond to the divisors Da − deg(Da)D0 and
Db− deg(Db)D0.

MultiplyDivisor(n, D , D0)

Effective divisor E of minimal degree such that E − deg(E)D0 is equivalent to
n(D − deg(D)D0).

Example H114E36

In this example we compute a discrete logarithm in the class group of a curve of degree 6. The
curve is over GF (213), but it is a base change of a curve over GF (2)

> A2<x,y>:=AffinePlane(GF(2));

> C1:=ProjectiveClosure(Curve(A2,x^5*y + x*y^2 + y^6 + y + 1));

> L:=LPolynomial(C1);

> Evaluate(L,1);
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752

> K<z>:=CyclotomicField(13);

> np:=Numerator(Norm(Evaluate(L,z)));

> Factorisation(np);

[ <1753104484044610457180695483606558837, 1> ]

So the class group of C1 has order 752 over GF (2), and is has order 752np over GF (213), where
np is a large prime. Now we create some divisors, and make sure that D2− deg(D2)D0 is in the
subgroup generated by D1− deg(D1)D0.

> F13<u>:=GF(2^13);

> C13:=ChangeRing(C1,F13);

> D1:=Divisor(C13![u^4758,u^3]);

> D2:=752*Divisor(C13![u^1325,u^6]);

> D0:=Divisor(C13![u^2456,u^11]);

In order to get an idea what is going on, we set the verbose flag, and we perform the discrete
logarithm computation. In the end, we verify the result.

> SetVerbose("CurveIndexcal",1);

> time dl:=IndexCalculus(D1,D2,D0,752*np);

Try to find factor base of size 5087

Try to find 5138 relations.

First input divisor already splits.

Second input divisor already splits.

First index calculus input: Divisor 1*Place at (u^4758 : u^3 : 1)

Multiple of original input: 1

Second index calculus input: Divisor 752*Place at (u^1325 : u^6 : 1)

Multiple of original input: 1

Sieving

Number of relations found: 5138

Number of elements in factor base: 5089

Find element of kernel of matrix

Found kernel element

DLP mod 1753104484044610457180695483606558837:

12522086041061799120645274502697942

Time: 164.900

> MultiplyDivisor(dl,D1,D0) eq Reduction(D2,D0);

true



3722 ALGEBRAIC GEOMETRY Part XVI

114.11 Advanced Examples
These examples are intended to demonstrate basic programming in Magma using the
functions of this chapter together with a few from Chapter 112. There is little or no
explanation of the geometry behind the examples. We assume here that you are familiar
with that and are really interested in the problem of realising it in Magma.

114.11.1 Trigonal Curves
We discuss a particular example covered by Petri’s theorem. In fact, we write down a
curve C of genus 8 which is trigonal. We discover this easily since its canonical embedding
is not cut out by quadrics. It would be nice to have automatic functions to recognise the
equations of the surface scroll cut out by the quadrics, but at the moment they don’t exist
so we have to make that calculation by hand.

Example H114E37

First we make the curve and compute its canonical model.

> k := Rationals();

> P<X,Y,Z> := ProjectiveSpace(k,2);

> C := Curve(P,X^8 + X^4*Y^3*Z + Z^8);

> Genus(C);

8

> phi := CanonicalMap(C);

> P7<a,b,c,d,e,f,g,h> := Codomain(phi);

> CC := phi(C);

> CC;

a^3*e + d^4 + d^2*h^2

a^3*f + d^3*e + d*e*h^2

a^3*g + d^3*f + d*f*h^2

a^3*h + d^3*g + d*g*h^2

a^2*b + d^3 + d*h^2

a^2*c + d^2*e + e*h^2

a*b*c + d^2*f + f*h^2

a*c^2 + d^2*g + g*h^2

b*c^2 + d^2*h + h^3

-a*c + b^2 -a*e + b*d -a*f + c*d -a*f + b*e

-a*g + c*e -d*f + e^2 -a*g + b*f -a*h + c*f

-d*g + e*f -d*h + f^2 -a*h + b*g -b*h + c*g

-d*h + e*g -e*h + f*g -f*h + g^2

In this example, we can see all the quadrics which cut out the canonical model CC. But even if
we could not, or if computing the full canonical ideal was too difficult, we can compute the conics
in the canonical ideal separately using only linear algebra.

> SC := Image(phi,C,2);

> SC;

a*c - b^2 a*e - b*d a*f - c*d a*g - c*e
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a*h - c*f b*e - c*d b*f - c*e b*g - c*f

b*h - c*g d*f - e^2 d*g - e*f d*h - f^2

e*g - f^2 e*h - f*g f*h - g^2

> Dimension(SC);

2

We would like to identify the scroll SC. Even better, we would like to find a map from a ruled
surface to this scroll and pull the image curve CC back to this ruled surface. Then the fibres
of the ruling will cut out the g1

3 on C giving its trigonal structure. We will also see the Maroni
invariant of C directly. In this case one immediately recognises the equations of the scroll so can
write down the ruled surface and choose the bidegree of linear system which gives the map to the
scroll.

> F<r,s,u,v> := RuledSurface(k,2,4);

> psi := map< F -> P7 | [ m : m in MonomialsOfWeightedDegree(F,[0,1]) ] >;

> SF := psi(F);

> DefiningIdeal(SF) eq DefiningIdeal(SC);

true

To realise the curve’s trigonal structure, we need to create a divisor by intersecting it with a fibre
of the ruling. The natural way would be to pull the curve back to F via psi and work there.
However, Magma currently cannot create divisors that lie on curves on scrolls.
Luckily, we can work with the image CC in P7 and obtain the divisor D of the image of a fibre
under psi intersected with CC for our g1

3 . This is then used to define a 3−1 map to the projective
line.

> fib := psi(Scheme(F,r));

> Dimension(fib);

1

> D := Divisor(CC,fib);

> Degree(D);

3

> #Basis(D);

2

So D really does give us a g1
3 . To get the map to P 1, we can pull it back to C, but it is faster to

compose the divisor map on CC with phi. Proceeding this way, it is then a good idea to use the
function field of C to simplify the map description.

> phiD := DivisorMap(D);

> mpD := Expand(Restriction(phi,C,CC)*phiD);

> FC := FunctionField(C);

> rat := FC!(p1/p2) where p1,p2 := Explode(DefiningPolynomials(mpD));

> mpD := map<C->Codomain(mpD)|[rat,1]>; mpD;

Mapping from: CrvPln: C to Projective Space of dimension 1

Variables : $.1, $.2

with equations :

X^7 + X^3*Y^3*Z

Z^7



3724 ALGEBRAIC GEOMETRY Part XVI

114.11.2 Algebraic Geometric Codes
Magma includes functions for working with codes which arise from algebraic geometry.
Discussion of these functions is left to the chapter on error-correcting linear codes, Chapter
152. As is well known, these codes are often created using Riemann–Roch spaces of divisors
on curves. Here we demonstrate the creation of such a code taken from the book of van Lint
and van der Geer [vLvdG88]. This is a famous example which arises many times in that
book, as Example II (3.12) for instance.

Example H114E38

This code is based on the Klein quartic over the finite field F8 of 8 elements, a curve that we
define immediately. Notice that we start by defining a curve C over the field of 2 elements. This
is so that we can investigate C over small fields while still being able to work over F8 later.

> F2 := FiniteField(2);

> F4<t4> := FiniteField(4);

> F8<t8> := FiniteField(8);

> P<x,y,z> := ProjectiveSpace(F2,2);

> C := Curve(P,x^3*y + y^3*z + z^3*x);

> C8<a,b,c> := BaseChange(C,F8);

> C8;

Curve over GF(2^3) defined by

a^3*b + a*c^3 + b^3*c

The code will have length 24, corresponding to the 24 rational points of C.

> #RationalPoints(C8);

24

In constructing such codes, one must have a collection of points, in this case the 24 rational points
we have just found, and a divisor whose support is disjoint from these points. As the divisor,
we take some multiple of a conjugate pair of points defined over the finite field of 4 elements. In
Magma, it is convenient to use the function field machinery to describe this as a place of degree
2. It is constructed as the intersection of C with one of its bitangents.

> L := Curve(P,x+y+z);

> IntersectionPoints(C,L);

{@ @}

> C4 := BaseChange(C,FiniteField(4));

> P4 := Ambient(C4);

> L4 := BaseChange(L,P4);

> IntersectionPoints(C4,L4);

{@ (t4 : t4^2 : 1), (t4^2 : t4 : 1) @}

> [ IntersectionNumber(C4,L4,p) : p in $1 ];

[ 2, 2 ]

So we see that L is indeed a bitangent of C and that the two points of intersection are defined
properly over the finite field of 4 elements. In order to be able to compute the Riemann-Roch
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space of a divisor, we compute this intersection as a place on C8. Notice how the support of the
divisor D is not used in its display until it has been explicitly computed.

> FP8<X,Y> := FunctionField(Ambient(C8));

> Div := DivisorGroup(C8);

> D := Divisor(Div,X + Y + 1);

> D;

Divisor on Curve over GF(2^3) defined by

a^3*b + a*c^3 + b^3*c

> Decomposition(D);

[

<Place at (0 : 1 : 0), -3>,

<Place at (1 : 0 : 0), -1>,

<Place at ($.1 + 1 : $.1 : 1), 2>

]

> D;

Divisor -3*Place at (0 : 1 : 0) + 2*Place at ($.1 + 1 : $.1 : 1) -

1*Place at (1 : 0 : 0)

This divisor contains the place we require with multiplicity 2 and some negative contributions at
infinity. We extract the degree 2 place we need.

> p := Support(D)[2];

> Degree(p);

2

Now we can make the code. Rather than using the rational points of C8, the code creation
intrinsic takes a sequence of degree 1 places. But they are also easily retrieved. The divisor we
use will be 3p.

> G := 3*p;

> S := Places(C8,1);

> #S;

24

> AGC := AlgebraicGeometricCode(S,G);

> Dimension(AGC);

4

In fact, it is the dual code that is really wanted, but this is easy.

> Dual(AGC);

[24, 20] Linear Code over GF(2^3)

Generator matrix:

[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t8^5 t8 t8^5 t8^3]

[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t8^5 t8^2 t8^6 t8^5]

[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t8^3 t8^6 t8^5]

[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 t8^6 t8^3 t8^4]

[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t8^2 t8^3 t8 t8^2]

[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t8^6 t8^6 t8^2 t8^6]

[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 t8^2 t8^4 t8^4 t8^6]

[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 t8^6 t8^3 t8^3 t8^2]
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[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 t8^4 0 t8^4]

[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 t8^4 t8^3 t8^6 1]

[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 t8 t8^2 t8^2 t8^3]

[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 t8^6 t8^6 0 1]

[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 t8^2 t8^4 t8^3 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 t8^6 t8 t8^2 t8]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 t8^5 t8 t8^6]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 t8 1 1 t8^3]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 t8^3 1 t8^5 t8^2]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 t8^2 t8^2 1 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 t8^3 t8 t8^5 t8^5]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 t8^4 t8^3 t8 t8^4]

114.12 Curves over Global Fields

114.12.1 Finding Rational Points
There are also various point search routines for more general schemes.

PointsCubicModel(C, B : parameters)

OnlyOne BoolElt Default : false

ExactBound BoolElt Default : false

Verbose CubicModelSearch Maximum : 1
Given a plane cubic over the rationals, this function searches, by a reasonably effi-
cient method due to Elkies [Elk00], for a point on C of näive height up to B — the
asymptotic running time is O(B).

If OnlyOne is set to true, the search stops as soon as it finds one point; however,
the algorithm is p-adic and there is no guarantee that points with small co-ordinates
in Z will be found first. If ExactBound is set to true, then points that are found
with height larger than B will be ignored.

Example H114E39

> P<x,y,z>:=ProjectiveSpace(Rationals(),2);

> C:=Curve(P,x^3+9*y^3+73*z^3);

> time PointsCubicModel(C,10^4);

[ (31/2 : -15/2 : 1), (-353/824 : -1655/824 : 1), (-463/106 : 111/106

: 1), (-1 : -2 : 1), (-2347/526 : 635/526 : 1), (-206/5 : 99/5 : 1),

(22/5 : -13/5 : 1), (-43/16 : -29/16 : 1), (-25 : 12 : 1), (-4493/1076

: -299/1076 : 1), (-215/47 : 64/47 : 1), (-631/151 : -22/151 : 1), (-4

: -1 : 1), (278/193 : -393/193 : 1), (-328/55 : 137/55 : 1), (311/88 :

-207/88 : 1), (145/71 : -148/71 : 1) ]

Time: 2.790
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114.12.2 Regular Models of Arithmetic Surfaces
Let F be a global field (the rationals, a number field or a function field) with ring of integers
OF . Given a curve C over F with integral defining equations, the associated arithmetic
surface is the scheme of relative dimension 1 over SpecOF defined by the same equations.
In Magma, one can compute a regular model of the arithmetic surface locally at a given
prime of OF , and extract information from it. The ‘model’ is a data structure which
contains several affine patches with maps between them, as well as the components of the
special fibre, and other data. This raw data is quite bulky; the interesting information is
accessed via the functions described in this section. This functionality may be expanded
(on request) in later versions.

The Magma category for these data structures is CrvRegModel.
Caveat: in the initial implementation there are some restrictions on which curves, and

which fields, can be handled. These restrictions are not documented here, and may be
lifted in the near future.

114.12.2.1 Creation of Regular Models

RegularModel(C, P)

Verbose RegularModel Maximum : 2

This computes a regular model of the curve C at the prime P . Here C is a curve
over a field F (the rationals, a number field or a univariate rational function field),
and P is a prime of the maximal order OF of F (given as an element or as an ideal).
The defining equations of C must have integral coefficients, and the reduction of C
modulo P must have dimension 1.

The function returns a model of C: this consists of several affine patches, given
by integral equations, which together describe a scheme over OF whose generic fibre
is isomorphic to C. (The gluing maps, and the isomorphism to C, are part of the
stored data). The model is regular on the special fibre above P . However it is not
necessarily a minimal model.

In some cases, the function may replace F by a finite extension L/F in which
P is unramified, and return a regular model for the base change CL. (This occurs
when there is a non-regular point or component in the special fibre that is not geo-
metrically irreducible over the residue field.) When this occurs, a warning message
is printed.

114.12.2.2 Using Regular Models

IntersectionMatrix(M)

Given a regular model, this returns a matrix whose entries are the intersection
multiplicities of the (reduced, irreducible) components of the special fibre. Secondly,
it returns a sequence giving the multiplicities of the components. (The components
of the model always come in the same order.)
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ComponentGroup(M)

Given a regular model of a curve C at a prime P , this returns (as an abstract abelian
group) the group of components of the Neron model of the Jacobian of C over the
completion at P . (This is computed from the IntersectionMatrix of the model.)

PointOnRegularModel(M, x)

Given a regular model of a curve C over a global field F , and a point x ∈ C(F ),
this lifts x to a point on the regular model. More precisely, it finds a patch of the
model, and a point on the generic fibre of that patch which maps to x (under the
isomorphism between the generic fibres of M and C).

Three objects are returned: a sequence giving coordinates of the point, a sequence
containing the equations of the relevant patch, and (for internal use) the ‘index’ of
the patch.

114.12.3 Minimization and Reduction
Minimization and reduction is a search for a linear transformation, that leads to nice

equations. The general strategy is described in Section 116.4.4.
Here, we describe the routines for the minimization of plane quartic curves and the

reduction for plane curves of degree at least 3. The reduction is done by constructing a
cluster of special points on the curve. Thus, we start with this.

ReduceCluster(X)

eps FldReElt Default : 1e-6

c FldReElt Default : 1

Verbose ClusterReduction Maximum : 3

Here X is a sequence of n-dimensional vectors of complex numbers. The routine
returns the cluster in a better embedded form, the transformation matrix applied
and its inverse.

Optional arguments: eps is the bound used to decide whether a floating point
number is zero, and c is the initial value of the acceleration factor.

The algorithm is due to Stoll (see [Sto11]).
This routine can be used for reduction of any variety that has a finite and stable

set of special points, by using the transformation that reduces the point set.

ReducePlaneCurve(f)

Here f is a homogeneous polynomial in 3 variables of degree > 2 with integral or
rational coefficients. A new polynomial and the transformation matrix applied are
retured.

The routine computes the intersection points of f with its hessian. Then the
cluster reduction is applied to this point set.
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114.12.3.1 Minimization and Reduction for Plane Quartics

MinimizePlaneQuartic(f,p)

Verbose PlaneQuartic Maximum : 1

Given a plane quartic defined by the polynomial f with integer coefficients this
routine computes an at p minimized model of the quartic. The new quartic and the
transformation used are returned.

MinimizeReducePlaneQuartic(f)

Verbose PlaneQuartic Maximum : 1

Given a smooth plane quartic curve defined by the polynomial f with integer co-
efficients this routine computes a minimized and reduced model of the curve. The
transformation matrix returned applied to f will evaluate to a scalar multiple of the
returned polynomial.

For the reduction step, ReducePlaneCurve is used.

Example H114E40

Here we test the code by taking a bad embedding and a of curve.

> _<x,y,z> := PolynomialRing(Integers(), 3);

> C := -3*x^4 + 7*x^3*y - 2*x^3*z + 6*x^2*y^2 + 9*x^2*y*z - 9*x^2*z^2

> + 10*x*y^3 - 7*x*y^2*z + 5*x*y*z^2 - 6*x*z^3 - 3*y^4 + 5*y^3*z

> - 3*y^2*z^2 + 4*y*z^3 + 6*z^4;

> C2 := Evaluate(C,[45*x+346*y,74*y+43*z,62324*z+3462*x]);

> C2;

850482855369981*x^4 - 77028319604430*x^3*y + 61459466820119559*x^3*z -

11625449190228*x^2*y^2 - 4102113209795298*x^2*y*z + 1665400384362332772*x^2*z^2

- 62468022936*x*y^3 - 417499281622764*x*y^2*z - 72808467360772908*x*y*z^2 +

20055880711976359332*x*z^3 - 16293798512*y^4 - 875035770696*y^3*z -

3749491014537304*y^2*z^2 - 430694749052979580*y*z^3 + 90567449117290511049*z^4

> MinimizeReducePlaneQuartic(C2);

6*x^4 - 6*x^3*y + 4*x^3*z - 9*x^2*y^2 + 5*x^2*y*z - 3*x^2*z^2 - 2*x*y^3 +

9*x*y^2*z - 7*x*y*z^2 + 5*x*z^3 - 3*y^4 + 7*y^3*z + 6*y^2*z^2 + 10*y*z^3 - 3*z^4

[ 14878 4611976 -21564104]

[ -1935 148866 2804580]

[ 3330 -256188 1197852]

We do not get the initial curve, but we get a curve with coefficients of the same size.
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114.13 Minimal Degree Functions and Plane Models
This section contains functionality to compute smallest degree covering maps from a curve
to the projective line P1, which are equivalent to smallest degree functions on the curve.
We refer to such maps as gonal maps (the degree of such a map is usually referred to as
the gonality of the curve). There are intrinsics for all general type (genus ≥ 2) curves of
genus less than seven and for all trigonal (gonality 3) curves. The trigonal cases use the Lie
algebra method to construct degree 3 maps following the algorithm in [SS]. The 4-gonal
cases for genus 5 and 6 curves use the algorithms in [Hara]. Hyperelliptic cases (gonality
2) are dealt with directly using the canonical map and parametrisation of rational curves.

Gonal maps may not exist over the base field and the intrinsics here will return a gonal
map over a finite extension in such cases. In some cases, the degree of a minimal extension
over which a gonal map may be constructed is determined exactly. In others, this may
involve difficult arithmetic problems (e.g., finding a point of minimal degree on a plane
sextic over Q) and the extension used may not be of minimal degree. This is discussed
further in the descriptions of the intrinsics. The intrinsics are designed for input curves
defined over number fields or finite fields.

There are also some intrinsics to compute minimal degree plane models of curves of
genus 5 and 6. In the genus 6 case, these birational models may be defined over a small
extension field of the base field (an exact minimal degree extension is found here). In the
genus 5 case, the intrinsic computes models over the base field given a rational point or
divisor of degree 2 in the generic case that may be input by the user. The functionality
here is incomplete and doesn’t currently cover every type of genus 5 or 6 curve or lower
genus curves. We plan to extend this in later releases.

114.13.1 General Functions and Clifford Index One
The algorithm of Schicho and Sevilla used for trigonal curves actually covers the slightly
more general case of Clifford index one. An algebraic curve has Clifford index one iff
it is trigonal or it is of genus 6 and isomorphic to a non-singular plane quintic. In the
latter case, the curve has gonality 4. Classical theory (e.g. Petri’s theorem) tells us that
a curve of genus greater than one has Clifford index 1 precisely when its canonical image
is not defined by quadrics alone. For genus > 3, a minimal basis for the ideal defining the
canonical image will then consist of quadrics and cubics. A non-hyperelliptic genus 3 curve
is always trigonal and it’s canonical image is defined by a smooth quartic in the projective
plane.

This gives a simple computational test for Clifford index 1. There is an intrinsic de-
scribed below that may be called directly by the user for Clifford index 1 canonical curves
that returns a gonal map to P1 in the trigonal case or gives a birational map to a smooth
plane quintic.

GenusAndCanonicalMap(C)

Convenience function for the user. Returns the genus g of the curve C, a Boolean
value which is true iff g ≤ 1 or C is hyperelliptic, and the canonical map from C
to its canonical image if g > 1.
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CliffordIndexOne(C)

CliffordIndexOne(C,X)

The curve C should be a (non-singular) canonical model of a curve of Clifford index
1 (this condition may be tested as described in the introduction). Computes and
returns a degree 3 map to the projective line P1 or a birational map onto a smooth
plane quintic, depending on whether C is trigonal or not. In the trigonal case, the
map may be defined over a quadratic extension of the base field for curves of even
genus. This will occur only if no such map exists over the base field. In the plane
quintic case, the map is always defined over the base field. The trigonal case requires
that the characteristic of the base field is not 2.

The algorithm used is that of Schicho and Sevilla that applies the Lie algebra
method to explicitly compute the fibration map to P1 of the rational scroll surface
X that is defined by the quadrics in the defining ideal of the canonical curve C.
The second version of the intrinsic also takes X as an argument in case the user has
already computed it.

Example H114E41

> P5<x,y,z,s,t,u> := ProjectiveSpace(Rationals(),5);

> C := Curve(P5,[

> -y*z+x*s-y*s+z*t-4*s*t+t^2+2*s*u-3*t*u+2*u^2,

> -z^2+s^2+x*t+2*z*t-2*t^2-4*s*u-2*t*u+4*u^2,

> -z*s-s^2+z*t+t^2+x*u-2*s*u-7*t*u+6*u^2,

> -z*s+s^2+y*t+2*s*t-t^2-2*s*u+t*u,

> -s^2+s*t+y*u-s*u-t*u+u^2,

> -s*t+t^2+z*u-s*u-3*t*u+2*u^2,

> x^3-3*x^2*y+7*x*y^2+3*y^3+x*y*z-y*z^2+9*z^3+3*y^2*s-3*y*z*s-7*z^2*s-7*y*s^2+

> 17*z*s^2-86*s^3-4*z*s*t-16*s^2*t-185*z*t^2+807*s*t^2-406*t^3+17*s^2*u-

> 666*s*t*u+1391*t^2*u+228*s*u^2-1378*t*u^2+393*u^3,

> x^2*z-2*x*y*z+5*y^2*z+y*z^2+3*z^3+8*y^2*s+y*z*s-7*z^2*s+3*y*s^2+17*z*s^2-

> 47*s^3+6*z^2*t+9*z*s*t+s^2*t+32*z*t^2+11*s*t^2-103*t^3-51*s^2*u-171*s*t*u+

> 433*t^2*u+89*s*u^2-577*t*u^2+246*u^3,

> x*z^2-y*z^2-z^3+4*y*z*s+z^2*s+8*y*s^2-3*z*s^2-5*s^3+7*z^2*t-3*z*s*t+17*s^2*t+

> 8*z*t^2-2*s*t^2+62*t^3-41*s^2*u-34*s*t*u-28*t^2*u+14*s*u^2-127*t*u^2+92*u^3

> ]);

> // C a genus 6 canonical curve of gonality 3

> mp3 := CliffordIndexOne(C);

> mp3;

Mapping from: Crv: C to Curve over Rational Field defined by

0

with equations :

x - 2*z + 10*s - 7*t + 10*u

-2/5*x - 24/5*s + 26/5*t - 44/5*u

We can check that mp3 gives a degree 3 map by seeing that the degree 10 linear pencil of divisors
generated by D1 and D2, the hyperplane sections of C given by the two defining equations of the
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map, has a common degree 7 factor.

> defs := DefiningPolynomials(mp3);

> D1 := Scheme(C,defs[1]);

> D2 := Scheme(C,defs[2]);

> D12 := Scheme(C,defs);

> Degree(D1); Degree(D2);

10

10

> Dimension(D12); Degree(D12);

0

7

114.13.2 Small Genus Functions
This section contains intrinsics to compute gonal maps for curves with genus greater than
one and less than seven.

Genus2GonalMap(C)

Returns a degree 2 map from genus 2 curve C to the projective line. The map is
defined over a quadratic extension of the base field k iff no such map exists over
k. The map is just the canonical map followed by an inverse parametrisation of its
image.

Genus3GonalMap(C)

IsCanonical BoolElt Default : false

For a genus 3 curve C, returns the gonality (2 or 3) and a gonal map to P1. C is
trigonal precisely when it is non-hyperelliptic, when its canonical image is a plane
quartic Q. Gonal maps are given by the canonical map onto Q followed by projection
from a point on Q. Constructing one requires finding a point on Q. If Q is defined
over the rationals, a point search up to a small height is applied, and if Q is defined
over a finite field a point enumeration is applied to try to find a point over the base
field. If this fails to locate a point or if the base field is a number field, a point of
Q over an extension of degree ≤ 4 of the base field is used. Thus the map returned
may be over an extension of the base field and this extension may not be of minimal
degree.

If the input C is already a canonical model, parameter IsCanonical may be set
to true. This will simplify the internal processing. NB The defining equations of
C must be a minimal basis for its defining ideal.
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Genus4GonalMap(C)

IsCanonical BoolElt Default : false

For a genus 4 curve C, returns the gonality (2 or 3) and a gonal map to P1. C is
trigonal precisely when it is non-hyperelliptic. In the trigonal case, a gonal map is
computed using the CliffordIndexOne intrinsic. This involves computing a fibra-
tion map for a quadric surface in P3 containing the canonical image of C, which
may be defined over a biquadratic extension of the base field in bad cases. So the
map returned may be defined over an extension of degree 4, whereas the map on C
should always be defined over an extension of degree at most 2. We will try to fix
this in later releases.

If the input C is already a canonical model, parameter IsCanonical may be set
to true. This will simplify the internal processing. NB The defining equations of
C must be a minimal basis for its defining ideal.

Genus5GonalMap(C)

DataOnly BoolElt Default : false

IsCanonical BoolElt Default : false

For a genus 5 curve C, returns the gonality (2, 3 or 4) and a gonal map to P1. In
the gonality 4 case, it also returns some extra data that gives the parametrisation
of the set of degree 4 linear pencils (g1

4s) which give the gonal maps.
The hyperelliptic case (gonality 2) is handled as usual by parametrising the

canonical image which gives a gonal map that may be defined over a quadratic
extension of the base field.

The trigonal case is easy to deal with here since the rational scroll X that contains
the canonical image of C is of codimension 2 in its ambient. We directly compute
the fibration map of X from the minimal free polynomial resolution of the canonical
coordinate ring of C. This gives a gonal map on C that is always defined over the
base field.

In the general (4-gonal case), there are infinitely many equivalence classes of
gonal maps which are parametrised by a plane quintic curve F . This along with a
function f which takes a point in F (K) as an argument are returned as third and
fourth return values. f evaluated at p ∈ F (K) will return the corresponding gonal
map on C which is defined over K or a quadratic extension of it. The actual gonal
map returned as the second return value is given by searching for a point on F over
a small extesnion of the base field. We use a point search as for Genus3GonalMap
if the base field is the rationals or a finite field. Otherwise or if this fails, we find
a point over an extension field by decomposing a random hyperplane section of F .
We try to use singular points on F , if they exist, which correspond to g1

4s whose
associated rational scroll is defined by a rank 3 rather than a rank 4 quadric.

If the parameter DataOnly is set to true (the default is false), then only the
gonality is returned when it is less than 4, and only the gonality, F and f are
computed and returned in the 4-gonal case.
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If the input C is already a canonical model, parameter IsCanonical may be set
to true. This will simplify the internal processing. NB The defining equations of
C must be a minimal basis for its defining ideal.

Genus6GonalMap(C)

DataOnly BoolElt Default : false

IsCanonical BoolElt Default : false

For a genus 6 curve C, returns the gonality (2, 3 or 4), a second type identifer and
a gonal map to P1. The second type number is irrelevant in the gonality 2 and 3
cases, when it is always 1. It is 1,2 or 3 in the 4-gonal case.

For 4-gonal curves of secondary type 2, C is a double cover of a genus 1 curve
E through which all gonal maps factor. In this case, the map giving this double
covering is returned as a fourth return value. Secondary type 3 curves are isomorphic
to (smooth) plane quintics and an isomorphism to such a quintic is returned as the
fourth return value. These maps are defined over the base field.

The hyperelliptic case (gonality 2) is handled as for Genus5GonalMap.
The trigonal case requires the characteristic of the base field to not be 2. It uses

the CliffordIndexOne intrinsic and constructs a gonal map that is defined over a
quadratic extension of the base field k if no such map exists over k.

There are 3 distinct subcases of the 4-gonal case, which are distinguished by the
second return number.

Type 2 curves are double covers of a genus 1 curve E and there are infinitely
many 4-gonal maps which are given by composing this double cover with a degree
2 map of E to P1. E is constructed as a projective normal curve of degree 5 in P4.
The gonal map returned is found by looking for k-rational points on E by general
point search methods and, if this fails, taking a point on E defined over a finite
extension of k lying in a random hyperplane section of E.

Type 3 curves are (birationally) isomorphic to a plane quintic C5. The infinitely
many 4-gonal maps are given by projection from a point on C5. The gonal map
returned is constructed by finding a k-rational point on C5 or one over a finite
extension as for type 2.

Type 1 (general type) curves have only finitely many gonal maps up to equiv-
alence (5 at most, in fact). The algorithm explicitly finds algebraic data defining
these map classes. It chooses one defined over k if possible. Otherwise, we take one
over a minimal degree extension of k. The gonal map returned is thus defined over
a minimal degree extension of k for such maps.

If the parameter DataOnly is set to true (the default is false), then only the
gonality (and secondary type 1) is returned when it is less than 4, and only the
gonality, secondary type t and fourth return value when t = 2 or 3 are computed
and returned in the 4-gonal case.

If the input C is already a canonical model, parameter IsCanonical may be set
to true. This will simplify the internal processing. NB The defining equations of
C must be a minimal basis for its defining ideal.
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Example H114E42

We give some examples with 4-gonal curves of genus 5 and 6. Firstly, we take a random canonical
curve of genus 5 given by the intersection of 3 quadrics in P4.

> P4<x,y,z,t,u> := ProjectiveSpace(Rationals(),4);

> C := Curve(P4,[

> -x^2-x*y-y*z+z^2-x*t-y*t-z*t+t^2-x*u+y*u-t*u,

> -x*y+y^2+y*z+x*t+y*t-z*t+z*u+t*u+u^2,

> -x^2-x*y-y*z+z^2+x*t-y*t+t^2-x*u+y*u+z*u+t*u+u^2]);

> g,mp4,F,f := Genus5GonalMap(C);

> g;

4

> mp4;

Mapping from: Crv: C to Curve over Rational Field defined by

0

with equations :

z + u

t

> F;

Curve over Rational Field defined by

7*u^5+6*u^4*v-50*u^3*v^2+40*u^2*v^3+3*u*v^4+2*v^5+48*u^4*w-22*u^3*v*w-

50*u^2*v^2*w+30*u*v^3*w+10*v^4*w+134*u^3*w^2-24*u^2*v*w^2-36*u*v^2*w^2+

8*v^3*w^2+187*u^2*w^3+6*u*v*w^3-19*v^2*w^3+129*u*w^4+6*v*w^4+35*w^5

Next, we look at a genus 6 curve that is a degree 2 cover of a genus 1 curve.

> P3<x,y,z,t> := ProjectiveSpace(Rationals(),3);

> C := Curve(P3,[ x^2*y^2-x^2*t^2-z^2*t^2+2*t^4,

> y^4-x*z^2*t-2*y^2*t^2+2*x*t^3+t^4,

> x^3-y^2*t+t^3 ]);

> Genus(C);

6

> g,t,mp4,mpE := Genus6GonalMap(C);

> g; t;

4

2

> mp4;

Mapping from: Crv: C to Curve over Rational Field defined by

0

with equations :

x

t

> mpE;

Mapping from: Crv: C to Curve over Rational Field defined by

$.1^2 + $.2*$.3 - $.4*$.5,

$.1*$.2 + $.3^2 - $.5^2,

$.2^2 - $.1*$.3,

$.2*$.4 - $.1*$.5,

$.3*$.4 - $.2*$.5
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with equations :

x^2

x*t

t^2

x*y

y*t

114.13.3 Small Genus Plane Models
This section contains intrinsics to compute minimal degree birational plane models for
curves of genus 5 or 6.

Genus6PlaneCurveModel(C)

IsCanonical BoolElt Default : false

For a genus 6 curve C of gonality 4 which isn’t the double cover of a genus 1 curve
(i.e. subtype 2 for Genus6GonalMap), returns a birational map to a plane curve of
minimal degree (5 or 6). This map may be defined over a finite extension of the
base field k, but it will always be a minimal degree extension for the existence of
minimal degree plane models. The first return value is a boolean, which is true
only if C is of gonality 4 and not of subtype 2. If so, the second return value is the
map to the curve.

When C is birationally isomorphic to a plane quintic C5, (subtype 3 for
Genus6GonalMap), C5 is a minimal degree plane model and it and the birational
map to it are defined over k. This is a Clifford index 1 case, and the computation
is performed via the CliffordIndexOne intrinsic.

In the general case, (subtype 1 for Genus6GonalMap), the smallest degree plane
models are of degree 6, there are only finitely many birational maps from C to degree
6 plane curves up to linear equivalence and these are in 1-1 correspondence with
the finitely many equivalence classes of gonal maps. The birational maps to plane
models are computed by a slight variant of the same algorithm used to compute the
gonal maps (see [Hara]). The return value is over the base field k, if possible, and
otherwise over a smallest degree (at most 5) possible field extension.

If the input C is already a canonical model, parameter IsCanonical may be set
to true. This will simplify the internal processing. NB The defining equations of
C must be a minimal basis for its defining ideal.

Genus5PlaneCurveModel(C)

Genus5PlaneCurveModel(C,P)

Genus5PlaneCurveModel(C,Z)

IsCanonical BoolElt Default : false

For a genus 5 curve C, tries to compute a birational map over the base field k to
a plane curve of minimal degree (5 or 6) for plane curve models over k̄. The first
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return value is a boolean which is true if the construction succeeds and, if so, the
second return value is the birational map to the plane curve.

If C is hyperelliptic, the return value is always false. Gonality 3 curves are
always birational over k to a plane curve of degree 5 with a single singular point
and the computation always succeeds. The map to P2 on a canonical model Cc of
C lying in P4 is given by projection from a line lying in the rational scroll surface
X that contains Cc.

If C is 4-gonal and isn’t a double cover of a genus 1 curve, the minimal degree
plane model is of degree 6 and there are infinitely many of these (up to linear
equivalence) that are given by projection from a secant line or tangent line of the
canonical model Cc.

To find a birational map to such a model over k, we need a secant or tangent
line defined over k, which will correspond to a k-rational point on Cc or a k-rational
reduced divisor of degree 2 (i.e. 2 distinct points that are k-rational or conjugate
over a quadratic extension of k).

The second and third versions of the function have a second argument that should
be a k-rational non-singular point on C or a reduced subscheme of C of dimension
0 and degree 2, whose points (over k̄) lie in the non-singular locus of C. These are
used to define the k-rational tangent line or secant line on the canonical model and
the intrinsic will always succeed and return the map to a degree 6 model if they are
provided by the user.

In the version with only the curve C as input, the intrinsic attempts to find
a (non-singular) k-rational point on C using PointSearch if the base field is the
rationals or using point enumeration if the base field is a finite field. If this search
fails, or k is a field of a different type, the intrinsic will fail and return false.

If the input C is already a canonical model, parameter IsCanonical may be set
to true. This will simplify the internal processing. NB The defining equations of
C must be a minimal basis for its defining ideal.

Example H114E43

We use the intrinsic for genus 6 curves to get a degree 6 plane model for the modular curve X0(58),
starting from its canonical model.

> X := X0NQuotient(58,[]);

> X;

Curve over Rational Field defined by

x[1]^2-x[1]*x[3]+x[2]*x[4]+x[2]*x[5]-x[1]*x[6]+x[4]*x[6]+x[5]*x[6],

x[1]^2-x[1]*x[2]-x[2]^2-x[1]*x[3]-x[1]*x[4]+x[3]*x[4]+x[2]*x[5]+x[3]*x[5],

-x[1]^2+x[1]*x[2]+x[2]^2+x[4]^2+x[4]*x[5]-x[2]*x[6],

-x[1]^2-x[1]*x[2]+x[2]^2+x[2]*x[3]-x[1]*x[4]+x[2]*x[4]+x[3]*x[4]+x[4]^2-x[5]*x[6],

x[2]^2-x[1]*x[3]+x[2]*x[3]+x[3]^2-x[1]*x[4]+x[3]*x[4]+x[2]*x[6]+x[3]*x[6],

x[1]*x[2]-x[2]*x[3]-x[1]*x[4]+x[3]*x[4]+x[2]*x[5]+x[3]*x[5]+x[4]*x[5]-x[1]*x[6]+

x[2]*x[6]+x[3]*x[6]+x[4]*x[6]

> boo,mp := Genus6PlaneCurveModel(X : IsCanonical := true);

> boo;
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true

> C<x,y,z> := Codomain(mp); //the plane model

> C;

Curve over Rational Field defined by

x^6-3*x^5*y+x^4*y^2+3*x^3*y^3-7/4*x^2*y^4-1/4*x*y^5-1/4*y^6+3/2*x^5*z-x^4*y*z-

9/2*x^3*y^2*z+7/2*x^2*y^3*z+5/8*x*y^4*z+3/4*y^5*z+5/4*x^4*z^2+1/4*x^3*y*z^2-

3*x^2*y^2*z^2+3/4*x*y^3*z^2-3/4*y^4*z^2+5/8*x^3*z^3+5/4*x^2*y*z^3-7/4*x*y^2*z^3+

1/4*y^3*z^3+1/8*x^2*z^4+5/8*x*y*z^4-1/8*y^2*z^4+1/8*y*z^5

> mp;

Mapping from: Crv: X to Crv: C

with equations :

x[1] - x[3]

x[2] + x[6]

x[5] + x[6]

Do the same for genus 5 4-gonal modular curve X0(42).

> P4<x,y,z,t,u> := ProjectiveSpace(Rationals(),4);

> X42 := Curve(P4,[x*z+z^2+x*t-x*u,

> y^2-2*y*z+z^2-x*t-2*y*t+z*t-2*y*u+z*u+t*u,

> x^2+x*t+y*t+y*u ]);

> // use pointsearch to pick rational point on X42

> boo,mp := Genus5PlaneCurveModel(X42 : IsCanonical := true);

> boo;

true

> C<x,y,z> := Codomain(mp);

> C;

x^6+3*x^5*y+9/2*x^4*y^2+2*x^3*y^3+2*x^2*y^4+11/8*x^5*z+31/8*x^4*y*z+23/4*x^3*y^2*z

+1/2*x^2*y^3*z+3*x*y^4*z+85/128*x^4*z^2+29/16*x^3*y*z^2+41/16*x^2*y^2*z^2-

9/4*x*y^3*z^2+9/8*y^4*z^2+9/64*x^3*z^3+17/32*x^2*y*z^3+15/16*x*y^2*z^3-

9/8*y^3*z^3+1/128*x^2*z^4+3/32*x*y*z^4+9/32*y^2*z^4

> mp;

Mapping from: Crv: X42 to Crv: C

with equations :

x + 1/2*t - 1/2*u

y - 1/4*t + 1/4*u

z - t + u

> // use nicer chosen point for nicer map

> boo,mp := Genus5PlaneCurveModel(X42,X42![0,0,0,0,1] : IsCanonical := true);

> C<x,y,z> := Codomain(mp);

> C;

x^5*y-2*x^4*y^2+x^3*y^3-x^2*y^4+2*x*y^5-y^6-x^5*z+3*x^4*y*z-6*x^3*y^2*z-

11*x^2*y^3*z-12*x*y^4*z-2*x^4*z^2+9*x^3*y*z^2+20*x^2*y^2*z^2+16*x*y^3*z^2+

2*y^4*z^2-4*x^3*z^3-7*x^2*y*z^3-4*x*y^2*z^3-x^2*z^4-2*x*y*z^4-y^2*z^4

> mp;

Mapping from: Crv: X42 to Crv: C

with equations :

x

y
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z + t
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Chapter 115

RESOLUTION GRAPHS
AND SPLICE DIAGRAMS

115.1 Introduction

Both resolution graphs and splice diagrams are labelled graph-like diagrams used to encode
geometric data closely related to some resolution of singularities procedure in algebraic
geometry. They are commonly used to visualise this data. Of course, there are other tools
in Magma, Puiseux expansions for instance, which can be used if preferred. A typical
example is when a configuration of curves on a surface is the given data. In this case, dual
graph of the configuration has vertices corresponding to the individual curves and edges
corresponding to their intersections. The vertices may be labelled with the selfintersections
of the corresponding curves and possibly also with the multiplicities with which the curves
appear in the configuration.

This chapter discusses two different enhanced graph types: GrphRes for resolution
graphs and GrphSpl for splice diagrams. Neither of them is literally a graph in Magma;
in particular, functions taking graphs as argument cannot be applied directly to objects
defined here. Instead they work by having a directed graph, referred to as the underlying
graph, as a primary attribute and by caching other data (which is typically associated to
particular vertices and edges of the graph) in sequences as secondary attributes. There
are also vertex types which allow the convenient idiom of Magma’s graph package to be
used. Note, however, that unlike other graph types, these do not have edge types.

Graph surgery routines cannot be used directly since they must manage both the un-
derlying graph and the associated data. A collection of appropriate surgery functions,
those used in resolution routines, have been provided in this context; they are usually
brief, simply concatenating attribute data whenever it is present on both sides.

Functions to recover data related to the graph, whether globally or at a particular
vertex or edge, are also provided. Thus the user does not access labels of the graph but
rather uses the intrinsics listed later in this chapter. Of course, usually these do no more
than unload an attribute.

115.2 Resolution Graphs

A resolution graph g is a graph with data associated to its vertices. The underlying graph
is the dual graph of a blowup process. The vertices correspond to rational curves E,
“exceptional curves”, on some surface S which are contracted by some map f : S → P 2,
where P 2 is the projective plane. Such maps arise during the resolution process by blowups
of a curve singularity, say p ∈ C where C is a curve in P 2. In that context, C can be
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pulled back to S using f and the pullback can be decomposed (as an effective divisor on
S) as

f∗C = C̃ + EC

where C̃ is the birational transform of C and EC is an effective divisor supported on the
union of the exceptional curves. The surface S is never realised as a geometric object.

