[Next][Prev] [Right] [Left] [Up] [Index] [Root]

Places

Subsections

Creation of Structures

Places(F) : FldFun -> PlcFun
The set of places of the algebraic function field F/k.

Creation of Elements

General Function Field Places
Decomposition(F, P) : FldFunG, PlcFunElt -> [ PlcFunElt ]
A sequence containing all places of F/k lying above the place P of the coefficient field k(x) of F. The function field F must be a finite extension of k(x).
DecompositionType(F, P) : FldFun, PlcFunElt -> [ <RngIntElt, RngIntElt> ]
Sequence of tuples of residue degrees and ramification indices of the places of F/k lying over the place P of the coefficient field k(x) of F. The function field F must be a finite extension of k(x).
Zeros(a) : FldFunElt -> [ PlcFunElt ]
Zeros(a) : RngFunOrdElt -> [ PlcFunElt ]
A sequence containing all zeros of the algebraic function a.
Poles(a) : FldFunElt -> [ PlcFunElt ]
Poles(a) : RngFunOrdElt -> [ PlcFunElt ]
A sequence containing all poles of the algebraic function a.
S ! I : PlcFun, RngFunOrdIdl -> PlcFunElt
Place(I) : RngFunOrdIdl -> PlcFunElt
The place corresponding to the prime ideal I, where I is defined over the `finite' or `infinite' maximal order and S is the set of places of a function field.
Support(D) : DivFunElt -> [ PlcFunElt ], [ RngIntElt ]
Support(P) : PlcFunElt -> [ PlcFunElt ], [ RngIntElt ]
Sequences containing the places and exponents occurring in the divisor D.
AssignNames(~P, s) : PlcFunElt, [ MonStgElt ] ->
Change the print name employed when displaying P to be the first element in the sequence of strings s which must have length 1.
InfinitePlaces(F) : FldFun -> [PlcFunElt]
The infinite places of the function field F.
Global Function Field Places

F/k denotes a global function field in this section.

HasPlace(F, m) : FldFun, RngIntElt -> PlcFunElt
Returns true and a place of degree m if and only if there exists such in the function field F/k; false otherwise.
HasRandomPlace(F, m) : FldFun, RngIntElt -> BoolElt, PlcFunElt
Returns true and a random place of degree m in the function field F/k or (false if there are none).
RandomPlace(F, m) : FldFun, RngIntElt -> PlcFunElt
Returns a random place of degree m in the function field F/k or throws an error if there is none.
Places(F, m) : FldFun, RngIntElt -> SeqEnum[PlcFunElt]
A sequence containing the places of degree m of the function field F/k.

Example FldFunG_place-creation (H42E33)

Some creation of places is illustrated below.

> P<t> := PolynomialRing(Integers());
> N := NumberField(t^2 + 2);
> P<x> := PolynomialRing(N); 
> P<y> := PolynomialRing(P);
> F<c> := FunctionField(y^4 + x^5 - N.1^7);
> F;
Algebraic function field defined over Univariate rational function field over N 
by
y^4 + x^5 + 8*N.1
> Zeros(c);
[ (x^5 + 8*N.1, c + x^5 + 8*N.1) ]
> P<y> := PolynomialRing(F);
> F2<d> := FunctionField(y^2 + F!N.1);
> Decomposition(F2, $1[1]);
[ (x^5 + 8*N.1, c + 2*x^5 + 16*N.1) ]
> DecompositionType(F2, $2[1]);
[ <2, 1> ]
> Places(F2)!$3[1];
(x^5 + 8*N.1, c + 2*x^5 + 16*N.1)

Related Structures

Parent and Category

The sets of function field places form the Magma category PlcFun. The notional power structure exists as parent but allows no operations.

FunctionField(S) : PlcFun -> FldFun
The corresponding function field of the set of places S.
DivisorGroup(F) : FldFunG -> DivFun
The group of divisors of the algebraic function field F/k, which is the free abelian group generated by the elements of the set of places of F/k.

Structure Invariants

General function fields
WeierstrassPlaces(F) : FldFunG -> [PlcFunElt]
    SeparatingElement: FldFunGElt       Default: 
The Weierstrass places of the function field F/k. The semantics of calling WeierstrassPlaces() with F/k or the zero divisor of F/k are identical. See the description of WeierstrassPlaces.
Global Function Fields

F/k denotes a global function field in this section.

NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneECF(F, m) : FldFunG, RngIntElt -> RngIntElt
The number of places of degree one in the constant field extension of degree m of the function field F/k. Contrary to the Degree() function the degree is here taken over the respective exact constant fields.
NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneECFBound(F, m) : FldFunG, RngIntElt -> RngIntElt
The minimum of the Serre and Ihara bound on the number of places of degree one in the constant field extension of degree m of the function field F/k. Contrary to the Degree() function the degree is here taken over the respective exact constant fields.
NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
NumberOfPlacesDegECF(F, m) : FldFunG, RngIntElt -> RngIntElt
The number of places of degree m of the function field F/k. Contrary to the Degree() function the degree is here taken over the respective exact constant fields.

