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1 Introduction

1.1 The Magma Philosophy

Magma is a Computer Algebra system designed to solve problems in algebra, number theory,
geometry and combinatorics that may involve sophisticated mathematics and which are computa-
tionally hard. Magma provides a mathematically rigorous environment which emphasizes struc-
tural computation. A key feature is the ability to construct canonical representations of structures,
thereby making possible such operations as membership testing, the determination of structural
properties and isomorphism testing. The kernel of Magma contains implementations of many of
the important concrete classes of structure in five fundamental branches of algebra, namely group
theory, ring theory, field theory, module theory and the theory of algebras. In addition, certain
families of structures from algebraic geometry and finite incidence geometry are included.

The main features of the Magma system include:

(a) Algebraic Design Philosophy: The design principles underpinning both the user language
and system architecture are based on ideas from universal algebra and category theory. The
language attempts to approximate as closely as possible the usual mathematical modes of
thought and notation. In particular, the principal constructs in the user language are set,
(algebraic) structure and morphism.

(b) Universality: In-depth coverage of all the major branches of algebra, number theory, alge-
braic geometry and finite incidence geometry.

(c) Integration: The facilities for each area are designed in a similar manner using generic
constructors wherever possible. The uniform design makes it a simple matter to program
calculations that span different classes of mathematical structures or which involve the in-
teraction of structures.

(d) Performance: The intention is that Magma provide the best possible performance both
in terms of the algorithms used and their implementation. The design philosophy permits
the kernel implementor to choose optimal data structures at the machine level. Most of
the major algorithms currently installed in the Magma kernel are state-of-the-art and give
performance similar to, or better than, specialized programs.

The purpose of this document is to provide an overview of the structures and operations that are
implemented in Magma. A collection of illustrative examples may be found at the Magma home
page: http://magma.maths.usyd.edu.au/ – also available from this web site are a number of short
papers written by experts describing applications of Magma in various branches of mathematics.

1.2 Summary of this Document

Computation in Magma always takes place in one or more explicitly defined structures. A family
of structures whose members satisfy a common set of axioms and which share a common represen-
tation is termed a category. In the first of the following sections we summarise the facilities of the
Magma language and environment. Following this we summarise many of the kernel categories
grouped together under the broad headings listed below.

• The Magma Language and System

• Groups

• Semigroups and Monoids

• Rings and their Fields

• Commutative Rings

• Linear Algebra and Module Theory



2 Magma Overview V2.19 (April 24, 2013)

• Lattices and Quadratic Forms

• Algebras

• Representation Theory

• Homological Algebra

• Lie Theory

• Algebraic Geometry

• Finite Incidence Geometry

• Differential Galois Theory

• Error-correcting Codes

• Cryptography

• Mathematical Databases

All timings given below are for a Sun 400Mhz UltraSPARC 2 unless otherwise indicated.
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2 The Magma Language and System

2.1 The Magma User Language

– Imperative language with standard imperative-style statements and procedures

– A functional subset providing closures, higher-order functions, and partial evaluation

– General aggregate data types based on algebraic notions: set, sequence, mapping, magma

– Universal structure constructors providing a general mechanism for the construction of magmas and
mappings

– Simple but powerful notation for constructing sets and sequences in a natural mathematical style

– Set and sequence operations which are implemented with a strong emphasis on efficiency

– Coercion between magmas (including automatic coercion)

– A package mechanism to support modular program construction

2.2 The Magma Environment

– Command completion and interactive line editing

– History system with recall and editing of previous lines

– A hierarchical online help facility

– Packages containing user-defined intrinsics with automatic compilation

– Command-line options at startup

– Environment variables for configuring style of output, etc.

– Get/set functions and procedures for configuring style, etc.

– Verbose options for built-in functions

– Logging of output, redirection of I/O

– Mechanism for saving and restoring user workspaces

– Special file type for fully-featured file I/O

– Ability to execute system commands from within Magma

– Input/output pipes for communication with external programs

– UNIX commands and functions such as process ID, alarm setting, etc.

– A socket mechanism for communicating with other processes.
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3 Groups

Group theory has been one of the Computational Algebra Group’s traditional strengths and
Magma provides the user with access to nearly all of the significant algorithms for finite groups
and finitely presented infinite groups (fp-groups). The important categories of group include:

• Permutation groups

• Matrix groups

• Finitely presented groups

• Coxeter groups

• Generic abelian groups

• Finitely-presented abelian groups

• Polycyclic groups

• Finite soluble groups

• Finite p-groups

• Automorphism groups

• Groups defined by rewrite systems

• Automatic groups

• Groups with elements given as straight-line programs

• Black-box groups

• Braid groups

• Congruence subgroups of PSL(2,R)

In addition, Magma provides extensive machinery for the representation theory of groups which
is discussed in the Representation Theory section of this document.

3.1 Permutation Groups

A permutation action may be defined on any finite set using a G-set mechanism. A huge range
of permutation group algorithms (some 300) are incorporated—many of them being developed
specifically for Magma. All algorithms are either deterministic or Las Vegas, that is if an answer
is returned it is guaranteed correct but it is possible no answer will be returned.

3.1.1 Construction

– Permutation representations for classical groups, e.g. PGL(n, q), PSp(n, q), PSU(n, q2), PΩ(n, q)

– Construction of standard groups, e.g., Sn, An.

– Construction of wreath products with both types of action

– Random generation of elements (Product-replacement algorithm),

3.1.2 Base and Strong Generating Set

– Sims-Schreier algorithm for constructing a base and strong generating set (BSGS)

– Random Schreier algorithm for constructing a BSGS (Monte Carlo algorithm)

– Todd-Coxeter Schreier algorithm for constructing a BSGS

– Sims variation of Schreier method for soluble groups

– Fast construction of BSGS when group order is known

– Brownie-Cannon-Sims algorithm for verifying a BSGS
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The key concept for representing a permutation group is that of a base and strong generating set
(BSGS). Given a BSGS for a group, its order may be deduced immediately. Brownie, Cannon and
Sims (1991) showed that it is practical, in some cases at least, to construct a BSGS for short-base
groups having degree up to ten million. For example, starting with six permutations of degree
8 835 156, generating the Lyons simple group, it takes Magma 5.0 hours to provably determine the
order of the group they generate.

The ability to construct a BSGS, coupled with the use of algorithms that make heavy use
of the classification theorem for finite simple groups, allow the determination of a great deal of
structural information, such as composition factors, for short base groups of degree up to at least
ten million.

3.1.3 Elementary Properties

The functions listed in this section require a BSGS to be computed.

– Order

– Exponent

– Whether abelian, nilpotent, soluble, etc.

– Whether perfect, simple, etc.

3.1.4 Conjugacy Classes

The conjugacy classes of elements of a group G are found using a lifting algorithm which first finds
the classes of the trivial Fitting quotient of G (algorithm of D. Holt) and then lifts these classes
through the layers of an elementary abelian series for G. For example, all classes in the group
212.(SL2(4) o S3) of degree 4096 and order 5, 308, 416, 000 are computed in 4 seconds.

– Testing a pair of elements for conjugacy

– Conjugacy classes of elements (lifting algorithm)

– Power map

– Class map, i.e. return the number of the class to which a given element belongs

– Class matrix

3.1.5 Subgroup Constructions

– Construction of subgroups, quotient groups

– Normal closure, core of a subgroup

– Normalizer, centralizer

– Testing subgroups for conjugacy

– Intersection of subgroups

– Sylow p-subgroup (reduction algorithm)

3.1.6 Actions

– Stabilizer of a point, set of points, sequence of points

– Stabilizer of an ordered partition, conjugacy of partitions

– Orbits on points, sets of points, and sequences of points

– Homomorphisms induced by actions on orbits

– Systems of imprimitivity (Schönert-Seress algorithm)

– Homomorphisms induced by actions systems of imprimitivity

– Induced actions on G-sets

– Action properties: Semiregular, regular, transitive, primitive, Frobenius

– Permutation representation on the cosets of a subgroup

– Fast tests for the alternating/symmetric group
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3.1.7 Analysis of a Primitive Group

– Elementary abelian regular normal subgroup (EARNS)

– Action of an affine primitive group on its EARNS

– Construction of the socle of a non-affine group via the O’Nan-Scott theorem

– Action of a primitive group on its socle

– Permutation representation of G/N , where G is a primitive group and N is its socle

– O’Nan-Scott decomposition of a primitive group

– Identification of a 2-transitive group

The Magma group has developed efficient methods for obtaining the O’Nan-Scott decomposition
of a primitive group. The elementary abelian regular normal subgroup of an affine primitive
group is constructed by a polynomial-time algorithm based on ideas published by P. Neumann
(1986). For example, Magma finds the EARNS of AGL(10, 3) which has degree 59, 049 and order
17046196453240220939126401085378073952125928970649600 in 1.49 seconds. The construction of
the socle and the analysis of a non-affine primitive group is performed by algorithms based on
ideas of Cannon, Holt and Kantor. A 2-transitive group is identified as an abstract group using
an algorithm published by Cameron and Cannon.

3.1.8 Normal Structure

– Derived subgroup, derived series, soluble residual

– Lower central series, nilpotent residual

– p-core, Fitting subgroup, soluble radical (Unger’s polynomial-time algorithm)

– Centre, upper central series

– Elementary abelian series, p-central series

– Socle, socle action

– Chief series, chief factors, composition factors

– Agemo, omega subgroups (of a p-group)

– Minimal normal subgroups

– Maximal normal subgroups

– All normal subgroups

3.1.9 Standard Quotients

– Maximal abelian quotient

– Maximal soluble quotient

– Socle quotient (for primitive and trivial Fitting groups)

– Conjugation action on socle factors (trivial Fitting groups)

– Quotient by an abelian normal subgroup

– Radical quotient

– Presentation on given generators (for groups of moderate order)

– Presentation on strong generators

– Presentation of quotient by a normal subgroup

A variety of methods are used for quotient constructions. Quotients by abelian groups use the
algorithm of Luks & Seress (1997). Finitely presented quotients use a combination of the Schreier-
Todd-Coxeter-Sims method of Leon (1980) and the presentation implicit in Sims’ verification of a
BSGS (see Gebhardt (2000)).
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3.1.10 Subgroup Structure

– Maximal subgroups

– Frattini subgroup

– Conjugacy classes of complements of a soluble normal subgroup

– Conjugacy classes of subgroups, poset of subgroup classes

– Conjugacy classes of subgroups satisfying a condition: cyclic, elementary abelian, abelian, nilpotent

– Low index subgroups

Magma V2.14 and later contains an implementation of a very powerful algorithm for computing
the maximal subgroups of a group G of moderate degree. The algorithm first determines the
maximal subgroups of the trivial Fitting quotient of G and then lifts these maximal subgroups
down an elementary abelian series. Magma finds the maximal subgroups of the group of Rubik’s
cube (degree 48, order 43252003274489856000) in 0.42 seconds.

3.1.11 Automorphisms

– Automorphism group

– Test for two permutation groups being isomorphic

The automorphism group of a permutation group G is found using a lifting algorithm which first
finds the automorphisms of the trivial Fitting quotient of G by looking up the automorphism
groups of any non-cyclic factors in a database. Then these automorphisms are lifted through the
layers of an elementary abelian series for G. For example, the automorphism group of the group
of Meffert’s puzzle (a non-soluble permutation group of degree 30 and order 283105) is found in
0.14 seconds. The group has 16 outer automorphisms.

3.1.12 Cohomology and Representations

– Character table

– Irreducible representations (for groups of moderate order)

– KG-module corresponding to an elementary abelian section

– p-part of Schur multiplicator, p-cover

– Dimensions of first and second cohomology groups

– Split and non-split extensions of a group by a module (D. Holt’s package)

– Schur indices, rewriting representations over minimal fields

3.1.13 Databases

– Transitive groups up to degree 30 (Butler, Hulpke)

– Primitive groups up to degree 2499 (Sims, Roney-Dougal & Unger, Roney-Dougal)

– Irreducible soluble subgroups of GL(n, p) for pn < 256 (Short)

– Almost simple groups of order less than 1.6 × 108, plus M24, HS, L6(2), J3, McL, Sz(32) stored
with their automorphism groups and maximal subgroups

– A collection of permutation representations of some sporadic simple groups

– Representations of ATLAS groups from the Birmingham ATLAS of finite group representations (R.
Wilson).

In V2.17 the database of almost simple groups is augmented by the ability to compute auto-
morphism groups and maximal subgroups for alternating groups up to degree 999, families of low
degree classical groups (Holt & Roney-Dougal): Ln(q) for 2 ≤ n ≤ 7 and all q, Ln(2) for n ≤ 14,
S4(q), U3(q) and U4(q) for all q, and the following groups: U6(2), S8(2), S10(2), O±

8 (2), O±10(2),
S6(3), O7(3), O−

8 (3), G2(4), G2(5), 3D4(2), 2F4(2)′, Co2, Co3, He, Fi22, Suzi, Ru.
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3.2 Matrix Groups

Matrix groups may be defined over any ring over which the echelonization of matrices is possible.
For example, matrix groups may be defined over function fields K(x). The matrix group facilities
are mainly restricted to finite groups since there are, as yet, few algorithms of general interest
known for infinite groups. Techniques for working with finite matrix groups divide into methods
for groups of small degree and methods for groups of large degree.

3.2.1 Construction

A matrix group is always constructed as a subgroup of the appropriate general linear group,
GL(n,R).

– Generators for linear groups: GL(n,R), SL(n,R) where R is a finite field, R = Z, or R = Z/nZ.

– Generators for symplectic groups: CSp(n, q), Sp(n, q)

– Generators for unitary groups: CU(n, q), GU(n, q), U(n, q)

– Generators for orthogonal groups: GO(2n+1, q), SO(2n+1, q), Ω(2n+1, q), GO+(2n, q), SO+(2n, q),
Ω+(2n, q), GO−(2n, q), SO−(2n, q), Ω−(2n, q)

– Generators for all exceptional families of groups of Lie type

– Direct product, tensor wreath product, tensor power, exterior square

– Construction of semi-linear groups

– Group obtained by applying a homomorphism φ : R→ S to the matrix coefficients.

– Group obtained by restricting the matrix coefficients to a subring of R.

3.2.2 Arithmetic with Elements

– Random generation of elements (Product-replacement algorithm)

– Invariants of a matrix: Trace, determinant, minimal and characteristic polynomials, Jordan form,
rational canonical form

– Order of a matrix (Leedham-Green algorithm for finite fields)

– Test whether a matrix over a number field has infinite order

3.2.3 Actions

– Tests for irreducibility, absolute irreducibility, semi-linearity

– Test whether a group over a field of characteristic zero has infinite order

– Orbit, stabilizer of a vector or subspace

– Orbit representatives and orbit lengths for the action of a matrix group (defined over a prime field)
on the k-dimensional subspaces of the natural vector space

– Estimate the size of the orbit of a given subspace

– Approximation to the stabilizer of a given subspace

– Enumerate number of k-dimensional subspaces fixed under the action of an element of GL(d, q)

– Homomorphism induced by action of a reducible group on a G-invariant submodule and its quotient
module

– Homomorphism induced by action on an orbit of vectors or subspaces
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3.2.4 Base and Strong Generating Set

For matrix groups of small degree, we use an analogue of the methods used for permutation groups.
We try to find some sequences of objects (subspaces and vectors) in the underlying vector space
that defines a stabilizer chain which has the property that the basic orbits are not excessively large.
Thus, we have a concept of a base and strong generating set (BSGS) similar to that employed
in the case of permutation groups. Once such a BSGS is available, analogues of the permutation
group backtrack searches for centralizer, normalizer, etc. may be described.

– Random Schreier algorithm for constructing a BSGS

– Todd-Coxeter Schreier algorithm for constructing a BSGS

– Murray-O’Brien base selection strategy

3.2.5 Elementary Properties

With the exception of the first, all of the functions listed in this section require the group to be
finite and a BSGS to be computed.

– Whether finite or infinite (only for groups defined over Z or a number field)

– Order

– Exponent

– Whether abelian, nilpotent, soluble, etc.

– Whether perfect, simple, etc.

3.2.6 Conjugacy Classes

– Testing a pair of elements for conjugacy and finding a conjugating element

– Conjugacy classes of elements (lifting algorithm, classic algorithm)

– Power map

– Class map, i.e. return the number of the class to which a given element belongs

– Class matrix

3.2.7 Subgroup Constructions

– Construction of a subgroup in terms of generators

– Normal closure, core of a subgroup

– Centralizer

– Intersection of subgroups

– Sylow p-subgroup (reduction algorithm)

– Homomorphism induced by action on the cosets of a subgroup

– Computing subgroup normalizers

3.2.8 Normal Structure

– Derived subgroup

– Soluble residual

– Centre, Fitting subgroup

– Derived series, upper central series, lower central series

– Soluble radical, elementary abelian series, p-central series

– Composition series, composition factors, chief series

– Agemo, omega subgroups (of a p-group)

– Jennings series (of a p-group)
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3.2.9 Standard Quotients

– Maximal abelian quotient, elementary abelian quotient

– Maximal p-quotient, nilpotent quotient

– Maximal soluble quotient

– Presentation on strong generators

– Quotient by soluble radical

3.2.10 Automorphisms

Holt’s algorithm for computing automorphism groups and testing isomorphism may be applied to
matrix groups with BSGS.

3.2.11 Cohomology and Representations

The Magma machinery for matrix groups together with fast Gröbner basis techniques (see below)
provide a very efficient algorithm for computing a Cohen-Macaulay basis for the ring of invariants
together with its syzygies.

– Character table

– KG-module corresponding to an elementary abelian section

– Molien series

– Ring of invariants

3.2.12 Aschbacher Analysis

The basic facilities provided by Magma for computing with matrix groups over finite fields depend
upon being able to construct a chain of stabilizers. However, there are many examples of groups
of moderately small degree where we cannot find a suitable chain. An on-going international
research project seeks to develop algorithms to explore the structure of such groups. The main
theoretical underpinning of the project comes from the classification by Aschbacher (1984) of the
(maximal) subgroups of GL(d, q) into nine families. Much of the research effort to date has been
devoted to designing algorithms to decide whether G belongs to one of the eight families whose
members have a normal subgroup preserving a “natural linear structure” (the geometric maximal
subgroups); here, we plan to exploit this information to explore G further, ultimately producing
a composition series for G.

– Determine whether a group preserves a form modulo scalars.

– The Niemeyer-Prager classical group recognition algorithm as implemented in Magma by Alice
Niemeyer and Anthony Pye.

– Determine whether a subgroup G of GL(d, q) acts imprimitively on the underlying vector space. a
block system, respectively.

– Test whether a matrix group G acts as a semilinear group of automorphisms on some vector space.

– Test whether a matrix group G preserves a non-trivial tensor product decomposition.

– Test whether a matrix group G is tensor-induced.

– Search for decompositions (corresponding to certain Aschbacher families) with respect to the normal
closure of a supplied subgroup.

– The Glasby-Howlett algorithm to decide if the absolutely irreducible group G ≤ GL(d,K) has an
equivalent representation over a subfield of K.

– Given a group G of d×d matrices over a finite field E having degree e and a subfield F of E having
degree f , write G as a group generated by the matrices of G written as de/f × de/f matrices over
F .

– Roney-Dougal’s algorithm for determining conjugacy of subgroups of GL(d, q)



Magma Overview V2.19 (April 24, 2013) 11

In addition, V2.17 of Magma has rotuines to compute all maximal subgroups of Magma’s
standard copies of the classical groups of dimension < 12 over finite fields. In dimension ≥ 12 this
is restricted to computing the geometric maximal subgroups.

3.2.13 Databases of Matrix Groups

– Maximal finite subgroups of GL(n,Q) for n up to 31

– The finite absolutely irreducible subgroups of GLn(D) where D is a definite quaternion algebra
whose centre has degree d over Q and nd ≤ 10

– Irreducible subgroups of GL(n, p) where p is prime and pn < 2500.

– Representations of ATLAS groups from the Birmingham ATLAS of finite group representations (R.
Wilson).

3.3 Constructive Recognition

Given generators for a finite group, we may be able to determine an isomorphism to a “well-
known” group using black-box group methods. Magma is developing its capabilities in this area.
The following are available.

– Alternating and Symmetric groups using the algorithm of Bratus & Pak (2000), implemented by
Holt.

– Alternating and Symmetric groups using the algorithm of Beals et al (2003), implemented by Roney-
Dougal.

– SL(d, q) and PSL(d, q) groups using the algorithm of Kantor & Seress (2001), implemented by
Brooksbank.

– Sp(d, q), U(3, q), and U(4, q) algorithms supplied by P. Brooksbank.

3.4 Finitely Presented Groups

Given a finitely presented group (fp-group) about which nothing is known, the immediate prob-
lems are to determine whether it is trivial, finite, infinite, free, etc. and to determine its finite
homomorphic images, finite index subgroups and so on. The central strategy for analyzing an
fp-group is to attempt to construct non-trivial homomorphisms, which may be onto an abelian
group, p-group, nilpotent group, soluble group, permutation group (the Todd-Coxeter algorithm)
or matrix group (vector enumeration).

3.4.1 Free Groups

– Construction

– Reduction of a word to normal form

– Product, exponentiation, inverse, equality

3.4.2 Construction

– Construction as a quotient of a free group

– Standard groups: Sn, An, dihedral groups, Coxeter groups, braid groups

– Permutation groups, matrix groups, polycyclic groups as fp-groups

– Direct product, free product

– Maximal central extension
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3.4.3 Arithmetic on Elements

– Arithmetic (free reduction only on words)

– Substring operations on words

– Definition of and calculation with homomorphisms

3.4.4 Basic Properties

Determining global properties of an fp-group is known to be intrinsically difficult. If it is suspected
that a given fp-group is finite, a function is provided that will attempt to determine the order of the
group. While this function basically employs coset enumeration, it does so in a fairly sophisticated
manner so that it is able to handle groups that are much too large for a coset enumeration of the
trivial subgroup to succeed.

3.4.5 Quotients

– Abelian quotient, elementary abelian quotient

– p-quotient

– Process version of p-quotient allowing the user complete control over its execution

– Nilpotent quotient (W. Nickel’s algorithm)

– Soluble quotient (Plesken-Brückner algorithm)

– Process version of the soluble quotient allowing the user complete control over its execution

– Natural homomorphism onto any of the above standard quotients

– Equivalence classes of homomorphisms to an arbitrary permutation group with application to perfect
quotients

– Process version of search for equivalence classes of homomorphisms allowing the user complete
control over its execution

– Kernel of the natural homomorphism onto any standard quotient (provided that the quotient is not
too large)

The p-quotient program has been developed over a number of years by George Havas, Mike New-
man and Eamonn O’Brien. It has been used to construct p-quotients of composition length several
thousand for small primes p. Soluble quotients are computed using Herbert Brückner’s implemen-
tation of the Plesken algorithm and is capable of constructing soluble quotients having order in
excess of a million. Unlike previous algorithms, no information is required other than the fp-group.

The computation of equivalence classes of homomorphisms to a permutation group uses a well
known backtrack algorithm. Volker Gebhardt’s implementation of this algorithm is capable of
determining all classes of homomorphisms from a 2- or 3-generator group to a permutation group
of order up to 108 in reasonable time.

3.4.6 Constructing a Subgroup

– Construction of a subgroup in terms of generators

– Construction of a subgroup in terms of a coset table

– Coset enumeration (Todd-Coxeter procedure)

– Process version of coset enumeration allowing the user complete control over its execution

– Schreier generators for a subgroup

– Presentation for a subgroup (Reidemeister-Schreier rewriting)

Coset enumeration is performed using George Havas’s ACE version of the Todd-Coxeter pro-
cedure. It has the capability of enumerating up to one hundred million cosets on a sufficiently
large machine.
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3.4.7 Operations on Subgroups of Finite Index

The fp-group package also includes a collection of functions for computing with subgroups of
(small) finite index represented by coset tables. Hence the operations in this group assume that
the subgroup has finite index and that it is possible to enumerate its cosets.

– Normal closure

– Membership and equality of subgroups

– Core, intersection and normalizer

– All maximal (minimal) overgroups of a subgroup

– Test for conjugacy, maximality, normality

– Schreier system and Schreier coset map

Magma uses Havas’ rewriting Todd-Coxeter to write elements of a subgroup as words in the
subgroup generators.

3.4.8 Enumeration of Subgroups

Subgroups of small index may be enumerated using the so-called low index subgroups algorithm.
The low index algorithm used in Magma is the backtrack method described by Sims in his book
Computation in Finitely Presented Groups, CUP, 1993.

– Enumeration of low index subgroups (Sims backtrack algorithm)

– Process version of low index subgroups to return subgroups one at a time

– Enumeration of low index normal subgroups (Holt’s homomorphism algorithm)

3.4.9 Simplifying a Presentation

– Automatic simplification of a presentation

– Interactive simplification of a presentation via a Tietze process

– Tietze process: Eliminate specified generators

– Tietze process: Control of substring searching

– Bijection between original and simplified presentations

3.4.10 Actions

– Actions on coset spaces (Todd-Coxeter procedure)

– Actions on vector spaces (Linton vector enumeration)

– Permutation representation on the cosets of a subgroup

3.4.11 Representation Theory

It is frequently useful to construct the G-modules corresponding to the conjugation action of a
finitely presented group G on an elementary abelian section. This can be useful when attempting
to construct normal subgroups of G.

– Determine the finite primes dividing the order of the abelian quotient of a subgroup A of a fp-group
G

– Given subgroups A and B defining an abelian section of G, construct the G-module corresponding
to the conjugation action of G on the maximal p-elementary abelian quotient of A/B

– Given a map f from a normal subgroup A of G onto the G-module M corresponding to the conju-
gation action of G on the maximal p-elementary abelian quotient of an abelian section A/B of G
and a submodule N of M , compute the preimage of N under f using a fast pullback method.

3.4.12 Databases of Finitely Presented Groups

– Fundamental groups of small-volume closed hyperbolic 3-manifolds (Dunfield & Thurston, based on
Hodgson & Weeks’ census of manifolds).
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3.5 Generic Abelian Groups

A generic abelian group is a set whose elements form an abelian group with respect to a given law
of composition. The user specifies the set A together with functions for composing two elements
of A, constructing the inverse of an element of A, and recognizing the identity element of A.

– Definition as a set with given operations

– Arithmetic

– Random elements

– Order of an element: Baby-step giant-step algorithm; Pollard-rho algorithm

– Discrete logarithm: Baby-step giant-step algorithm; Pohlig-Hellman algorithm; Pollard-rho algo-
rithm

– Order of the group

– Generating set and presentation

– Torsion invariants

– Construction of subgroups from generators

– Sylow p-subgroup

– Homomorphisms and isomorphisms

The three major calculations supported are: find the order of an element, compute the discrete
logarithm of an element relative to a given base and determine the structure of the group. The
algorithms used are improvements of those described in J. Buchmann, M.J. Jacobson and E. Teske
[10].

3.6 Finitely-Presented Abelian Groups

Abelian groups are of interest not only for their intrinsic interest but also because many of the
important groups arising in number theory and topology are abelian.