For a vertex v of g, the corresponding rational curve is often denoted Ev. The edges
of g correspond to the intersections between different E: vertices v and w are joined by
edges corresponding in some way to the points of intersection of the curves Ev and Ew.
In the contexts used below, any two curves will meet at most in one point and that will
be a transverse intersection. So the intersection number EvEw on S will be the number of
edges between v and w, either zero or one, if they are distinct vertices and a selfintersection
number associated to v otherwise. Thus the graph enables basic intersection calculations
to be carried out implicitly on S.

The data associated to each vertex v is the following where E = Ev: the selfintersection
E2; the coefficient of E in some pullback divisor, often EC but this depends on the context;
the coefficient of E in a representative of the canonical class of S locally supported on the
exceptional curves; the number of transverse intersections of the birational transform C̃ of
C with E. At each vertex v, this data is often denoted sv, mv, kv, tv respectively. This
is the coarsest kind data one could want. It enables basic intersection theory calculations
(including calculating the contribution of a singularity p of a curve C to the genus of C).
For more detailed calculations, the map f and the equation of the birational transform of
C are held on patches along each E. In each case, the patch is an affine xy-plane with E
as the line y = 0 in it (although it is actually the closure of this patch and map that is
recorded).

Resolution graphs are usually created implicitly by some geometrical algorithm like the
resolution of a plane curve singularity. The first creation methods below are of this nature.
But graphs can also be created explicitly by providing the required data. How much data
is required varies according to the purpose of the graph; some common alternatives are
included here.

115.2.1 Graphs, Vertices and Printing
Resolution graphs are less complicated as a type than the other graphs in Magma. They
do not have associated vertex and edge sets. However, there is a resolution graph vertex
type so that vertices can be passed between intrinsics.

Graph printing is similar to that of the underlying directed graph. An example is

The resolution graph on the Digraph
Vertex Neighbours
1 ([ -2, 9, 1, 0 ]) 2 ;
2 ([ -4, 18, 2, 0 ]) 3 ;
3 ([ -2, 63, 9, 0 ]) 4 6 ;
4 ([ -2, 42, 6, 0 ]) 5 ;
5 ([ -2, 21, 3, 0 ]) ;
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6 ([ -1, 66, 10, 3 ]) ;

This is a graph on 6 vertices — they are listed as one of the integers 1, . . . , 6 down the left.
The integer corresponding to a vertex is called the index of the vertex. In brackets by each
vertex v is a label of the form [s,m, k, t] where s is the selfintersection, m is the multiplicity
(the interpretation of which is dependent on the context), k is the canonical multiplicity
and t is the number of transverse intersections at v as described in the introduction. Next
comes a space-separated list of the vertices at the far end of edges directed away from v.
Until one is used to reading graphs in this way, and also even then, drawing the graph by
hand is recommended.

The vertex labels can be shorter if some data is missing. The alternatives are [s],
[s, t] and [s,m, t] in the previous notation. The most data consistent with what has been
calculated for the graph will be displayed.

Notice that, although these really are printed as graph labels, the data in them should
not be accessed as such. These labels are often unassigned, or assigned in an unexpected
way. They are only intended for printing. There are dedicated functions below for retriev-
ing data associated to a graph.

g eq h

Returns true if and only if the resolution graphs g and h are the same object in
Magma.

ResolutionGraphVertex(g,i)

g ! i

The vertex of the resolution graph g with index i.

Vertex(v)

The underlying directed graph vertex of the resolution graph vertex v.

ResolutionGraph(v)

The resolution graph of which v is a vertex.

IsVertex(g,v)

Returns true if and only if v is a vertex of the resolution graph g.

Index(v)

The index of the underlying graph vertex of the resolution graph vertex v; this is
the integer appearing as the vertex identifier when the graph is printed.

v eq w

Returns true if and only if the resolution graph vertices v and w are the same object
in Magma.
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115.2.2 Creation from Curve Singularities
Let C be a reduced plane curve, either affine or projective. See Chapter 114 for details of
how to create such a curve. Let p be a singular point of C. The intrinsic below calculates
the dual graph of the resolution of p on C together with some auxiliary data. As in
the introduction, the sequence of blowups required in the resolution is thought of as a
morphism f : S → P 2 of projective surfaces; P 2 is the projective plane (which is the
closure of the ambient plane of C if it is affine) while S is a surface not realised explicitly
in Magma.

The target resolution is the minimum transverse resolution, sometimes called the log
resolution, a resolution in which the birational transform C̃ of C on S is nonsingular and
transverse to the exceptional locus. However, there are circumstances under which a larger
resolution will be calculated. This makes no difference to the geometric data arising from
the resolution.

ResolutionGraph(C, p)

M RngIntElt Default : 1
K RngIntElt Default : 1

ResolutionGraph(C, p)

Calculate a transverse resolution graph of the plane curve singularity of C at the
point p. If the point argument is missing and C is affine, the resolution is calculated
at the origin, but in that case parameters cannot be assigned and take the default
values.

The numerical parameters determine whether additional data is calculated: value
1, the default, enables the calculation while value 0 omits it.

The parameter M refers to the pullback multiplicities of C. It returns a sequence
[mv] of rational numbers (although always integral in the current algorithms) corre-
sponding to the vertices of the graph. These numbers have the following meaning:
on the blownup surface S, as divisors,

f∗C = C̃ +
∑

mvEv

where the sum is taken over the vertices v of the graph and Ev is the corresponding
exceptional curve.

The parameter K refers to the canonical multiplicities along g. It returns a
sequence [kv] of rational numbers (although again always integral) corresponding
to the vertices of the graph. On the blownup surface S in a neighbourhood of the
union of exceptional curves E the canonical class KS has a representative

KS =
∑

kvEv

where the sum is taken over the vertices of the graph.
The surface S is covered by affine plane patches. The map f to the projective

plane can be calculated when restricted to these patches. In fact, the closure of
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these maps is calculated as a birational automorphism of the projective plane. All
blowup algorithms arrange that the exceptional curve Ev corresponding to a vertex
v is (a patch on) Ly, the second coordinate line “y = 0”, in the projective plane. So
pulling C back to the plane using the patch map at v will produce a curve having
mvLy as a component.

The calculation of maps and pullbacks is expensive so some precautions are taken.
First, the maps are only calculated at significant vertices of the graph: significant
here means that the blowup procedure branches at that vertex, or that C̃ meets the
exceptional locus there. Second, the maps are calculated as a sequence of maps:
the map required is the composition of these. The composition will be carried out
automatically if needed. (In the current code, this can only be carried out if no field
extensions have been made. This will be updated in due course.)

The calculation is carried out by tying together strings of blowups (done recur-
sively in one go using a standard Newton polygon argument). The Newton polygon
argument used automatically makes a curve transverse to all axes, not just to excep-
tional curves. These extra blowups do not invalidate numerical calculations made
with the resolution graph (since minimality is never a condition) and they are es-
sential when resolving irregular fibres of pencils.

Example H115E1

First make a curve with a singularity. The following curve demonstrates the typical way singular-
ities with more than one Puiseux pair — those which need the Newton algorithm to be repeated
when calculating a resolution or local parametrisation — arise.

> A<x,y> := AffineSpace(Rationals(),2);

> C := Curve(A,(x^2 - y^3)^2 + x*y^6);

The interesting singularity is at the origin. The next two lines calculate the resolution graph of
this singularity and display it.

> g := ResolutionGraph(C,Origin(A));

> g;

The resolution graph on the Digraph

Vertex Neighbours

1 ([ -3, 4, 1, 0 ]) 2 ;

2 ([ -2, 12, 4, 0 ]) 3 4 ;

3 ([ -2, 6, 2, 0 ]) ;

4 ([ -3, 14, 5, 0 ]) 5 ;

5 ([ -1, 30, 12, 1 ]) 6 ;

6 ([ -2, 15, 6, 0 ]) ;

The resulting graph has 6 vertices. So the transverse resolution of this singularity is achieved by
6 blowups. The order of blowup can be determined by the third column, the canonical class: this
number strictly increases throughout the process, so curve E1 is the first exceptional curve, E3 is
the second and so on until finally E5 is extracted. This could also be deduced from the sequence
of selfintersections, the first column. See how the birational image of C after blowing up only
intersects E5, and then only in a single transverse point. In other words, C has a single place at
the origin.
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115.2.3 Creation from Pencils
Let P be a jacobian pencil in the affine plane A2, that is, a pencil of the form f(x, y) = c
as c varies. See Chapter 112 for details of how to create jacobian pencils. The resolution
graph which can be created automatically is the regular resolution graph: that is, the
minimal sequence of transverse blowups which resolve the rational map determined by
P from the projective plane (the closure of A2) to the projective line. However, other
resolution graphs can be constructed using more explicit creation functions.

ResolutionGraph(P)

The resolution at infinity of the jacobian pencil P : f = c of some polynomial f as
the value c varies defined on some affine space A. This resolution graph is thought
of as being rooted with root vertex corresponding to the line at infinity of A. The
multiplicities are those of the fibre of f at infinity.

ResolutionGraph(P,a,b)

The resolution graph at infinity of the union of the two fibres of P above a and
b. The multiplicities and canonical class are not calculated automatically for this
graph.

Example H115E2

The following is a simple example of a pencil exhibiting interesting behaviour at infinity. It is
taken from [Neu99].
First a pencil in some affine plane is made.

> A<x,y> := AffineSpace(Rationals(),2);

> f := x^2*y - x;

> P := Pencil(A,f);

> P;

The pencil defined by x^2*y - x

Then the regular resolution graph at infinity is calculated.

> ResolutionGraph(P);

The resolution graph on the Digraph

Vertex Neighbours

1 ([ -1, 3, -3, 0 ]) 2 5 ;

2 ([ -3, 1, -2, 0 ]) 3 ;

3 ([ -1, 0, -2, 1 ]) 4 ;

4 ([ -2, 0, -1, 0 ]) ;

5 ([ -2, 2, -2, 0 ]) 6 ;

6 ([ -2, 1, -1, 0 ]) 7 ;

7 ([ -1, 0, 0, 1 ]) ;

The resulting graph has 7 vertices. Vertex 1 corresponds to the line at infinity of the plane, or
more properly to its birational image after blowing up. The pencil meets this line at two points,
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each of which have undergone three blowups in the resolution process. The vertex labels carry
auxiliary data. The first column lists the selfintersections of the curves Ev corresponding to the
vertices v. The general fibre of the pencil meets a single exceptional curve above each of the points
as shown by the fourth column. The fibre at infinity is 3E1 + E2 + 2E5 + E6 as shown in the
second column. The third column gives the multiplicities of a canonical divisor on the blownup
surface: KS can be represented by the divisor −3E1 − 2E2 − 2E3 − E4 − 2E5 − E6.
It is known that the pencil P is irregular at infinity above 0. This can be seen by calculating the
explicit resolution of the union of two fibres, f = 0 and a general one, say f = 1.

> ResolutionGraph(P,0,1);

The resolution graph on the Digraph

Vertex Neighbours

1 ([ -1, 0 ]) 2 5 ;

2 ([ -3, 0 ]) 3 ;

3 ([ -1, 1 ]) 4 ;

4 ([ -2, 2 ]) ;

5 ([ -2, 0 ]) 6 ;

6 ([ -2, 0 ]) 7 ;

7 ([ -1, 2 ]) ;

The multiplicities and canonical class have not been calculated by this function. Later in this
chapter there are functions which will do this, although the multiplicities require some interpre-
tation. The selfintersections have been calculated as before (and notice that the blowups at least
appear to be exactly those of the previous resolution procedure; in fact they are indeed the same).
The number of transverse intersections are now those of the union of the two fibres. Since the
fibre above 1 is general it contributes one intersection at vertex 3 and one at vertex 7. So the
intersections of the irregular fibre can be deduced, namely two at vertex 4 and one at vertex 7.

115.2.4 Creation by Hand
A resolution graph can be created by hand. This can be fiddly if the underlying graph is
complicated. See Chapter 149 for details on how to create a directed graph.

MakeResolutionGraph(g,s,t)

MakeResolutionGraph(g,s)

The resolution graph on underlying directed graph g. Although it is not checked,
the graph g should usually be a directed tree otherwise some reduction algorithms
which might be invoked later might not work. In that case, moreover, its root must
be the vertex of index 1.

The selfintersections of vertices correspond to the integer entries of the sequence
s. If used, the number of transverse intersections of the putative resolved curve with
each vertex correspond to the integer entries of the sequence t.

MakeResolutionGraph(N)

The resolution graph corresponding to the Newton polygon N .
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UnderlyingGraph(g)

The underlying directed graph of the resolution graph g.

115.2.5 Modifying Resolution Graphs
Any resolution graph, whether created by hand or not, can have its numerical data calcu-
lated or modified. There are also some functions for performing surgery on the underlying
graph.

There are also functions which do the linear algebra calculations typical of the nu-
merical calculations associated with resolution graphs. But beware: they each base their
calculation on some part of the data of the graph but make no check that all numerical
data is consistent at the end of calculation.

Connect(v,w)

If v and w are vertices of distinct resolution graphs, return the graph comprising the
union of these graphs joined by an edge from v to w. Selfintersections are inherited
by the graph from its two components. Multiplicities, canonical class and transverse
intersections will be inherited if calculated on both components.

CalculateCanonicalClass(∼g)
Calculate the canonical class supported on the resolution graph g using the selfinter-
sections of the Ev and the assumption that the Ev are nonsingular rational curves
meeting transversely. Note that this calculation uses only the selfintersections al-
ready associated to g.

Disconnect(v,w)

If v and w are vertices of a resolution graph g, return the resolution graph with any
edge joining them removed. The resulting graph may well be disconnected. The
only data preserved is the selfintersections and transverse intersections.

Component(v)

The connected component of the resolution graph containing vertex v.

CalculateMultiplicities(∼g)
Calculate the pullback multiplicities of the resolution graph g using the selfintersec-
tions of the Ev, the assumption that the Ev are nonsingular rational curves meeting
transversely, and the number of transverse intersections of C̃ with the Ev. It is
assumed that g is the resolution graph of a curve singularity during this calculation,
although that need not be the case. In general there will be some choice of multi-
plicities. If g is the resolution of a curve singularity, and if the multiplicity of that
singularity is cached, then the correct multiplicities can be identified: the multiplic-
ity along the first blownup curve is the same as that of the singularity; the curve
which was blown up first can be identified since it alone has canonical multiplicity
1.
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However, if g arose as the resolution at infinity of two fibres of a pencil, for
instance, the multiplicities calculated here would depend on which two fibres were
used. The result would be the unique divisor supported on g which when added to
the birational transform of the two affine fibre patches was linearly equivalent to
the zero divisor. In particular, if the two fibres were general, the calculation here
would return −2 times the fibre at infinity. Otherwise the calculation will return a
combination of that and the exceptional components of irregular finite fibres. The
intrinsic which calculates the regular resolution graph of a pencil already takes this
into account.

CalculateTransverseIntersections(∼g)

Calculate the number of transverse intersections of C̃ with each Ev on the basis of
their selfintersection numbers and multiplicities in the resolution graph g.

ModifySelfintersection(∼v,n)
Change the selfintersection at vertex v of a resolution graph to n.

ModifyTransverseIntersection(∼v,n)
Change the number of transverse intersections at vertex v of a resolution graph to
n.

115.2.6 Numerical Data Associated to a Graph
The meaning of the data given here depends on the context in which the graph was created.
The case already discussed of a configuration of rational curves arising from the resolution
of a curve singularity is the prototype.

Many of these functions can also be applied to a single vertex of a graph:
Selfintersection, CanonicalMultiplicity and so on.

Size(g)

The number of vertices of the underlying graph of the resolution graph g. Typically,
this is the number of exceptional curves in the resolution.

SelfIntersections(g)

The selfintersections of the vertices of the resolution graph g.

Multiplicities(g)

The multiplicities of the vertices of the resolution graph g in some divisor.

CanonicalClass(g)

The multiplicities of the vertices of the resolution graph g in a local representative
of the canonical class.
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TransverseIntersections(g)

The number of transverse intersections of some curve (usually used to create g) with
the vertices of the resolution graph g.

GenusContribution(g)

The contribution to the genus of a plane curve of a singularity having g as its
resolution graph.

CartanMatrix(g)

The incidence matrix of the (undirected) graph underlying the resolution graph g
with selfintersections on the diagonal.

Determinant(g)

The determinant of the Cartan matrix of the resolution graph g.

115.3 Splice Diagrams

Splice diagrams are graphs decorated with integer labels at each end of each edge and a
number of arrows, often none at all, attached to each vertex. They are fully described
in [EN85]. No description of the meaning of splice diagrams will be given here, only the
functions that Magma has for manipulating them. (There are two common features of
splice diagrams that cannot yet be realised. First, omitting edge labels which are 1 is
common but is not allowed. Second, and less trivially, arrow weights are not allowed.

Other data that is also stored with the diagram are vertex multiplicities, canonical
multiplicities, and total linking numbers of vertices. The distinction between a splice
diagram and its underlying directed graph, as well as that between a splice diagram vertex
and its underlying vertex, is often left implicit.

115.3.1 Creation of Splice Diagrams
Splice diagrams are usually created from geometric objects like plane curve singularities
or jacobian pencils. They can also be built explicitly by hand. The section on translations
between graphs describes functions which create splice diagrams associated to resolution
graphs.

SpliceDiagram(C,p)

The splice diagram of the plane curve singularity of C at the point p.

RegularSpliceDiagram(P)

The regular splice diagram at infinity of the jacobian pencil P . This diagram is
considered to be rooted at vertex 1 corresponding to the line at infinity of the
ambient plane of P . Its underlying graph is directed away from this root.
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MakeSpliceDiagram(g,e,a)

A splice diagram on directed graph g. The edge labels are taken from the sequence
e. The elements of this sequence are sequences of pairs of integers [a, b]. The i-th
element of e will be assigned to the i-th edge of g (in the order returned by Edges(g))
with a as the near label and b as the far label (with respect to the directions of the
edges of g). The number of arrows at each vertex are taken from the sequence of
integers a.

MakeSpliceDiagram(e,l,a)

The splice diagram described by the data in the sequences e, l, a. The first two
contain sequences of two integers: e is interpreted as a set of directed edges, the
integers appearing in it being the vertex indices of the resulting graph. Edge labels
are determined by the sequence l as in the previous function. The number of arrows
at each vertex are taken from the sequence of integers a.

SpliceDiagramVertex(s,i)

The vertex of the splice diagram s having index i.

SpliceDiagram(v)

The splice diagram containing the vertex v.

UnderlyingGraph(s)

The underlying directed graph of the splice diagram s.

UnderlyingVertex(v)

Vertex(v)

The vertex of the underlying graph corresponding to the vertex v of a splice diagram.

Vertices(s)

The vertices of the splice diagram s.

RootVertex(s)

The root vertex of the splice diagram s as a rooted tree directed away from its root
by the directions on the edges.

Index(v)

The index of the vertex v of a splice diagram.

s eq t

v eq w

Returns true if and only if the splice diagrams s and t are the same object in
Magma. This can also be applied to a pair of vertices of a splice diagram.
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115.3.2 Numerical Functions of Splice Diagrams
The raw numerical data of a splice diagram is the collection of labels on its edges and
vertices together with data recovered from the underlying graph. First we list functions
to get hold of this data, and then some more substantial functions which derive many of
the natural conclusions of this data, linking number, euler characteristic and so on.

EdgeLabels(s)

The integer labels on the edges of the splice diagram s.

VertexLabels(s)

The integer labels on the vertices of the splice diagram s.

TotalLinking(v)

The total linking number of the vertex v of a splice diagram.

LinkingNumbers(s)

The total linking numbers of the vertices of the splice diagram s.

Linking(u,v)

The linking number of vertices u and v of a splice diagram.

EdgeDeterminant(u,v)

The edge determinant of the edge joining the vertex u to the vertex v of a splice
diagram.

Valency(v)

The splice valency of the vertex v of a splice diagram. This is the valency of v in
the underlying graph plus the number of arrows at v.

IsRegular(s)

Returns true if and only if the splice diagram s is regular.

IsReduced(s)

Returns true if and only if the splice diagram s is reduced, that is, it has no valency
2 nodes and no weight 1 leaves.

HasIrregularFibres(s)

Returns true if and only if the splice diagram s has a vertex with zero linking
number.

Degree(s)

The linking number of the first vertex of the splice diagram s.



Ch. 115 RESOLUTION GRAPHS AND SPLICE DIAGRAMS 3755

EulerCharacteristic(s)

The Euler characteristic of the splice diagram s.

Size(s)

The number of vertices of the splice diagram s.

Arrows(s)

A sequence of integers containing the number of arrows of the splice diagram s: the
i-th sequence entry is the number of arrows at the vertex of index i. This function
can also be applied to a single vertex returning a single integer.

VertexPath(u,v)

A sequence of vertices on the path from the vertex u to the vertex v of a splice
diagram. The second return value is the sequence of products of off-path weights at
each vertex.

115.4 Translation Between Graphs
Splice diagrams arise from resolution graphs by a reduction procedure and conversely
resolution graphs arise from splice diagrams by a continued fraction calculation. At present,
Magma only incorporates the former calculation. However, when a splice diagram s
has been constructed using a curve singularity, the corresponding resolution graph g is
calculated and can be recovered using the function CorrespondingResolutionGraph. The
vertices of s correspond to a subset of those of g. The correspondence can be recovered
with the function CorrespondingVertices.

115.4.1 Splice Diagrams from Resolution Graphs
By default Magma always makes the reduced splice diagram since otherwise many

determinants would be calculated unnecessarily.
The translation of resolution graph g to splice diagram is done in two steps. First the

underlying graph of g is reduced by the removal of all vertices of valency 2 (including
arrows in the valency calculation). Then the edge labels are calculated using determinants
of subgraphs.

SpliceDiagram(g)

L RngIntElt Default : 0
K RngIntElt Default : 0
Reduced RngIntElt Default : 1

A splice diagram of the resolution graph g. All parameters can take the value 0 or
1. If Reduced is 1 then the splice diagram will be reduced, otherwise it will be the
splice diagram on the underlying graph of g.

The parameter L refers to the total linking numbers of the vertices of the resulting
splice diagram. The parameter K refers to the canonical class of the vertices of the
resulting splice diagram. Each quantity will be calculated when the corresponding
parameter is 1.
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SpliceDiagram(g,v)

The splice diagram of the resolution graph g with the condition that the vertex v
will not be removed by a reduction.
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Chapter 116

ALGEBRAIC SURFACES

116.1 Introduction

This chapter contains Magma geometric functionality for working specifically with alge-
braic surfaces and specialised subtypes. We hope to greatly expand this area in upcoming
years. The general surface type Srfc is for 2-dimensional algebraic varieties over a field
(i.e. schemes that are geometrically reduced and irreducible).

The current functionality is largely split between that for (singular) hypersurfaces in
ordinary projective 3-space, which is older and relies heavily on the formal desingularisation
package of Tobias Beck, and that for ordinary projective surfaces in arbitrary dimensional
ambients that are “almost non-singular”. The latter relies more on Magma’s coherent
sheaf package. Here, almost non-singular means that only simple (A-D-E) singularities are
allowed. These are terminal singularities which don’t affect computations involving the
pluri-canonical sheaves. It is useful to allow simple singularities as they naturally occur
in a number of models (anticanonically-embedded degenerate Del Pezzo surfaces; minimal
models for surfaces of general type).

The surface type Srfc is a subtype of the scheme type Sch so the general functionality
for schemes (see Chapter 112) and coherent sheaves (see Chapter 113) is of course also
available.

The first section of the chapter deals with functions for surfaces in general ambients
although, as noted above, there are singularity assumptions and the restriction to ordinary
projective surfaces for many of the intrinsics.

The next section deals with surfaces in P3 with no singularity assumptions. this con-
tains functions to compute formal desingularizations, general adjoint linear systems, clas-
sification and reduction of rational surfaces to special type and a general parametrization
routine.

The final section deals with specific code for Del Pezzo surfaces, the specialised subtype
for which we currently have the most functionality. There are parametrization routines over
the rationals (or number fields in some cases) for Del Pezzos by degree and constructions for
degree 6 Del Pezzos associated to different twisted torus type. There are also minimisation
and reduction routines for degree 3 and 4 Del Pezzos and construction, point-counting and
computation of invariants for degree 3.

116.2 General Surfaces
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116.2.1 Introduction
We describe here the newer functionality for surfaces (two-dimensional, geometrically in-
tegral schemes over a field) in arbitrary dimensional ambients. However, the reader should
be aware that there are major restrictions for many of the intrinsics.

The biggest problems are the singularity assumptions (either non-singular or with at
worst simple singularities) and restrictions to ordinary projective space which means that
large dimensional ambients are unavoidable at times. These are the general issues most
in need of address in future development. Since the time (and memory) for singularity
checks can often vastly outweigh the time for the main processing, singularity checks are
usually only performed when the user explicitly asks for them by setting a parameter value
to true.

The main functionality is for the computation of fundamental invariants (irregularity,
geometric genus etc.), checks for different type of ‘non-singularity’ (e.g. Gorenstein, only
simple singularities), Kodaira-Enriques classification, computation of minimal models (in-
cluding the full canonical model for a surface of general type) and construction of random
surfaces from certain families in P4.

116.2.2 Creation Functions
As for general schemes and curves, surfaces may be created in any of Magma’s ambient
spaces. However, nearly all of the current specialised surface functionality only applies to
surfaces in ordinary projective space.

The requirement for a scheme to be a surface is that it is defined over a field, is of
dimension 2 and is geometrically integral (reduced and irreducible when base extended to
the algebraic closure of the ground field). Due to the difficulty in checking for geometric
integrality, at present we only test for integrality (reduced and irreducible over the base
field).

See Section 116.4.2 for some specific creation intrinsics for Del Pezzo surfaces and
Section 116.4.3 for some additional degree 6 Del Pezzo constructors. Additionally, see
Section 116.2.7 for intrinsics to create a range of surfaces in P4 belonging to special families.

Surface(A,I)

Surface(A,f)

Surface(A,S)

Nonsingular BoolElt Default : false

Check BoolElt Default : true

Saturated BoolElt Default : false

Let A be an ambient or a scheme which already has some defining equations. The
function returns the surface defined by the ideal I, the single polynomial f or the
sequence of polynomials S within the scheme A.

If I or the set of new defining equations added to those of A generate an ideal
that is known to be saturated (c.f. Section 112.3), Saturated can be set to true.
If the surface is known to be non-singular or singular, much subsequent calculation
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can be avoided by setting Nonsingular to true or false. The parameter Check is
true by default and forces the function to check that the surface is integral (reduced
and irreducible) by testing primality of the (saturated) defining ideal. This can be
an expensive computation in high-dimensional ambients, so it is best to set Check
to false if it is known in advance that the surface is integral. As stated above,
our actual requirement is that surfaces are geometrically integral (equivalently, the
surface is integral and the base field is integrally closed in the coordinate ring)
because many of the surface intrinsics only really make sense for such varieties.
However, this is a more difficult property to test. In practice, integrality should
usually imply geometric integrality.

RationalRuledSurface(P,n)

Returns a rational, ruled surface X in the ordinary, projective ambient P = Pm

with parameters n,m − 1 − n where n is the second argument. Such a surface is
a rational scroll that can be defined in a number of equivalent ways (see Appendix
A2H, [Eis05]).

Let Pn and Pm−1−n be the linear subspaces of P corresponding to the first
n + 1 coordinates and the last m − n coordinates respectively. Then X is given
geometrically as the union of the lines LQR joining a point Q on a rational normal
curve in Pn to a point R on a rational normal curve in Pm−1−n, where Q and
R correspond under a fixed isomorphism of the first rational normal curve to the
second. In the cases n = 0 and n = m− 1, the first or second rational normal curve
degenerates to a single point and X is the cone of all lines from a rational normal
curve in a hyperplane of P to a point (the apex) outside of the hyperplane. The
apex is the only singular point of the surface X (and is not a simple singularity in
general). In the non-degenerate cases, X is non-singular. n must always be between
0 and m− 1 (inclusive).

Following the notation of Section 2, Chapter 5 of [Har77], the rational ruled
surface with parameters r, s can also be defined as follows. If e is Max(r, s)-Min(r, s)
and v is Max(r, s), then X is the Hirzebruch surface Xe (Thm. 2.17, ibid) mapped
into P via the linear system |C0 + v ∗ f |, which gives an embedding precisely in the
non-degenerate cases.

The second return value is a scheme map f from X to P1 which defines the
ruling on X: the fibres of f are all lines in P .

RandomCompleteIntersection(P,ds)

Nonsingular BoolElt Default : true

RndP RngIntElt Default : 1
This is the same as the general scheme intrinsic to generate a random complete in-
tersection scheme in ordinary projective space P = Pm over a finite field or the
rationals. ds should be a sequence of positive integers of length m − 2. The
intrinsic will generate random homogeneous polynomials F1, . . . , Fm−2 of degrees
ds[1], . . . , ds[m − 2] in the coordinate ring of P and return the subscheme X of P
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with the Fi as defining equations. It is checked that X has dimension 2 (in which
case all irreducible components have dimension 2). If parameter Nonsingular is
set to the default value of true, the non-singularity (actually smoothness) is also
checked. This guarantees that X is geometrically integral and the result is returned
as a surface type Srfc. If the check is not performed, X is constructed as a plain Sch.
If X fails the dimension or non-singularity check, a new set of random polynomials
is generated.

If the rationals are the base field, the parameter RndP is a positive integer used
as an upper absolute bound for random coefficients of polynomials. That is, the
algorithm uses random integers between −RndP and +RndP inclusive. The default
value here is 1.

KummerSurfaceScheme(C)

Returns the Kummer surface of the Jacobian J of the genus 2 hyperelliptic curve
C. This is a singular model of the surface: a quartic hypersurface in P3 with 16
simple “A1” singularities corresponding to the 16 points of order 1 or 2 on J . Its
desingularisation is a K3 surface.

Example H116E1

We illustrate the basic creation functions with some simple examples. Firstly, we create a degree
3 (Del Pezzo) and a degree 4 (K3) surface in P3 directly by giving a defining equation.

> P3<x,y,z,t> := ProjectiveSpace(Rationals(),3);

> X := Surface(P3,x^3+y^3+z^3+t^3);

> X;

Surface over Rational Field defined by

x^3 + y^3 + z^3 + t^3

> X := Surface(P3,x^4+y^4+z^4+t^4);

> X;

Surface over Rational Field defined by

x^4 + y^4 + z^4 + t^4

We can create a degree 5 Del Pezzo surface in P5 by specifying it as the projective plane blown
up in 4 points (and anti-canonically embedded).

> P2<x,y,z> := ProjectiveSpace(Rationals(),2);

> pts := [* P2![1,0,0],P2![0,1,0],P2![0,0,1],P2![1,1,1] *];

> X := DelPezzoSurface(P2,pts);

> P5<x,y,z,s,t,u> := Ambient(X);

> X;

Del Pezzo Surface of degree 5 over Rational Field defined by

-y*z + x*s + s^2 - s*t - s*u + t*u,

-y*s + s^2 + x*t - s*t,

-z*s + s^2 + x*u - s*u,

-s^2 + s*t + y*u - t*u,
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-s^2 + z*t + s*u - t*u

The next example is a random surface in P5 which is the complete intersection of hypersurfaces
of degrees 2, 2 and 3

> P5<x,y,z,s,t,u> := ProjectiveSpace(Rationals(),5);

> X := RandomCompleteIntersection(P5,[2,2,3]);

> X;

Surface over Rational Field defined by

-y*z-z^2-x*s+y*s+z*s-s^2-x*t-y*t-z*t+s*t+t^2-x*u-y*u-z*u-t*u,

-x^2+z^2-y*s+s^2+x*t+y*t-z*t+s*t+z*u-s*u+t*u-u^2,

-x^3-x^2*y+y^2*z-x*z^2+y*z^2-x^2*s+x*z*s+y*z*s+z^2*s+x*s^2-y*s^2+z*s^2+s^3-x^2*t+

x*z*t-z^2*t-x*s*t-x*t^2+y*t^2+z*t^2+s*t^2-t^3+x*y*u-y^2*u+x*z*u+y*z*u+y*s*u+z*s*u

-s^2*u-x*t*u+y*t*u-z*t*u+s*t*u+t^2*u+x*u^2-y*u^2+t*u^2-u^3

The next example is a rational ruled surface in P4 with parameters 2, 1. This is a nonsingular
surface scroll that is abstractly isomorphic to the Hirzebruch surface X1 (the plane blown up at
one point).

> P4<x,y,z,s,t> := ProjectiveSpace(Rationals(),4);

> X := RationalRuledSurface(P4,2);

> X;

Surface over Rational Field defined by

-z*s + y*t,

-y*s + x*t,

-y^2 + x*z

Finally, we call one of the intrinsics from the section on surfaces in P4 to get an Abelian surface
(2-dimensional Abelian variety) which is the zero locus of a random global section of the famous
Horrocks-Mumford vector bundle. There are 18 defining equations of degrees 5 and 6 that we do
not list.

> P4<x,y,z,s,t> := ProjectiveSpace(Rationals(),4);

> X := RandomAbelianSurface_d10g6(P4);

> #DefiningPolynomials(X);

18

> [TotalDegree(f) : f in DefiningPolynomials(X)];

[ 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 ]

116.2.3 Invariants
The following functions give standard invariants for projective surfaces with only A-D-E
singularities (or slightly weaker assumptions). Due to the current limitations of the coho-
mology and sheaf machinery, most are only available for ordinary projective surfaces. For
corresponding functions that give invariants of the desingularization of hypersurfaces with
more general singularities, see Section 116.3.4. Key invariants are stored when computed.
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GeometricGenus(S)

CheckGor BoolElt Default : false

UseCohom BoolElt Default : false

The surface S should be an ordinary projective surface which is Gorenstein (this
guarantees that a canonical sheaf K exists as a dualising sheaf and is invertible).
Returns the geometric genus of S, defined as the dimension of the space of global
sections of K, h0(K).

The boolean parameter CheckGor (default false) can be set to true to force a
check that S is Gorenstein if this isn’t already known and stored. By default, the
computation computes (and stores) K and then does a direct computation of its
global sections. The alternative method is to compute the genus via cohomology
since the dimension of H2 of the structure sheaf is equal to the genus. Set UseCohom
to true to apply the second method. The advantage of the first method is that it is
currently faster (in general) and also that K is used in many other intrinsics. Note
that unless S is non-singular or has only A-D-E singularities, the genus computed
here will generally be larger than the geometric genus of a desingularization of S.

Plurigenus(S,n)

CheckGor BoolElt Default : false

The surface S and parameter CheckGor are as in GeometricGenus above. The
integer n should be non-negative. Returns the dimension of the space of global
sections of the nth tensor power of the canonical sheaf K of S. Again this will
generally be larger than the nth plurigenus of a desingularization of S unless S has
at worst simple singularities.

ArithmeticGenus(S)

Given a scheme S, this function returns the arithmetic genus. It is, in fact, the
general scheme intrinsic.

Irregularity(S)

CheckGor BoolElt Default : false

UseCohom BoolElt Default : false

The irregularity q of S, an ordinary projective surface, defined as the dimension of
the cohomology group H1(S,OS), where OS is the structure sheaf of S.

If S is known to be Gorenstein or the geometric genus has already been computed
and stored, this is computed from the geometric genus pg and arithmetic genus pa

using the formula q = pg − pa. Note that S will be known Gorenstein if it is known
to be non-singular or to only have simple singularities (All of these properties will
have been stored if already tested for. See next section.).

If CheckGor is set to true (the default is false), and the above conditions
arent satisfied, Gorensteinness will be checked and, if S is Gorenstein, the above
procedure will be followed. Otherwise, the cohomology machinery is used directly.
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Setting UseCohom to true (the default is again false) will force the cohomology
machinery to be used, unless the value of q has already been computed and stored.

ChernNumber(S,n)

CheckADE BoolElt Default : false

The surface S should be ordinary projective with at most simple (A-D-E) singulari-
ties. The integer n should be 1 or 2. The singularity condition, if not already known,
will only be tested for if CheckADE is set to true (default is false). The function
returns the nth Chern number of S1, the minimal desingularization of S. For n = 1,
this is just the intersection product K.K, where K is the canonical sheaf of S1.
Thanks to the singularity condition, this can just be computed on S. For n = 2,
the Chern number c2(S) is computed from the relation c2(S)+K.K = 12 ∗ (1+pa),
where pa is the arithmetic genus of S.

MinimalChernNumber(S,n)

CheckADE BoolElt Default : false

The surface S should be ordinary projective with at most simple (A-D-E) singu-
larities. The integer n should be 1 or 2. The singularity condition, if not already
known, will only be tested for if CheckADE is set to true (default is false). The
function computes and returns the relevant Chern number for a minimal model S2 of
a desingularisation S1 of S. As above, these numbers follow from knowing Km.Km

where Km is the canonical sheaf of S2. If k is the base-field and S is not rational
or birationally ruled (i.e. of Kodaira dimension −1), then S2 is defined over k and
is unique up to k-isomorphism. In these cases, Km.Km is known from the Kodaira
dimension and the second plurigenus in the Kodaira dimension 2 (general type) case.
For rational and ruled surfaces, the minimal model is not unique up to isomorphism
and a geometrically minimal model may not be defined over k. In these cases, we
conventionally take for the invariants a minimal model over the algebraic closure of
k with maximal Km.Km, which is therefore 9 for rational S and 8 for non-rational,
ruled S.

HodgeNumber(S,i,j)

CheckADE BoolElt Default : false

The surface S should be an ordinary projective with at most simple (A-D-E) sin-
gularities. The singularity condition, if not already known, will only be tested for if
CheckADE is set to true (default is false).

The integers i, j should be such that 0 ≤ i, j ≤ 2. The function returns the Hodge
number hi,j of the minimal desingularization S1 of S which is the dimension of the
cohomology group Hj(S1, D

i) where Di is the ith alternating power of the sheaf of
differentials of S1. These are computed by formula from the fundamental invariants
which are the geometric genus, the irregularity and the first Chern number of S (or
S1).
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Example H116E2

We take an easy example: the Kummer surface of the Jacobian of a genus 2 hyperelliptic curve,
embedded in P3 as a degree 4 surface with 16 A1 singularities lying beneath the 16 points of
order 2 on the Jacobian. A nonsingular quartic in P3 is a K3 surface and simple singularities
don’t affect the quartic being K3. We verify this here for the Kummer surface, finding that the
invariants are the standard invariants for a K3 surface.

> f := PolynomialRing(Rationals())![-1,0,0,0,0,0,1]; //t^6-1

> X := KummerSurfaceScheme(HyperellipticCurve(f));

> IsSingular(X);

true

> HasOnlySimpleSingularities(X);

true

> GeometricGenus(X);

1

> ArithmeticGenus(X);

1

> Irregularity(X);

0

> [ChernNumber(X,i) : i in [1,2]];

[ 0, 24 ]

> for i in [0..2], j in [0..2] do

> printf "%o,%o : %o\n",i,j,HodgeNumber(X,i,j);

> end for;

0,0 : 1

0,1 : 0

0,2 : 1

1,0 : 0

1,1 : 20

1,2 : 0

2,0 : 1

2,1 : 0

2,2 : 1

116.2.4 Singularity Properties
This section contains intrinsics for testing for various levels of ‘singularity’ of a surface.
There are further intrinsics applying to more general schemes in Chapter 112 for basic
singularity/non-singularity as well as tests for whether a scheme is locally/arithmetically
Cohen-Macaulay or locally/arithmetically Gorenstein. The tests here that are currently
specific to surfaces are for normality and for having only simple (A-D-E) singularities.
All of these properties are stored when computed for a surface/scheme and the various
implications between them are used to shortcut tests. The intrinsics below rely on being
able to compute the singular subscheme of the surface and having each singular point lying
in a constructible affine patch, so they apply to surfaces lying in a wide range of ambients.
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IsNormal(S)

Returns whether the surface S is a normal variety. The normality test used here
consists of checking that the singular subscheme of S is empty or has dimension zero
and applying a local normality test at each singular point p (over a splitting field).
The local test used is simply whether the depth of the local ring is 2. Taking an
affine patch at p and translating to the origin, we simply consider the quotient of
the coordinate ring by a non-vanishing coordinate variable and check that the max-
imal homogeneous ideal is not an associated prime by a straightforward saturation
computation. We could have also chosen to use our test for being Cohen-Macaulay
once it is known that the singular subscheme of S is zero dimensional.

IsSimpleSurfaceSingularity(p)

The point p should be a point in the pointset of a surface S. It is referred to as a
simple or A-D-E singularity if it is an isolated singularity on S which is analytically
of the type An, n ≥ 1, Dn, n ≥ 4, E6, E7 or E8 as described in Chapter III, Section
7 of [BHPdV04]. For convenience, if p is non-singular on S, we class it as a simple
singularity of type A0. These are all Gorenstein (even l.c.i) singularities. Their
significance is that they are the surface singularities that impose no ’adjunction’
condition on the canonical sheaf with respect to computing the canonical sheaf of
the minimal desingularization S1 of S. They all resolve to a collection of (-2)-curves
on S1 whose intersection pairing matrix is the negative of that of the root system
with which they share a label.

This intrinsic tests whether p is a simple singularity and, if so, returns the type
as a string (“A”, “D” or “E”) along with the index n (e.g. 6, 7 or 8 for type “E”).
It requires that the characteristic of the base field of S is not 2. Also, the En types
can be a little awkward to analyse in characteristic 3. Therefore in char. 3, the
intrinsic always returns false if p is a possible E type singularity.

The intrinsic first uses IsHypersurfaceSingularity to determine whether p
is analytically isomorphic to a hypersurface singularity (which is the case for all
simple singularities) and then tests for A-D-E type by examining the expansion of
the equation that defines the analytically equivalent singularity.

NB: The intrinsic doesn’t fully check that p is an isolated singularity (i.e., that
it doesn’t lie on a curve in the singular locus of S). It may crash or hang in some
cases where p is not isolated.

HasOnlySimpleSingularities(S)

ReturnList BoolElt Default : false

This intrinsic determines whether the surface S has no singularities worse than
isolated simple singularities as described in the previous intrinsic. Again, the char-
acteristic of the base field of S should not be 2. If S has only simple singularities
and ReturnList is true (the default is false), a list is also returned containing
triples that consist of each singular point of S (in a pointset over an extension of
the base field) along with its type, given as a string and index number as described
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previously. In some cases, it may be already known (and recorded internally) that
there are only simple singularities without their precise type having been computed.
For example, if S is a minimal or weighted canonical model of a surface of general
type.

Example H116E3

Anticanonically-embedded degenerate Del Pezzo surfaces of degree ≥ 3 are singular but have
only simple singularities. We verify this for a degree 4 Del Pezzo which has 2 conjugate (over a
quadratic extension) A1 singularities.

> P<x,y,z,t,u> := ProjectiveSpace(Rationals(),4);

> X := Surface(P,[x*z-y^2, t^2-2*u^2+x^2-2*z^2]);

> HasOnlySimpleSingularities(X : ReturnList := true);

true [* <(0 : 0 : 0 : r1 : 1), "A", 1>, <(0 : 0 : 0 : r2 : 1), "A", 1> *]

> _,lst := $1;

> Ring(Parent(lst[1][1]));

Algebraically closed field with 2 variables over Rational Field

Defining relations:

[

r2^2 - 2,

r1^2 - 2

]

As a second example, we consider a singular rational ruled surface (scroll) that is the cone over a
rational normal curve. The intrinsics tell us that the surface is normal and Cohen-Macaulay (i.e.,
the local ring at the singular point at the apex of the cone satisfies these properties) but that it
satisfies none of the stronger ”non-singularity” properties.

