
Summary of New Features in Magma V2.19

December 2012

1 Introduction

This document provides a terse summary of the new features installed in Magma for release
in version V2.19 (December 2012). A small number of new features were exported in patch
releases prior to the main release of V2.19 in December 2012 and these are also listed here
for completeness. Only significant bugfixes are noted here – for a more complete list of
bugfixes the reader should consult the patch release change log for V2.18-x.

Recent releases of Magma were: V2.18 (December 2011), V2.17 (December 2010), V2.16
(November 2009), V2.15 (December 2008), V2.14 (October 2007), V2.13 (July 2006).

2 Highlights

Algebraic Geometry

• Schemes

– A package of functions is provided for working with divisors on varieties. In the
case of surfaces some additional functionality is available. The package includes
decomposition into irreducible components, Riemann-Roch spaces, canonical
divisors and (surface) intersection numbers. The package was developed by
Martin Bright, Gavin Brown, Mike Harrison and Andrew Wilson.

• Curves

– Code implementing gonal maps and small-degree plane models for curves of
genus less than 7 has been installed. Functions are provided which construct the
smallest degree (gonal) maps of the curve onto the projective line (equivalent to
the smallest degree functions). This machinery applies to all curves of genus less
than 7 as well as hyperelliptic and trigonal curves of any genus. Construction
of birationally-equivalent plane curves of smallest degree for most classes of
non-hyperelliptic curves of genus less than 7 is supported.

– Functions to compute Shioda invariants for genus 3 hyperelliptic curves, recon-
struct models for a curve from such invariants and compute geometric automor-
phism groups are included. The package was written and made available by
Reynald Lercier and Christophe Ritzenthaler.

– A function which gives the complete list of intersection multiplicities for all
intersection points of two plane curves over the rationals in a single calculation
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following the algorithm of Hilmar and Smyth will appear in an early patch
release of V2.19, adapted into Magma from code provided by Chris Smyth.

• Surfaces

Magma V2.19 introduces an important collection of tools for identifying the type of
a surface and computing its basic invariants.

– The Kodaira dimension and precise Kodaira-Enriques type (e.g. K3, bi-elliptic)
as well as basic invariants (irregularity, “Hodge diamond” numbers) can be
calculated for projective surfaces having only simple singularities.

– Minimal models can be computed for projective surfaces having only simple
singularities. For rational surfaces, this gives the standard not-quite-minimal
models (Del Pezzos, scrolls, ...). For Kodaira dimension 1, a map to a non-
singular curve which presents the minimal surface as an elliptic fibration can
also be computed.

– In the case of projective surfaces of general type having only simple singularities,
the full canonical coordinate ring can be calculated.

– A test is provided to determine whether an isolated singular point of a scheme
is analytically equivalent to a hypersurface singularity. The equivalent hyper-
surface equation may be computed to desired precision. It is possible to test
whether a surface has only simple (A-D-E) singularities.

– As well as the test for only simple singularities, there is a test for normality.
Tests for more general schemes being Gorenstein, Cohen-Macaulay or the arith-
metic versions of these when in ordinary projective space.

– Intrinsics are provided to generate random (non-singular) surfaces from many of
the families of surfaces in 4-dimensional projective space described by Decker,
Ein, Schreyer and Ranestad.

– Code that calculates the invariants, covariants and contravariants of a cubic
surface has been developed by Andreas-Stephan Elsenhans.

• Toric Geometry

– Algorithms have been implemented for computing the Demazure roots of a
complete fan. This capability is then used to implement tests as to whether
a complete fan is semistable or reductive. The Demazure roots of the associ-
ated fan can also be used to determine whether the complete toric variety is
isomorphic to a (product of) projective space.
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Arithmetic Fields

• Number Fields

– A new implementation of the standard subexponential algorithm for class groups
of general number fields has been written by Steve Donnelly. This replaces the
old version of the standard algorithm. The main advantages are as follows.

∗ Reliability – running times are now quite predictable; previously, in a sig-
nificant subset of “awkward” cases, the computation would get stuck for
long, highly random periods.

∗ Large degree – the old implementation generally failed to terminate for
fields of degree above 20 or so, even when the discriminant was not so large
that the conditional class group is inherently difficult. Degrees in the range
20 to 40 or more are now routinely handled.

∗ Speed (in forthcoming releases) – it is anticipated that running times will
be several times faster, for most values of (degree, discriminant) once bot-
tlenecks elsewhere are removed (this will be done during the coming year).

The gains are due to some refinements to the standard algorithm, better tech-
niques for some low-level steps, and (perhaps primarily) a very careful strategy
which relies in part on estimating the expected cost.

– An estimate can be obtained for the expected cost of computing the class
group (under GRH) of a given field using the standard algorithm. The esti-
mate matches reality up to a modest factor (say 20–30%) for most values of
(degree, discriminant).

– The sieve algorithm for class groups of general number fields has been sped up.

• Global Fields

– The computation of coercions between orders and fields has been made more
efficient saving both significant memory space and time in some examples.

• Characters and Artin Representations

– Intrinsics have been added for computing the central character for Dirichlet and
Hecke characters (including Grössencharacters). Similarly, the determinant of
an Artin representation is returned as an Artin representation.
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Arithmetic Geometry

• Elliptic Curves Over Q

– The current Magma version of the database of elliptic curves over Q constructed
by John Cremona contains all curves having conductor up to 300,000.

– Given the real and imaginary periods of a minimal model for an elliptic curve
over Q, it is now possible to construct the curve.

• Elliptic Curves Over Function Fields

– A routine to find elliptic curves with given conductor has been added.

• Hyperelliptic Curves

– Euler factors at good primes are now computable for hyperelliptic curves over
number fields.

– There have been several improvements to the machinery for computing rank
bounds for Jacobians of hyperelliptic curves, including improved implementa-
tions of 2-descent and an algorithm of Creutz to obtain better upper bounds for
the Mordell-Weil rank.

– New intrinsics have been added to allow one to determine the index of a hyper-
elliptic curve over a local field.

• Cyclic Covers of P1

– Descents on Jacobians and Pic1 torsors of cyclic covers of P1 using algorithms
of Poonen-Schaefer and of Creutz are now available.

– Descents on cyclic covers of P1 with singular models using an algorithm of
Mourao have been made available.

• Hypergeometric Motives

– A new package for hypergeometric motives has been implemented. The main
functionality is the computation of the hypergeometric traces (via p-adic Γ-
functions), which give Euler factors of a (presumed) L-series. This is then
linked to the L-series package.

Other aspects of the package include the ability to recognise various special
hypergeometric motives (or data) in terms of Artin representations or (hy-
per)elliptic curves.
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Arithmetic Geometry (Modular Forms)

• Hilbert Modular Forms

– It is now possible to directly compute the newforms that have rational Hecke
eigenvalues (without computation of newspaces or decomposition).

• Brandt Modules

– A new implementation of Brandt modules associated to definite quaternion or-
ders, over Z and also over function fields Fq[t], has been developed by Markus
Kirschmer and Steve Donnelly. The polynomial case relies on algorithms for
quadratic forms developed by Kirschmer. The approach is similar to that used
in the package for Hilbert modular forms (the definite case); this has a huge ad-
vantage over the old Brandt module implementation over Z, in the case where
the Eichler level is not very small. The main features implemented are: dimen-
sions via formulae, Hecke operators, decomposition, and efficient computation
of newforms and systems of eigenvalues.
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Associative Algebras

• Basic Algebras

– New functionality for computing with homomorphisms of basic algebras has
been added. A homomorphism for a basic algebra can be constructed from a
matrix of appropriate size and such a map or matrix can be tested to see if it
is a homomorphism of algebras. The image of a homomorphism is returned as
a subalgebra together with the inclusion homomorphism.