– Construction as a quotient of a free abelian group

– Direct product, free product

– Arithmetic

– Construction of subgroups, quotient groups and complements

– Elementary divisors, primary invariants

– Factor basis, divisor basis, primary basis

– Torsion subgroup, torsion-free subgroup, p-primary component

– Homomorphisms: Image, kernel, cokernel

– Composition series, maximal subgroups, subgroup lattice (of a finite group)

– Character table of a finite group

– The group of homomorphisms Hom(A,B), where A and B are finite abelian groups

– Abelian quotient of any group (with its natural homomorphism)

– Conversion between Z-modules and abelian groups

– Functors from rings and fields onto abelian groups

The Hermite and Smith normal form algorithms are used to construct a normal form for
subgroups and quotient groups of abelian groups.
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3.7 Polycyclic Groups

The category described here comprises the family of all groups defined by a polycyclic presentation.
Note that such a group may be infinite. Even so, algorithms for element arithmetic analogous to
those used for finite soluble groups are available and a growing number of structural computations
are possible within such a group.

3.7.1 Polycyclic Groups: Construction and Arithmetic

– Construction as a quotient of a free group

– Standard groups as polycyclic groups

– Permutation groups, matrix groups, abelian groups and finite soluble groups as polycyclic groups

– Nilpotent quotient of a finitely presented group (W. Nickel’s algorithm)

– Direct products

– Wreath products

– Product, inverse, conjugate, commutator for elements; improved collector, much faster, better com-
plexity

– Element normal form and equality testing

– Element order

– Random element generation

3.7.2 Polycyclic Groups: Basic Invariants

– Test finiteness, group order

– Test for abelian, elementary abelian, cyclic, nilpotent

– Nilpotency class

– Hirsch number

3.7.3 Polycyclic Groups: Subgroup Constructions

– Subgroup and quotient group construction

– Normal closure of a subgroup

– Conjugation of subgroups

– Commutator subgroups

– Test subgroup membership and inclusion

– Test for normal and central subgroups

– Centraliser of elements (in a nilpotent group)

– Normaliser and centraliser of subgroups (nilpotent group)

– Test for conjugacy of elements and subgroups (nilpotent group)

– Intersection of subgroups (nilpotent group)

3.7.4 Polycyclic Groups: Normal Structure

– Normal series with free- or elementary-abelian factors

– Centre, upper central series

– Lower central series, derived subgroup and series

– Fitting subgroup, Fitting series

– G-module construction from action on free- or elementary abelian sections

– Abelian quotient structure
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3.8 Finite Soluble Groups

A large number of efficient algorithms have been developed for computing information about finite
soluble groups defined by a polycyclic presentation. The category described here comprises the
family of all finite soluble groups defined by polycyclic presentations. Note that while p-groups
are not considered as a separate formal category, in many cases more efficient algorithms are
employed. Further, some important operations particular to p-groups are described in a separate
section.

3.8.1 Construction

– Construction of polycyclic presentation for the maximal finite p-quotient of an fp-group (O’Brien’s
program)

– Construction of polycyclic presentation for the maximal finite soluble quotient of an fp-group
(Plesken-Brückner algorithm)

– Construction of a polycyclic presentation for a soluble group given as a permutation group or a
matrix group

– Split and non-split extensions, wreath products

– Representation of a soluble group in terms of a SAG-presentation

– The soluble groups contained in the Small Groups Library developed by Besche, Eick and O’Brien.
This database contains all groups of order up to 2000, except the groups of order 1024, and a number
of infinite series of larger groups.

In 1991, Leedham-Green with Brownie and Cannon developed an echelonization algorithm capable
of constructing a form of polycyclic presentation for a finite soluble group which exhibits much
of the structure. This polycyclic presentation (known as a SAG-presentation) is given in terms
of generators defining a chain of subgroups which refines a nilpotent series for the group. Each
nilpotent section exhibits a lower p-central series for each prime p involved. Finally, the quotient
of the group by a term of the nilpotent series splits over the layer below.

3.8.2 Conjugacy Classes

– Testing a pair of elements for conjugacy

– Conjugacy classes of elements

– Power map

– Class map, i.e. return the number of the class to which a given element belongs

– Class matrix

– Exponent

3.8.3 Subgroup Constructions

– Construction of subgroups, quotient groups

– Normal closure, core of a subgroup

– Normalizer, centralizer

– Testing subgroups for conjugacy

– Intersection of subgroups

– Permutation representation on the cosets of a subgroup

– System of double coset representatives for a pair of subgroups (Slattery algorithm)

– Sylow p-subgroup

– Hall π-subgroups, Sylow basis, complement basis

– System normalizer, relative system normalizer
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Simple variations of the SAG-algorithm may be used to compute normal closures, the lower cen-
tral series and the derived series. Sylow p-subgroups, Hall π-subgroups, a Sylow basis, and a
complement basis may be read directly from the presentation. The availability of such a presen-
tation together with sophisticated module theory machinery allowed us to design fast algorithms
for finding the centre and maximal subgroups.

3.8.4 Normal Structure

– Centre, hypercentre, derived subgroup

– Derived series, upper central series, lower central series

– Chief series, composition series

– Elementary abelian series, p-central series

– Fitting subgroup

– Frattini subgroup

– Normal subgroups

3.8.5 Subgroup Structure

– Maximal subgroups

– Conjugacy classes of complements of a normal subgroup

– Conjugacy classes of subgroups, poset of subgroup classes

– Conjugacy classes of subgroups satisfying a condition: Cyclic, elementary abelian, abelian, nilpotent

The availability of an SAG-presentation combined with sophisticated module theory machinery
allowed us to design fast a algorithm for finding the maximal subgroups of a soluble group.

3.8.6 Automorphisms and Representations

– Automorphism group of a soluble group (M Smith’s algorithm)

– Character table (Dixon-Schneider algorithm)

– Character degrees (Conlon’s Algorithm)

– Modular irreducible representations (Glasby-Howlett algorithm)

– Ordinary irreducible representations (Brückner algorithm)

– KG-module corresponding to an elementary abelian section

3.9 Finite p-Groups

Following the development, in the early 1970’s, of the p-quotient algorithm for constructing poly-
cyclic presentations of a finitely presented p-group, Leedham-Green and others developed an ex-
tensive family of elegant and efficient algorithms for finite p-groups. The facilities described here
apply to the family of all finite p-groups defined by so-called power-conjugate presentations. Note
that as p-groups form a subcategory of the category of finite soluble groups discussed above, most
of the soluble group operations apply to p-groups. However, in some cases more efficient algorithms
are employed for p-groups than for soluble groups.

3.9.1 Construction

– As for finite soluble groups

– Construction of polycyclic presentation for the maximal finite p-quotient of an fp-group (O’Brien
algorithm)

– p-group generation (Eamonn O’Brien algorithm)
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3.9.2 Normal Structure

– As for finite soluble groups

– Agemo, omega subgroups

– Jennings series of a p-group

3.9.3 Isomorphisms and Automorphism Groups

– Construct a standard presentation for a p-group

– Test two p-groups for isomorphism

– Automorphism group of a p-group (E O’Brien’s algorithm)

3.9.4 Character Theory

– Degrees of irreducible characters (Slattery’s algorithm)

– Character Table (Conlon’s algorithm)

3.10 Groups Defined by Rewrite Systems

This is a category of finitely presented groups where the relations are interpreted as rewrite rules.
If the group is defined by a confluent system of rewrite rules then we have a normal form for its
elements and hence a solution to the word problem. A group belonging to this category is typically
constructed by applying the Knuth-Bendix procedure. As in the case of monoids, Magma uses
the Knuth-Bendix developed by Derek Holt as part of his package kbmag.

– Construction of an RWS group from an fp-group using the Knuth-Bendix procedure. Orderings
supported include: RT-recursive, recursive, ShortLex, WT-ShortLex and Wreath

– Test a rewrite system for confluence

– Reduction of a word to normal form

– Operations on words: Product, exponentiation, inverse, equality

– Enumeration of elements

– Test for a group being finite

– Definition of homomorphisms whose domain or codomain is an RWS group

3.11 Automatic Groups

This category corresponds to short-lex automatic groups. A group is represented by four automata:
first and second word-difference machines, a word-acceptor, and a multiplier. These automata are
constructed using the Knuth-Bendix procedure. This category is implemented by Derek Holt’s
package kbmag.

– Construction of an automatic group from an fp-group using the Knuth-Bendix procedure.

– Reduction of a word to normal form

– Product, exponentiation, inverse, equality of elements

– Enumeration of words without repetition

– Test for a group being finite

– Growth function for a group

– Definition of homomorphisms whose domain or codomain is an automatic group
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3.12 Groups with Elements given as Straight-Line Programs

This is a class of finitely generated free groups whose elements are represented as “straight-line”
programs and which are referred to as SLP-groups for brevity. Typically a SLP-group is used
when it is necessary to evaluate long words in a permutation or matrix group G. If G is defined
on d generators then a d-generator SLP-group F is defined together with the homomorphism of
F onto G which sends the i-th generator of F to the i-th generator of G. Words corresponding to
elements of G are built as elements of F where they are represented as expression trees thereby
allowing very fast evaluation of long words in G.

– Construction

– Arithmetic with straight-line programs

– Homomorphism from a blackbox group onto an arbitrary group

– Random generation of elements (Leedham-Green & Murray (2002))

3.13 Braid Groups

This category comprises the family of all braid groups. Note that this special class of finitely
presented groups has a solvable word problem. Recently, braid groups have received some interest
as possible sources of cryptosystems.

The Magma implementation by Volker Gebhardt supports both Artin’s original presentation
and the band generator presentation introduced by Birman, Ko and Lee. Elements can be defined
as words in the generators or as products of simple elements for either presentation. All possible
representations of elements can be used simultaneously; conversions are done automatically if
necessary, completely transparent to the user.

3.13.1 Constructing and Accessing Braid Groups

– Definition of a braid group on n strings.

– Controlling default presentation, print format for elements and element representation used for
group operations.

3.13.2 Constructing and Accessing Elements

– Identity element and fundamental element.

– Artin generators and band generators.

– Generation of pseudo random elements.

– Representations of an element as words and as products of simple elements for Artin presentation
and band generator presentation.

– Infimum, supremum and canonical length of an element with respect to either presentation.

3.13.3 Normal Forms of Elements

– Left and right normal form with respect to either presentation.

– Left and right mixed canonical form with respect to either presentation.

3.13.4 Arithmetic Operations with Elements

– Product, left and right quotient, left and right conjugate of two elements.

– Inverse of an element.

– Cycling and decycling operation for an element with respect to either presentation.
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3.13.5 Boolean Predicates

– Functions determining whether an element is the identity, simple, or a representative of its super
summit class (with respect to either presentation), respectively.

– Tests for equality and conjugacy of elements.

– Partial orderings of elements with respect to either presentation.

3.13.6 Lattice Operations

– GCD and LCM with respect to either presentation and either partial ordering.

3.13.7 Conjugates

– Infimum, supremum and canonical length of the super summit class of an element with respect to
either presentation.

– Computing a representative of the super summit set of an element with respect to either presentation.

– Computing the set of positive conjugates of an element with respect to either presentation.

– Computing the super summit set of an element with respect to either presentation.

– Process versions of the above algorithms for computing positive conjugates and super summit ele-
ments.

3.13.8 Homomorphisms

– Natural symmetric representation.

– Integral and modular Burau representations.

– Construction and evaluation of a homomorphism whose domain or codomain is a braid group.
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4 Semigroups and Monoids

4.1 Finitely Presented Semigroups

– Construction of fp-semigroups and monoids

– Direct product, free product

– Arithmetic (free reduction on words only)

– Definition of ideals and subsemigroups

– Tietze transformations

4.2 Monoids Defined by Rewrite Systems

This is a category of finitely presented monoids where the relations are interpreted as rewrite rules.
The most important case is that in which the monoid is defined by a confluent system of rewrite
rules. A monoid of this category is typically constructed by applying the Knuth-Bendix procedure
to a finitely presented monoid. Magma uses the Knuth-Bendix developed by Derek Holt in his
package kbmag.

– Construction of an RWS monoid from an fp-monoid using the Knuth-Bendix procedure. Orderings
supported include: RT-recursive, recursive, ShortLex, WT-ShortLex and Wreath

– Test a rewrite system for confluence

– Reduction of a word to normal form

– Operations on words: Product, exponentiation, equality

– Test for a monoid being finite

– Enumeration of elements

– Definition of homomorphisms whose domain or codomain is an RWS monoid
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5 Rings and their Fields

This section is concerned with fields (mainly local and global arithmetic fields), their rings of
integers and valuation rings.

• The rational field Q and its ring of integers Z

• Residue class rings of Z

• Univariate polynomial rings

• Finite fields

• Number fields and their orders

• Rational function fields

• Algebraic function fields

• Valuation rings

• Real and complex fields

• p-adic Rings and their extensions

• General local fields

• Power series rings and Laurent series rings

In the case of arithmetic fields, the major facilities include:

– Construction of a basis for the maximal order(s)

– Decomposition of ideals into prime ideals

– Recognition of principal ideals

– Class group, divisor class group and ray class groups

– Fundamental units

– Constructive class field theory

– Galois theory, subfields and automorphisms

– Places and completions

– Cohomology of number fields and their completions
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5.1 The Rational Field and its Ring of Integers

5.1.1 Arithmetic

– Multiple precision integer arithmetic

– Integer multiplication via classical, Karatsuba, Toom and Schönhage-Strassen FFT methods

– Integer division via classical, Karatsuba, Toom and Schönhage-Strassen FFT methods

– Greatest common divisor via Weber Accelerated GCD and Schönhage algorithms

– Extended Greatest common divisor via Lehmer and Schönhage algorithms

– Alternative representation of integers in factored form

– Arithmetic functions: Jacobi symbol, Euler φ function, etc.

Magma uses portions of the GMP package for the base classical, Karatsuba and Toom and
Schönhage-Strassen FFT-based algorithms (for which GMP is the state of the art).

Magma also contains an asymptotically-fast integer (and polynomial) division algorithm which
reduces division to multiplication with a constant scale factor that is in the practical range. Thus
division of integers and polynomials are based on the fast multiplication methods when applicable.

Finally, Magma contains implementations of the fast classical Lehmer extended GCD (‘XGCD’)
algorithm (which is about 5 times faster than the Euclidean XGCD algorithm) and the Schönhage
recursive (“half-GCD”) algorithm, yielding asymptotically-fast GCD and XGCD algorithms.

5.1.2 Residue Class Rings of Z

A quotient ring Z/〈m〉 of Z is trivially represented by the integers taken modulo m. In the Magma
implementation, m may be taken to be a long integer.

– Arithmetic

– Testing elements for: nilpotency, primitivity, regularity, zero-divisor

– Order of a unit

– Gcd and lcm

– Location of a primitive element

– Unit group

– Functor from additive group to an object in the category of abelian groups

– One or all square roots of an element

– Linear algebra

5.1.3 Primality and Factorization

– Probabilistic primality testing (Miller-Rabin)

– Rigorous primality testing (Morain’s Elliptic Curve Primality Prover)

– Primality certificates; Verification of certificates

– Generation of primes

– Elementary factorization techniques: Trial division, SQUFOF, Pollard ρ, Pollard p− 1

– Elliptic curve method for integer factorization (A. Lenstra)

– Multiple prime multiple polynomial quadratic sieve algorithm for integer factorization (A. Lenstra)

– Database of factorizations of integers of the form pn ± 1

The Elliptic Curve Primality Prover (ECPP) designed and implemented by François Morain at
INRIA is installed in Magma. This provides fast rigorous primality proofs for integers having
several hundred digits. The primality of a 100 digit integer is established in 24 seconds (on a Sun
200Mhz SPARC workstation 2).

Paul Zimmermann’s efficient GMP-ECM package is included for integer factorization. The
GMP-ECM package also provides fast p− 1 and p + 1 integer factorisation algorithms.
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5.1.4 The Number Field Sieve

Magma provides an experimental implementation of the fastest general purpose factoring algo-
rithm known: the number field sieve (NFS). The implementation can be used for both general
number field and special number field factorizations: the only difference is in the polynomial selec-
tion. Presently, Magma does not provide a function to choose a good polynomial for a particular
number to be factored. However, Magma does provide some functions that are useful for the im-
plementation of the polynomial selection algorithms developed by Peter Montgomery and Brian
Murphy.

5.2 Dirichlet Characters

The Dirichlet characters package provides support for computing with the group of homomorphism
(Z/NZ)∗ → R∗, where R is a ring. New functionality also exists for Dirichlet (and Hecke)
characters over number fields.

– Dirichlet group over a field K as the set of rational characters from (Z/NZ)∗ to K
∗
.

– Computation of group generators, enumeration of elements, and representatives of Galois-conjugacy
classes of characters.

– Construction and evaluation of Dirichlet characters.

– Invariants of characters, such as their conductor, modulus, and order.
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5.3 Univariate Polynomial Rings

A polynomial ring may be formed over any ring, including a polynomial ring. Since computational
methods for univariate polynomial rings are often much simpler and more efficient than those for
multivariate rings (especially over a field), we discuss the two cases separately. In this section, the
symbol K, appearing as a coefficient ring, will denote a field.

5.3.1 Creation and Ring Operations

– Creation of a polynomial ring

– Definition of a ring map

– Kernel of a ring map

– Determining whether a ring map is surjective

– Determining whether a ring map is an isomorphism

5.3.2 Creation of Special Polynomials

– Orthogonal polynomials: Bernoulli polynomial

– Orthogonal polynomials: Chebyshev polynomials of the first and second kinds

– Orthogonal polynomials: Chebyshev polynomials of types T and U

– Orthogonal polynomials: Gegenbauer polynomial, Hermite polynomial

– Orthogonal polynomials: Generalised Laguerre polynomial

– Orthogonal polynomials: Legendre polynomial

– Binomial polynomial

– Conway polynomial of degree n over GF (p)

– Primitive polynomial of degree n over GF (q)

– Cyclotomic polynomial of order n

– Permutation polynomials: Dickson polynomials of the first and second kinds

5.3.3 Arithmetic with Polynomials

– Polynomial product via classical, Karatsuba and Schönhage-Strassen FFT algorithms

– Polynomial quotient via classical and Karatsuba algorithms

– Pseudo quotient and remainder

– Modular exponentiation and inverse

– Modular composition over GF (q) (Brent-Kung)

– Norms

– Differentiation and integration

– Evaluation and interpolation

– Properties: prime, primitive, separable, permutation

– Properties: a unit, a zero-divisor, nilpotent

– Properties: Galois groups of square-free polynomials over the integers, number fields or prime
characteristic function fields

– For polynomials over Z: splitting field and solvability by radicals
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Magma employs asymptotically fast algorithms for performing arithmetic with univariate polyno-
mials over certain rings. These include two FFT-based methods for multiplication: the Schönhage-
Strassen FFT method for situations where the coefficients are large compared with the degree,
and the small-prime modular FFT with Chinese remaindering method for where the coefficients
are small compared with the degree. These methods are applied to multiplication of polynomials
over Z, Q, Z/mZ and GF (q). For some coefficient rings, at least one of the FFT methods outper-
forms the Karatsuba method for polynomials having degree as small as 32 or 64; for each of the
coefficient rings listed, the FFT method beats the Karatsuba method for degree 128 or greater.
An asymptotically-fast division algorithm (which reduces division to multiplication) is also used
for polynomials over all coefficient rings.
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5.3.4 GCD and Factorization

– Resultant, discriminant (sub-resultant algorithm, Euclidean algorithm)

– Greatest common divisor, extended greatest common divisor

– Extended greatest common divisor

– Hensel lift

– Squarefree factorization

– Distinct degree factorization

– Factorization over GF(q): Small field Berlekamp, large field Berlekamp, Shoup algorithms

– Factorization over Z and Q: van Hoeij algorithm

– Factorization over Qp and all local rings and fields

– Factorization over Q(α): Trager algorithm

– Factorization over any finitely generated extension of GF(p) and Q

– Galois group computation for arbitrary polynomials in Q[t]

Greatest common divisors for polynomials over Z are computed using either a modular algorithm
or the GCD-HEU method, while for polynomials over a number field, the modular method is used.
For polynomials over an algebraic function field, an evaluation/interpolation algorithm of Allan
Steel is used.

Factorization of polynomials over Z uses the exciting new algorithm of Mark van Hoeij, which
efficiently finds the correct combinations of modular factors by solving a Knapsack problem via
the LLL lattice-basis reduction algorithm.

5.3.5 Arithmetic with Ideals

– Construction of ideals and subrings (over K)

– Construction of quotient rings

– Arithmetic with ideals (over K)

– Properties of an ideal: Maximal, prime, primary

5.4 Residue Class Rings of Univariate Polynomial Rings

– Arithmetic with elements

– Construction of ideals and subrings (over K)

– Construction of quotient rings

– Arithmetic with ideals (over K)
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5.5 Finite Fields

5.5.1 Construction

– Construction of fields GF(p), p large; GF(pn), p small and n large

– Optimized representations of GF(pn) in the case of small p and large n

– Database of sparse irreducible polynomials over small finite fields to very high degrees (see details
in Subsec. 22.3 on page 118)

– Special optimized packed arithmetic for fields of characteristic 2 and 3.

– Construction of towers of extensions

– Construction of subfields

– Compatible embedding of subfields

– Enumeration of irreducible polynomials

– Fast embedding and isomorphism algorithm of E. Rains.

The finite field module uses different representations of finite field elements depending upon the size
of the field. Thus, in the case of small to medium sized fields, the Zech logarithm representation is
used. For fields of characteristic 2, a packed representation is used (since V2.4), which is very much
faster than the representation used in previous versions of Magma. For a large degree extension
K of a (small) prime field, K is represented as an extension of an intermediate field F whenever
possible. The intermediate field F is chosen to be small enough so that the fast Zech logarithm
representation may be used. Thus, Magma supports finite fields ranging from GF(2n), where
the degree n may be a ten thousand or more, to fields GF(p), where the characteristic p may be
a thousand-bit integer. The finite field code is highly optimized for very small finite fields and
especially for linear algebra over such fields.

A noteworthy feature of the facility is that no matter how a field is created, its embedding
into an overfield may be determined. One may create and work within a lattice of subfields with
create ease. The system is described in detail in a paper [6].

Using the fast algorithm of Rains, embedding the field GF(21000) in GF(22000) now takes 0.3
seconds on a 2.4GHz Opteron, compared to about 20 minutes with the old root finding method.

5.5.2 Arithmetic

– Trace and norm; Relative trace and norm

– Solving Norm and Hilbert-90 equations

– Order of an element

– Characteristic and minimum polynomials

– Testing elements for: Normality, primitivity

– Fast powering via Frobenius map

– Construction of primitive and normal elements

5.5.3 Roots and Polynomial Factorization

– Square root: Tonelli-Shanks method for GF(p)

– n-th root

– One root of a polynomial; All roots root of a polynomial

– Polynomial factorization: Small field Berlekamp, large field Berlekamp

– Polynomial factorization: Shoup algorithm

– Construction of a splitting field

– Factorisation over splitting field

Factorization of polynomials over GF(q) for large q uses Shoup’s algorithm. On a 64-bit 2.4GHz
Opteron, the n = 2048 polynomial from the von zur Gathen challenge benchmarks (of degree 2048
with sparse coefficients modulo a 2050-bit prime) is factored by Magma in 1300 seconds.
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5.5.4 Discrete Logarithms

– Shanks baby-step giant-step algorithm

– Pollard rho algorithm

– Polhig-Hellman algorithm

– Index calculus method using either the Gaussian integer sieve or linear sieve (for prime fields GF(p)).

– Index calculus method using Emmanuel Thomé’s implementation of Coppersmith’s method (for
fields GF(2k)).

The index calculus method applied to an arbitrary field GF(p), where p is a 100-bit prime such
that (p − 1)/2 is prime (the worst case), takes 10 seconds to perform the sieving and about 0.8
seconds to compute an individual logarithm. For a 20-decimal-digit prime p such that (p− 1)/2 is
prime, Magma takes only 1 second for the sieving and about 0.3 seconds to compute an individual
logarithm.

5.5.5 Derived Structures

– Unit group

– Additive group

– Field as an algebra over a subfield
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6 Global Arithmetic Fields

6.1 Number Fields and their Orders

Number fields in Magma are (abstract) finite extensions of Q or other number fields that can be
constructed in a large number of different ways to faciliate a multitude of internal and external
applications. For example number fields can be defined by specifying a single irreducible poly-
nomial, as subfields of other number fields, via Galois correspondence, from characters, from a
range of geometric objects or simply as cyclotomic fields of a given order. Number fields and their
orders support a huge number of algorithms, starting from simple arithmetic, the computation
of integral closures (maximal orders) and class and unit group to sophisticated tools for Galois
cohomology and Diophantine equations. As well as state of the art algorithms for general numebr
fields, Magma also contains special methods for quadratic and cyclotomic fields.

Facilities for general number fields have been developed in a joint project with the KANT group
in Berlin. Number fields interact easily with their completions thus allowing a modern, local-global
approach to a large number of problems.

6.1.1 Number Fields

– Arithmetic of elements

– Construction of equation orders, maximal orders, arbitrary orders

– Simple and relative extensions, extensions defined by several polynomials

– Subfields

– Transfer between relative and absolute representations

– Discriminant, reduced discriminant, signature

– Factorization of polynomials over number fields

– Completions of absolute fields

– Number fields with arbitrary bases

– Computation of Hilbert class fields and general class fields

– Representation of a number field as a vector space or algebra over a given coefficient field

– Automorphism group, Galois group of the normal closure

– Action of the automorphisms on ideals and ideal classes

– Dirichlet and Hecke character group as duals of residue rings and ray class groups

– Basic Galois-Cohomology, computations in H1 and H2

6.1.2 Orders and Fractional Ideals

– Multiple relative extensions

– Maximal order, integral basis (Round 2 and Round 4 algorithms for absolute fields, Round 2 for
relative extensions and special methods for Kummer extensions)

– Suborders, extension orders

– Construction of integral and fractional ideals

– Ideal arithmetic: product, quotient, gcd, lcm, colon ideal

– Determination of whether an ideal is: integral, prime, principal

– Decomposition of primes

– Valuations of order elements and ideals at prime ideals

– Completions at prime ideals

– Factorization of an ideal

– Residue field of an order modulo a prime ideal

– Residue class ring of an order modulo an arbitrary ideal

– Completion of absolute maximal orders at finite primes
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6.1.3 Invariants

– Class group: Conditional (GRH) and unconditional algorithms

– Unit group: Conditional (GRH) and unconditional algorithms

– S-Unit group for arbitrary (finite) set S of primes

– Picard group (ring class group) for non-maximal orders

– Regulator

– Exceptional units

– Ray class groups, unit group of ray class rings of absolute maximal orders.

– p-Selmer groups

6.1.4 Diophantine (and other) Equations

– Norm equations, relative norm equations (both in the field and the order case, testing for local
solubility)

– Simultaneous norm equations, splitting of 2-cocycles

– Thue equations

– Unit equations

– Index form equations

– Integral points on Mordell curves

– Hilbert 90

6.1.5 Quadratic Fields

– All functionality of number fields

– Euclidean structure of Q(
√
d), for d = −1,−2,−3,−7,−11, 2, 3, 5, 13.

– Class number (Shanks’ algorithm)

– Ideal class group (Buchmann’s method)

– Fundamental unit, conductor

– Solution of norm equations (Cornaccia’s algorithm for imaginary fields and Cremona’s conics for
real quadratic fields)

– Facilities for binary quadratic forms (see Lattices and Quadratic Forms)

– 2-class group using the Bosma–Stevenhagen method

6.1.6 Cyclotomic Fields

– All functionality of number fields

– Sparse representation for large fields

– Conductor and cyclotomic order

– Cyclotomic subfields

– Creation of roots of unity

– Minimization of elements into smaller fields

– Conjugation and complex conjugation
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6.2 Galois Theory of Number Fields

Magma contains a rich set of commands to use and analyze the Galois structure of number fields.
Starting with Klüners’ or Klüners and van Höij’s subfield algorithm that allows the computation
of all subfields of extensions of Q without the knowlegde of the Galois group, a generalization by
Fieker and Klüners of Staudhar’s method to compute the Galois group of any rational polynomial
(no degree restriction, reducible polynomials as well) to Klüners algorithms for automorphisms of
abelian fields.