> P4<x,y,z,t,u> := ProjectiveSpace(Rationals(),4);

> X := RationalRuledSurface(P4,0);

> // one singular point

> Degree(ReducedSubscheme(SingularSubscheme(X)));

1

> Support(SingularSubscheme(X));

{ (1 : 0 : 0 : 0 : 0) }

> HasOnlySimpleSingularities(X);

false

> IsArithmeticallyGorenstein(X);

false

> IsGorenstein(X);

false

> IsCohenMacaulay(X);

true

> IsNormal(X);

true
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116.2.5 Kodaira-Enriques Classification

KodairaEnriquesType(S)

CheckADE BoolElt Default : false

The argument S is a surface in ordinary projective space having at most simple
(A-D-E) singularities. As it may be a very heavy computation, the latter is only
checked if the user sets the CheckADE parameter is set to true (the default is false).

The function computes the type of S (or rather, of the non-singular projective
surfaces in its birational equivalence class) according to the classification of Kodaira
and Enriques.

The first number returned is the Kodaira dimension of S, which is -1, 0, 1, or 2.
We use -1 here rather than −∞. A second return value further specifies the type
within the Kodaira dimension -1 or 0 cases (and is irrelevant in the other two cases).

Kodaira dimension −1 corresponds to birationally ruled surfaces. The second
number returned in this case is the irregularity q ≥ 0 of S. So S is birationally
equivalent to a ruled surface over a smooth curve of genus q and is a rational surface
if and only if q is zero.

Kodaira dimension 0 corresponds to surfaces which are birationally equivalent to
a K3 surface, an Enriques surface, a torus or a bi-elliptic surface. In the final case,
there is a partial subclassification in that the canonical sheaf of the minimal model
is a torsion sheaf of order r, where r is 2, 3, 4, or 6. The second integer return value
in the Kodaira dimension zero case codes the subtypes as follows:-

-3 Enriques surface

-2 K3 surface

-1 Torus

r r = 2, 3, 4 or 6. Bielliptic surface of subtype r

A third return value is a string that gives a verbal description of the surface
type (e.g. “Rational” or “Bi-elliptic (type 3)”). Kodaira dimension 1 surfaces are
labelled as “Elliptic fibration” (which they all are – though there are also surfaces of
Kodaira dimension less than 1 which have elliptic fibrations) and Kodaira dimension
2 surfaces are labelled as “General type”, as is traditional.

There are no built-in restrictions on the characteristic of the base field, but there
are some special cases for surfaces of Kodaira dimension 0 in characteristics 2 and
3 that may not be dealt with properly.

The function works by computing a number of the invariants of S and sometimes
also considering the dimension of the image of appropriate pluri-canonical maps. We
try to compute the least number of invariants to fully determine the type. A useful
by-product is that, after calling this function, a number of the surface invariants
(always including the geometric genus and irregularity) will have been computed
and stored for later use. The type information is also stored.
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KodairaEnriquesDimension(S)

CheckADE BoolElt Default : false

The argument S is a surface in ordinary projective space having at most simple
(A-D-E) singularities. The later condition will only be checked if the parameter
CheckADE is set to true. The function simply returns the Kodaira dimension (-
1,0,1,2) without further type information. In most cases it does the same amount
of work as to compute the full Kodaira-Enriques type, unless the result has already
been determined and stored.

Example H116E4

We will present further cases of Kodaira-Enriques typing in our minimal model examples. For
now, we just give two simple examples: a Veronese surface in P5 and the Kummer surface in P3

with simple singularities from our earlier example.

The scheme X is a Veronese surface, isomorphic to P 2:

> P<a,b,c,d,e,f> := ProjectiveSpace(Rationals(),5);

> X := Surface(P,[b^2-a*c, a*d-b*f, b*d-c*f, d^2-c*e, a*e-f^2, b*e-d*f]);

> // X is a Veronese surface, isomorphic to P^2

> KodairaEnriquesType(X);

-1 0 Rational

The scheme X is a singular K3 surface:

> P<x,y,z,t> := ProjectiveSpace(Rationals(),3);

> X := Surface(P,x^3*t+x^2*z^2-8*x*y^2*z-x*z*t^2+16*y^4+y^2*t^2-z^3*t);

> KodairaEnriquesType(X);

0 -2 K3

116.2.6 Minimal Models
In contrast to the curve case, a birational equivalence class of surfaces contains an infinite
number of non-isomorphic projective, non-singular surfaces. Any two such surfaces are
linked by a birational map that consists of a sequence of blowing up points and blowing
down exceptional curves (rational (-1)-curves). For any non-singular, projective surface,
a sequence of blow downs of exceptional curves will result in a surface with no more
exceptional curves after a finite number of steps. Such a surface is referred to as a minimal
model. It is also possible to further contract connected cycles of rational (-2)-curves to
simple singularities. Sometimes minimal model also refers to a surface on which these
contractions have been performed. This is particularly true for surfaces of general type
where the pluri-canonical models are minimal in this second sense.

For surfaces of Kodaira dimension greater than or equal to zero, there is a unique
minimal model (up to isomorphism) within the birational equivalence class. That is, the
minimisation procedure of blowing down exceptional curves will always lead to the same
thing starting with any non-singular projective surface within that class. This can be
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carried out over an arbitrary base field and the minimal model is a unique representative
of the class, which partly explains its importance.

For rational or ruled surfaces, there is not a unique minimal model. Over an alge-
braically closed field, the minimal models in these cases are the projective plane and the
geometrically ruled surfaces which are fibrations over a non-singular, projective base curve
C, all of whose fibres are irreducible curves isomorphic to the projective line. The rational
surfaces are those with C rational (in this case, one of the ruled surfaces is not minimal
but is the plane blown up in one point). Over a non-algebraically closed base field k, it
may not be possible to blow down all exceptional curves working over k and so there are
k-minimal surfaces (certain Del Pezzo surfaces, for example) that are not minimal over
the algebraic closure. Models like Del Pezzo surfaces that are close to minimal but may
not strictly even be minimal over k are still very important for rational and ruled surfaces
because they allow the reduction to a small class of standard isomorphism types. We can
think of these as quasi-minimal.

This section describes functions which are designed to construct minimal models or
quasi-minimal models of ordinary projective surfaces. The precise meaning of this varies
a little depending on the Kodaira dimension of S, so there are distinct functions for the
different dimensions. The Kodaira dimension, if unknown, can be determined by use of
the intrinsics in the previous section.

More of these intrinsics really should work for surfaces with simple singularities - at
least, if the user is happy with a result that also has simple singularities. For the moment,
except for surfaces of general type (Kodaira dimension 2), we require S to be non-singular.

The output minimal models are all non-singular except for surfaces of general type
where all (-2)-curves are contracted to simple singularities, as is traditional. There is also
an intrinsic to compute the full canonical model (which lies in weighted projective space in
general) and the canonical coordinate ring of a surface of general type. With the Kodaira
dimension 1 minimal models, the user can optionally ask for a map to a smooth projective
curve C that presents the minimal model M as an elliptic fibration over C. In this case,
M is the global arithmetic minimal model of its generic fibre.

MinimalModelRationalSurface(S)

CheckSing BoolElt Default : false

Let S should be a non-singular ordinary projective rational (Kodaira dimension −1
and irregularity 0) surface. Non-singularity is not checked by default so to force a
check, set CheckSing to true. It is also left to the user to check that S is rational
(using Section KodairaEnriquesType for example).

The intrinsic does not strictly compute a minimal model M (there may be (-1)-
curves that can still be blown down over the base field), but instead it produces a
standard model that is terminal for the adjunction process.

This means that M will be a member of a small family of special rational surfaces:
the projective plane or its Veronese embedding in P5, an anticanonically embedded
Del Pezzo surface, a rational scroll or a conic bundle. Other functions for special
surfaces may then be applied to M – to parametrize it, for example.
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The return value is a rational map f from S onto M (M may be recovered as the
codomain of f) which will be of type MapSchGrph or MapSch. The implementation
proceeds by simply iterating the adjunction map until simple termination criteria
are recognised.

Example H116E5

We take one of the family of non-singular rational surfaces in P4 that can be generated by the
RandomRationalSurface d10g9 intrinsic to be described later. These surfaces are very far from
minimal. They have exceptional curves of degrees 3, 2 and 1 in the P4 embedding and the theory
tells us that we need 2 adjunction maps to reduce the surface to a degree 5 Del Pezzo in P5,
which is terminal. The degree of non-minimality is measured by the first Chern number K.K,
with 9 − K.K or 8 − K.K telling us how many point blowups it takes to get from a geometric
minimal model (over k̄) to the surface, depending on whether the geometric minimal model is P2

or a rational ruled surface. Here, we start at −9 and get to 5 for the Del Pezzo, which is P2 blown
up at 4 points over the algebraic closure of the base field. We choose to work over a finite field so
that the example completes quickly.

> k := GF(37);

> P := ProjectiveSpace(k,4);

> X := RandomRationalSurface_d10g9(P);

> #DefiningPolynomials(X);

11

> [TotalDegree(f): f in DefiningPolynomials(X)];

[ 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ]

> // X is defined by a quartic and 10 quintics

> ChernNumber(X,1);

-9

> mp := MinimalModelRationalSurface(X);

> Y := Codomain(mp);

> Y;

Surface over GF(37) defined by

y[2]*y[3]+23*y[3]^2+4*y[1]*y[4]+29*y[2]*y[4]+34*y[3]*y[4]+36*y[4]^2+

18*y[1]*y[5]+22*y[2]*y[5]+y[3]*y[5]+31*y[4]*y[5]+3*y[5]^2+33*y[1]*y[6]+

6*y[2]*y[6]+31*y[3]*y[6]+20*y[4]*y[6]+28*y[5]*y[6]+33*y[6]^2,

y[1]*y[3]+27*y[3]^2+25*y[1]*y[4]+y[2]*y[4]+19*y[3]*y[4]+34*y[4]^2+13*y[1]*y[5]+

15*y[2]*y[5]+14*y[3]*y[5]+15*y[4]*y[5]+17*y[5]^2+21*y[1]*y[6]+18*y[2]*y[6]+

33*y[3]*y[6]+9*y[4]*y[6]+27*y[5]*y[6]+12*y[6]^2,

y[2]^2+13*y[1]*y[4]+10*y[2]*y[4]+9*y[3]*y[4]+26*y[4]^2+32*y[1]*y[5]+27*y[2]*y[5]+

18*y[4]*y[5]+33*y[5]^2+27*y[1]*y[6]+16*y[2]*y[6]+31*y[3]*y[6]+35*y[4]*y[6]+

24*y[5]*y[6]+21*y[6]^2,

y[1]*y[2]+26*y[3]^2+16*y[1]*y[4]+23*y[2]*y[4]+24*y[3]*y[4]+32*y[4]^2+27*y[1]*y[5]+

14*y[2]*y[5]+10*y[3]*y[5]+12*y[4]*y[5]+33*y[5]^2+16*y[1]*y[6]+26*y[2]*y[6]+

7*y[3]*y[6]+13*y[4]*y[6]+11*y[5]*y[6]+y[6]^2,

y[1]^2+5*y[3]^2+19*y[1]*y[4]+35*y[2]*y[4]+2*y[3]*y[4]+20*y[4]^2+29*y[1]*y[5]+

27*y[2]*y[5]+22*y[3]*y[5]+14*y[4]*y[5]+6*y[5]^2+32*y[1]*y[6]+31*y[2]*y[6]+

2*y[3]*y[6]+36*y[5]*y[6]+33*y[6]^2

> Ambient(Y); Degree(Y);



Ch. 116 ALGEBRAIC SURFACES 3773

Projective Space of dimension 5 over Finite field of size 37

Variables: y[1], y[2], y[3], y[4], y[5], y[6]

5

> ChernNumber(Y,1);

5

MinimalModelRuledSurface(S)

CheckSing BoolElt Default : false

The surface S should be non-singular ordinary projective of Kodaira dimension −1.
Non-singularity is not checked by default so to force a check, set CheckSing to true.
It is also left to the user to check that S is of the correct Kodaira dimension (using
KodairaEnriquesType for example).

If S is rational, the intrinsic MinimalModelRationalSurface is applied. For
non-rational ruled surfaces, the same adjunction procedure is applied to lead to a
terminal model M , which is either a non-rational scroll and genuinely minimal, a
conic bundle over a non-rational curve that may not be strictly minimal (it may have
degenerate fibres that are the intersecting unions of two (-1)-curves) or a non-split
minimal ruled surface over a genus one curve embedded as a degree 9 surface in P6

in such a way that the fibres of the ruling have degree 3.
The return value is a rational map f from S onto M (M may be recovered as

the codomain of f) and will be of type MapSchGrph or MapSch.

MinimalModelKodairaDimensionZero(S)

CheckSing BoolElt Default : false

The surface S should be non-singular ordinary projective of Kodaira dimension 0.
Non-singularity is not checked by default so to force a check, set CheckSing to true.
It is also left to the user to check that S is of the correct Kodaira dimension (using
KodairaEnriquesType for example).

The function computes a minimal model M of S, again by repeatedly applying
the adjunction map until minimality occurs (the first Chern number is zero).

The return value is a rational map f from S onto M (M may be recovered as
the codomain of f) and will be of type MapSchGrph or MapSch.

Example H116E6

We start with an example of a non-minimal surface X that is a torus T blown up in one point.
Such examples naturally occur when T is the Jacobian J of a genus 2 curve C. The product of the
C with itself quotiented by an appropriate involution is such an X. It has a natural embedding
in P7. This turns out to be the projection from the zero point of J embedded in P8 (by three
times the theta divisor).
We work over a finite field for speed (although the example doesn’t take too long over the ra-
tionals). Our example corresponds to the curve C with Weierstrass equation y2 = x5 − 1. The
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minimal model routine has the effect of unprojecting here: it recovers the torus J in its P8

embedding.

> P7<z1,z2,z3,z4,z5,z6,z7,z8> := ProjectiveSpace(GF(37),7);

> X := Surface(P7,

> [

> z3*z4-z2*z5+z1*z6,

> 1/2*z3^2-1/2*z2*z7+z1*z8,

> z1^2+z5^2-z4*z6-2*z3*z7+z2*z8,

> -z3*z5*z6+z2*z6^2+z5^2*z7-z4*z6*z7-z3*z7^2-1/2*z3^2*z8+1/2*z2*z7*z8,

> z3*z4*z6+1/2*z3^2*z7-z4*z5*z7+1/2*z2*z7^2+z2*z3*z8,

> -z4^2*z5+z2^2*z6+z6^3+z2*z4*z7+z6*z7*z8-z5*z8^2,

> -1/2*z3^2*z5-z4*z5^2+z2*z3*z6+z4^2*z6+z3*z4*z7+1/2*z2*z5*z7-z2*z4*z8,

> z1*z2*z5+z5^2*z6-z4*z6^2-z3*z6*z7-z5*z7^2+z3*z5*z8-z2*z6*z8+z4*z7*z8,

> -z4^3+z2^2*z5+z5*z6^2-z6*z7^2+2*z5*z7*z8-z4*z8^2,

> -z3*z4^2+z2^2*z7+z6^2*z7-z3*z8^2,

> -z2*z4^2+z1*z2*z7+z5*z6*z7+z3*z7*z8-z2*z8^2,

> -z2*z4^2+z1*z4*z5+z3*z6^2+z5^2*z8-z4*z6*z8,

> z1*z4^2-z3*z7^2-1/2*z3^2*z8+1/2*z2*z7*z8,

> 1/2*z3^2*z4-z2*z3*z5+z4^2*z5-z6^3-3/2*z2*z4*z7+z1*z5*z7-z6*z7*z8+z5*z8^2,

> -z2*z3*z4+z1*z4*z7+z6*z7^2+z3*z6*z8-z5*z7*z8,

> z2^2*z4-z5*z7^2-z2*z6*z8+z4*z7*z8,

> z1*z2*z4+1/2*z3^2*z6-z3*z5*z7+1/2*z2*z6*z7,

> -1/2*z3^3-z3*z4*z5+2*z2*z4*z6+3/2*z2*z3*z7-z4^2*z7+z1*z7^2,

> 1/2*z3^3+z3*z4*z5-z2*z4*z6-3/2*z2*z3*z7+z2^2*z8,

> -1/2*z2*z3^2-3/2*z3*z4^2+z2*z4*z5+z1*z3*z7+1/2*z6^2*z7-1/2*z3*z8^2,

> z2^2*z3-z2*z4^2+z3*z6^2+2*z3*z7*z8-z2*z8^2,

> z1*z2*z3+z3*z5*z6-z4*z6*z7-z3*z7^2+z3^2*z8+z2*z7*z8,

> z2^3+z3*z5*z6-z5^2*z7+1/2*z3^2*z8+1/2*z2*z7*z8,

> z1*z2^2-z3*z4*z6+z2*z5*z6-z3^2*z7

> ] : Check:= false);

> KodairaEnriquesType(X);

0 -1 Torus

> mp := MinimalModelKodairaDimensionZero(X);

> Y := Codomain(mp);

> Ambient(Y);

Projective Space of dimension 8 over Rational Field

Variables: y[1], y[2], y[3], y[4], y[5], y[6], y[7], y[8], y[9]

> Y;

Surface over Rational Field defined by

y[4]*y[5] - y[3]*y[6] + y[2]*y[7],

y[4]^2 - y[3]*y[8] + 2*y[2]*y[9],

y[3]*y[4] + y[5]^2 + y[1]*y[7] - 2*y[2]*y[8] + y[9]^2,

y[1]*y[4] + 2*y[2]*y[5] + y[7]*y[8],

y[3]^2 - 1/3*y[2]*y[4] + 1/3*y[1]*y[6] + 1/3*y[7]^2 + 1/3*y[8]*y[9],

y[2]*y[3] + y[1]*y[5] + y[6]*y[7] + y[8]^2 + 2*y[4]*y[9],

y[1]*y[3] - y[4]*y[7] + 2*y[6]*y[8],

y[2]^2 + y[6]^2 - y[5]*y[7] - 2*y[4]*y[8] + y[3]*y[9],
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y[1]*y[2] + y[4]*y[6] - 2*y[3]*y[7] + y[5]*y[8],

y[3]*y[5]*y[7] - y[5]^2*y[8] + y[2]*y[8]^2 + 1/3*y[2]*y[4]*y[9] -

1/3*y[1]*y[6]*y[9] - 1/3*y[7]^2*y[9] - 1/3*y[8]*y[9]^2,

y[2]*y[5]*y[7] + 2/3*y[2]*y[4]*y[8] + 1/3*y[1]*y[6]*y[8] +

1/3*y[7]^2*y[8] - y[1]*y[5]*y[9] - y[6]*y[7]*y[9] - 2/3*y[8]^2*y[9] -

2*y[4]*y[9]^2,

y[2]*y[5]*y[6] + y[4]*y[7]^2 + y[1]*y[5]*y[8] + y[8]^3 + y[6]^2*y[9] -

y[5]*y[7]*y[9] + y[4]*y[8]*y[9] + y[3]*y[9]^2

> MinimalChernNumber(X,1)-ChernNumber(X,1);

1

> ChernNumber(Y,1);

0

So we have one exceptional line blown down and Y is now minimal.

Example H116E7

For our second example, we take a surface of Enriques type in P4 which comes from one of the
special families of P4 surfaces to be described later. Such surfaces are non-minimal, but isomorphic
to an Enriques surface blown up at one point. As we are choosing a random surface from a family
which will be defined by many non-sparse equations, we work over a finite field for speed.

> k := GF(37);

> P := ProjectiveSpace(k,4);

> X := RandomEnriquesSurface_d9g6(P);

> #DefiningPolynomials(X);

15

> [TotalDegree(f): f in DefiningPolynomials(X)];

[ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ]

> //surface defined by 15 quintics

> ChernNumber(X,1);

-1

> mp := MinimalModelKodairaDimensionZero(X);

> Y := Codomain(mp);

> #DefiningPolynomials(Y);

10

> [TotalDegree(f): f in DefiningPolynomials(Y)];

[ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 ]

> // minimal model Y defined by 10 cubics

> Ambient(Y); Degree(Y);

Projective Space of dimension 5 over Finite field of size 37

Variables: y[1], y[2], y[3], y[4], y[5], y[6]

10

> ChernNumber(Y,1);

0
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MinimalModelKodairaDimensionOne(S)

CheckSing BoolElt Default : false

Fibration BoolElt Default : false

Let S be a non-singular ordinary projective surface of Kodaira dimension 1. Non-
singularity is not checked by default and to force a check, set CheckSing to true.
It is also left to the user to check that S is of the correct Kodaira dimension (using
KodairaEnriquesType for example).

The function computes a minimal model M of S. Such a model always has a
connected elliptic fibration to a smooth projective curve C (i.e. there is a morphism
g from M onto C such that the general fibre of g is a smooth curve of genus 1). If
Fibration is set to true (the default is false), the function also computes g and
returns it as a second return value.

The first return value is a rational map f from S onto M (M may be recovered
as the codomain of f) and will be of type MapSchGrph or MapSch.

The computation of f again proceeds by repeating adjunction until the first
Chern number is zero. There is a slight speed-up here, though, that we apply when
S has positive geometric genus. We use the appropriate modification of the image
of an effective canonical divisor to compute a new canonical divisor at each stage
of adjunction. Although this doesn’t usually speed up the computation of the next
adjunction map, it can greatly increase the speed of computation of the new first
Chern number, which speeds up testing of the termination criterion.

If required, g may be computed by using an appropriate small multiple of the
pluricanonical map on M .

MinimalModelGeneralType(S)

CanonicalWeightedModel(S)

CheckADE BoolElt Default : false

The surface S should be ordinary projective of general type (Kodaira dimension 2)
with at worst simple (A-D-E) singularities. The singularity condition is not checked
by default and to force a check, set CheckADE to true. It is also left to the user to
check that S is of general type (using KodairaEnriquesType for example).

The intrinsics construct a minimal model M for S which is of the canonical type:
it has any (-2)-curves contracted to simple singularities.

The first intrinsic produces M as an ordinary projective surface as before, which
is an m-canonical embedding with m equal to 3 generally but 4 or 5 when S has
certain small invariants. This is implemented simply by computing the m-canonical
map on S (this map automatically factors through a non-singular minimal model).
The drawback of this is that M is usually defined in a high-dimensional projective
space. There is a very simple check to see whether the canonical sheaf or the bi-
canonical sheaf is very ample, in which case M is just taken as S.

The second intrinsic actually computes the full canonical model of S. This is a
(generally weighted) projective model of M equal to Proj of the canonical coordinate
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ring
∑∞

n=0 H0(S,K⊗n
S ), where KS is the canonical sheaf of K. This is more intrinsic

and it generally gives a model in a much lower-dimensional space with the drawback
that this space is now weighted. The cases where the canonical or bicanonical image
is actually isomorphic to M will show up in this version whereas it will produce an
actual ordinary projective model in the first case. Currently, this intrinsic has the
small restriction that S cannot have geometric genus (and irregularity) zero. The
implementation involves calculating with Riemann-Roch spaces for small multiples
of an effective canonical divisor.

For either intrinsic, the first return value is a rational map f from S onto M (M
may be recovered as the codomain of f) which will be of type MapSchGrph or MapSch
for the first intrinsic and of type MapSch only for the second. A second return value
is a boolean with value true if and only if the original model X is minimal in the
sense of containing no (-1)-curves.

CanonicalCoordinateIdeal(S)

CheckADE BoolElt Default : false

The surface S should be ordinary projective of general type (Kodaira dimension 2)
with at worst simple (A-D-E) singularities. The singularity condition is not checked
by default and to force a check, set CheckADE to true. It is also left to the user to
check that S is of general type (using KodairaEnriquesType for example).

This intrinsic constructs the full canonical coordinate ring of S as described
for CanonicalWeightedModel. What is returned is a homogeneous ideal I in a
polynomial ring R with variable weightings over the base field of S such that the
canonical coordinate ring is isomorphic to the quotient R/I as a graded ring.

Example H116E8

We give two examples of computing minimal models for some surfaces of general type. We begin
with a non-singular type I Horikawa surface with first Chern number K2 equal to 3. It is already
minimal and the bi-canonical map gives an embedding into P6. We start with a bicanonical
model. The first intrinsic luckily recognises that the surface is bi-canonical and just returns it as
a minimal model. The second intrinsic finds the well-known weighted-projective embedding for
such surfaces as a sextic hypersurface in a P(1, 1, 1, 2) weighted projective space. (see Section 9,
Chapter VII, [BHPdV04] or [Hor76]).

> P<x1,x2,x3,x4,x5,x6,x7> := ProjectiveSpace(Rationals(),6);

> X := Surface(P,[

> -x4*x5 + x2*x6, x1*x5 - x4*x6,

> x3*x4 - x5*x6, x2*x3 - x5^2,

> x1*x3 - x6^2, x1*x2 - x4^2,

> x1^3+x1*x2^2+x2^2*x3-x2*x3^2+x3^3+x2^2*x4+x1*x3*x4-x2*x3*x4+x1*x4^2-

> x2*x4^2-x3*x4^2-x1*x2*x5-x1*x3*x5+x2*x3*x5+x1*x4*x5-x2*x4*x5+x4^2*x5-

> x1*x5^2+x2*x5^2-x3*x5^2-x5^3-x1^2*x6+x1*x2*x6-x2*x3*x6-x2*x4*x6+

> x1*x5*x6-x3*x5*x6-x4*x5*x6+x5^2*x6+x1*x6^2+x2*x6^2-x3*x6^2+x5*x6^2-

> x1*x2*x7+x1*x3*x7+x2*x3*x7-x3^2*x7+x1*x4*x7-x2*x4*x7-x4^2*x7+x5^2*x7+

> x2*x6*x7+x3*x6*x7-x4*x6*x7+x5*x6*x7-x6^2*x7+x3*x7^2+x4*x7^2+x5*x7^2-
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> x6*x7^2-x7^3 ]);

> IsSingular(X);

false

> KodairaEnriquesType(X);

2 0 General type

> mp := MinimalModelGeneralType(X);

> X1 := Codomain(mp); //the minimal model

> X1 eq X;

true

> mp1 := CanonicalWeightedModel(X);

> Y := Codomain(mp1);

> PW<a,b,c,d> := Ambient(Y);

> PW;

Projective Space of dimension 3 over Rational Field

Variables: a, b, c, d

The grading is:

1, 1, 1, 2

The fact that the full weighted canonical model has only weights 1 and 2 also shows that the
bi-canonical map is an embedding.

> Y;

Surface over Rational Field defined by

a^6 + a^4*b^2 + a*b^5 - a^5*c + 2*a^3*b^2*c - a^2*b^3*c - a*b^4*c + a^4*c^2 +

2*a^3*b*c^2 - 2*a^2*b^2*c^2 - a*b^3*c^2 + 2*b^4*c^2 - a^2*c^4 - a*b*c^4 -

2*b^2*c^4 + c^6 + a^3*b*d - 2*a^2*b^2*d - a*b^3*d - a^2*b*c*d + a*b^2*c*d +

a*b*c^2*d + 2*b^2*c^2*d + a*c^3*d - c^4*d + a*b*d^2 - a*c*d^2 + b*c*d^2 +

c^2*d^2 - d^3

We can also ask for the canonical coordinate ideal that defines the canonical coordinate ring which
is the coordinate ring of Y . The call takes no time as the canonical weighted model Y and map
mp1 from X to Y have been stored internally.

> time CanonicalCoordinateIdeal(X);

Ideal of Graded Polynomial ring of rank 4 over Rational Field

Order: Grevlex with weights [1, 1, 1, 2]

Variables: a, b, c, d

Variable weights: [1, 1, 1, 2]

Homogeneous, Dimension >0

Groebner basis:

[

a^6 + a^4*b^2 + a*b^5 - a^5*c + 2*a^3*b^2*c - a^2*b^3*c - a*b^4*c + a^4*c^2 +

2*a^3*b*c^2 - 2*a^2*b^2*c^2 - a*b^3*c^2 + 2*b^4*c^2 - a^2*c^4 - a*b*c^4 -

2*b^2*c^4 + c^6 + a^3*b*d - 2*a^2*b^2*d - a*b^3*d - a^2*b*c*d + a*b^2*c*d +

a*b*c^2*d + 2*b^2*c^2*d + a*c^3*d - c^4*d + a*b*d^2 - a*c*d^2 + b*c*d^2 +

c^2*d^2 - d^3

]

Time: 0.000
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Example H116E9

This example is a non-singular but non-minimal surface. We start with a degree 5 hypersurface
in P3 and then blow up a point using the standard intrinsic to give a model X of the blow-up
as a surface in P8. The original hypersurface is a (simply-weighted) canonical model of X and
WeightedCanonicalModel does just return a slight linear transformation of it. The computation
takes a little time.

> P3<x,y,z,t> := ProjectiveSpace(Rationals(),3);

> Y := Surface(P3,x^5+y^5+z^5+t^5 : Nonsingular := true); //the hypersurface

> X := BlowUp(Y,Y![0,0,-1,1]);

> P<x1,x2,x3,x4,x5,x6,x7,x8,x9> := Ambient(X);

> X;

Surface over Rational Field defined by

-x6*x8+x5*x9, -x3*x8+x2*x9, -x1*x8+x3*x9, -x6*x7+x4*x9, -x5*x7+x4*x8,

-x3*x7+x5*x9+x8*x9, -x2*x7+x5*x8+x8^2, -x1*x7+x6*x9+x9^2,

-x3*x5+x2*x6, -x1*x5+x3*x6, -x3*x4+x5*x6+x6*x8, -x2*x4+x5^2+x5*x8,

-x1*x4+x6^2+x6*x9, -x1*x2+x3^2,

x1^4+x2*x3^3+x4*x6^3-x4*x6^2*x9+x4*x6*x9^2-x4*x9^3+x7*x9^3,

x1^3*x3+x2^2*x3^2+x4*x5*x6^2-x4*x5*x6*x9+x4*x5*x9^2-x4*x8*x9^2+x7*x8*x9^2,

x2*x3^2*x5+x1^3*x6+x4^2*x6^2+x2*x3^2*x8+x1^3*x9-x4^2*x6*x9+x4^2*x9^2-

x4*x7*x9^2+x7^2*x9^2,

x2^3*x3+x1^2*x3^2+x4*x5^2*x6-x4*x5^2*x9+x4*x5*x8*x9-x4*x8^2*x9+x7*x8^2*x9,

x2^2*x3*x5+x1^2*x3*x6+x4^2*x5*x6+x2^2*x3*x8+x1^2*x3*x9-x4^2*x5*x9+x4^2*x8*x9-

x4*x7*x8*x9+x7^2*x8*x9,

x2*x3*x5^2+x4^3*x6+x1^2*x6^2+2*x2*x3*x5*x8+x2*x3*x8^2-x4^3*x9+2*x1^2*x6*x9+

x4^2*x7*x9-x4*x7^2*x9+x7^3*x9+x1^2*x9^2,

x2^4+x1*x3^3+x4*x5^3-x4*x5^2*x8+x4*x5*x8^2-x4*x8^3+x7*x8^3,

x2^3*x5+x4^2*x5^2+x1*x3^2*x6+x2^3*x8-x4^2*x5*x8+x4^2*x8^2-x4*x7*x8^2+

x7^2*x8^2+x1*x3^2*x9,

x4^3*x5+x2^2*x5^2+x1*x3*x6^2-x4^3*x8+2*x2^2*x5*x8+x4^2*x7*x8-x4*x7^2*x8+

x7^3*x8+x2^2*x8^2+2*x1*x3*x6*x9+x1*x3*x9^2,

x4^4+x2*x5^3+x1*x6^3-x4^3*x7+x4^2*x7^2-x4*x7^3+x7^4+3*x2*x5^2*x8+

3*x2*x5*x8^2+x2*x8^3+3*x1*x6^2*x9+3*x1*x6*x9^2+x1*x9^3

> KodairaEnriquesType(X);

2 0 General type

> mp, is_min := CanonicalWeightedModel(X);

> is_min;

false

> X1 := Codomain(mp); //the canonical model

> P<a,b,c,d> := Ambient(X1);

> X1;

Surface over Rational Field defined by

a^5 + b^5 + c^5 + 5*c^4*d + 10*c^3*d^2 + 10*c^2*d^3 + 5*c*d^4 + 2*d^5

> MinimalChernNumber(X,1) - ChernNumber(X,1);

1

The last line confirms that there was one exceptional divisor blown down.
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116.2.7 Special Surfaces in Projective 4-space
There has been much study of the families of nonsingular surfaces of non-general type that
lie in P4 (a complete intersection of two nonsingular hypersurfaces of degrees d and e – the
obvious construction – leads to general-type surfaces unless d + e ≤ 5). These families are
a very useful tool for generating random surfaces of a particular Kodaira-Enriques type
with a non-singular ordinary projective model lying in a small-dimensional ambient.

Decker, Ein and Schreyer have given many such families in their paper [DES93]. Their
constructions make use of the theory of codimension two schemes and the Beilinson spectral
sequence for coherent sheaves. The result is that the defining ideal of a surface in the family
is isomorphic as a graded module to the cokernel of a random map between two modules
over k[x0, . . . , x4] that are direct sums of twists of the modules representing alternating
powers of the sheaf of differentials on P4 (or something slightly more complex derived from
these modules). The ideals constructed give Cohen-Macaulay surfaces and the surface is
actually non-singular for a general map. The families are generally described by the degree,
sectional genus (arithmetic genus of a hyperplane section) and Kodaira-Enriques type of
the surfaces they contain. Given the type, knowing the degree and sectional genus is
equivalent to knowing the Hilbert polynomial.

Intrinsics are provided to generate a random surface from a selection of the families
described in the paper above, following the implementations in the Macaulay 2 computer
algebra package.

RandomRationalSurface d10g9(P)

RndP RngIntElt Default : 2
Check BoolElt Default : true

The argument P should be a 4-dimensional ordinary projective space defined over
the rational numbers or a finite field. The intrinsic generates a random (non-
minimal) degree 10 rational surface with sectional genus 9 in P from the family
described by Ranestad. If the rationals are the base field, the parameter RndP is a
positive integer used as an upper absolute bound for random coefficients of polyno-
mials. That is, the algorithm uses random integers between −RndP and +RndPm,
inclusive. The default value here is 2. Parameter Check being true (the default)
means that the random prospective surfaces generated are tested for irreducibility
and non-singularity and rejected if they fail (the process tries 10 surfaces before
giving up). The user can set this to false for a slight speed-up: it is rare that a
singular surface occurs.

RandomEnriquesSurface d9g6(P)

RndP RngIntElt Default : 2
Check BoolElt Default : true

The argument P should be a 4-dimensional ordinary projective space defined over
the rational numbers or a finite field. Generates a random (non-minimal) degree
9 Enriques surface with sectional genus 6 in P . The parameters have the same
meaning as for RandomRationalSurface d10g9 and the same defaults.
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RandomAbelianSurface d10g6(P)

RndP RngIntElt Default : 5

Check BoolElt Default : true

The argument P should be a 4-dimensional ordinary projective space defined
over the rational numbers or a finite field. Generates a random degree 10
torus with sectional genus 6. This is just the zero section of an element of
the Horrocks-Mumford bundle. The parameters have the same meaning as for
RandomRationalSurface d10g9 although the default for RndP is now 5.

RandomEllipticFibration d7g6(P)

RndP RngIntElt Default : 2

Check BoolElt Default : true

The argument P should be a 4-dimensional ordinary projective space defined over
the rational numbers or a finite field. Generates a random (minimal) degree 7
elliptic surface with sectional genus 6 in P . These have Kodaira dimension 1, ge-
ometric genus 2 and irregularity 0. The parameters have the same meaning as for
RandomRationalSurface d10g9 and the same defaults.

RandomEllipticFibration d8g7(P)

RndP RngIntElt Default : 2

Check BoolElt Default : true

The argument P should be a 4-dimensional ordinary projective space defined over
the rational numbers or a finite field. Generates a random (minimal) degree 8
elliptic surface with sectional genus 7 in P . These have Kodaira dimension 1, ge-
ometric genus 2 and irregularity 0. The parameters have the same meaning as for
RandomRationalSurface d10g9 and the same defaults.

RandomEllipticFibration d9g7(P)

RndP RngIntElt Default : 2

Check BoolElt Default : true

The argument P should be a 4-dimensional ordinary projective space defined over
the rational numbers or a finite field. Generates a random (minimal) degree 9
elliptic surface with sectional genus 7 in P . These have Kodaira dimension 1, ge-
ometric genus 1 and irregularity 0. The parameters have the same meaning as for
RandomRationalSurface d10g9 and the same defaults.
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RandomEllipticFibration d10g10(P)

RndP RngIntElt Default : 2
Check BoolElt Default : true

The argument P should be a 4-dimensional ordinary projective space defined over
the rational numbers or a finite field. Generates a random (non-minimal) degree
10 elliptic surface with sectional genus 10 in P . These have Kodaira dimension 1,
geometric genus 2 and irregularity 0. The parameters have the same meaning as for
RandomRationalSurface d10g9 and the same defaults.

116.3 Surfaces in P3

116.3.1 Introduction
This section describes several packages of functionality developed for working with

(hyper)surfaces in three-dimensional projective space P3.
At the core is a package to compute a formal desingularization of such a hypersur-

face X, expressed via a collection of algebraic power series giving the formal completion
of the components of some desingularization lying over the components of the singular
subscheme of the hypersurface. This allows the computation of important birational in-
variants of any desingularization of X like the arithmetic and geometric genera and higher
geometric plurigenera. The algorithm is based on the method of Jung and was designed
and implemented by Tobias Beck. It is fully described in [Bec07].

An important application of the desingularization data is the computation of m-adjoint
maps as rational maps on X. A function is provided for this. Theoretical and algorithmic
details may be found in [BS08].

There are functions to determine whether X is of Kodaira dimension −∞, i.e., bi-
rationally ruled. For the important special case of rational surfaces, there is a suite of
functions to determine whether a parameterization exists over the base field and to ex-
plicitly construct one in the affirmative case. This is based on the work of Josef Schicho
described in [Sch98] and [Sch00].

A surface X is mapped to a standard model by applying an appropriate m-adjoint
map. These are then parameterized by special case code. The main special cases are Del
Pezzo surfaces (including some singular cases) and line and conic bundles. The functions
can be called directly by the user. Apart from the previously existing Del Pezzo code (for
degrees 6, 8 and 9) and the special singular code for degrees 3 and 4, these functions were
implemented by Tobias Beck and Josef Schicho.

116.3.2 Embedded Formal Desingularization of Curves
A formal embedded desingularization of plane curves, as described below, is used in the

Jung surface resolution process. The main function is available to the user and provides
another alternative to the existing function field and resolution graph curve functionality.

Before describing the function, we introduce some terminology. Let C ⊂ P be a plane
algebraic curve (where P = A2

E or P = P2
E for some field E of characteristic zero) and
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π : Q → P an embedded desingularization, i.e., π is proper birational, Q is regular and
D := π−1(C) ⊂ Q is a normal crossing divisor. Further let {p1, . . . , pr} ∈ Q be the generic
points of the decomposition of D into irreducible components and {q1, . . . , qs} ∈ Q the
closed points of the normal crossings of D.

From π we can construct morphisms Spec ÔQ,pi
→ P and Spec ÔQ,qi

→ P . The set
of all these morphisms (up to isomorphism of the domain) is called a formal embedded
desingularization of C ⊂ P . Each of these morphisms has a centre on P which is defined
to be the image of the closed point.

The two classes of morphisms are represented, respectively, by homomorphisms A →
ÔQ,pi and A→ ÔQ,qi (where A is either the normal polynomial ring E[x, y] or the graded
polynomial ring E[x, y, w] and the inverse image of the maximal ideal of the completion
ring is the prime ideal defining the centre), and we are free to choose an isomorphic
representation of the codomain. We refer to the homomorphisms as µi and νi respectively.

ResolveAffineCurve(p)

Factors SeqEnum Default : []
Ps RngMPolElt Default : 0
Focus RngMPolElt Default : 0
ExtName MonStgElt Default : “alpha”
ExtCount RngIntElt Default : 0
Verbose Resolve Maximum : 1

Given the curve defined by p ∈ E[x, y] (a non-zero bivariate polynomial over
a number field), this intrinsic essentially computes a formal embedded resolution
of the curve using a succession of point blow ups. Only morphisms whose centres
vanish on the ideal generated by Focus are considered. Note that Focus may be a
single polynomial or a sequence of polynomials.

The three returned lists contain elements of the form (b1, (y, m11), (p1,m12)),
(b2, (y,m2)) and (b2, (p3,m3)) respectively. Here b1, b2 and b3 are homomorphisms
E[x, y]→ E′[x, y] to some bivariate polynomial ring over an algebraic field extension
E′ over E.

The first list gathers normal crossings. Precisely, the extended homomorphism
b1 : E[x, y]→ E′[[x, y]] corresponds to a νi from above. Moreover we have 〈b1(p)〉 =
〈ym11pm12

1 〉 where y = 0 and p1 = 0 have a normal crossing.
The second list gathers exceptional divisors. The extended homomorphism b2 :

E[x, y] → E′(x)[[y]] corresponds to a µi from above. Moreover we have 〈b2(p)〉 =
〈ym2〉 and y = 0 corresponds to an exceptional divisor.

Finally, the last list corresponds to the components of the original curve. The
extended homomorphism b3 : E[x, y] → ̂E′[x, y]〈p3〉 (where E′ = E in this case)
corresponds to another µi from above. Moreover we have that b3(p) has multiplicity
m3 in ̂E′[x, y]〈p3〉 and corresponds to an original curve component.

If known, a factorization of p (as returned by the Factorization command) can
be passed using the parameter Factors and the squarefree part of p (as returned
by the SquarefreePart command) using Ps.
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If the ground field has to be extended, the algebraic elements will be displayed
as ExtName i where i starts from ExtCount. The last return value is the value of
ExtCount plus the number of field extensions that have been introduced, which can
be useful for consecutive naming when making a series of resolution calls.

Example H116E10

We compute an embedded resolution of an affine plane curve.

> Q := Rationals();

> Qxy<x,y> := PolynomialRing(Q, 2, "glex");

> f := (y^2-x^3)*(x^2-y^2-y^3);

> NCs, EXs, DCs := ResolveAffineCurve(f : Factors := Factorization(f));

> #NCs, #EXs, #DCs;

7 4 2

> NCs[2]; EXs[3]; DCs[1];

[*

Mapping from: RngMPol: Qxy to RngMPol: Qxy,

<y, 4>,

<-x^2 + 2*x + y, 1>

*]

[*

Mapping from: RngMPol: Qxy to RngMPol: Qxy,

<y, 10>

*]

[*

Mapping from: RngMPol: Qxy to RngMPol: Qxy,

<y^3 - x^2 + y^2, 1>

*]

> NCs[2][1](x), NCs[2][1](y);

x*y - y

y

Here we have passed the factorization of f only for illustrative purposes. The curve is the union
of a cusp and a node at the origin. It has two singular points over Q, the origin and another
intersection point of the two curves which has a residue field of degree 5 over Q.
We have computed the local information of a (not necessarily minimal) embedded resolution and
find that it contains the 2 components of the strict transform, further 4 exceptional divisors and
7 normal crossings. For example, the pushforward of f under the chart map x 7→ xy− y, y 7→ y is
equal to y4(−x2 + 2x+ y) up to a local unit. The corresponding germ is isomorphic to a normal
crossing in the embedded desingularization. We also see that one of the exceptional divisors has
multiplicity 10.
If we were only interested in a local resolution, we would do the following:

> NCs, EXs, DCs := ResolveAffineCurve(f : Focus := [x,y]);

> #NCs, #EXs, #DCs;

5 3 0

We focus on the origin, hence, any curve components are not considered . We have 1 less excep-
tional divisor and 2 less normal crossings. This is because the second intersection point of the
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above two curve components was already a normal crossing, but our algorithm has nevertheless
blown it up in the previous example.