– The automorphism group of a basic algebra can be computed and two basic alge-
bras can be tested to see if they are isomorphic. The implementation generalizes
an algorithm of Bettina Eick for nilpotent structure constant algebras.

– Functionality to construct ideals, subalgebras and quotient algebras has been
added. The subalgebra is returned as a basic algebra together with the inclusion
homomorphism. The returned subalgebra includes the minimal idempotent that
acts as an identity on the given elements.

– Functions have been added to construct standard subalgbras such as the centre
of a basic algebra and the centralizer of a collection of elements in a basic
algebra.

– There are new functions to construct the associated graded algebra of a basic
algebra and a standard form (not unique) for a basic algebra. Included are new
functions to create the basic algebra of the action algebra on the direct sum of
a sequence of modules over a matrix algebra or group algebra. An example is
the basic algebra of a block of a group algebra.

• Matrix Algebras

– For a matrix algebra defined over a finite field and having a unit element, faster
algorithms for computing a basis, a basis of the Jacobson radical and the unit
group have been added.

• Quaternion Algebras

– An improved algorithm for computing the two-sided ideal classes of an order in
a definite quaternion algebra (over Z or Fq[t]) has been developed and coded
by Markus Kirschmer. The algorithm relies on being able to efficiently compute
the normalizer of an order.

6



Basic Rings and Fields

• Finite Fields

– This release includes a major new implementation by Allan Steel of the Copper-
smith index-calculus algorithm for computing discrete logarithms in finite fields
of small characteristic. For characteristic greater than 2, a straightforward gen-
eralization of Coppersmith’s algorithm is used. This means that discrete loga-
rithms can now be quickly computed for many fields of small characteristic for
the first time.

The performance is greatly enhanced by pre-computing auxiliary tables so that
the initial computation of the logarithms of a factor base can be avoided. This
means that logarithms of individual elements can be computed immediately if
the relevant table is present for the field under consideration. Tables are cur-
rently available for most finite fields of characteristic 2, 3, 5 or 7 with cardinality
up to 2400 and also for many non-trivial fields of higher characteristic.

• Finite Near-Fields

– This release includes a new package implementing finite near-fields and related
finite projective (non-Desarguesian) projective planes. Both ordinary and ex-
ceptional near-fields can be constructed. Functions are provided for computing
the group of units, the automorphism group and for testing isomorphism of two
near-fields.

Coding Theory

• Linear Codes over Finite Fields

– Using their Toric Geometry machinery, Gavid Brown and Al Kasprzyk have im-
plemented intrinsics for constructing the linear code over a finite field associated
with the lattice points in a polytope P.
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Combinatorial Theory

• Matrices

– It is now possible to compute the group of row and column permutations of a
matrix M that fixes M . The corresponding isomorphism test is also available.
A very efficient nauty algorithm of B. McKay is used.

Commutative Algebra

• Gröbner Bases

– The performance of the algorithm for computing a Gröbner basis over Z has
been greatly sped up by using modular techniques where possible.

– By using more intelligent pair selection, the computation of a Gröbner basis
over an Euclidean ring has been made much more efficient.

– The algorithm that finds the primary decomposition of a zero-dimensional ideal
over Q been made much faster for several classes of inputs.

Geometry

• Convex Polytopes

– A version of the PALP normal form has been implemented in Magma by Al
Kasprzyk. This is the first implementation of the famous algorithm of Max
Kreuzer and Harald Skarke outside of PALP. An alternative algorithm has also
been developed which is significantly faster when the polytope has symmetries.

– The affine normal form of the maximum dimensional lattice polytope can now
be calculated.

– The Minkowski decompositions of polytopes in arbitrary dimensions can now
be computed. The algorithm is based on a result of Klaus Altmann.

• Finite Geometry

– As a consequence of the recent implementation of finite near-fields, constructions
for the non-Desarguesian projective plane coordinatised by a near-field and the
Hughes plane have been implemented.
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Group Theory

• Finitely-Presented Groups

– An improved version of the Plesken-Fabianska algorithm for computing L2-
quotients of a 2-generator finitely presented group developed and implemented
by Sebastian Jambor has been installed. Given a finitely presented group G on
two generators, the algorithm simultaneously computes all quotients of G which
are isomorphic to some PSL(2, q), for any prime power q. It can handle the case
of infinitely many quotients, and also works for very large prime powers.

– The machinery for computing with Automatic Groups has been extended to
provide access to information regarding the underlying automata and to allow
automatic groups to be written to, and read from, files. A database of automatic
groups corresponding to 4000 hyperbolic 3-manifolds from Weeks’ census of
hyperbolic 3-manifolds of small volume will shortly be made available.

• Matrix Groups (Over Finite Fields)

– The package for constructing the Composition Tree representation of a matrix
group has been extended as follows:

(i) Short presentations on standard generators for the orthogonal groups have
been installed. As a consequence, short presentations on standard generators
are now available for all families of classical groups.

(ii) A new function has been provided for writing an element of a classical group
G as an SLP in the standard generators of G. The algorithm to perform this task
for a classical group in defining characteristic was developed by Elliot Costi and
the black box equivalent is due to Csaba Schneider. Schneider prepared the code
for this function which uses Costi’s implementation in the case of the natural
copy.

The availability of presentations enables rapid verification of the Composition
Tree for any group whose composition factors exclude exceptional groups of Lie
type. It is planned to add short presentations for the exceptional groups in the
near future.

– Lifting-style algorithms have been developed by Derek Holt for new tasks in
groups given in terms of the Composition Tree data structure. These include
determining centralisers, conjugacy of elements, computing conjugacy classes,
normalizers, subgroup conjugacy and maximal subgroups.

• Matrix Groups (Over Z and Q)

– A much improved algorithm for computing the normaliser or centraliser of a
finite subgroup of GL(n, Z) has been implemented by Markus Kirschmer. A
slight variation of the algorithm can be used for testing conjugacy of finite
subgroups of GL(n, Z).
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– Opgenorth’s algorithm has been adapted by Markus Kirschmer to provide a test
for the conjugacy of two matrices of finite order in GL(n, Z). A slight variation
provides an effective method for computing the centraliser of an element of finite
order.

– An algorithm for determining the conjugacy of any pair of matrices in GL(2, Z)
was developed by D. Husert (University of Paderborn). In particular, this al-
lows the conjugacy of elements having infinite order to be determined. Code
developed by Husert is now included in Magma.

• Permutation Groups: Databases

– It is now possible to identify a transitive permutation group of degree 32 in the
database of all transitive groups of degree 32; this requires the installation of
an optional database containing identification data.

• Quasisimple Groups

– The construction of all irreducible representations of quasisimple groups up
to some fixed degree has been a goal for some time. In 2001, Hiss and Malle
published a list of the possibilities up to degree 248. Derek Holt has constructed
a table of modular representations of all such groups up to degree 100. This
table can now be accessed from within Magma.

• Soluble Groups

– A package for the more efficient calculation of the automorphism group of a finite
soluble group G is included. The algorithm was developed by David Howden
and works by extending the automorphisms of a large Sylow p-subgroup of G
to the automorphism group of G. A slight variation of the algorithm may be
used to test isomorphism.
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Lattices and Quadratic Forms

• Integral Lattices

– It is now possible to test a pair of quadratic forms or a pair of lattices for being
rationally equivalent.

– Code has been developed to compute the subgroup of the automorphism group
of a lattice which also fixes a collection of forms setwise. The forms are not
required to be positive definite or even symmetric. This is a variation of the
partition-refinement backtrack lattice automorphism program developed by Bill
Unger in 2010.