Magma has been able to compute Galois groups of irreducible polynomials of degree > 50 and
of reducible polynomials of degree > 25.

– Determination of subfields

– Automorphism groups of normal and abelian fields

– Action of automorphisms on ideals, class group

– Isomorphisms and embeddings of number fields

– Galois group of number fields with no degree restriction.

– Galois correspondence: fixed fields, fixed groups

– Solvability by radicals, virtual work in the splitting field

– Ramification theory

– Action on S-Units

The computation of the Galois group of the degree 32 polynomial f(f(f(f(x)))) for f := x2 − 2
takes about 5 seconds, to solve (by radicals) a polynomial x6− 3x5− 2x4 +9x3−x2− 4x+1 with
Galois group 6T11 of order 48 takes also about 5 seconds.

6.3 Class Field Theory of Number Fields

Class field theory is one of the most important results in number theory of the 20th century. While
thought to be totally theoretical for a long time, it is now very practical and used in a growing
number of applications from tabulating fields to Diophantine equations and representation theory
of finite groups.

The core of Magma’s class field theory is Fieker’s algorithm to compute defining equations for
a class field that is parametrized as a quotient of a ray class group. While analytic contructions
are also available (over imaginary quadratic fields), this algebraic method applies to all fields.

– Ray class groups modulo any integral ideal

– Computation of defining equations of class fields

– Test if a class field is normal, central or abelian without computing defining equations

– Special integral closure algorithms based on Kummer theory

– Analytical construction of Hilbert Class polynomials over imaginary quadratic fields

– Computation of Hilbert class fields and ring class fields

– The norm group of an abelian number field can be computed

– Norm symbols, Artin-map is available

– Solvability of norm equations can be tested, extending the Hasse-Norm-Theorem

– Extension of automorphisms of the base field

– Galois cohomology: action on Ray class groups

– Galois cohomology: decide if a 1 or 2-cocycle is trivial, explicit splitting of cocycles

– Grunwald-Wang theorem: find a cyclic extension having prescribed degrees at a finite number of
places.

– Functionality with Hecke Grössencharacters in CM fields
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6.4 General Algebraic Function Fields

A general algebraic function field F/k of n variables over a field k is a field extension F of k
such that F is a field extension of finite degree of k(x1, . . . , xn) for elements xi ∈ F which are
algebraically independent over k.

6.4.1 Rational Function Fields

Given any field k and indeterminates x1, . . . , xn, the user may form the field of rational functions
k(x1, . . . , xn) as the localization of the polynomial ring k[x1, . . . , xn] at the prime ideal 〈x1, . . . , xn〉.

– Creation of a rational function field of a given rank over a given ring

– Retrieval of the ring of integers, coefficient ring and rank

– Ring predicates

– Arithmetic

– Numerator and Denominator

– Degree and weighted degree

– Evaluation

– Derivative

– Partial fraction expansion

– Partial fraction decomposition (squarefree or full factorization)

6.4.2 Algebraic Function Fields

Within Magma, algebraic function fields of one variable can be created by adjoining a root of an
irreducible, separable polynomial in k(x)[y] to the rational function field k(x). If k is a finite field,
the function field is said to be global. An algebraic function field can be extended to create fields
of the form k(x, a1, . . . , ar) where each extension occurs by adjoining a root of an irreducible and
separable polynomial. Extensions may be formed using several polynomials simultaneously giving
a non simple representation.

– Creation of simple, relative and non simple extensions and mixed towers thereof

– Creation of extensions of the constant field using bivariate polynomials

– Retrieval of information defining the field

– Exact constant field and genus

– Change of representation from finite degree extensions to infinite and vice versa

– Change of coefficient field to one lower in the extension tower

– Computation of subfields and automorphisms

– Homomorphisms from function fields into any ring by specifying the image of the primitive element
and an optional map on the coefficient field

– Computation of Galois Groups of simple extensions of a function field with no degree restriction
(and of squarefree separable polynomials over global function fields)

– k-Automorphisms, isomorphism testing and embeddings

– L-polynomial and ζ-function

– Construction of a function field with an extended constant field

– Construction of Artin-Schreier-Witt extensions from finite dimensional Witt-vectors

– Constructive class field theory using both algebraic and analytic (Drinfeld modules) methods
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6.4.3 Orders of Algebraic Function Fields

– Finite and infinite equation orders

– Finite and infinite maximal orders using the Round 2 algorithm for extensions which are not Kummer
or Artin–Schreier, a basis for a p-maximal order of a Kummer extension and a maximal order of an
Artin–Schreier extension can be written down.

– Creation of orders whose basis is a transformation of an existing order

– Integral closure

– Basis of the order with the option to have the elements returned in a specified ring

– Simplification of an order to a transformation of its equation order

– (S-)Unit Group and unit rank, independent and fundamental units and regulator

– Ideal class group for maximal orders

– Ring predicates

– Basis size reduction for finite, simple, non relative orders

6.4.4 Elements of Algebraic Function Fields and their Orders

Elements of function fields and their orders have 3 different representations. These representations
are implemented generally for function field elements and number field elements. Standard ele-
ments are represented using coefficients of the basis elements. Elements of orders (and fields) with
a power basis are represented using a polynomial representation. Elements of all orders or fields
may have a product representation, being thought of as a formal product of a list of elements each
to the power of some exponent. This can be a great advantage when the element is prohibitively
large when represented using coefficients.

– Arithmetic and modular arithmetic

– Predicates

– Creation of random elements and conversion to and from sequences

– Norm and trace with respect to any given coefficient ring

– Representation matrix, minimal and characteristic polynomials

– Numerators and Denominators with respect to a given order

– Module generated by a sequence of elements

– Strong approximation theorem

– Power series expansion, mapping of elements into completions

6.4.5 Ideals of Orders of Algebraic Function Fields

– Creation of ideals from generators or a basis

– Arithmetic

– Roots of ideals

– Predicates for integrality, prime, principal zero and one ideals

– Predicate for prime ideals determining the type of ramification

– Intersection, GCD and LCM

– Factorization

– p-radicals and p-maximal orders

– Taking valuations of elements and ideals at prime ideals

– Denominator

– Retrieving basis and generators

– Residue class field and the map to and from the order into it

– Completions

– Ramification and inertia degree
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6.4.6 Places of Algebraic Function Fields

– Creation of places as zeros and poles of elements of a field

– Creation from prime ideals

– Creation of random places of global fields

– Creation of places of a given degree of global fields

– Decomposition of places

– Arithmetic

– Residue class field, lifting elements out of and evaluating functions into

– Valuation of elements and expanding elements at a place

– Completion of fields and orders at places of any degree

– Ramification and inertia degree

– Retrieval of generators and a uniformizing element

– Weierstrass places

– Counting the number of places of a given degree over the exact constant field of global fields

– The Serre and Ihara bounds on the number of places of degree 1 over the exact constant field of
global fields

6.4.7 Divisors of Algebraic Function Fields

– Creation from places, elements and ideals

– Canonical and different divisor

– Arithmetic including GCD and LCM

– Support and Degree

– Numerator and Denominator

– Testing for properties of effective, positive, principal, special and canonical

– Riemann–Roch space L(D) of a divisor D, given by a k-basis of algebraic functions

– Reduction of a divisor

– Index of Speciality

– Gap numbers, ramification divisors, Wronskian orders and Weierstrass places

– Parametrization of a field at a divisor

– Number of smooth divisors of global fields

6.4.8 Differentials of Algebraic Function Fields

– Creation of a differential space

– Creation of differentials from field elements

– Arithmetic

– Valuation of a differential at a place

– Divisor of a differential

– Differential spaces and bases for given divisors

– Space and basis of holomorphic differentials of a field

– Differentiations of elements of a function field

– Residue of a differential at a place of degree one

– Cartier operator and representation matrix of the Cartier operator (global case)

– Module generated by a sequence of differentials
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6.4.9 Divisor Class Groups for Global Algebraic Function Fields

– Bounds on the generation of the class group

– Computation of the class number and approximations to it

– Construction of the divisor class group, structure of the divisor class group, representation of divisor
classes as abelian group elements

– S-class group, S-units and S-regulator for a finite set of places S

– Exact sequence
0 → U(S) → F× → Div(S) → Cl(S) → 0

– Image and preimage computation possible for the maps of the exact sequence

– Similar functionality for the ideal class group of the finite maximal order

– p-rank of the divisor class group (separate method) and Hasse–Witt invariant

– Tate–Lichtenbaum pairing

– Global units

6.4.10 Class Field Theory for Algebraic Function Fields

– Ray divisor class groups

– Defining equation for class fields

– Conductor and norm group

– Genus, discriminant, number of places of given degree

– Decomposition type of places of the base field

– Exact constant field

– Drinfeld modules of rank 1, rings of twisted polynomials

The development of this module is a joint project with the KANT group.
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6.5 Algebraically Closed Fields

Algebraically closed fields (ACF’s) have the property that they always contain all the roots of any
polynomial defined over them.

– Construction of algebraic closures over a finite field, the rational field or a rational function field of
any characteristic

– Automatic extension of the field by the roots of any polynomial over the field, and operations on
conjugates of roots

– Basic arithmetic

– All standard algorithms for rings over generic fields work over such fields

– Minimal polynomial

– Simplification of the field

– Construction of the corresponding absolute field together with the isomorphism

– Pruning of useless variables and relations

It is not possible to construct explicitly the closure of a field, but the system works by automatically
constructing larger and larger algebraic extensions of an original base field as needed during a
computation, thus giving the illusion of computing in the algebraic closure of the base field.

A similar system was suggested by D. Duval and others (the D5 system [16]), but this has
difficulty with the parallelism which occurs when one must compute with several conjugates of
a root of a reducible polynomial, leading to situations where a certain expression evaluated at a
root is invertible but evaluated at a conjugate of that root is not invertible.

The system developed for Magma by Allan Steel avoids these problems, and is described
in [41, 42]. Consequently, ACF’s behave in the same way as any other field implemented in
Magma; all standard algorithms implemented for generic fields and which use factorization work
without change (for example, the Jordan form of a matrix).

The system avoids factorization over algebraic number fields when possible, and automatically
splits the defining polynomials of a field when factors are found. The field may also be simplified
and expressed as an absolute field. Especially significant is also the fact that all the Gröbner
basis algorithms work well over ACF’s. One can now compute the variety of any zero-dimensional
multivariate polynomial ideal over the algebraic closure of its base field. Puiseux expansions of
polynomials are now also computed using an algebraically closed field.

Since V2.13, one may construct the algebraic closure over a finite field or a rational function
field of any characteristic. For rational function fields of very small characteristic, inseparable field
extensions are handled properly (see [42] for details).
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7 Local Arithmetic Fields
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7.1 Discrete Valuation Rings

Valuation rings are available for the rational field and for rational function fields. For rational
function fields, given an arbitrary monic irreducible polynomial p(x) ∈ K[x], the valuation ring is

Op(x) = {f(x)
g(x)

: f(x), g(x) ∈ K[x], p(x) 6 | g(x)}.

Valuations corresponding both to an irreducible element and to ∞ are allowed.

– Valuation ring corresponding to the discrete non-Archimedean valuation vp of Q

– Valuation ring corresponding to the discrete non-Archimedean valuation vp of a rational function
field

– Valuation ring corresponding to the valuation v∞ of a rational function field

– Arithmetic

– Euclidean norm, valuation

– Greatest common divisor
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7.2 The Real and Complex Fields

The real and complex fields are different from most structures in that exact computation in them
is almost never possible.

– Arithmetic

– Square root, arithmetic-geometric mean

– Continued fraction expansion of a real number

– Constants: π, Euler’s constant, Catalan’s constant

– Logarithm, dilogarithm, exponential

– Trigonometric functions, hyperbolic functions and their inverses

– Bernoulli numbers

– Γ function, incomplete Γ function, complementary incomplete Γ function, logarithm of Γ function

– J-Bessel function, K-Bessel function

– U -confluent hypergeometric function

– Logarithmic integral, exponential integral

– Error function, complementary error function

– Dedekind η function

– Jacobi sine theta-function and its k-th derivative

– Log derivative (ψ) function, i.e, Γ′(x)
Γ(x)

– Riemann-ζ function

– Polylogarithm, Zagier’s modifications of the polylogarithm

– Weber’s f -function, Weber’s f2-function, j-invariant

– Integer polynomial having a given real or complex number as an approximate root (Hastad, Lagarias
and Schnorr LLL-method)

– Roots of an exact polynomial to a specified precision (Schönhage splitting circle method)

– Summation of a series (Euler-Wijngaarden method for alternating series)

– Numerical integration of a function (Romberg-type methods)

The real and complex fields in Magma are based on the GMP, MPFR and MPC packages. Some
of the transcendental functions as well as root finding is based on code developed for PARI by
Henri Cohen and others.

7.3 Newton Polygons

– Construction of a newton polygon: Compact, infinite or including the origin

– Construction of newton polygons from different types of data: f ∈ k[x, y], f ∈ k 〈〈x〉〉 [y], f ∈ k[y]
and some prime object, a finite set of points, a finite set of faces (weighted dual vectors)

– Finding faces, vertices and slopes

– If polygon is derived from a polynomial f , finding restrictions of f to faces

– Locating a given point relative to a newton polygon

– Giving the valuations of the roots of a polynomial (with respect to a prime if not implicit)

Newton polygons can be used with polynomials over series rings in order to find roots of the
polynomial.

– Walker’s [48] algorithm for computing Puiseux expansions

– Duval’s [17] algorithm for computing Puiseux expansions
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7.4 p-adic Rings and their Extensions

A p-adic ring arises as the completion of the ring of integers at a prime while a local field arises as
the completion at a prime ideal of a number field. Magma supports both fixed and free precision
models, allowing the user to trade an increase in speed for automated precision management.

7.4.1 Construction

– Construction of a p-adic ring or field (via polynomials or as completions)

– Unramified extension of a local ring or field

– Totally ramified extension of a local ring or field

– Ring of integers of a local field

– Field of fractions of a local ring

– Change precision of a ring, field or element

– Computation of a splitting field of an integral polynomial over an p-adic ring.

– Enumeration of extensions of a given degree.

A local ring is a finite degree extension of a p-adic ring and may be either ramified or unramified or
both. Any arbitrary tower of extensions can be constructed, as long as each step is either ramified
or unramified or both.

7.4.2 Arithmetic

– Arithmetic operations

– Valuation of an element

– Norm and trace of an element

– Logarithm, exponential of an element

– Square root, n-th root of an element

– Minimal polynomial of an element over the p-adic subring or field

– Image of an element under a power of the Frobenius automorphism

– Linear algebra over local rings and fields

7.4.3 Polynomial Factorization

– Polynomial algebra over local rings and fields

– Greatest common divisor of two polynomials

– Hensel lifting of the factors of a polynomial

– Hensel lifting of the roots of a polynomial

– Test a polynomial for irreducibility

– Roots of a polynomial over a local ring or field

– Factorization of polynomials over local ring or field

7.4.4 Class field theory

– Unit group and norm group

– Defining equations for abelian extensions
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7.5 General Local Fields

In addition to the p-adic rings and their (ramified and unramified) extensions Magma contains
local fields which are defined as an extension of another local field by any irreducible polynomial.

– Construction of local fields as an extension by any irreducible polynomial

– Calculation of subfields

– Isomorphisms to extensions of p-adic fields

– Construction of elements and basic arithmetic with those elements

– Homomorphisms from local fields

– Automorphism group and subgroups and fixed fields of these groups

– Computation of an existing field as a extension of another field

7.6 Galois Rings

Magma provides facilities for computing with Galois rings. The features are currently very basic,
but advanced features will be available in the near future, including support for the creation of
subrings and appropriate embeddings, allowing lattices of compatible embeddings, just as for finite
fields.

Because of the valuation defined on them, Galois rings are Euclidean rings, so they may be
used in Magma in any place where general Euclidean rings are valid. This includes many matrix
and module functions, and the computation of Gröbner bases. Linear codes over Galois rings will
also be supported in the near future.

Features:

– Creation of a default Galois ring (using a default defining polynomial).

– Creation of a Galois ring by a specified defining polynomial.

– Basic structural operations and arithmetic.

– Euclidean operations.
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7.7 Power, Laurent and Puiseux Series Rings

Magma contains an extensive package for formal power series. The fact that we may only work
with a finite number of terms, n say, of a power series, i.e., a truncated power series, is made
precise by noting that we are working in the quotient ring R[[x]]/〈xn+1〉, for some n, rather than
in the full ring R[[x]]. Provided this is kept in mind, calculations with elements of a power series
ring (though not field) are always precise.

Given a field K, a field of Laurent series K((x)) is regarded as the localization of the power
series ring K[[x]] at the ideal 〈0〉. More simply, it is the field of fractions of K[[x]]. Since elements
of such a field are infinite series, calculation is necessarily approximate.

A power series ring R[[x]] is regarded as the completion of the polynomial ring R[x] at the
ideal 〈0〉.

Puiseux series with arbitrary fractional exponents are also supported (since V2.4).

– Arithmetic

– Inversion of units

– Derivative, integral

– Square root, valuation

– Exponentiation, composition, convolution, reversion

– Power series expansions of transcendental functions

– R[[x]]/〈xn+1〉 as an algebra over R

– Factorization of polynomials over series rings

– Unramified and ramified extensions of series rings

7.8 Lazy Power Series Rings

These power series rings contain only series of infinite precision. All coefficients of such series are
computable but only finitely many will be known.

– Creation of rings and elements

– Arithmetic of elements

– Retrieval of coefficients

– Printing some specified terms of a series

– Simple predicates on series

– Derivative, integral and evaluation of series
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8 Linear Algebra and Module Theory

• Matrix operations

• Vector spaces

• Free modules

• Modules over Dedekind domains

8.1 Matrices

In this section we list the basic facilities available for computing with matrices over various rings.
These algorithms underpin the vector space and module theory machinery.

8.1.1 Representation of Matrices

– Optimal packed representation for matrices over GF(q), using specialized bit operations, for q =
2, 4, 8, 16.

– Special packed representation for matrices over GF(q), using bit operations, for q = 3, 5, 7, 9.

– Efficient packed representation for matrices over all other small finite fields, using lookup tables for
vector operations.

– Fraction-free algorithms for matrices over Q, reducing computations to those over Z.

– Internal modular representations of matrices over Z or Q, for several algorithms.

– Fraction-free algorithms for matrices over rational function fields, reducing computations to those
over polynomial rings.

– Input of matrices using the “Cambridge” compact format

8.1.2 Arithmetic

– Multiplication: fast baby-step/giant-step algorithm for small characteristic finite fields

– Multiplication: Strassen algorithm over finite fields

– Multiplication: map to exact floating point over medium-sized prime finite fields (ATLAS package)

– Multiplication: SSE 128-bit operations on Intel/AMD processors for small finite fields

– Multiplication: modular algorithm for matrices over integers

– Multiplication: evaluation/interpolation algorithm for matrices over K[x] and K[x]/〈f(x)〉
– Tensor products of matrices

– Fast inverse of a rational matrix using modular methods

– Fast algorithm for powering matrices over finite fields using the primary rational form

– Order/projective order of matrices over finite fields (Leedham-Green algorithm)

– Row and column operations

– Submatrix operations

– Fast trace of product of matrices

The Strassen algorithm for multiplying two n × n matrices over an arbitrary ring takes
O(nlog27) ∼= O(n2.81) arithmetic operations, instead of the classical O(n3) operations. Magma
uses the Strassen algorithm at whichever dimension is applicable for the relevant ring.
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8.1.3 Echelon Form and Related Operations

– Echelonization over fields and euclidean domains

– Nullspace (many different techniques including sparse, p−adic and modular algorithms)

– Solution of systems of linear equations

– Rank (for matrices over domains or Euclidean rings)

– Determinant (for matrices over any commutative ring; modular algorithms over Z and Q)

– Determinant (efficient elimination and minor expansion algorithm for multivariate polynomial rings
with many variables)

Fundamental to Magma’s fast linear algebra module is an asymptotically-fast echelon form
algorithm for fields, which maps the problem to multiplication, thus taking advantage of all the
fast multiplication algorithms above. Based on this, there are also asymptotically-fast algorithms
for computing the nullspace, rank, or determinant of a matrix over a field.

For matrices over the integers or rationals, there are asymptotically-fast algorithms for all of
the above operations, which are based on modular and p-adic methods.

8.1.4 Canonical Forms

– Generalized Jordan canonical form of matrices over fields

– Rational and primary rational canonical forms of matrices over fields

– Hermite and Smith forms for matrices over Euclidean domains (fast modular algorithm over the
integers)

– Characteristic polynomial, minimal polynomial,

– Eigenvalues and eigenspaces (modular algorithms used over Z and Q)

– LLL-reduction of matrices over Z.

Over finite fields, a fast algorithm due to Allan Steel is used to construct the various matrix
canonical forms: generalized Jordan, rational, and primary rational [40]. Over the ring of in-
tegers, asymptotically-fast modular algorithms are used to compute characteristic and minimal
polynomials polynomials and the Hermite and Smith normal forms.

Given a 100 × 100 matrix over Z with random one-digit entries Magma finds its Smith form
in 0.06 seconds (the largest elementary divisor is 50 digits) and its characteristic polynomial in
0.1 seconds (on an 2.4GHz Opteron processor).
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8.2 Sparse Matrices

A special type for sparse matrices is provided so that the user can build up such matrices and then
apply some non-trivial algorithms to them. An extended example in the Handbook implements
the basic linear sieve for discrete logarithms in the Magma language, thus demonstrating how one
can use the sparse matrix facilities when implementing index-calculus methods.

Features:

– Creation of sparse matrices in compact form.

– Creation of trivial sparse matrices followed by dynamic expansion.

– Basic properties (density, etc.).

– Conversion between sparse and normal (dense-representation) matrices.

– Multiplication of dense vectors by sparse matrices.

– Non-trivial invariants of sparse matrices: nullspace, rank and elementary divisors (equivalent to
Smith form).

– Computation of non-zero solution vector for sparse systems arising in index-calculus algorithms
(Structured Gaussian elimination and Lanczos algorithms [28]).

– Computation of general nullspace over fields and Euclidean rings using Markowitz-pivoting tech-
niques.

8.3 Vector Spaces

8.3.1 Construction

– Construction of vector spaces of n-tuples over a field

– Construction of vector spaces comprising m× n matrices over a field

– Extension and restriction of the field of scalars

– Direct sum

8.3.2 Construction

– Vector arithmetic

– Normalization, rotation

– Tensor product of vectors

– Trace of a vector in a subfield

– Weight, support

8.3.3 Subspaces and Quotient Spaces

– Construction of a subspace

– Membership of a subspace

– Transversal of a subspace (over a finite field)

– Complement of a subspace

– Sum and intersection of subspaces

– Reduction of vectors over a subspace

– Quotient spaces
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8.3.4 Bases

– Construction of a vector space with specified basis

– Coordinates of a vector with respect to a basis

– Test for linear independence of a set of vectors

– Extend a linearly independent set to a basis

8.3.5 Homomorphisms

– Construction of Hom(U, V ), U and V vector spaces

– Image, kernel cokernel

– Echelon form

8.3.6 Quadratic Forms

Every vector space is equipped with the standard inner product. Commencing with V2.7, the user
may specify an arbitrary quadratic form.

– Creation of a vector space with a designated quadratic form (a quadratic space)

– Inner product and norm of vectors

8.4 Free Modules

In this section we are mainly concerned with free modules. We consider R-modules M of n-tuples
where R has scalar action on M . The case in which the action of R on M is via a matrix algebra
is considered in the section on Representation Theory.

8.4.1 Basic Operations

– Construction of free modules of n-tuples

– Construction of modules comprising m× n matrices

– Arithmetic

– Extension and restriction of the ring of scalars

– Direct sum

– Construction of submodules, quotient modules

– Sum and intersection of submodules

– Basis operations

8.4.2 Homomorphisms

– Construction of modules Hom(M,N) for any free modules M and N

– Explicit construction of Hom(U, V ) for proper subspaces U and V

– Explicit construction of Hom(H1, H2) for homomorphism modules H1 and H2 with left or right
matrix action

– Construction of the reduced module of a homomorphism module whose elements are with respect
to the bases of the domain and codomain (not just the generic bases of these)

– Image, kernel, cokernel

– Echelon form (over a field)

– Hermite and Smith normal forms (over an ED)
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8.5 Modules over Dedekind domains

Modules over dedekind domains are supported only for maximal orders of Algebraic number fields
and Algebraic function fields.

– Creation of modules

– Arithmetic with module elements

– Submodules and quotients of modules

– Determinant, dimension, pseudo-generators

– Equality of modules, membership

– Intersection of submodules

– Product of a module by an ideal

– Pseudo-basis and elementary divisors

– Dual of a module

– Steinitz class and Steinitz form

– Construction of modules Hom(M,N) and standard calculations with morphisms

8.6 Chain Complexes

Complexes of modules are a fundamental object in homological algebra. Conceptually, a complex
is an infinite sequence of modules, indexed by integers, with maps between successive modules
such that the composition of any two maps is zero.

– Creation of a complex from a list of A-modules

– Subcomplexes and quotient complexes

– Operations on complexes: Splice, shift, direct sum

– Exact extensions, zero extensions

– Dual of a complex

– Homology groups of a complex

– Boundary maps

– Construction of chain maps between complexes

– Composition of chain maps

– Image, kernel and cokernel of a chain map

– Predicates for chain maps: Surjection, injection, isomorphism

– Injective resolution (for modules over a basic algebra)

– Projective resolution (for modules over a basic algebra)

– Extending cohomology elements as chain maps

– Maps induced on homology by chain maps, long exact homology sequence
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9 Lattices and Quadratic Forms

9.1 Integral Lattices

A lattice in Magma is a Z-module contained in Qn or Rn, together with a positive definite inner
product. The information specifying a lattice is a basis, given by a sequence of elements in Zn,
Qn or Rn, and a bilinear product (·, ·), given by (v, w) = vMwtr for a positive definite matrix M .

9.1.1 Constructions and Operations

– Creation of a lattice by a given generating matrix or basis matrix together with an optional inner
product matrix

– Creation of a lattice by a given Gram matrix

– Construction of lattices from codes

– Construction of lattices from algebraic number fields

– Construction of special lattices, including the root lattices An, Dn, En; the laminated lattices Λn

(including the Barnes-Wall lattice Λ16 and the Leech Lattice Λ24); the Kappa lattices Kn, etc.

– Inner product, norm, and length of lattice elements with respect to the inner product on the lattice

– Rank, determinant, basis, basis matrix, inner product matrix, Gram matrix, testing for integrality
and evenness, index in a superlattice

– Sum, intersection, direct sum, tensor product, exterior square, symmetric square of lattices

– Creation of sublattices and superlattices, scaling of lattices

– Creation of quotient lattices (abelian group with isomorphism)

– Dual of a lattice, dual quotient of a lattice

– Action on lattice elements by matrices

Several families of interesting lattices are directly accessible inside Magma using standard con-
structions, e.g., root lattices and preimages of linear codes. For each lattice, a LLL-reduced basis
for the lattice is computed and stored internally and subsequently used for many operations.