Structure Predicates

S1 eq S2 : PlcFun, PlcFun -> BoolElt
S1 ne S2 : PlcFun, PlcFun -> BoolElt

Element Operations

Parent and Category
Parent(P) : PlcFunElt -> PlcFun
Category(P) : PlcFunElt -> Cat

Arithmetic Operators
- P : PlcFunElt -> DivFunElt

P1 + P2 : PlcFunElt, PlcFunElt -> DivFunElt
P1 - P2 : PlcFunElt, PlcFunElt -> DivFunElt
k * P : RngIntElt, PlcFunElt -> DivFunElt
P div k : PlcFunElt, RngIntElt -> DivFunElt
P mod k : PlcFunElt, RngIntElt -> DivFunElt
Quotrem(P, k) : PlcFunElt, RngIntElt -> DivFunElt, DivFunElt
Returns divisors D1, D2 such that the place P = kD1 + D2 and the exponents in D2 are of absolute value less than |k|. The operations div and mod yield D1 resp. D2.
Equality and Membership

P1 eq P2 : PlcFunElt, PlcFunElt -> BoolElt
P1 ne P2 : PlcFunElt, PlcFunElt -> BoolElt
P in S : PlcFunElt, PlcFun -> BoolElt
P notin S : PlcFunElt, PlcFun -> BoolElt
Predicates on Elements
IsFinite(P) : PlcFunElt -> BoolElt
Returns true if the place P is a `finite' place.
IsWeierstrassPlace(P) : PlcFunElt -> BoolElt
IsWeierstrassPlace(F, P) : FldFunG, PlcFunElt -> BoolElt
Whether the degree one place P is a Weierstraß place of its function field F. See the description of WeierstrassPlaces.
Other Element Operations
FunctionField(P) : PlcFunElt -> FldFun
The function field that corresponds to the place P.
Degree(P) : PlcFunElt -> RngIntElt
The degree of the place P over the constant field of definition k.
RamificationIndex(P) : PlcFunElt -> RngIntElt
RamificationDegree(P) : PlcFunElt -> RngIntElt
The ramification index of the place P over its subplace of the rational function field k(x) (the function field of P must be a finite extension of k(x)).
InertiaDegree(P) : PlcFunElt -> RngIntElt
ResidueClassDegree(P) : PlcFunElt -> RngIntElt
The degree of inertia (or residue class degree) of a place P over the corresponding subplace of the rational function field (the function field of P must be a finite extension of k(x))
Minimum(P) : PlcFunElt -> RngElt
A monic prime polynomial in k[x] or 1/x or an ideal, corresponding to the place of the coefficient field of the function field of the place P which P lies above (the function field of P must be a finite extension of k(x)).
ResidueClassField(P) : PlcFunElt -> Rng, Map
The residue class field of the place P and the map from the order of the place into the field.
Evaluate(a, P) : RngElt, PlcFunElt -> RngElt
Evaluate the algebraic function a at the place P. If it is not defined at P, infinity is returned.
Lift(a, P) : RngElt, PlcFunElt -> FldFunElt
Lift(i, P) : Infty, PlcFunElt -> FldFunElt
Lift the element a of the residue class field of the place P (including infinity) to an algebraic function.
TwoGenerators(P) : PlcFunElt -> FldFunGElt, FldFunGElt
Two algebraic functions having the place P as their unique common zero.
LocalUniformizer(P) : PlcFunElt -> FldFunGElt
UniformizingElement(P) : PlcFunElt -> FldFunGElt
A local uniformizing parameter at the place P.
SafeUniformizer(P) :
Valuation(a, P) : FldFunElt, PlcFunElt -> RngIntElt
The valuation of the element a at the place P.
Ideal(P) : PlcFunElt -> RngFunOrdIdl
Create a prime ideal corresponding to the place P.
Norm(P) : PlcFunElt -> DivFunElt
The divisor of the norm of the ideal of the place P.

Example FldFunG_places (H42E34)

> R<x> := FunctionField(GF(9));
> P<y> := PolynomialRing(R);
> f := y^4 + (2*x^5 + x^4 + 2*x^3 + x^2)*y^2 + x^8 
>      + 2*x^6 + x^5 +x^4 + x^3 + x^2;
> F<a> := FunctionField(f);
> Genus(F);
7
> NumberOfPlacesDegECF(F, 2);
28
> P := RandomPlace(F, 2);
> P;
(x^2 + $.1^2*x + $.1^7, a + $.1^5*x + $.1^5)
> LocalUniformizer(P);
x^2 + $.1^2*x + $.1^7
> TwoGenerators(P);
x^2 + $.1^2*x + $.1^7 a + $.1^5*x + $.1^5
> ResidueClassField(P);
Finite field of size 3^4
> Evaluate(1/LocalUniformizer(P), P);
Infinity
> Valuation(1/LocalUniformizer(P), P);
-1

Completion at Places

Completion(F, p) : FldFun, PlcFunElt -> RngSerLaur, Map
Completion(O, p) : RngFunOrd, PlcFunElt -> RngSerPow, Map
    Precision: RngIntElt                Default: 20
The completion of the algebraic function field F or an order O of such at the place p of F or the function field of O. The map from F or O into the series ring is returned also.

The series ring returned is an infinite precision ring whose default precision for elements is given by the Precision parameter.

 [Next][Prev] [Right] [Left] [Up] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013