Lie Theory

• Lie Algebras

– A major revision of the basic Lie Algebra machinery has resulted in major per-
formance improvements, especially in the case of larger dimensional algebras.
Firstly, the basic multiplication algorithm for elements of a structure constant
Lie algebra has been sped up. Secondly, the creation of subalgebras and quo-
tient algebras is now much faster in general. Thirdly, the algorithm used to
compute a composition series is now much more efficient. In particular, this
makes it possible, for the first time, to compute composition series for algebras
having dimensions well into the thousands. It is also possible to determine the
composition factors without explicitly computing a composition series in much
less time than it takes to find a composition series.

– An intrinsic to compute the Plesken Lie algebra of a finite group G is now
available. This is the linear span of the elements g − g−1 in the group algebra
of G.

– Support for directed W -graphs has been implemented (code supplied by Bob
Howlett).
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Linear Algebra and Module Theory

• Linear Algebra

– A revised implementation of the Lanczos algorithm for sparse matrices over finite
fields provides greatly improved performance, particularly for larger matrices.

– The Hermite Normal Form algorithm is now much more efficient for the case
of sparse matrices over Z and Q having full rank and which have at least one
large elementary divisor. This benefits algorithms such as the relation method
for computing ideal class groups of number fields.

• Bilinear and Sesquilinear Forms

– Facilities for computing with vector spaces equipped with a bilinear, sesquilinear
or quadratic form have been added. Isometry and similarity groups can be
computed and the spaces of forms which are invariant or semi-invariant under
the action of a matrix group can be found.

Representation Theory

• Galois Representations

– A package has been developed by Jeremy Le Borgne which provides tools for
working with ϕ-modules over the power series ring k((u)), where k is a finite
field, and representations of the absolute Galois group of k((u)) with coefficients
in a finite field.

The main functionality is concerned with computing the semisimplification of a
given ϕ-module, and the semisimplification of the Galois representation that is
naturally attached to it. In particular, the slopes of the ϕ-module, corresponding
to the tame inertia weights of the Galois representation, can be computed using
this package.
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System

• Language

– User-defined types are now available for the first time. This facility allows the
user to declare new type names and create objects with such types and then
supply some basic primitives and intrinsic functions for such objects.
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3 Documentation

New Handbook Chapters:

– Nearfields

– Polar Spaces

– Hypergeometric Motives

– Mod p Galois Representations

4 Language and System Features

New Features:

– User-defined types are now available for the first time. This facility allows the user to declare new
type names and create objects with such types and then supply some basic primitives and intrinsic
functions for such objects.

Changes and Removals:

– When SetQuitOnError(true) is in force, the exit status is now non-zero when Magma exits due
to an error.

Bug Fixes:

– Fixed a possible crash when a syntax error arises within a function definition.

– Fixed a crash that could arise when using eval with a database around.

– The algorithm deciding the frequency of garbage collection has been revised so as to spend much
less time in some situations.

5 Aggregates and Mappings

New Features:

– The operator # now works for associative arrays (returning the number of keys).

Changes and Removals:

– The speed of RandomSubset has been improved for large sets.

Bug Fixes:

– The functions And, Or, Xor, and Not no longer crash when one of the arguments is the null sequence.

– A bug has been fixed which could cause hashing of multisets to return invalid values for certain
underlying types such as vectors.

– A bug in associative arrays that could cause crashes when keys of different universes are used has
been fixed.

– A memory leak which occurred when records are created has been fixed.
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6 Algebraic Geometry

6.1 Schemes

New Features:

– Tests have been added for whether an ordinary projective scheme is Gorenstein, Cohen-Macaulay
or the arithmetic versions of these: IsGorenstein, IsArithmeticallyGorenstein and the same
with Gorenstein replaced by CohenMacaulay.

– A package of code to work with divisors on varieties has been added. This is in an early stage
of development but contains a range of intrinsics to create divisors, decompose into primary or
prime components, work with Q-rational divisors, perform basic arithmetic, compute Riemann-
Roch spaces, test for linear equivalence, compute intersection numbers for divisors on surfaces and
give a representative divisor for an invertible sheaf, which includes computing canonical divisors.
The functionality in parts relies on sheaf operations or slight adaptations and so requires the base
scheme to be ordinary projective.

– An intrinsic has been added to test whether an isolated singularity on a scheme is analytically isomor-
phic to a hypersurface singularity, IsHypersurfaceSingularity. In the affirmative case this will
also return the analytically equivalent hypersurface equation expanded to desired precision and give
the transformation from the original coordinates. The user can further expand the analytic hyper-
surface equation at a later stage with HypersurfaceSingularityExpandFurther and also expand a
rational function in the local analytic coordinates with HypersurfaceSingularityExpandFunction.

6.2 Sheaves

New Features:

– ZeroSubscheme returns the vanishing subscheme for a global section of a locally free sheaf.

– HorrocksMumfordBundle returns the Horrocks-Mumford bundle on projective 4-space as a locally
free sheaf of rank 2.

– Restriction gives the pullback of a sheaf to a subscheme.

Changes:

– IsLocallyFree has finally been fixed (thanks to Eric Rains for pointing out the bug). It has been
re-implemented using Fitting ideals with an adaptation of the old method as an alternative. The
latter now computes an ëtale stratification and applies the old method inductively down it.
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6.3 Algebraic Curves

New Features:

– A package of functions to compute smallest degree functions/maps to P1 as well as smallest degree
birational plane models for low genus curves has been added. These are geometrically smallest
degree, meaning they may be constructed over a finite extension of the base field in some cases.
The relevant intrinsics are summarised in the next four items.

– CliffordIndexOne. For a trigonal curve of any genus ≥ 3, computes an explicit degree 3 map to
P1. In the exceptional Clifford index one where the curve has genus 6 and gonality 4, computes an
explicit birational map to a non-singular plane quintic. This uses Lie algebras via the algorithm of
Schicho and Sevilla.

– GenusNGonalMap - here N can be 2 to 6. Computes an explicit gonal (smallest degree) map to P1

for an algebraic curve of genus 2,3,4,5 or 6. For the hyperelliptic cases, uses the existing code; for
the Clifford index one cases uses the previous intrinsic and for the genus 5 and 6 gonality 4 cases
uses an algorithm of Harrison.

– Genus5PlaneCurveModel and Genus6PlaneCurveModel. Computes smallest degree (5 or 6) bira-
tional plane models of genus 5 or 6 curves that are not hyperelliptic or double covers of a genus 1
curve. Uses a variant of the method used to compute gonal maps.

– The new intrinsic IntersectionNumbers uses an algorithm of Jan Hilmar and Chris Smyth to com-
pute and return all intersection places along with the corresponding local intersection multiplicity
for two plane projective curves over Q in a single computation. (To be included in an early patch
release).

– The intrinsic Completion applied to a function field of a curve at a place of the curve can now be
computed directly. (V2.18-8)

Changes:

– Expand can now be applied to places of degree greater than 1. (V2.18-8)
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6.4 Algebraic Surfaces

New Features:

– A basic surface type Srfc has been added for two-dimensional geometrically integral schemes over
a field.

– Invariants, covariants and contravariants of cubic surfaces are accessible via
ClebschSalmonInvariants, LinearCovariantsOfCubicSurface,
ClassicalCovariantsOfCubicSurface, ContravariantsOfCubicSurface. Further, the degree
100 skew-invariant of a cubic surface can be computed via SkewInvariant100.

– New functionality has been added for general surfaces but applying mainly to ordinary projective
models with very restricted singularity. This includes the following.

– IsNormal, a test for normality and HasOnlySimpleSingularities, which tests whether the surface
only has simple (A-D-E type) singularities. The latter will also give the user the singularity type
(e.g. ”A3”) for all geometric singular points if required.