ResolveProjectiveCurve(p)

Focus RngMPolElt Default : 0

ExtName MonStgElt Default : “alpha”

ExtCount RngIntElt Default : 0

Verbose Resolve Maximum : 1

Given the curve defined by p ∈ E[x, y, z] (a non-zero trivariate homogeneous poly-
nomial over a number field), this intrinsic essentially computes a formal embedded
resolution of the curve using a succession of point blow ups. This is the same as
ResolveAffineCurve above, but now p is a homogeneous polynomial in three vari-
ables that defines a projective curve. Accordingly, the bj map from the respective
homogeneous coordinate ring to some E′[x, y].

Example H116E11

We can also desingularize the projectivisation of the above curve.

> Q := RationalField();

> QXYZ<X,Y,Z> := PolynomialRing(Q, 3);

> F := (Y^2*Z-X^3)*(X^2*Z-Y^2*Z-Y^3);

> NCs, EXs, DCs := ResolveProjectiveCurve(F); #NCs, #EXs, #DCs;

7 4 2

> NCs[3];

[*

Mapping from: RngMPol: QXYZ to Polynomial ring of rank 2 over

Rational Field ...,

<y, 4>,

<x^2 + 2*x - y, 1>

*]

> NCs[3][1](X);

x*y + y

> NCs[3][1](Y);

y

> NCs[3][1](Z);

1

The homomorphisms take a slightly different shape (because they have now Q[X,Y, Z] as domain),
but otherwise they are the same. This is because the curve has no singularities at infinity.
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116.3.3 Formal Desingularization of Surfaces
For curves we have described embedded formal desingularization. For surfaces instead we
produce only formal desingularizations. Let S ⊂ P be a hypersurface (where P = A3

E or
P = P3

E) and C ⊂ S a closed subset (which typically contains the singular locus). Further
let π : T → S be a desingularization, i.e., π is proper birational and T is regular. By
{p1, . . . , pr} ∈ T we denote the generic points of the curve components of the decomposition
of D := π−1(C) into irreducibles.

From π we can construct morphisms Spec ÔT,pi
→ S. The set of all these morphisms

(up to isomorphism of the domain) is called a formal desingularization of S over C ⊂ S.
Such a morphism has a centre on S which is defined as the image of the closed point (and
actually is contained in C).

The morphisms are represented by homomorphisms A→ ÔT,pi (where A is either the
algebra E[x, y, z]/〈p〉 or the graded algebra E[x, y, z, w]/〈p〉 with p a defining polynomial),
and we are free to choose an isomorphic representation of the codomain. We refer to such
a homomorphisms as µi.

In the actual algorithm, C is the ramification locus of a finite projection, pr, to an
affine or projective plane (C contains the singular subscheme of S). The underlying desin-
gularization T (which is not computed explicitly) is a Jung resolution which is constructed
in two stages. Firstly, an embedded resolution of the image of C in the plane is performed
by blow-ups and T1 is taken as the normalization of the pullback of this by pr. So T1 then
has only point singularities of a simple type (toric singularities), lying over the (normal-
crossing) intersections of components of the embedded resolution. These are resolved by
a finite succession of blow-ups on T1 to give T .

The algorithm computes the formal desingularization, as described above, correspond-
ing to T , using the embedded formal desingularization for curves followed by algebraic
power series operations for the normalization and final resolution of the toric singularities.
This is described fully in [Bec07]. The µi homomorphisms are defined by algebraic power
series images of the variables of P .

It is important to note that the Jung desingularization T is not a minimal desingu-
larization and, in any case, the set of morphisms returned for the formal desingulariza-
tion generally contain some elements whose centre on S is already non-singular (because,
for example, components of C are often generically non-singular). However, there is an
parameter option with the main function ResolveProjectiveSurface, which removes
“non-singular” morphisms and possibly others that have no effect on the computation of
birational invariants and m-adjoint maps.

ResolveAffineMonicSurface(s)

Focus RngMPolElt Default : 0
ExtName MonStgElt Default : “alpha”
ExtCount RngIntElt Default : 0
Verbose Resolve Maximum : 1

The main user resolution function ResolveProjectiveSurface is for projective
hypersurfaces. This affine version, however, may be useful in some circumstances.
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The input is a monic, squarefree polynomial s ∈ E[x, y][z] where E is a number field
(i.e., s is univariate over a bivariate polynomial ring). Let S ⊂ A3

E denote the surface
defined by it and C ⊂ S the closed subset defined by discz(s) (i.e., the intersection
of S with the cylinder over the discriminant curve when considering the projection
S → A2

E in z-direction). The function computes a formal desingularization of S
over C (see above).

The first return value is a list of elements of the form ((X, Y, Z), o) where
X, Y, Z ∈ F[[t]] are univariate power series (over some field extension F of tran-
scendence degree 1 over E) s.t. s(X, Y, Z) = 0 and o is an integer. The induced
homomorphism E[x, y][z]/(s) → F[[t]] corresponds to a µi from above and o is its
adjoint order, i.e., the negation of the order of a special differential form (see Sec-
tion 116.3.4).

One can specify a focus ideal F ⊂ E[x, y] by passing a single generator or se-
quence of generators in Focus (as for ResolveAffineCurve). In this case C is taken
to be the intersection of S and the cylinder over the zero set of F + 〈discz(s)〉.

If the ground field has to be extended, the algebraic elements will be displayed
as ExtName i where i starts from ExtCount. The last return value is the value
of ExtCount plus the number of field extensions that have been introduced, which
can be useful for consecutive naming when making a series of resolution calls. A
transcendental element will always be displayed as s.

Example H116E12

We compute a formal desingularization for the affine surface z2 − xy = 0.

> Q := Rationals();

> Qxy<x,y> := PolynomialRing(Q, 2, "glex");

> Qxyz<z> := PolynomialRing(Qxy);

> f := z^2 - x*y;

> desing := ResolveAffineMonicSurface(f); #desing;

3

We have computed 3 morphisms. Two of them are centred over the coordinate axes x = 0 and
y = 0. But they might not be of interest, because the surface is normal and has an isolated
singularity over the origin.

> #ResolveAffineMonicSurface(f : Focus := [x,y]);

1

The only remaining morphism corresponds to the exceptional divisor obtained by blowing up the
singularity.

Elements in the returned list which define the morphisms of the formal desingularization are
examined more closely in the projective surface example below.
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ResolveProjectiveSurface(S)

AdjComp BoolElt Default : false

ExtName MonStgElt Default : “gamma”
ExtCount RngIntElt Default : 0
Verbose Resolve Maximum : 1

The principal function for hypersurface desingularization, similar in description to
ResolveAffineMonicSurface above. The argument is either a projective surface
S ⊂ P3

E or an irreducible, homogeneous polynomial s ∈ E[x, y, z, w] which defines
such a surface S. Computes a formal desingularization (see above) of S. It will be
a formal desingularization over an automatically chosen subset C ⊂ S (using again
the cylinder over the discriminant curve w.r.t. a nice projection onto some P2

E).
Accordingly the elements of the return list of formal desingularization data are now
of the form ((X, Y, Z,W ), o).

If AdjComp is true, then only a sublist is returned that is still sufficient for
the computation of birational invariants and adjoint spaces (see Section 116.3.4).
The parameters ExtName and ExtCount and the second return value have the same
meaning as in the affine case.

As stated above, the algorithm is based on formally computing a Jung resolution
and is described in [Bec07].

Example H116E13

Computing a formal desingularization is easy.

> P<x,y,z,w> := PolynomialRing(Rationals(), 4);

> F := w^3*y^2*z+(x*z+w^2)^3;

> desing := ResolveProjectiveSurface(F); #desing;

26

Hence, the formal desingularization of the projective surface defined by F contains 26 morphisms.
They are represented by tuples of power series that vanish on F. We have a closer look at the first
morphism.

> prm, ord := Explode(desing[1]);

> IsZero(AlgComb(F, prm)); ord;

true

4

> X, Y, Z, W := Explode(prm);

> Expand(X, 6); Expand(Y, 6); Expand(Z, 6); Expand(W, 6);

true 1

true -s*t^2

true -t^2

true -1/64*s^2*gamma_0*t^5 + 1/2*gamma_0^2*t^3 + gamma_0*t^2 + t

> Domain(W);

Polynomial ring of rank 1 over Algebraic function field defined

over Univariate rational function field over Rational Field
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by $.1^3 - 1/8*s^2

Graded Lexicographical Order

Variables: t

One of the morphisms is of type SpecQ(s)[gamma 0][[t]] → ProjQ[x, y, z, w]/〈F 〉 where gamma 03−
1/8s2 = 0. In particular, Q(s)[gamma 0] is isomorphic to the residue field of the corresponding
prime divisor on the desingularization. From this one can for example deduce that it is a rational
curve. The morphism is given by the ring homomorphism x 7→ 1, y 7→ −st2, z 7→ −t2 and
w 7→ t+ gamma 0t2 + 1/2gamma 02t3 − 1/64s2gamma 0t5 + . . ..

The adjoint order for this morphism is 4. Consider the chart x 6= 0. The special differential form
(see Section 116.3.4) in this chart obtained by dehomogenizing is

x5

(∂F/∂w)(x, y, z, w)
dy/x ∧ dz/x.

Substituting the values X, Y, Z and W we see that it is mapped to

X5

(∂F/∂w)(X, Y, Z, W)
dY/X ∧ dZ/X

=
1

(∂F/∂w)(X, Y, Z, W)
d(−st2) ∧ d(−t2)

=
1

(∂F/∂w)(X, Y, Z, W)
(2stdt+ t2ds) ∧ 2tdt

=
1

(∂F/∂w)(X, Y, Z, W)
2t3ds ∧ dt

The adjoint order is minus the overall order of this expression, hence, −3 plus the order of
(∂F/∂w)(X, Y, Z, W). We check the computation.

> Order(AlgComb(Derivative(F,w), prm));

7

If we needed the formal desingularization only in order to compute birational invariants or adjoint
spaces we could set the parameter AdjComp and forget about some morphisms.

> #ResolveProjectiveSurface(F : AdjComp := true);

18
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116.3.4 Adjoint Systems and Birational Invariants
In this section we describe computation of adjoint spaces. Let S ⊂ P3

E be a surface defined
by a homogeneous irreducible polynomial F ∈ E[x0, x1, x2, x3] of degree d and ΩE(S)|E the
vector space of rational differential forms of the function field (over the ground field E of
characteristic zero). We can consider ΩE(S)|E a constant sheaf of OS-modules. Let Ui ⊂ S
be the affine open subsets of the standard covering w.r.t. this choice of variables.

Let ω0
S ⊂ Ω∧2

E(S)|E be the subsheaf which is locally generated on Ui by

(
∂F/∂xj

xd−1
i

)−1 ∧

k∈{0,...,3}\{i,j}
d

xk

xi

(for an arbitrary choice of j 6= i). By sending this generator to xd−4
i one finds that

ω0
S
∼= OS(d − 4). Further let FS,m ⊂ (Ω∧2

E(S)|E)⊗m be the subsheaf of those forms whose
pullbacks are regular on some desingularization of S. It is called the sheaf of m-adjoints.
It is in fact well-defined, i.e., doesn’t depend on any specific desingularization, and one
can show FS,m ⊆ (ω0

S)⊗m. For more details we refer to [BS08].
Now since FS,m is a coherent sheaf on the projective scheme S ⊂ P3

E it can be defined
by its associated graded module MS,m and by the above discussion FS,m is isomorphic to
a subsheaf of OS(m(d − 4)). The module MS,m is thus naturally a graded submodule of
(E[x0, x1, x2, x3]/〈F 〉)(m(d−4)). The n-th graded piece of MS,m, a linear subsytem of the
standard linear system of degree n+m(d−4) homogeneous polynomials on S, corresponds
to global sections of the Serre twist FS,m(n). This, under pullback, corresponds to the space
of global sections of the twisted m-adjoint sheaf (ωX)⊗m(n) for any desingularization X
of S, where (n) now signifies twisting by the n-th tensor power of L, the invertible sheaf
on X which gives the map into projective space projecting X down onto S.

These adjoint linear systems immediately give the plurigenera of any desingulariza-
tion X as well as an explicit representation of the important twisted m-adjoint maps into
projective space as rational maps from S (defined by the sequence of homogeneous poly-
nomials forming a basis of the adjoint system). These maps are used to take any rational
hypersurface to a standard model, as described in the next section.

All functions in this section (and several in the following sections) allow the user to
enter precomputed formal desingularization data. It is a good idea to do this if perform-
ing several operations on the same hypersurface to avoid repeated computation of this
desingularization.

HomAdjoints(m,n,S)

FormalDesing SeqEnum Default : 0
Verbose Classify Maximum : 1

Given a surface S of degree d in P3 defined over a number field E together with
integers m and n, the intrinsic returns a basis for the vector space of the degree-n
graded summand of the graded ring associated to FS,m (i.e., Γ(S,OS(n) ⊗ FS,m))
as a subspace of the homogeneous forms in E[x0, x1, x2, x3] (the coordinate ring of
the P3 ambient) of degree n + m(d− 4) (see above).
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The parameter FormalDesing may be set to a precomputed formal desingular-
ization (as returned by ResolveProjectiveSurface). The desingularization passed
in can be computed with the AdjComp parameter set to true. The default value for
FormalDesing is the integer 0, in which case a formal desingularization needs to be
computed during function execution.

The function computes the adjoint space as a linear subspace of homogeneous
polynomials of the appropriate degree by using the formal divisor morphisms of the
formal desingularization to give additional linear conditions at the singular places
of S. This is explained fully in [BS08].

GeometricGenusOfDesingularization(S)

FormalDesing SeqEnum Default : 0
Given a hypersurface S in P3, the intrinsic returns the geometric genus of (any)
desingularization of S. The function just computes the dimension of the (1, 0)
adjoint space.

As in the case of HomAdjoints, a precomputed desingularization (of S or its
defining polynomial) can be passed in via the FormalDesing parameter.

PlurigenusOfDesingularization(S,m)

FormalDesing SeqEnum Default : 0
Given a hypersurface S in P3, the intrinsic returns the m-th plurigenus of (any)
desingularization, X, of S. This is the dimension of the global sections of the sheaf
(ωX)⊗m and is just computed as the dimension of the (m, 0) adjoint space.

As for HomAdjoints, a precomputed desingularization (of S or its defining poly-
nomial) can be passed in via the FormalDesing parameter.

ArithmeticGenusOfDesingularization(S)

FormalDesing SeqEnum Default : 0
Given a hypersurface S in P3, the intrinsic returns the arithmetic genus of (any)
desingularization of S. This is computed from a simple formula involving the di-
mensions of the (1,1)- and (1,2)-adjoints coming from the Riemann-Roch theorem.

As for HomAdjoints, a precomputed desingularization (of S or its defining poly-
nomial) can be passed in via the FormalDesing parameter.

Example H116E14

We compute several adjoint spaces of a surface. We precompute a formal desingularization and
pass it to the calls to HomAdjoints.

> P<x,y,z,w> := ProjectiveSpace(Rationals(), 3);

> F := w^3*y^2*z+(x*z+w^2)^3;

> S := Surface(P,F);

> desing := ResolveProjectiveSurface(S : AdjComp := true);

> HomAdjoints(1, 0, S : FormalDesing := desing);

[]
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> HomAdjoints(1, 1, S : FormalDesing := desing);

[

x*z*w + w^3

]

> HomAdjoints(1, 2, S : FormalDesing := desing);

[

x^2*z^2 - w^4, x^2*z*w + x*w^3, x*y*z*w, x*z^2*w + z*w^3,

x*z*w^2 + w^4, y*z*w^2, y*w^3

]

> HomAdjoints(1, 3, S : FormalDesing := desing);

[

x^3*z^2 - x*w^4, x^2*y*z^2, x^2*z^3 - z*w^4,

x^3*z*w + x^2*w^3, x^2*y*z*w, x*y^2*z*w, x^2*z^2*w - w^5,

x*y*z^2*w, x*z^3*w + z^2*w^3, x^2*z*w^2 + x*w^4, x*y*z*w^2,

y^2*z*w^2, x*z^2*w^2 + z*w^4, y*z^2*w^2, x*y*w^3, y^2*w^3,

x*z*w^3 + w^5, y*z*w^3, y*w^4

]

>

> HomAdjoints(2, 0, S : FormalDesing := desing);

[]

> HomAdjoints(2, 1, S : FormalDesing := desing);

[]

> HomAdjoints(2, 2, S : FormalDesing := desing);

[

x^2*z^2*w^2 + 2*x*z*w^4 + w^6

]

> HomAdjoints(2, 3, S : FormalDesing := desing);

[

x^3*z^2*w^2 + 2*x^2*z*w^4 + x*w^6, x^2*y*z^2*w^2 - y*w^6,

x^2*z^3*w^2 + 2*x*z^2*w^4 + z*w^6,

x^2*z^2*w^3 + 2*x*z*w^5 + w^7, x*y*z^2*w^3 + y*z*w^5,

x*y*z*w^4 + y*w^6, y^2*z*w^4

]

116.3.5 Classification and Parameterization of Rational Surfaces

This section contains functions for the recognition of rational surfaces in P3, the classifi-
cation and transformation to standard models using appropriate m-adjunction maps and,
finally, special case code for these standard models, to determine a parametrization of the
original hypersurface.

A non-singular surface in Pr with r ≥ 4 may be transformed to a standard model using
the intrinsic MinimalModelRationalSurface (see Section 116.2.6).
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IsRational(X)

FormalDesing SeqEnum Default : 0

CheckADE BoolElt Default : false

Returns true if the ordinary projective surface X is (geometrically) rational, i.e.
birationally isomorphic to the projective plane over the algebraic closure of its base
field. This simply uses the Castelnuevo criterion that X is rational if and only if
both the arithmetic genus and second plurigenus of any desingularization are zero.

If the ambient of X is P3 over a number field, there is no assumption about the
singularity of X and a formal desingularization will be used to compute plurigenera.
Otherwise, X should have at worst simple (A-D-E) singularities and the algorithms
of early sections are used for the computations. In this latter case, the singularity
status is assumed by default. To force a check for only A-D-E singularities, the user
should set the parameter CheckADE to true. This can be a very heavy verification
in higher dimensional ambients.

The computation in the former case uses a formal desingularization of X. To
avoid recalculation, a precomputed formal desingularization can be supplied using
FormalDesing parameter, as with the HomAdjoints intrinsic.

116.3.6 Reduction to Special Models
In this section, we describe the function for the birational transformation over the base field
of a rational hypersurface in P3 into a special model of one of the types in the standard
classification as listed by Josef Schicho in [Sch98]. He enumerates 5 basic cases [Sch98, p.
17 and Lem. 5.2-5.7] and splits the last case in two, choosing labels “1”, “2”, “3”, “4”,
“5A” and “5B”. The lemmas describing cases 3 and 5A involve a further case distinction.
Also, a label “0” is useful for the non-rational case. From this, we get the label set

L := {“0”, “1”, “2”, “3a”, “3b”, “4”, “5Aa”, “5Ab”, “5Ac”, “5B”}
Let S be a surface in P3. In each of the above cases the author specifies a set of adjoint

spaces defining interesting maps, either birationally to a special surface or to a rational
normal curve (giving a pencil of rational curves on the surface). More precisely, the maps
can be computed using Vn,m := HomAdjoints (m, n, S) for certain choices of m and n. Let
µ to be the smallest integer s.t. V1,µ+1 6= [ ]. Then the important Vn,m for the different
cases are as follows:

0 1 2 3a 3b 4
[ ] [V1,µ] [V1,µ] [V2,2µ+1, V1,µ] [V2,2µ+1] [V1,µ, V2,2µ−1]

5Aa 5Ab 5Ac 5B
[V1,µ−1] [V1,µ−1, V2,2µ−2] [V1,µ−1, V2,2µ−2, V3,3µ−3] [V2,1]

The function to find a parameterization of a rational hypersurface, which uses the
reduction function below as a first stage, is described in the next section.
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ClassifyRationalSurface(S)

FormalDesing SeqEnum Default : 0
Verbose Classify Maximum : 1

Given an ordinary projective surface S in P3 over a number field, the intrinsic
returns the special rational surface type to which S is birationally equivalent and
associated data. If S is not (geometrically) rational, the return values are S itself,
a list containing only the identity map on S and the string “Not rational”.

If S is rational and Schicho’s algorithm reduces it to a standard surface Y over
the base field k, Y is the first return value. The second return value is a list of one
or two scheme maps. The first is always a birational map from S to Y . There is
a second map if and only if Y is a rational scroll or conic bundle. Then S (and
Y ) have fibration maps to a rational normal curve such that the general fibre is a
rational curve (and a line or conic for Y ). The fibration map on S is the second
return value. Note that, if the base field is Q, in these cases, S can be parameterized
by calling ParametrizePencil with the fibration map as argument.

The third return value is a string describing the type of Y . It is “P2” (for
the projective plane!), “Quadric surface” (for a degree 2 surface in P3), “Rational
scroll”, “Conic bundle” or “Del Pezzo of degree d” where 1 ≤ d ≤ 9. The Del Pezzos
might be degenerate (with simple singularities) and are anticanonically embedded
in Pd except for degrees 1 and 2 when they have their standard weighted-projective
embeddings.

As usual, to avoid recalculation, a precomputed formal desingularization can
be given using the FormalDesing parameter, as in the case of the HomAdjoints
intrinsic.

Example H116E15

Here are a few examples.

> P<x,y,z,w> := ProjectiveSpace(Rationals(),3);

The first surface:

> p1 := x^4 + y^4 - z^2*w^2;

> _,_,typ := ClassifyRationalSurface(Surface(P,p1));

> typ;

Not rational

The second surface:

> p2 := 2*x + y + 8*z + 5*w;

> Y,_,typ := ClassifyRationalSurface(Surface(P,p2));

> typ; Y;

P^2

Surface over Rational Field defined by

0

The third surface:

> p3 := x^2 - 4*x*z + 3*x*w + y*z - y*w + 2*z^2 - 3*z*w + w^2;
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> _,_,typ := ClassifyRationalSurface(Surface(P,p3));

> typ;

Quadric surface

The fourth surface:

> p4 := (y^2 - w*z)*(w^2 - y*x) + (x*z - y*w)^2;

> S := Surface(P,p4);

> Y,mps,typ := ClassifyRationalSurface(S);

> typ;

Rational scroll

> mps[2]; // the fibration map

Mapping from: Srfc: S to Scheme over Rational Field defined by

$.1*$.2 - $.3^2

with equations :

x*y - w^2

y^2 - z*w

x*z - y*w

The fifth surface:

> p5 := x^3*y - 4*x^3*z - 6*x^3*w - 3*x^2*y^2 - 2*x^2*y*z

> - 3*x^2*y*w + 50*x^2*z^2 + 146*x^2*z*w + 108*x^2*w^2

> - 11*x*y^2*z + 2*x*y^2*w + 61*x*y*z^2 + 149*x*y*z*w

> + 65*x*y*w^2 + 68*x*z^3 + 228*x*z^2*w + 260*x*z*w^2

> + 112*x*w^3 + 4*y^4 - 13*y^3*z - 19*y^3*w + 20*y^2*z^2

> + 77*y^2*z*w + 55*y^2*w^2 + 40*y*z^3 + 106*y*z^2*w

> + 58*y*z*w^2 - 2*y*w^3 + 22*z^4 + 84*z^3*w + 130*z^2*w^2

> + 108*z*w^3 + 38*w^4;

> S := Surface(P,p5);

> _,mps,typ := ClassifyRationalSurface(S);

> typ;

P2

> mps[1]; //birational map from Y to P2

Mapping from: Srfc: S to Surface over Rational Field defined by

0

with equations :

x^2-1114/45*x*z-232/15*y*z-241/15*z^2-1543/45*x*w-319/15*y*w-1327/45*z*w-

457/45*w^2

x*y-182/45*x*z-11/15*y*z-38/15*z^2-284/45*x*w-17/15*y*w-266/45*z*w-146/45*w^2

y^2-16/45*x*z-28/15*y*z-4/15*z^2-22/45*x*w-61/15*y*w+32/45*z*w+92/45*w^2

The sixth surface:

> p6 := x^2*y^2 + 8*x^3*y + 4*x^4 + x*y*z^2 - x^2*z^2 - y^2*w^2

> - 7*x*y*w^2 + 8*x^2*w^2;

> S := Surface(P,p6);

> Y,mps,typ := ClassifyRationalSurface(S);

> typ; Y;

Conic bundle

Surface over Rational Field defined by
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$.1^2 + 2*$.1*$.2 + 1/4*$.1*$.3 - 1/4*$.4^2 + 1/4*$.4*$.5 +

2*$.6^2 - 7/4*$.6*$.7 - 1/4*$.7^2,

$.2^2 - $.1*$.3,

$.2*$.4 - $.1*$.5,

$.3*$.4 - $.2*$.5,

$.2*$.6 - $.1*$.7,

$.3*$.6 - $.2*$.7,

$.5*$.6 - $.4*$.7

> mps[2]; //the fibration map

Mapping from: Srfc: S to Projective Space of dimension 1 over Rational Field

Variables: $.1, $.2

with equations :

x

y

The seventh surface:

> p7 := x^2*w^3 + y^3*w^2 + z^5;

> Y,_,typ := ClassifyRationalSurface(Surface(P,p7));

> typ; Y; Ambient(Y);

Del Pezzo degree 1

Surface over Rational Field defined by

$.1^5*$.2 + $.3^3 + $.4^2

Projective Space of dimension 3 over Rational Field

Variables: $.1, $.2, $.3, $.4

The grading is:

1, 1, 2, 3

The seventh surface:

> p8 := w^3*y^2*z + (x*z + w^2)^3;

> Y,_,typ := ClassifyRationalSurface(Surface(P,p8));

> typ; Y;

Del Pezzo degree 6

Surface over Rational Field defined by

$.1^2 - 4*$.5^2 + $.3*$.6 - 3*$.6*$.7,

$.1*$.2 + 2*$.2*$.5 + $.3*$.7,

$.1*$.4 + 2*$.4*$.5 + $.6^2,

$.2*$.4 + $.5^2 + $.6*$.7,

$.3*$.4 - $.1*$.6 - $.4*$.7,

$.1*$.5 + 2*$.5^2 + $.6*$.7,

$.3*$.5 - $.1*$.7 - $.5*$.7,

$.2*$.6 - $.1*$.7 - $.5*$.7,

$.5*$.6 - $.4*$.7
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116.3.7 Parametrization of Rational Surfaces
The package also includes functions to directly parametrize rational surfaces (over Q).
These use the reduction to special type, described in the last section, followed by specialised
algorithms for the special cases, which are described in the following sections and the
section on Del Pezzo surfaces. There is a version for hypersurfaces in P3 and one for more
general rational surfaces which are first birationally projected to a hypersurface. Note,
however, that the projection method can be very inefficient because it often introduces
nasty singularities that cause the resolution process to hang. If it is known that the
surface S is non-singular, it is usually much better to use MinimalModelRationalSurface
to get a birational map from S to a standard model Y and call the relevant special case
parametrization routine for Y directly.

ParametrizeProjectiveHypersurface(X, P2)

FormalDesing SeqEnum Default : 0
Verbose Classify Maximum : 1

Given a surface X in P3
Q and a projective plane P2 over Q, the intrinsic returns

false if the surface is not rational over Q, otherwise returns true and a birational
parameterization P2→ X.

The function begins by mapping X, as in ClassifyRationalSurface, to a
surface of special type. As for that function, if a formal desingularization (for
the defining polynomial p of X) is already known, it can be passed as parameter
FormalDesing.

It is assumed that X is defined over Q because some of the special type rou-
tines assume this, partly for simplicity. This will probably be generalised in future
releases.

ParametrizeProjectiveSurface(X, P2)

Verbose Classify Maximum : 1
Given an ordinary projective surface X in Pn

Q for some n ≥ 2 and a projective plane
P2 over Q, returns false if the surface is not rational over Q, otherwise return true
and a birational parametrization P2→ X.

The function finds a birational projection to a hypersurface in P3 and then calls
ParametrizeProjectiveHypersurface.

It should be noted that the birational projection may produce a very singular
hypersurface defined by a polynomial with large coefficients. Then, the desingular-
isation, classification and special parameterization routines may each be very slow.
As noted above, it may be better to try to use MinimalModelRationalSurface fol-
lowed by one of the specialised parametrization routines for a non-singular rational
X for larger n.

Example H116E16

We try to parameterize the hypersurfaces given by polynomials p1 - p8 from the previous example.
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The surface defined by p1:

> P2<X,Y,W> := ProjectiveSpace(Rationals(), 2);

> ParametrizeProjectiveHypersurface(Surface(P, p1), P2);

false

The surface defined by p2:

> ParametrizeProjectiveHypersurface(Surface(P, p2), P2);

true Mapping from: Prj: P2 to Surface over Rational Field

defined by 2*x + y + 8*z + 5*w

with equations :

-1/2*X - 4*Y - 5/2*W

X

Y

W

The surface defined by p3:

> ParametrizeProjectiveHypersurface(Surface(P, p3), P2);

true Mapping from: Prj: P2 to Surface over Rational Field

defined by x^2 - 4*x*z + 3*x*w + y*z - y*w + 2*z^2 - 3*z*w + w^2

with equations :

X^2 - 2*X*W

X^2 + X*Y - 4*X*W - Y*W + 2*W^2

X^2 - 3*X*W + Y*W

X^2 - 4*X*W + Y*W + 2*W^2

The surface defined by p4:

> ParametrizeProjectiveHypersurface(Surface(P, p4), P2);

true Mapping from: Prj: P2 to Surface over Rational Field

defined by x^2*z^2 - x*y^3 - x*y*z*w + 2*y^2*w^2 - z*w^3

with equations :

2*X^2*Y^2*W^2 - Y*W^5

X^4*Y^2 - X^2*Y*W^3

X^3*Y*W^2

X^3*Y^2*W

The surface defined by p5:

> ParametrizeProjectiveHypersurface(Surface(P, p5), P2);

true Mapping from: Prj: P2 to Surface over Rational Field

defined by ...

with equations :

-1/4*X^2 + 9/2*X*Y + 1/2*X*W - 69/4*Y^2 - 87/8*Y*W + 1/2*W^2

1/2*X*Y + 11/4*X*W - 5/8*Y^2 - 131/8*Y*W - 63/8*W^2

-11/8*X*Y + 7/8*X*W + 13/4*Y^2 - 11/2*W^2

X*Y - 1/8*X*W - 23/8*Y^2 + 4*W^2

The surface defined by p6:

> ParametrizeProjectiveHypersurface(Surface(P, p6), P2);
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true Mapping from: Prj: P2 to Surface over Rational Field

defined by 4*x^4 + 8*x^3*y + x^2*y^2 - x^2*z^2 + 8*x^2*w^2

+ x*y*z^2 - 7*x*y*w^2 - y^2*w^2

with equations :

-3/8*X^2*Y^2*W - 2*X^2*Y*W^2 - 8/3*X^2*W^3 - 59/24*X*Y^2*W^2

- 38/3*X*Y*W^3 - 16*X*W^4 + 17/6*Y^2*W^3 + 44/3*Y*W^4

+ 56/3*W^5

-3/8*X^3*Y^2 - 2*X^3*Y*W - 8/3*X^3*W^2 - 59/24*X^2*Y^2*W

- 38/3*X^2*Y*W^2 - 16*X^2*W^3 + 17/6*X*Y^2*W^2

+ 44/3*X*Y*W^3 + 56/3*X*W^4

-1/8*X^2*Y^2*W - 4/3*X^2*Y*W^2 - 8/3*X^2*W^3 - 1/12*X*Y^2*W^2

- 16/3*X*Y*W^3 - 40/3*X*W^4 + 19/3*Y^2*W^3 + 104/3*Y*W^4

+ 48*W^5

-3/8*X^2*Y^2*W - 2*X^2*Y*W^2 - 8/3*X^2*W^3 - 8/3*X*Y^2*W^2

- 14*X*Y*W^3 - 56/3*X*W^4 + Y^2*W^3 + 20/3*Y*W^4 + 32/3*W^5

The surface defined by p7:

> ParametrizeProjectiveHypersurface(Surface(P, p7), P2);

true Mapping from: Prj: P2 to Surface over Rational Field defined by

z^5 + y^3*w^2 + x^2*w^3

with equations :

-X^362*Y^144*W^79 - 9*X^363*Y^141*W^81 - 36*X^364*Y^138*W^83 -

84*X^365*Y^135*W^85 - 126*X^366*Y^132*W^87 - 126*X^367*Y^129*W^89 -

84*X^368*Y^126*W^91 - 36*X^369*Y^123*W^93 - 9*X^370*Y^120*W^95 -

X^371*Y^117*W^97

X^359*Y^148*W^78 + 10*X^360*Y^145*W^80 + 45*X^361*Y^142*W^82 +

120*X^362*Y^139*W^84 + 210*X^363*Y^136*W^86 + 252*X^364*Y^133*W^88 +

210*X^365*Y^130*W^90 + 120*X^366*Y^127*W^92 + 45*X^367*Y^124*W^94 +

10*X^368*Y^121*W^96 + X^369*Y^118*W^98

-X^357*Y^150*W^78 - 11*X^358*Y^147*W^80 - 55*X^359*Y^144*W^82 -

165*X^360*Y^141*W^84 - 330*X^361*Y^138*W^86 - 462*X^362*Y^135*W^88 -

462*X^363*Y^132*W^90 - 330*X^364*Y^129*W^92 - 165*X^365*Y^126*W^94 -

55*X^366*Y^123*W^96 - 11*X^367*Y^120*W^98 - X^368*Y^117*W^100

X^354*Y^153*W^78 + 12*X^355*Y^150*W^80 + 66*X^356*Y^147*W^82 +

220*X^357*Y^144*W^84 + 495*X^358*Y^141*W^86 + 792*X^359*Y^138*W^88 +

924*X^360*Y^135*W^90 + 792*X^361*Y^132*W^92 + 495*X^362*Y^129*W^94 +

220*X^363*Y^126*W^96 + 66*X^364*Y^123*W^98 + 12*X^365*Y^120*W^100 +

X^366*Y^117*W^102

and inverse

z^4*w^8

y*z^2*w^9

x*z*w^10

The surface defined by p8:

> ParametrizeProjectiveHypersurface(Surface(P, p8), P2);

true Mapping from: Prj: P2 to Surface over Rational Field defined by

x^3*z^3 + 3*x^2*z^2*w^2 + 3*x*z*w^4 + y^2*z*w^3 + w^6

with equations :
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2*X^20*Y^3*W - 4*X^19*Y^3*W^2 + 4*X^17*Y^3*W^4 - 2*X^16*Y^3*W^5

4*X^19*Y^4*W - 8*X^18*Y^4*W^2 + 4*X^17*Y^4*W^3

1/2*X^16*Y^7*W - X^15*Y^7*W^2 + 1/2*X^14*Y^7*W^3

-X^18*Y^5*W + 3*X^17*Y^5*W^2 - 3*X^16*Y^5*W^3 + X^15*Y^5*W^4

> IsRational(Surface(P, p7));

true

Here are two easy examples of parameterizing non-hypersurfaces.

> P4<u,v,w,x,y> := ProjectiveSpace(Rationals(),4);

> P2<X,Y,Z> := ProjectiveSpace(Rationals(), 2);

> S := Surface(P4,[u^2 + v^2 + w^2 - x^2, y - x]);

> ParametrizeProjectiveSurface(S, P2);

true Mapping from: Prj: P2 to Srfc: S

with equations :

-2*X*Z + 2*Z^2

-2*Y*Z

X^2 + Y^2 - 2*X*Z

-X^2 - Y^2 + 2*X*Z - 2*Z^2

-X^2 - Y^2 + 2*X*Z - 2*Z^2

and inverse

u + w + y

v

w + x

Here we parametrize a particularly easy surface – P2 itself!

> S := Surface(P2,[]);

> ParametrizeProjectiveSurface(S, P2);

true Mapping from: Prj: P2 to Srfc: S

with equations :

X

Y

Z

and inverse

X

Y

Z

Solve(p, F)

For convenience, this intrinsic provides a purely algebraic version of parameteriza-
tion of an affine hypersurface.

Given a polynomial p ∈ Q[x, y, z], the equation of a (not necessarily irreducible
affine hypersurface S) and a two-variable rational function field F = Q(u, v), the
function finds birational parameterizations of the irreducible components of S (that
are parametrizable over Q).
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A sequence of triples (X, Y, Z) ∈ F 3 is returned such that p(X, Y, Z) = 0 and
each triple gives an isomorphism of F to the function field of a component of S.

The routine may again result in a runtime error if it involves parameterizations
of special surface types that are not yet implemented, as for the preceding functions.

Example H116E17

The following affine hypersurface has three irreducible factors: one not rational and two that are
rational and parameterizable over Q.

> Q := RationalField();

> P<x,y,z> := PolynomialRing(Q, 3);

> F<s,t> := RationalFunctionField(Q, 2);

> p := (x^4+y^4-z^2)*(2*x + y + 8*z + 5)

> *(x^2 - 4*x*z + 3*x + y*z - y + 2*z^2 - 3*z + 1);

> Solve(p, F);

[

[ -1/2*s - 4*t - 5/2, s, t ],

[

(s^2 - 2*s)/(s^2 - 4*s + t + 2),

(s^2 + s*t - 4*s - t + 2)/(s^2 - 4*s + t + 2),

(s^2 - 3*s + t)/(s^2 - 4*s + t + 2)

]

]

116.3.8 Parametrization of Special Surfaces
In this section we describe routines for the explicit parameterization of the special classes
of rational surfaces that arise from the reduction of the general case via m-adjoint maps.
The algorithms are the work of Josef Schicho, in collaboration with others in some cases.
The functions are used in the general parameterization routines but can also be called
directly by the user.

ParametrizeQuadric(X,P2)

Suppose the scheme X ⊂ P3
Q is a geometrically irreducible quadric (degree 2) pro-

jective hypersurface and P2 is a projective plane. The intrinsic returns false if X
is not parametrizable over the rationals, otherwise it returns true together with a
birational parameterization P2→ X.

Given a rational point p on X, the intrinsic is based on a simple, well-known
algorithm (see [Sch98, Sec. 3.1]). Finding the point p is equivalent to finding a non-
trivial isotropic vector for F , the quadric form in four variables defining X. This
is achieved by a reduction to the solution of two quadrics in three variables, which
is performed using standard lattice methods. The solubility routines here assume
that the quadric is defined over Q.
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Example H116E18

We give a few simple examples.

> Q := Rationals();

> P2<X,Y,W> := ProjectiveSpace(Q, 2);

> P3<x,y,z,w> := ProjectiveSpace(Q, 3);

> X1 := Scheme(P3, x^2 + y^2 + z^2 + w^2);

> X2 := Scheme(P3, x^2 + y^2 + z^2 - w^2);

> X3 := Scheme(P3, x^2 + y^2 + z^2);

> X4 := Scheme(P3, x^2 + y^2 - z^2);

> X5 := Scheme(P3, x^2 - 4*x*z + 3*x*w + y*z - y*w + 2*z^2

> - 3*z*w + w^2);

> ParametrizeQuadric(X1, P2);

false

> ParametrizeQuadric(X2, P2);

true Mapping from: Prj: P2 to Sch: X2

with equations :

2*X*W

2*Y*W

-X^2 - Y^2 + W^2

X^2 + Y^2 + W^2

> ParametrizeQuadric(X3, P2);

false

> ParametrizeQuadric(X4, P2);

true Mapping from: Prj: P2 to Sch: X4

with equations :

X*Y

-1/2*X^2 + 1/2*Y^2

1/2*X^2 + 1/2*Y^2

Y*W

> ParametrizeQuadric(X5, P2);

true Mapping from: Prj: P2 to Sch: X5

with equations :

X^2 - 2*X*W

X^2 + X*Y - 4*X*W - Y*W + 2*W^2

X^2 - 3*X*W + Y*W

X^2 - 4*X*W + Y*W + 2*W^2
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ParametrizePencil(phi, P2)

Let X be an ordinary projective birationally ruled surface, given as the domain of
a rational pencil φ defined over Q (i.e., a rational map X → Pn

Q for some n with
image a rational normal curve) and P2 is a projective plane over Q. The intrinsic
returns false if X is not parameterizable over the rationals. Otherwise, it returns
true and a birational parameterization P2→ X.

These intrinsics take care of rational scrolls and conic bundles in the classification
of special surfaces. The algorithm is described in [Sch00]. The scheme X is not
assumed to be non-singular.

Example H116E19

We start with a (singular) degree 4 hypersurface X in P 3 and construct a pencil from P 2 to X.

> Q := Rationals();

> P3<x,y,z,w> := ProjectiveSpace(Q, 3);

> P2<X,Y,Z> := ProjectiveSpace(Q, 2);

> X := Scheme(P3, x^2*z^2 - x*y^3 - x*y*z*w + 2*y^2*w^2 - z*w^3);

> pencil := map<X -> P2 | [x*y - w^2, y^2 - z*w, x*z - y*w]>;

> DefiningPolynomial(Image(pencil));

X*Y - Z^2

> ParametrizePencil(pencil, P2);

true Mapping from: Prj: P2 to Sch: X

with equations :

-X^4*Y + 2*X^2*Z^3

-X^2*Y*Z^2 + Z^5

X*Y*Z^3

X*Z^4

ParametrizeDelPezzo(X, P2)

The argument X should be a (anticanonically-embedded) Del Pezzo surface (of type
Sch or Srfc and P2 a projective plane both defined over Q. The function returns
false if X is not parametrizable over the rationals and returns true and a birational
parameterization P2→ X otherwise.

This intrinsic is the main interface to a suite of functions parameterizing Del
Pezzo surfaces (over Q). These include the anticanonically Del Pezzos of degrees 1
and 2, which lie in non-trivially weighted projective spaces. A degree d Del Pezzo
surface refers to a rational surface that is embedded in projective space by its anti-
canonical divisor. For degrees 1 and 2 this means an ample embedding into weighted
projective space. For 3 <= d <= 9, this is a very-ample embedding giving X as a
degree d surface in ordinary projective space of dimension d.

It should be noted that not only do the routines handle the usual non-singular
cases, but they also deal with degenerate singular cases (arising in degrees d >= 3.
In the latter case, rather than blowing up 9 − d distinct points in the plane, some
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of the blown-up points are “infinitely near” points: lying on the exceptional curves
corresponding to already blown-up points). This is important as these degenerate
cases can arise in the general parameterization of hypersurfaces in P3.

The package contains routines to find and blow down sets (defined over Q) of excep-
tional curves, reducing to a DelPezzo of degree d, 5 <= d <= 9. After this reduction, these
cases are handled by the Magma routines described in Section 116.4.3 (which now also
handle singular Del Pezzos). There is an exception to the above rule. For singular degree
3 and degree 4 Del Pezzo surfaces, it is more efficient to apply special case code directly
rather than trying to blow down lines to get to higher degree. Starting in V2.17, special
functions are provided do this that can be called directly for a singular anti-canonical
degree 3 or 4 surface and are described in the next section.