9.1.2 Reduction Algorithms

Central to the lattice machinery in Magma is a highly optimized LLL algorithm which constructs
a basis of the lattice which is LLL-reduced. Usually the vectors of the new basis have very small
norms. The default method for LLL reduction in Magma is based on the rigorous floating-point
LLL algorithm of Nguyen and Stehlé.

– LLL reduction of lattices using the Nguyen-Stehlé floating-point method. This is actually a family
of algorithms that allow the user to choose the degree of reduction ranging from a guaranteed LLL
basis to much weaker but faster reduction.

– LLL reduction of lattices using the exact de Weger integral method

– LLL reduction of lattices using the Schnorr-Euchner deep insertion strategy

– HKZ (Hermite-Korkine-Zolotarev) reduction of lattices, a stronger form of reduction than LLL

– Gauss reduction is available for 2-dimensional lattices. This is guaranteed to produce a basis whose
vectors have norms which achieve the minimum

– Seysen reduction of a lattice L, that is, the construction of a lattice L′ from L such that L′ and its
dual are simultaneously reduced

– Pairwise reduction of lattices, basis matrices and Gram matrices

– Orthogonalization and orthonormalization (Cholesky decomposition) of a lattice

– Testing matrices for being positive or negative (semi-)definite

The Nguyen-Stehlé floating-point method for LLL reduction can reduce matrices with very large
entries as well as matrices having large sizes (e.g., number of rows well over 500). Indefinite Gram
matrices may also be reduced in some cases.
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9.1.3 Properties

Magma includes a highly optimized algorithm for enumerating all short vectors in a lattice with
given norm. This algorithm, developed by Damien Stehlë, is used for computing the minimum,
the shortest vectors, short vectors in a given range, and vectors close to or closest to a given vector
(possibly) outside the lattice.

– Enumeration of all shortest vectors of a lattice

– Enumeration of all short vectors of a lattice having norm in a given range

– Enumeration of all vectors of a lattice having squared distance from a vector (possibly) outside the
lattice in a given range

– Enumeration of all vectors of a lattice closest to a vector (possibly) outside the lattice

– Process to enumerate short or close vectors of a lattice thereby allowing manual looping over short
vectors having norm in a given range or close vectors having squared distance in a given range

– Minimum, packing radius, kissing number

– Hermite constant, centre density, density

– Successive minima, theta series

– Pure lattice of a lattice over Z or Q

– Construction of a fundamental Voronoi cell of a small-dimensional lattice

– Holes, deep holes and covering radius of a lattice

As an example, the 98280 (normalized) shortest vectors of the Leech lattice Λ24 are constructed
in 0.47 seconds.

– Computation of the p-neighbour of a lattice with respect to a given vector and prime p

– The sequence of p-neighbours a lattice at a prime p

– The transitive closure of the p-neighbour relation of a lattice at a prime p

– Spinor genus of an integral lattice, returned as a sequence of isometry representatives

– Genus of an integral lattice, returned as a sequence of isometry representatives

– Adjacency matrix of a sequence of lattices under the p-neighbour relation, for a sequence closed
under the p-neighbour relation

– p-Adic Jordan form for lattices

The genus of the 12-dimensional Coxeter-Todd lattice K12 is enumerated in 16 seconds and has
16 classes of lattices and mass 4649359/4213820620800 ≈ 0.000001103359.
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9.2 Lattices with Group Action: G-Lattices

In Magma, a G-lattice L is a lattice upon which a finite integral matrix group G acts by right
multiplication. Magma provides support for computations with G-lattices. The most important
operation is the calculation of the automorphism group of a lattice.

9.2.1 Automorphism Groups

The computation of the automorphism group of a lattice (i.e. the largest matrix group that acts
on the lattice) and the testing of lattices for isometry is performed within Magma using orthogonal
decomposition (due to Gabi Nebe) and a backtrack search designed by Bill Unger in 2009. The
backtrack search is based on the Plesken-Souvignier backtrack algorithm [PS97] together with
ordered partition methods due to Leon.

– Automorphism group of a lattice

– Subgroup of the automorphism group of a lattice fixing specified bilinear forms

– Determination as to whether two lattices are isometric

– Determination as to whether two lattices are isometric in such a way that specified bilinear forms
are fixed

– Determination as to whether a simultaneous isometry exists between two sequences of lattices

– Determination as to whether a lattice has an isometric embedding into a second lattice

The automorphism group of the 24-dimensional Leech lattice Λ24 is found in 18.760 seconds. The
group has order 8315553613086720000 and is the double cover of the sporadic simple group Co1.

9.2.2 G-Lattices

If G is a finite integral matrix group, then Magma uses the Plesken centering algorithm ([Ple74]) to
construct all G-invariant sublattices of a given G-lattice L. The lattice of G-invariant sublattices
of L can be explored in much the same way as the lattice of submodules of an A-module, where
A is an algebra over a finite field.

– Creation of G-lattices with associated operations

– Invariant lattice of a rational matrix group and the associated action (thus yielding an integral
representation of the group)

– Bravais group of a finite rational matrix group

– Space of invariant bilinear forms

– Symmetric forms, antisymmetric forms, positive definite symmetric form

– Endomorphism ring

– Centre of the endomorphism ring

– Dimension of the space of invariant bilinear forms, the endomorphism algebra or its centre using a
modular algorithm

– G-invariant sublattices of finite index of either a G-lattice or integral matrix group

– A G-invariant sublattice of a lattice G can be created as a lattice of subsets with respect to inclusion.
All the standard operations for working with this lattice are provided: e.g., meet, join, maximal
sublattices, minimal overlattices.
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9.3 Quadratic Forms

9.3.1 General Quadratic Forms

A quadratic form may be given either as a Magma lattice, as a multivariate polynomial or as a
symmetric matrix. The major feature provided is Simon’s algorithm for finding isotropic subspaces
of integral forms.

– Representation of a quadratic form either as a multivariate polynomial or as a symmetric matrix.

– The p-signature of a form defined over the rationals, for p a prime

– The p-excess of a form defined over the rationals, for p a prime

– The Witt (or Hasse-Minkowski) invariant over Qq. The form must be defined over Z or Q.

– Construction of an isotropic subspace using an algorithm due to Simon. The form must be defined
over Z or Q. In many cases the subspace returned will be guaranteed to be a maximal totally
isotropic subspace.

9.3.2 Binary Quadratic Forms

Binary quadratic forms serve as a model for ideals in quadratic fields. Forms of negative discrim-
inant are identified with lattices in the complex plane, which is the natural domain for modular
forms and functions. Magma contains full functionality for forms of positive discriminant.

– Prime form, random form

– Reduction of forms

– Composition and powering

– Enumeration of reduced forms and reduced orbits

– Treatment of fundamental and nonfundamental discriminants

– Class number and class group

– Action of SL(2,Z) and PSL(2,Z)

– Evaluation of modular functions on quadratic forms

– Discrete logarithm of a form (for imaginary quadratic fields)
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10 Associative Algebras

In this section we are mainly concerned with associative algebras – the facilities for Lie algebras
and quantum algebras may be found in the section on Lie theory. The three chief ways of defining
algebras in Magma are in terms of a finite presentation, in terms of structure constants, or as a
matrix (linear) algebra.

• Finitely presented associative algebras

• General finite dimensional algebras (defined by structure constants)

• Finite dimensional associative algebras (defined by structure constants)

• Group algebras

• Matrix algebras

• Quaternion algebras

• Basic algebras

10.1 Finitely Presented Associative Algebras

Finitely-presented (FP) associative algebras (or noncommutative polynomial rings) are defined
by taking R-linear combinations of elements of a semigroup, where R is some ring. Since V2.11,
these are handled by an extension of the commutative algebra machinery to noncommutative
data structures and algorithms, where applicable. These include a noncommutative analogue for
Gröbner bases.

– Construction of free algebras over arbitrary fields

– Arithmetic

– Mappings into other associative algebras

– Definition of left, right, two-sided ideals

– Noncommutative Gröbner bases of ideals, with specialized algorithms for different coefficient fields
(fraction-free methods for the rational field and rational function fields)

– Gröbner bases of ideals over finite fields and rationals, using noncommutative extension of the
Faugère F4 algorithm

– Construction of degree-d (truncated) Gröbner bases

– Normal form of a polynomial with respect to an ideal

– Construction of FP-algebras as quotient rings

– Enumeration of the basis of finite-dimensional FP algebras

– Matrix and structure-constant representations of finite-dimensional FP algebras

– Construction of a matrix representation (Linton’s vector enumerator)

There are two major tools for computing with these algebras. The main approach is to apply
a noncommutative version of Buchberger’s algorithm to construct a Gröbner basis for an ideal.
This technique has been developed chiefly by Teo Mora in Genova and Ed Green in Virginia. An
extension of Faugère’s F4 algorithm, due to Allan Steel, works by sparse linear algebra and is often
much quicker.

Linton’s vector enumerator uses the Todd-Coxeter algorithm in an attempt to construct a
matrix representation. If the user has some idea as to how to select ideals that might give rise to
matrix representations of reasonable degree, this approach is very successful.
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10.2 Exterior Algebras

A special type is provided for working with an exterior algebra. Such an algebra is a special kind
of FP algebra which is skew-commutative and is represented as a quotient of the free algebra
K〈x1, . . . , xn〉 by the relations x2

i = 0 and xixj = −xjxi for 1 ≤ i, j ≤ n, i 6= j.
Because of the above relations, elements of an exterior algebra can be written in terms of

commutative monomials in the variables (via a collection algorithm), and the associated algorithms
are much more efficient than for the general noncommutative case. Gröbner bases of ideals can
be computed very efficiently (the Faugere F4 algorithm has been specially adapted for this).
Furthermore, the extensive module theory also works over exterior algebras.

10.3 General Finite-Dimensional Algebras

These algebras are presented in terms of a basis for a free module M together with a set of
structure constants defining the multiplication of these basis elements. It is assumed that we have
an echelonization algorithm for M so that standard bases may be constructed for submodules.

– Creation of algebras in terms of structure constants

– Direct sum

– Arithmetic including Lie bracket operation

– Identities: associative, commutative, Lie, etc

– Properties of elements: idempotent, unit, zero-divisor, nilpotent

– Trace and minimal polynomial

– Creation of subalgebras, ideals and quotient algebras

– Ideal arithmetic: Sum, product, powers, intersection

– Ideal structure: Jacobson radical, maximal (minimal) left, right, two-sided ideals

– Decomposition: Simplicity, semi-simplicity, composition series

10.4 Finite-Dimensional Associative Algebras

These algebras are presented in terms of a basis for a free module M together with a set of
structure constants defining the multiplication of these basis elements. It is assumed that we have
an echelonization algorithm for M so that standard bases may be constructed for submodules.
We shall refer to these algebras as ASC-algebras.

10.4.1 Constructions and Element Operations

– Creation of algebras in terms of structure constants

– Direct sum

– Arithmetic including Lie bracket operation

– Properties of elements: idempotent, unit, zero-divisor, nilpotent

– Trace and minimal polynomial

10.4.2 Ideal and Subalgebra Structure

– Creation of subalgebras, ideals and quotient algebras

– Ideal arithmetic: Sum, product, powers, intersection

– Centralizer, idealizer

– Characteristic ideals: Centre, commutator ideal, Jacobson radical

– Ideal structure: Maximal (minimal) left, right, two-sided ideals
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– Decomposition: Simplicity, semi-simplicity, composition series

– Construction of the (left, right) regular matrix representation

– Lie algebra defined by the Lie product

Functions relating to the ideal structure (Jacobson radical, composition series, maximal and min-
imal ideals, etc) are implemented by applying the module theory machinery to the regular repre-
sentation of the algebra.

10.4.3 Orders

– Construction of orders of algebras over the rationals or a number field

– Construction of a maximal order of a central simple algebra defined over the rational numbers or a
number field

– Basis of an order

– Construction of elements of an order of an algebra

– Arithmetic of elements of an order of an algebra

– Norm, trace, conjugate, minimal polynomial and representation matrix of elements

– Construction of left, right and two-sided ideals of orders

– Addition and multiplication of ideals

– Left and right order of an ideal, colon ideal

– Basis and basis matrix of an ideal
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10.5 Matrix Algebras

Matrix algebras arise naturally as the endomorphism ring of a module and consequently are a
fundamental structure in mathematics. Much effort has been invested into developing highly
efficient code for working with these algebras and their elements in Magma. A description of
generic matrix operations may be found in the section on Vector Spaces and Matrices and will not
be repeated in this section.

While a matrix algebra may be defined over any ring R, most non-trivial operations require R
to be an Euclidean Domain.

10.5.1 Constructions and Element Operations

– Arithmetic

– Extension and restriction of coefficient ring

– Direct sum, tensor product, exterior square, symmetric square

– Determinant (including modular algorithm), trace, characteristic polynomial, minimum polynomial

– Order of a unit (Leedham-Green algorithm)

– Canonical forms over a field: echelon, Jordan, rational, primary rational (asymptotically-fast Strassen-
based algorithms over finite fields and modular algorithms over Q)

– Canonical forms over an ED: echelon, Hermite, Smith (asymptotically-fast modular algorithms over
Z)

– Characteristic polynomial, minimal polynomial

– Properties of an element: unit, zero-divisor, nilpotent

10.5.2 Ideal and Subalgebra Structure

– Standard basis for subalgebras, left, right and two-sided ideals

– Quotient algebras

– Sum, intersection, product, power of ideal

– Radical of an ideal

– Centre, commutator algebra

– Centralizer of a subalgebra in the complete matrix algebra

– Jacobson radical (Brooksbank-O’Brien algorithm used when base field is Fq)

– Unit group of an algebra over Fq (Brooksbank-O’Brien algorithm)

– Maximal (minimal) left, right, two-sided ideals

– Construction of the (left, right) regular matrix representation

– Diagonalisation of a commutative algebra over a field

– Construction of Z-basis of a maximal order of a central simple algebra over Z

10.5.3 Presentations

Algorithms have been developed by Carlson and Matthews which construct a presentation for a
matrix algebra in terms of generators and relations. At present this and related machinery is
restricted to algebras over finite fields. The ability to compute presentations is needed as part of
the development of module theory over matrix algebras.

– Primitive idempotents

– The condensed algebra eAe where e is a sum of primitive idempotents, one for each simple A-module

– A presentation for the algebra in terms of generators and relations

– The facility to write any element of the algebra as a word in the generators of the above presentation

– Cartan matrix
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10.6 Group Algebras

A group algebra may be created for a finite group of moderate order over a Euclidean Domain.

– Creation of group algebras: a vector and term representation are provided allowing the construction
of algebras for groups of arbitrary size.

– Arithmetic including Lie bracket operation

– Properties of elements: idempotent, unit, zero-divisor, nilpotent

– Trace and minimal polynomial

– Creation of subalgebras, ideals and quotient algebras

– Ideal arithmetic: Sum, product, powers, intersection

– Centralizer, idealizer

– Augmentation ideal, augmentation map

– Characteristic ideals: Centre, commutator ideal, Jacobson radical

– Ideal structure: Maximal (minimal) left, right, two-sided ideals

– Decomposition: Simplicity, semi-simplicity, composition series

– Construction of the (left, right) regular matrix representation

10.7 Quaternion Algebras

A quaternion algebra is a central, simple algebra of dimension four over a field. Basic functions
are provided for quaternion algebras over an arbitrary field. Higher level routines are available for
algebras over Q, number fields, and rational function fields k(x), where k is a finite field. This
includes support for orders and ideals, in particular enumeration of left, right and two-sided ideal
classes.

– Arithmetic of elements

– Norm, trace, and conjugation

– Minimal polynomial of elements

– Discriminant, ramified primes and ramified places

– Construction of maximal orders

– Recognition of quaternion algebras

– Computation of an isomorphism to the matrix algebra, in particular over completions of the base
field

– Embedding subfields into quaternion algebras

– Left and right orders of ideals

– Isomorphism testing for ideals and orders

– Construction and recognition of Eichler orders

– Enumeration of left, right and two-sided ideal classes of Eichler orders

– Enumeration of conjugacy classes of orders

– Unit groups of orders in definite algebras



58 Magma Overview V2.19 (April 24, 2013)

10.8 Basic Algebras

A basic algebra is a finite dimensional algebra A over a field, all of whose simple modules have
dimension one. In the literature such an algebra is known as a “split” basic algebra. Every finite
dimensional algebra is Morita equivalent to a basic algebra, meaing that the algebra and its basic
algebra have equivalent module categories and hence the same representation theory. So, for
example, a cohomology calculation involving modules over an algebra is often most easily done
by condensing to the basic algebra. Magma has the capabilility of constructing the basic algebra
of a matrix algebra defined over a finite field. In some cases it is necessary to extend the field in
order to split the irreducible modules over the matrix algebra. The basic algebra type in Magma
is optimized for the purposes of doing homological calculations.

10.8.1 Construction

– Creation from a sequence of projective modules and a path tree for each module

– Creation of the split basic algebra over a finite field corresponding to a matrix algebra or endomor-
phism algebra.

– Creation of the basic algebra corresponding to a Schur algebra or Hecke algebra over a finite field.

– Creation of the basic algebra corresponding to the group algebra of a p-group over GF (p).

– Arithmetic

– Extension and restriction of the coefficient ring

– Tensor product

– Opposite algebra

10.8.2 Modules and Cohomology

– Construction of modules over basic algebras

– Submodules, quotient modules, radicals and socles

– Algebra considered as a right regular module over itself

– The space Hom(M,N) of all homomorphisms (all projective homomorphisms) from module M to
module N

– Pushouts and pullbacks with respect to module homomorphisms

– Projective resolution as a complex of modules; projective covers

– Injective resolution as a complex of modules; injective hulls

– Calculation of the Ext algebra of a basic algebra

– Restriction and inflation for basic algebras of p-groups

– Cohomology ring of the unique simple module k for the basic algebra of a p-group

– Calculation of A∞ algebras structures on cohomology rings
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11 Representation Theory

This section describes facilities in Magma that relate to the representation theory of groups and
associative algebras. The main topics considered include:

• Modules over an algebra

• K[G]-modules

• Representations of groups

• Character theory

• Invariant theory

11.1 Modules over an Algebra

We consider a module whose elements are n-tuples over a field K with an action given by a matrix
representation of an associative algebra A. We will refer to these modules as A-modules. These
include K[G]-modules.

The four fundamental algorithms for computational module theory are echelonization, the
spinning algorithm, the meataxe algorithm and an algorithm for Hom(U, V ). For the important
case of modules over finite fields, different representations of vector arithmetic, depending upon
the field, have been implemented.

11.1.1 Creation

– Creation from the matrix representation of an associative algebra.

– Creation from group actions of different kinds

– Permutation module of a group corresponding to its action on the cosets of a subgroup

– K[G]-modules corresponding to actions of a permutation or matrix group on a polynomial ring.

11.1.2 Constructions

– Extension and restriction of the field of scalars

– Direct sum

– Tensor product, symmetric square, exterior square (K[G]-modules only)

– Dual (K[G]-modules only)

– Induction and restriction (K[G]-modules only)

– All irreducibleK[G]-modules of a finite soluble group whereK is a finite field or field of characteristic
zero

– All irreducible K[G]-modules of a finite group where K is restricted to be a finite field or the rational
field.

11.1.3 Submodules and Quotient Modules

– Submodules via the spinning algorithm

– Membership of a submodule

– Basis operations

– Sum and intersection of submodules

– Quotient modules
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11.1.4 Structure

– Splitting a reducible module (Holt-Rees Meataxe)

– Testing a module for irreducibility, absolute irreducibility

– Centralizing algebra of an irreducible module

– Composition series, composition factors, constituents

– Maximal and minimal submodules

– Jacobson radical, socle

– Socle series

– Existence of a complement of a submodule

– One complement, all complements of a direct summand

– Testing modules for indecomposability; indecomposable components

– Submodule lattice for modules over a finite field

The Magma algorithm for splitting modules (the Meataxe algorithm) is a deterministic version of
the Holt-Rees algorithm and is capable of splitting modules over GF(2) having dimension up to
at least 20 000.

Since V2.16, a new Meataxe algorithm is used for splitting general A-modules, where A is a
finite dimensional matrix algebra defined over the rational field. This yields an effective algorithm
for decomposing a module into indecomposable summands. If the module is a G-module for
some group G, extensive use is also made of character theory. Representations associated with
characters having non-trivial Schur indices are properly handled. The difficult problem of splitting
homogeneous modules (direct sums of the same indecomposable) is handled by decomposing the
endomorphism ring of the module via a maximal order. Modules having dimensions in the several
hundreds are routinely split into indecomposable modules.

11.1.5 Homomorphisms

– Construction of Hom(U, V ), U and V R-modules

– Endomorphism ring of a module

– Automorphism group of a module

– Testing modules for isomorphism

Magma includes a new algorithm for the construction of Hom(U, V ) which is applicable to modules
having dimension several hundred.

11.2 Ordinary Representations

11.2.1 Splitting of G-modules

11.2.2 Construction of Irreducible G-modules

– Dixon’s method to compute the representation from a character

– For soluble groups: Brückner’s method to compute all absolutely irreducible representations

– For general finite groups: a new algorithm of Steel constructs all irreducible representations over
the rational field
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11.2.3 Change of Ring

– Given an absolutely irreducible G-module over a number field or finite field, write it over any related
field possible. Find a smallest field of definition

– Restriction of scalars: use the module structure of the coefficient ring to obtain reducible represen-
tations over any subfield

– For representaions over Q, find isomorphic integral representations

– For representations over number fields, decide if the representation can be made integral. Find all
classes of integrally equivalent representations of an absolutely irreducible one.

– Compute modular representations from representations over number fields at any prime ideal

– Try to find “nicer” versions of a representation

11.2.4 Properties

– Compute the character of the representation

– Decide (absolute) irreducibility

– Compute forms invariant under the action

– Compute modules invariant under the action

11.3 Representations of Symmetric Groups

Special functionality for representations of a symmetric group concentrates on characters as in-
dexed by partitions of weight the degree of the group.

– Integral, seminormal and orthogonal representations of a permutation.

– Values of a character of a symmetric group indexed by a partition on a permutation.

– Characters of symmetric groups corresponding to partitions.

– Values of a character of an alternating group indexed by a partition on a permutation.

– Characters of symmetric groups corresponding to partitions.

11.4 Character Theory

The character theory machinery is currently restricted to characters defined over the complex field.

– Definition of class functions

– Construction of permutation characters

– Arithmetic on class functions: sum, difference, tensor product

– Frobenius-Schur indicator

– Norm, order, kernel, centre of a character

– Properties: generalized character, character, irreducible, faithful, linear

– Induction and restriction of a character

– Decomposition of a tensor power: orthogonal components, symmetric components

– Action of a group on the characters of a normal subgroup

– Decomposition of characters

– Class matrix, structure constants for centre of group algebra

– Table of ordinary irreducible characters (Dixon-Schneider algorithm, Unger’s algorithm)
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12 Lie Theory

The current elements of the machinery for Lie theory comprise:

• Coxeter systems

• Root systems

• Root data

• Coxeter groups

• Reflection groups

• Finite dimensional Lie algebras

• Quantized enveloping algebras (aka quantum groups)

• Groups of Lie type

12.1 Coxeter systems

– The standard descriptions for Coxeter systems and reflection groups are all supported: Coxeter
matrices, Coxeter graphs, Cartan matrices, Dynkin digraphs, and Cartan names.

– Conversion between the different descriptions.

– Testing isomorphism and Cartan equivalence of Coxeter systems.

– Testing for properties such as finite, affine, hyperbolic, and compact hyperbolic Coxeter systems.

– Construction of any finite, affine and hyperbolic system.

– Determining the size and number of roots of (finite) Coxeter systems.

– Dynkin diagrams for finite systems.

– Predicates: IsIrreducible, IsCrystallographic, IsSimplyLaced.

12.2 Root Systems

A root system describes the reflections in a reflection group and plays an essential role in the
theory of finite Coxeter groups and Lie algebras.

12.2.1 Creating Root Systems

– Any finite root system can be constructed by giving its simple roots and coroots, including non-
semisimple systems (where the dimension of the vector space is larger than the rank).

– Semisimple root systems may be constructed from a Coxeter matrix, Coxeter graph, Cartan matrix,
Dynkin digraph, or Cartan name.

– Standard root systems may be constructed – these are systems whose pairing is the Coxeter form,
and is the way in which root systems are frequently given in the literature.

– Direct sums and duals of root systems are supported.

12.2.2 Operations and Properties

– Test equality, isomorphism and Cartan equivalence.

– Determine any of the following descriptions for a root system: Cartan name, Coxeter diagram,
Dynkin diagram, Coxeter matrix, Coxeter graph, Cartan matrix, or Dynkin digraph.

– Invariants such as base field, rank, dimension, Coxeter group order.

– Properties such being irreducible, semisimple or simply laced.
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12.2.3 Roots and Coroots

The (co)roots are stored in an indexed set, with positive roots first. The can be described and
manipulated via their index, or as vectors with respect to either the standard basis or the basis
of simple (co)roots.

– Root space and coroot space.

– Construction of the complete set of roots or coroots.

– Conversion between indices and vectors.

– Highest long or short root.

– Reflection actions of the (co)roots: given as matrices, permutations, or words in the simple reflec-
tions.

– Basic arithmetic with (co)root indices: sum, negation, positivity, heights, norms.

– Coxeter form and dual Coxeter form.

12.3 Root Data

Root data are fundamental to the study of Lie algebras and groups of Lie type whereas the closely
related concept of a root system discussed above is normally used when working with Coxeter
groups or reflection groups.

12.3.1 Constructions

– A split (untwisted) root datum can be constructed by giving its simple roots and coroots.

– A semisimple system may be constructed from a Cartan matrix, Dynkin digraph, or Cartan name.
By default the adjoint datum is returned, but the isogeny type can be specified.

– Standard root systems may be constructed – these are systems whose pairing is the Coxeter form,
and is the way in which root systems are frequently given in the literature.

– Constructions are provided for direct sums, duals and subdata of root data.

12.3.2 Operations and Properties

– Equality, isomorphism, Cartan equivalence, and isogeny.

– Determination any of the following descriptions for a root datum: Cartan name, Coxeter diagram,
Dynkin diagram, Coxeter matrix, Coxeter graph, Cartan matrix, Dynkin digraph

– Elementary invariants: Base field, rank, dimension, Coxeter group order, group of Lie type order.

– Determination of the fundamental and (co)isogeny groups.

– Determination of properties such as being irreducible, semisimple, crystallographic, simply laced,
adjoint and simply connected.

– The standard constants used to define Lie algebras and groups of Lie type can be computed: p, q,
N , ε, M , C, and eta.

12.3.3 Roots, Coroots and Weights

The (co)roots are stored in an indexed set, with positive roots first. The can be described and
manipulated via their index, or as vectors with respect to the standard basis or the basis of simple
(co)roots or the basis of fundamental weights.

– Root space and coroot space.

– Construction of the complete set of roots or coroots.

– Conversion between indices and vectors.

– Highest long or short root.
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– Reflection actions of the (co)roots: given as matrices, permutations, or words in the simple reflec-
tions.

– Basic arithmetic with (co)root indices: sum, negation, positivity, heights, norms.

– Left and right strings through one root in the direction of another.

– Coxeter form and dual Coxeter form.

– (Co)weight lattice and fundamental (co)weights

12.4 Coxeter Groups

12.4.1 General Coxeter Groups as FP-Groups

General Coxeter groups are implemented as a subclass of finitely presented groups so that they
inherit all the operations for finitely presented groups as well as having many specialized functions.
The main difference is that every word is automatically converted into normal form using an
algorithm designed and implemented by Bob Howlett. This module was implemented by Bob
Howlett, Scott Murray, and Don Taylor.