– For ordinary projective surfaces which have only simple singularities (or are at least Gorenstein
for some of the functions), computation of basic invariants with GeometricGenus, Plurigenus,
Irregularity, ChernNumber (for c21 and c2) and HodgeNumber (for the individual hi, j).

– KodairaEnriquesType to compute the Kodaira dimension as well as the more specific type of an
ordinary projective surface in the Kodaira-Enriques classification (rational, ruled, K3 etc.). The
surface must again must have at worst simple singularities.

– Computation of minimal models of ordinary projective surfaces, relying heavily on adjunction
and pluricanonical maps. The intrinsics differ slightly by Kodaira dimension and type so there
is MinimalModelRationalSurface, MinimalModelRuledSurface,
MinimalModelKodairaDimensionZero etc. The Kodaira dimension one case also returns a fibra-
tion map to a smooth projective curve, presenting the minimal model as a globally minimal elliptic
fibration. These intrinsics require the original surface to be non-singular except in the general type
(Kodaira dimension 2) case, when simple singularities are allowed.

– For ordinary projective general type surfaces with at most simple singularities, computation of the
full canonical model (in weighted projective space) or canonical coordinate ring with
CanonicalWeightedModel and CanonicalCoordinateIdeal.

– Computation of random nonsingular surfaces in P4 from a number of the families described in the
paper of Decker, Ein and Schreyer. For example, RandomRationalSurface d10g9 and
RandomEllipticFibration d7g6.

Changes:

– The code to work with (singular) hypersurfaces in P3 has been modified so that many of the
arguments of intrinsics are now Srfc types rather than polynomials.

– The old Plurigenus intrinsic has been renamed PlurigenusOfDesingularization.

– The old ClassifyProjectiveSurface has been renamed ClassifyRationalSurface and returns
more descriptive data.
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6.5 Toric Varieties

New Features:

– Algorithms have been implemented for computing the Demazure roots of the complete fan F . The
intrinsic DemazureRoots(F) returns the roots partitioned into two sets: the semistable roots and
the unipotent roots. The number of Demazure roots can be found via NumberOfRoots(F).

– The new intrinsic IsSemistable(F) can be used to determine whether the complete fan F is
semistable. Similarly, IsReductive(X) returns true if and only if the projective variety X has
reductive automorphism group.

– The intrinsics IsIsomorphicToProjectiveSpace(X) and IsIsomorphicToProductProjectiveSpace(X)
use the Demazure roots of the associated fan to determine whether the complete toric variety X is
isomorphic to a (product of) projective space.

Changes:

– The intrinsics IsPrincipal(D) and IsLinearlyEquivalent(D,E) for toric divisors D and E now
also return a rational function f such that D = div(f) or D = E + div(f), respectively.

– A significant speed improvement and reduction in the memory footprint of CartierToWeilMap(X)
has been made. This intrinsic is fundamental when working with toric divisors, and returns the
embedding map from the lattice of torus-invariant Cartier divisors to the lattice of torus-invariant
Weil divisors.

18



7 Arithmetic Geometry

7.1 Rational Curves and Conics

Changes and Removals:

– The obsolete (and essentially ignored) varargs Maxtrial and PrimalityProof have been removed
from the Conic(X, f) signature.

7.2 Elliptic Curves

7.2.1 Elliptic Curves over the Rational Field

New Features:

– Given the real and imaginary periods of a minimal model for an elliptic curve over Q, the intrinsic
EllipticCurveFromPeriods will return the curve.

Changes and Removals:

– The extension of John Cremona’s database for elliptic curves over Q having conductor up to 300,000
has been installed.

– Renumbered 98 curves in the above database, as requested by John Cremona, to reflect his desired
new ordering. The affected curves had conductors between 130,000 and 230,000.

Bug fixes:

– A bug has been fixed that could cause the order of a torsion point on a non-integral elliptic curve
over the rationals to be erroneously reported as infinite.

– Saving a workspace when the elliptic curve database is around no longer causes the database to
return read errors thereafter.

– A bug has been fixed in the rank computation for elliptic curves with no rational 2-torsion points.
This bug could cause some covering quartics to be erroneously discarded as not contributing to the
2-Selmer group, which in turn could cause the upper bound on the rank to be incorrectly computed.
In most instances an error message or warning would highlight that this had occurred.

– Significant improvements and bug fixes have been made in EightDescent.

– A problem in TwoDescent has been fixed: for curves of large conductor having one nontrivial 2-
torsion point, computations got stuck due to bad handling of power products.

7.2.2 Elliptic Curves over Finite Fields

Bug Fixes:

– A rare crash when deleting an elliptic curve over a finite field has been fixed.
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7.2.3 Elliptic Curves over Function Fields

New Features:

– The routine EllipticCurveSearch performs a search for elliptic curves with given conductor (or
conductors in a given set) defined over Fq(t). The amount of effort used in the search is specified
by the user. The user may also specify some traces of Frobenius, when known, which greatly speeds
up the search. The algorithm is nontrivial, and the implementation is carefully tuned.

– TraceOfFrobenius has been added for curves over Fq(t).

Changes:

– For an elliptic curve over a rational function field F , Conductor now returns a sequence of places
and multiplicities. Previously it returned the conductor as a divisor over a trivial extension of F .

7.3 Hyperelliptic Curves

New Features:

– The EulerFactor of a hyperelliptic curve over the rationals or a number field can now be computed
at a prime or prime ideal.
An intrinsic for Specialization of a hyperelliptic curve over a function field has been added.

– The intrinsic Specialization has been extended to allow the calculation of a specialisation of an
hyperelliptic curve defined over certain types of function field.

– RankBound and RankBounds now provide sharper upper bounds for the Mordell-Weil rank of a
hyperelliptic Jacobian over a number field in some cases. This is achieved by using additional
information on the Pic1 torsor.

– A new implementation of TwoSelmerGroup with improved performance particularly for higher genus
Hyperelliptic Jacobians over Q has been made available.

– RankBounds is now available for higher genus hyperelliptic Jacobians.

– RankBounds and RankBound are now available for Jacobians of cyclic covers of the projective line.

– Descent on Jacobians of cyclic covers of the projective line can now be performed using the intrinsics
phiSelmerGroup and PicnDescent.

– Descents on the Pic1 torsor of a cyclic cover of the projective can now be performed using the
intrinsics Pic1Descent and PicnDescent.

– qCoverDescent is now available for cyclic covers of the projective line which have a singular model.

– Whether a cyclic cover of the projective line has index one over a local field can now be determined
using HasIndexOne and HasIndexOneEverywhereLocally.

– New package of functions from Lercier and Ritzenthaler for genus 3 hyperelliptic curves for invariants
and curve reconstruction.

– Compute the Shioda and Maeda invariants of a genus 3 hyperelliptic curve over a field of charac-
teristic 0 or ≥ 11 with ShiodaInvariants or MaedaInvariants.

– Compute a genus 3 curve in the correct isomorphism class for given Shioda invariants as well as the
geometric automorphism group with tt HyperellipticCurveFromShiodaInvariants.
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– Compute geometric automorphism groups for individual genus 3 curves or compute a list of all
possible automorphism groups along with the number of k̄ isomorphism classes over genus 3 curves
over k for a given finite field k of characteristic ≥ 11.

– Twists has been extended to compute all twists of a genus 3 curve over a finite field of characteristic
≥ 11, using the Lercier-Ritzenthaler package.

7.4 L-Series

New Features:

– The ’eq’ operator now equates L-series of elliptic curves over Q that are isogenous.

– The EulerFactor intrinsic now has an Integral vararg.