The routines are not yet fully documented. For the location of exceptional curves and
the blowing-down, some details may be found in [Sch98, Sec. 3.5] while [Man86] contains
the general theory. There are also implementation notes in the appendix of the software
documentation report [Bec08] from which this documentation has been adapted. For the
nonsingular degrees 6, 8 and 9 cases, which use the Lie algebra method and the degree 5
case, see the references in Section 116.4.3.

116.4 Del Pezzo Surfaces

116.4.1 Introduction
This section contains a collection of geometric and arithmetic routines for Del Pezzo sur-
faces in their anti-canonical embeddings (the full weighted projective anticanonical embed-
ding for degrees 1 and 2).

There are routines for creation, parametrization, minimisation and reduction, construc-
tion, computation of invariants for degree 3, and point-counting for degree 3 surfaces over
a finite field.

There is a specialised type for Del Pezzos, SrfDelPezzo, which is a subtype of type
Srfc. Some intrinsics use this type for arguments while some use the more general Srfc
(or even Sch).

116.4.2 Creation of General Del Pezzos

DelPezzoSurface(P,L)

DelPezzoSurface(S)

DelPezzoSurface(Z)

The Del Pezzo surface of degree 9−d, embedded by its anticanonical system, which
arises by blowing up the projective plane P in the d points. The arguments are either
plane P and a list of points L, the set of points Q, or the length d zero-dimensional
scheme Z defining the points. If the points are not in sufficiently general position
(so that the anticanonical image is not smooth) then an error is reported.
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DelPezzoSurface(f)

The argument f should be a degree three homogeneous polynomial in a 4-variable
polynomial ring P (with grevlex ordering). Creates the degree 3 Del Pezzo surface
with defining polynomial f inside P3 = Proj(P ). If this surface is not smooth an
error is reported.

IsDelPezzo(Y)

Returns true if and only if scheme Y in ordinary projective space is an abstract Del
Pezzo surface. If so, it also returns the image X of the standard (pluri-)anticanonical
embedding of Y , and the map Y → X. Note that this can be a computationally
very heavy function if Y is in a reasonably high-dimensional ambient.

116.4.3 Parametrization of Del Pezzo Surfaces
Del Pezzo surfaces are a special type of non-singular projective surface. A good reference
for their general properties is [Man86]. A Del Pezzo surface X has a degree 1 ≤ d ≤ 9. For
d ≥ 3, the standard representation is as a degree d surface in Pd for which a hyperplane
section is an anti-canonical divisor. When we talk about Del Pezzos in this section, we
mean a surface in that anti-canonical form.

Del Pezzo surfaces are birationally equivalent to the projective plane P2 over an
algebraically-closed field. That is, there exists an invertible scheme map from P2 to X : a
parametrization. Most of the functions in this section are concerned with the existence of
parametrizations of X over a number field.

The significance of Del Pezzo surfaces comes from adjunction theory (see [SvdV87]).
The adjunction map for surfaces is a general construct that contracts certain lines, known
as exceptional lines, to points. Repeated application of the adjunction map to a ratio-
nal surface results in a reduction to a surface in one of a small number of families, in-
cluding the Del Pezzos. For a non-singular ordinary projective surface Y , the intrinsic
MinimalModelRationalSurface is now available to produce the birational map from Y to
one of the special, terminal cases that include the Del Pezzos.

Hence the parametrization problem for general rational surfaces reduces via adjunction
(a purely algebraic construction) to parametrization of surfaces in the specific families,
which is an arithmetic problem (ie dependent on the ground field). This is the surface
analog of the simpler situation for curves. Any rational curve can be algebraically reduced
to the projective line or a plane conic and the parametrization of plane conics is also an
arithmetic problem.

Thus, the parametrization of Del Pezzo surfaces is an important component in that of
general rational surfaces. General parametrization code for rational hypersurfaces in P3

is described in the previous section and it makes use of the routines described here.

If X is parametrizable with d ≥ 3, then we can blow down (contract) exceptional lines
on it to arrive at a surface with d = 5, 6, 8 or 9. The functions described here deal
with parametrization in those cases using computational methods based around the Lie
algebra of the automorphism group of X. For the theory behind these algorithms, see
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[dG06], [dGP], [HS06] and [GSHPBS12]. In one of the examples, we parametrize a cubic
hypersurface (degree 3 Del Pezzo) by blowing down to a degree 6 surface.

Although reduction to degree 9 is always possible, for d = 7 it is more efficient to work
directly using the Lie algebra method. There is now also an intrinsic for d = 7 provided
by Josef Schicho. Schicho has also written code for the d = 5 case, minimal or not, that
uses the more geometrical method described in the above reference and a corresponding
intrinsic is provided.

Furthermore, the degree 5−8 intrinsics now also cover degenerate cases of singular Del
Pezzos in their anticanonical projective embeddings. The additional code for the singular
cases is also due to Josef Schicho.

A feature (from V2.17) is the provision of special case code for degree 3 and degree 4
singular Del Pezzos. For some of these, it is not possible to blow down any exceptional
lines over the base field but the surface is still parametrizable. Additionally, it is usually
much more efficient to handle these cases directly without blowing down curves to get to
higher degree.

A general intrinsic ParametrizeDelPezzo for parametrizing any Del Pezzo surface of
degree d ≥ 1 in its anticanonical weighted embedding (for d = 1, 2 the anticanonical divisor
is no longer very ample, but gives an ample embedding into weighted projective space)
is described in the previous section. This blows down exceptional lines to reach degree
d ≥ 5 and then invokes one of the intrinsics described in this section. It is more efficient
to call the appropriate intrinsic directly if the starting point is either the d ≥ 5 case or the
d = 3, 4 singular cases.

SetVerbose("ParamDP", v)

Set the verbose printing level for the Del Pezzo parametrizing functions. Currently
the legal values for v are true, false, 0, 1 and 2 (false is the same as 0, and true
is the same as 1).

ParametrizeDegree9DelPezzo(X)

Let X be a degree 9 Del Pezzo surface anticanonically embedded in 9-dimensional
projective space. For this function the base field should be Q. The surface X is
defined by 27 degree 2 polynomials. The function performs only basic checks that
the input X is valid.

If X is parametrizable over Q then there is a parametrization φ : P2 → X which
is everywhere-defined and given by cubic polynomials in the variables of P2. The
function returns whether such a φ exists and, if so, φ also.

ParametrizeDegree8DelPezzo(X)

Let X be a degree 8 Del Pezzo surface anticanonically embedded in 8-dimensional
projective space over a number field. The surface X is defined by 20 degree 2
polynomials. The function performs only basic checks that the input X is valid.

For degree 8, there are two types of non-singular Del Pezzo surface, the second
type splitting into subfamilies:

1) X is isomorphic to P2 with a single rational point blown up.
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2i) X is isomorphic to T1 × T2 with Ti Galois twists of P1.
2ii) X is isomorphic to a Galois twist of P1×P1 where Galois acts transitively on
the two P1 factors.
In case 1), X is always parametrizable.
In case 2i), X is parametrizable⇔ both Ti are trivial twists of P1⇔ X is isomorphic
to P1 ×P1.
In case 2ii), there is an infinite family of parametrizable Xa classified by a ∈ Q∗/Q∗2.
The scheme Xa is isomorphic (properly, not just birationally) to the surface in P3

given by the equation x2
0 − ax2

1 = x2x3.
The main function determines whether X is parametrizable over Q. If so, there

is a parametrization φ : P2 → X (given by cubic polynomials in case 1 and by
degree 4 polynomials in case 2) and this is also returned.

The intrinsic also handles the degenerate case of a singular degree 8 Del Pezzo
surface. This case is recognised directly from the Lie algebra computation which is
part of the main routine and an appropriate adaptation of the general method is
used.

Example H116E20

In this example, we parametrize an anticanonical sphere X2, in the above notation. This is
obviously an artificial illustration, as we start with X2 in the form F = x2

0 − 2x2
1 − x2x3 = 0,

which is trivial to parametrize directly! The surface in this form is embedded anticanonically in
P8 by any 9-dimensional vector space complement of < F > in the 10-dimensional linear system
of all degree 2 polynomials in x0 . . . x3. The parametrizing map is undefined at precisely 2 points
of the plane. Geometrically, the map consists of a blowup of these 2 points followed by a blowdown
of the line joining them.

> P3<x0,x1,x2,x3> := ProjectiveSpace(Rationals(),3);

> X2 := Scheme(P3,x0^2-2*x1^2-x2*x3);

> L := LinearSystem(P3,2);

> L := LinearSystemTrace(L,X2);

> P8<x1,x2,x3,x4,x5,x6,x7,x8,x9> := ProjectiveSpace(Rationals(),8);

> X := map<X2->P8|Sections(L)>(X2); X;

Scheme over Rational Field defined by

x1^2 - 2*x4^2 - x4*x8,

x1*x2 - 2*x4*x5 - x5*x8,

x2^2 - 2*x4*x7 - x7*x8,

x1*x3 - 2*x4*x6 - x5*x9,

x2*x3 - 2*x4*x8 - x7*x9,

x3^2 - 2*x4*x9 - x8*x9,

-x1*x5 + x2*x4,

-x1*x6 + x3*x4,

-x1*x7 + x2*x5,

-x1*x8 + x3*x5,

-x4*x7 + x5^2,

-x1*x8 + x2*x6,

-x1*x9 + x3*x6,
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-x4*x8 + x5*x6,

-x4*x9 + x6^2,

-x2*x8 + x3*x7,

-x5*x8 + x6*x7,

-x2*x9 + x3*x8,

-x5*x9 + x6*x8,

-x7*x9 + x8^2

> boo,prm := ParametrizeDegree8DelPezzo(X);

> boo;

true

> prm;

Mapping from: Prj: P2 to Sch: X

with equations :

-1/4*U*V*W^2

-1/16*V*W^3

2*U^2*V*W - 4*V^3*W

-1/8*U^2*W^2

-1/32*U*W^3

U^3*W - 2*U*V^2*W

-1/128*W^4

1/4*U^2*W^2 - 1/2*V^2*W^2

-8*U^4 + 32*U^2*V^2 - 32*V^4

> bs := ReducedSubscheme(BaseScheme(prm)); bs;

Scheme over Rational Field defined by

U^2 - 2*V^2,

W

ParametrizeDegree7DelPezzo(X)

Let X be a degree 7 Del Pezzo surface anticanonically embedded in 7-dimensional
projective space over a number field. We allow that X can be a degenerate (singular)
Del Pezzo surface here. The scheme X is always parametrizable over the base field
and this intrinsic returns such a parametrisation without reduction to degree 8 or 9
but directly from the Lie Algebra method.

ParametrizeDegree6DelPezzo(X)

ExistenceOnly BoolElt Default : false

Let X be a degree 6 Del Pezzo surface anticanonically embedded in 6-dimensional
projective space. For this function the base field K may be Q or a number field. The
surface X is defined by nine degree 2 polynomials. The function performs only basic
checks that the input X is valid. NB: This intrinsic only handles the non-singular
case. For a singular (degenerate) degree 6 Del Pezzo, use the intrinsic that follows.

The connected component of the automorphism group of X is a 2-dimensional
torus over K. For any of the possible tori, there is a family of degree 6 Del Pezzos
which correspond to principal homogeneous spaces of the torus up to isomorphism.
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The parametrizability of X is equivalent to X corresponding to the trivial homoge-
neous space of its torus.

The function determines whether a parametrization φ : P2 → X exists over K
and returns one when this is the case. The degree of the polynomials defining a
“minimal” φ (one which is undefined at the smallest number of points) is 3,4 or 6
depending on the torus type. The parametrization returned is always of this minimal
degree.

The surface X is parametrizable if and only if it contains a point over K. Fur-
thermore, it satisfies the local-global principle: it has a point over K ⇔ it has a
point over each p-adic completion of K. (These statements are also true for degree
8 and 9 Del Pezzos)

The ExistenceOnly option allows the function to just perform this local sol-
ubility check, deciding upon the existence of a parametrization without explicitly
constructing one. Depending on the torus type, simultaneous norm equations over
a degree 6 field extension of K or a single norm equation over a degree 3 exten-
sion of K may have to be solved to construct a parametrization. This is a hard
computation, especially if K is not Q, whereas the pure existence check is quite
fast.

Degree6DelPezzoType2 1(K,pt)

Degree6DelPezzoType2 2(K,pt)

Degree6DelPezzoType2 3(K,pt)

Degree6DelPezzoType3(K,pt)

Degree6DelPezzoType4(K,K1,pt)

Degree6DelPezzoType6(K,pt)

These functions generate the parametrizable degree 6 Del Pezzo surface X whose
(connected) automorphism group is the torus T , which comes from field data K,
and which contains point pt.

The point pt must be in 6-dimensional projective space over the base field k of a
number field K. Its first projective coordinate may not be 0 and, depending on the
torus type, certain of its other coordinates must also be non-zero.

The torus types and corresponding fields K for the various functions are as
follows (pt = [a0, . . . , a6]):
Type2 1. K/k should be a quadratic extension. T (k) = K∗ and T acts on P6 to
give an X with degree 3 minimal parametrization. pt satisfies not( a1 = a2 = 0 or
a3 = a4 = 0 or a5 = 0 or a6 = 0 ).
Type2 2. K/k should be a quadratic extension. T (k) = K∗ and T acts on P6 to
give an X with degree 4 minimal parametrization. pt satisfies not( a1 = a2 = 0 or
a3 = a4 = 0 or a5 = a6 = 0 ).
Type2 3. K/k should be a quadratic extension. T (k) = K∗NK/k=1 ×K∗NK/k=1. pt
satisfies not( a1 = a2 = 0 or a3 = a4 = 0 or a5 = a6 = 0 ).
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Type3. K/k should be a cubic extension. T (k) = K∗NK/k=1. pt satisfies not(
a1 = a2 = a3 = 0 or a4 = a5 = a6 = 0 ).
Type4. K/k and K1/k should be distinct quadratic extensions. T (k) = L∗NL/K=1

where L is K.K1. pt satisfies not( a1 = a2 = a3 = a4 = 0 or a5 = a6 = 0 ).
Type6. K/k should be a degree 6 extension which contains cubic and quadratic
subextensions K3 and K2. For simplicity, the precise condition is that the generator
y = K.1 must have minimal polynomial of the form x6 + 2ax4 + a2x2 − d and then
K3 = k(y2) and K2 = k(y3 + ay). T (k) = K∗NK/K3=NK/K2=1. pt satisfies not(
a1 = a2 = a3 = a4 = a5 = a6 = 0 ).

ParametrizeDelPezzoDeg6(X)

This variant for parametrizing a degree 6 Del Pezzo also handles the degenerate
(singular) case. Note however, that it doesn’t recognise singularity from the Lie
algebra computation as occurs for degrees 7 and 8. It tests for singularity at the
start using the generic non-singularity computation that can be very slow. Therefore
for known non-degenerate Del Pezzos of degree 6, it is always better to use the above
ParametrizeDegree6DelPezzo directly.

That is also used here, if X turns out to be non-singular. Otherwise, projection
from a singular point to P5 reduces the problem to that of parametrizing a rational
scroll.

Example H116E21

In the this example, we start with a degree 3 Del Pezzo surface - a non-singular hypersurface in
P3 - which contains the 3 disjoint lines x = y = 0, z = t = 0 and x = z, y = t. These are blown
down to give a degree 6 Del Pezzo surface, the parametrisation of which gives a parametrisation
of the original surface. As well as demonstrating the degree 6 code, this is a nice example of
blowing down exceptional lines on surfaces, something for which more general code will be added
at a future date.

> R3<x,y,z,t> := PolynomialRing(Rationals(),4,"grevlex");

> P3 := Proj(R3);

> //equation of the degree 3 surface:

> F := -x^2*z + x*z^2 - y*z^2 + x^2*t - y^2*t - y*z*t + x*t^2 + y*t^2;

> X3 := Scheme(P3,F);

> // get the ideal defing the union of the 3 lines:

> I1 := ideal<R3|[x,y]>;

> I2 := ideal<R3|[z,t]>;

> I3 := ideal<R3|[x-z,y-t]>;

> I := I1*I2*I3;

> I := Saturation(I);

General surface theory tells us that if H is the hyperplane divisor on X3, then the blowing down
is given by the projective map associated to the divisor H +L1 +L2 +L3, where the Li are our 3
lines. We need the global sections of the sheaf of this: if L1+L2+L3 ∼ 2H−D (linear equivalence
of divisors) for an effective divisor D, then the space of global sections“ is” the degree 3 graded
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part of the ideal of D (mod the equation of X3). The ideal ID of a suitable D is computed by
requiring that ID ∩ I = (F, F2) with F2 a degree 2 polynomial in I.

> F2 := Basis(I)[5]; F2;

y*z - x*t

> ID := ColonIdeal(ideal<R3|[F,F2]>,I);

> ideal<R3|[F,F2]> eq (ID meet I);

true

> // get basis of degree 3 graded part of ID

> ID3 := ID meet ideal<R3|Setseq(MonomialsOfDegree(R3,3))>;

> B3 := MinimalBasis(ID3);

> B3;

[

y*z*t - x*t^2,

z^3 - z^2*t + t^3,

y*z^2 - x*z*t,

x*z^2 - x*z*t + y*t^2,

y^2*z - x*y*t,

x*y*z - x^2*t,

x^2*z - x^2*t + y^2*t,

x^3 - x^2*y + y^3

]

> // and a complementary subspace of F

> F in ideal<R3|Remove(B3,7)>;

false

> B3 := Remove(B3,7);

> // now map to the degree 6 Del Pezzo

> P6<a,b,c,d,e,f,g> := ProjectiveSpace(Rationals(),6);

> blow_down := map<X3->P6|B3>;

> X6 := blow_down(X3);

> Dimension(X6); Degree(X6);

2

6

We also need the inverse of blow down. The general IsInvertible function could be used here
but again the general theory tells us that the inverse is given by linear equations and it is faster to
find them directly by a Grobner basis plus linear algebra computation. We omit this for brevity
and just assume the result.

> X3toX6 := iso<X3->X6|B3,[f,e,c,a]>;

> // now parametrise X6

> boo,prm := ParametrizeDegree6DelPezzo(X6);

> boo;

true

> p2toX3 := Expand(prm*Inverse(X3toX6));

> p2toX3;

Mapping from: Projective Space of dimension 2

Variables : $.1, $.2, $.3 to Sch: X3

with equations :
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-77/9*$.1^3 + 59/6*$.1^2*$.2 + 10/3*$.1^2*$.3 + 8/9*$.1*$.2^2 -

73/18*$.1*$.2*$.3 - 113/18*$.1*$.3^2 - 59/9*$.2^3 + 383/18*$.2^2*$.3 -

259/9*$.2*$.3^2 + 329/18*$.3^3

253/18*$.1^3 - 193/6*$.1^2*$.2 - 17/3*$.1^2*$.3 + 695/18*$.1*$.2^2 -

244/9*$.1*$.2*$.3 + 353/18*$.1*$.3^2 - 151/9*$.2^3 + 185/9*$.2^2*$.3 -

41/9*$.2*$.3^2 - 79/9*$.3^3

-11/6*$.1^3 + 37/6*$.1^2*$.2 + 10/3*$.1^2*$.3 - 28/3*$.1*$.2^2 + 4*$.1*$.2*$.3 -

7*$.1*$.3^2 + 8/3*$.2^3 + 8/3*$.2^2*$.3 - 11/2*$.2*$.3^2 + 9/2*$.3^3

11/18*$.1^3 + 8/3*$.1^2*$.2 - 1/6*$.1^2*$.3 - 28/9*$.1*$.2^2 - 2/9*$.1*$.2*$.3 -

59/18*$.1*$.3^2 - 2/9*$.2^3 + 34/9*$.2^2*$.3 - 53/18*$.2*$.3^2 + 53/18*$.3^3

and inverse

-884/23043*x^3 + 884/23043*x^2*y - 884/23043*y^3 - 4436/23043*x*y*z -

4334/23043*y^2*z + 6902/23043*x*z^2 - 3560/7681*y*z^2 - 4420/23043*z^3 +

4436/23043*x^2*t + 4334/23043*x*y*t + 3778/23043*x*z*t + 4420/23043*y*z*t +

4420/23043*z^2*t - 4420/23043*x*t^2 + 6902/23043*y*t^2 - 4420/23043*t^3

-442/23043*x^3 + 442/23043*x^2*y - 442/23043*y^3 - 3544/23043*x*y*z -

6808/23043*y^2*z + 8800/23043*x*z^2 - 4392/7681*y*z^2 - 6290/23043*z^3 +

3544/23043*x^2*t + 6808/23043*x*y*t + 4376/23043*x*z*t + 8744/23043*y*z*t +

6290/23043*z^2*t - 8744/23043*x*t^2 + 8800/23043*y*t^2 - 6290/23043*t^3

-884/23043*x^3 + 884/23043*x^2*y - 884/23043*y^3 - 458/23043*x*y*z -

5660/23043*y^2*z + 5828/23043*x*z^2 - 2854/7681*y*z^2 - 3910/23043*z^3 +

458/23043*x^2*t + 5660/23043*x*y*t + 2734/23043*x*z*t + 6208/23043*y*z*t +

3910/23043*z^2*t - 6208/23043*x*t^2 + 5828/23043*y*t^2 - 3910/23043*t^3

and alternative inverse equations:

...

ParametrizeDegree5DelPezzo(X)

Let X be a degree 5 Del Pezzo surface anticanonically embedded in 5-dimensional
projective space over a number field. We allow that X can be a degenerate (singular)
Del Pezzo here. The scheme X is always parametrizable over the base field and this
intrinsic returns such a parametrisation without reduction to higher degree.

The scheme X has a finite automorphism group in this case, so the Lie Alge-
bra method cannot be applied. However, there is a more geometric method using
projections that works well for degree 5 and that is used here.

ParametrizeSingularDegree3DelPezzo(X,P2)

ParametrizeSingularDegree4DelPezzo(X,P2)

These two intrinsics compute whether a degree 3 (resp. 4) anticanonically embedded
singular Del Pezzo X has a parametrization over the base number field k and, if
so, return such a parametrization as a scheme map with inverse from P2 to X. A
projective plane P2 over the same base field k is the second argument of the intrinsic
and will be used as the domain of the map returned.

The conditions on X mean that is an irreducible degree 3 hypersurface in P 3 in
the first case or an irreducible complete intersection of 2 quadrics in P 4 in the second
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case, having only a finite number of singularities that are canonical A-D-E type in
either case. The condition that there is a finite non-empty set of singularities is
checked but whether these singularities are canonical is not checked. In the unlikely
event that a degree 3 hypersurface or degree 4 complete intersection has finitely
many singularities but one is non-canonical, the functions will fail at some point.

If there is a singular point p defined over the base field, projection from p gives an
immediate inverse parametrization of X in the degree 3 case and maps X onto a line
or conic bundle in P 3 in the degree 4 case, which is then parameterized by the special
routines for those cases. There remain a small number of configurations of conjugate
singularities in the contrary case, corresponding to certain special root subsytems of
E6 or D5. For these, individual methods have been devised and implemented. These
include an adaptation of the Lie algebra method for the degree 3 and 4 singular Del
Pezzo surfaces that are actually toric.

Example H116E22

The following is an example of a degree 3 hypersurface in P 3 over Q, that is a singular Del Pezzo
with 4 conjugate A1 singularities. It is handled very easily by the special case code.

> Q := RationalField();

> P2<a,b,c> := ProjectiveSpace(Q,2);

> P3<x,y,z,t> := ProjectiveSpace(Q,3);

> X := Scheme(P3, -4*x^2*y + 16*x*y^2 - y^3 + 2*x^2*z - 2*x*y*z +

> 7/2*y^2*z - 252*x*z^2 + 16*y*z^2 - 55*z^3 + 10*x^2*t + 14*x*y*t -

> 61/2*y^2*t - 3400*x*z*t + 216*y*z*t - 261*z^2*t - 11468*x*t^2 +

> 728*y*t^2 + 3987*z*t^2 + 21889*t^3);

> ParametrizeSingularDegree3DelPezzo(X,P2);

true Mapping from: Prj: P2 to Sch: X

with equations :

1/4*a^3 + 435/2*a^2*b - 4743/4*a*b^2 + 968*b^3 + 257/16*a^2*c + 183/8*a*b*c -

3647/16*b^2*c + 8*a*c^2 - 8*b*c^2 + c^3

-257/32*a^3 + 2547/32*a^2*b - 10419/32*a*b^2 + 8129/32*b^3 - 4*a^2*c + 22*a*b*c

- 66*b^2*c - 1/2*a*c^2 + 1/2*b*c^2

-57/32*a^3 - 173*a^2*b + 26459/32*a*b^2 - 1529/16*b^3 - 29/2*a^2*c + 83/4*a*b*c

- 25/4*b^2*c - 7/2*a*c^2 + b*c^2

-1/32*a^3 + 457/16*a^2*b - 4081/32*a*b^2 + 33/2*b^3 + 2*a^2*c - 7/4*a*b*c -

1/4*b^2*c + 1/2*a*c^2

and inverse

x*y*z - 2*y^2*z + 63/2*z^3 + 2*x^2*t - 9*x*y*t + 35/2*y^2*t + 299/2*z^2*t -

4567/2*z*t^2 - 25075/2*t^3

x^2*z - 1/4*y^2*z + 4*z^3 + 7*x^2*t - 2*x*y*t + 9/4*y^2*t + 19*z^2*t - 290*z*t^2

- 1593*t^3

x^3 - 63/4*x*y^2 + y^3 + 256*x*z^2 - 65/4*y*z^2 + 3454*x*z*t - 439/2*y*z*t +

11650*x*t^2 - 2957/4*y*t^2
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116.4.4 Minimization and Reduction of Surfaces
Given an algebraic variety defined by several polynomials with integer coefficients, re-
duction asks for another embedding of this Z-scheme, such that the defining polynomials
have smaller coefficients. Minimization asks for an isomorphic Q-scheme with minimal
invariants. Many constructions of algebraic varieties lead to very bad models and thus it
becomes necessary to perform minimization and reduction. Otherwise, subsequent calcu-
lations become impractical. The result of the minimization process is usually not unique.

Minimization is done locally for each prime of bad reduction. The local minimization
routines and the reduction routines are directly accessible. They may be helpful for local
computations or if the computation of all bad primes is too slow. Note that these sub-
routines do not check for semi-stability (in the sense of Mumford’s geometric invariant
theory). Unstable varieties may lead to infinite loops. As smooth hypersurfaces are known
to be stable the initial computation of the bad primes will fail if an unstable variety is
given.

In this section, minimization and reduction routines are described for Del Pezzo surfaces
of degrees 3 (cubic surfaces) and 4.

Minimization and reduction is also available for various kinds of genus one curves (see
Section 124.6) and plane quartics (see Section 114.12.3).

MinimizeCubicSurface(f, p)

Verbose MinRedCubSurf Maximum : 2

Given a cubic surface f as a homogeneous polynomial with integer coefficients,
this routine performs a minimization at the place p. The new equation and the
transformation matrix are returned. No checks of stability are done so that an
unstable surface will lead to an infinite loop.

ReduceCubicSurface(f)

Verbose MinRedCubSurf Maximum : 2

Given a cubic surface f as a homogeneous polynomial with integral coefficients, this
function computes a reduction of the surface. The second returned value is the
transformation used.

MinimizeReduceCubicSurface(f)

Verbose MinRedCubSurf Maximum : 2

Given a smooth cubic surface f as a homogeneous polynomial with integer coeffi-
cients, this function computes a minimized and reduced model of the surface. The
second return value is the transformation matrix. The transformation matrix ap-
plied to f will evaluate to a scalar multiple of the returned polynomial.

The algorithm is based on [Els].
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MinimizeDeg4delPezzo(f, p)

Verbose MinRedDeg4delPezzo Maximum : 1

Given a degree 4 del Pezzo surface f as a sequence of two quadrics with integer
coefficients, this function will compute a partially local minimized model for the
place p. The second return value is the transformation matrix.

MinimizeReduceDeg4delPezzo(f)

Verbose MinRedDeg4delPezzo Maximum : 1

Given a degree 4 del Pezzo surface as a sequence of two quadrics with integral
coefficients, this function computes a practically minimized and reduced model of
the surface. The second return value is the transformation matrix.

The transformation matrix applied to the initial polynomials will evaluate to
polynomials defining the same Q scheme as that defined by the returned quadrics.

For the reduction step, ReduceQuadrics is called.

MinimizeReduce(S)

Verbose MinRedCubSurf Maximum : 2

Verbose MinRedDeg4delPezzo Maximum : 1

Given a del Pezzo surface S of degree 3 or 4 this function will call the minimization
and reduction routines described above and converts the output scheme X to a del
Pezzo surface. The second returned value is the matrix hat maps S to the result.

Example H116E23

This example demonstrates minimization and reduction on del Pezzo surfaces of degree 3 and 4
obtained by blowing up rational points.

> P2 := ProjectiveSpace(RationalField(),2);

> pts := [P2| [-5,-10,-8], [-4,10,-4], [8,-2,-5], [0,-10,0], [1,5,7], [-7,-8,-6]];

> S := DelPezzoSurface(pts);

> _<W, X, Y, Z> := AmbientSpace(S); // give names to the variables

> S;

Del Pezzo Surface of degree 3 over Rational Field defined by

-W*X^2 + 318827/104630*X^3 + 46774615/29003436*W*X*Y -

2039633371/290034360*X^2*Y - 2588798/7250859*W*Y^2 +

246700427/58006872*X*Y^2 - 4904503/7250859*Y^3 + W^2*Z -

318827/104630*W*X*Z + 34829/52315*X^2*Z + 117476057/58006872*W*Y*Z -

2004449/27622320*X*Y*Z + 4769241/12890416*Y^2*Z - 34829/52315*W*Z^2 -

44696243/72508590*Y*Z^2

> MinimizeReduce(S);

Del Pezzo Surface of degree 3 over Rational Field defined by

-22*W^2*X + 38*W*X^2 - 4*X^3 - 28*W^2*Y + 103*W*X*Y - 48*X^2*Y + 44*W*Y^2 -

59*X*Y^2 - 24*Y^3 + 24*W^2*Z + 80*W*X*Z + 44*X^2*Z - 57*W*Y*Z + 73*X*Y*Z
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- 59*Y^2*Z - 79*W*Z^2 - 21*X*Z^2 - 5*Y*Z^2

Now we consider the surface of degree 4 obtained by blowing up only the first five points.

> T := DelPezzoSurface(pts[1..5]);

> _<V, W, X, Y, Z> := AmbientSpace(T);

> T;

Del Pezzo Surface of degree 4 over Rational Field defined by

-W^2 + 7031/194432*X^2 + V*Y + 10877/13888*X*Y + 47/280*W*Z + 412801/277760*X*Z

- 78153/138880*Y*Z - 86217/9721600*Z^2,

-W*X + 1693/6944*X^2 + 23/496*X*Y + V*Z + 26763/9920*X*Z - 4003/4960*Y*Z

- 233411/347200*Z^2

> MinimizeReduce(T);

Del Pezzo Surface of degree 4 over Rational Field defined by

-5*V^2 + 4*V*W + 8*W^2 + V*X - 8*X^2 - 8*V*Y + 3*W*Y + 3*X*Y + 15*Y^2 -

2*V*Z - 16*X*Z - 10*Y*Z,

-2*V^2 + V*W + 3*W^2 + 2*V*X + 2*W*X - 6*X^2 + 3*V*Y + 3*W*Y - 17*X*Y -

5*Y^2 + 5*V*Z - 22*X*Z - Y*Z + 13*Z^2

116.4.5 Cubic Surfaces over Finite Fields
In this section all cubic surface are represented by a homogeneous polynomial of degree 3
in a rank 4 polynomial ring. The coefficients are elements of a finite field.

NumberOfPointsOnCubicSurface(f)

Given a smooth cubic surface f over a finite field this routine computes the Frobenius
action on the lines. The return values are the number of points of the surface and the
Swinnerton-Dyer number of conjugacy class of the Weil group W (E6) that contains
the Frobenius.

Example H116E24

> p := NextPrime(3^100);

> r<x,y,z,w> := PolynomialRing(GF(p),4);

> S := x^3 + 2* y^3 + 7* z^3 + 11 * w^3 - 5 * (-x-y-z-w)^3;

> NumberOfPointsOnCubicSurface(S);

2656139888758747693387813220357796268292334528059462421112503157258849853119260\

79714208525578202

13

So we get a large number of points and the Frobenius has Swinnerton-Dyer number 13.
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IsIsomorphicCubicSurface(f,g)

UseLines BoolElt Default : false

Given cubic surfaces f and g defined over finite fields, the intrinsic returns true if
the surfaces are isomorphic. If f and G are isomorphic, there is a second return
value comprising a list of matrices such that gm will evaluate to a scalar multiple of f
for each matrix m in the list. In the case where there are several isomorphisms over
the algebraic closure of the basefield, one matrix for each isomorphism is returned.

Note that an isomorphism of smooth cubic surfaces is always given by a linear
map.

The computation is based on an analysis of a finite set of points associated to the
surface. Here we used the singularities of the hessian. If the hessian degenerates,
the 135 intersection points of the lines are used. Setting UseLines to true indicates
that the second algorithm is to be used.

As the algorithm involves huge field extensions it is only practical for surfaces
over finite fields.

Example H116E25

> _<x,y,z,w> := PolynomialRing(GF(101),4);

> S := x^3 + y^3 + z^3 + w^3 - (x+y+z+w)^3;

> time a,b := IsIsomorphicCubicSurface(S, S);

Time: 0.530

> #b;

120

> S := x^3 + 2*y^3 + 7*z^3 + 5*w^3 - y*z*w + x^2*w + 2*y*z^2;

> time a,b := IsIsomorphicCubicSurface(S, S);

Time: 0.480

> #b;

1

> S := x^3 + y^3 + z^3 + w^3;

> time a,b := IsIsomorphicCubicSurface(S, S);

Time: 22.830

> #b;

648

Thus the diagonal cubic surface has 648 automorphisms and the Clebsch cubic surface has 120.
Both examples are exceptional, a general cubic surface has a trivial automorphism group. The
first example is much slower because the hessian degenerates and the 27 lines are used.
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116.4.6 Construction of Cubic Surfaces

CubicSurfaceByHexahedralCoefficients(pol)

Given a separable polynomial p of degree 6 this intrinsic constructs a cubic surface
having the roots of the p as hexahedral coefficients. These surfaces automatically
have a Galois invariant set of 12 lines.

See [EJ10] for details.

CoblesRadicand(p)

Given a separable polynomial p of degree 6 this routine evaluates the Cobles quartic
at the roots of p. Up to a square factor this value is the discriminant of the cubic
surface constructed using hexahedral coefficients.

Example H116E26

> q<tt> := PolynomialRing(RationalField());

> p6 := tt^6 + 34*tt^4 + 180*tt^3 + 458*tt^2 + 524*tt + 212;

> CoblesRadicand(p6);

-676

> eqn := CubicSurfaceByHexahedralCoefficients(p6);

> Max([AbsoluteValue(c) : c in Coefficients(eqn)]);

1302161870313141409337256000 20

We have to use minimization and reduction to make further computations faster.

> S := MinimizeReduce(DelPezzoSurface(eqn));

> Equation(S);

6*y[1]^3 - 14*y[1]^2*y[2] + 6*y[1]*y[2]^2 - 6*y[2]^3 - 14*y[1]^2*y[3] +

9*y[1]*y[2]*y[3] + 11*y[2]^2*y[3] - 21*y[1]*y[3]^2 + 14*y[2]*y[3]^2 +

3*y[3]^3 - 3*y[1]*y[2]*y[4] + 10*y[2]^2*y[4] + 8*y[1]*y[3]*y[4] -

53*y[2]*y[3]*y[4] + 40*y[3]^2*y[4] + 9*y[1]*y[4]^2 + 39*y[2]*y[4]^2 -

23*y[3]*y[4]^2 - 16*y[4]^3

> M := PicardGaloisModule(S);

> Order(Group(M));

72

> CohomologyGroup( CohomologyModule(Group(M),M), 1);

Full Quotient RSpace of degree 2 over Integer Ring

Column moduli:

[ 2, 2 ]

Here the hexahedral approach gives us a cubic surface with nontrivial cohomology.

116.4.7 Invariant Theory of Cubic Surfaces
For background on this classical topic we refer to [Hun96, Appendix B] and [Sal58].

In this section a cubic surface is represented by a homogeneous polynomial of degree 3
in a rank 4 polynomial ring.
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116.4.7.1 Invariants
By a theorem of Clebsch the ring of invariants of a cubic surface is generated by 5 invariants
having degrees 8, 16, 24, 32 and 40. An explicit system of generators was found by Salmon.
By Geometric Invariant Theory, stable cubic surfaces are isomorphic if and only if their
invariants determine the same point in the weighted projective space P(1, 2, 3, 4, 5).

ClebschSalmonInvariants(f)

Computes a sequence of the numerical values of Salmon’s invariants of the cubic
surface given by the polynomial f . The second returned value is the discriminant
of the surface.

SkewInvariant100(f)

Computes the numerical value a degree 100 skew invariant I100 of the cubic surface
f . The square of I100 is an element of Clebsch invariant ring. It vanishes if and only
if the cubic surface has an Eckardt point.

CubicSurfaceFromClebschSalmon(inv)

Computes a cubic surface whose invariants are equal to the given sequence. The
algorithm requires the last invariant to be non-zero.

Example H116E27

> r4<x,y,z,w> := PolynomialRing(Rationals(),4);

> surf := r4!CubicSurfaceFromClebschSalmon([1,2,3,4,5]);

> surf := r4!MinimizeReduceCubicSurface(surf);

> surf;

-79*x^3 - 64*x^2*y + 228*x^2*z - 197*x^2*w + 320*x*y^2 - 470*x*y*z + 492*x*y*w

- 180*x*z^2 - 94*x*z*w - 242*x*w^2 - 125*y^3 + 100*y^2*z + 94*y^2*w + 530*y*z^2

- 886*y*z*w + 390*y*w^2 - 235*z^3 + 526*z^2*w - 825*z*w^2 + 279*w^3

> inv := ClebschSalmonInvariants(surf);

> inv;

[ 976235771549603375/3, 1906072563306098780753436239622781250/9,

930388109734329783009461918136480101451041525943359375/9,

3633112616588281944217451032208493848831995668840667046827293985351562500/81,

44334681229770747115131288025953470580778533302801673727424367422761364246\

35758514404296875/243 ]

> [inv[i] / inv[1]^i : i in [1..5]];

[ 1, 2, 3, 4, 5 ]

> SkewInvariant100(surf);

-1474765875168770247752210363977205595498018662672331422683943150206680481\

86921012313818705064245354658498892851426776914304662591690689504117661282\

58105510099234779123372779972973056799912669452615967667952645570039749145\

50781250/531441

Thus the constructed surface has equivalent invariants (as they are in P(1, 2, 3, 4, 5)) and no
Eckardt points.
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116.4.7.2 Covariants
A covariant is in the same ambient space as the initial surface. For example the equation
itself is a covariant. In the case of a cubic surface this gives a degree 1 order 3 covariant.
Products of covariants are again covariants. They form a ring over the ring of invariants.

LinearCovariants(f)

The intrinsic constructs a sequence containing Salmon’s 4 linear covariants for the
cubic surface f .

ClassicalCovariantsOfCubicSurface(f)

The intrinsic constructs a sequence containing the 4 classical covariants of the cubic
surface f . The first one is the hessian. The next two are classically known as T and
Θ. The last one is a degree 9 surface, which intersects f precisely in its 27 lines.

116.4.7.3 Contravariants
A contravariant is in the dual projective space of the initial surface. All contravariants
form a ring over the ring of invariants. Contravariants can be constructed from invariants
of varieties of the same degree but dimension one less by the Clebsch transfer principle.

NumericClebschTransfer(f, inv, p)

Given a form f and a user program inv that evaluates an invariant of a form of
the same degree but one variable less, this function evaluates the corresponding
contravariant of f at the point p. If this is repeated using sufficiently many different
knots, it is possible to reconstruct a polynomial representation of the contravariant
by interpolation.

ContravariantsOfCubicSurface(f)

Computes a sequence of 3 contravariants of the cubic surface f . By Clebsch transfer
they correspond to the invariants S, T , and the discriminant of plane cubic curves.
Thus the first one describes all hyperplanes such that the intersection with f = 0
gives a cubic curve with j-invariant equal to zero. The second gives all hyperplanes
intersecting f = 0 in a cubic curve with j-invariant 1728 (as long as the intersection
is smooth). The last one is S2−6T . This is the degree 12 polynomial of the (formal)
dual surface. It describes all hyperplanes such that the intersection with f = 0 is
singular. For smooth surfaces this is equivalent to tangency. If f = 0 is singular the
result will be reducible or even zero.

Example H116E28

This is the Cayley cubic surface. It has 4 singularities of type A1 and each results in a linear
factor of multiplicity two in the (formal) dual surface.

> r4<x,y,z,w> := PolynomialRing(Rationals(),4);

> surf := x*y*z + x*y*w + x*z*w + y*z*w;

> cont := ContravariantsOfCubicSurface(surf);

> Factorization(cont[3]);
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[

<w, 2>,

<z, 2>,

<y, 2>,

<x, 2>,

<x^4 - 4*x^3*y - 4*x^3*z - 4*x^3*w + 6*x^2*y^2 + 4*x^2*y*z + 4*x^2*y*w

+ 6*x^2*z^2 + 4*x^2*z*w + 6*x^2*w^2 - 4*x*y^3 + 4*x*y^2*z + 4*x*y^2*w

+ 4*x*y*z^2 - 40*x*y*z*w + 4*x*y*w^2 - 4*x*z^3 + 4*x*z^2*w + 4*x*z*w^2

- 4*x*w^3 + y^4 - 4*y^3*z - 4*y^3*w + 6*y^2*z^2 + 4*y^2*z*w + 6*y^2*w^2

- 4*y*z^3 + 4*y*z^2*w + 4*y*z*w^2 - 4*y*w^3 + z^4 - 4*z^3*w + 6*z^2*w^2

- 4*z*w^3 + w^4, 1>

]

116.4.7.4 Interaction of Covariants and Contravariants
One can apply a contravariant to a covariant (or vice versa). The result is a new covariant
(resp. contravariant) or an invariant. Its degree is the sum of the degrees of the arguments.
The order is the difference of the two orders. If the order of the result is zero, it is an
invariant.

One way to define the action is to interpret the contravariant as a differential operator,
i.e. xk

i acts as ∂k

∂xk
i

. Then one applies this differential operator to the covariant.

ApplyContravariant(c, d)

Given a covariant c and a polynomial d, this intrinsic interprets d as a differential
operator (i.e., x is replaced by d/dx). It applies this operator to the polynomial c
and returns the resulting polynomial.

In invariant theory d is a contravariant and c is a covariant.

Example H116E29

Here we compute Salmon’s first invariant by applying a degree 4 order 4 contravariant to the
hessian which is a degree 4 order 4 covariant.

> r4<x,y,z,w> := PolynomialRing(RationalField(),4);

> surf := x^3 + 2*y^3 + 3*z^3 + 5*w^3 - 2*x*y*(z-w) + (x+y+z+w)^3;

> cont := ContravariantsOfCubicSurface(surf);

> cov := ClassicalCovariantsOfCubicSurface(surf);

> ApplyContravariant(cont[1],cov[1]) / (2^11 * 3^9);

1438753/729

> ClebschSalmonInvariants(surf)[1];

1438753/729
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116.4.8 The Pentahedron of a Cubic Surface

A general cubic surface can be written as a sum of 5 cubes of linear forms. These are
unique up to scaling by third roots of unity and permutation. Thus we can associate 5
points in the dual projective space to a given cubic surface. They are called the faces of
its pentahedron. In general the faces of the pentahedron are defined over a larger field.