– A Coxeter group can be constructed from a Cartan matrix, Dynkin digraph, Cartan name, root
system, or root datum.

– Test isomorphism of Coxeter groups.

– Elementary operaions include determining the Cartan name, Coxeter diagram, Coxeter matrix,
Coxeter graph, rank.

– Determination of basic properties such as being finite, affine, hyperbolic, compact hyperbolic, irre-
ducible or simply laced.

– Arithmetic of words: identity, multiplications, inversion, powers.

– Degrees of the basic invariant polynomials.

– Coxeter element and Coxeter number.

– Braid group and pure braid group

– Conversion to and from permutation and reflection representations.

– Construction of the standard parabolic subgroups

– The growth function of a Coxeter group may be computed using a very fast algorithm due to R.
Howlett.

12.4.2 Finite Coxeter Groups as Permutation Groups

– A permutation Coxeter group can be constructed from a Cartan matrix, Dynkin digraph, Cartan
name, root system, or root datum.

– Finite Coxeter groups are implemented as a subclass of permutation groups so that they inherit all
the operations for permutation groups.

– In addition to the standard functions for groups, almost all of the functions for root systems and
root data also apply to permutation Coxeter groups.

– A reflection subgroup can be represented two ways: As a permutation group on the roots of the
larger groups, or as a permutation group on its own roots.

– Transversals of reflection subgroups may be computed using an efficient algorithm due to Don
Taylor.

– The “standard” permutation action of a Coxeter group (usually the smallest degree permutation
action) may be computed. For example, the standard action of the group of type An, gives the
symmetric group on n+ 1 points.
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12.5 Complex Reflection Groups

– Construction and identification of a reflection group over an arbitrary ring, given the simple roots,
coroots and orders

– Construction of real reflection groups from a Cartan matrix, Dynkin digraph, Cartan name, root
system, or root datum

– Construction of all finite complex reflection groups

– The degrees of the fundamental invariants may be computed for any complex reflection group. Basic
codegrees can also be computed.

– Most of the functions available for Coxeter groups are also available for real reflection groups.

12.6 Finite-Dimensional Lie Algebras

A finite-dimensional Lie algebra L over a field K is presented in terms of a basis for a K-vector space
V together with a set of structure constants defining the multiplication of these basis elements.

The major structural machinery for Lie algebras has been implemented for Magma by Willem
de Graaf.

12.6.1 Construction and Arithmetic

– Creation of Lie algebras in terms of structure constants

– Construction of a Lie algebra from an associative algebra via the Lie bracket product

– Construction of a Lie algebra given by generators and relations

– Construction of a Lie algebra from a p-group, by using its Jennings series.

– Construction of a specified simple Lie algebra

– Direct sum

– Arithmetic

– Trace and minimal polynomial

12.6.2 Properties and Invariants

– Test for abelian, nilpotent, solvable, restricted

– Test for simple, semisimple

– Killing form

– Adjoint representation of an element; Associated adjoint algebra

– Root system of a semisimple Lie algebra with a split Cartan subalgebra

12.6.3 Arithmetic of Subalgebras and Ideals

– Creation of subalgebras, ideals and quotient algebras

– Ideal arithmetic: Sum, product, powers, intersection

– Centre

– Centralizer, normalizer

– Jacobson radical, nil radical, solvable radical

– Given a Lie algebra L defined over a field of characteristic p > 0, construction of the Lie subalgebra
M of L generated by any set of elements of L. Thus, M is closed under the restriction map.
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12.6.4 Structure

– Composition series

– Derived series, lower central series, upper central series

– Nilradical, solvable radical

– Cartan subalgebra, Levi subalgebra

– Maximal (minimal) left, right, two-sided ideals

– Decomposition of a Lie algebra into a direct sum of ideals

– Type of a simple or semisimple algebra

12.6.5 Representations

– Construction of a faithful module over a Lie algebra of characteristic zero

– Construction of highest-weight modules over split semisimple Lie algebras

– Construction of tensor products, symmetric powers, antisymmetric powers of Lie algebra modules

12.6.6 Universal enveloping algebras

– Construction of a universal enveloping algebra of a Lie algebra

– A special construction of the universal enveloping algebra of a split semisimple Lie algebra, via a
Kostant basis

12.6.7 Finitely Presented Lie Algebras

– Construction of a Gröbner basis for a finitely presented (FP) Lie algebra

– Construction of a Lie algebra with structure constants from an FP Lie algebra when finite-dimensional

– Construction of a nilpotent quotient of an FP Lie algebra to a designated class

12.7 Quantized Enveloping Algebras

A quantized enveloping algebra (corresponding to a given root datum) is represented with respect
to an integral basis, as defined by Lusztig.

– Constructing of quantized enveloping algebras with respect to a given root datum

– Arithmetic: sum and product

– Representations: construction of highest-weight modules, and tensor products of them

– Construction of the canonical basis of a highest-weight module

– Construction of elements of the canonical basis of the negative part of a quantized enveloping algebra

– Action of the Kashiwara operators

– Littelmann’s path model: action of the path operators, construction of the crystal graph

12.8 Groups of Lie Type

Machinery is provided which allows computation in split (untwisted) groups of Lie type with the
Steinberg presentation. These groups can be defined over any Magma field. Elements can be
normalised using the Bruhat decomposition.

12.8.1 Creating Groups of Lie type

A group of Lie type can be created from a field and a Cartan name, Weyl group, root datum,
Cartan matrix or Dynkin digraph.
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12.8.2 Operations and Properties

– Most of the operations and properties for root data also apply to groups of Lie type.

– Equality, algebraic isomorphism, isogeny.

– Algebraic group generators; abstract group generators for certain fields

– Element arithmetic and normalisation

– Bruhat decomposition and multiplicative Jordan decomposition.

– The order of a twisted finite group of Lie type can be computed.

12.8.3 Automorphisms

The inner, diagram, diagonal and field automorphisms can be constructed. These include all
algebraic group automorphisms, and in many cases all abstract group automorphisms.

12.8.4 Representation Theory

– Standard, regular and highest weight representations can be constructed.

– The inverse image of a module with respect to a given representation can be computed using a
generalised row reduction function.

The following operations exploit the bijection between modules of connected Lie groups and
their highest weights. Their Magma implementation closely follows that in the Lie package of
Cohen et al.

– Convert between highest weight, dominant weights, or all weights of such a module,

– Determine the dimension of a module.

– Apply the Adams operator or the Demazure operator.

– Compute plethysms,

– Compute symmetric, alternating, Littlewood-Richardson, or regular tensor products,

– Branch to a subgroup, or collect to a supergroup, and

– Compute Kazhdan-Lusztig polynomials and R-polynomials.

12.9 Finite Groups of Lie Type

The functions in this section use the theory of FGLT to determine the required information and
consequently are applicable to groups far larger than those that can be handled by the generic
matrix group machinery.

– Functions allow the construction of generators for any FGLT in its natural representation.

– The order of any ordinary or twisted FGLT can be computed.

– The Sylow subgroups of any classical FGLT are contructed using an algorithm of Holt and Stather.

– The conjugacy classes of elements of most of the classical FGLTs can be determined.

– Likewise the conjugacy of any two elements can be determined.
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13 Commutative Algebra

The Magma facility for commutative rings allows the user to define any ring, starting from the
ring of integers, by repeatedly applying the four basic constructions: transcendental extension,
quotient by an ideal, localization, and completion. Rings derived from a polynomial ring will be
considered in this section, while fields, their orders and valuation rings will be presented in the
following section. The following rings and modules are considered here:

• Multivariate polynomial rings

• Ideal theory of multivariate polynomial rings

• Affine algebras

• Modules over affine algebras

• Localization in an affine algebra

• Boolean Polynomial Rings

The basic computational problems for commutative rings include:

– A canonical form for elements

– Efficient arithmetic

– A canonical representation (i.e., standard basis) for ideals

– Arithmetic with ideals

– Formation of quotient rings

– Localization at the origin

– Ideal decomposition, i.e., primary decomposition

– The study of modules over rings

The fundamental tools on which most machinery for computational (commutative) ring theory
is based include factorization of elements in a UFD, the efficient construction of standard bases
for ideals and the factorization of ideals.
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13.1 Multivariate Polynomial Rings

Multivariate polynomial rings in any number of variables may be formed over any coefficient ring,
including a polynomial ring. Multivariate polynomials are represented in distributive form, using
ordered arrays of coefficient-monomial pairs. Different orderings are allowed on the monomials;
these become significant in the construction of Gröbner bases of ideals. Computations with ideals
are available (since V2.8) for ideals defined over general Euclidean rings as well as for ideals defined
over fields.

13.1.1 Creation and Ring Operations

– Creation of a polynomial ring

– Monomial orders: lexicographical, graded lexicographical, graded reverse lexicographical, block elim-
ination, general weight vectors, etc.

– Dynamic data structures for monomials providing optimal packing and rigorous detection of overflow

– Base extend

– Definition of a ring map

– Kernel of a ring map

– Properties of ring maps: Surjective, bijective

Since V2.7, the original linked-list representation of polynomials has been replaced with a more
compact random-access array structure, resulting in less memory usage and faster access. A new
fraction-free representation for polynomials at the lowest level gives very significant speedups for
arithmetic over some fields (particularly the rational field and rational function fields). A new
representation employing variable byte sizes for monomials is also introduced in V2.7, requiring
less memory and providing greater speed. The maximum total degree of any monomial has been
increased to 230 − 1 = 1073741823. Monomial overflow is rigorously detected.

13.1.2 Arithmetic

– Arithmetic with elements

– Fast multiplication and divison using heap-based algorithms of Monagan and Pearce

– Fast powering in characterstic p via Frobenius map

– Recursive coefficient, monomial, term, and degree access

– Differentiation, integration

– Evaluation and interpolation

– Properties: a unit, a zero-divisor, nilpotent

13.1.3 GCD and Factorization

– Greatest common divisor (sparse EEZ-GCD, fast GCD-HEU, evaluation-interpolation algorithms)

– Newton polygon

– Squarefree factorization

– Bivariate factorization over GF(q), Z and Q (polynomial-time trace-based algorithm of Belabas et
al., interpolation algorithms)

– Multivariate factorization over GF(q), Z and Q (reducing to bivariate factorization to solve combi-
nation problem)

– Factorization over arbitrary algebraic function fields (including inseparable field extensions)

– Resultant (modular and sub-resultant algorithms), discriminant
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Factorization of bivariate polynomials over all supported rings is accomplished by an algorithm
which extends van Hoeij’s knapsack ideas for Z[x] to solve the hard combination problem for
GF(q)[x, y] [3]. The new algorithm runs in polynomial time and performs extremely well in prac-
tice. General multivariate factorization is reduced to this new bivariate algorithm, so a combina-
tion problem never arises for any number of variables. Shoup’s tree Hensel lifting algorithm has
also been adapted for power series, making the lifting stages of all kinds of bivariate/multivariate
factorization much faster than previously.

Factorization over general algebraic function fields of small characteristic is accomplished by
an algorithm of Allan Steel [43]. This can handle extensions which are inseparable, and may have
an arbitrary number of both algebraic and transcendental generators.

Resultants are computed using asymptotically-fast modular and evaluation/interpolation al-
gorithms. Options are provided for Monte Carlo-style stopping on stability, which greatly speeds
up the computation (since the bounds are usually very much worse than the required lifting level).

13.1.4 Gröbner Basis

– Construction of ideals and subrings

– Gröbner bases of ideals over fields, with specialized algorithms for different coefficient fields (fraction-
free methods for the rational field and rational function fields)

– Gröbner bases of ideals over finite fields and rationals, using optimized Faugère F4 algorithm

– Gröbner bases of ideals over general Euclidean rings, using an extension by Allan Steel of Faugère’s
F4 algorithm (includes integer ring Z, residue class rings Z/mZ, K[x]/〈f(x)〉 [m, f arbitrary non-
zero moduli] and Galois rings)

– Gröbner Walk algorithm for converting the Gröbner basis of an ideal over a field from one monomial
order to another order

– Construction of ideals of boolean polynomial rings and Gröbner bases of such ideals

– FGLM algorithm for converting the Gröbner basis of a zero-dimensional ideal over a field from one
monomial order to a different order (a fast p-adic method is used in the case of the rational field)

– Construction of degree-d (truncated) Gröbner bases

– Construction of ideal via fixed basis (so as to determine coordinates of elements with respect to this
basis)

– Normal form of a polynomial with respect to an ideal

– Reduction of ideal bases

– S-polynomial of two polynomials

Since V2.11, an optimized implementation of Faugère’s F4 algorithm (which uses sparse linear
algebra) to compute Gröbner bases is available for ideals over finite fields and the rationals. See
[45] for detailed timings.

The first HFE cryptosystem challenge of J. Patarin is solved by Magma 2.8 hours and 14GB on
an 2.4GHz Intel Xeon64. This involves solving a system of 80 quadratic equations in 80 variables
over GF(2) (each input polynomial has about 1600 terms). The challenge was first solved by J.-
C. Faugère in 52 hours on an 1GHz Alpha in 2002 using his unpublished F5/2 algorithm (allowing
for processor speed, Magma is about 3 times faster). At the time of writing, there is still no
publically-available software besides Magma which can solve the challenge.

13.1.5 Arithmetic with Ideals

– Sum, product, intersection, colon ideal,

– Saturation of an ideal, leading monomial ideal

– Elimination ideals

– Determination of whether a polynomial is in an ideal or its radical
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– Properties of an ideal: Zero, principal, proper, zero-dimensional

– Extension and contraction of ideals

– Variable extension of ideals

– Noether normalisation of ideals

– Minimal bases for homogeneous ideals

– Normalisation of the affine quotient algebra of an ideal

– Maximal regular sequences in polynomial ideals

– Rees ideal of an ideal in a polynomial ring or affine algebra

– Milnor numbers and Tjurina numbers

13.1.6 Invariants for Ideals

– Dimension and maximally independent sets

– Hilbert series and Hilbert polynomial

– Primary decomposition of an ideal

– Triangular decomposition of a zero-dimensional ideal (algorithm of D. Lazard).

– Probabilistic prime decomposition of the radical of an ideal

– Equidimensional decomposition of an ideal

– Radical of an ideal

– Computation of the variety of a zero-dimensional ideal

– Relation ideals (determination of algebraic relations between polynomials)

– Syzygy modules

– Construction of a minimal generating set of a polynomial subalgebra

– Computations with polynomial generators of a submodule over a subalgebra in a polynomial ring

Primary decomposition of ideals over general algebraic function fields of small characteristic is
handled by a new algorithm of Allan Steel [43].

13.1.7 Gradings

– Construction of graded polynomial rings with specific weights on the variables

– Special efficient graded reverse lexicographical order with weights for optimal Gröbner basis of ideals
in graded rings

– All monomials of specific total or weighted degree

– Homogeneous components of polynomials

– Homogenization and dehomogenization of an ideal

– Hilbert-driven Buchberger algorithm for fast computation of the Gröbner basis of a homogeneous
ideal when the Hilbert series is known (using the F4 algorithm when possible)

– Construction of degree-d (truncated) Gröbner bases (respecting the grading of the polynomial ring)

13.2 Boolean Polynomial Rings

Boolean polynomial rings provide efficient Gröbner basis computations with ideals in polynomial
rings over GF(2) for which one desires to solve the underlying system of equations over GF(2). The
effect of computing with an ideal in such a ring is the automatic inclusion of the field polynomials
x2

i + xi in the ideal. This saves time and memory because a compact bit vector representation is
available for the monomials and conversion to and from this is not needed.

– Construction of boolean polynomial rings with specific numbers of variables

– Monomial orders: lexicographical, graded lexicographical, graded reverse lexicographical

– Efficient construction of large polynomials in compact bit vector representation (via integers)

– Gröbner bases using the bit vector representation

– Varieties
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13.3 Affine Algebras

Let K be a field, R = K[x1, . . . , xn] a polynomial ring over K and I an ideal of R. The quotient
ring A = R/I is called an affine algebra.

13.3.1 Creation and Operations

– Creation of an affine algebra

– Arithmetic with elements

13.3.2 Arithmetic with Ideals

– Construction of ideals and subrings

– Gröbner bases of ideals

– Ideal arithmetic: addition, multiplication, powers, quotients, colon ideals, intersections

– Membership test for ideals

– Test equality and inclusion of ideals

– Construction of Rees ideals

Affine algebras arise commonly in commutative algebra and algebraic geometry. They can also
be viewed as generalizations of number fields and algebraic function fields.

If the ideal J of relations defining an affine algebra A = K[x1, . . . , xn]/J is maximal, then A
is a field and may be used with any algorithms in Magma which work over fields. Factorization of
polynomials over such affine algebras is also supported.

If an affine algebra has finite dimension considered as a vector space over the coefficient field,
extra special operations are available on its elements.

13.4 Modules over Multivariate Rings

Modules over a multivariate polynomial ring R[x1, . . . , xn] (R a Euclidean ring or field) and quo-
tient rings of such (affine algebras) Magma has a special category for modules over three kinds of
commutative multivariate rings:

• Multivariate polynomial rings.

• Localizations of Multivariate polynomial rings.

• Affine Algebras.

Such rings are not principal ideal rings in general, so the standard matrix echelonization algo-
rithms are not applicable. Magma allows computations in modules over such rings by adding a
column field to each monomial of a polynomial and then by using the ideal machinery based on
Gröbner bases.

13.4.1 Creation and Operations

– Construction of modules with various module orders

– Construction of graded modules with weights on the columns

– Flexible choice of monomial orders (top-over-position, position-over-top, Schreyer order)

– Arithmetic with elements

– Construction of Gröbner bases of modules

– Row and column operations on elements

– Tensor products
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13.4.2 Submodules

– Construction of submodules and quotient modules

– Membership testing

– Tensor product

– Hilbert series of (homogeneous) modules

– Multiplicity

– Submodule sum, intersection, colon operation

– Minimal bases for homogeneous modules

– Multiplicity of a submodule

13.4.3 Homology

– Syzygy modules

– Construction of the image and kernel of a homomorphism

– Hom(M,N), where M and N are modules

– Free resolutions, minimal free resolutions (Hybrid La Scala/F4 algorithm, iterative syzygy algo-
rithm)

– Betti numbers, homological dimension

– Fitting ideals

– Homology of a complex

– Ext and Tor of a complex

– Dimension of cohomology groups of Serre twists of graded modules (Decker-Eisenbud-Floystad-
Schreyer algorithm)

Fundamental to Homology computations is a fast algorithm for computing free resolutions.
Magma contains a hybrid of the algorithm of La Scala and the Faugere F4 Gröbner basis algorithm.
This hybrid algorithm is able to compute resolutions of many modules in much faster time than
for previous methods.
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13.5 Invariants for Groups

Magma contains a substantial package for computing with invariant rings and fields of finite groups
and algebraic groups, which been developed by Gregor Kemper and Allan Steel [24].

For finite groups, Magma supports computation in invariant rings over ground fields of arbitrary
characteristic. Of particular interest is the modular case, i.e., the case where the characteristic
of the ground field divides the order of the group. Magma includes an algorithm for computing
primary invariants that guarantees that the degrees of the invariants constructed are optimal (with
respect to their product and their sum) [25].

Beginning with V2.14, Magma also provides algorithms for finding invariants of linear algebraic
groups. In particular, Derksen’s algorithm [15] and the algorithm by Beth and Müller-Quade [34]
are included.

13.5.1 Construction of Primary and Secondary Invariants

– Permutation and matrix group actions on polynomials

– Independent homogeneous invariants of a specific degree

– Molien series

– Primary invariants having optimal degrees (with respect to their product and then sum)

– Secondary invariants of optimal degrees (using a new algorithm for the modular case)

For the 4-dimensional representation of A5 over F2, optimal primary invariants (of degrees 3, 5,
8 and 12) are found in 1.5 seconds. For the cyclic matrix group of order 8 generated by the
5-dimensional Jordan form over F2, optimal primary invariants (of degrees 1, 2, 2, 4 and 8) are
found in 0.6 seconds and secondary invariants with respect to these (of degrees 0, 3, 3, 3, 4, 4, 5,
5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 10 and 11) are found 14.4 seconds. This last computation took
many hours with algorithms prior to those implemented in Magma V2.2.

13.5.2 The Ring of Invariants

– Efficient construction of fundamental invariants (direct and King algorithms)

– Invariant ring as a graded module over the algebra generated by the primary invariants and explicit
construction of the isomorphism

– Invariant ring as a polynomial algebra

– Determination of algebraic relations between secondary invariants

– Module syzygies between secondary invariants

– Algebraic relations between invariants

The algorithm of King for computing fundamental invariants is in general an order of magnitude
faster than the previous direct method (which combined primaries and secondaries and reduces
them to a minimal set). Using the King algorithm, fundamental invariants can be computed (each
modulo a prime coprime with the group order) for all transitive groups of degree 7 in about 1
second total, and for all transitive groups of degree 8 in about 2 minutes total.

13.5.3 Properties

– Hilbert series

– Free resolution

– Depth and homological dimension

– Attribute control of invariant ring information

– Determine whether an invariant ring is a polynomial ring or a Cohen-Macaulay ring
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13.5.4 Invariants of Linear Algebraic Groups

A linear algebraic group is an affine variety G together with morphisms giving G the structure of
a group and is defined in Magma by simply giving polynomials defining G as an affine variety and
a suitable G-module. The main tool with computing with invariants of linear algebraic groups is
Derksen’s algorithm, which successively computes homogeneous invariants of increaseing degree,
and reduces these to a minimal set via syzygy computations in modules over the underlying
polynomial ring.

– Invariant ring of an algebraic group defined by multivariate polynomials describing an affine variety

– Construction of binary forms

– Computation of invariants of given degree

– Computation of fundamental invariants (Derksen algorithm)

13.5.5 Invariant Fields

If G is a group acting on a polynomial ring K[x1, . . . , xn], it also acts on the rational function
field K(x1, . . . , xn) by homomorphic extension. The invariants field K(x1, . . . , xn)G is the field
consisting of all functions which are fixed by G. Magma allows the construction of the invariant
field and elementary computations within it.

– Construction of invariant fields of finite groups or algebraic groups

– Computation of fundamental invariants (Müller-Quade/Beth algorithm)

13.5.6 Invariants of the Symmetric Group

– Construction of elementary symmetric polynomials

– Determination of whether a polynomial is symmetric

– Presentation of a symmetric polynomial in terms of the elementary symmetric polynomials
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14 Algebraic Geometry

The algebraic geometry module includes both machinery for studying general algebraic varieties
and facilities for working with more restricted varieties suach as algebraic curves and surfaces.
The major categories include:

• Schemes and their maps

• Coherent sheaves

• Algebraic curves

• Algebraic surfaces

• Toric varieties

• Graded rings and geometric databases

14.1 Schemes

This module comprises general tools for working with schemes defined by polynomial equations
in affine or projective space. Such tools include Gröbner basis computation, dimension and image
of maps, and linear algebra calculations formalised as linear systems on projective space. Maps
between spaces may also be constructed and studied.

14.1.1 Ambient Spaces

A scheme is contained in some ambient space, either an affine space or one of a small number
of standard projective spaces. A characteristic of these spaces is that they have some kind of
polynomial ring as their coordinate ring.

– Affine and projective spaces including weighted projective space

– Ruled surfaces

– Rational scrolls

– Direct products of ambient spaces

– Points of schemes with coefficients in k-algebras

14.1.2 Creation and Properties

– Creation of schemes by equations or implicit methods

– Saturation of the defining ideal of a scheme in the projective cases

– Changing the base ring

– Point set operations

– Projective closure and affine patches

– Global properties: Dimension, reducibility, singularity

– Prime components, primary components

– Local geometric analysis: singularities, tangent spaces

– Zero-dimensional schemes

– Determining whether a scheme over a number field is locally solvable

– Searching for points (over the rationals).

– Listing of all points oevr a finite field.
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14.1.3 Mappings

– Construction of maps between spaces

– Coordinate manipulation functions, including birational transformations of the projective plane

– Calculation of pullbacks of schemes by maps

– Tools to enable the calculation of images of schemes by maps

– A large number of specialised types of schemes, especially curves, have additional map functionality

– Availability of maps with multiple definitions

– Alternative map type for ordinary projective schemes defined by the “graph” of the map in the
product scheme.

14.1.4 Automorphisms

Automorphisms of schemes defined over a field may be constructed. The main cases where there is
significant functionality is for automorphisms of affine and projective spaces and algebraic curves.

– Construction of general automorphisms of affine space in terms of functions or matrices

– Construction of special automorphisms of affine space: translation, permutation automorphisms,
Nagata automorphism, projectivities

– Construction of general automorphisms of projective space in terms of polynomials or matrices

– Construction of special automorphisms of projective space: translation, quadratic transformation

– Automorphism group of a projective space defined over a finite field

– Automorphism groups of algebraic curves of genus at least 2 (see below).

14.1.5 Isomorphic Projections

– Computation of the tangent and secant varieties of schemes

– Faster tests for whether a specified point lies in the tangent or the secant varieties of a scheme.

– Isomorphic projection of projective schemes to smaller dimensional ambient spaces

– Birational embedding of plane curves as non-singular projective space curves in 3-dimensional space

14.1.6 Linear Systems

The complete linear system on P of degree d is the collection of all homogeneous polynomials of
degree d on P, or equivalently, the degree d hypersurfaces thereby defined. A general linear system
corresponds to some vector subspace of the coefficient space of a complete linear system.

– Creation of a linear system explicitly

– Creation of a linear system satisfying geometric conditions

– Properties: Sections, degree, dimension, base scheme

– Properties: Base component, base points, generic multiplicity at a point

– Complement with respect to a subsystem or scheme

– Intersection

– Maps of a linear system
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14.2 Coherent Sheaves

Machinery for operations related to coherent sheaves on projective schemes. Currently it is only
available for ordinary projective schemes. There is functionality to obtain some important sheaves,
like the canonical sheaf, and perform some basic constructions, like tensor powers or duals. The
initial emphasis has been on invertible sheaves and their associated maps into projective space.
The map of such a sheaf and its image may be computed. The invertible sheaf associated to
an effective Cartier divisor D, given as a subscheme of the base scheme, can be computed and
a Riemann-Roch space for D can be returned in explicit form. The dimension of cohomology
groups of arbitrary sheaves can be computed. The maximal representing graded module of the
sheaf - the full module of global sections of all twists - can also be computed, which is key to much
of the functionality. There are various tests for properties like local-freeness. The package was
developed in Sydney and the algorithms rely on a number of computational commutative algebra
tricks well-known to the experts in the field.

– Definition of a general sheaf via a graded module over the coordinate ring of the ambient scheme.

– Computation of some special sheaves like the structure sheaf and the canonical sheaf of a locally
Cohen-Macaulay equidimensional scheme.

– Serre twists of a sheaf.

– Computation of the maximal (saturated) module representing a sheaf.

– Tensor products and powers, direct sums, duals and Homs.

– Homomorphisms between sheaves on the same base scheme. Kernels, images and cokernels.

– Test for local-freeness.

– Test for a sheaf being arithmetically Cohen-Macaulay.

– Test for and construction of isomorphisms between sheaves on the same base scheme.

– The associated “divisor” map into projective space of an invertible sheaf and its image. Includes,
for example, canonical, anticanonical and adjunction maps.

– The Riemann-Roch space of an effective Cartier divisor D and an invertible sheaf isomorphic to
O([D]).