Bug fixes:

– The conductor of the product of two L-series returned by the intrinsic TensorProduct now always
has type RngIntElt.

7.5 Brandt Modules

New Features:

– Brandt modules are now implemented for quaternion orders over Fq[t],

– A new implementation of Brandt modules for quaternion orders over Z is included.

– Brandt modules are defined using the intrinsic BrandtModule, which takes an order and an integer,
which is the Eichler level.

– The algorithms efficiently handle the level: they do not explicitly work with the ideal classes of the
Eichler order, but only those of the maximal order. (This is the same approach as in the algorithm
used to compute Hilbert modular forms.)

– The dimension of a Brandt module can be computed (without creating a module) using either
BrandtModuleDimension or BrandtModuleDimensionOfNewSubspace.

– The HeckeOperator of a Brandt module can be computed for any prime not dividing the level.

– The common eigenvectors of the Hecke operators can be obtained efficiently using HeckeEigenvectors.
Eigenvalues at additional primes can be then obtained using HeckeEigenvalue.

– The types ModBrdtNew and ModBrdtNewElt which have been introduced for the new cases will revert
to ModBrdt and ModBrdtElt in a future release.

7.6 Modular Forms

Changes and Removals:

– OverconvergentHeckeSeries has been sped up, by a factor of more than 10 in many cases. The
DegreeBound parameter has been removed (it is no longer useful with the improved code).
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7.7 Modular Symbols

Bug fixes:

– Bugs have been fixed in IsTwist and IsMinimalTwist. In addition, the proper bounds are now
used, making the functions much faster.

7.8 Admissible Representations

Bug fixes:

– Several bugs and minor glitches have been fixed in this package.
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8 Arithmetic Fields (Global)

8.1 Algebraic Number Fields

New Features:

– A new implementation of the standard (NoSieve) algorithm for ClassGroup of general fields is now
used. Fields of larger degree are handled much better by the new implementation. For example,
(conditional) class groups and units can be obtained for the degree 24 fields arising in 5-descent
on elliptic curves, for a reasonable range of conductors. In addition, running times are much more
stable than before. There will be further improvements, leading to significant gains in speed. (The
default choice of algorithm, Sieve or NoSieve, has not changed: Sieve is used by default for fields
of degree at most 5 with large discriminant. The algorithm may be selected by the user, in all cases
except that Sieve is not allowed for very small discriminants.)

– ClassGroupExpectedNumberOfTrials estimates the difficulty of finding relations in the standard
class group algorithm for a given factor base bound. Based on this, ClassGroupSuggestedBound
gives a suitable value for the factor base bound.

– Automorphisms can now be applied to a number field that is represented as an extension of another
number field.

Changes and Removals:

– The computation of coercions between orders and fields has been made more efficient. Previously
when an order or field was constructed all possible coercion paths were computed and stored. In
some cases this caused the graph which stored this information to be excessively large and cause
Magma to use an excessive amount of memory. In all cases there was the time cost of computing
coercion paths which may not have been used. Both of these problems have been addressed by
computing and storing coercion paths only when they are required. Examples which ran into
problems with memory usage no longer have these problems, other examples have seen significant
speed-ups.

– The choice of algorithm used to compute Subfields of simple extensions of Q has been improved
(V2.18-3, V2.18-8).

– Improvements have been made to the implementation of the Klüners-van Hoeij-Novocin algorithm
for the computation of Subfields of simple extensions of Q. These improvements were made to
the LLL computation, the prime selection and the computation of the subfield polynomial. Some
of these improvements were patched in V2.18-8.

– When applied to an element of a number field or a field of fractions of an order of a number field
IsIntegral now returns (as a second return value) a denominator such that the denominator times
the input is integral.

– CoveringStructure is now provided for rings of straight line polynomials which are used in the
computation of Galois groups of polynomials over global arithmetic fields.

– A straight line polynomial (as used in the computation of Galois groups of polynomials over global
arithmetic fields) can now be evaluated using a coefficient ring map which maps the coefficients
of the straight line polynomial into the universe of the point at which the polynomial is being
evaluated.

Bug Fixes:

23



– A number of bugs have been fixed in the Sieve algorithm for ClassGroup. In addition, problems
with the computation of S-units in cases which used the Sieve algorithm have been corrected.

– A bug with incompatible sequence elements in SplittingField has been fixed. Thanks to A. Elkin
for the correction.

– Compatibility of modules over maximal orders has been fixed.

– The PrimitiveElement of an order is now integral.

8.2 Characters and Artin Representations

New Features:

– Intrinsics CentralCharacter have been added for Dirichlet and Hecke characters (including
Grössencharacters). Similarly with Determinant for Artin representations.

– The intrinsics DirichletCharacter and HeckeCharacter can now take torsion units from a number
field as their input images.

– Utility intrinsics DirichletCharacterOverNF and DirichletCharacterOverQ have been added to
allow one to pass between the different types of Dirichlet characters.

– Intrinsics TargetRestriction have been added for Dirichlet and Hecke characters.

– Deriving an ArtinRepresentation from a Dirichlet character has been improved, via superior
computation of the Dirichlet kernel class field.

8.3 Algebraic Function Fields

New Features:

– The intrinsics MaximalOrderFinite and MaximalOrderInfinite now apply to abelian extensions
of function fields. These intrinsics can be much faster than the same intrinsics applied directly to
the function field of the abelian extension.

– When computing the GaloisGroup of a polynomial over a function field having characteristic 2, two
more invariants are now available, similarly to the odd characteristic cases. One of these invariants
is used to decide whether the Galois group is a subgroup of An.

– When computing the GaloisGroup of a polynomial over a function field having prime characteristic,
invariants with coefficients in Fq[t] are now available.

– A function field may now be constructed from a sequence of multivariate polynomials. The resulting
field will have a similar representation to that constructed from one multivariate polynomial.

– Embed can now be applied to function fields represented as an extension by multiple defining poly-
nomials.

Changes and Removals:

– Improvements have been made to the computation of maximal orders of Artin–Schreier extensions.
The application of this more efficient algorithm is restricted to fields whose constant field is perfect
as these are the fields for which the algorithm is known to always work.
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– When computing the GaloisGroup of a reducible polynomial over a function field of prime charac-
teristic the descent step has been split so that it is only performed for those factors whose splitting
fields may have non-trivial intersection.

– The order of the variables (when there are at least two) in RationalFunction has been reversed
back to what it was in Magma V2.10. Now the first variable corresponds to the primitive element
of the topmost extension.

Bug Fixes:

– Compatibility of modules over maximal orders has been fixed.

– The PrimitiveElement of an order is now integral.

9 Arithmetic Fields (Local)

9.1 p-adic Rings and their Extensions

New Features :

– Roots of polynomials over general local fields can now be computed.

– The intrinsic CoveringStructure may now be applied to a general local field together with a
compatible field.

Bug Fixes:

– The ramified representation mapping has been fixed for some general local fields (V2.18-10).

– A typo has been fixed in the Magma-level printing of extensions of a p-adic field; this error would
stop the result from being able to be properly eval’ed.

– A memory leak has been fixed in the p-adic coercion for large primes p.

– Some issues with p-adic ring and field creation have been fixed; those could have caused two equal
p-adic structures to be erroneously considered different, causing coercion problems.

– Asking for the defining polynomial of a local ring with respect to itself no longer crashes.

9.2 Series Rings

Bug Fixes:

– A bug has been fixed that could cause loss of precision when one power series was evaluated at
another.
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10 Basic Rings and Fields

10.1 Integer Ring

New Features:

– Maps between Z and a residue class ring or field can now be applied directly to matrices over Z.