The algorithm is described in [RS00].

PentahedronIdeal(f)

Computes the ideal of the faces of the pentahedron of the cubic surface f .

Example H116E30

The first example is a randomly chosen cubic surface. By construction it has a proper rational
pentahedron.

> r4<x,y,z,w> := PolynomialRing(Rationals(),4);

> surf := x^3 + (x-y+2*z)^3 + (y-w)^3 + z^3 + (x - 3*y-2*z-7*w)^3;

> p_id := PentahedronIdeal(surf);

> Points(Cluster(ProjectiveSpace(Rationals(),3),Basis(p_id)));

{@ (-1/7 : 3/7 : 2/7 : 1), (0 : -1 : 0 : 1), (0 : 0 : 1 : 0),

(1/2 : -1/2 : 1 : 0), (1 : 0 : 0 : 0) @}

The next example shows that the pentahedron of the diagonal cubic surface degenerates.

> diag := x^3 + y^3 + z^3 + w^3;

> p_id2 := PentahedronIdeal(diag);

> Points(Cluster(ProjectiveSpace(Rationals(),3),Basis(p_id2)));

{@ (0 : 0 : 0 : 1), (0 : 0 : 1 : 0), (0 : 1 : 0 : 0), (1 : 0 : 0 : 0) @}

The final example is a surface without a pentahedron.

> degen := x^3+y^3+z^3 + x*y*z+ w^3;

> p_id3 := PentahedronIdeal(degen);

> Points(Cluster(ProjectiveSpace(Rationals(),3),Basis(p_id3)));

{@ (0 : 0 : 0 : 1) @}
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Chapter 117

HILBERT SERIES OF
POLARISED VARIETIES

117.1 Introduction

This chapter describes methods of generating graded rings that correspond to polarised
algebraic varieties of various types. They can be used to generate examples of subcanonical
curves—curves X polarised by a divisor D for which kD = KX , the canonical class, for
some integer k—K3 surfaces, Fano 3-folds and Calabi–Yau 3-folds. Of these, K3 surfaces
are the best developed, and a database containing several thousand surfaces forms part of
Magma.

117.1.1 Key Warning and Disclaimer
It is important to be aware of the nature and limitations of the output of the functions and
databases described in this chapter. We list five of the issues in numbered points below,
of which number 5 is the most important.

A typical example of a graded ring arises from a hyperelliptic curve C of genus g
embedded in weighted projective space (wps):

C : (y2 = f) ⊂ P(1, 1, g + 1)

where the coordinates on P(1, 1, g + 1) are x1, x2, y of weights 1, 1, g + 1 respectively, and
f = f2g+2(x1, x2) is a homogeneous polynomial of degree 2g + 2 in two variables having
distinct roots. This embedded variety has homogeneous coordinate ring

R(C) =
k[x1, x2, y]
(y2 − f)

where k is the ground field. As a concise representation of this data, we record only a
particular rational representation of the Hilbert series PR(t) of R = R(C),

PR(t) = 1 + 2t + 3t2 + · · ·+ (g + 1)tg + (g + 3)tg+1 + · · · = 1− t2g+2

(1− t)(1− t)(1− tg+1)

from which, as shown in Section 117.2.2, we deduce the fields
Weights = [ 1, 1, g+1 ], EquationDegrees = [ 2g+2 ].

Even though using this representation involves losing much information about the curve C,
it has preserved enough detail so that it is still possible to do such things as create another
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curve having the same basic invariants as C, or to recognise the family of hypersurfaces of
degree 2 in P(1, 1, g + 1) to which C belongs.

This example illustrates several of the points one should keep in mind when interpreting
the output of most functions in this chapter.

1. Weighted projective space (wps) The methods used here automatically generate
examples of varieties defined by (weighted) homogeneous equations in wps, and so one must
be familiar with wps from the outset. See Fletcher [IF00] for an accessible introduction to
wps if necessary.

2. Field of definition Since the functions described in this chapter do not return literal
equations of varieties, they do not assign a base field k. It is useful to have in mind k = C,
the complex numbers, but in many cases the base field is not relevant and one could work
over any field. Having said that, there are cases where the base field is a crucial part of
the problem.

3. Polarised varieties and their graded rings A polarised variety X, A is a variety
X together with a divisor A that is ample on X; that is, there is a multiple kA of A which
is a hyperplane section of X in some projective embedding X ⊂ PN . The homogeneous
coordinate ring of X in this embedding is a graded ring which is generated in degree 1.
But this embedding is not necessarily the one we want: the graded ring may be very large.
Instead, we consider the total graded ring of A

R(X, A) = ⊕n≥0H
0(X,OX(nA)),

which, with very few exceptions, is a much smaller ring. We do not define the terms
precisely here, but suffice it to say that the Proj-correspondence between varieties in wps
and the graded rings that are their homogeneous coordinate rings holds in this context
between X, A and R(X,A) just as it does for embeddings in ordinary projective space.

Thus we regard the following three pieces of data as being equivalent:
• a polarised variety X,A;
• the total graded ring R(X,A) of a polarised variety X, A;
• the embedding X ⊂ PN (w0, . . . , wN ) by all multiples of A, for some weights w0, . . . , wN .
And so we use the words ‘polarised variety’ and ‘graded ring’ interchangeably. The fact
that we also use ‘variable’, ‘coordinate’ and ‘generator’ synonymously is another reflection
of this equivalence.

4. Numerical data of families of varieties In fact, we do not consider a single
polarised variety X,A. Instead we record weaker information that characterises a family
of varieties of which X, A is a particular member. The key piece of information that we
work with is the Hilbert series PR(t) of the graded ring R = R(X, A). This is calculated
using the Riemann–Roch formula (RR) once we have decided which class of varieties we
are concerned with. In favourable cases, RR takes as ingredients some discrete pieces of
geometric data such as genus (which are invariant in flat families of suitably prescribed
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varieties) and returns the dimension of the n-th graded piece Rn of the graded ring R.
The algorithms work by taking such appropriate data as input, returning a Hilbert series
(which is done by applying a formula that is hard-coded) and then analysing that series.

We can often produce extra information such as a prediction of weights w0, . . . , wN in
which some suitable X is embedded. Some elementary examples of this are worked out
Section 117.2.1.

5. Main problem In most cases, there are no criteria to determine whether a particular
set of invariants for RR are actually the invariants of some polarised variety X,A. So even
though the data that is then generated by Magma purports to be associated to some
graded ring R(X,A), there is no reason in any particular case why there really should
exist such a polarised variety X, A. Fortunately, in many cases it is clear that there really
is a variety that realises the output. In the example of the genus g hyperelliptic curve above,
knowing the weights (1, 1, g +1) and the degree of the equation, it is easy to see that there
exists a nonsingular variety with these data and one could even write Magma routines to
present an example using the scheme machinery of Chapter 104.1.1 and then attempt to
construct a Weierstrass model of the hyperelliptic curve as described in Chapter 104.1.1
to obtain access to the specialist machinery provided for such curves.

As a rule, any polarised variety X,A that is described by the output of a function—
even by the K3 database—cannot be assumed to exist, or if it does exist, it might not take
exactly the form described. To prove that such a variety exists as described, it is sufficient
to show that there is a quasi-smooth variety in the given wps having the given Hilbert
series (or Hilbert numerator).

117.1.2 Overview of the Chapter
Graded ring calculations can be carried out in many different contexts. Included here are
functions that work with subcanonical curves, K3 surfaces, Fano 3-folds and Calabi–Yau
3-folds. The latter three have appeared recently as parts of PhD theses, by Altinok [Alt98],
Suzuki [Suz] and Buckley [Buc03] respectively. Other references for some of this material
are [ABR02], [Rei00], [Pap03], [Bro03].

Section 117.2 gives a sketch of the theory of Hilbert series and describes functions that
compute Hilbert series from Hilbert polynomials. It includes worked out examples of the
elementary calculations that are behind most of the chapter. It contains the important
definition of Hilbert numerator with respect to a collection of weights, which turns out to
be the key point when we try to describe graded rings as the coordinate rings of polarised
varieties.

Singularities are a main ingredient of RR in many applications, and Section 117.3
describes their construction and properties.

Five of the next six sections are devoted to different classes of polarised varieties.
In fact, there are four specific classes of polarised variety, and one general class which
encompasses them. Section 117.4 contains functions that apply to the general class, and
thus are inherited by all classes: when consulting later sections, one should bear in mind
that most basic functions will be described in this section. Section 117.5 covers the first
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and most elementary application of graded ring methods to studying subcanonical curves,
that is, curves polarised by a divisor that divides their canonical class.

K3 surfaces are described in Section 117.6. Although one can construct a single graded
ring in isolation, a benefit of the graded ring methods is that they can be used generate large
lists in one go. One such application is the amplification of Magma’s K3 database from
the 391 K3 surfaces in codimension at most 4 to the 24,099 cases in the current version.
This is discussed in Section 117.7 which includes a precise statement characterising which
K3 surfaces are included in the database and a further severe disclaimer.

There are two classes of 3-fold available: Fano 3-folds and Calabi–Yau 3-folds. The
former is covered in Section 117.8, the latter in Section 117.9. Each of these is in a fairly
early stage of development, having only basic creation functions and no systematic means
for generating the large lists similar to those that exist for K3 surfaces. Nevertheless,
one can begin to write lists. Section 117.10 describes how one can assemble such lists into
Magma databases, although the process is somewhat technical and has its own limitations.
Anyone attempting such lists will be aware that, following results of Kawamata, there are
only finitely many deformation families of Fano 3-folds—Suzuki [Suz] classifies those of
high Fano index—while it is still unknown whether or not there are finitely many families
of Calabi–Yau 3-folds, Kreuzer and Skarke’s vast lists [KS00] notwithstanding.

117.2 Hilbert Series and Graded Rings

The theory of Hilbert series is standard so it is only briefly touched on here. See Matsumura
[Mat89] Section 13 for more details (or other any standard textbook on algebra such as
Zariski–Samuel or Eisenbud.)

117.2.1 Hilbert Series and Hilbert Polynomials
Let R = ⊕Rn, the sum taken over n ≥ 0, be a finitely-generated graded k-algebra with
R0 = k and grading given by n. The Hilbert polynomial of R is the numerical polynomial
p(t) such that dim Rn = p(n) for all n sufficiently large. The Hilbert series of R is the
power series

P (R) =
∑

n≥0

(dimRn)tn.

For example, let C ⊂ P3 be the twisted cubic defined by the three equations

xz = y2, xt = yz, yt = z2

and let

R =
k[x, y, z, t]

xz − y2, xt− yz, yt− z2

be the homogeneous polynomial ring of C. Then one computes that

P (R) = 1 + 4t + 7t2 + 10t3 + · · ·
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as follows. Certainly R0 = k, and there are no equations of degree 1 so R1 is the 4-
dimensional vector space spanned by x, y, z, t. Now R2 is spanned by the 10 quadrics
x2, xy, . . . , t2, but these are related by the three equations, so dim R2 = 10 − 3 = 7. And
so on. If you are systematic about it, you will discover quickly that the dimension of Rn

is 3n + 1 for n ≥ 1. This can be proved by induction. So the Hilbert polynomial of R
is p(t) = 3t + 1, which determines every coefficient of the Hilbert series P (R) except the
constant term.

Consider a bigger example: let C = C10 ⊂ P(1, 1, 5) be a hyperelliptic curve of genus
4 and degree 2 given by an equation

y2 = f10(x1, x2)

in coordinates x1, x2, y on wps P(1, 1, 5) where f10 is some general polynomial of degree 10.
Again one calculates the Hilbert polynomial as p(t) = 2t− 3 and Hilbert series as

P (t) = 1 + 2t + 3t2 + 4t3 + 5t4 + 7t5 + 9t6 + · · · .

This power series can also be described as a rational function

P (t) =
1− t10

(1− t)2(1− t5)

from which one can formulate a rule of thumb for relating this expression to the description
of the curve as C10 ⊂ P(1, 1, 5) (or see the answer in Section 104.1.1 or [Rei00], Section 3.2).

Now there are other curves in wps that have the same Hilbert polynomial p as this
example, but which have a different Hilbert series. To find one, consider modifying early
terms of the series

P (t) = 1 + t + 2t2 + 4t3 + 5t4 + 7t5 + 9t6 + . . .

and attempt to build the curve B in some wps. The coefficient of the term t (which is
1 in this case) implies that there is one linear coordinate x. Then the 2t2 demands one
degree 2 coordinate y so that the 2-dimensional space of degree 2 homogeneous functions
is spanned by x2, y. In degree 3, x, y generate only a 2-dimensional space

〈
x3, xy

〉
, but

the graded piece in degree 3 is 4-dimensional, according to the term 4t3, so there must be
two more generators z1, z2. In degree 4 we see x4, x2y, y2, xz1, xz2 which is just right if we
assume that these are linearly independent (which we do). Similarly in degree 5 we hit the
right number on the nose. But in degree 6 we see 11 monomials:

x6, x4y, x2y2, y3, x3z1, xyz1, x
3z2, xyz2, z

2
1 , z1z2, z

2
2 .

These lie in a 9-dimensional vector space (9 being the coefficient of t6 in P (t)) so there
must be two relations between them. We could carry on in this vein, but in fact we have
done enough now: it is an exercise in wps to show that the curve

B = B6,6 ⊂ P(1, 2, 3, 3)
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defined by two general polynomials of degree 6 has genus 4 and degree 2 just as in the first
example. We will work this example in Magma in the next subsection.

Thus the Hilbert polynomial determines the coefficients of high powers of t in the Hilbert
series. So in this case, and more generally for the subcanonical curves of Section 117.5,
to determine a Hilbert series P one must produce both the Hilbert polynomial p and a
sequence V of the early coefficients that are not determined by p.

There is one extra twist that can happen: it is possible that there is not a single
Hilbert polynomial p that determines the higher coefficients, but a sequence of polyno-
mials p0, . . . , pr−1 so that the nth coefficient is given by pi(n) where i is the residue of
n modulo r. It is easy to generate examples of this using the intrinsics described be-
low. This phenomenon occurs naturally when the RR data includes quotient singularities
or fractional divisors, since these tend to make periodic corrections to an otherwise well-
determined Hilbert polynomial, and one could rephrase this as above by saying that there is
a sequence of Hilbert polynomials. In practice, this is a small distraction that is completely
bound up in the main creation intrinsics.

HilbertFunction(p,V)

HilbertFunction(Q,V)

The Hilbert function determined by a univariate polynomial p (the Hilbert polyno-
mial), or a sequence Q of univariate polynomials, and a sequence of initial values
V . The returned object is a function whose domain is the integers.

HilbertSeries(p,V)

HilbertSeries(Q,V)

The Hilbert series determined by a univariate polynomial p (the Hilbert polynomial),
or a sequence Q of univariate polynomials, and a sequence of initial values V . The
returned object is a rational function in one variable.

117.2.2 Interpreting the Hilbert Numerator
The Hilbert series of a variety X ⊂ P(w0, . . . , wN ) defined by equations of degrees
d1, . . . , dr has the form

P (t) =
1− td1 − td2 − · · · − tdr + te ± . . .± tk

(1− tw0) · · · (1− twN )
.

We refer to the numerator of this expression as the Hilbert numerator with respect to the
weights w0, . . . , wN , or simply Hilbert numerator if the weights are clear.

The aim is to apply a converse statement: if we can manipulate the Hilbert series
of a polarised variety into such a form, we guess that it is embedded in P(w0, . . . , wN )
by equations of degrees given by low degree terms with negative coefficients (where the
absolute value of the coefficient determines the number of equations of that degree).

This can be taken further: the syzygies, and indeed a free resolution of the ideal of X,
are also encoded weakly in the weights and the Hilbert numerator. For more details see
[Rei00], Section 3, or [ABR02], Section 4.
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HilbertSeriesMultipliedByMinimalDenominator(p,V)

HilbertSeriesMultipliedByMinimalDenominator(Q,V)

Let h be the Hilbert series determined by a univariate polynomial p, or a sequence Q
of univariate polynomials, and a sequence of initial values V . This function produces
a rational expression g(t)/Π(1 − td) for h, returning the numerator g as first value
and a sequence containing the factors 1− td of the denominator as second value.

HilbertNumerator(g, D)

The product g × Π(1 − td) taken over all integers d ∈ D, assuming the result is a
polynomial. This function is typically used when g is a Hilbert series and D is a
proposed collection of weights for a variety realising this series.

Example H117E1

We reproduce the example described in the introduction to this Section 117.2.

> T<t> := PolynomialRing(Rationals());

> p := 2*t - 3;

> V := [ 1, 2, 3, 4 ];

> h_fun := HilbertFunction(p,V);

> [ h_fun(n) : n in [0..7]];

[ 1, 2, 3, 4, 5, 7, 9, 11 ]

> h := HilbertSeries(p,V);

> h;

(t^5 + 1)/(t^2 - 2*t + 1)

The Hilbert series will be the Hilbert series of a polarised curve C (since the degree of the Hilbert
polynomial—the order of growth of the coefficients of the Hilbert series—is one). It is already
expressed as a rational function, so we apply a power series ring coercion to see the dimensions
of the graded pieces—we could increase the precision if required.

> S<s> := PowerSeriesRing(Rationals(),8);

> S ! h;

1 + 2*s + 3*s^2 + 4*s^3 + 5*s^4 + 7*s^5 + 9*s^6 + 11*s^7 + O(s^8)

The rule of thumb for interpreting Hilbert series as varieties defined by homogeneous polynomials
in wps requires one to write the Hilbert series in the form P/Q for polynomials P,Q, where Q is
a product of terms 1− ta (corresponding to the coordinates of weight a). The next line computes
the Hilbert series together with the minimal such expression.

> HilbertSeriesMultipliedByMinimalDenominator(p,V);

t^5 + 1

[ -t + 1, -t + 1 ]

One could interpret this return value as a Noether normalisation of the graded ring of C. Instead,
we try some values for a new weight a hoping to stumble on the weights of a wps in which C
embeds. We start with a = 4, then try a = 5.

> HilbertNumerator(h,[1,1,4]);

-t^9 + t^5 - t^4 + 1
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> HilbertNumerator(h,[1,1,5]);

-t^10 + 1

The first answer made little sense. Having included a generator in degree 4 it demanded an
equation of the same degree. That is certainly possible, but assuming the equation involves only
the weight 1 variables, it would factorise and the result would not be a variety. However, the final
answer is just what we hope for: it suggests that C is realised by a degree 10 curve in P(1, 1, 5),
which makes perfect sense and is what we expected.

Now consider the modified Hilbert series of the second example of Section 117.2 in which we
changed the early coefficients from V = [1, 2, 3, 4] to [1, 1, 2, 4], but kept the Hilbert polynomial p.

> h1 := HilbertSeries(p,[1,1,2,4]);

> S ! h1;

1 + s + 2*s^2 + 4*s^3 + 5*s^4 + 7*s^5 + 9*s^6 + 11*s^7 + O(s^8)

> HilbertNumerator(h1,[1,1,5]);

-t^10 + t^9 - t^8 - t^7 + t^6 - t^4 + t^3 + t^2 - t + 1

This implies that there is an equation in degree 1. Such an equation immediately eliminates one
of the two degree 1 coordinates which would be daft, so we eliminate this redundancy right at the
beginning by trying instead

> HilbertNumerator(h1,[1,5]);

t^9 + t^7 + 2*t^6 + t^5 + t^4 + 2*t^3 + t^2 + 1

In short, this suggests a new variable in degree 2 and two new variables in degree 3: this could
be done methodically by considering one generator at a time.

> HilbertNumerator(h1,[1,2,3,3,5]);

-t^17 + t^12 + 2*t^11 - 2*t^6 - t^5 + 1

Now examining this Hilbert numerator, we see that the first equation is in degree 5. But there
is a variable of degree 5. Although that is not a problem, we could try to remove the degree 5
variable, as we would, in practice, if we knew that it appeared linearly in the equation.

> HilbertNumerator(h1,[1,2,3,3]);

t^12 - 2*t^6 + 1

Finally, this suggests B6,6 ⊂ P(1, 2, 3, 3), and again it is an easy exercise in wps to confirm that
such a curve really does exist with the predicted properties.

FindFirstGenerators(g)

This intrinsic function returns a sequence containing the results of a first attempt
to deduce plausible weights of generators for the variety with Hilbert series g. The
method used proceeds by advancing through the coefficients of g, in order of in-
creasing degree, adding generators of that degree for each positive coefficient. The
algorithm stops when it first finds a negative coefficient.
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Example H117E2

We first make a Hilbert series which has initial terms 1 + 2t+ 3t2 + 4t3.

> T<t> := PolynomialRing(Rationals());

> p := 2*t - 3;

> V := [ 1, 2, 3, 4 ];

> h := HilbertSeries(p,V);

> h;

(t^5 + 1)/(t^2 - 2*t + 1)

> S<s> := PowerSeriesRing(Rationals(),4);

> S ! h;

1 + 2*s + 3*s^2 + 4*s^3 + O(s^4)

This h is, in fact, the Hilbert series of a graded ring generated by three elements in degrees 1,1,5.

> FindFirstGenerators(h);

[ 1, 1, 5 ]

There is no guarantee that this intrinsic will always find suitable weights, but it does return a
subset of the weights that must occur for any variety that realises the given Hilbert series.

ApparentCodimension(f)

ApparentEquationDegrees(f)

ApparentSyzygyDegrees(f)

If f = f(t) is a polynomial of the form

f = 1−
N0∑

i=1

a0,it
i +

N1∑

k=N0+1

a1,it
i − . . . + (−1)k−1

Nk−1∑

i=Nk−2+1

ak−1,it
i + (−1)ktNk

then the apparent codimension is k, the apparent equation degrees are those i for
which a0,i is nonzero (with a0,i equations having that degree i) and the apparent
syzygy degrees are those i for which a1,i is nonzero.

117.3 Baskets of Singularities
We describe how to create the various point and curve singularities, together with collec-
tions or baskets of these singularities that are an ingredient of RR in higher dimensions.

Recall the basic principle of singularity contributions in RR: when we nominate a basket
of singularities in the RR formula we do not necessarily expect the corresponding variety
to have exactly those singularities associated with it (although that is very commonly
the case), but rather to possess singularities which make exactly the same contribution
to the RR formula as the singularities of the basket. Thus, we only allow the creation
of a restricted class of singularities that (in good cases) allow us to realise all possible
contributions.
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117.3.1 Point Singularities
The point singularities that are allowed are always finite cyclic quotient singularities. In
the surface case (over the complex numbers C) they are always analytically isomorphic to
a neighbourhood of the origin in the quotient C2/G, where G is the group of r-th roots
of unity and the action is determined on eigencoordinates x, y of C2 by the action of a
primitive root of unity λ ∈ G:

λ · x = λax, λ · y = λby

for some a, b ∈ {0, . . . , r − 1}. Such a singularity is denoted by the symbol 1
r (a, b).

Similarly, one defines 3-dimensional quotient singularities, where the symbol 1
r (a, b, c)

denotes a cyclic quotient singularity. Of course, one can go into yet higher dimensions,
with symbol 1

r (a1, . . . , ak), but although the functions of this chapter can create such sin-
gularities, they do not yet calculate RR for singularities of dimension higher than three. By
definition, if p = 1

r (a1, . . . , ak), the index of p is the positive integer r and the polarisation
of p is the sequence [a1, . . . , ak].

The four main situations in which we use (quotient) point singularities are:
• Gorenstein surface singularities 1

r (a, r − a) with r coprime to a (for K3 surfaces)
• terminal 3-fold singularities 1

r (a, r − a, b) with r coprime to a, b (for Fano 3-folds)
• isolated canonical 3-fold singularities 1

r (a, b, c) with a + b + c = 0 mod r and r coprime
to each of a, b, c (for Calabi–Yau 3-folds)
• nonisolated canonical 3-fold singularities 1

r (a, b, c) with a+b+c = 0 mod r and no three
of r, a, b, c sharing a nontrivial common factor (for Calabi–Yau 3-folds).

In the final, nonisolated case, the points can be points at the intersection of two branches
of the 1-dimensional singular loci, or other points on 1-dimensional singular loci that do
not have the generic transverse behaviour. (This case is discussed further in Section 104.1.1
on curve singularities below.)

There is an additional key piece of data. The contribution of a point p to RR for
χ(X, A) depends upon the eigenspace of the G-action in which A lies. In other words,
the singularity is also polarised locally by A. This is called the local polarisation or the
eigenspace of the singularity (the latter to distinguish it more clearly from the polarisation),
and is another integer n in the range {0, . . . , r−1}. When we need to include the eigenspace
of A in the singularity, we use the symbol 1

r (a1, . . . , ak)n.

Example H117E3

We make a point that can lie on a surface.

> p := Point(7,[3,4]);

> p;

1/7(3,4)

> IsGorensteinSurface(p);

true

Now we make a point of a 3-fold.

> q := Point(5,2,[1,2,3]);
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> q;

1/5(1,2,3)_[2]

> IsTerminalThreefold(q);

true

> Eigenspace(q);

2

> p eq q;

false

We did not assign an eigenspace to the point p, so a default value was assigned.

> Eigenspace(p);

-1

117.3.1.1 Creation of Point Singularities

Point(r,n,Q)

Point(r,Q)

The point singularity with index a positive integer r, polarisation a sequence of
positive integers Q and local polarisation an integer n. The group action should
have no quasi-reflections, which means that no integer k > 1 is allowed to divide r
and all but one of the elements of Q. The local polarisation n modulo r should be
a unit modulo r. If it is not given as an argument, the default value is n = −1.

117.3.1.2 Accessing the Key Data and Testing Equality

Dimension(p)

Dimension of the variety on which the singularity p lies.

Index(p)

Index of the singularity p.

Polarisation(p)

Polarisation sequence of the singularity p.

Eigenspace(p)

Eigenspace of the polarising divisor of the point singularity p.

p eq q

Return true if and only if the two point singularities p, q have the following at-
tributes equal: dimension, index, polarisation, eigenspace.
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117.3.1.3 Identifying Special Types of Point Singularity

IsIsolated(p)

Return true if and only if the point singularity p is an isolated singularity; that is,
if and only if every element of its polarisation is coprime to its index.

IsGorensteinSurface(p)

Return true if and only if the point singularity p is a Gorenstein surface point; that
is, if and only if p is of type 1

r (a, r − a) for r, a coprime.

IsTerminalThreefold(p)

Return true if and only if the point singularity p is a terminal 3-fold point; that is,
if and only if it is isolated, dimension 3 and the polarisation is of the form a, b, r− b,
up to a permutation.

TerminalIndex(p)

The integer a when p is a singular point with polarisation sequence of the form
a, b, r−b, up to a permutation, assuming that p is a terminal 3-fold point singularity.

TerminalPolarisation(p)

Polarisation sequence of the singularity p in the order a, b, r − b, where r is the
index of p, and b ≤ r/2. There will be an error if p is not a terminal 3-fold point
singularity.

IsCanonical(p)

Return true if and only if the point singularity p is canonical; that is, if and only
if the sum of the polarisation is trivial modulo the index.

117.3.2 Curve Singularities
We follow Buckley’s analysis of curve singularities in RR [Buc03]. The first thing to
note is that curve singularities in Magma are always 3-dimensional, that is, they are
one-dimensional singular loci C ⊂ X of polarised 3-folds X, A. The degree of C is the
intersection number AC. At a general point of a curve singularity C, a transverse section
is a Gorenstein surface quotient singularity, that is, a point of type 1

r (a, r− a) for coprime
integers r, a. This is called the transverse type of C and r is called the transverse index of
C.

There are two further key attributes of a curve singularity C: two integers N, t that
carry information about the normal bundle of C and about possible special points on C.
We do not discuss the meaning of N here except to say that it encodes the splitting type
of the normal bundle (see [Buc03] and [SB] for further information), but in any case note
that there are intrinsics described below that can identify appropriate values for N given
some other invariants. This pair of invariants occur in RR only in the combination N/t,
which itself appears only linearly. So given enough coefficients of the Hilbert series as



Ch. 117 HILBERT SERIES OF POLARISED VARIETIES 3839

input, this value can be recovered. A curve, therefore, does have an attribute ‘magic’ that
records this magic number N/t, and this can be set (and used in RR) even if N, t are not
assigned.

We explain the attribute t. The transverse type of C gives a transverse section at
any general point along C. But there may be special points, so-called dissident points,
that do not have such a section. They certainly occur at an intersection point of two curve
singularities, but may also be other points in C. They are quotient singularities {pi} whose
indices are of the form rti for positive integers ti, where r is the transverse index of C.
The invariant t, called the index of C, is the GCD of the set of all such ti.

Example H117E4

We create a curve singularity with given transverse type.

> p := Point(3,[1,2]);

> C := Curve(1/3,p,4,3);

> C;

Curve of degree 1/3, N = 4, t = 3 with transverse type 1/3(1,2)

We check some of the characteristics of C.

> TransverseIndex(C);

3

> IsCanonical(C);

true

> MagicNumber(C);

4/3

117.3.2.1 Creation of Curve Singularities

Curve(d,p,m)

Curve(d,p,N)

Curve(d,p,N,t)

The 3-fold curve singularity of degree d, transverse type p (a point surface singu-
larity) and characteristic numbers N , t (which is 1 if not set) or magic number
m = N/t.

117.3.2.2 Accessing the Key Data and Testing Equality

Degree(C)

The degree of the curve singularity C.

TransverseType(C)

The transverse type of the curve singularity C, that is, a point surface singularity
that is the general transverse section of C.
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TransverseIndex(C)

The transverse index of the curve singularity C, that is, the index of the point
surface singularity that is a general transverse section of C.

NormalNumber(C)

The invariant N of the curve singularity C.

Index(C)

The invariant t (sometimes called τ) of the curve singularity C that is determined
by the indices of dissident points on C.

MagicNumber(C)

The number N/t of the curve singularity C, where N is the normal number of C
and t is the index of C.

Dimension(C)

The dimension of the curve singularity C (currently always 3).

IsCanonical(C)

Return true if and only if the transverse type of the curve singularity C is a canonical
(or Du Val) surface singularity.

C eq D

Return true if and only if the two curve singularities C, D have the following
attributes equal: dimension, degree, transverse type, magic number (or, equivalently,
the pair of invariants N, t).

117.3.3 Baskets of Singularities
A basket of singularities, or simply basket, is a collection of point and curve singularities.
One constructs baskets in the hope of finding a variety that has exactly those singularities
lying on it as its only singularities, and very often this is indeed the case. It is a marginal
issue here, but worth noting that in fact baskets are collections of ideal singularities of a
variety X that make exactly the same contributions to RR as the actual singularities of X.
So as a matter of principle, one is not primarily seeking varieties with exactly the basket
singularities, even though this is what happens in practice.
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117.3.3.1 Creation and Modification of Baskets

Basket(Q)

Basket(Q1,Q2)

The basket of singularities where Q, Q1, Q2 are sequences of point or curve singu-
larities.

EmptyBasket()

The basket of singularities containing no singularities.

MakeBasket(Q)

The basket of singularities containing point singularities that are encoded in the
sequence Q. This may occur in different ways. If Q is a sequence of sequences of
the form [r, a] (that is, each having length 2) with r, a coprime, then the result will
be a basket of points of the form 1

r (a, r − a). If Q is a sequence of sequences of
some common length N > 2, then the result will be a basket of points of the form

1
Q[1] (Q[2], . . . , Q[N ]). Note that a local polarisation n cannot be included in this
constructor: the default value n = −1 is always assumed.

Points(B)

The sequence of point singularities of the basket B.

Curves(B)

The sequence of curve singularities of the basket B.

117.3.3.2 Tests for Baskets

IsIsolated(B)

Return true if and only if all singularities of the basket B are isolated (so, in
particular, there are no curve singularities in B).

IsGorensteinSurface(B)

Return true if and only if all singularities of the basket B are Du Val singularities,
that is, are of the form 1

r (a, r − a).

IsTerminalThreefold(B)

Return true if and only if all singularities of the basket B are terminal 3-fold
singularities.

IsCanonical(B)

Return true if and only if all singularities of the basket B are canonical singularities.
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117.3.4 Curves and Dissident Points
Curves of singularities may contain special points not of the typical transverse type; these
are the dissident points. The following intrinsics generate sequences of possible dissident
points for a particular curve singularity. The point is that some of the invariants of a
curve singularity force a curve to have dissident points that together give a certain RR
contribution. It is not always easy to see what these points should be, so constructing by
hand baskets that include a particular curve singularity can be difficult. These intrinsics
all give suggestions for possible sets of dissident points.

CanonicalDissidentPoints(C)

A sequence of sequences of points, each of which minimally accounts for the index
of the curve singularity C (although further curves may be needed in order for it to
make sense).

SimpleCanonicalDissidentPoints(C)

A sequence of sequences of points, each of which minimally accounts for the index
of the curve singularity C and which does not allow further curves to meet C.

PossibleCanonicalDissidentPoints(C)

A sequence of points, each of may appear on the curve singularity C as a dissident
point.

PossibleSimpleCanonicalDissidentPoints(C)

A sequence of points, each of may appear on the curve singularity C as a dissident
point but which is not at the intersection of C with another curve.

117.4 Generic Polarised Varieties

Recall from Section 117.1.1 that, despite some ambiguity, we regard the following as being
equivalent: polarised varieties X, A; schemes in wps X ⊂ PN (w0, . . . , wN ) where A is a
degree 1 hyperplane section; and data about the Hilbert series of the graded ring R(X, A).
Thus we constantly refer to a polarised variety X, and we expect to be able to retrieve its
Hilbert series, its dimension, the codimension of its embedding and other such data.

With one exception, the intrinsics described in this section can be applied to all po-
larised varieties. The exception is the following little-used intrinsic that creates a polarised
variety that is not of a specific type.

PolarisedVariety(d,W,n)

The polarised variety of dimension d, with weights given by the sequence W of
positive integers and with Hilbert numerator the univariate polynomial n.
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117.4.1 Accessing the Data

Weights(X)

The weights of the polarised variety X.

Degree(X)

The degree of the polarised variety X.

Basket(X)

The basket of singularities of the polarised variety X.

RawBasket(X)

The basket of singularities of the polarised variety X in sequence format, that is,
the basket is a sequence of sequences, in which a singularity 1

r (a, b, c) is represented
as a sequence [r, a, b, c] of integers. (The Gorenstein surface singularity 1

r (a, r − a)
admits further abbreviation to [r, a].) Notice that the local polarisation n is not
included in this raw basket data; its default value n = −1 is assumed.

Dimension(X)

The dimension of the polarised variety X.

Codimension(X)

The codimension of the polarised variety X.

HilbertNumerator(X)

Numerator(X)

The numerator f(t) of the Hilbert series P (t) of the polarised variety X when
expressed as a rational function P = f(t)/& ∗ [1 − tw : w ∈ W ] where the product
in the denominator is taken over W , the sequence of weights of X.

NoetherWeights(X)

The weights corresponding to a Noether normalisation of the polarised variety X.
In other words, these are the weights of polynomials in the graded ring of X that
generate a polynomial subring of maximal dimension.

NoetherNumerator(X)

The numerator n(t) of the Hilbert series P (t) of the polarised variety X when
expressed as a rational function P = n(t)/& ∗ [1 − tw : w ∈ N ], where the product
in the denominator is taken over N , the sequence of Noether weights of X.

NoetherNormalisation(X)

Given a polarised variety X return a pair, the first term of which is the sequence of
Noether weights, the second the corresponding numerator.
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HilbertSeries(X)

The Hilbert series of the polarised variety X expressed as a rational function.

InitialCoefficients(X)

The coefficients of the Hilbert series of the polarised variety X expressed as a power
series. The number of coefficients returned is equal to the precision of the power
series ring in which the Hilbert series was expanded.

ApparentCodimension(X)

ApparentEquationDegrees(X)

ApparentSyzygyDegrees(X)

BettiNumbers(X)

If n(t) is the Hilbert numerator of X and is of the form

n = 1−
N0∑

i=1

a0,it
i +

N1∑

k=N0+1

a1,it
i − . . . + (−1)k−1

Nk−1∑

i=Nk−2+1

ak−1,it
i + (−1)ktNk

then the apparent codimension of X is k, the apparent equation degrees are given
by those i for which a0,i is nonzero (with a0,i equations of that degree i) and the
apparent syzygy degrees are those integers i for which a1,i is nonzero. The Betti
numbers are a sequence with first element the sum of all a0,i, second element the
sum of all a1,i, and so on until ak−1,i.

117.4.2 Generic Creation, Checking, Changing
Procedural versions of intrinsic functions modify polarised varieties at the generic level
because they preserve any subtypes; functional versions exist for special types of polarised
variety but not in general.

X eq Y

Return true if and only if the polarised varieties X and Y have the same dimension,
weights, basket and Hilbert numerator. In particular, these conditions imply that
X and Y have the same Hilbert series.

CheckCodimension(X)

Return true if and only if the codimension of X is equal to the apparent codimension
of X determined by its Hilbert numerator.

FirstWeights(X)

These are weights assigned to the polarised variety X during its construction that
carry some relevance; if no such weights were assigned, the usual weights of X will
be returned.
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IncludeWeight(∼X,w)

Include the positive integer w among the weights of X, adjusting all other data
associated to the embedding of X as required.

RemoveWeight(∼X,w)

Remove the positive integer w from the weights of X, assuming it appears there and
can be removed without destroying the property of the Hilbert numerator being a
polynomial. All other data associated to the embedding of X is modified as required.

MinimiseWeights(∼X)

Remove any weights from X whose presence is not required to keep the Hilbert
numerator of X a polynomial.

117.5 Subcanonical Curves

A subcanonical curve is a polarised variety C, D where C is a nonsingular curve of genus
g ≥ 2 and D is a divisor on C such that KC = kD for some positive integer k.

117.5.1 Creation of Subcanonical Curves

SubcanonicalCurve(g,d,Q)

The subcanonical curve C, D of genus g, degree d and initial Hilbert series coefficients
Q.

IsSubcanonicalCurve(g,d,Q)

Return true if and only if the data g, d,Q passes some basic checks that there is a
subcanonical curve C,D of genus g, degree d and initial Hilbert series coefficients
Q. In that case, the second return value is such a curve.

HilbertPolynomialOfCurve(g,m)

The Hilbert polynomial mt + 1− g of a divisor of degree m on a curve of genus g.

IsEffective(C)

Return true if and only if the polarising divisor of the subcanonical curve C is
effective; that is, if and only if the Hilbert series has the form 1 + p1t + · · · with
p1 > 0.
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117.5.2 Catalogue of Subcanonical Curves
This section describes intrinsics that allow the user to generate many examples of Hilbert
series of subcanonical curves and attempt to interpret them as curves embedded in wps.

EffectiveSubcanonicalCurves(g)

EffectiveSubcanonicalCurves(g,d)

A sequence containing data for effective subcanonical curves of genus g ≥ 3 (po-
larised by a divisor of degree d if the second argument is given).

IneffectiveSubcanonicalCurves(g)

IneffectiveSubcanonicalCurves(g,d)

A sequence containing data for ineffective subcanonical curves of genus g ≥ 3 (po-
larised by a divisor of degree d if the second argument is given).

117.6 K3 Surfaces

This section describes intrinsics that construct K3 surfaces. It also describes a few intrinsics
that can be used to study them, but see Section 117.4 for the general intrinsics that apply
to all polarised varieties.

The calculations are based on Altinok’s Riemann–Roch formula [Alt98] for polarised
K3 surfaces with Du Val singularities.

117.6.1 Creating and Comparing K3 Surfaces
The basic RR data from which a K3 surface can be created comprises an integer, the
genus, g ≥ −1 and a basket of (Gorenstein surface) point singularities B. The basket B
can be created explicitly as a basket using the functions of Section 104.1.1, but a convenient
shortcut is provided whereby the basket argument may be given ‘in raw basket format’,
that is, as a sequence B of length two sequences, each of the form [r, a], denoting the
singularity 1

r (a, r − a).

K3Surface(g,B)

A K3 surface with genus g and basket of singularities B (which may be a basket
type or in raw basket format [[r, a], ...]).

K3Copy(X)

A new K3 surface that carries exactly the same data as the K3 surface X.
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117.6.2 Accessing the Key Data

Genus(X)

The genus of the K3 surface X; that is, p1 − 1 where p1 is the coefficient of t in the
Hilbert series of X.

TwoGenus(X)

The 2-genus of the K3 surface X; that is, p2 − 1 where p2 is the coefficient of t2 in
the Hilbert series of X.

SingularRank(X)

The sum
∑

(r − 1) taken over the singularities 1
r (a, r − a) given in the basket of

singularities of the K3 surface X.

AFRNumber(X)

The number assigned to the K3 surface X in the low codimension lists of Altinok–
Fletcher–Reid.

117.6.3 Modifying K3 Surfaces

Sometimes it is desirable to add or remove weights from a given K3 surface. There are
two intrinsics that allow this to be done (and check that a weight really can be removed).
These intrinsics are used systematically in the construction of the K3 database.

IncludeWeight(X,w)

Return a new K3 surface that is the same as X but with the positive integer w
included among the weights and all other data associated to the embedding adjusted
as required.

RemoveWeight(X,w)

Return a new K3 surface that is the same as X but with the positive integer w
removed from the weights, assuming it appears there and can be removed without
destroying the property of the Hilbert numerator being a polynomial. All other data
associated to the embedding is adjusted as required.
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117.7 The K3 Database
The K3 database in Magma is a collection of 24,099 K3 surfaces. Recall from Section 117.6
the meaning of K3 surface in this context, and from Section 117.1.1 the relationship be-
tween the Hilbert series, the weights and the (Hilbert) numerator.

We describe the set of K3 surfaces selected for inclusion in the database. For g =
−1, 0, 1, 2, all K3 surfaces of genus g are included, there being 4281, 6479, 6627 and 6628
surfaces, respectively. For higher genus, the data associated to the 6628 K3 surfaces of
genus 2 propagates in a predictable way, so only those K3 surfaces with codimension at
most 7 and genus in the range 3 to 9 have been included.

Data is held in blocks of surfaces indexed by the first five coefficients of their Hilbert
series (excluding the constant term). Note that the t-coefficient of the Hilbert series is one
more that the genus, and this defect holds for all genera. To determine the number of
surfaces of genus 1, the intrinsics described below may be used. Note the genus argument
is a sequence beginning with the integer 2: the sequence is arranged so that the user can
ask a more precise question by including other leading genera (up to the first five), and
the value 2 is to account for the genus–Hilbert coefficient defect.

> D := K3Database();
> NumberOfK3Surfaces(D,[2]);
6627

The database is fairly large, so naive searches take time. Specialised tools, described
below, support much more efficient searches and should be used wherever possible. We
demonstrate this point with timings for a typical search. The first searches the entire
database for all K3 surfaces of genus 3 and takes over 2 minutes. It is much more efficient
to use a function that looks up curves according to their genus, since this is the primary
indexing property used by the database. The second search does this, and takes only a
fraction of the time.

> time [ X : X in D | Genus(X) eq 3 ];
Time: 139.510
> time [K3SurfaceK(D,[4],i) :i in [1..NumberOfK3Surfaces(D,[4])]];
Time: 0.500

117.7.1 Searching the K3 Database
In this section a simple example is presented of extracting a K3 surface with particular
properties from the K3 database. Section 104.1.1 provides much greater details and more
examples: note, in particular, that only a few hundred of the surfaces that occur in small
codimension have been confirmed to exist (even though the vast majority are believed to
exist).