– Dimension over the base field of cohomology groups of twists of a sheaf, using the Decker-Eisenbud-
Floystad-Schreyer algorithm based on the BGG correspondence. This can be used to get various
standard invariants of a scheme.

– Intersection pairing of the divisor classes represented by two invertible sheaves on a non-singular
projective surface.

14.3 General Algebraic Curves

Magma includes a general package for working with algebraic curves. These are schemes of dimen-
sion 1, a particular case being plane curves that are defined by the vanishing of a single polynomial
in 2-dimensional affine or projective space. The main features of interest are for integral (reduced
and irreducible) curves. For these Magma computes explicit representations of the curve’s field of
rational functions allowing computations with places, divisors and differentials, calculation of the
geometric genus, computation of Riemann-Roch spaces and more. This relies on the underlying
function field machinery, but the results are available purely in the context of curve structures.

14.3.1 Construction and General Properties

– Creation of affine and projective curves together with the ambient spaces

– Basic manoeuvres between affine and projective curves: projective closure, affine patches and so on

– Basic scheme-type functions: e.g., irreducibility

– Specialised data types for distinct classes of curves such as elliptic curves

– Linear systems of curves in the projective plane with assigned basepoints
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– Implicitization of parametric curves

– Parametrization of rational curves

– Point searches on plane curves using a p-adic method of Elkies

– Global invariants of curves, such as genus and dimension

– Function field and divisor computations (see below)

– Random curves by genus over the rationals or finite fields for all genera up to 13.

– Index calculus for discrete logs on the Jacobians of plane curves.

14.3.2 Mappings

– Creation of the basic automorphisms of the affine plane (translation, flip, automorphism) and general
maps between curves.

– Evaluation of the image of a point under a rational map as a power series expansion

– Ramification divisor of a non-constant dominant map

– Pullbacks and pushforwards of functions, differentials or divisors along maps between curves.

– Explicit computation of the map into ordinary projective space associated to a divisor (class) - in
particular the canonical map. Optimised computation of canonical images.

14.3.3 Automorphism groups

– Computation of the full automorphism group (over the base field) of an (integral) algebraic curve
of genus at least 2.

– Structures for defining and working with groups of automorphisms of such curves. In particular,
efficient arithmetic of automorphisms (products, powers, etc.) and subgroup definition.

– Abstract realisation of an automorphism group as a permutation group with 2-way correspondence.
This allows the full range of abstract group constructions (eg p-Sylow subgroups) to be applied.

– Computation of the quotient of a curve by a group of automorphisms as a new curve with an explicit
quotient scheme map.

– Tests for isomorphism and construction of explicit isomorphisms as scheme maps.

14.3.4 Local Analysis

– Calculation of tangent spaces and cones for plane curves

– Identification of all singularities of a curve, together with the basic analysis

– Blowups, including weighted blowups, of points on plane curves

– Local intersections on plane curves

14.3.5 Ordinary Plane Curves

– Tests for only ordinary or only nodal singularities of plane curves.

– Special computation of the canonical or more general adjoint maps for an ordinary plane curve.

– Random nodal curves of specified degree and number of singularities.

– Random ordinary curves of specified degree and with specified number of ordinary singularities of
given multiplicities.

– Special parametrization routines for ordinary rational plane curves and rational normal curves.
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14.3.6 Function Field

The following functions apply to integral curves in general.

– Construction of the function field of a curve

– Function field arithmetic

– Exact constant field

– Enumeration of places of degree m (over a finite field)

– Residue class field

– Class number

– Divisor class group of a curve defined over a finite field

– Group of global units of the function field of a curve

14.3.7 Divisors and the Riemann-Roch Theorem

The following functions apply to integral curves in general.

– Creation of places and divisors and their arithmetic

– Compute the divisor of a function on a curve and other constructors

– Determine whether a divisor is principal and if so find a function with the given divisor

– Ramification divisor

– Riemann–Roch space of a divisor

– Computation of Weierstrass places on a curve

14.3.8 Differentials

The following functions apply to integral curves in general.

– Arithmetic and various, related operations

– Valuation of a differential at a place

– Divisor of a differential

– Differential spaces for given divisors (e.g. holomorphic differentials)

– Higher differentiations

– Residue of a differential at a place of degree one

– Cartier operator and representation matrix of the Cartier operator (curves over finite fields)

14.3.9 Resolution Graphs and Splice Diagrams

– Creation of resolution graphs and their vertices, either implicitly using resolution routines or Newton
Polygons, or explicitly by listing the required data

– Calculation of numerical data associated to blowups, e.g., the canonical class of certain rational
surfaces

– The Cartan matrix of a graph and associated calculations such as the contribution to the genus of
a plane curve of a singularity having a given graph as its resolution

– Surgery on resolution graphs such as cutting an edge of a graph

– Creation of splice diagrams implicitly and explicitly

– Edge determinants and linking numbers of splice diagrams

– Test for regularity of splice diagrams

– Translation between resolution graphs and splice diagrams
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These decorated graphs encode data generated by the resolution machinery. At present they are
only attached to resolutions of plane curve singularities, but in due course they may be extended
to resolutions of linear systems, surface singularities, special fibres in curve fibrations or other
geometrical contexts. The package includes a resolution function for curves adapted to present its
output in resolution graph format. This does not supersede other resolution machinery such as
Puiseux expansions or genus calculations, but is intended as a complementary tool for those users
with this kind of geometric background.

14.4 Algebraic Surfaces

Magma now contains special functionality for general projective hypersurfaces in P3 and other
specific types of algebraic surface like anticanonically-embedded Del Pezzo surfaces. The general
hypersurface package was developed in Linz by Josef Schicho and Tobias Beck. It’s main aim
is the formal desingularisation of 2-dimensional hypersurfaces. This allows the computation of
invariants like the geometric plurigenera and more generally gives explicit adjoint linear systems
that represent the canonical, anticanonical or adjunction mappings amongst others. The package
also contains a function to classify rational hypersurfaces and map them to terminal types. This
combines with the other main component of the current surface functionality, which is specific code
to parametrize terminal rational surfaces. The major part of this is packages for parametrizing Del
Pezzo surfaces, which were developed in joint work by Schicho’s group and the Magma group and
use the Lie algebra method for the high degree Del Pezzos. The sheaf module also provides some
useful general functionality that may be applied to locally Cohen-Macaulay schemes in ordinary
projective space representing surfaces (see above).

14.4.1 Formal Desingularisation and Classification

– Formal resolution of singularities of hypersurfaces in 3-D projective space over a field of characteristic
zero, following the Hirzebruch-Jung method.

– Result given using algebraic power series for the formal completions of components over the singular
locus.

– Geometric genus, arithmetic genus and higher plurigenera of (any) desingularisation.

– General Kn
X(m) adjoint linear systems.

– Tests for a hypersurface being rational or (birationally) ruled.

– Classification of rational surfaces by terminal type. Construction of birational map to terminal
model following Schicho’s algorithm.

14.4.2 Parametrization Of Rational Surfaces

– Test for the parametrizability over the rational numbers of a rational hypersurface in 3-D projective
space and construction of an explicit parametrization.

– Routines for the direct parametrization of singular or non-singular anticanonically embedded Del
Pezzo surfaces of degree at least 5 over the rationals. Uses the Lie algebra method for degree greater
than 5.

– General routine for direct parametrization of any degree Del Pezzo (singular or non-singular) in its
standard weighted anticanonical ample embedding by blowing down lines to reduce to degree at
least 5.

– Routines for the direct parametrization of quadric hypersurfaces, rational pencils and conic bundles.
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14.5 Toric Varieties

There are many points of view on toric geometry and many different uses. The applications moti-
vating this implementation come from low dimensional birational geometry and mirror symmetry;
it is capable of doing substantial algebraic geometry, as well as the usual array of combinatorial
routines associated to polytopes, cones and fans. In particular the construction of any general toric
variety is possible; you are not limited to the standard subclasses such as smooth or Q-factorial
examples. Toric varieties can also be used as ambient spaces for other more complicated varieties
(in the same way as affine and projective spaces).

14.5.1 Toric lattices

One often begins to study toric geometry by considering a lattice L = Zn and discussing polygons
or cones in its overlying rational vector space LQ = L ⊗ Q. In Magma we bind these two
spaces together in a single object, a toric lattice. Although these spaces lie underneath all the
combinatorics, it is seldom necessary to be explicit about them; they often remain invisible. Magma
supports many operations for constructing and manipulating toric lattices, including:

– Creation of a toric lattice and its dual;

– Construction of direct sums, sublattice, and (torsion free) quotient lattices;

– The sublattice fixed under a group action;

– Maps between toric lattices;

– Standard operations on points in a toric lattice.

14.5.2 Cones and Polyhedra

A cone (in a toric lattice L) is the convex hull of finitely many rays. A (rational) polytope is the
convex hull of finitely many points of L. More generally a (rational) polyhedron is given by the
Minkowski sum of a polytope and a cone. There exist dual definitions in terms of the intersection
of finitely many half-spaces. There is no requirement that polyhedra are of maximum dimension
in the ambient toric lattice. Important operations include:

– Standard constructions of cones, half-spaces, cross polytopes, cyclic polytopes, etc.;

– Creation of cones and polyhedrons via a system of inequalities;

– The defining inequalities of a cone or polyhedron;

– The dual cone or polyhedron;

– Taking the (affine) linear space spanned by, or contained in, a polyhedron;

– Standard properties such as dimension, volume, and boundary volume;

– Triangulations of a polytope and of its boundary;

– Information on whether a polyhedron is simplicial, reflexive, terminal, etc.;

– Construction of the cone in L× Z spanned by a polyhedron P in L;

– The polyhedron defined by taking the convex hull of P ∩ Zn for any polyhedron P ;

– The infinite and compact parts of a polyhedron;

– Calculation of intersections, Minkowski sums, translations, etc.;

– Taking hyperplane slices;

– The minimum Q-generators and Z-generators of a cone;

– Point membership;

– Point counting and enumeration of lattice points;

– The Ehrhart series, Ehrhart polynomial, and δ-vector of a polytope;

– Faces of a cone or polyhedron, the f -vector and h-vector;

– Construction of the face-poset;

– The group of lattice automorphisms fixing a polytope.
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14.5.3 Fans

A fan F (in a toric lattice L) is a collection of cones in L satisfying the usual conditions of a
cell decomposition. Magma allows for the construction of any fan; it will check that the cones
intersect correctly, and will add the lower-dimensional cones as necessary. There are also several
constructors for well-known fans, and standard methods for modifying existing fans.

– Creation of a fan from a collection of cones;

– Constructions for the fan of affine space, projective space, and weighted projective space;

– Construction of the product of two (or more) fans;

– The dual fan and spanning fan generated by a polyhedron;

– The normal fan to a cone C, given by the quotient of L by the span of C;

– Support and point membership;

– Extraction of the rays, one-skeleton, singular cones, maximum dimensional cones, and so forth;

– The blowup of F at a point in L;

– Answers to questions such as whether F is projective, or nonsingular, or Q-factorial;

– The simplicial subdivision of a fan;

– A refinement of F such that the resulting fan is nonsingular;

– Maps between fans.

14.5.4 Basic operations on toric varieties

There exist many standard constructors for toric varieties. They can also be defined directly
from a fan, or in terms of a Cox ring. However one constructs a toric variety, the corresponding
fan can always be recovered, although this is seldom necessary. Once you have constructed your
toric variety you can treat it as a purely geometric object, as you would any scheme in Magma.
Operations include:

– Standard constructions for affine, projective, and weighted projective space;

– Construction of scrolls, or of any toric variety specified by a collection of gradings;

– The toric variety given by the product X × Y ;

– Recovery of a fan from any toric variety, and of the toric variety associated to any fan;

– The variety corresponding to a Cox ring can be constructed, and the Cox ring of any toric variety
recovered;

– Extract the i-th affine patch of a toric variety X, along with the inclusion map;

– A resolution, Q-factorialisation, terminalisation, etc., along with the corresponding maps;

– Extract the one parameter subgroup lattice, monomial lattice, Cox monomial lattice, or divisor class
lattice;

– Is the variety complete? Is it projective? Is it Fano?

– Determine whether the toric variety is nonsingular, Gorenstein, Q-factorial, terminal, or canonical.

14.5.5 Maps of toric varieties

Magma supports the creation of very general maps between toric varieties. These can be derived
from maps between the associated toric lattices, or presented in terms of the variables of the Cox
ring. More generally one can define all maps between toric varieties using an appropriate notion of
‘rational radical function’ defined in terms of the polynomial Cox coordinates. Common questions
Magma can answer include:

– Are two toric varieties naturally isomorphic?

– Is a given map regular?

– The indeterminancy locus of a map.
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14.5.6 Invariant divisors and Riemann-Roch spaces

Divisors on toric varieties work in the same way as on other varieties, except that within each
linear equivalence class it is possible to choose torus invariant representatives. Divisors on a toric
variety have a single divisor group as their parent; divisors can be constructed by coercing the
appropriate data into this group, or via several standard constructions. Once you have constructed
your divisor, Magma supports all the operations you would expect. Examples are:

– Construction of the zero divisor and canonical divisor;

– Construction of a “nice” representative of an element in the Picard latice or divisor class lattice,
chosen to be as effective as possible;

– The combinatorial data defining a Weil or Cartier divisor;

– Is a given divisor principal or Q-principal? Is it linearly equivalent to a Cartier divisor?

– Are two divisors linearly equivalent?

– Answers to questions such as whether a divisor D is Cartier, Q-Cartier, Weil, ample, very ample,
nef, or big;

– The Picard class or movable part of a divisor D;

– Proj of the ring of sections of D;

– The relative (sheaf) Proj of sections of the divisor D;

– The Riemann-Roch polytope associated to a divisor;

– The basis of the associated Riemann-Roch space;

– The graded cone of sections of multiples of D;

– The Hilbert series and Hilbert polynomial of (X,D).

14.5.7 Mori theory

The Mori cone and nef cone of a toric variety can be computed, extremal rays calculated, and so
on. Magma can answer questions such as whether a given extremal ray corresponds to a Mori
fibre space, is a divisorial contraction, or gives a small contraction. Standard constructions and
operations are also supported:

– The images of extremal contractions of rays in the nef cone;

– A description of the extremal contractions;

– The (generalised) flip of the morphism given by the Q-Cartier divisor;

– The weights of the Gm action whose variation would give the flip;

– An implementation of the Minimal Model Programme.
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14.6 Graded Rings and Geometric Databases

The computation of generic families of K3 surfaces embedded in weighted projective spaces of
small dimension is a project that has been running since the mid-1970s. Until two years ago, a
main result was a collection of about 400 families of K3 surfaces (which had been recorded as a
database in Magma). Magma now contains a database of 24,099 K3 surfaces (including correcting
half a dozen mistakes in codimension 4) that, in a well-defined sense, contains a sketch of all
possible examples.

One main point is that these results are a major step on the way to understanding Fano
3-folds and their birational automorphisms. These are the 3-dimensional analogues of rational
curves or Del Pezzo surfaces and are a very exciting research frontier. It is possible that the
final classification of Fano 3-folds (expected to contain a few thousand families) will almost be
contained in the K3 database.

The methods applied to K3 surfaces work in many other contexts. Currently Magma contains
the calculations for: subcanonical curves, K3 surfaces, Fano 3-folds and Calabi–Yau 3-folds; other
cases are in progress. The basic method is to assemble a lot of data that should occur on these
varieties, feed it into the Riemann–Roch formula to get a Hilbert series, and then attempting to
describe a plausible variety embedded in weighted projective space that has that Hilbert series.
The ideas are described in the paper [1], while improved handling of high codimension possibilities
using projection/unprojection theorems is described in [8]. Other cases are covered by the papers
[11], [37].

Notice that these routines do not describe explicit graded rings: they do not explain how to
write the equations, but only say which weighted variables should be used in the equations. (The
Hilbert series does include more information, but still much less than would dictate explicit equa-
tions, in general.) The process of recovering equations through projections is called ‘unprojection’,
and that is still some way off being implemented as a method in commutative algebra.

These families exhibit large Gorenstein rings with as yet unknown structure. The search for
structure theorems for Gorenstein rings occupied much of the 1970s after the Buchsbaum–Eisenbud
structure theorem in codimension 3. However no substantial new cases were discovered. These
examples, not available in the 1970s, are a major motivation for a renewed assault on this problem.

– Functions that create subcanonical curves, K3 surfaces, Fano 3-folds and Calabi–Yau 3-folds from
data associated to the Riemann–Roch formula in each case

– A K3 database containing 24,099 candidates for polarised K3 surfaces. There are also smaller
databases of Fano 3-folds as a first step in the final classification

– Functions for interrogating databases, including functions that can add new entries or rewrite ex-
isting entries
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15 Arithmetic Geometry

The area of number theory known as “arithmetic algebraic geometry” is mainly concerned with
studying algebraic varieties over a non-algebraically closed base field, especially properties that
are highly sensitive to the base field. For instance, one seeks to understand the set of rational
points and other rationality questions, points over local or finite fields, and associated L-functions.

Magma has extensive packages dealing with arithmetic features for several much-studied classes
of curves. Many algorithms of interest for curves over global fields are implemented not only over
Q but also over number fields or function fields. The main packages are:

• Rational curves and conics

• Elliptic curves

• Genus one curves

• Hyperelliptic curves

• L-functions

15.1 Rational Curves and Conics

Rational curves and conics in Magma are nonsingular plane curves of degree 1 and 2, respectively.
The central functionality for conics concerns the existence of points over the rationals. If a point
is known to exist, then a conic can be parameterized by a projective line or a rational curve.
A rational curve in Magma is a linearly embedded image of the projective line, to which the full
machinery of algebraic plane curves may be applied. Tools provided include the local-global theory,
the existence of points on conics, efficient algorithms for finding rational points, parametrizations
and isomorphisms of genus zero curves.

– Computation of a conic model, for an arbitrary curve of genus zero

– Diagonalization of a given conic over a general field

– Over number fields, a careful diagonalization routine which avoids making the discriminant harder
to factor

– Routines to decide whether a conic is solvable, over Q, number fields and function fields; calculation
of Hilbert symbols

– Solution of conics over Q using Simon’s algorithm (this involves LLL-reduction of an indefinite form,
and includes Cremona-Rusin reduction as a special case)

– Solution of conics over rational function fields using the algorithm of Cremona-van Hoeij

– Solution of conics over number fields using an algorithm based on Lagrange’s method plus other
techniques

– Reduction of a rational point on a conic so that its coordinates satisfy Holzer’s bounds (using an
algorithm due to Mordell)

– Parametrization of a general conic using a known point

– Simon’s parametrization for conics over Q



Magma Overview V2.19 (April 24, 2013) 87

15.2 Elliptic Curves

Magma contains an extensive module for computing with elliptic curves. The reader should note
that elliptic curves inherit from the general plane curve datatype so that all plane curve operations
are applicable in addition to those listed below.

15.2.1 Construction and Properties

– Creation of an elliptic curve over a field

– Creation of an elliptic curve with given j-invariant

– Creation of an elliptic curve from a general genus 1 curve

– Models: Weierstrass form, integral model, minimal model, simplified model

– Arithmetic with rational points, including division

– Extension and lifting of curves induced by maps of base rings

– Function fields, divisors, places

– Invariants: b-invariants, c-invariants, j-invariant, discriminant

– Division polynomials

– Subgroups and subschemes of elliptic curves as separate types

15.2.2 Morphisms

– Extension and lifting of maps induced by change of base ring of curves

– Isomorphisms, isogenies and rational maps between curves, translation maps on a curve

– Isogeny operations: degree, composition, construction with given kernel, Frobenius endomorphism

– Kernel and image of an isogeny as subgroups, image and preimage of a subgroup under an isogeny

– Endomorphisms

– Isomorphism operations: inverses, composition

– Testing for isomorphic curves over fields with root-finding

– Testing for isogenous curves over finite fields via point-counting, and over the rationals via kernels
(a map is returned also here)

15.2.3 Features over finite fields

Magma contains implementations of various methods for point-counting, each optimized for fields
in a certain range. In addition, there are efficient implementations of some items of cryptographic
interest, including pairings and GHS.

– Characterization of ordinary and supersingular elliptic curves

– Representative supersingular curve

– Enumeration of all points (small fields), random point

– Quadratic twist, all quadratic twist, all twists

– Order of a point via baby-step–giant-step for small p

– Schoof-Elkies-Atkin (SEA) algorithm for finding the order of the group of rational points

– Schoof-Elkies-Atkin (SEA) algorithm with early abort facility for searching for cryptographically
secure curves

– Lercier’s extension of the SEA algorithm

– p-adic canonical lift methods for determining the number of points over finite fields of small char-
acteristic p (p up to around 50).

– p-adic deformation methods for determining the number of points over finite fields of smallish
characteristic p not covered by canonical lift.
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– Structure of the abelian group of rational points

– The zeta function of a curve

– Discrete logarithm (parallel collision search version of the Pollard rho algorithm)

– Weil, Tate and Eta pairings

– Gaudry-Hess-Smart (GHS) descent with explicit map from the curve to divisors (or to the Jacobian
of a hyperelliptic curve).

For a random curve taken over a 168-bit prime field GF (p), Magma takes an average of 47 seconds
to determine the order of the group. In the case of a random curve taken over a 400-bit prime field
the average runtime is 2200 seconds. In characteristic two, Magma takes around 0.03 seconds for a
curve over GF (2162), where Gaussian Normal Bases are available and 0.12 seconds over GF (2160).
Over GF (2268) (again with GNB) it takes around 0.06 seconds.

15.2.4 Features over Q

– Invariants: conductor, regulator, periods, and period lattice

– Torsion subgroup

– Tate’s algorithm for computing local information, Kodaira symbols and Tamagawa numbers

– Twist of an elliptic curve by an integer, minimal twist

– Theory of heights: local height, naive height, canonical height, height pairing

– Bounds on the “height difference”: Silverman’s bound and Siksek’s bound

– p-adic heights

– Elliptic logarithm, p-adic elliptic logarithm

– Elliptic exponential (℘-function) using Newton iteration

– L-series, and special values of the L-series,

– Analytic rank

– Root numbers

– modular degree

– Isogeny class, computation of isogenies

– Heegner points for rank 1 curves, and general modular parametrisation

– Rigorous determination of the finite set of S-integral points, for a given finite set of prime S. As an
application, determination of the S-integral points on other genus 1 curves (quartic, Ljunggren and
Desboves curves).

– John Cremona’s database of all elliptic curves over Q having conductor up to 130 000

15.2.5 Rational points over Q

Magma contains an unrivalled array of techniques that are used for determining the Mordell-Weil
group of rational points E(Q) for a curve over Q (including the analytic tools already listed).
These are applied in various combinations to obtain bounds on the Mordell-Weil rank, and to find
generators.

– 2-descent using the “invariant method” (the algorithm that is implemented in John Cremona’s
program “mwrank”)

– 2-descent using the “algebraic method” (recently re-implemented efficiently)

– Cassels-Tate pairing between 2-coverings (fast algorithm of Donnelly)

– 4-descent above a given 2-covering (algorithm of Merriman-Siksek-Smart, with refinements)

– Cassels-Tate pairing to resolve 4-coverings (algorithm of Donnelly)

– 8-descent above a given 4-covering (algorithm of Stamminger and Fisher)
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– 3-descent (algorithms of Cremona-Fisher-O’Neil-Simon-Stoll and Schaefer-Stoll)

– 6- and 12-descent as combination of 2-, 3- and 4-descent (Fisher)

– Descent using 2-isogenies or 3-isogenies.

– Minimisation and reduction of the covering curves in each of these cases (algorithms mainly due to
Cremona, Fisher and Stoll)

– Searching on for rational points on the elliptic curve, and on 2-coverings, using sieving

– Point-searching on 4-coverings using a dedicated implementation of Elkies p-adic method

– Point-searching on other coverings using the general-purpose implementation of Elkies p-adic method

15.2.6 Features over number fields

– Tate’s algorithm, local information and local minimal model

– Conductor

– Global minimal model in the case where one exists

– Torsion subgroup (and torsion bounds, p-torsion subgroup)

– Height machinery

– Analytic rank

– L-functions

– Determining whether curve has complex multiplication (this returns the discriminant of the CM
order).

– “Elliptic curve Chabauty” methods, with Mordell-Weil sieving (algorithm of Bruin)

15.2.7 Rational points over number fields

Some of the techniques for Mordell-Weil groups over Q are also implemented for number fields.
– 2-Selmer groups, 2-descent

– 2-isogeny Selmer groups

– Cassels-Tate pairing between 2-coverings (algorithm of Donnelly)

– 4-descent, using code for “descent on a 2-covering” (Bruin, Stoll)

– Point-searching on elliptic curves and 2-coverings

15.2.8 Features over function fields

Many of the same features are also implemented for elliptic curves over univariate function fields
and their finite extensions. (However, many of the individual routines impose further restrictions:
for instance, only allowing fields with finite base field, or odd characteristic, or only rational
function fields.)

– Tate’s algorithm, local information and local minimal model

– Conductor, global minimal model

– Torsion subgroup (and torsion bounds, p-torsion subgroup)

– Height machinery

– L-functions

– Analytic rank bounds

15.2.9 Rational points over function fields

– 2-descent in odd characteristic

– Cassels-Tate pairing between 2 coverings in odd characteristic

– 2-descent (via isogenies) for ordinary curves in characteristic 2

– Computation of the Mordell-Weil group via the Neron-Severi group of the elliptic surface in cases
where this is a rational surface.
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15.3 Models of Genus One Curves

This package deals “genus one normal models” of degree n = 2 (hyperelliptic curve), n = 3 (plane
cubic), n = 4 (quadric intersection in P 3) or n = 5 (in which case the model is given in a more
complicated way). An element of order n = 2, 3, 4 or 5 in the Tate-Shafarevich group of an elliptic
curve can be expressed as a curve in this form. The package provides a variety of routines based
on the invariant theory of these objects, as well as routines for obtaining “nice” models (for models
over Q) by minimisation and reduction.

Most of the algorithms are due to Fisher, Cremona and Stoll.

– Creation of genus one models of degree 2, 3, 4 or 5 from various input

– Extraction of defining data, equations for the curve

– Standard a, b and c “invariants” of a model; the Jacobian and n-covering map

– Polynomial formulas given for families of elliptic curve with the same n-torsion as a given curve.

– Handling of transformations of genus one models

– Minimisation (over Q and rational function fields)

– Reduction (over Q for n = 2, 3 and 4)

– Addition of models, regarded as elements of the Weil-Chatelet group

– Testing equivalence of two given models over Q

– Local solubility testing for models over Q
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15.4 Hyperelliptic Curves and Jacobians

Hyperelliptic curves in Magma are a special type of curve; they are given as nonsingular curves
in a naturally weighted projective plane. They inherit all operations that are valid for general
curves. In contrast, Jacobians are not implemented as a type of scheme or variety; instead they
are implemented in terms of divisors on the curve. In particular, Jacobians are not defined by
a set of algebraic equations, or by an embedding. They do not inherit from the general scheme
datatype.

The broad aims of the package are as follows. One wants fast arithmetic on Jacobians (op-
erations with normalized divisors) over general fields. Over finite fields, one wants methods for
determining the number of points on curves and on their Jacobians, and more generally the zeta
functions. Over global fields, one is mostly interested in the group of rational points on a Jacobian
and the (finite) set of rational points on a curve, as well as local properties, heights and so on.

The first version of this package was developed by Michael Stoll; others who made major
contributions include P. Gaudry, E. Howe, and several past and current members of the Magma
group.