Bug Fixes:

– A crash when calling Binomial or NumberOfPermutations on large integers has been fixed.

– A bug which caused binomials to be computed in a very inefficient way in some cases has been fixed.

10.2 Finite Fields

New Features:

– This release includes a major new implementation by Allan Steel of the Coppersmith index-calculus
algorithm for computing discrete logarithms of finite fields of small characteristic (for characteristic
greater than 2, a straightforward generalization of Coppersmith’s algorithm is used). This means
that discrete logarithms can now be quickly computed for many fields of small characteristic for the
first time.
A suite of auxiliary tables boost the algorithm so that the initial computation of logarithms of a
factor base can be avoided. This means that logarithms of individual elements can be computed
immediately if a relevant table is present for the specific field. By default, tables are included in
the standard Magma distribution at least for all fields of characteristic 2, 3, 5 or 7 with cardinality
up to 2200.
The user can optionally download a much larger suite of tables from the Magma optional downloads
page http://magma.maths.usyd.edu.au/magma/download/db/ (files FldFinLog 2.tar.gz, etc.;
about 5GB total). The complete suite includes tables for the fields GF(pd) for:

– p = 2: all d ≤ 440;

– p = 3: all d ≤ 261;

– p = 5: all d ≤ 203;

– p = 7: all d ≤ 150;

– p = 11: all d ≤ 85;

– p = 13: all d ≤ 72;

– 13 < p < 97: several non-trivial fields.

– The function PrimitiveElement(K) has been changed so that if the default generator of a finite field
K is not primitive, then the primitive element of K is taken to be the element of K corresponding to
the first polynomial over the base field of K in lexicographical order which is irreducible (previously,
a random primitive element of K was chosen). This means that the same fixed primitive element
will now always be chosen for a fixed extension of a prime field (and also implies consistency for the
base with respect to which discrete logarithms are computed by default).

Changes and Removals:

– The procedure Coppersmith has been removed, since it is not needed now.
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10.3 Nearfields

New Features:

– This release includes a new package implementing finite nearfields and related finite projective
(non-Desarguesian) projective planes.
A nearfield satisfies all the axioms of a field except for the commutative law of multiplication and one
of the distributive laws. In the Magma implementation the nearfields satisfy the right distributive
law.

– The finite sharply doubly transitive permutation groups are in one-to-one correspondence with
the finite nearfields.

– Nearfields coordinatise a class of translation planes.

– Nearfields and they are the starting point for the construction of the Hughes planes.

– The function DicksonNearfield(q,v) creates a Dickson nearfield from the Dickson pair (q, v), and
the function ZassenhausNearfield(n) create one of the 7 exceptional nearfields.

– The group of units of a nearfield is metacyclic: it is available as a matrix group, a permutation
group and as PC-group.

– The function AffineGroup(N) returns the semidirect product of the additive group of N by the
group of units. All sharply doubly transitive groups occur in this form.

– Nearfields can be tested for isomorphism and the full automorphism group of a nearfield has been
implemented.

– The function ProjectivePlane(N) returns the non-Desarguesian projective plane coordinatised by
the nearfield N .

– The function HughesPlane(N) returns the Hughes plane obtained from N . Note that N can be
either a Dickson nearfield or a Zassenhaus nearfield. (In the literature, the planes obtained from
Zassenhaus nearfields are often called generalised Hughes planes.)

10.4 Real and Complex Fields

Bug fixes:

– A crash related to the new garbage collector and the extended reals has been fixed.

10.5 Polynomial Rings

New Features:

– A quotient of two polynomials can now be coerced into the quotient of an appropriate polynomial
ring.
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11 Coding Theory

11.1 General Linear Codes

Bug Fixes:

– A bug in MinimumWords has been fixed; this bug could cause it to return spurious words not in the
code when called on some quasicyclic codes.

– A rare minor leak in the minimum weight algorithm has been fixed.

11.2 Linear Codes over Finite Fields

New Features:

– Given a polytope P , or sequence of points S, the corresponding (generalised) toric code can be
calculated using ToricCode.

Bug Fixes:

– For linear codes over non-binary finite fields, under some circumstances the automorphism group of
the dual was being incorrectly used as the automorphism group of the code. This has been fixed.

– Additionally, for such codes a reversed test in the automorphism group computation would cause
this computation to be performed over a less efficient choice of code and dual. This has also been
fixed.

– Calling BCHBound on a code with generator polynomial (xn − 1)/(x − 1) now correctly returns a
bound of n instead of 1.

11.3 Linear Codes over Finite Rings

Bug Fixes:

– A bug in StandardForm applied to Z4 codes has been fixed; this bug would cause the result to not
always have the required diagonal property.

– A bug in ParityCheckMatrix applied to Z4 codes has been fixed; this bug could cause the parent
of the returned matrix to have the wrong number of rows.

11.4 Quantum Error-Correcting Codes

Bug Fixes:

– A bug has been fixed which would previously cause the components of the weight distribution of a
self-dual quantum code to be all set to zero upon creation if the weight distribution of the stabilizer
code was already known.
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12 Combinatorial Theory

12.1 Graphs

Changes and Removals:

– The directed graph constructors have been extended to allow edges to be given as sequences in
addition to sets (as was formerly the case).

– Spanning trees now retain vertex labels of the containing graph (edge labels will be lost).

Bug Fixes:

– Assigning an explicitly empty sequence of edge labels to a graph and then asking for the edge labels
no longer causes a crash.

12.2 Matrices

New Features:

– A version of the intrinsic AutomorphismGroup which computes the group of row and column per-
mutations of a matrix that fix the matrix has been installed. The corresponding IsIsomorphic
intrinsic is also available.

13 Commutative Algebra

13.1 Polynomial Rings

Bug Fixes:

– A crash in DistinctDegreeFactorization when the Degree parameter was specified has been
fixed.

13.2 Ideal Theory and Gröbner Bases

New Features:

– The algorithm for computing a Gröbner basis over a euclidean ring has been greatly sped up (by
more intelligent pair selection).

– The algorithm for computing a Gröbner basis over Z has been greatly sped up by using modular
techniques where possible.

– The algorithm for computing the primary decomposition of a zero-dimensional ideal over Q been
greatly sped up for several classes of inputs.
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14 Geometry

14.1 Convex Polytopes and Polyhedra

A number of new features have been added by Al Kasprzyk to his polytopes package.

New Features:

– A native version of PALP normal form has been implemented, and is available via the intrinsics
PALPNormalForm(P) and NormalForm(P). This is the first implementation of the famous algorithm
by Max Kreuzer and Harald Skarke outside of PALP. An alternative algorithm has also been devel-
oped which is significantly faster when the polytope P has symmetries.

– AffineNormalForm(P) can be used to obtain the affine normal form of the maximum dimensional
lattice polytope P .

– Minkowski decompositions of polytopes in arbitrary dimensions can now be computed. This is
based on a result of Klaus Altmann.

– The Newton polytope of a rational function f (regarded as a Laurent polynomial) can be calculated
via NewtonPolytope(f).

– The new PointProcess(P) and PointProcess(C) intrinsics can be used to iterate over the points
in a polytope P and a pointed cone C.

– Given a primitive form v (i.e. a point in the lattice dual to L), ChangeBasis(v) returns a change
of basis of L such that the kernel of v is mapped to the standard codimension one lattice.

– A database of all (2-dimensional) facets of the canonical Fano 3-dimensional polytopes has been
added. These polygons, which can be accessed via PolytopeCanonicalFanoDim3Facet, are defined
up to affine equivalence.

– A database of small polygons has been implemented. Once installed, this can be accessed via
PolytopeSmallPolygon.