Example H117E5

We begin by defining D to be the K3 database.

> D := K3Database();
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> D;

The database of K3 surfaces

It contains data associated to 24099 (families of) K3 surfaces.

> #D;

24099

There are several ways to access the K3 surfaces in the database. In the first place, the database
is organised into blocks of K3 surfaces that have a common genus. These blocks are then subdi-
vided into K3 surfaces that have a common 2-genus. The blocks having a common 2-genus are
further subdivided right down to 5-genus, that is, the coefficient of t5 in the Hilbert series. These
subdivisions are the natural indexing units of the database. One gets the third surface with genus
0 by

> X := K3Surface(D,0,3);

> X;

K3 surface no.3, genus 0, in codimension 1 with data

Weights: [ 1, 6, 8, 9 ]

Basket: 1/2(1,1), 1/3(1,2), 1/9(1,8)

Degree: 1/18 Singular rank: 11

Numerator: -t^24 + 1

Projection to codim 1 K3 no.2 -- type I from 1/9(1,8)

Unproj’n from codim 2 K3 no.4 -- type I from 1/10(1,9)

Unproj’n from codim 2 K3 no.15 -- type IV from 1/5(2,3)

Unproj’n from codim 3 K3 no.28 -- type II_1 from 1/4(1,3)

Unproj’n from codim 4 K3 no.84 -- type II_2 from 1/3(1,2)

Unproj’n from codim 6 K3 no.280 -- type II_5 from 1/2(1,1)

This printout displays a lot of information about this surface and its relationship to other surfaces.
The minimal printing option may be use to obtain a concise description of this surface alone.

> X:Minimal;

K3 surface (g=0, no.3) in P^3(1,6,8,9)

Basket: 1/2(1,1), 1/3(1,2), 1/9(1,8)

Numerator: -t^24 + 1

When using several genera to access a surface, the genus arguments must be collected together in
a sequence. For example, there are 282 K3 surfaces whose first three genera are p1 = 0, p2 = 1,
p3 = 3; that is, have weights that are of the form [2, 3, 3, . . .].

> NumberOfK3Surfaces(D,[0,1,3]);

282

We get the first of these as follows. The arguments inside the sequence brackets are coefficients of
the Hilbert polynomial, while the corresponding genus is one less than the coefficient. N.B. Note
the offset by −1 between these arguments and the genera.

> K3Surface(D,[0,1,3],1);

K3 surface no.1130, genus -1, in codimension 4 with data

Weights: [ 2, 3, 3, 3, 4, 4, 5 ]

Basket: 2 x 1/2(1,1), 5 x 1/3(1,2)
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Degree: 1/3 Singular rank: 12

Numerator: t^24 - ... + t^10 - t^9 - 2*t^8 - t^7 - t^6 + 1

Projection to codim 1 K3 no.820 -- type II_2 from 1/3(1,2)

Unproj’n from codim 5 K3 no.1131 -- type I from 1/5(2,3)

Unproj’n from codim 6 K3 no.1145 -- type II_1 from 1/4(1,3)

Unproj’n from codim 7 K3 no.1412 -- type II_2 from 1/3(1,2)

Unproj’n from codim 8 K3 no.2176 -- type IV from 1/2(1,1)

The genus and number of a K3 surface identifies it uniquely in the database, so the same function
may be used to see surface number 1131 which has projection to X.

> K3Surface(D,-1,1131) : Minimal;

K3 surface (g=-1, no.1131) in P^7(2,3,3,3,4,4,5,5)

Basket: 1/2(1,1), 4 x 1/3(1,2), 1/5(2,3)

Numerator: -t^29 + ... + 6*t^11 - 3*t^9 - 4*t^8 - t^7 - t^6 + 1

The projection is from the 1
5
(2, 3) singularity, resulting in the extra 1

2
(1, 1) and 1

3
(1, 2) points.

There are also searches that do not use the primary indexing directly. For example, the following
variation of K3Surface searches for a K3 surface with weights 2, 2, 3, 5, 7, 9, 11.

> K3Surface(D,[2,2,3,5,7,9,11]) : Minimal;

K3 surface (g=-1, no.1615) in P^6(2,2,3,5,7,9,11)

Basket: 3 x 1/2(1,1), 1/11(2,9)

Numerator: t^39 - ... + t^16 - t^13 - t^11 - t^9 + 1

K3Database()

The database of K3 surfaces.

Number(D,X)

The integer n such that the K3 surface Y := K3Surface(D,Genus(X)+1,n) in the
database D has the same Hilbert series as the K3 surface X. The second return
value is the K3 surface Y . If there is no such K3 surface, the returned index value
is zero.

Index(D,X)

The integer i such that the K3 surface Y := K3Surface(D,i) in the database D
has the same Hilbert series as the K3 surface X. The second return value is the K3
surface Y . If there is no such K3 surface, the returned index value is zero.
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Example H117E6

The ‘Number’ of a K3 surface in the database and its ‘Index’ may differ: the K3 surfaces of any
fixed genus are numbered separately, while the index runs over the whole database.
To illustrate this, consider the following K3 surface.

> X := K3Surface(1,[[2,1],[3,1],[4,1],[7,1],[8,1]]);

> X;

K3 surface in codimension 11 with data

Weights: [ 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 6, 7, 8 ]

Basket: 1/2(1,1), 1/3(1,2), 1/4(1,3), 1/7(1,6), 1/8(1,7)

Degree: 613/168 Singular rank: 19

Numerator: -t^47 + ... + 38*t^7 - 2*t^6 - 13*t^5 - 7*t^4 + 1

This surface has been calculated in isolation. The weights that have been assigned to it are just
enough to make sense of the initial terms of the Hilbert series, and to make the singularities. By
construction, the K3 database may have added weights to make simple projections work. So we
search for X in the database using either ‘Index’ or ‘Number’.

> D := K3Database();

> n,Y := Number(D,X);

> i,Y1 := Index(D,X);

> n,i;

1474 12234

This result means that X has the same Hilbert series as the 1474-th K3 surface in D of genus 1,
which is the same as the 12234-th K3 surface in D.

> Y eq Y1;

true

> Y1 eq K3Surface(D,i);

true

One can see that Y is in much higher codimension than X, so that extra weights have been
assigned to Y .

> Codimension(Y);

17

117.7.2 Working with the K3 Database

K3Surface(D,i)

The ith K3 surface in the K3 database D.

K3Surface(D,Q,i)

The ith K3 surface in the K3 database D among those with index suite Q = [g1 +
1, g2 + 1, ...].
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K3Surface(D,g,i)

The ith K3 surface in the K3 database D among those with genus g ≥ −1.

K3Surface(D,g1,g2,i)

The ith K3 surface in the K3 database D among those with genus g1 ≥ −1 and
2-genus g2 ≥ −1.

K3Surface(D,W)

The K3 surface in the K3 database D having the weights specified in the sequence
W .

K3Surface(D,g,B)

The K3 surface in the K3 database D with genus g ≥ −1 and basket of singularities
B (as a basket type or in raw sequence format).

117.8 Fano 3-folds

This section describes intrinsics that construct Fano 3-folds. It also describes a few intrin-
sics that can be used to study them, but see Section 117.4 for the general intrinsics that
apply to all polarised varieties.

The calculations are based on Suzuki’s Riemann–Roch formula [Suz] for polarised Fano
3-folds with terminal singularities.

Example H117E7

We make two Fano 3-folds having the same basket but different genus.

> X := Fano(2,MakeBasket([[3,1,2,2]]),2);

> X;

Fano 3-fold X,A of Fano index 2, Fano genus 2, in codimension 1 with data

Weights: [ 1, 1, 2, 3, 5 ]

Basket: 1/3(1,2,2)

Degrees: A^3 = 1/3, (1/12)Ac_2(X) = 8/9

Numerator: -t^10 + 1

> FanoGenus(X);

2

> FanoBaseGenus(X);

2

> Fano(2,MakeBasket([[3,1,2,2]]),3);

Fano 3-fold X,A of Fano index 2, Fano genus 3, in codimension 2 with data

Weights: [ 1, 1, 1, 2, 2, 3 ]

Basket: 1/3(1,2,2)

Degrees: A^3 = 4/3, (1/12)Ac_2(X) = 8/9

Numerator: t^8 - 2*t^4 + 1

In this example, the smallest possible genus—the Fano base genus—is 2, and an error will be
reported if a smaller value is requested.
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Note that the singularities used must be polarised by fA, where f is the Fano index: in practice,
this means their index r must be coprime to f and their weights must be of the form f, a, r − a.

117.8.1 Creation: f = 1, 2 or ≥ 3

Fano(f,B,g)

A Fano 3-fold with Fano index f ≥ 1, Fano genus g ≥ 0 and basket of singularities B.
The singularities must be terminal singularities. The basket can also be presented in
raw sequence format: in this case, B is a sequence containing terms such as [r, a, b, c]
which denotes the singularity 1

r (a, b, c).

Fano(f,B)

A Fano 3-fold with Fano index f ≥ 3 and basket of singularities B. The singularities
must be terminal singularities. The basket can also be presented in raw sequence
format: in this case, B is a sequence containing terms such as [r, a, b, c] which denotes
the singularity 1

r (a, b, c).

FanoIndex(X)

The Fano index f of the Fano 3-fold X.

FanoGenus(X)

The Fano genus of the Fano 3-fold X, an integer ≥ 0 equal to the dimension of the
space of sections of the polarising divisor. (The term genus often refers to two less
that this number).

FanoBaseGenus(X)

The smallest possible value for the Fano genus of the Fano 3-fold X.

BogomolovNumber(X)

The intersection number A(c1(X)2 − 3c2(X)) for the polarised Fano 3-fold X,A.

IsBogomolovUnstable(X)

Return true if and only if the Bogomolov number A(c1(X)2 − 3c2(X)) for the
polarised Fano 3-fold X, A is strictly positive.
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117.8.2 A Preliminary Fano Database

FanoDatabase()

The database of Fano 3-folds.

Fano(D,i)

The ith Fano 3-fold in the Fano database D.

Fano(D,f,i)

The ith Fano 3-fold in the Fano database D that has Fano index f .

Fano(D,f,Q,i)

The ith Fano 3-fold in the Fano database D that has Fano index f and initial
plurigenera as specified by the sequence Q (up to the first four plurigenera).

117.9 Calabi–Yau 3-folds

This section describes intrinsics that construct Calabi–Yau 3-folds. It also describes a few
intrinsics that can be used to study them, but see Section 117.4 for the general intrinsics
that apply to all polarised varieties.

The calculations are based on Buckley’s Riemann–Roch formula [Buc03] for polarised
Calabi–Yau 3-folds with canonical singularities.

CalabiYau(p1,p2,B)

The Calabi–Yau 3-fold X, A with h0(X,A) = p1, h0(X, 2A) = p2 and basket of
singularities B.

FindN(X)

MaximumN RngIntElt Default : 100

The first nonnegative value, for the Calabi–Yau 3-fold X, of NCi (where Ci is the
ith curve of the basket of X) together with the distance between successive values
of NCi . (The pair 0, 0 is returned if no solutions below the parameter MaximumN are
found).

FindN(p1,p2,B)

MaximumN RngIntElt Default : 100

The first nonnegative value of NCi (where Ci is the ith curve of the basket B of 3-
fold points and curves and p1, p2 are the first two genera) together with the distance
between successive values of NCi . (The pair 0, 0 is returned if no solutions below
the parameter MaximumN are found).
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117.10 Building Databases
This section contains a sketch of how databases of examples can be built. This is an aside
from the rest of the chapter, and is only of interest if one either wants to understand the
construction of the K3 database for its own sake, or wishes to create other similar lists
that take too long to be regenerated on demand. Note, however, that the database facility
described here is not suitable for very large databases: roughly speaking, it is intended for
those containing a few tens of thousands of elements, not millions, and certainly not in the
Kreuzer–Skarke [KS00] range.

117.10.1 The K3 Database
This section describes briefly the method of construction used for the K3 database. The
K3 database is fully installed in Magma—see Section 117.7 for instructions—and there is
no need to use the functions described here to rebuild it unless you intend to modify the
code to incorporate new information in the database.

The construction is in two steps. First we create all the K3 surfaces we require and
write them as abbreviated records to a series of files. Then we load these files one at a
time, writing their contents in further abbreviated form to a binary data file, K3S.dat.
The writing functions keep track of key indexing information and write this to an index
file, K3S.ind. Functions to read from these files are already installed, so the process is
completed by copying these two files to the standard data directory in the Magma libraries.

We now go through the process in detail.

117.10.1.1 Creating Many K3 Surfaces

CreateK3Data(g)

CreateK3Data(g,r)

CreateK3Data(g,B)

Create a sequence containing all K3 surfaces of genus g ≥ −1; restrict to those with
singular rank at most r, if given as an argument, or having baskets in the sequence
B of baskets, if given as an argument.

The return sequence is ordered according to the natural numerical order on the
coefficients of Hilbert series. Analysis of projections of Types I and II is made to
modify weights of K3 surfaces, and any inconsistencies between different predictions
of weights coming from different projections are reported.

117.10.1.2 K3 Surfaces as Records

K3SurfaceToRecord(X)

A record in K3 record format that contains a subset of the data associated to the
K3 surface X from which all attributes of X can be computed.

K3Surface(x)

The K3 surface with the same data as that of the record x in K3 record format.
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117.10.1.3 Writing K3 Surfaces to a File

WriteK3Data(Q,F)

Write the K3 surfaces in the sequence Q to the file with name given by the string F .
The resulting file F is a text file containing Magma code which, when loaded into
a Magma session, generates a sequence called data of records in K3 record format
that corresponds to Q.

117.10.1.4 Writing the Data and Index Files
With the data for the K3 database saved as a series of files “k3data-1”, “k3data0” and
so on, the command load "writek3db.m"; (or load "PATH/writek3db.m";) loads them
in turn, writes the two binary files and then deletes the data from the Magma session.
Magma must be running in the directory containing all the data files “k3data. . . ”.

117.10.1.5 Reading the Raw Data
In normal Magma use, even though the data in the K3 database is in coded form (as
a tuple, in fact), when returned to the user it is expressed as a K3 surface. Of course,
this final translation step takes a little time, insignificant in most use, but very significant
when searching through the whole database. So there are functions to access the raw data,
and then to translate it into a K3 surface. The search intrinsics installed in the Magma
packages use these functions, as should any new searches that need only modest increase
in speed.

K3SurfaceRaw(D,i)

K3SurfaceRaw(D,Q,i)

The i-th element of the K3 database D expressed as a tuple of data (or the i-
th element whose Hilbert series has coefficients of ti given by the integers in the
sequence Q, which may have length at most 5).

K3Surface(x)

The K3 surface with the same data as that of the tuple x that is in the raw K3
database format.

117.10.2 Making New Databases
Here we explain in general terms how to write new databases of polarised varieties. We
give complete instructions for writing the data and index files, but are more sketchy on
the other steps: you will have to assemble the data, write translation functions and write
any cosmetic wrapping functions for yourself.

Step 1: Prepare the directory. Make a new directory, ‘NewDB’ say, and
copy the files data spec.m, write.m, init info.m, write tools.m, write func.m,
create ind func.m into NewDB from the Magma package directories. Of these files, the
first two will have to be edited to conform to the required database, while the remaining
four are common to all databases.
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Step 2: Decide record format. Edit the file data spec.m. This determines which
data is stored, and places unbreakable restrictions on that data. In particular, the choice
of up to 5 indexing parameters is made here. Write intrinsics that translate between the
data in its original representation and in its record representation.

Step 3: Update the writing functions. Edit the file write.m.
Step 4: Collect the data. Write all required data as records in one or more files.

It is essential that the data is written to these files so that it can be read into a single
Magma session in increasing order (with respect to the chosen indexes).

Step 5: Build the binary data and index files.
Step 6: Move the binaries to the data libraries.
Step 7: Final cosmetics. Write as Magma package code any cosmetic wrappers

or search routines that are to be used with the new database. Document these intrinsics.
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Chapter 118

TORIC VARIETIES

118.1 Introduction and First Examples
We describe a package to work quite generally with toric geometry within the scope of
Magma’s scheme machinery. From that point of view, we regard toric varieties as a vast
array of possible ambient spaces for schemes, generalising the affine and projective spaces
already available. But of course toric geometry is a large topic in its own right, and in the
first place we present it for its own sake.

There are many different points of view on toric geometry. We model our approach on
several sources: the primary ones are Danilov [Dan78] and Cox [Cox95], but also Fulton
[Ful93] and Oda [Oda88].

One of the primary points of view, exemplified by Danilov [Dan78], is to regard the
two-way relationship between a part of scheme theory and the combinatorics of polyhedra
as foundational. This package can operate from that point of view.

Another, more recent, point of view is that of the Cox ring, introduced by Cox [Cox95],
a (multi-)graded polynomial ring that works as a homogeneous coordinate ring for a toric
variety (or indeed any variety with finitely-generated Picard group) in much the same way
as the coordinate ring of affine or projective space. This package can also operate from
this point of view, and indeed this is the central object in its design. Again, this is bound
to impose practical restrictions on the dimensions in which calculations can reasonably be
expected to work: we use these ‘Cox coordinates’ to define subschemes of toric varieties,
which often leads to Gröbner basis calculations, and these are famously intolerant of the
number of variables involved.

118.1.1 The Projective Plane as a Toric Variety
The projective plane is the toric variety corresponding to the fan with three maximal cones
lying in the Euclidean plane:

〈(0, 1), (1, 0)〉 , 〈(1, 0), (−1,−1)〉 , 〈(−1,−1), (0, 1)〉 .
Example H118E1

We build the projective plane (defined over the rational field) as a toric variety. There are various
simple constructors for this, but we do it slowly by constructing its fan first: we list the one-
dimensional rays of the fan, and then describe each maximal cone by listing the sequence of
indices of the rays that generate it.

> rays := [ [0,1], [1,0], [-1,-1] ];

> cones := [ [1,2], [1,3], [2,3] ];

> F := Fan(rays,cones);

> F;
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Fan F with 3 rays:

( 0, 1),

( 1, 0),

(-1, -1)

and 3 cones with indices:

[ 1, 2 ],

[ 1, 3 ],

[ 2, 3 ]

This is enough to determine a toric variety; we name its natural (Cox) coordinates as x, y, z during
the definition. (Since this is a scheme, it needs to have a base ring assigned.)

> X<x,y,z> := ToricVariety(Rationals(),F);

> X;

Toric variety of dimension 2

Variables: x, y, z

The irrelevant ideal is:

(z, y, x)

The grading is:

1, 1, 1

As with all schemes in Magma, points can be created by coercing sequences of coefficients (either
from the given base field or from an extension of that) into the scheme.

> X ! [1,2,3];

(1 : 2 : 3)

When working over an extension k of the base field, one must coerce into the point set (of k-valued
points of X).

> k<i> := QuadraticField(-1);

> X(k);

Set of points of X with coordinates in k

> X(k) ! [1,i,2*i];

(1 : i : 2*i)

The irrelevant ideal (described in the display of X above) describes the locus of coordinates that
do not represent points; in this case, the irrelevant ideal records the fact that (0 : 0 : 0) is not a
point of projective space.

> X ! [0,0,0];

>> X ! [0,0,0];

^

Runtime error in ’!’: Illegal coercion

> Y<u,v,w> := ProjectiveSpace(Rationals(),2);

> Y;

Projective Space of dimension 2

Variables: u, v, w

> IrrelevantIdeal(Y);

Ideal of Polynomial ring of rank 3 over Rational Field
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Order: Graded Reverse Lexicographical

Variables: u, v, w

Homogeneous

Basis:

[

u,

v,

w

]

> Gradings(Y);

[

[ 1, 1, 1 ]

]

> Fan(Y);

Fan with 3 rays:

( 1, 0),

( 0, 1),

(-1, -1)

and 3 cones with indices:

[ 1, 2 ],

[ 1, 3 ],

[ 2, 3 ]

118.1.2 Resolution of a Nonprojective Toric Variety
Danilov translated the projectivity of a toric variety into properties of the fan. In geometry,
projectivity is equivalent to the existence of an ample line bundle. In the combinatorics of
the fan, the requirement is the existence of positive linear functions on each cone that agree
on the boundaries and are strictly convex across boundaries. This is one small part of the
theory of divisors on toric varieties that we cover in much greater detail in Section 118.6.

Example H118E2

We construct an example of a complete but non-projective toric variety following Danilov’s original
example of how a fan can fail to admit a strictly convex piece-wise linear support function. We
will build the fan by hand, first specifying exactly the (one-dimensional) rays that it contains.

> rays := [ [0,0,1], [4,0,1], [0,4,1], [1,1,1], [2,1,1], [1,2,1], [-1,-1,-1] ];

Now we specify the top-dimensional cones that the fan contains. This is done by naming the rays
that generate each cone from the list of rays above. So, for example, the sequence [1,3,6] below
refers to the cone generated by the 1st, 3rd and 6th rays, that is by [0, 0, 1], [0, 4, 1] and [1, 2, 1].

> cones := [ [1,3,6], [1,4,6], [1,2,4], [2,4,5], [2,3,5], [3,5,6], [4,5,6],
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> [1,3,7], [1,2,7], [2,3,7] ];

This is enough information to determine a fan. The command below to construct the fan F with
this data takes a little time, since it checks that the maximal cones we nominated are indeed
maximal and intersect correctly to lie in a fan.

> F := Fan(rays,cones);

Finally we move away from the lattice world to the geometry by creating the toric variety corre-
sponding to the fan F .

> X := ToricVariety(Rationals(),F);

We can now ask questions of X as we would with any other variety or ambient space.

> Dimension(X);

3

> IsComplete(X);

true

> IsProjective(X);

false

Unfortunately our specimen is flawed: it has singularities.

> IsNonsingular(X);

false

> Y := Resolution(X);

> IsProjective(Y);

false

The last line takes a little time: Magma computes the ample cone of Y and then determines
whether or not it is empty. In this case, Y remains non-projective, although there is no reason to
expect that: Danilov’s original example can be made projective by blowing up a line (or simply
flopping a line).

118.1.3 The Cox Ring of a Toric Variety
The Cox ring of a toric variety is its natural homogeneous coordinate ring. It is a multi-
graded ring (with other data besides). It is often easier to construct the gradings for a
Cox ring than it is to describe a fan.

A Cox ring requires four pieces of data:

• a polynomial ring R (a ring of coordinates for an affine space)

• a sequence B of ‘irrelevant’ ideals (the loci defined by these are discarded from the
affine space)

• a sequence Z of sequences of integral weights for R; each element has length the number
of indeterminates of R

• a sequence Q of sequences of quotient gradings for R.
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Example H118E3

Cox’s original construction determines a Cox ring from the fan of a toric variety, and then realises
the toric variety as the quotient of the affine space (with the irrelevant locus discarded) by the
action of a torus (determined by the sequences of weights). But it is also possible simply to specify
this data independently of a fan.

> R<u,v,x,y,z> := PolynomialRing(Rationals(),5);

> irrel1 := ideal< R | u,v >;

> irrel2 := ideal< R | x,y,z >;

> B := [ irrel1, irrel2 ];

> Zwts := [

> [ 1, 1, 0, -1, -3 ],

> [ 0, 0, 1, 2, 3 ] ];

> Qwts := [];

> C := CoxRing(R,B,Zwts,Qwts);

> C;

Cox ring C with underlying Polynomial ring of rank 5 over Rational Field

Order: Lexicographical

Variables: u, v, x, y, z

The components of the irrelevant ideal are:

(z, y, x), (v, u)

The 2 gradings are:

1, 1, 0, -1, -3,

0, 0, 1, 2, 3

The pieces of data can be retrieved by Gradings(C), QuotientGradings(C) and so on.
In favourable cases, a Cox ring does indeed arise from a fan using Cox’s construction. This fan
can be recovered.

> F := Fan(C);

> F;

Fan F with 5 rays:

( 1, 0, 0),

( 0, 1, 0),

( 1, 1, 3),

(-2, -2, -3),

( 1, 1, 1)

and 6 cones with indices:

[ 1, 3, 4 ],

[ 1, 3, 5 ],

[ 1, 4, 5 ],

[ 2, 3, 4 ],

[ 2, 3, 5 ],

[ 2, 4, 5 ]

Alternatively, one can construct a toric variety from a Cox ring—as in Cox’s construction, the
Cox ring contains exactly the data required to construct a variety as a torus quotient.

> X := ToricVariety(C);

> Dimension(X);
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3

Sequences of coefficients not lying in the locus of the irrelevant ideal can be interpreted as closed
points of X as usual.

> X ! [1,0,1,0,0];

(1 : 0 : 1 : 0 : 0)

> X ! [1,0,0,0,0];

>> X ! [1,0,0,0,0];

^

Runtime error in ’!’: Illegal coercion

The attempted coercion of the second point fails because its x, y and z coordinates (the 3rd,
4th and 5th coefficients of the vector) are all zero, but the locus x = y = z = 0 is defined by a
component of the irrelevant ideal and so has been discarded: points of X do not have all three of
those coordinates simultaneously equal to zero.

The homogeneous coordinates that the Cox ring provides for X behave in a very similar way to
the homogeneous coordinates on projective space. In particular, one can define subschemes of
X by the vanishing of polynomials in the Cox ring that are homogeneous with respect to all the
Z-gradings (and the quotient gradings too).

> f := x^4*y + u^2*y^3 + v^5*z^2;

> Multidegree(X,f);

[ -1, 6 ]

[]

The multidegree is returned as two sequences: the first is the sequence of degrees of f with respect
to each of the Z-gradings in turn, and the second is that with respect to the quotient gradings (in
this case there are none). One defines a scheme as usual in Magma.

> V := Scheme(X, f);

> V;

Scheme over Rational Field defined by

u^2*y^3 + v^5*z^2 + x^4*y

> Dimension(V);

2

Much of Magma‘s scheme machinery works for schemes inside toric varieties, although at this
stage some does not. (Some functions are missing because of the absence of standard nonsingular
affine patches on toric varieties. In some cases these will be replaced by their orbifold analogues
in due course.)
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118.2 Fans in Toric Lattices

A fan F (in a toric lattice L) is a collection of cones in L satisfying typical conditions of cell
decompositions (the inclusion of faces of cones is part of the data, and the requirement that
any two cones of the fan intersect in a common face is enforced, for instance). The support
of F is the union of all the cones as a subset of L. The main two cases are when either
the support of F is the support of a single cone (which is regarded as being subdivided
by the cones of the fan) or it is the whole of L. Other cases do occur and are allowed
by our package—even having cones of different dimensions lying in complementary linear
subspaces of L, although that is not commonly interpreted geometrically.

There are several constructors for well-known fans, and also standard methods for
modifying fans. If these are not enough, then one can simply list the top-dimensional
cones of a fan; Magma will check that they intersect correctly and will add the lower-
dimensional cones as necessary.

Fans are of type TorFan.

118.2.1 Construction of Fans
We first list the comprehensive constructors for fans. After that, we have a collection of
constructors for well-known fans, and there also are methods for modifying fans.

Fan(Q)

define fan BoolElt Default : false

max cones BoolElt Default : false

The fan generated by the cones in the sequence Q.
The optional parameter define fan (by default false) can be set to true, so

that the verification whether the input data is correct is skipped. The optional
parameter max cones (by default false) can be set to true to skip the verification
whether the cones are maximal. Both will lead to errors later if the cones do not in
fact determine a fan as claimed.

Fan(R,S)

define fan BoolElt Default : false

The fan whose rays are the sequence of toric lattice points R (or sequences of se-
quences of integer coefficients of such points) and whose maximal cones correspond
to the sequence S of sequences of integers: each such sequence is interpreted as the
indices of a collection of rays of R, and these rays are used to generate a cone.

This constructor checks that the given data does indeed define a fan. This check
can be lengthy. It can be omitted by setting the parameter define fan to be false,
although this should be used with extreme care: there is no telling what might go
wrong if incorrect data is assumed to be a fan.

Fan(C)

The fan comprising all faces of the cone C.
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FanOfAffineSpace(n)

The standard fan of affine space of dimension n, where n is a positive integer.

FanOfWPS(W)

A standard fan for the weighted projective space with weights W , a sequence of
positive integers.

#FanOfProjectiveSpace(n)

The standard fan of projective space of dimension n, a positive integer.

FanOfFakeProjectiveSpace(W,Q)

A standard fan for the fake weighted projective space with weights W , a sequence
of positive integers, and finite cyclic group actions given Q, a sequence of sequences
of rational numbers. The finite cyclic actions are determined as follows: for Z/r to
act diagonally with weights (a1, . . . , an), include the sequence [a1/r,...,an/r] as
an element of Q.

ZeroFan(L)

The fan in the toric lattice L supported at the origin.

NormalFan(F,C)

The normal fan to a cone C in a fan F in the toric lattice that is the quotient of
the ambient lattice of F by the span of C; the quotient map of lattices is the second
return value.

SpanningFan(P)

The toric fan that spans the polyhedron P ; in particular, the rays of the fan are
generated by the vertices of P .

DualFan(P)

The toric fan dual to the polyhedron P .

Example H118E4

The spanning fan of a polytope P is a fan in the same lattice as P with rays passing through its
vertices. Here we make the fan of the Hirzebruch surface F1 as a spanning fan.

> P := Polytope([ [0,1], [1,0], [1,-1], [-1,0] ]);

> SpanningFan(P);

Fan with 4 rays:

( 0, 1),

( 1, 0),

( 1, -1),

(-1, 0)

and 4 cones with indices:

[ 1, 4 ],
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[ 1, 2 ],

[ 2, 3 ],

[ 3, 4 ]

The dual fan of a polytope P is a fan in the dual lattice to that of P whose rays are constant
when evaluated on some facet of P . Here we make the fan of projective 3-space as a dual fan.

> Q := StandardSimplex(3);

> DualFan(Q);

Fan with 4 rays:

(-1, -1, -1),

( 1, 0, 0),

( 0, 1, 0),

( 0, 0, 1)

and 4 cones with indices:

[ 2, 3, 4 ],

[ 1, 3, 4 ],

[ 1, 2, 4 ],

[ 1, 2, 3 ]

Mapping from: 3-dimensional toric lattice (Z^3)^* to 3-dimensional toric lattice

(Z^3)^* given by a rule

Blowup(F,v)

The blowup of the toric fan F at the point v that is an element of the ambient toric
lattice of F .

IsInSupport(v,F)

Return true if and only if the support of the fan F contains the element v of its
ambient toric lattice. In this case, the index of the first cone of F that contains v is
also returned.

Fan(F1,F2)

F1 * F2

Fan(Q)

F ^ n

The nth Cartesian product of the fan F .

F eq G

Return true if and only if the two fans F and G are equal as objects in Magma
(not simply isomorphic as fans).
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118.2.2 Components of Fans
One can retrieve all the usual components of fans: their cones, rays and other dimensional
skeletons, and so on.

Note the novelty of ‘virtual’ rays. Virtual rays occur when the rays of the fan in question
do not span the ambient lattice, and so one may easily never encounter them. They occur
if and only if the underlying toric variety is a product of C∗ times X for a smaller toric
variety X. If this the case, the fan is contained in a hyperplane (or smaller linear space,
if there are more factors of C∗). Virtual rays will be in the direction transversal to this
hyperplane. Thus a virtual ray is not an honest ray, but a formal object introduced to
allow C∗ as a toric variety and give meaning to its coordinate. If virtual rays are not
specified on creation, then Magma will decide where to put them (later, when it needs
them).

Skeleton(F,n)

The fan generated by cones of the fan F of dimension at most the integer n.

C in F

Return true if and only if the cone C is one of the cones of the fan F .

Cones(F)

A sequence of the maximal cones of the fan F .

Cones(F,i)

The sequence of all i-dimensional cones in the fan F .

ConesOfCodimension(F,i)

The sequence of all codimension i cones in the fan F .

AllCones(F)

A sequence of all the cones of the fan F .

Cone(F,i)

The ith cone of the sequence of maximal cones of the fan F .

Cone(F,S)

The cone of the fan F spanned by the rays of indices given by the sequence S of
integers. (If the optional parameter extend is set to true, then the smallest cone
containing the given rays will be returned.)

SingularCones(F)

A sequence containing the minimal singular cones of the fan F . A second (parallel)
sequence contains sets of the indices of the rays that generate these cones.
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Example H118E5

The weighted projective space P(1, 2, 2, 3) has a singular line (with stabiliser Z/2) and a singular
point (with stabiliser Z/3).

> F := FanOfWPS([1,2,2,3]);

> SingularCones(F);

[

2-dimensional simplicial cone with 2 minimal generators:

(-1, -1, 0),

(-1, 1, 0),

3-dimensional simplicial cone with 3 minimal generators:

(-1, -1, 0),

( 1, -1, -1),

( 1, 0, 1)

]

[

{ 1, 4 },

{ 1, 2, 3 }

]

The two cones correspond to these two singular strata; the point strata lying on the line are not
returned, since they can be recovered, if needed, as the cones having this 2-dimensional cone in
their boundary.

ConesOfMaximalDimension(F)

A sequence of maximal cones of the fan F when ordered by inclusion. (This is the
same as Cones(F) if the support of F is equidimensional.)

ConeIndices(F)

The sequence S of sets of integers, such that ith cone of the fan F is generated by
rays with indices S[i].

ConeIndices(F,C)

The sequence of integers that are the indices of the rays which generate the cone C
of the fan F .

ConeIntersection(F,C1,C2)

The intersection of the two cones C1 and C2, both of which are members of the fan
F . (This is usually more efficient than C1 meet C2 given that the fan F exists.)

Face(F,C)

The smallest cone in the fan F which contains the cone C. (An error is returned if
there is no such cone in the fan.)
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DualFaceInDualFan(P,Q)

The cone in the toric fan dual to the polyhedron P which is dual to the face of P
determined by the sequence of integers Q.

Rays(F)

A sequence containing the rays of the fan F (as a sequence of primitive lattice points
on each ray).

Ray(F,i)

The ith ray of the fan F (regarded as the primitive ambient toric lattice point on
the ray).

AllRays(F)

A sequence of the rays of the fan F (including all virtual rays).

PureRays(F)

A sequence of the (non-virtual) rays of the fan F .

PureRayIndices(F)

A sequence of the indices of the non-virtual rays of the fan F among all its rays.

VirtualRays(F)

A sequence of the virtual rays of the fan F .

VirtualRayIndices(F)

A sequence of the indices of the virtual rays of the fan F among all its rays.

118.2.3 Properties of Fans

Ambient(F)

The ambient toric lattice of the toric fan F .

IsComplete(F)

Return true if and only if the toric fan F has its entire ambient toric lattice; that
is, the cones of F cover the whole ambient space.

IsSingular(F)

Return false if and only if all the cones of the fan F are nonsingular.

IsNonsingular(F)

Return true if and only if all the cones of the fan F are nonsingular.
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IsQFactorial(F)

Return true if and only if all the cones of the fan F are Q-factorial.

IsTerminal(F)

Return true if and only if all the cones of the fan F are terminal.

IsCanonical(F)

Return true if and only if all the cones of the fan F are canonical.

IsGorenstein(F)

Return true if and only if all the cones of the fan F are Gorenstein.

IsQGorenstein(F)

Return true if and only if all the cones of the fan F are Q-Gorenstein.

118.2.4 Maps of Fans

F @ f

The image of the fan F by the map f of toric lattices.

SimplicialSubdivision(F)

SimplicialSubdivision(C)

A toric fan that is a simplicial subdivision of the toric fan F (or of the toric cone
C).

Example H118E6

If C is a cone on a square, then it has two small simplicial subdivisions—the two sides of a standard
flop, in fact. The simplicial subdivision intrinsic selects one of these.

> L := ToricLattice(3);

> C := Cone([L| [1,0,0], [0,1,0], [0,0,1],[1,-1,1]]);

> SiC := SimplicialSubdivision(C);

> #Cones(SiC);

2

> [ ZGenerators(B) : B in Cones(SiC) ];

[

[

(0, 1, 0),

(1, -1, 1),

(1, 0, 0)

],

[

(0, 1, 0),

(1, -1, 1),

(0, 0, 1)



3876 ALGEBRAIC GEOMETRY Part XVI

]

]

IsFanMap(F1,F2)

Return true if and only if the two fans F1 and F2 lie in the same toric lattice, and
each cone of F1 is a subcone of some cone of F2.

IsFanMap(F1,F2,f)

Return true if and only if the toric lattice map f between the ambient toric lattices
of the two fans F1 and F2 maps every cone of F1 into a cone of F2.

ResolveFanMap(F1,F2)

A toric fan F that resolves the identity map of lattices restricted to the toric fans
F1 and F2. The two fans Fi are expected to lie in the same lattice and to have the
same support, and the resulting toric fan F gives a common refinement of them;
in particular, F will admit a fan map into each of the Fi. (If the Fi have different
supports, the fan F will be supported on their intersection and will only refine
this part of each of them. Geometrically speaking, this will produce a non-proper
resolution.)

118.3 Geometrical Properties of Cones and Polyhedra

IsSingular(C)

Return true if and only if the affine variety associated with the cone C is singular.

IsNonsingular(C)

Return true if and only if the affine variety associated with the cone C is nonsin-
gular.

IsSmooth(P)

Return true if and only if the polyhedron P is a smooth polytope.

IsGorenstein(C)

Return true if and only if the cone C has (the primitive points on its) rays contained
in an affine hyperplane that is defined by an integral equation.

IsReflexive(P)

Return true if and only if the polyhedron P is reflexive; i.e. P and its dual P∨ are
both integral polytopes.
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IsQGorenstein(C)

Return true if and only if the cone C has (the primitive points on its) rays contained
in an affine hyperplane.

GorensteinIndex(C)

The Gorenstein index of the affine variety corresponding to the cone C together
with the dual vector determining the equation of the hyperplane. (It is an error if
C is not Q-Gorenstein.)

GorensteinIndex(P)

The Gorenstein index of the lattice polytope P ; i.e. the smallest positive integer k
such that kP∨ is an integral polytope.

IsQFactorial(C)

IsSimplicial(P)

Return true if and only if the cone C or polytope P is simplicial.

IsTerminal(C)

Return true if and only if the singularity of the affine variety associated to the cone
C is (at worst) terminal.

IsCanonical(C)

Return true if and only if the singularity of the affine variety associated to the cone
C is (at worst) canonical.

IsFano(P)

Return true if and only if the polyhedron P is a Fano polytope (i.e. of maximum
dimension in the ambient lattice, containing the origin strictly in its interior, with
primitive lattice vertices).

Example H118E7

We make the cone corresponding to the (affine) terminal quotient singularity C3/(Z/5) where
Z/5 acts as the 5th roots of unity in the diagonal representation diag(1, 2, 3).

> L := ToricLattice(3);

> v := L ! [1/5,2/5,3/5];

> LL,emb := AddVectorToLattice(v);

> C := PositiveQuadrant(L);

> CC := Image(emb,C);

> CC;

Cone CC with 3 generators:

(1, 0, 0),

(0, 1, 0),
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(3, 1, 5)

We can check that this really is terminal and compute its Gorenstein index, the least positive
multiple of the canonical class that is Cartier.

> IsTerminal(CC);

true

> GorensteinIndex(CC);

5 (1, 1, -3/5)

We can compute a resolution of singularities of this cone, the analogue of a simplicial subdivision
for cones, although we must treat it as a fan to do so.

> F := Fan(CC);

> F;

Fan F with 3 rays:

(0, 1, 0),

(1, 0, 0),

(3, 1, 5)

and one cone with indices:

[ 1, 2, 3 ]

> Resolution(F);

Fan with 8 rays:

(0, 1, 0),

(1, 0, 0),

(3, 1, 5),

(2, 1, 2),

(1, 1, 1),

(3, 1, 3),

(3, 1, 4),

(2, 1, 3)

and 11 cones

Note that this is not a minimal resolution: such a resolution would only need to subdivide at
the four additional rays at the (original) lattice points 1/5(1, 2, 3), 1/5(2, 4, 1), 1/5(3, 1, 4) and
1/5(4, 3, 2).

118.4 Toric Varieties
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118.4.1 Constructors for Toric Varieties
We list some simple constructors for simple toric varieties. There are more general con-
structors for toric varieties (either from their fans or their Cox rings) in other sections.

ToricVariety(k,n)

Projective n-space Pn defined over the field k as a toric variety.

ToricVariety(k,Z)

The (weighted) projective space P(Z) defined over the field k with weights the
positive integer sequence Z as a toric variety.

ToricVariety(k,Z,Q)

The fake weighted projective space defined over the field k with weights the positive
integer sequence Z and a single sequence of quotient weights the sequence Q of
rational numbers.

ToricVariety(k,M,v)

The n-dimensional toric variety n ≥ 2 defined over the field k with weights begin
the two sequences of integers (of the same length n + 2) that comprise M and
linearisation the length 2 integer sequence v. (This toric variety is the GIT quotient
of kn+2 by a 2-dimensional torus acting with weights M and linearisation v. To
get a toric variety of the right dimension, v must lie in the mobile cone implicit in
the notation. In practice, this means that the columns of M must generate a cone
with vertex in a 2-dimensional toric lattice and v must lie in the ‘very-interior’ of
that cone, in the sense that it must lie in the strict interior of C and in the subcone
generated by all columns of M except the two most extreme.)

Example H118E8

We build a Hirzebruch surface as a GIT quotient.

> X<u,v,x,y> := ToricVariety(Rationals(),[[1,1,0,-1],[0,0,1,1]],[1,1]);

> X;

Toric variety of dimension 2

Variables: u, v, x, y

The components of the irrelevant ideal are:

(y, x), (v, u)

The 2 gradings are:

1, 1, 0, -1,

0, 0, 1, 1

The polarisation (1, 1) that we used is forgotten—all that is left is X.

ToricVariety(k)

The zero-dimensional point over the field k defined as a toric variety.
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ProjectiveSpace(k,n)

Projective n-space Pn defined over the field k.

ProjectiveSpace(k,W)

FakeProjectiveSpace(k,W,Q)

The (fake) weighted projective space over the field k with weights the sequence of
integers W (and quotient weights the sequence of sequences of rational numbers, if
provided).

118.4.2 Toric Varieties and Their Fans

ToricVariety(k,F)

The toric variety (defined over the field k) corresponding to the toric fan F .

Fan(X)

The toric fan corresponding to the toric variety X.

Rays(X)

The rays of the fan of the toric variety X.

OneParameterSubgroupsLattice(X)

The lattice of weights of the toric variety X; this is the lattice which supports the
toric fan of X.

MonomialLattice(X)

The monomial lattice of the toric variety X, namely the toric lattice dual to that
containing the fan of X.

CoxMonomialLattice(X)

The lattice whose elements represent Weil divisors on the toric variety X; it is dual
to ray lattice of X.

DivisorClassLattice(X)

The divisor class lattice of the toric variety X.

IrrelevantIdeal(X)

A sequence of ideals that are the components of the irrelevant ideal of the toric
variety X.

QuotientGradings(X)

A sequence of sequences of rational numbers describing the quotients by finite cyclic
groups that arise in the construction of the toric variety X.

NumberOfQuotientGradings(X)

The number of sequences the generate the quotient gradings of the toric variety X.
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118.4.3 Properties of Toric Varieties

IsSingular(X)

Return false if and only if the toric variety X is nonsingular.

IsNonsingular(X)

Return true if and only if the toric variety X is nonsingular.