15.4.1 Construction and Properties

– Standard quadratic models, simplified models

– Creation of isomorphisms, automorphisms, and operations with these

– Test for curves being isomorphic

– Function fields, divisors, places

– Invariants: degree, genus, discriminant

– Igusa and related invariants

– Construction of a curve given its Igusa invariants (over suitable fields)

– Extension and lifting of curves induced by maps of base rings

– Determination of points at infinity

– Determination of whether a general algebraic curve C is hyperelliptic and, if so, computation of a
Weierstrass model for C

– Determination of whether a general algebraic curve C is geometrically hyperelliptic - ie, is hyperel-
liptic over the algebraic closure of the ground field.

15.4.2 Operations on curves over finite fields

– Enumeration of all rational points (for small fields)

– Random point

– Quadratic twist, all quadratic twists

– Counting points

– Zeta function

15.4.3 Operations on curves over Q and number fields

– Integral model, minimal Weierstrass model, p-normal model, reduced model

– Reduction types and conductors of a genus 2 curve at odd primes

– Local solubility testing (optimized code for the case of hyperelliptic curves)

– 2-descent “on the curve” giving a bound on the set of rational points, often better than 2-descent
on the Jacobian (algorithm of Bruin and Stoll)
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15.4.4 Construction of Jacobians

– Creation of the Jacobian of a given curve as the divisor class group

– Creation of points

– Normal form and addition of points

– Fast addition algorithm of R. Harley for genus 2 curves

– Analytic model of the Jacobian: translation between the algebraic and analytic Jacobians

15.4.5 Kummer Surface of a genus 2 Jacobian

The Kummer surface is a certain quotient of a genus 2 Jacobian. In Magma, it is part of the data
associated to the Jacobian. However, unlike the Jacobian itself, the Kummer surface is given by
a defining equation.

– The defining equation of the surface

– Creation of points

– Pseudo-addition, and duplication of points

– Preimage on the Jacobian of a given point on the Kummer surface

– Search for rational points having three coordinates specified

15.4.6 Operations on Jacobians over finite fields

The p-adic techniques used for point counting in small characteristic p are Kedlaya’s algorithm (p
odd) and Mestre’s canonical lift method as adapted by Lercier and Lubicz (p = 2) [implemented
by M. Harrison]. The other techniques for point counting are due to P. Gaudry and R. Harley
and have been implemented in Magma by P. Gaudry.

– Enumeration of all rational points (small fields), random point

– Order of a point via the Shanks or the Pollard-rho algorithms

– Counting points: p-adic methods of Kedlaya and Mestre/Lercier/Lubicz

– Counting points: p-adic deformation method.

– Counting points: Shanks and Pollard methods

– Counting points: An index calculus method for when the genus is large compared to the base field

– Counting points: Schoof algorithm for finding the order modulo small primes in the case of a genus
2 curve

– Counting points: Class group methods using the function field machinery.

– Structure of the abelian group of rational points

– Weil pairing of points

15.4.7 Operations on Jacobians over Q and number fields

Some of the functions listed here apply only for Jacobians of genus 2 curves, while others also
apply for higher genus hyperelliptic curves.

– Order of a point

– 2-torsion subgroup, full torsion subgroup

– Naive height and canonical height of a point, bounds on the “height difference”, the height pairing
matrix and regulator

– Enumeration of all Q-rational points up to a given height bound (Elkies-Stahlke-Stoll method)

– Rank of the subgroup of the Mordell-Weil group generated by a given set of points on the Jacobian

– Computation of the 2-Selmer group, giving a bound on the Mordell-Weil rank
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– Chabauty’s method combined with Mordell-Weil sieving allows determination of the set of rational
points on a genus 2 curve over Q with Mordell–Weil rank 1, assuming the Mordell-Weil group of
the Jacobian is known.

– Analytic representation of a Jacobian; conversion of points between the representations; computation
of analytic invariants

Some of this functionality is also implemented over general number fields, including the torsion
routines, the height machinery, and the 2-Selmer group.

15.5 L-Series

There are many arithmetic objects that can have L-functions attached to them, and the ability to
compute with these then opens up a wide array of computational possibilities. For instance, one
can study special values, or look at the distribution of zeros. The Magma package for L-functions is
largely due to Tim Dokchitser, and contains a variety of nontrivial functionality for many objects.
There is also the ability for the user to self-build L-functions, either for individual objects, or for
classes of them. The main prerequisite for this is the ability to compute Euler factors.

The classical ζ-functions of Riemann and Dedekind, and their generalisations by Dirichlet and
Hecke, form the first examples (these are GL(1) in some sense), with elliptic curves and modular
forms giving examples on GL(2). Magma can also compute with these over number fields other
than the rationals, with Artin representations being available (these are useful when the Galois
closure is small), possibly through tensor products. The ability to take some tensor products and
symmetric powers also exists, though the computations at bad primes are not yet fully automated,
and the generality still needs to be expanded. Many examples are given in the handbook.

– Riemann ζ-function

– Dirichlet L-functions

– The Dedekind ζ-function of a number field

– Hecke L-functions (including for Grössencharacters)

– L-functions of Artin representations

– Hasse-Weil L-functions (associated to elliptic curves)

– L-functions associated to modular forms (newforms)

– “Tensor products” of L-functions

– Symmetric power L-functions

– Facility to construct user-defined L-functions (with coefficients determined by a given function)
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16 Modular Arithmetic Geometry

• Modular curves

• Congruence subgroups of PSL(2,R)

• Arithmetic Fuchsian groups

• Modular forms

• Modular symbols

• Brandt modules

• Supersingular divisors on modular curves

• Modular Abelian varieties

• Hilbert modular forms

• Modular forms over imaginery quadratic fields

• Admissible representations of GL2(Qp)

16.1 Modular Curves

A modular curve in Magma is an affine curve given by an equation in a standard form. These
equations are stored in precomputed databases. The modular curves currently available are defined
by “modular equations” of three kinds, each of which is a bivariate polynomial relation between
the j-invariant and another standard function on X0(N). These give singular plane affine models
for X0(N). One application for which these models are suited is to compute isogenies of degree
N between elliptic curves.

Features:

– Creation of a modular curve of specified level from a database. Possible model types are Atkin,
Canonical and Classical.

– Database of modular equations: Atkin, Canonical and Classical.

– Parametrization of the isogenies of an elliptic curve by points on some X0(N).

– The j-invariant of a modular curve as a function on the curve.

– Automorphisms: Atkin–Lehner involutions.

– Hilbert and Weber class polynomials.

16.2 Congruence Subgroups of PSL(2, R)

The group GL+
2 (R) of 2 by 2 matrices defined over R with positive determinant acts on the upper

half complex plane H = {x ∈ C|Im(x) > 0}} by fractional linear transformation:
(

a b
c d

)
: z 7→ az + b

cz + d
.

Any subgroup Γ of GL+
2 (R) also acts on H. A fundamental domain for the action of a (discrete)

subgroup Γ is a region of H∗ containing a representative of each orbit of the action. Magma
contains a package written by Helena Verrill for working with H∗ and with congruence subgroups
and their action on H∗. The congruence subgroups currently supported are Γ0(N), Γ1(N), Γ(N),
Γ1(N), Γ0(N), and intersections of these. The main routines are for computing generators and
fundamental domains for these groups, as well as data such as coset representatives.

– Calculations on the upper half complex plane H: distances, angles and geodesics

– Action of PSL2(R) on H: fixed points and stabilizers

– Construction of the congruence subgroups listed above
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– Construction of cusps, cusp widths, and elliptic points of congruence subgroups

– Computation of a fundamental domain for the action of a congruence subgroup, described by the
vertices, and Farey symbols

– Equivalence of points under the action of a congruence subgroup

– Computation of generators of congruence subgroups, and coset representatives

– Graphics: postscript output of pictures of fundamental domains, points and geodesics, and polygons
with geodesic edges (all on the upper half complex plane)

16.3 Modular Forms

Since V2.8, Magma has included packages for modular forms and modular symbols. These were
originally developed by William Stein, and are continually being developed further and improved
by the Magma group. The modular forms package is, to a large extent, built on top of the modular
symbols package. However, it also contains several independent features, notably Eisenstein series,
half-integral weight forms and weight 1 forms.

– Construction of spaces of modular forms of weight k ≥ 1/2 on Γ0(N) or Γ1(N) (or with specified
character)

– Decomposition into Eisenstein, cuspidal, and new subspaces

– Computation of dimensions (by formulae)

– Computation of bases of these spaces, expressing basis elements as q-expansions with desired number
of terms

– Arithmetic operations for modular forms

– Computation of Hecke operators and Atkin-Lehner operators

– Decomposition into invariant subspaces with respect to these operators

– Characteristic polynomials of Hecke operators

– Determination of all newforms of given level (with Fourier coefficients given in suitable number
fields)

– Determination of all reductions of newforms modulo a given prime

16.4 Modular Symbols

Modular symbols provide explicit representations of homology groups associated to modular
curves, which are suited to efficient computation. Computing the Hecke action on these groups
yields q-expansions of modular forms. Other computations yield arithmetic information about the
Jacobians of modular curves and their irreducible factors. This package contains many routines
of this kind, which are used by the other packages, and which may also be called directly. (There
is some duplication, and in some instances, the routines in this package are “lower level”.)

Many of the algorithms implemented here are described in William Stein’s thesis [46] or in [47].
Additional references are given in the Magma Handbook.

– Construction of spaces of modular symbols of given character, level, and weight

– Computation of Hecke operators and Atkin-Lehner operators

– Decomposition into invariant subspaces under these operators

– Computation of degeneracy maps, and standard subspaces

– Determination of twists of minimal level, for an eigenform

– Computation of certain invariants of modular abelian varieties

– The intersection pairing on the integral homology of modular curves

– Special values of L-functions and computation of complex period lattices
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16.5 Modular Abelian Varieties

Modular abelian varieties over Q are the Q-irreducible quotients of Jacobians of modular curves
X0(N) or X1(N). In Magma, modular abelian varieties are viewed as explicit quotients or subva-
rieties of these modular Jacobians. The implementation is built on the modular symbols package.
(The algorithms do not involve explicit equations for the Jacobians as varieties, which would be
impractical).

– Construction of modular abelian varieties associated to Hecke-invariant subspaces of modular forms.

– Finite direct sums and quotients may be formed.

– Explicit computation of the group Hom(A,B) or the ring End(A), as a subgroup of homology, for
modular abelian varieties A, B over Q.

– Computation of kernels, cokernels, and images of homomorphisms of abelian varieties.

– Intersections of subvarieties.

– Computation of discriminants of subgroups of endomorphism rings, such as Hecke algebras.

– Upper and lower bounds on the order of the K-rational torsion subgroup of A.

– The determination of whether or not two modular abelian varieties are isomorphic (in some cases).

– Characteristic polynomial of Frobenius.

– Tamagawa numbers and component group orders (in some cases).

– Computation with torsion points as elements of rational homology.

– Computation of all inner and CM twists (not provably correct).

– Computation of “building blocks”.

16.6 Brandt Modules

Brandt modules provide an alternative approach to computing modular forms: they admit a
natural Hecke action, and can be identified with spaces of classical modular forms having the
same Hecke action. Brandt modules are defined in terms of ideals of Eichler orders in quaternion
algebras.

Note that this package is only for Brandt modules over Q. A separate implementation for
arbitrary totally real fields, using a more efficient algorithm, is at the core of the package for
Hilbert modular forms (described below).

Features:

– Construction of the Brandt module on the left ideal class of an Eichler order in a definite quaternion
algebra over Q.

– Elementary invariants: level, discriminant, conductor, etc.

– Calculation of dimensions by standard formulae.

– Arithmetic operations for module elements.

– Construction of Hecke and Atkin Lehner operators on Brandt modules.

– Decomposition of a Brandt module into invariant subspaces.

– The Eisenstein subspace and the cuspidal subspace of a Brandt module.

– Operations on subspaces: Orthogonal complement, intersection.

– Properties of subspaces: Eisenstein, cuspidal, decomposable.

– Inner product of elements with respect to the canonical pairing on their parent.

– q-expansions associated with a pair of elements of a Brandt module.
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16.7 Supersingular Divisors on Modular Curves

Another construction of interesting Hecke-modules is via the Hecke action on divisors on the
supersingular points on X0(N) in characteristic p. More precisely, the module considered is the
free abelian group on the supersingular elliptic curves in characteristic p enhanced with level N
structure. It is computed using the “method of graphs” of Mestre and Oesterlé and the Brandt
modules algorithm.

– Computation of Hecke operators and Atkin-Lehner involutions on modules of supersingular divisors.

– Decomposition of a Brandt module into invariant subspaces with respect to these operators.

– The monodromy pairing.

16.8 Hilbert Modular Forms

Since V2.15, Magma has included a package for computing Hecke operators on spaces of Hilbert
modular forms, over arbitrary totally real fields and for arbitrary level.

Two separate algorithms are implemented (both rely on the Jacquet-Langlands correspondence,
but they make use of different kinds of quaternion algebras). The algorithm due to Dembele is
available for all weights greater than or equal to 2; it is an efficient approach to Brandt module
computations. The implementation of the core calculations is fast, and this method has been
used for fields of degree up to 10. The algorithm due to Greenberg and Voight is available for
parallel weight 2, and makes use of Voight’s algorithm for fundamental domains of Fuchsian groups
associated to Shimura curves.

– Construction of cuspidal spaces of Hilbert modular forms over any totally real field, of given level
and weight

– The quaternion order which underlies the computations for a particular space may also be specified

– Computation of dimensions (by “formulae”, or by computing the space)

– Computation of Hecke operators

– Computation of new subspaces

– Decomposition into invariant subspaces with respect to the Hecke action

16.9 Modular Forms on Imaginary Quadratic Fields

Since V2.16, Magma has included a package for modular forms of weight 2 over arbitrary imaginary
quadratic fields. In the current version, one can compute Hecke operators for principal ideals on
these spaces, and determine the newforms.

The algorithm, developed by Gunnells and Yasaki, is based on “Sharbly complexes”, and
involves computations with the Voronoi polyhedron of the given imaginary field.

– Construction of cuspidal spaces of modular forms over any imaginary quadratic field, of given level
and weight 2

– Computation of dimensions

– Computation of Hecke operators

– Computation of new subspaces

16.10 Admissible Representations of GL2(Qp)

This package, included since V2.16, provides functionality for working with the local components
of an automorphic representation associated to a modular form. An eigenform in a classical space
of cusp forms determines an automorphic representation, which is made up of “local components”
at each prime p. The local component at p is an admissible representation on GL2(Qp).

The package has two main parts. Starting with a cuspidal newform, the admissible representa-
tion (or data describing it) can be computed. Furthermore, via the local Langlands correspondence,
there exists a related Galois representation on the absolute Galois group of Qp. The interesting
part of this representation can be computed from the admissible representation.
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– Construction of the admissible representation on GL2(Qp) arising from a given cuspidal eigenform,
of any weight and level

– Conductor and central character of an admissible representation

– Determination of a twist with minimal level, of a given representation

– Recognition of whether a representation is principal series, or supercuspidal

– In the case of principal series, the “principal series parameters” can be determined (as two characters
on Zp)

– In the supercuspidal case, a “cuspidal inducing datum” can be obtained (as a representation on a
suitable subgroup of GL2(Qp))

– Computation of the associated local Galois representation: its restriction to inertia is returned as a
representation on a finite group Gal(L/Qp) where L is some finite extension of Qp.
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17 Differential Galois Theory

The Galois theory of linear differential equations is the analogue of the classical Galois theory
of polynomial equations for linear differential equations. The natural analogue of the field in
the classical case is the differential field. This is a field equipped with a derivation. We have
constructed a basic facility for differential fields and rings. These types can be built from the
algebraic function field or affine algebra types. Our medium term goal is to construct a fast solver
for linear differential equations.

17.1 Differential Rings and Fields

– Construction of the rational differential field and the more general differential ring

– Coercions, arithmetic and functionality for elements as for the underlying ring.

– Changing the derivation of a differential ring.

– Extending the constant ring of a differential ring

– Wronskian matrix and Wronskian determinant

– The differential constant field of a rational differential field

– Ring and field extensions of differential rings and fields

– Construction of a differential ideal

– Quotient rings, rings and field of fractions of differential rings and fields

17.2 Differential Operator Rings

– Creation of a differential operator ring

– Coercion, arithmetic and simple predicates for elements

– Accessing coefficients of elements

– Changing the derivation of a differential operator ring.

– Changing the operator ring by extending the constant ring

– Making a differential operator monic.

– Adjoint of an operator

– Applying an operator to an element of its basering

– Euclidean algorithms, left and right (extended) GCD, (extended) left LCM

– Companion matrix of an operator.

– Determination of whether a place is regular, regular singular or irregular singular at an operator

– All singular points of an operator

– The indicial polynomial of an operator at a place

– All rational solutions of an operator within a rational differential field

– Newton polygon and Newton polynomial

– Differential field extension of the base ring of an operator by adjoining a formal solution and formal
derivatives

– The symmetric power of an operator
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18 Geometry

The categories in this variety correspond to some classes of classical geometries.

• Finite planes

• Incidence geometries

• Polyhedra

18.1 Finite Planes

Although finite planes correspond to particular families of designs, separate categories are provided
for both projective and affine planes in order to exploit the rich structure possessed by these
objects.

– Creation of classical and non-classical finite projective and affine planes

– Subplanes, dual of a projective plane

– Numerical invariants: order, p-rank

– Properties: Desarguesian, self-dual

– Parallel classes of an affine plane

– k-arcs: testing, complete, tangents, secants, passants

– Conics: through given points, knot, exterior, interior

– Unitals: testing, tangents, feet

– Affine to projective planes and vice versa

– Related structures: design, incidence matrix, incidence graph, linear code

– Collineation group, isomorphism testing (optimized algorithm for projective planes)

– Central collineations: testing, groups

– Group actions on a plane: orbits and stabilizers of points and lines

– Symmetry properties: point transitive, line transitive

Apart from elementary invariants, a reasonably fast method is available for testing whether a
plane is desarguesian. Among special configurations of interest, a search procedure for k-arcs
is provided. A specialized algorithm developed by Jeff Leon is used to compute the collineation
group of a projective plane while the affine case is handled by the incidence structure method. The
collineation group (order 2338) of a “random” projective plane of order 81 supplied by Gordon
Royle was found in 1 202 seconds. As with graphs and designs the G-set mechanism gives the
action of the collineation group on any appropriate set.
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18.2 Incidence Geometry

Magma contains facilities for creating and computing with incidence geometries and coset geome-
tries. These have been developed by Dimitri Leemans (Brussels).

The Magma Incidence Structure type comprises a set of points and a set of blocks together
with an incidence relation. Following Bekenhout, we define a more general object as follows: An
incidence geometry is a 4-tuple Γ = (X, ∗, t, I) where

• X is a set of elements;

• I is a non-empty set whose elements are called types;

• t : X → I : x 7→ t(x) is a type function which maps an element to its type;

• ∗ is an incidence relation that is a reflexive and symmetric relation such that ∀x, y ∈ X,
x ∗ y and t(x) ∗ t(y) ⇒ x = y.

We also introduce group-geometry pairs or coset geometries. Roughly speaking, these are geome-
tries constructed from a group and some of its subgroups in the following way. Let I be a finite set
and let G be a group together with a finite family of subgroups (Gi)i∈I . We define the incidence
geometry Γ = Γ(G, (Gi)i∈I) as follows. The set X of elements or varieties of Γ consists of all cosets
gGi, g ∈ G, i ∈ I. We define an incidence relation * on X by:

g1Gi * g2Gj iff g1Gi ∩ g2Gj is non-empty in G.

Γ(G, (Gi)i∈I) may also be called a group-geometry pair.

18.2.1 Incidence Geometries

– Creation of incidence geometries

– Conversion of an incidence geometry to a coset geometry

– Set of types, rank

– Diagram, incidence graph, elements

– Residue, truncation, shadow, shadowspace

– Properties: flag-transitive geometry, residually connected, firm, thin, thick

– Test if a geometry is a graph and conversion of such a geometry to a graph

– Automorphism group

– Correlation group

18.2.2 Coset Geometries

– Creation of coset geometries

– Conversion of an incidence geometry to a coset geometry

– Set of types, rank

– Diagram

– Residue, truncation

– Properties: flag-transitive geometry, residually connected, firm, thin, thick

– Test if a geometry is a graph and conversion of such a geometry to a graph

– Borel subgroup, group of the geometry

– Maximal and minimal parabolic subgroups

– Kernel of a geometry, i-kernels, quotient

– Determine intersection properties

– Test primitivity properties: primitive, weakly primitive, residually primitive, weakly residually prim-
itive

– Determine whether a coset geometry is locally 2-transitive



102 Magma Overview V2.19 (April 24, 2013)

18.3 Cones and Polyhedra

A cone (in a toric lattice L) is the convex hull of finitely many rays. A (rational) polytope is the
convex hull of finitely many points of L. More generally a (rational) polyhedron is given by the
Minkowski sum of a polytope and a cone. There exist dual definitions in terms of the intersection
of finitely many half-spaces. There is no requirement that polyhedra are of maximum dimension
in the ambient toric lattice. Important operations include:

– Standard constructions of cones, half-spaces, cross polytopes, cyclic polytopes, etc.;

– Creation of cones and polyhedrons via a system of inequalities;

– The defining inequalities of a cone or polyhedron;

– The dual cone or polyhedron;

– Taking the (affine) linear space spanned by, or contained in, a polyhedron;

– Standard properties such as dimension, volume, and boundary volume;

– Triangulations of a polytope and of its boundary;

– Information on whether a polyhedron is simplicial, reflexive, terminal, etc.;

– Construction of the cone in L× Z spanned by a polyhedron P in L;

– The polyhedron defined by taking the convex hull of P ∩ Zn for any polyhedron P ;

– The infinite and compact parts of a polyhedron;

– Calculation of intersections, Minkowski sums, translations, etc.;

– Taking hyperplane slices;

– The minimum Q-generators and Z-generators of a cone;

– Point membership;

– Point counting and enumeration of lattice points;

– The Ehrhart series, Ehrhart polynomial, and δ-vector of a polytope;

– Faces of a cone or polyhedron, the f -vector and h-vector;

– Construction of the face-poset;

– The group of lattice automorphisms fixing a polytope.
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19 Combinatorial Theory

This section is concerned with those topics in classical Combinatorial Theory that are supported
by Magma. These include:-

• Enumerative combinatorics

• Partitions and tableaux

• Graphs—directed and undirected

• Networks

• Incidence structures

• Designs

Other topices closely related to Combinatorial Theory, that are included in Magma, are Finite
Fields, Finite Geometry, and Coding Theory. Descriptions for the facilities for these areas will be
found in other sections.

19.1 Enumerative Combinatorics

– Factorial

– Binomial, multinomial coefficients

– Stirling numbers of the first and second kind

– Fibonacci numbers, Bernoulli numbers, Harmonic numbers, and Eulerian numbers

– Number of partitions of n

– Enumeration of restricted and unrestricted partitions

– Sets of subsets, multisets, and subsequences of sets

– Permutations of sets (as sequences)

19.2 Partitions and Young Tableaux

Extensive facilities were installed for working with Young tableaux and symmetric functions. The
facility is heavily based on the Symmetrica package developed by A. Kerber and associates in
Bayreuth. A highlight of the tableau machinery is the Robinson-Schensted-Knuth (RSK) corre-
spondence. The collection of all symmetric functions defined over some ring is viewed as forming
an algebra where the chief interest lies in the change of basis matrix relative to different bases.
The Young tableaux code was written by G. White while the machinery for symmetric functions
was adapted from Symmetrica by A. Kohnert (Bayreuth) during a year-long visit to Sydney.

– Number of partitions of n

– Enumeration of restricted and unrestricted partitions

– Conjugate partitions

– Longest increasing sequences within words of integers

– Lexicographical ordering of words

– Creation of skew or non-skew tableaux over the integers or arbitrary label sets

– Enumeration of tableaux

– Random tableaux

– Properties: shape, skew-shape, weight, hooklength’s, content, row/column words

– Operations: diagonal sum, product, conjugate, jeu de taquin, row insertion, inverse jeu de taquin,
inverse row insertion

– RSK correspondence, inverse RSK correspondence

– Enumeration of tableaux having specified size and alphabet
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19.3 Symmetric Function Algebras

Symmetric functions are defined as polynomials in an infinite number of variables, invariant under
the action of the symmetric group. The set of all symmetric functions denoted by Λ is an algebra.
A symmetric function algebra may be created over an arbitrary commutative ring (with unity) R.
Five different bases for an algebra of symmetric functions are supported.

– Creation of algebras with any one of five possible bases: consisting of Schur functions, Elementary,
Monomial, Homogeneous (complete) or Power Sum functions.

– Creation of elements as linear combinations of basis elements (indexed by partitions) or from coercing
a polynomial or a scalar.

– An algebra can be tested for which basis it represents its elements with respect to.

– Alternative print styles for elements of an algebra

– Addition, subtraction, multiplication and composition (plethysm) of symmetric functions. Testing
for homogeneity and equality.

– Decomposition of symmetric functions into basis elements and coefficients thereof.

– Symmetric functions can be coerced into polynomial rings.

– Frobenius homomorphism, inner product, tableax with a given generating function and correspond-
ing characters

– Matrices converting from any of the five bases to any other of the five bases
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19.4 Graphs

Graphs may be directed or undirected. In addition, their vertices and/or their edges may be
labelled. A graph may be represented by means of its adjacency matrix, or by means of its
adjacency list.

– Directed and undirected graphs

– Optional vertex and edge labels

– Operations: union, join, product, contraction, switching, etc.

– Standard graphs: complete, complete bipartite, k-cube

– Properties: connected, regular, eulerian

– Algebraic invariants: Characteristic polynomial, spectrum

– Diameter, girth, circumference

– Connectedness, paths and circuits

– Triconnectivity

– General vertex and edge connectivity in graphs and digraphs

– Maximum matching in bipartite graphs

– Spanning trees, cut-vertices

– Cliques and maximal cliques, independent sets

– Chromatic number, chromatic index, chromatic polynomial

– Planarity testing, obstruction isolation, faces, embedding

– Graphs from groups: Cayley graph, orbital graph

– Automorphism group (B. McKay’s algorithm), canonical labelling

– Testing of pairs of graphs for isomorphism

– Group actions on a graph: orbits and stabilizers of vertex and edge sequences

– Symmetry properties: vertex transitive, edge transitive, k-arc transitive, distance transitive, dis-
tance regular

– Intersection numbers of a distance regular graph

– Interface for B. McKay’s graph generation algorithm [32]

Brendan McKay’s automorphism program nauty [33] is used for computing automorphism groups
and for testing pairs of graphs for isomorphism. In accordance with the Magma philosophy, a
graph may be studied under the action of an automorphism group. Using the G-set mechanism
an automorphism group can be made to act on any desired set of objects derived from the graph.
The planarity tester and obstruction isolator are linear time algorithms; they are due to Boyer
and Myrvold [5].
The triconnectivity algorithm is the classical linear time algorithm from Hopcroft and Tarjan [22]
with corrections of our own and from Gutwenger and Mutzel [20].
The general vertex and edge connectivity machinery rests on two flow-based algorithms for net-
works: the Dinic algorithm and the push-relabel method (see the section on Networks below).
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19.5 Multigraphs

A multigraph is a graph which may contain loops or multiple (parallel) edges between the same pair
of vertices. Vertices and edges in a multigraph may be labelled, and edges may also have associated
capacities or weights, to assist flow-based or shortest-path based algorithsm. Multigraphs are
represented by means of an adjacency list. Much of the same machinery is available for simple
graphs and for multigraphs.