– Reverse database look-up has been implemented in three-dimensions. Given a polytope P , the
intrinsic DatabaseID(P) will return a sequence of matching entries in the databases of three-
dimensional polytopes. In the case when P is a canonical Fano polytope, the latest version of
the canonical3 database must be installed in order to access reverse look-up data.

Changes:

– The intrinsic IsIntegrallyClosed(P) can be used to determine whether a polytope P is integrally
closed (i.e. every lattice point in kP can be written as the sum of k lattice points in P , for all
k ∈ Z). The algorithm has been significantly improved, leading to much earlier detection of a
negative answer.

– New special cases have been added to point enumeration for a polytope P , significantly improv-
ing the time taken under certain extreme choices of basis (which, unfortunately, includes some
presentations of reflexive simplices that have become standard).
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14.2 Finite Geometry

As a consequence of the recent implementation of finite near-fields, constructions for
finite planes belonging to families whose definition is based on near-fields have been im-
plemented.

New Features:

– The function ProjectivePlane(N) returns the non-Desarguesian projective plane coordinatised by
the nearfield N .

– The function HughesPlane(N) returns the Hughes plane obtained from the near-field N . Note that
N can be either a Dickson nearfield or a Zassenhaus nearfield. (In the literature, the planes obtained
from Zassenhaus nearfields are often called generalised Hughes planes.)

14.3 Incidence Geometry

New Features:

– The intrinsic LocallySArcTransitive has been implemented by Dimitri Leemans for coset geome-
tries. It returns the largest integer s such that cosert geometry D is locally s-arc-transitive but not
locally (s+1)-arc-transitive.
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15 Groups

15.1 Automatic Groups

New Features:

– A number of intrinsics have been provided to return information about the word acceptor and
word difference automata. These are WordAcceptorSize, WordAcceptor, WordDifferenceSize,
WordDifferenceAutomaton, WordDifferences, and GeneratorOrder.

– Printing level Magma has now been implemented for automatic groups. This makes it possible
to write (read) automatic groups to (from) a file. The reconstruction of the group implements a
number of basic checks on the input to avoid possibly corrupt input, but does not do exhaustive
checks.

– A database of automatic groups corresponding to 4000 hyperbolic 3-manifolds from the Weeks’
census of low volume hyperbolic 3-manifolds will shortly be made available.

Bug Fixes:

– Detection of infinite loops when constructing an automatic structure for a group has been improved.
Also, the verbose messages printed on failure are more comprehensive.

– A number of memory problems, including memory leaks and crashes, have been fixed, improving
the use of memory and the stability of the code.

– The generator access A.i, when A is an automatic group, now works when i is zero or negative.

– The MaxWordDiffs parameter is now taken notice of when constructing the automata.

15.2 Classical Groups

Bug Fixes:

– A number of errors in the maximal subgroups of the classical groups of Lie type having degree up
to 12 have been fixed. A definitive list of these groups are being prepared for publication by John
Bray, Derek Holt and Colva Roney-Dougal. Parallel to this is a suite of Magma routines developed
by Derek and Colva which are designed to return the maximal subgroups of any group of this type.

15.3 Finitely Presented Groups

New Features:

– Given a 2-generator finitely presented group G, the version of the Plesken-Fabianska algorithm
developed by Sebastin Jambor simultaneously computes all quotients of G which are isomorphic to
some PSL(2, q), for any prime power q.

– The intrinsic L2Quotients(G) returns a list of prime ideals of Z[x1, x2, x12] which contains all
information about the L2-quotients.

– The intrinsic L2Type(P) applied to any prime ideal P in Z[x1, x2, x12], returns a string describing
the type of L2-quotient encoded by the ideal.

– The intrinsics L2Generators(P) and L2Ideals(I) return further information about the ideals re-
turned by L2Quotients.
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15.4 Matrix Groups

New Features:

– The SubgroupLattice intrinsic has been extended to work with finite matrix groups.

Changes:

– When constructing a matrix group, the inverses of the generators are no longer computed immedi-
ately. Inverses are computed only when required.

– The algorithms used for computing the orbit of a matrix group on the natural 1-dimensional points
have been changed to use faster methods where possible.

– The OrbitImage intrinsic now returns both the permutation group and the orbit.

– Steps have been taken to avoid constructing a base and strong generating set whenever possible.

15.5 Matrix Groups Over Associative Algebras

Changes:

– Matrix groups over associative algebras have been revised slightly to conform more fully with the
general matrix group functionality.

15.6 Matrix Groups Over Finite Fields

The following notes describe new features that have been developed for use in the context
of the Composition Tree representation of a matrix group.

New Features:

– Short presentations on standard generators for the orthogonal groups have been installed. The
availability of presentations enables rapid verification of the Composition Tree for any group whose
composition factors exclude exceptional groups of Lie type.

– The intrinsic ClassicalRewrite writes an element of a classical group G as an SLP in the standard
generators of G.

– Lifting-style algorithms have been implemented by Derek Holt for further types of structural calcula-
tions in matrix groups using the Composition Tree data structure. These include LMGCentraliser,
LMGIsConjugate (for elements), LMGConjugacyClasses, LMGNormaliser, LMGIsConjugate (for sub-
groups) and LMGMaximalSubgroups. In the near future, each intrinsic prefixed with the letters
“LMG” will be merged with the corresponding standard intrinsic.

– A new intrinsic AffineGroup takes a matrix group G over a finite field and returns the semidirect
product of G by the natural G-module as a permutation group where the degree is the size of the
natural module.
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15.7 Matrix Groups Over Z and Q

The intrinsics described in this section have been implemented by Marcus Kirschmer
(Aachen) unless noted otherwise.

New Features:

– Given a matrix A of finite order in GL(n,Z), a much improved algorithm is used to implement the
intrinsic CentralizerGLZ(A) which computes the centralizer of A in GL(n,Z).

– The intrinsic CentralizerGLZ(A)) may now be used to compute the centraliser of a matrix A in
GL(2,Z), when A has infinite order. The algorithm and code was developed by D. Husert (University
of Paderborn).

– A new intrinsic IsGLZConjugate(A,B) tests whether two rational or integral matrices A and B
having finite order are conjugate in GL(n,Z) or SL(n,Z).

– The intrinsic IsGLZConjugate(A,B) may be used to test conjugacy of matrices A and B in GL(2,Z),
when A and B have infinite order. The method and code are due to D. Husert.

– Given a finite subgroup G of GL(n,Z), a much improved algorithm is used to implement the intrinsic
NormalizerGLZ(G) which computes the normalizer of G in GL(n,Z).

15.8 Permutation Groups

New Features:

– It is now possible to identify a transitive permutation group of degree 32 in the database of all
transitive groups of degree 32; this requires the installation of an optional database containing
identification data.

– A new intrinsic AffineGroup takes a matrix group G over a finite field and returns the semidirect
product of G by the natural G-module as a permutation group where the degree is the size of the
natural module.

– A new intrinsic pCoreQuotient has been added. It returns the quotient of the given permutation
group G by it’s p-core as a permutation group.

Changes:

– A number of measures have been taken to avoid constructing base and strong generating set. Notably
for the image of a homomorphism, when testing a permutation group for being alternating or
symmetric, and after a backtrack search.

15.9 Quasisimple Groups

Quasisimple Groups

– A table of modular representations of all quasisimple groups up to degree 100 can be accessed using
the intrinsic QuasisimpleMatrixGroup. The list of names of the available quasisimple groups can
be obtained using the intrinsic QuasisimpleMatrixGroups.
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15.10 Soluble Groups

New Features:

– A package for the more efficient calculation of the automorphism group of a finite soluble group G
is included. The algorithm was developed by David Howden and works by extending the automor-
phisms of a large Sylow p-subgroup of G to the automorphism group of G. A slight variation of the
algorithm may be used to test isomorphism. The relevant intrinsics are
AutomorphismGroupSolubleGroup and IsIsomorphicSolubleGroup.