IsGorenstein(X)

Return true if and only if the toric variety X is Gorenstein.

IsQGorenstein(X)

Return true if and only if the toric variety X is Q-Gorenstein.

IsQFactorial(X)

Return true if and only if the toric variety X is Q-factorial.

IsTerminal(X)

Return true if and only if the toric variety X has (at worst) terminal singularities.

IsCanonical(X)

Return true if and only if the toric variety X has (at worst) canonical singularities.

IsComplete(X)

Return true if and only if the toric variety X is complete.

IsProjective(X)

Return true if and only if the toric variety X is projective.

IsFano(X)

Return true if and only if the anticanonical divisor of the toric variety X is ample.

IsFakeWeightedProjectiveSpace(X)

Return true if and only if the toric variety X has exactly one Z-grading.

IsWeightedProjectiveSpace(X)

Return true if and only if the toric variety X has exactly one Z-grading and no
quotient gradings.
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118.4.4 Affine Patches on Toric Varieties

ToricAffinePatch(X,i)

The affine patch corresponding to i-th cone of fan of the toric variety X together
with the inclusion map.

ToricAffinePatch(X,S)

ToricAffinePatch(X,S)

The toric variety, obtained from the toric variety X by set the monomials of the
sequence S set to be non-zero (or alternatively the variables of X with indices from
the sequence of integers S set non-zero). The inclusion map is returned as a second
value.

118.5 Cox Rings

The Cox ring of a toric variety X is a polynomial ring whose variables are in bijection with
the 1-skeleton of the fan of X together with three sequences of additional data:

(1) a sequence of the components of an ideal called the irrelevant ideal;

(2) a sequence of integral lattice points determining weights of Gm actions, called the Z
weights;

(3) a sequence of rational lattice points determining weights of finite cyclic group actions,
called the quotient weights.
When the Cox ring of a toric variety is displayed in Magma, all nontrivial data is also

printed, but any sequences that are empty are omitted.
Cox rings provide a powerful way to construct toric varieties: under some mild condi-

tions, specification of data of this nature determines a toric variety.

118.5.1 The Cox Ring of a Toric Variety
Cox [Cox95] associates a ring, now called the Cox ring, to a toric variety, and Magma
allows exactly the same construction.

CoxRing(X)

The Cox ring of the toric variety X.

CoxRing(k,F)

The Cox ring of the toric variety defined over field k by the fan F .
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Example H118E9

We build the weighted projective space P2(1, 2, 3).

> P<x,y,z> := ProjectiveSpace(Rationals(),[1,2,3]);

The Cox ring of P2(1, 2, 3) is the usual homogeneous coordinate ring, graded by the weights 1, 2, 3
of the space—that is, x has weight 1, y has weight 2 and z has weight 3.

> CoxRing(P);

Cox ring with underlying Graded Polynomial ring of rank 3 over Rational Field

Order: Graded Reverse Lexicographical

Variables: x, y, z

Variable weights: [1, 2, 3]

The irrelevant ideal is:

(x, y, z)

The grading is:

1, 2, 3

The irrelevant ideal is the usual one for projective spaces: it decrees that (0, 0, 0) is not a point
of P2 since it lies in the locus defined by the irrelevant ideal.

Example H118E10

We build a toric variety X2 whose fan resembles that of P2.

> F2 := Fan([[1,2],[-2,-1],[1,-1]], [[1,2],[1,3],[2,3]]);

> X2<u,v,w> := ToricVariety(Rationals(),F2);

However, X is not isomorphic to P2. The small catch is that the 1-skeleton of the fan F2 that
we defined (in other words, those three vectors (1, 2), (−2,−1) and (1,−1)) does not generate the
lattice N , but only a sublattice. So X will be the quotient of P2 by some finite group action.

> CoxRing(X2);

Cox ring with underlying Polynomial ring of rank 3 over Rational Field

Order: Lexicographical

Variables: u, v, w

The irrelevant ideal is:

(w, v, u)

The quotient grading is:

1/3( 0, 2, 1 )

The integer grading is:

1, 1, 1

The returned data are very similar to those for the Cox ring of P2. The difference is in the third
piece of data: a sequence containing the single element 1/3(0, 2, 1). This indicates that X is the
quotient of P2 by the action of Z/3 given by

ε : (u, v, w) 7→ (u, ε2v, εw).

where ε is a cube-root of unity.
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118.5.2 Cox Rings in Their Own Right
The introduction to this section describes Cox rings in abstract terms. It is possible to
define them as polynomial rings plus additional data without naming a toric variety or a
fan in the first place.

CoxRing(R,B,Z,Q)

The Cox ring with polynomial ring R of rank n (that is, having n variables) and
additional data as follows: B is a sequence of ideals (or of sequences of elements of
R, each of which will be interpreted as the generators of ideals); Z is a sequence of
sequences of integers, each one of length n; Q is a sequence of sequences of rationals,
each one of length n.

The sequence B is regarded as the components of the irrelevant ideal, and Z and
Q are the Z weights and quotient weights respectively.

C1 eq C2

Return true if and only if the two Cox rings C1 and C2 have the same underlying
polynomial rings and are defined by the same combinatorial data.

BaseRing(C)

CoefficientRing(C)

The coefficient field of the Cox ring C.

UnderlyingRing(C)

The underlying polynomial ring of the Cox ring C.

Length(C)

The rank of the underlying polynomial ring of the Cox ring C, that is, the number
of polynomial variables of C.

IrrelevantIdeal(C)

The irrelevant ideal of the Cox ring C.

IrrelevantComponents(C)

A sequence containing the components of the irrelevant ideal of the Cox ring C.

IrrelevantGenerators(C)

A sequence of sequences, each containing the generators of the components of the
irrelevant ideal of the Cox ring C.

Gradings(C)

The Z gradings of the Cox ring C, that is, a sequence of sequences of integers.
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NumberOfGradings(C)

The number of Z gradings of the Cox ring C.

QuotientGradings(C)

The quotient gradings of the Cox ring C, that is, a sequence of sequences of rational
numbers.

NumberOfQuotientGradings(C)

The number of quotient gradings of the Cox ring C.

C . i

The i-th indeterminate for the underlying polynomial ring of the Cox ring C.

AssignNames(∼C, S)

Procedure to change the printed names of the indeterminates of the Cox ring C.
The ith indeterminate will be given name the ith element of the sequence S of
strings (which has length at most the number of indeterminates of C). This does
not change the names of the indeterminates for calling—this must be done with an
explicit assignment or with the angle bracket notation when defining the Cox ring
in the first place.

Name(C,i)

The ith variable of the underlying polynomial ring of the Cox ring C.

118.5.3 Recovering a Toric Variety From a Cox Ring
It is simple either to recover a toric variety from a Cox ring (if one exists at all) or the
fan and associated lattice machinery corresponding to the toric variety. The algorithm is
straightforward: use the Z weights to determine the rays of a fan and then the irrelevant
ideal to construct the rest of the cone structure of the fan. The quotient weights may then
require the lattice to be extended to a larger lattice but containing the same fan. With
this point of view, the Cox ring can be regarded as the primary collection of data of a toric
variety.

ToricVariety(C)

The toric variety whose Cox ring is C. It is not checked whether the Cox data
defines a toric variety; if you are unsure, you should ask for the fan.
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Example H118E11

Sometimes, rather than defining a fan, it is easier to construct a Cox ring first and build a toric
variety from that.

> R<x1,x2,x3,y1,y2,y3,y4> := PolynomialRing(Rationals(),7);

> I := [ ideal<R|x1,x2,x3>, ideal<R|y1,y2,y3,y4> ];

> Z := [ [1,1,1,0,-3,-5,-5], [0,0,0,1,1,1,1] ];

> Q := [];

> C := CoxRing(R,I,Z,Q);

> C;

Cox ring C with underlying Polynomial ring of rank 7 over Rational Field

Order: Lexicographical

Variables: x1, x2, x3, y1, y2, y3, y4

The components of the irrelevant ideal are:

(y4, y3, y2, y1), (x3, x2, x1)

The 2 gradings are:

1, 1, 1, 0, -3, -5, -5,

0, 0, 0, 1, 1, 1, 1

> X := ToricVariety(C);

> X;

Toric variety of dimension 5

Variables: x1, x2, x3, y1, y2, y3, y4

The components of the irrelevant ideal are:

(y4, y3, y2, y1), (x3, x2, x1)

The 2 gradings are:

1, 1, 1, 0, -3, -5, -5,

0, 0, 0, 1, 1, 1, 1

Now Magma can compute the fan of X if we really want it.

> Fan(X);

Fan with 7 rays:

( 1, 0, 0, 0, 0),

( 0, 1, 0, 0, 0),

( 0, 0, 1, 0, 0),

( 1, 1, 1, 2, 0),

(-3, -3, -3, -5, 0),

( 0, 0, 0, 0, 1),

( 2, 2, 2, 3, -1)

and 12 cones

Fan(C)

The fan associated to the Cox ring is C; an error is reported if there is no such fan.

CoxMonomialLattice(C)

The Cox monomial lattice of the Cox ring C.
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DivisorClassLattice(C)

The divisor class lattice of the Cox ring C.

MonomialLattice(C)

The monomial lattice of the Cox ring C.

OneParameterSubgroupsLattice(C)

The one-parameter subgroups lattice of the Cox ring C.

RayLattice(C)

The ray lattice of the Cox ring C.

DivisorClassGroup(C)

The divisor class group of the Cox ring C.

RayLatticeMap(C)

The map from the ray lattice of the Cox ring C to the ambient lattice of its fan.

WeilToClassGroupsMap(C)

WeilToClassLatticesMap(C)

Comparison maps between toric lattices related to the Cox ring C of a toric variety.

118.6 Invariant Divisors and Riemann-Roch Spaces

Divisors on toric varieties work in the same way as on any other varieties, except that
within each linear equivalence class it is possible to choose torus invariant representatives.
These invariant divisors are composed of toric strata, and so in raw combinatorial terms
one can regard divisors as being integer (or rational) labels on the rays of the fan. This is
a convenient way to construct divisors, but there are many other methods.

As for other schemes on which divisor calculations are defined in Magma, divisors on
a toric variety have a single divisor group as their parent. Divisors can be constructed by
coercing appropriate data into this group, but this is not the only method so it can be
ignored for most purposes. (This group is, however, the connection between divisors and
the toric variety, so it is always alive in the background.)
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118.6.1 Divisor Group

DivisorGroup(X)

The divisor group of the toric variety X. This is simply a parent object for divisors
on X, and it is not computed as an abstract group.

ToricVariety(G)

The toric variety of which G is the divisor group.

G1 eq G2

Return true if and only if the divisor groups G1 and G2 are those of the same toric
variety.

Divisor(G,S)

Divisor(G,S)

The divisor on the toric variety X associated to the divisor group G with coefficients
given by the sequence S of integers or rationals with respect to the rays of the fan
of X.

Divisor(G,i)

The divisor on the toric variety X associated to the divisor group G given by the
vanishing of the ith coordinate of X.

118.6.2 Constructing Invariant Divisors

Divisor(X,S)

The Weil divisor (respectively Q-Weil divisor) on the toric variety X whose multi-
plicity on the ith coordinate divisor is the ith element of the sequence S of integers
(respectively, rational numbers).

Divisor(X,i)

The divisor on the toric variety X given by the vanishing of the ith coordinate of
X.

Divisor(X,f)

The divisor on the toric variety X defined by the polynomial f of the Cox ring of
X.

Divisor(X,m)

If m is in the monomial lattice of the toric variety X, this gives the principal divisor
on X corresponding to the monomial m. If m is a form on the ray lattice of X, then
this gives the Weil divisor corresponding to m.
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ZeroDivisor(X)

The zero divisor on the toric variety X.

Representative(X,m)

effective BoolElt Default : true

A divisor D on the toric variety X whose class modulo linear equivalence equals m,
an element of the divisor class group of X. Unless the parameter effective is set
to false, D will be chosen to be effective if possible.

Representative(X,m)

effective BoolElt Default : true

A divisor D on the toric variety X whose class modulo linear equivalence equals m,
an element of the Picard lattice or divisor class lattice of X. Unless the parameter
effective is set to false, D will be chosen to be effective if possible.

CanonicalDivisor(X)

The canonical divisor of the toric variety X.

CanonicalClass(X)

group MonStgElt Default : “Pic”
The class of canonical divisor of the toric variety X. By default this is returned as
an element of the Picard lattice of X (and X must be Q-Gorenstein for this to make
sense). However, the parameter group can be changed to Cl to return the divisor
in the divisor class lattice or ClZ to return the divisor in the divisor class group.

D1 + D2 n * D - D D1 - D2 D * v

Standard arithmetic operations for divisors D, D1, D2 on a toric variety, where n ∈ Q
and v is a point of the ambient toric lattice of the corresponding fan.

Example H118E12

We compute the Kawamata blowup of 1/7(1, 2, 5). First we construct the singular cone by hand:

> L := ToricLattice(3);

> C := PositiveQuadrant(L);

> v := L![1/7,2/7,5/7];

> LL,phi := AddVectorToLattice(v);

> CC := Cone(phi(Rays(C)));

> CC;

3-dimensional simplicial cone CC with 3 minimal generators:

(1, 0, 0),

(0, 1, 0),

(4, 1, 7)

Now we compute the blowup.

> FF := Fan(CC);
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> vv := phi(v);

> vv;

(3, 1, 5)

> GG := Blowup(Fan(CC),vv);

The blowup map is easy to recover:

> X := ToricVariety(Rationals(),FF);

> Y<x,y,z,t> := ToricVariety(Rationals(),GG);

> f := ToricVarietyMap(Y,X);

> f;

A map between toric varieties described by:

(t)^(2/7)*(x),

(t)^(1/7)*(y),

(t)^(5/7)*(z)

Finally we shall compute the discrepancy of this Kawamata blowup. It should be 1/7.

> KX := CanonicalDivisor(X);

> KY := CanonicalDivisor(Y);

> KY - Pullback(f,KX);

Q-Weil divisor with coefficients:

0, 0, 0, 1/7

118.6.3 Properties of Divisors

Variety(D)

The toric variety on which the divisor D is defined.

Parent(D)

The divisor group of a toric variety in which the divisor D lies.

Weil(D)

The multiplicities on rays of the fan of X that determine the invariant divisor D,
where X is the toric variety on which D is defined.

Cartier(D)

The sequence of toric lattice elements (of the monomial lattice of X) that determine
the divisor D on the toric affine patches of the toric variety X on which D lies. This
requires that D be Q-Cartier.

IsQCartier(D)

Return true if and only if some integer multiple of the divisor D on a toric variety
is Cartier.
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IsCartier(D)

Return true if and only if the divisor D on a toric variety is Cartier.

IsWeil(D)

Return true if and only if the divisor D on a toric variety is a Weil divisor (that is,
its coefficients are integers rather than rational numbers).

IsAmple(D)

Returns true if and only if the divisor D on a toric variety is ample.

IsNef(D)

Return true if and only if the divisor D on a toric variety is nef.

IsBig(D)

Return true if and only if the divisor D on a toric variety is big.

PicardClass(D)

The class in the Picard lattice corresponding to the Q-Cartier divisor D.

MovablePart(D)

The movable part (or mobile part) of the divisor D on a toric variety.

Example H118E13

We compute a variety as a blowup of the projective plane.

> X := ProjectiveSpace(Rationals(),[1,1,1]);

> Y<u,v,x,y> := Blowup(X, &+Rays(Fan(X))[1..2]);

> Y;

Toric variety of dimension 2

Variables: u, v, x, y

The components of the irrelevant ideal are:

(y, x), (v, u)

The 2 gradings are:

0, 0, 1, 1,

1, 1, 1, 0

We consider a (toric coordinate) divisor on Y .

> D := Divisor(Y,4);

> MovablePart(D);

Weil divisor with coefficients:

0, 0, 0, 0

> MovablePart(D) eq ZeroDivisor(Y);
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true

The movable part of this divisor is the zero divisor. Adding a little bit of another effective divisor
doesn’t yet make a mobile divisor, but it has made it stably mobile: some multiple now has a
movable part.

> E := D + (1/2)*Divisor(Y,u);

> MovablePart(E);

Weil divisor with coefficients:

0, 0, 0, 0

> MovablePart(2*E);

Weil divisor with coefficients:

1, 0, 0, 1

> MovablePart(2*E) eq (D + Divisor(Y,u));

true

ImageFan(D)

The dual fan to the rational polyhedron of sections of the divisor D on a toric variety
X. If X is a complete variety, this will give the fan of Proj of the ring of sections of
positive powers of D.

Proj(D)

Proj (as a toric variety) of the ring of sections of the divisor D on a toric variety.
The map of underlying lattices which determines the map Variety(D) → Proj(D)
is also returned.

RelativeProj(D)

The relative (sheaf) Proj of sections of the divisor D on a toric variety. If D is Q-
Cartier, then the identity will be constructed; for non Q-Cartier divisors, a partial
Q-factorialisation will be given.

IntersectionForm(X,C)

If the cone C is a codimension 1 face of the fan of the toric variety X, return the dual
toric lattice vector that represents intersection of the toric subvariety corresponding
to C.
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118.6.4 Linear Equivalence of Divisors

IsQPrincipal(D)

Return true if and only if some integer multiple of the divisor D on a toric variety
is principal.

IsPrincipal(D)

Return true if and only if the divisor D on a toric variety is principal.

IsLinearlyEquivalentToCartier(D)

Return true if and only if the divisor D on a toric variety is linearly equivalent to
a Cartier divisor; if so, then a representative Cartier divisor is also returned.

AreLinearlyEquivalent(D,E)

IsLinearlyEquivalent(D,E)

Return true if and only if the divisors D and E are linearly equivalent.

DefiningMonomial(D)

The monomial (if D is effective) or rational monomial defining the divisor D on a
toric variety.

LatticeElementToMonomial(D,v)

The monomial in the Cox ring that corresponds to the monomial lattice element v
when regarded as a section of the divisor D.

118.6.5 Riemann–Roch Spaces of Invariant Divisors

RiemannRochPolytope(D)

The Riemann–Roch space of the divisor D as a polytope in the monomial lattice of
the underlying toric variety.

RiemannRochBasis(D)

A basis of the Riemann–Roch space of the divisor D on a toric variety X: this is a
sequence of rational functions on X.

RiemannRochDimension(D)

The dimension of the Riemann–Roch space of the divisor D on a toric variety.

GradedCone(D)

The graded cone of sections of multiples of the divisor D on a toric variety. In other
words, the integral points of the ith graded piece of this cone represent sections of
the divisor i ∗D.

Polyhedron(D)

The integral polyhedron whose integral points corresponds to sections of the divisor
D.
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Example H118E14

We make a simple toric variety Y by blowing up the plane.

> X := ProjectiveSpace(Rationals(),[1,1,1]);

> Y<u,v,x,y> := Blowup(X, &+Rays(Fan(X))[1..2]);

> Y;

Toric variety of dimension 2

Variables: u, v, x, y

The components of the irrelevant ideal are:

(y, x), (v, u)

The 2 gradings are:

0, 0, 1, 1,

1, 1, 1, 0

We make a non-effective divisor as a difference of fibres of the natural map from Y to the line.

> D := 2*Divisor(Y,u) - Divisor(Y,v);

> IsEffective(D);

false

> P := Polyhedron(D);

> monos := [ LatticeElementToMonomial(D,v) : v in Points(P) ];

> monos;

[

u,

v

]

The polyhedron P is not quite the Riemann–Roch space of D, but it is for a divisor linearly
equivalent to D.

> [ AreLinearlyEquivalent(Divisor(Y,m),D) : m in monos ];

[ true, true ]

HilbertSeries(D)

The Hilbert series of the divisor D on a toric variety X, namely

Σm≥0 dim H0(X, mD).

This assumes that the spaces of sections H0(X, D) of D finite dimensional. This
will be true if X is projective, for example, but it holds in other cases too.

HilbertPolynomial(D)

The Hilbert (quasi-)polynomial for the divisor D. The space of sections of D must
be finite dimensional. That is, a sequence of polynomials [p0, . . . , pr−1] of length r,
the quasi-period of the Hilbert polynomial, so that dimH0(X,mD) is the value of
ps(k) where m = kr + s is the Euclidean division of m by r; in other words, s is the
least residue of m modulo r. Note that since Magma indexes sequences from 1, we
have that pi = HilbertPolynomial(D)[i+1].
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HilbertCoefficients(D,l)

The first l + 1 coefficients of the Hilbert series of the divisor D on a toric variety
(starting with 0D up to and including lD).

HilbertCoefficient(D,i)

Thefirst ith coefficient of the Hilbert series of the divisor D on a toric variety.

Example H118E15

One can recreate the Cech cohomology calculation of the Riemann–Roch space of a divisor D on
a toric variety X:

H0(X,OX(D)) = ∩σ(mσ + σ̌)

where the sum is taken over top-dimensional cones σ in the fan of X, and mσ is the monomial in
the dual lattice which determines D on the affine patch Xσ; σ̌ is the cone dual to σ.

> X<x,y,z> := ProjectiveSpace(Rationals(),[1,3,5]);

> D := Divisor(X,[2,3,1]);

> cones := Cones(Fan(X));

> RRD := &meet [ Polytope([Cartier(D)[i]]) + Dual(cones[i]) : i in [1..3]];

> IsPolytope(RRD);

true

We could compute the number of points of this cone RRD by saying #Points(RRD). This should
be regarded as a slow method to determine the number of points—after all, it requires us to find all
the points before counting them. There is a specialised point-counting intrinsic NumberOfPoints

which does not find the points first. The latter should be used for point counting, although in
relatively small examples the former can be a little faster.

> NumberOfPoints(RRD);

14

To compute also the number of points of integral dilations of this polytope, we revert to using the
divisor and computing its Hilbert series (or a few coefficients if that’s all we need).

> time HilbertCoefficients(D,10);

[ 1, 14, 44, 92, 156, 238, 337, 452, 585, 735, 902 ]

> h<t> := HilbertSeries(D);

> h;

(-4*t^8 - 21*t^7 - 38*t^6 - 51*t^5 - 51*t^4 - 47*t^3 - 30*t^2 - 13*t - 1)/(t^9 -

t^8 - t^6 + t^5 - t^4 + t^3 + t - 1)

> h * (1 - t) * (1 - t^3) * (1 - t^5);

4*t^8 + 21*t^7 + 38*t^6 + 51*t^5 + 51*t^4 + 47*t^3 + 30*t^2 + 13*t + 1



3896 ALGEBRAIC GEOMETRY Part XVI

118.7 Maps of Toric Varieties
The initial method of expressing some maps between toric varieties is to derive them from
maps between their associated lattices. These can also then be presented in terms of
the variables of the Cox ring; this is the usual method for describing toric maps between
projective spaces, for instance. This often results in radical expressions such as

(u, v) 7→ (
√

u, v, v
√

u).

This example could be describing a map from P1 to P(1, 2, 3), for example: it is a ‘mono-
mial’ map which observes the gradings. In that case, we could represent the same map by
(u, v) 7→ (u, uv, u2v) or (u, v) 7→ (1, v/u, v/u), or a host of other expressions. These two
expressions have the benefit that they are polynomial or rational functions in u and v, and
so they automatically define rational maps, but they have disadvantages too: for example,
evaluating the map at the point (0, 1) is not defined for these expressions, whereas it gives
image (1, 0, 1) in the original radical expression. (Notice that the choice of root does not
matter, as long as it is assumed that the same choice a =

√
u is made at each coordinate.)

More generally, one can define all maps between toric varieties (not just those arising
from maps of lattices) using an appropriate notion of ‘rational radical function’, defined in
terms of the polynomial Cox coordinates. This is very common when describing maps be-
tween standard projective spaces: one writes down a sequence of homogeneous polynomials
of the same degree, without demanding that they are monomials.

The key point is that a rational map between varieties pulls rational functions (that
are defined on the image) back to rational functions. It is enough to test this on a basis of
rational functions. In the example above, if x, y, z are the coordinates on P(1, 2, 3) then
y/x2 and z/x3 form a basis, and these both pull back to v/u, which is a rational function
on P1.

We allow maps to be constructed from maps of the underlying toric lattices of fans.
When displayed, they are described in these radical polynomial terms.

118.7.1 Maps from Lattice Maps

ToricVarietyMap(X,Y,f)

ToricVarietyMap(X,Y)

The rational map between toric varieties X and Y determined by the map f between
their respective toric lattices (that is, the lattices underlying their respective fans).
If the map f is not specified, it is assumed to be the identity map (and X and Y
are assumed to have the same toric lattice).

Blowup(X,v)

The blowup of the toric variety X at the toric lattice point v of the toric lattice
containing the fan of X; the natural map from the blowup to X is also returned.

IdentityMap(X)

The identity map on the toric variety X.
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118.7.2 Properties of Toric Maps

IsRegular(f)

Return true if and only if the map f between toric varieties is regular.

IndeterminacyLocus(f)

A sequence of subschemes of the toric variety that is the domain of the map f
between toric varieties at which f is not defined. (Note that these subschemes may
in fact be empty.)

Example H118E16

We build a map from a Hirzebruch surface using the complete linear system of divisor.

> F2<u,v,x,y> := HirzebruchSurface(Rationals(),2);

> D := Divisor(F2,x);

> Y,f := Proj(D);

> Y;

Toric variety of dimension 2

Variables: $.1, $.2, $.3

The irrelevant ideal is:

($.3, $.2, $.1)

The grading is:

1, 1, 2

> f;

Mapping from: 2-dimensional toric lattice N to 2-dimensional toric lattice N

given by a rule

The image variety Y is clearly the weighted projective space P(1, 1, 2). The map f returned is a
map of underlying lattices. We can convert it into a map of the toric varieties, after which it will
be presented in Cox coordinates.

> F := ToricVarietyMap(F2,Y,f);

> F;

A map between toric varieties described by:

1,

(v)*(u)^(-1),

(x)*(y)^(-1)*(u)^(-2)

Now we can ask whether this map F is a morphism.

> IsRegular(F);

true
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118.8 The Geometry of Toric Varieties

118.8.1 Resolution of Singularities and Linear Systems

Resolution(X)

A resolution of singularities of the toric variety X together with the natural mor-
phism from the resolution to X. The resolution is not necessarily minimal.

ResolveLinearSystem(D)

The toric variety Y whose fan lives in the same lattice as the fan of the toric variety
X on which the divisor D is defined, such that Y resolves the map given by the
linear system of D.

118.8.2 Mori Theory of Toric Varieties

MoriCone(X)

The Mori Cone of toric variety X (as an abstract cone), that is, the cone generated
by numerical classes of torus invariant curves on X.

NefCone(X)

The nef Cone of toric variety X (as an abstract cone).

ExtremalRays(X)

ExtremalRayContractions(X)

The images of extremal contractions of rays in the nef-cone of the toric variety X.

ExtremalRayContraction(X,i)

The toric variety that is the image of the ith extremal contraction of the toric variety
X; the contraction morphism is returned as a second value.

ExtremalRayContractionDivisor(X,i)

The toric divisor that gives the ith extremal contraction of the toric variety X (that
is, the divisor is the pullback of an ample divisor on the image).

TypeOfContraction(X,i)

TypesOfContractions(X)

A string describing the ith extremal contraction of the toric variety X (or all together
in a sequence if i is not specified).

IsMoriFibreSpace(X,i)

Return true if and only if the ith extremal ray of the toric variety X gives an
extremal contraction to a variety of lower dimension than X.
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IsDivisiorialContraction(X,i)

Return true if and only if the ith extremal ray of the toric variety X gives a divisorial
contraction of X.

IsFlipping(X,i)

Return true if and only if the ith extremal ray of the toric variety X gives a small
contraction of X; in this case the intrinsic Flip(X,i) provides the flipped toric
variety.

Flip(X,i)

The flipped variety of the ith extremal contraction of the toric variety X, assuming
that this extremal contraction is of flipping type.

Flip(D)

The (generalised) flip of the morphism given by the Q-Cartier divisor, assuming
that this morphism is small.

WeightsOfFlip(X,i)

The weights of a Gm action whose variation would give the flip of the ith extremal
contraction of the toric variety X, assuming that this extremal contraction is of
flipping type.

Example H118E17

> F0 := FanOfWPS([1,1,1,1]);

> L3 := Ambient(F0);

> F := Blowup(F0,L3 ! [2,-5,3]);

> X := ToricVariety(Rationals(),F);

> ExtremalRays(X);

[

(0, -1),

(1, 56)

]

> TypeOfContraction(X,1);

divisorial (K.C<0)

> TypeOfContraction(X,2);

flip

> WeightsOfFlip(X,2);

[

[ 3, 2, -5, -1 ]

]
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Example H118E18

We build a (nonsingular) variety X that is the projectivisation of the direct sum of line bundles
O(0, 0, 0, 1, 1, 1, 1, 2) on the projective line P1.

> X<[x]> := RationalScroll(Rationals(),1,[0,0,0,1,1,1,1,2]);

> X;

Toric variety of dimension 8

Variables: x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10]

The components of the irrelevant ideal are:

(x[10], x[9], x[8], x[7], x[6], x[5], x[4], x[3]), (x[2], x[1])

The 2 gradings are:

1, 1, 0, 0, 0, -1, -1, -1, -1, -2,

0, 0, 1, 1, 1, 1, 1, 1, 1, 1

We compute its nef cone simply to initiate all its Mori theoretic data.

> _ := NefCone(X);

We can consider various extreme rays of the Mori cone of X. (Our choice of parameters mean we
consider rays [C] for which DC ≤ 0, where D is the zero divisor: that is, we consider all rays.)

> IsFlipping(X,1: divisor:=ZeroDivisor(X), inequality:="weak");

false

> IsFlipping(X,2: divisor:=ZeroDivisor(X), inequality:="weak");

true

One of the rays corresponds to the fibration of X onto P1. The other is a ray of (anti-)flipping
type. We can make the antiflip.

> Y<[y]> := Flip(X,2: divisor:=ZeroDivisor(X), inequality:="weak");

> Y;

Toric variety of dimension 8

Variables: y[1], y[2], y[3], y[4], y[5], y[6], y[7], y[8], y[9], y[10]

The components of the irrelevant ideal are:

(y[10], y[9], y[8], y[7], y[6]), (y[5], y[4], y[3], y[2], y[1])

The 2 gradings are:

0, 0, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 2, 2, 2, 1, 1, 1, 1, 0

> IsNonsingular(Y);

false

> IsTerminal(Y);

true

This antiflip can be regarded as coming from a change in the linearisation of a geometric invariant
theory quotient: from a linearisation like (1, 1) (between variables 2 and 3 in the given order)
to one like (2, 3) (between variables 5 and 6). To understand the antiflip better, sometimes it
helps to consider its weights (the relation between vertices on the star of the flipping locus, or, in
geometric invariant theory terms, the weights of the local Gm action that determine the flip).

> WeightsOfFlip(X,2: divisor:=ZeroDivisor(X), inequality:="weak");

[
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[ 1, 1, 0, 0, 0, -1, -1, -1, -1, -2 ],

[ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 ]

]

Here we see that a P1 has been antiflipped in favour of a weighted P4(1, 1, 1, 1, 2), which is the
source of the singularity on Y .

MMP(X)

type MonStgElt Default : “terminal”
A sequence of toric varieties that are all the varieties visited by making any sequence
of extremal contractions from the toric variety X (and, if necessary, making the
corresponding flip). A second sequence records the maps, in each case first by a
sequence of the indices of the domain and codomain, and second by a string that
describes the map.

The parameter type indicates which extremal rays are considered. It can be
terminal, canonical or all. In each case, only toric varieties having these singu-
larities will be allowed as images of the maps. (In particular, if the default value
terminal is chosen, then only true KX -negative extremal contractions will be fol-
lowed.)

Example H118E19

First make a toric variety X, in this case some blowup of P3.

> F := FanOfWPS([1,1,1,1]);

> G := Blowup(F, Ambient(F) ! [1,-1,1]);

> X := ToricVariety(Rationals(),G);

We compute all minimal model programs from X. There are two outputs: first a sequence con-
taining those toric varieties encountered during these processes, and second a sequence containing
all the maps encountered.

> models,mmp := MMP(X);

> #models;

3

> mmp;

[ [*

[ 1, 2 ],

divisorial (K.C<0)

*], [*

[ 2, 3 ],

map to point

*] ]

In this case there are three varieties. We could check that they are: (1) X itself, (2) P3, and (3)
a point. We also see two maps: the first, labelled [1, 2], is the contraction of X back down to P3,
and the second is the extremal contraction of P3 to a point.
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The intrinsic call MMP(X) has a parameter, and the default is to search only for true absolute
minimal model programs: those which proceed only by contracting extremal rays that are negative
against the canonical class (and flipping them if necessary). To allow contractions of other extremal
rays (and the possibility of requiring antiflips), we can set the parameter to type:="all".

> models,mmp := MMP(X : type:="all");

> models;

[

Toric variety of dimension 3

Variables: $.1, $.2, $.3, $.4, $.5

The components of the irrelevant ideal are:

($.5, $.4), ($.3, $.2, $.1)

The 2 gradings are:

1, 0, 0, 2, 1,

1, 1, 1, 1, 0,

Toric variety of dimension 3

Variables: $.1, $.2, $.3, $.4

The irrelevant ideal is:

($.4, $.3, $.2, $.1)

The grading is:

1, 1, 1, 1,

Toric variety of dimension 3

Variables: $.1, $.2, $.3, $.4, $.5

The components of the irrelevant ideal are:

($.3, $.2), ($.5, $.4, $.1)

The 2 gradings are:

1, 0, 0, 2, 1,

1, 1, 1, 1, 0,

Toric variety of dimension 0,

Toric variety of dimension 1

Variables: $.1, $.2

The irrelevant ideal is:

($.2, $.1)

The grading is:

1, 1

]

> mmp;

[ [*

[ 1, 2 ],

divisorial (K.C<0)

*], [*

[ 1, 3 ],

flop

*], [*

[ 2, 4 ],

map to point

*], [*

[ 3, 1 ],
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flop

*], [*

[ 3, 5 ],

fibration (K.C<0)

*] ]

Now we also see a flop from X to a new toric variety Y (model number 3), and then Y admits
Mori fibration to P1 (which we could check is model number 5).

118.8.3 Decomposition of Toric Morphisms
The title of this section is that of a well-known paper of Reid [Rei83]. It applies Mori
theory to toric varieties relatively over a base to compute a relative minimal model and
the relative canonical model of a toric variety. Rather than wrap this up in intrinsics, we
show how to apply the various components of this package to realise Reid’s result.

Example H118E20

We will compute a relative minimal model and a relative canonical model of the weighted projective
space P3(1, 2, 5, 6), a 3-fold that does not have canonical (nor terminal) singularities.

> A := ProjectiveSpace(Rationals(),[1,2,5,6]);

> IsCanonical(A);

false

We find the relative models by running a minimal model program on a resolution of A relative to
A itself (that is, we only allow morphisms V →W if they factor the given morphism V → A). So
we start by constructing a resolution.

> V0,f0 := Resolution(A);

> V0;

Toric variety of dimension 3

Variables: $.1, $.2, $.3, $.4, $.5, $.6, $.7, $.8, $.9, $.10, $.11, $.12

The irrelevant ideal is:

[... omitted... ]

The 9 gradings are:

0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 2, 3, 0, 0, 0, 0, 0, 1, 0, 0,

0, 1, 2, 3, 0, 0, 1, 0, 0, 0, 0, 0,

0, 1, 3, 3, 0, 0, 0, 0, 0, 0, 0, 1,

0, 1, 3, 4, 1, 0, 0, 0, 0, 0, 0, 0,

0, 1, 4, 5, 0, 1, 0, 0, 0, 0, 0, 0,

1, 2, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0

We see that the resolution made 8 = 9− 1 blowups. To compute everything, we would keep track
of the morphisms (as we have started with f0 above); for brevity, we forego that.
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We build a function which detects which of the extremal contractions from a given V (starting
with V0) that factor V → A. This code also reports whether the contraction is divisorial or of
flipping type so that we can make the next step accordingly.

> raysOverA := func< W |

> [ <i,TypeOfContraction(W,i)> :

> i in [1..#ExtremalRays(W)] |

> IsRegular(ToricVarietyMap(ExtremalRayContraction(W,i),A)) ] >;

And so we look for extremal rays over A that we can contract.

> raysOverA(V0);

[ <1, "divisorial (K.C<0)">, <2, "divisorial (K.C<0)">,

<3, "divisorial (K.C<0)"> ]

In other words, the extremal rays 1, 2 and 3 all determine extremal divisorial contractions. (If we
were writing a faster routine, we would probably stop as soon as we’d found that ray 1 worked.)
We can pick any of these: we choose ray 1 and repeat the process.

> V1 := ExtremalRayContraction(V0,1);

> raysOverA(V1);

[ <1, "divisorial (K.C<0)">, <2, "divisorial (K.C<0)">, <4, "divisorial

(K.C<0)"> ]

This time rays 1, 2, and 4 work; again these lead to divisorial contractions. We follow ray 1.

> V2 := ExtremalRayContraction(V1,1);

> raysOverA(V2);

[ <2, "divisorial (K.C<0)">, <3, "divisorial (K.C<0)"> ]

> V3 := ExtremalRayContraction(V2,2);

> raysOverA(V3);

[ <2, "divisorial (K.C<0)"> ]

> V4 := ExtremalRayContraction(V3,2);

> raysOverA(V4);

[ <2, "divisorial (K.C<0)"> ]

> V5<[w]> := ExtremalRayContraction(V4,2);

> assert #raysOverA(V5) eq 0;

There are no extremal rays over A to contract. We have reached a relatively minimal model, V5;
we check its singularities, although there is no need.

> V5;

Toric variety of dimension 3

Variables: w[1], w[2], w[3], w[4], w[5], w[6]

The components of the irrelevant ideal are:

(w[6], w[5]), (w[6], w[3]), (w[5], w[4], w[2]), (w[3], w[1]), (w[4], w[2],

w[1])

The 3 gradings are:

0, 0, 1, 1, 0, 1,

0, 1, 2, 3, 1, 0,

1, 2, 5, 6, 0, 0

> IsTerminal(V5);
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true

To continue on to a relatively canonical model we must consider rays that are trivial against the
canonical class, not negative as we have so far. We need to modify the relative rays function; we
simply weaken the inequality used when evaluating against the canonical class.

> weakraysOverA := func< W |

> [ <i,TypeOfContraction(W,i : inequality:="weak")> :

> i in [1..#ExtremalRays(W:inequality:="weak")] |

> IsRegular(ToricVarietyMap(ExtremalRayContraction(W,i:inequality:="weak"),A))]>;

And so we continue.

> weakraysOverA(V5);

[ <2, "divisorial (K.C=0)"> ]

> V6<[u]> := ExtremalRayContraction(V5,2 : inequality:="weak");

> assert #weakraysOverA(V6) eq 0;

After one canonically-trivial divisorial contraction there are no rays left to contract. We have
reached the relative canonical model.

> V6;

Toric variety of dimension 3

Variables: u[1], u[2], u[3], u[4], u[5]

The components of the irrelevant ideal are:

(u[5], u[3]), (u[4], u[2], u[1])

The 2 gradings are:

0, 0, 1, 1, 1,

1, 2, 5, 6, 0

> IsTerminal(V6);

false

> IsCanonical(V6);

true

Of course, in this toric setting, it would have been simpler to find the single short vector in the
fan of A that was causing all the trouble and blow that up.

118.9 Schemes in Toric Varieties

The polynomials of the Cox ring of a toric variety X provide homogeneous coordinates on X
that can be used to define subschemes of X. These subschemes are true Magma schemes,
and so the usual scheme machinery works for them. However, there is a substantial caveat
to this for the first version of the toric geometry package: affine patches have not been
installed systematically, and so scheme machinery that uses affine patches of schemes will
not work.
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118.9.1 Construction of Subschemes

Scheme(X,f)

The subscheme of the toric variety X defined by the polynomial f from the Cox
ring of X.

Scheme(X,Q)

The subscheme of the toric variety X defined by the sequence Q of polynomials from
the Cox ring of X.

Example H118E21

Toric varieties are the natural ambient space for many varieties. Here we review the example of
a trigonal curve from the Schemes chapter (it is self-contained here).
First make a curve. (This curve is in fact trigonal—it admits a 3-to-1 cover of the projective line.
Once you’ve had that thought, it’s actually pretty clear: the defining equation is a cubic in y.
But there’s more to it than just being trigonal, as we will see.)

> P<x,y,z> := ProjectiveSpace(Rationals(),2);

> C := Curve(P,x^8 + x^4*y^3*z + z^8);

> Genus(C);

8

This curve is of general type (that is, its genus is at least 2), so we can consider the canonical
map: that will either be an embedding or a 2-to-1 map to a projective line.
We make the canonical map take its image in a toric variety.

> eqns := Sections(CanonicalLinearSystem(C));

> X<[a]> := ProjectiveSpace(Rationals(),7);

> f := map< P -> X | eqns >;

> V := f(C);

> V;

Curve over Rational Field defined by

a[1]^3 + a[2]^2*a[4] + a[1]*a[8]^2,

a[1]^2*a[3] + a[2]^2*a[6] + a[3]*a[8]^2,

a[1]^2*a[5] + a[2]*a[4]*a[6] + a[5]*a[8]^2,

a[1]*a[4]*a[6] - a[2]^2*a[7],

a[1]*a[6]^2 - a[2]^2*a[8],

a[2]*a[6]^2 + a[1]^2*a[7] + a[7]*a[8]^2,

a[4]*a[6]^2 + a[1]^2*a[8] + a[8]^3,

a[2]*a[3] - a[1]*a[4],

a[3]^2 - a[1]*a[5],

a[3]*a[4] - a[1]*a[6],

a[4]^2 - a[2]*a[6],

a[2]*a[5] - a[1]*a[6],

a[3]*a[5] - a[1]*a[7],

a[4]*a[5] - a[2]*a[7],

a[5]^2 - a[1]*a[8],

a[3]*a[6] - a[2]*a[7],
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a[5]*a[6] - a[2]*a[8],

a[3]*a[7] - a[1]*a[8],

a[4]*a[7] - a[2]*a[8],

a[5]*a[7] - a[3]*a[8],

a[6]*a[7] - a[4]*a[8],

a[7]^2 - a[5]*a[8]

All those binomial equations suggest that V lies on a toric variety embedded in X = P7. We can
recover this toric variety and its map to X.

> W,g := BinomialToricEmbedding(V);

> Y<[b]> := Domain(g);

> Y;

Toric variety of dimension 2

Variables: b[1], b[2], b[3], b[4]

The components of the irrelevant ideal are:

(b[3], b[2]), (b[4], b[1])

The 2 gradings are:

0, 1, 1, 0,

1, 0, 2, 1

It is a well-known consequence of (geometric) Riemann–Roch that trigonal curves lie on scrolls in
their canonical embeddings. Exactly which scroll is an intrinsic property of the particular curve:
the Maroni invariant of a trigonal curve can be realised as the twist that occurs in the scroll, in
this case 2 (visible in the last line of output above).

This makes good sense: the scroll Y has a natural map to P1, and the equation of the curve W
is a cubic in the fibre variables b[2], b[3] so defines a 3-to-1 cover of the base.

> I := Saturation(DefiningIdeal(W),IrrelevantIdeal(Y));

> Basis(I);

[

b[1]^8*b[2]^3 + b[1]*b[3]^3*b[4] + b[2]^3*b[4]^8

]

The need for saturation is already visible in the equations of V : all those cubics are really multiples
of a single cubic on the scroll by irrelevant ideals, but written in the coordinates of the projective
space.
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