– Directed and undirected multigraphs

– Optional vertex and edge labels, capacities, weights

– Conversion to and from simple graphs

– Operations: union, join, product, contraction, etc.

– Properties: bipartite, regular, connected, biconnected

– Triconnectivity

– General vertex and edge connectivity

– Maximum matching in bipartite graphs

– Spanning trees, cut-vertices, shortest paths

– Planarity testing, obstruction isolation, faces, embedding

See the section on Graphs (above) for comments on some of the algorithms.

19.6 Networks

A network is a multidigraph whose edges are associated with a capacity. It may have multiple
(parallel) edges and loops. A network is represented by means of its adjacency list.

– Operations: union, join, contraction

– Maximum flow and minimum cut

There are two implementations of the maximum flow algorithm. One is the classical Dinic algo-
rithm with heuristics due to McKay, the other is a push-relabel method with heuristics mainly
due to Cherkassky and Golberg et al. [12, 13].
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19.7 Incidence Structures and Designs

General incidence structures provide a universe in which families of incidence structures satisfying
stronger conditions (linear spaces, t-designs, etc.) reside.

– Creation of a general incidence structure, near-linear space, linear space, design

– Difference sets: standard difference sets, development

– Hadamard designs, Witt designs

– Unary operations: complement, contraction, dual, residual

– Binary operations: sum, union

– Invariants for an incidence structure: point degrees, block degrees, covalence

– Invariants for a design: replication number, order, covalence, intersection numbers, Pascal triangle

– Properties: balanced, complete, uniform, self-dual, simple, Steiner

– Near-linear space operations: connection number, point and line regularity, restriction

– Resolutions, parallelisms, parallel classes

– Graphs and codes from designs: block graph, incidence graph, point graph, linear code

– Automorphism group (J. Leon’s algorithm), isomorphism testing

– Group actions on a design: orbits and stabilizers of points and blocks

– Symmetry properties: point transitive, block transitive

Tools are provided for constructing designs from difference sets, Hadamard matrices, codes and
other designs. The standard families of difference sets are incorporated. A major feature is the
ability to compute automorphism groups and to test pairs of incidence structures for isomorphism.

19.8 Hadamard Matrices

Hadamard matrices are square matrices whose entries are all ±1, such that any two rows (or
columns) are orthogonal. They have some useful special properties; in particular, they lead to
certain classes of design; produce a family of error-correcting codes that can correct many errors;
and have several important applications in signal processing.

– Checking of the Hadamard property

– Normalised form, simple invariant testing (4-profile)

– Canonical form, equivalence testing

– Construction of 3-designs from rows or columns

– Automorphism group

– Database of Hadamard and skew Hadamard matrices; an interface for augmenting this database
with new matrices is provided

The problem of determining if two Hadamard matrices are equivalent is a difficult one. The
computation of a canonical form (due to Brendan McKay’s program nauty [33]) is one way to
achieve this; Magma also contains an older algorithm of Jeff Leon that performs this equivalence
testing.

Optional databases of Hadamard and skew Hadamard matrices are available. The former
contains 5 391 examples of inequivalent Hadamard matrices for all possible degrees up to 256 (the
degree must be 1, 2, or a multiple of four), and is a complete listing for degree up to 28. The skew
Hadamard database contains 638 inequivalent skew Hadamard matrices of degree 36, 44, or 52.
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20 Coding Theory

Magma provides support for several different branches of Coding Theory. These include:-

• Linear codes over finite fields

• Algebraic-geometric codes

• Low density parity check codes

• Linear codes over Galois rings

• Additive codes over finite fields

• Quantum stabilizer codes

20.1 Linear Codes over Finite Fields

20.1.1 Linear Codes: Creation

– Creation from a subspace of a vector space

– Creation in terms of a generator matrix

– Creation from a design

– Creation from a finite plane

– Construction of a cyclic code given the generator polynomial

– Construction of a cyclic code given the roots of the generator polynomial

– Universe code, repetition code, zero code

– Random linear code

20.1.2 Operations on Codewords

– Vector space operations: sum, difference scalar multiplication

– Syndrome

– Distance and weight

– Coordinates, support

– Trace

20.1.3 Elementary Operations

– Sum, intersection

– Dual code

– Hull of a code

– External direct sum, Plotkin sum

– Modifying the codewords: augment, extend, expurgate, lengthen, puncture, shorten, etc.

– Subcode generated by given codewords

– Subcode of a specified dimension

– Subcode generated by words of a given weight

– Coset leaders (in the case of a small code)
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20.1.4 Basic Properties

– Standard form

– All information sets of a code

– Idempotent of a cyclic code

– Properties: cyclic

– Properties: even, doubly even, equidistant

– Properties: self-dual, weakly self-orthogonal

– Properties: perfect, nearly perfect

– Properties: maximum-distance separable, equidistant

– Properties: optimal for the Griesmer bound

– Properties: projective

– Determine whether two codes are equivalent

20.1.5 Weight Distribution

– Minimum weight (Zimmermann algorithm)

– Weight distribution, weight enumerator

– MacWilliams transform

– Complete weight enumerator, MacWilliams transform

– Number of words of designated weight

– Number of words of constant weight

– List all words of designated weight

– List all words of constant weight

– Coset weight distribution, covering radius, diameter

Carefully crafted algorithms are provided for computing the minimum weight, the weight dis-
tribution, and word collection algorithms. For example, computation of the minimum weight
of a [96, 60, 8] code takes 77 seconds; computation of the weight distribution of the [64, 22, 16]
Reed-Muller code (r = 2, m = 6) takes 1.4 seconds.

20.1.6 Construction of Families

– Hamming code, simplex code

– Reed-Muller codes

– Quadratic residue code, Golay codes, doubly circulant QR-code, twisted QR-code, power residue
code

– BCH code

– Goppa code

– Chien-Choy code

– Alternant code, Fire code, Gabidulin code

– Srivastava, generalized Srivastava codes

– Reed-Solomon code, generalized Reed-Solomon code, Justesen code

– Maximum distance separable code

20.1.7 Algebraic-Geometric codes

Functions are provided for the construction of algebraic–geometric codes. The user chooses a plane
curve X, and specifies a set of places of degree 1 on X and a divisor on X.
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20.1.8 Decoding Algebraic-Geometric codes

Algebraic-geometric codes can be decoded efficiently up to the Goppa designated distance.

20.1.9 Changing the Alphabet

– Extension of the base field

– Restricting the alphabet to a subfield

– Subfield subcode

– Trace code

– Rewriting the alphabet, taken as the elements of GF (qm), as m-dimensional vectors over GF (q)

20.1.10 Combining Codes

– Concatenation of two codes

– Concatenated code

– Construction X

– Construction X3

– Construction XX

– Zinoviev code

– Construction Y1

20.1.11 Bounds

– BCH bound on minimum distance

– Upper and lower bounds on the cardinality of a largest code having given length and minimum
distance

– Upper asymptotic bounds on the information rate

– Tables of best known bounds, based on the codes database

20.1.12 Best Known Codes

Magma incorporates databases containing constructions of the best known linear codes over Fq

for q = 2, 3, 4, 5, 7, 8, 9. These databases contain codes of length up to 256 for q = 2, 4; of length
up to 243 for q = 3; of length up to 130 for q = 5, 8, 9; and of length up to 100 for q = 7.

The binary codes database is complete in the sense that it contains a construction for every
set of parameters, with the codes of length up to 31 known to be optimal. The database for codes
over F3 is more than 78% complete (and complete up to length 100), with codes of length up
to 21 known to be optimal. The database for codes over F4 is more than 65% complete (and
complete up to length 97), with codes of length up to 18 known to be optimal. Further details are
summarised in the table below.

The Magma BKLC database makes use of the tables of bounds compiled by A.E. Brouwer. It
should be noted that the Magma BKLC database is unrelated to the similar (but rather incom-
plete) BKLC database forming part of GUAVA, a share package in GAP3. A significant number
of entries in the Magma BKLC database provide better codes than the corresponding ones listed
in the Brouwer tables.

The construction of the Magma BKLC database has been undertaken by John Cannon (Syd-
ney), Markus Grassl (Karlsruhe) and Greg White (Sydney).
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F2 F3 F4 F5 F7 F8 F9

nmax 256 243 256 130 100 130 130
nopt 31 21 18 15 14 14 16
ncomplete 256 100 97 80 68 76 93
total 33 152 29 889 33 152 8 645 5 150 8 645 8 645
missing 0 6 545 11 379 527 381 1 763 1 333
filled 100% 78.10% 65.67% 93.90% 92.60% 79.61% 84.58%

20.1.13 Decoding Algorithms

– Syndrome decoding

– Alternant decoding

20.1.14 Automorphism Group

– Automorphism groups of linear codes over GF(p) (prime p), GF(4)

– Testing pairs of codes for isomorphism over GF(p) (prime p), GF(4)

– Group actions on a code

Automorphism groups may be computed over any field Fp, p a prime, and F4, again using Leon’s
PERM package.

20.1.15 Attacks on the McEliece Cryptosystem

All of the best known decoding attacks on the McEliece cryptosystem are available, as well as
improved attacks.

– McEliece’s attack

– Lee and Brickell’s attack

– Leon’s attack

– Stern’s atack

– Canteaut and Chabaud’s attack

– Generalized combinations of attacks
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20.2 Low-Density Parity-Check Codes

Low-density parity-check (LDPC) codes are among the best performing linear codes in practice,
being capable of correcting n errors, where n is close to the Shannon bound. Currently, there exist
few techniques for the explicit construction of LDPC codes. Typically, these codes are selected at
random from an ensemble, and their properties determined through simulation. An LDPC code
can be decoded in time that is linear in its block length through use of iterative belief propagation
techniques.

– Construction of LDPC codes from sparse matrices

– Gallager’s construction

– The group-based construction of Margulis

– Deterministic LDPC constructions

– Random constructions from regular and irregular LDPC ensembles

– Construction of the Tanner graph of an LDPC code

– Ensemble rate

– Iterative decoding of LDPC codes

– Simulation of decoding performance on specified channels

– Density evolution and threshold determination for binary symmetric and Gaussian channels for
given channel parameters

– A small database of good irregular LDPC ensembles is provided
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20.3 Linear Codes over Finite Rings

In the 1990’s it was discovered that certain good nonlinear codes could be obtained by applying
the Gray mapping to certain linear codes defined over the ring Z4. This led to a great deal of
research into the properties of codes over finite rings. This section describes the facilities which
are provided in Magma for studying linear codes over finite rings. Magma currently supports
basic facilities for codes over integer residue rings and Galois rings, including the construction of
cyclic codes, and the calculation of the complete weight enumerator. Additional functionality is
available for the special case of codes over Z4.

20.3.1 Constructions

– Creation from a subspace of a vector space

– Creation in terms of a generator matrix

– Construction from a permutation

– Construction of a cyclic code given the generator polynomial

– Construction of a cyclic code given the roots of the generator polynomial

– Universe code, repetition code, zero code

– Random linear code

– Construction of the Kerdock and Preparata codes (over Z4)

20.3.2 Elementary Operations and Properties

– Syndrome

– Hamming distance, Hamming weight

– Lee distance, Lee weight (over Z4)

– Coordinates, support

– Trace

– Module operations: sum, difference, scalar multiplication

– Dual code

– External direct sum, Plotkin sum

– Obtaining a new code by modifying codewords: Augment, extend, expurgate, lengthen, puncture,
shorten, etc.

– Coset leaders (in the case of a small code)

– Standard form, Gray map, Lee weights (over Z4)

– Determine whether cyclic, even, self-dual, self-orthogonal (over Z4)

20.3.3 Weight Distribution

– Minimum Hamming weight

– Hamming weight distribution

– Hamming weight enumerator

– Complete weight enumerator

– Minimum Lee weight via the Zimmermann algorithm (over Z4)

– Lee weight distribution (over Z4)

– Symmetric weight enumerator (over Z4)

– Lee weight enumerator (over Z4)
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20.4 Additive Codes

Given a finite field F and the space of all n-tuples of F , an additive code is a subset of F (n) which is
a K-linear subspace for some subfield K ⊆ F . Additive codes have become increasingly important
recently due to their application to the construction of quantum error-correcting codes, though
they are also of interest in their own right. The Magma package for quantum error-correcting
codes is built on the machinery for additive codes.

20.4.1 Constructions

– Additive codes defined as some K-additive subspace of Fn for some subfield K of F .

– Creation in terms of a generator matrix

– Construction of a cyclic code given the generator polynomial

– Universe code, repetition code, zero code

– Random additive code

– Sum, intersection of two codes

– Dual code, symplectic dual code

– Plotkin sum

– Obtaining a new code by modifying codewords: augment, extend, lengthen, puncture, shorten, etc.

– Subcode generated by given codewords

– Subcode of a specified dimension

– Subcode generated by words of a given weight

– Construction of a cyclic (quasicyclic) code from parameters

20.4.2 Operations and Properties

– Vector space operations: sum, difference scalar multiplication

– Distance and weight

– Coordinates, support

– Trace

– Determine whether cyclic, self-dual, self-orthogonal, symplecic self-dual, symplectic self-orthogonal

– Automorphism and permutation groups of additive codes over GF(4)

– Group actions on a code

20.4.3 Weight Distribution

– Minimum weight (Zimmermann algorithm)

– Weight distribution, weight enumerator

– MacWilliams transform

– Complete weight enumerator, MacWilliams transform

– Number of words of designated weight

– Number of words of constant weight

– List all words of designated weight

– List all words of constant weight

The fast algorithm used for determining the minimum weight and word collection is adapted
from the one used for linear codes and provides performance similar to a calculation with an
equivalently-sized linear code.
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20.5 Quantum Error-Correcting Codes

In 1995 Shor showed that it was possible to encode quantum information in such a way that errors
can be corrected. Following this discovery, a class of quantum error-correcting codes known as
stabilizer codes was developed. It turned out that these stabilizer codes can be represented by
additive codes over finite fields. This remarkable result reduces the problem of constructing fault-
tolerant encodings on a continuous Hilbert space to that of constructing certain discrete codes,
thereby permitting the application of many of the tools developed in classical coding theory.

20.5.1 Constructions

– Quantum stabilizer codes defined by symplectic self-dual additive codes.

– Creation in terms of a generator matrix

– Construction of a cyclic code given the generator polynomial

– Universe code, repetition code, zero code

– Random quantum code

– Construction of new codes via direct sums

– Construction of new codes extending or shortending existing codes

– Families: Cyclic codes, quasicyclic codes, CSS code,

20.5.2 Quantum Codes: Basic Properties

– Properties: Cyclic, quasicyclic

– Properties: Self-dual

– Properties: Stablizer code

– The group of errors on a quantum space

– Stabiliser group associated with a quantum code

– Minimum weight (Zimmermann algorithm)

– Weight distribution, weight enumerator

– Complete weight enumerator

– Automorphism and permutation groups of binary quantum codes (codes based on quaternary sta-
bilizer codes)

The algorithm for determining the minimum weight applies the Zimmermann algorithm to the
underlying self-dual code.
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21 Cryptography

21.1 Pseudo-Random Sequences

Magma provides tools for the creation and analysis of pseudo-random bit sequences. The universe
of these sequences is generally GF(2). However, some functions, such as Berlekamp-Massey, apply
to sequences defined over arbitrary finite fields.

– Generation of n elements of a Linear Feedback Shift Register sequence (LFSR sequence)

– Next state of a LFSR sequence

– Characteristic polynomial of a LFSR sequence (BerlekampMassey algorithm)

– Shrinking generator

– Random sequence via the RSA random bit generator

– Random sequence via the Blum Blum Shub generator

– Auto-correlation of a binary sequence

– Cross correlation of two binary sequences

– Decimation of a sequence
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22 Mathematical Databases

Magma includes a growing number of mathematical databases. Typically, such a database contains
a complete classification of all structures of some given type up to a specified bound. A number
of these databases are an integral part of algorithms installed in Magma. The current databases
include:

22.1 Algebraic Geometry

• Cremona Database of Elliptic Curves: A database constructed by John Cremona that
contains all isogeny classes of elliptic curves having conductor up to 130,000 is available.

• Stein-Watkins Database of Elliptic Curves: The Stein-Watkins database of 136,924,520
elliptic curves of conductor up to 108 is now available in Magma.

• K3 Surfaces: This comprises a collection of 24,099 K3 surfaces. For g = −1, 0, 1, 2, all K3
surfaces of genus g are included, there being 4281, 6479, 6627 and 6628 surfaces, respectively.
For higher genus, the data associated to the 6628 K3 surfaces of genus 2 propagates in a
predictable way, so only those K3 surfaces with codimension at most 7 and genus in the
range 3 to 9 are included.

• 3-folds: Basic machinery is provided that allows the user to generate lists of Fano 3-folds
and Calabi–Yau 3-folds.

22.2 Coding Theory

• Best Known Binary Linear Codes: A database containing constructions of the best
known linear codes over F2 of length up to 256 has been implemented by M. Grassl and the
Magma group from tables of A. E. Brouwer. The codes of length up to 31 are optimal. The
database is complete in the sense that it contains a construction for every set of parameters.
Thus the user has access to 33 152 binary codes.

• Best Known F3 Linear Codes: A database containing constructions of the best known
linear codes over F3 of length up to 243. This database has been constructed by M. Grassl
and the Magma group. The codes of length up to 21 are optimal.

• Best Known F4 Linear Codes: A database containing constructions of the best known
linear codes over F4 of length up to 256. This database has been constructed by M. Grassl
and the Magma group. The codes of length up to 18 are optimal.

• Best Known F5, F7, F8, and F9 Linear Codes: Similar databases exist for these codes.
Their details and more information about the previous ones are summarised in the table
below.

F2 F3 F4 F5 F7 F8 F9

nmax 256 243 256 130 100 130 130
nopt 31 21 18 15 14 14 16
ncomplete 256 100 97 80 68 76 93
total 33 152 29 889 33 152 8 645 5 150 8 645 8 645
missing 0 6 545 11 379 527 381 1 763 1 333
filled 100% 78.10% 65.67% 93.90% 92.60% 79.61% 84.58%
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22.3 Finite Fields

• Irreducible Polynomials: A database of sparse irreducible polynomials, constructed by
Allan Steel in 2004–2007. The polynomials have the form f(x) = xn+g(x), where the degree
of g is minimal and g is the first such polynomial in lexicographical order.

The database has the following degrees for the specified fields:

– GF(2): up to degree 120,000.

– GF(3): up to degree 50,000.

– GF(4), GF(5), GF(7): up to degree 20,000.

– GF(q), 9 ≤ q ≤ 127: up to degree 1,000 or more.

• Conway Polynomials: A database of Conway polynomials for F2 to F127. These polynomi-
als are primitive and provide standard definitions for finite field extensions (used in modular
representation theory, for example). This database is based on lists built by Richard Parker
and Frank Lübeck. The database now extends up to degree 409 for p = 2 (with some gaps)
and up to degree at least 4 for all p ≤ 109987.

22.4 Graph Theory

• Small Graphs: Several databases of small graphs are available, using data made available
by Brendan McKay. These include:-

– All simple graphs on 2 to 10 vertices

– All connected simple graphs on 2 to 10 vertices

– All Eulerian graphs on 2 to 12 vertices

– All connected Eulerian graphs on 3 to 11 vertices

– Planar graphs on up to 11 vertices,

– Some self-complementary graphs of orders up to 20.

• Simple Graphs: Magma contains an interface to the graph enumeration program of Bren-
dan McKay which allows the user to rapidly construct all simple graphs on a given number
of vertices. The graph generation program allows the user to specify one or more conditions
thereby allowing the construction of all graphs on a given number of vertices satisfying the
condition.

• Strongly Regular Graphs: A database containing a list of strongly regular graphs con-
structed by Brendan McKay, Ted Spence and others. This database contains strongly regular
graphs on 25, 26, 27, 28, 29, 35, 36, 37 and 40 vertices. The graphs are indexed by the order
of the graph, its degree, the number of common neighbours to each pair of adjacent vertices,
and the number of common neighbours to each pair of non-adjacent vertices.

22.5 Group Theory

• Small Groups: The Small Groups Library developed by Besche, Eick and O’Brien. This
database contains all groups of order up to 2000, except the groups of order 1024, and a
number of infinite series of larger groups.

• The ATLAS Database: Representations of nearly simple groups, as in the Birmingham
ATLAS of Finite Group Representations. The data was supplied by Rob Wilson.
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• Almost Simple Groups: This database contains information about almost simple groups
G, where S ≤ G ≤ Aut(S) and S is a simple group. The groups G that are included in the
database are those associated with S such that |S| is less than 16000000, as well as M24,
HS, J3, McL, Sz(32) and L6(2). In particular, the database includes all simple groups
having a permutation representation of degree less than 1000. The groups in the database
are defined on standard generators which can be used to create an isomorphism between
an almost simple group in some arbitrary representation and the “standard” version of it
stored in the database. The database was originally conceived by Derek Holt with a major
extension by Volker Gebhardt and sporadic additions by Bill Unger. The following groups
are included:

– Alternating groups: An for n ≤ 999;

– Classical groups: L2(q), L3(q), L4(q) and L5(q) for all prime powers q; L6(3), L7(3); Ld(2) for
d ≤ 14;
Sp4(q) for all odd prime powers q and even q ≤ 16; Sp6(3), Sp8(2), Sp10(2);
U3(q) for all primes q and prime powers q ≤ 25; U4(q) for prime powers q ≤ 7, U6(2);
O7(3), O±8 (2), Om

8 (3), O±10(2)

– Exceptional groups: G2(3), G2(4), G2(5)

– Twisted groups: Sz(8), Sz(32), 3D4(2), 2F4(2)′

– Sporadic groups: M11, M12, M22, M23, M24, J1, J2, J3, HS, McL, He, Co2, Co3, Fi22

• Simple Groups: A database containing a presentation, the conjugacy classes and maximal
subgroups for each simple group of order less than a million. The database was prepared by
Jamali, Robertson and Campbell.

• Perfect Groups: The database of perfect groups of order up to a million constructed by
Holt and Plesken.

• Transitive Groups: The transitive permutation groups of degree up to 30. The transitive
groups of degree up to 15 were determined by Butler and McKay while the classification was
extended to degree 30 by Hulpke.

• Primitive Groups: The table of primitive groups of degree up to 2499 (Sims, Roney-Dougal
& Unger, Roney-Dougal).

• Permutation Representations: A collection of finite groups given in terms of permutation
representations. A particular group is included if:

– It is an ‘interesting’ group. In practice this means a sporadic simple group or a close
relative of such; or

– It is representative of some class of groups which is useful for testing conjectures and
algorithms.

• Irreducible Matrix Groups: The table of irreducible subgroups of GL(n, p) where p is
prime and pn ≤ 2499 (Sims, Roney-Dougal & Unger, Roney-Dougal).

• Irreducible Soluble Groups: The irreducible soluble subgroups of GL(n, p) for n > 1
and pn < 256, as classified by Short.

• Finite Groups of Integral Matrices: This database contains representatives for all
GLn(Z)-conjugacy classes of irreducible maximal finite subgroups of GLn(Z) for n <= 11
and n ∈ {13, 17, 19, 23}.

• Finite Groups of Rational Matrices: The maximal finite subgroups of GL(n,Q), for n
up to 31.
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• Symplectic Matrix Groups: The maximal finite irreducible subgroups of Sp2n(Q) for
1 ≤ i ≤ 11. These groups were classified by Markus Kirschmer who also constructed the
database.

• Quaternionic Matrix Groups: The finite absolutely irreducible subgroups of GLn(D)
where D is a definite quaternion algebra whose centre has degree d over Q and nd ≤ 10

22.6 Hadamard Matrices

• Hadamard Matrices: This database includes all inequivalent Hadamard matrices of degree
at most 28, and examples of matrices of all degrees up to 256. The matrices up to degree 28
have been provided by Neil Sloane while most of those of larger order have been provided
by C. Koukouvinos, I. Kotsireas and G. Stelios. Several matrices of dimensions between 36
and 60 were provided by D. Djokovic, including 1771 of degree 60.

• Skew Hadamard Matrices: This database includes known skew Hadamard matrices of
degree up to 256. The matrices up to degree 28 have been provided by Neil Sloane while
most of those of larger order have been provided by C. Koukouvinos, I. Kotsireas and G.
Stelios.

22.7 Lattices

• Database of Interesting Lattices: A database containing lattices of Sloane and Nebe,
containing the automorphism group and Θ-series for many examples.

22.8 Lie Algebras

• Solvable Lie algebras: All soluble Lie algebras of dimensions 2, 3 and 4 over any field are
included in this database which was constructed by Willem de Graaf.

• Nilpotent Lie algebras: This comprises all nilpotent Lie algebras having dimensions 3, 4,
5, and 6 over all base fields, except base fields of characteristic 2, when the dimension is 6.
This database is due to Willem de Graaf.

22.9 Number Theory

• Cunningham Factorizations: A database containing 237,578 factors f of numbers an±1,
where a < 10000, n < 10000, and f > 109. The factorizations of integers of the form
an ± 1, a ≤ 12, were produced by Sam Wagstaff and collaborators (for n up to 1200), with
contributions from Arjen Bot, Will Edgington, Alexander Kruppa and Paul Leyland (for
larger n); for 13 < a < 99 they are mainly from the Brent-Montgomery-te Riele extension
of the Cunningham tables, with contributions by ECMNET and various individuals; for
100 < a < 1000 they are mainly from the tables produced by Hisanori Mishima and Mitsuo
Morimoto with additions from Rob Hooft, Pete Moore and others. For prime bases a < 1000
Richard Brent computed many of the factors for an unpublished extension of the Brent-
Montgomery-te Riele tables.

• Galois Polynomials: For each transitive group G with degree between 2 and 15, the
database contains a univariate polynomial over the integers which has G as its Galois group.
These polynomials have been determined by J. Klüners and G. Malle.

• Number Fields: Databases of some 2.6 million small number fields of degrees two to nine.
These databases are searchable on discriminant range, signature, class number, class group,
and Galois group.
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• Function Fields: Databases of various function fields with specified base finite field and
degree. Supported combinations are: F2, degrees 2 and 3; F3, degree 2, F4, degrees 2, 3,
and 5; F5, degrees 2, 3, 4, and 8; F7, degree 9; F11, degree 3; and F13, degree 3.

22.10 Topology

• Fundamental Groups of 3-manifolds: A database containing the 11,126 small-volume
closed hyperbolic manifolds of the Hodgson-Weeks census. Each manifold record contains a
presentation of the fundamental group and a homomorphism to Sn whose kernel has positive
betti number.
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23 Documentation

Magma has an extensive online help system. It includes specially-written material on all aspects
of Magma, suitable for the first-time user, and complete access to the Magma Handbook which
provides a full description of all the facilities of the system. The help nodes are structured as a
tree, allowing a full-scale browsing facility in addition to simple help requests.

In addition to the online help, there are five main components to the printed documentation:

– J. Cannon and C. Playoust: First Steps in Magma, 16 pages

– J. Cannon and C. Playoust: An Introduction to Algebraic Programming with Magma:
The Language, 350 pages

– W. Bosma, J. Cannon and C. Playoust: An Introduction to Algebraic Programming with
Magma: The Categories, 500 pages

– W. Bosma and J. Cannon: The Magma Handbook, Eight Volumes, 3100 pages.

– W. Bosma, J. Cannon et al.: Solving Problems with Magma, 220 pages
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