– Intrinsics OrbitStabilizer for computing orbit and stabilizer of an element under the action of a
finite soluble group has been added. The intrinsic IsConjugate is extended to take advantage of
the data computed by OrbitStabilizer.
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16 Lattices

16.1 Lattices

New Features:

– The intrinsic AutomorphismGroup(L,F ) has been extended to compute the subgroup of the auto-
morphism group of a lattice which fixes a collection of forms setwise. The forms are not required
to be positive definite or even symmetric. This is a variation of the partition-refinement backtrack
lattice automorphism program developed by Bill Unger in 2010 so it is fast. The new algorithm
also applies to computing an isometry between two lattices which carries a set of forms attached to
one lattice to a set attached to the second.

– The intrinsic IsRationallyEquivalent tests whether a pair of lattices are rationally equivalent.

Changes and Removals:

– The WittInvariants intrinsic now has a Minimize vararg.

Bug Fixes:

– The pSignatures and pExcesses intrinsics now return an empty sequence when the input has
determinant zero.

– A bug when computing isometries of lattices with large entries in the Gram matrix has been fixed.

– A memory leak when computing automorphisms and isometries of lattices has been fixed.

17 Lie Theory

17.1 Lie Algebras

New Features:

– The basic multiplication algorithm for elements of an algebra has been sped up.

– The creation of subalgebras and quotient algebras has been greatly sped up in general.

– The algorithm to compute a composition series has been greatly sped up in general.

– The new intrinsic CompositionFactors returns a sequence containing the composition factors of a
Lie algebra defined by structure constants. In fact, the value returned by this intrinsic is the same
as the second value returned by CompositionSeries, but CompositionFactors can be very much
faster than the latter function.

– The intrinsic PleskenLieAlgebra constructs the Plesken Lie algebra of a finite group G. This is
the linear span of the elements g − g−1 in the group algebra of G.

17.2 Representation Theory

New Features:

– The W -graph machinery has been extended to support directed W -graphs. The code was supplied
by Bob Howlett.
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18 Linear Algebra and Module Theory

18.1 Matrices

New Features:

– The intrinsic function Evaluate(f, A), where f is a univariate polynomial and A is a matrix over
a finite field, has been greatly sped up, particularly in the case that f has high degree.

– A new intrinsic function Evaluate(f, S) has been added, where f is a univariate polynomial and S
is a sequence of matrices; the function returns the evaluation of f of every entry of S as a sequence.
This function will often be faster than evaluating f at each element of S separately (at least when
the matrices over a finite field for the moment).

– The Hermite Normal Form algorithm has been greatly sped up for sparse matrices of full rank which
have at least one large elementary divisor (this benefits algorithms such as the index calculus class
group algorithm).

– Better handling has been introduced for matrix algorithms over residue class rings in the case where
it is not easy to determine quickly whether such rings are fields.

18.2 Sparse Matrices

New Features:

– The Lanczos algorithm (selected by the Lanczos parameter to the ModularSolution function) has
been greatly sped up.

18.3 Bilinear and Sesquilinear Forms

New Features:

– A polar space, namely a vector space with an attached bilinear, sesquilinear or quadratic form, can
be constructed from a standard form or from a user-supplied form. The type of a polar space is one
of: symplectic, pseudo-symplectic, unitary, quadratic or orthogonal, according to whether the form
is alternating, pseudo-alternating, hermitian, quadratic or symmetric.

– New functions IsometryGroup(V) and SimilarityGroup(V) return the group of all isometries and
the group of all similarities of the polar space V.

– Given polar spaces V and W, the function IsIsometric(V,W) determines whether there is an isometry
from V to W and, if so, returns it.

– The function PseudoSymplecticGroup(n,q) returns the pseudo-symplectic group of n×n matrices
over the field GF(q) (where q must be a power of 2).

– The function LieAlgebraFromForm(J) returns the Lie algebra of derivations of the form J.

– The functions HyperbolicPair, Witt Decomposition and ExtendIsometry have been enhanced
to work with all types of polar spaces. In particular, Witt’s Theorem (using ExtendIsometry) is
now available for unitary spaces.

– Given a matrix group G there are new functions to compute the bilinear, sesquilinear and quadratic
forms which are invariant (or invariant up to a scalar multiple) under the action of G. If G
(and its derived group) is absolutely irreducible this functionality has previously been available
via ClassicalForms(G).
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19 Linear Associative Algebras

19.1 Associative Algebras

New Features:

– The process of creating subalgebras and quotient algebras has been greatly sped up in general.

– A new intrinsic CompositionFactors is provided. This returns the same object as the second return
value of CompositionSeries, but may be very much faster than the latter function.

Changes and Removals:

– The norm of an ideal of an order whose coefficient ring is not an order of a number field is now
accessible through an attribute.

– A conjugate of an ideal will now have left and/or right orders and norm set on computation if the
appropriate information is known on the input ideal.

– An ideal may now have less basis elements than the dimension of the algebra.

Bug Fixes:

– A sequence is now checked for having elements in the coefficient ring (rather than its field of
fractions) before it is coerced into an order.

– The construction of an ideal whose basis has normal form with zero rows has been fixed.

19.2 Basic Algebras

New Features:

– A homomorphism of basic algebras A and B can be constructed using the hom-constructor:

hom < A− > B|S >

where S ia an appropriate matrix. The intrinsic IsAlgebraHomomorphism(A,B, ψ) can be used to
verify the homomorphsim property while the intrinsic Image can be used to compute the image of
a homomorphism.

– The intrinsic Restriction(M,B, ξ) constructs the restriction map for module M along the algebra
homomorphism ξ.

– The intrinsic AutomorphismGroup(A) will compute the automorphism group of the basic algebra A.
Isomorphism of basic algebras A and B can be tested using the intrinsic IsIsomorphic(A,B). The
implementation generalizes an algorithm of Bettina Eick for nilpotent structure constant algebras.
Related intrinsics are GradedAutomorphismGroup and IsGradedIsomorphic.

– Ideals, subalgebras and quotient algebras may now be constructed using the standard constructors
ideal, sub and quo. The subalgebra is returned as a basic algebra together with the inclusion
homomorphism. The returned subalgebra includes the minimal idempotent that act as an identity
on the given elements. The intrinsic Annihilator(A,S) constructs the annihilator of the ideal
generated by Elements S in the basic algebra A.
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– The intrinsics Centre and Centralizer may now be used to construct the centre of a basic algebra
and the centralizer of a collection of elements in a basic algebra.

– The intrinsic AssociatedGradedAlgebra(A) constructs the associated graded algebra of a basic
algebra.

– Other new functions allow the user to create the basic algebra of the action algebra on the direct
sum of a sequence of modules over a matrix algebra or group algebra. An example is the basic
algebra of a block of a group algebra.

19.3 Matrix Algebras

New Features:

– For a matrix algebra defined over a finite field and having a unit element, faster algorithms for
computing a basis, a basis of the Jacobson radical and the unit group have been added. The
algorithms are due to Jon Carlson.

19.4 Quaternion Algebras

New Features:

– The intrinsic Normalizer(S) calculates the normalizer of an order in a definite quaternion algebra
A over a field F where F is the rationals, Fq(t) or a number field.

– A much more efficient algorithm is now used for enumerating 2-sided ideal classes by means of the
intrinsic TwoSidedIdealClasses(S), where S is an order in a quaternion algebra.

– The intrinsic MaximalRightIdeals(O, p) computes the integral ideals of norm p with left or right
order O.
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